Sample records for nanoparticles radionuclide contaiment

  1. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    Sorption/desorption kinetics for selected radionuclides (99Tc(VII), 232Th(IV), 233U(VI), 237Np(V), 242Pu and 243Am(III)) under Grimsel (Switzerland) ground water conditions (pH 9.7 and ionic strength of ∼1 mM) in the presence of synthetic Zn or Ni containing montmorillonite nanoparticles and granodiorite fracture filling material (FFM) from Grimsel were examined in batch studies. The structurally bound Zn or Ni in the octahedral sheet of the synthetic colloids rendered them suitable as colloid markers. Only a weak interaction of the montmorillonite colloids with the fracture filling material occurs over the experimental duration of 10,000 h (∼13 months). The tri- and tetravalent radionuclides are initially strongly associated with nanoparticles in contrast to 99Tc(VII), 233U(VI) and 237Np(V) which showed no sorption to the montmorillonite colloids. Radionuclide desorption of the nanoparticles followed by sorption to the fracture filling material is observed for 232Th(IV), 242Pu and 243Am(III). Based on the conceptual model that the driving force for the kinetically controlled radionuclide desorption from nanoparticles and subsequent association to the FFM is the excess in surface area offered by the FFM, the observed desorption kinetics are related to the colloid/FFM surface area ratio. The observed decrease in concentration of the redox sensitive elements 99Tc(VII), 233U(VI) and 237Np(V) may be explained by reduction to lower oxidation states in line with Eh-pH conditions prevailing in the experiments and thermodynamic considerations leading to (i) precipitation of a sparingly soluble phase, (ii) sorption to the fracture filling material, (iii) possible formation of eigencolloids and/or (iv) sorption to the montmorillonite colloids. Subsequent to the sorption/desorption kinetics study, an additional experiment was conducted investigating the potential remobilization of radionuclides/colloids attached to the FFM used in the sorption/desorption kinetic

  2. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy.

    PubMed

    Cędrowska, Edyta; Pruszynski, Marek; Majkowska-Pilip, Agnieszka; Męczyńska-Wielgosz, Sylwia; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2018-01-01

    The 225 Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225 Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO 2 nanoparticles (NPs) as carrier for 225 Ac and its decay products. The surface of TiO 2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO 2 -bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO 2 -PEG-SP(5-11) conjugates were labelled with 225 Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO 2 surface. The labelled bioconjugates almost quantitatively retain 225 Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221 Fr, a first decay daughter of 225 Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225 Ac-TiO 2 -PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.

  3. Functionalized TiO2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy

    NASA Astrophysics Data System (ADS)

    Cędrowska, Edyta; Pruszynski, Marek; Majkowska-Pilip, Agnieszka; Męczyńska-Wielgosz, Sylwia; Bruchertseifer, Frank; Morgenstern, Alfred; Bilewicz, Aleksander

    2018-03-01

    The 225Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO2 nanoparticles (NPs) as carrier for 225Ac and its decay products. The surface of TiO2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO2-bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO2-PEG-SP(5-11) conjugates were labelled with 225Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO2 surface. The labelled bioconjugates almost quantitatively retain 225Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221Fr, a first decay daughter of 225Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225Ac-TiO2-PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.

  4. Nanoparticles as multimodal photon transducers of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Pratt, Edwin C.; Shaffer, Travis M.; Zhang, Qize; Drain, Charles Michael; Grimm, Jan

    2018-05-01

    In biomedical imaging, nanoparticles combined with radionuclides that generate Cerenkov luminescence are used in diagnostic imaging, photon-induced therapies and as activatable probes. In these applications, the nanoparticle is often viewed as a carrier inert to ionizing radiation from the radionuclide. However, certain phenomena such as enhanced nanoparticle luminescence and generation of reactive oxygen species cannot be completely explained by Cerenkov luminescence interactions with nanoparticles. Herein, we report methods to examine the mechanisms of nanoparticle excitation by radionuclides, including interactions with Cerenkov luminescence, β particles and γ radiation. We demonstrate that β-scintillation contributes appreciably to excitation and reactivity in certain nanoparticle systems, and that excitation by radionuclides of nanoparticles composed of large atomic number atoms generates X-rays, enabling multiplexed imaging through single photon emission computed tomography. These findings demonstrate practical optical imaging and therapy using radionuclides with emission energies below the Cerenkov threshold, thereby expanding the list of applicable radionuclides.

  5. Polystyrene-Core, Silica-Shell Scintillant Nanoparticles for Low-Energy Radionuclide Quantification in Aqueous Media.

    PubMed

    Janczak, Colleen M; Calderon, Isen A C; Mokhtari, Zeinab; Aspinwall, Craig A

    2018-02-07

    β-particle emitting radionuclides are useful molecular labels due to their abundance in biomolecules. Detection of β-emission from 3 H, 35 S, and 33 P, important biological isotopes, is challenging due to the low energies (E max ≤ 300 keV) and short penetration depths (≤0.6 mm) in aqueous media. The activity of biologically relevant β-emitters is usually measured in liquid scintillation cocktail (LSC), a mixture of energy-absorbing organic solvents, surfactants, and scintillant fluorophores, which places significant limitations on the ability to acquire time-resolved measurements directly in aqueous biological systems. As an alternative to LSC, we developed polystyrene-core, silica-shell nanoparticle scintillators (referred to as nanoSCINT) for quantification of low-energy β-particle emitting radionuclides directly in aqueous solutions. The polystyrene acts as an absorber for energy from emitted β-particles and can be loaded with a range of hydrophobic scintillant fluorophores, leading to photon emission at visible wavelengths. The silica shell serves as a hydrophilic shield for the polystyrene core, enabling dispersion in aqueous media and providing better compatibility with water-soluble analytes. While polymer and inorganic scintillating microparticles are commercially available, their large size and/or high density complicates effective dispersion throughout the sample volume. In this work, nanoSCINT nanoparticles were prepared and characterized. nanoSCINT responds to 3 H, 35 S, and 33 P directly in aqueous solutions, does not exhibit a change in scintillation response between pH 3.0 and 9.5 or with 100 mM NaCl, and can be recovered and reused for activity measurements in bulk aqueous samples, demonstrating the potential for reduced production of LSC waste and reduced total waste volume during radionuclide quantification. The limits of detection for 1 mg/mL nanoSCINT are 130 nCi/mL for 3 H, 8 nCi/mL for 35 S, and <1 nCi/mL for 33 P.

  6. Magnetic iron oxide nanoparticles for the collection and direct measurement of adsorbed alpha-emitting radionuclides from environmental waters by liquid scintillation analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Addleman, R. Shane

    Radioactive contamination in the environment, be it from accidental or intentional release, can create an urgent need to assess water and food supplies, the environment, and monitor human health. Alpha-emitting radionuclides represent the most ionizing, and therefore the most damaging, form of radiation when internalized. Additionally, because of its ease of energy attenuation in solids or liquids, alpha emissions cannot be reliably monitored using non-destructive means. In the event of such an emergency, rapid and efficient methods will be needed to screen scores of samples (food, water, and human excreta) within a short time window. Unfortunately, the assay of alpha-emittingmore » radionuclides using traditional radioanalytical methods is typically labor intensive and time consuming. The creation of analytical counting sources typically requires a series of chemical treatment steps to achieve well performing counting sources. In an effort to devise radioanalytical methods that are fast, require little labor, and minimize the use of toxic or corrosive agents, researchers at PNNL have evaluated magnetite (Fe3O4) nanoparticles as extracting agents for alpha-emitting radionuclides from chemically unmodified aqueous systems. It is demonstrated that bare magnetic nanoparticles exhibit high affinity for representative α-emitting radionuclides (241Am and 210Po) from representative aqueous matrices: river and ground water. Furthermore, use of the magnetic properties of these materials to concentrate the sorbed analyte from the bulk aqueous solution has been demonstrated. The nanoparticle concentrate can be either directly dispensed into scintillation cocktail, or first dissolved and then added to scintillation cocktail as a solution for alpha emission assay by liquid scintillation analysis. Despite the extreme quench caused by the metal oxide suspensions, the authors have demonstrated that quench correction features available on modern liquid scintillation analyzers

  7. Investigation of magnetic nanoparticles for the rapid extraction and assay of alpha-emitting radionuclides from urine: Demonstration of a novel radiobioassay method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Carter, Jennifer C.; Maclellan, Jay A.

    2011-08-01

    In the event of an accidental or intentional release of radionuclides into a populated area, three things must occur in a timely manner: food and drinking water supplies must be determined to be safe to eat / drink, civilians and/or military personnel must be surveyed to ensure that they do not have external contamination, and they must be screened to ensure that significant ingestion or inhalation of radionuclides has not occurred (this paper is concerned with the latter). In the event of such a disaster, the volume of radiobioassays to be performed would be tremendous. If the event released significantmore » levels of β- or α-emitting radionuclides, in vivo assays would be ineffective. Therefore, highly efficient and rapid analytical methods for radionuclide detection from submitted spot urine samples (≤ 50 mL) would be required. At present, the quantitative determination of α-emitting radionuclides from urine samples is highly labor intensive, and requires significant sample preparation and analysis time. Sorbent materials that provide effective collection and enable rapid assay could significantly streamline the radioanalytical process. We have demonstrated the use of paramagnetic nanoparticles as a novel class of extracting media for four α-emitting radionuclides of concern (Po, Ra, Am, and U) from chemically unmodified and pH 2 human urine. Herein the initial experimental sorption results are presented along with a novel method that utilizes paramagnetic nanoparticles for the extraction of radionuclides from unmodified human urine followed by the magnetic field-induced collection of the particles for subsequent α-counting-source preparation. Additionally, we construct a versatile human dose model that determines the detector count times required to estimate internal human dose at specific protective action thresholds. The model provides a means to assess a method’s detection capabilities and use fundamental health physics parameters and actual

  8. Radiobiological characterization of post-lumpectomy focal brachytherapy with lipid nanoparticle-carried radionuclides

    NASA Astrophysics Data System (ADS)

    Hrycushko, Brian A.; Gutierrez, Alonso N.; Goins, Beth; Yan, Weiqiang; Phillips, William T.; Otto, Pamela M.; Bao, Ande

    2011-02-01

    Post-operative radiotherapy has commonly been used for early stage breast cancer to treat residual disease. The primary objective of this work was to characterize, through dosimetric and radiobiological modeling, a novel focal brachytherapy technique which uses direct intracavitary infusion of β-emitting radionuclides (186Re/188Re) carried by lipid nanoparticles (liposomes). Absorbed dose calculations were performed for a spherical lumpectomy cavity with a uniformly injected activity distribution using a dose point kernel convolution technique. Radiobiological indices were used to relate predicted therapy outcome and normal tissue complication of this technique with equivalent external beam radiotherapy treatment regimens. Modeled stromal damage was used as a measure of the inhibition of the stimulatory effect on tumor growth driven by the wound healing response. A sample treatment plan delivering 50 Gy at a therapeutic range of 2.0 mm for 186Re-liposomes and 5.0 mm for 188Re-liposomes takes advantage of the dose delivery characteristics of the β-emissions, providing significant EUD (58.2 Gy and 72.5 Gy for 186Re and 188Re, respectively) with a minimal NTCP (0.046%) of the healthy ipsilateral breast. Modeling of kidney BED and ipsilateral breast NTCP showed that large injected activity concentrations of both radionuclides could be safely administered without significant complications.

  9. Radionuclide therapy using ¹³¹I-labeled anti-epidermal growth factor receptor-targeted nanoparticles suppresses cancer cell growth caused by EGFR overexpression.

    PubMed

    Li, Wei; Liu, Zhongyun; Li, Chengxia; Li, Ning; Fang, Lei; Chang, Jin; Tan, Jian

    2016-03-01

    Anti-epidermal growth factor receptor (EGFR)-targeted nanoparticles can be used to deliver a therapeutic and imaging agent to EGFR-overexpressing tumor cells. (131)I-labeled anti-EGFR nanoparticles derived from cetuximab were used as a tumor-targeting vehicle in radionuclide therapy. This paper describes the construction of the anti-EGFR nanoparticle EGFR-BSA-PCL. This nanoparticle was characterized for EGFR-targeted binding and cellular uptake in EGFR-overexpressing cancer cells by using flow cytometry and confocal microscopy. Anti-EGFR and non-targeted nanoparticles were labeled with (131)I using the chloramine-T method. Analyses of cytotoxicity and targeted cell killing with (131)I were performed using the MTT assay. The time-dependent cellular uptake of (131)I-labeled anti-EGFR nanoparticles proved the slow-release effects of nanoparticles. A radioiodine therapy study was also performed in mice. The EGFR-targeted nanoparticle EGFR-BSA-PCL and the non-targeted nanoparticle BSA-PCL were constructed; the effective diameters were approximately 100 nm. The results from flow cytometry and confocal microscopy revealed significant uptake of EGFR-BSA-PCL in EGFR-overexpressing tumor cells. Compared with EGFR-BSA-PCL, BSA-PCL could also bind to cells, but tumor cell retention was minimal and weak. In MTT assays, the EGFR-targeted radioactive nanoparticle (131)I-EGFR-BSA-PCL showed greater cytotoxicity and targeted cell killing than the non-targeted nanoparticle (131)I-BSA-PCL. The radioiodine uptake of both (131)I-labeled nanoparticles, (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL, was rapid and reached maximal levels 4 h after incubation, but the (131)I uptake of (131)I-EGFR-BSA-PCL was higher than that of (131)I-BSA-PCL. On day 15, the average tumor volumes of the (131)I-EGFR-BSA-PCL and (131)I-BSA-PCL groups showed a slow growth relationship compared with that of the control group. The EGFR-targeted nanoparticle EGFR-BSA-PCL demonstrated superior cellular binding and uptake

  10. The formation of CdS quantum dots and Au nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiener, Andreas; Schmidt, Ella; Bergmann, Christoph

    Abstract We report on microsecond-resolved in-situ SAXS experiments of the early nucleation and growth behavior of both cadmium sulfide (CdS) quantum dots in aqueous solution including the temperature dependence and of gold (Au) nanoparticles. A novel free-jet setup was developped to access reaction times as early as 20 μs. As the signal in particular in the beginning of the reaction is weak the containment-free nature of this sample environment prooved crucial. The SAXS data reveal a two-step pathway with a surprising stability of a structurally relaxed cluster with a diameter of about 2 nm. While these develop rapidly by ionicmore » assembly, a further slower growth is attributed to cluster attachment. WAXS diffraction confirms, that the particles at this early stage are not yet crystalline. This growth mode is confirmed for a temperature range from 25°C to 45°C. An energy barrier for the diffusion of primary clusters in water of 0.60 eV was experimentally observed in agreement with molecular simulations. To access reaction times beyond 100 ms, a stopped-drop setup -again contaiment- free is introduced. SAXS experiments on the growth of Au nanoparticles on an extended time scale provide a much slower growth with one population only. Further, the influence of ionizing X-ray radiation on the Au particle fromation and growth is discussed.« less

  11. Clinically Approved Nanoparticle Imaging Agents

    PubMed Central

    Thakor, Avnesh S.; Jokerst, Jesse V.; Ghanouni, Pejman; Campbell, Jos L.; Mittra, Erik

    2016-01-01

    Nanoparticles are a new class of imaging agent used for both anatomic and molecular imaging. Nanoparticle-based imaging exploits the signal intensity, stability, and biodistribution behavior of submicron-diameter molecular imaging agents. This review focuses on nanoparticles used in human medical imaging, with an emphasis on radionuclide imaging and MRI. Newer nanoparticle platforms are also discussed in relation to theranostic and multimodal uses. PMID:27738007

  12. Evaluation of cytotoxic and tumor targeting capability of (177)Lu-DOTATATE-nanoparticles: a trailblazing strategy in peptide receptor radionuclide therapy.

    PubMed

    Arora, Geetanjali; Dubey, Priyanka; Shukla, Jaya; Ghosh, Sourabh; Bandopadhyaya, Gurupad

    2016-06-01

    We propose an innovative strategy of nanoparticle-mediated-peptide receptor radionuclide therapy (PRRT) employing PLGA-nanoparticles together with anti-β-hCG antibodies that can protect kidneys from radiation damage while simultaneously enhancing its tumor targeting and cytotoxic ability for somatostatin receptor (SSR) positive tumors. PEG-coated-(177)Lu-DOTATATE-PLGA-nanoparticles (PEG-LuD-NP) were formulated and characterized. In vitro toxicity of these particles was tested on human glioblastoma cell line U87MG over a radiation dose range of 19-78 Gy, using MTT assay and flow cytometry. To further enhance cytotoxicity and test the feasibility of active tumor targeting, apoptosis-inducing anti-β-hCG monoclonal antibodies were employed in vitro, after confirming expression of β-hCG on U87MG. In vivo tumor targeting ability of these particles, in comparison to uncoated particles and un-encapsulated (177)Lu-DOTATATE, was assessed by intravenous administration in tumor-induced wistar rats. Rats were first imaged in a gamma camera followed by euthanasia for organ extraction and counting in gamma counter. The particles were spherical in shape with mean diameter of 300 nm. Highest cytotoxicity that could be achieved with PEG-LuD-NP, on radio-resistant U87MG cells, was 35.8 % due to complex cellular response triggered by ionizing radiation. Interestingly, synergistic action of antibodies and PEG-LuD-NP doubled the cytotoxicity (80 %). PEG-LuD-NP showed the highest tumor uptake (4.3 ± 0.46 % ID/g) as compared to (177)Lu-DOTATATE (3.5 ± 0.31 %) and uncoated-(177)Lu-DOTATATE-nanoparticles (3.4 ± 0.35 %) in tumor-inoculated wistar rats (p < 0.001). Renal uptake/retention was decreased 3-4 folds with these particles, resulting in the highest tumor-to-kidney ratio (8.58; p < 0.01) while tumor-to-liver and tumor-to-bone ratios were comparable to un-encapsulated-drug. Nanocarrier-mediated-PRRT is an effective way of targeting SSR positive tumors for

  13. TH-AB-206-01: Advances in Radionuclide Therapy - From Radioiodine to Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humm, J.

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  14. Vascular targeting of a gold nanoparticle to breast cancer metastasis

    PubMed Central

    Peiris, Pubudu M.; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P.; Lee, Zhenghong; Karathanasis, Efstathios

    2015-01-01

    The vast majority of breast cancer deaths are due to metastatic disease. While deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the gold nanoparticles, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Due to the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. PMID:26036431

  15. Nanoparticles migration in fractured rocks and affects on contaminant migration

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  16. Intrinsically radiolabelled [(59)Fe]-SPIONs for dual MRI/radionuclide detection.

    PubMed

    Hoffman, David; Sun, Minghao; Yang, Likun; McDonagh, Philip R; Corwin, Frank; Sundaresan, Gobalakrishnan; Wang, Li; Vijayaragavan, Vimalan; Thadigiri, Celina; Lamichhane, Narottam; Zweit, Jamal

    2014-01-01

    Towards the development of iron oxide nanoparticles with intrinsically incorporated radionuclides for dual Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and more recently of Single Photon Emission Computed Tomography/Magnetic Resonance Imaging (SPECT/MRI), we have developed intrinsically radiolabeled [(59)Fe]-superparamagnetic iron oxide nanoparticles ([(59)Fe]-SPIONs) as a proof of concept for an intrinsic dual probe strategy. (59)Fe was incorporated into Fe3O4 nanoparticle crystal lattice with 92±3% efficiency in thermal decomposition synthesis. Multidentate poly(acrylic acid)-dopamine-poly(ethylene-glycol-2000) (PAA-DOP-PEG) ligands were designed and synthesized based on facile EDC chemistry and utilized to functionalize the [(59)Fe]-SPIONs. The transverse relaxivity of [(59)Fe]-SPIONs (97±3 s(-1)mM(-1)) was characterized and found to be similar to non-radioactive SPIONs (72±10 s(-1)mM(-1)), indicating that (59)Fe incorporation does not alter the SPIONs' MRI contrast properties. [(59)Fe]-SPIONs were used to evaluate the nanoparticle biodistribution by ex vivo gamma counting and MRI. Nude mice (n=15) were injected with [(59)Fe]-SPIONs and imaged at various time points with 7T small animal MRI scanner. Ex vivo biodistribution was evaluated by tissue-based gamma counting. MRI signal contrast qualitatively correlates with the %ID/g of [(59)Fe]-SPIONs, with high contrast in liver (45±6%), medium contrast in kidneys (21±5%), and low contrast in brain (4±6%) at 24 hours. This work demonstrates the synthesis and in vivo application of intrinsically radiolabeled [(59)Fe]-SPIONs for bimodal detection and provides a proof of concept for incorporation of both gamma- and positron-emitting inorganic radionuclides into the core of metal based MRI contrast agent nanoparticles.

  17. Mycoextraction of radiolabeled cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles: Sorption and accumulation studies.

    PubMed

    Asztemborska, Monika; Jakubiak, Małgorzata; Rykaczewska, Magdalena; Bembenek, Marcin; Stęborowski, Romuald; Bystrzejewska-Piotrowska, Grażyna

    2016-11-01

    Widespread use of products based on nanomaterials results in the release of nanoparticles into the environment. Nanoparticles can be taken up by organisms, but they can also coexist with other substances such as radionuclides, thus affecting their uptake or toxicity. In contrast, the sorption capacity of nanoparticles is exploited in water purification. The aim of the study was to investigate: (i) bioaccumulation of cesium and strontium by Pleurotus eryngii mycelia in the presence of alumina nanoparticles (Al 2 O 3 NPs); and (ii) sorption of radionuclides on the surface of nanoparticles. For the experiments, living and dried mycelia were used to permit distinguishing between active uptake and passive sorption of the NPs by P. eryngii. The results are discussed from the perspective of the use of P. eryngii in the mycoextraction of radionuclides. The sorption capacity of Al 2 O 3 NPs and the accumulation by P. eryngii mycelia differ for the applied radioisotopes. The efficiency of Cs and Sr sorption by alumina nanoparticles is 20% and 40%, respectively. Mycelia of P. eryngii have the ability to accumulate 30% of both radioisotopes from the medium. More than 60% of strontium can be removed accumulated from water by P. eryngii mycelia in coexistence with Al 2 O 3 NPs, while the efficiency of cesium removal accumulation is negligible. It was found that alumina nanoparticles do not enhance uptake of radionuclides by P. eryngii mycelia; mycoextraction of radionuclides by mycelia and sorption by Al 2 O 3 NPs are concurrent processes. There was no difference between live or dried mycelia uptake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Vascular Targeting of a Gold Nanoparticle to Breast Cancer Metastasis.

    PubMed

    Peiris, Pubudu M; Deb, Partha; Doolittle, Elizabeth; Doron, Gilad; Goldberg, Amy; Govender, Priya; Shah, Shruti; Rao, Swetha; Carbone, Sarah; Cotey, Thomas; Sylvestre, Meilyn; Singh, Sohaj; Schiemann, William P; Lee, Zhenghong; Karathanasis, Efstathios

    2015-08-01

    The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  20. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  1. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specificmore » for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.« less

  2. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.

    Magnetic nanoparticles are well known to possess chemically active surfaces and high surface areas that can be employed to extract a range of ions from aqueous solutions. Additionally, their paramagnetic property provides a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. Herein, two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes, were evaluated for their ability to collect both naturally occurring radioactive isotopes (polonium (Po), radium (Ra), and uranium (U)) as well as the transuranic element americium (Am) from a suite of naturally occurring aqueous matrices. The nanomaterials include commerciallymore » available paramagnetic magnetite (Fe3O4) and magnetite that was modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1 (acidified with HCl). Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the aforementioned alpha-emitting radionuclide spikes from Hanford Site ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. The uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified groundwater

  3. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.

    Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is

  4. Magnetic iron oxide and manganese-doped iron oxide nanoparticles for the collection of alpha-emitting radionuclides from aqueous solutions

    DOE PAGES

    O'Hara, Matthew J.; Carter, Jennifer C.; Warner, Cynthia L.; ...

    2016-10-31

    Magnetic nanoparticles are well known to possess chemically active surfaces and large surface areas that can be employed to extract a range of ions from aqueous solutions. In addition, their superparamagnetic properties provide a convenient means for bulk collection of the material from solution after the targeted ions have been adsorbed. We evaluated two nanoscale amphoteric metal oxides, each possessing useful magnetic attributes for their ability to collect trace levels of a chemically diverse range of alpha emitting radioactive isotopes (polonium (Po), radium (Ra), uranium (U), and americium (Am)) from a wide range of aqueous solutions. The nanomaterials include commerciallymore » available magnetite (Fe3O4) and magnetite modified to incorporate manganese (Mn) into the crystal structure. The chemical stability of these nanomaterials was evaluated in Hanford Site, WA ground water between the natural pH (~8) and pH 1. Whereas the magnetite was observed to have good stability over the pH range, the Mn-doped material was observed to leach Mn at low pH. The materials were evaluated in parallel to characterize their uptake performance of the alpha-emitting radionuclide spikes from ground water across a range of pH (from ~8 down to 2). In addition, radiotracer uptake experiments were performed on Columbia River water, seawater, and human urine at their natural pH and at pH 2. Despite the observed leaching of Mn from the Mn-doped nanomaterial in the lower pH range, it exhibited generally superior analyte extraction performance compared to the magnetite, and analyte uptake was observed across a broader pH range. We show that the uptake behavior of the various radiotracers on these two materials at different pH levels can generally be explained by the amphoteric nature of the nanoparticle surfaces. Finally, the rate of sorption of the radiotracers on the two materials in unacidified ground water was evaluated. The uptake curves generally indicate that equilibrium is

  5. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  6. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at leastmore » one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.« less

  7. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  8. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  9. Radiolabeled Nanoparticles for Multimodality Tumor Imaging

    PubMed Central

    Xing, Yan; Zhao, Jinhua; Conti, Peter S.; Chen, Kai

    2014-01-01

    Each imaging modality has its own unique strengths. Multimodality imaging, taking advantages of strengths from two or more imaging modalities, can provide overall structural, functional, and molecular information, offering the prospect of improved diagnostic and therapeutic monitoring abilities. The devices of molecular imaging with multimodality and multifunction are of great value for cancer diagnosis and treatment, and greatly accelerate the development of radionuclide-based multimodal molecular imaging. Radiolabeled nanoparticles bearing intrinsic properties have gained great interest in multimodality tumor imaging over the past decade. Significant breakthrough has been made toward the development of various radiolabeled nanoparticles, which can be used as novel cancer diagnostic tools in multimodality imaging systems. It is expected that quantitative multimodality imaging with multifunctional radiolabeled nanoparticles will afford accurate and precise assessment of biological signatures in cancer in a real-time manner and thus, pave the path towards personalized cancer medicine. This review addresses advantages and challenges in developing multimodality imaging probes by using different types of nanoparticles, and summarizes the recent advances in the applications of radiolabeled nanoparticles for multimodal imaging of tumor. The key issues involved in the translation of radiolabeled nanoparticles to the clinic are also discussed. PMID:24505237

  10. Copper Loading of Preformed Nanoparticles for PET-Imaging Applications.

    PubMed

    Lu, Hoang D; Wang, Leon Z; Wilson, Brian K; McManus, Simon A; Jumai'an, Jenny; Padakanti, Prashanth K; Alavi, Abass; Mach, Robert H; Prud'homme, Robert K

    2018-01-31

    Nanoparticles (NP) are promising contrast agents for positron emission tomography (PET) radionuclide imaging that can increase signal intensity by localizing clusters of PET radionuclides together. However, methods to load NPs with PET radionuclides suffer from harsh loading conditions or poor loading efficacies or result in NP surface modifications that alter targeting in vivo. We present the formation of water-dispersible, polyethylene glycol coated NPs that encapsulate phthalocyanines into NP cores at greater than 50 wt % loading, using the self-assembly technique Flash NanoPrecipitation. Particles from 70 to 160 nm are produced. Phthalocyanine NPs rapidly and spontaneously chelate metals under mild conditions and can act as sinks for PET radionuclides such as 64-Cu to produce PET-active NPs. NPs chelate copper(II) with characteristic rates of 1845 M -1 h -1 at pH 6 and 37 °C, which produced >90% radionuclide chelation within 1 h. NP physical properties, such as core composition, core fluidity, and size, can be tuned to modulate chelation kinetics. These NPs retain 64 Cu even in the presence of the strong chelator ethylene diamine tetraacetic acid. The development of these constructs for rapid and facile radionuclide labeling expands the applications of NP-based PET imaging.

  11. Interventional Therapy of Head and Neck Cancer with Lipid Nanoparticle-Carried Rhenium-186 Radionuclide

    PubMed Central

    French, J. Tyler; Goins, Beth; Saenz, Marcela; Li, Shihong; Garcia-Rojas, Xavier; Phillips, William T.; Otto, Randal A.; Bao, Ande

    2010-01-01

    Purpose Minimally invasive interventional cancer therapy of drug-carrying lipid nanoparticles (liposomes) via convection enhanced delivery generally applied by the use of an infusion pump can increase intratumoral drug concentration and retention while facilitating broad distribution throughout solid tumors. We investigated the utility of liposome-carrying β-emitting radionuclides to treat head and neck cancer in nude rats by direct intratumoral infusion. Methods Four groups of nude rats were subcutaneously inoculated with human tongue cancer cells. After tumors reached an average size of 1.6 cm3, the treatment group received an intratumoral infusion of liposomal rhenium-186 (186Re) (185 MBq (5 mCi)/cm3 tumor). Three control groups were intratumorally infused with either, 1) unlabeled liposomes, 2) unencapsulated 186Re-perrhenate, or 3) unencapsulated intermediate 186Re-compound (186Re-BMEDA). In vivo distribution of 186Re-activity was measured by planar gamma camera imaging. Tumor therapy and toxicity were assessed by measurements of tumor size, body weight, and hematology. Results Average tumor volume of the 186Re-liposome group on post-treatment day-14 decreased to 87.7±20.1%, while tumor volumes increased to 395.0% - 514.4% on average in other three groups (P<0.001 vs 186Re-liposome group). 186Re-liposomes provided much higher intratumoral retention of 186Re-activity, resulting in an average tumor radiation absorbed dose of 526.3±93.3 Gy, whereas 186Re-perrhenate and 186Re-BMEDA groups had only 3.3±1.2 and 13.4±9.2 Gy tumor doses respectively. No systemic toxicity was observed. Conclusion Liposomal 186Re effectively treated the head and neck cancer with minimal side effects after convection enhanced interventional delivery. These results suggest the potential of liposomal 186Re for clinical application in interventional therapy of cancer. PMID:20478719

  12. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  13. Hydrogels Containing Prussian Blue Nanoparticles Toward Removal of Radioactive Cesium Ions.

    PubMed

    Kamachi, Yuichiro; Zakaria, Mohamed B; Torad, Nagy L; Nakato, Teruyuki; Ahamad, Tansir; Alshehri, Saad M; Malgras, Victor; Yamauchil, Yusuke

    2016-04-01

    Recent reports have demonstrated the practical application of Prussian blue (PB) nanoparticles toward environmental clean-up of radionuclide 173Cs. Herein, we prepared a large amount of PB nanoparticles by mixing both iron(III) chloride and sodium ferrocyanide hydrate as starting precursors. The obtained PB nanoparticles show a high surface area (440 m2. g-1) and consequently an excellent uptake ability of Cs ions from aqueous solutions. The uptake ability of Cs ions into poly(N-isopropylacrylamide (PNIPA) hydrogel is drastically increased up to 156.7 m2. g-1 after incorporating our PB nanoparticles, compared to 30.2 m2 . g-1 after using commercially available PB. Thus, our PB-containing PNIPA hydrogel can be considered as an excellent candidate for the removal of Cs ions from aqueous solutions, which will be useful for the remediation of the nuclear waste.

  14. Nanoparticles and Radiotracers: Advances toward Radio-Nanomedicine

    PubMed Central

    Pratt, Edwin C.; Shaffer, Travis M.; Grimm, Jan

    2016-01-01

    Here, we cover the convergence of radiochemistry for imaging and therapy with advances in nanoparticle (NP) design for biomedical applications. We first explore NP properties relevant for therapy and theranostics and emphasize the need for biocompatibility. We then explore radionuclide-imaging modalities such as Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Cerenkov Luminescence (CL) with examples utilizing radiolabeled NP for imaging. PET and SPECT have served as diagnostic workhorses in the clinic, while preclinical NP design examples of multimodal imaging with radiotracers show promise in imaging and therapy. CL expands the types of radionuclides beyond PET and SPECT tracers to include high-energy electrons (β−) for imaging purposes. These advances in radionanomedicine will be discussed, showing the potential for radiolabeled NPs as theranostic agents. PMID:27006133

  15. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission.

    PubMed

    Rojas, Santiago; Gispert, Juan D; Martín, Roberto; Abad, Sergio; Menchón, Cristina; Pareto, Deborah; Víctor, Víctor M; Alvaro, Mercedes; García, Hermenegildo; Herance, J Raúl

    2011-07-26

    Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.

  16. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  17. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  18. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  19. Reactor-Produced Medical Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less

  20. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  1. Radionuclides in haematology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, S.M.; Bayly, R.J.

    1986-01-01

    This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.

  2. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  3. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  4. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  5. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  6. Sensitivity improvement of Cerenkov luminescence endoscope with terbium doped Gd{sub 2}O{sub 2}S nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Xin; Chen, Xueli, E-mail: xlchen@xidian.edu.cn, E-mail: jimleung@mail.xidian.edu.cn; Cao, Xu

    2015-05-25

    Our previous study showed a great attenuation for the Cerenkov luminescence endoscope (CLE), resulting in relatively low detection sensitivity of radiotracers. Here, a kind of radioluminescence nanoparticles (RLNPs), terbium doped Gd{sub 2}O{sub 2}S was mixed with the radionuclide {sup 68}Ga to enhance the intensity of emitted luminescence, which finally improved the detection sensitivity of the CLE by using the radioluminescence imaging technique. With the in vitro and in vivo pseudotumor experiments, we showed that the use of RLNPs mixed with the radionuclide {sup 68}Ga enabled superior sensitivity compared with the radionuclide {sup 68}Ga only, with 50-fold improvement on detection sensitivity,more » which guaranteed meeting the demands of the clinical diagnosis of gastrointestinal tract tumors.« less

  7. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through geomorphic processes

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.

    2012-12-01

    After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.

  8. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  9. Nanoparticle imaging probes for molecular imaging with computed tomography and application to cancer imaging

    NASA Astrophysics Data System (ADS)

    Roeder, Ryan K.; Curtis, Tyler E.; Nallathamby, Prakash D.; Irimata, Lisa E.; McGinnity, Tracie L.; Cole, Lisa E.; Vargo-Gogola, Tracy; Cowden Dahl, Karen D.

    2017-03-01

    Precision imaging is needed to realize precision medicine in cancer detection and treatment. Molecular imaging offers the ability to target and identify tumors, associated abnormalities, and specific cell populations with overexpressed receptors. Nuclear imaging and radionuclide probes provide high sensitivity but subject the patient to a high radiation dose and provide limited spatiotemporal information, requiring combined computed tomography (CT) for anatomic imaging. Therefore, nanoparticle contrast agents have been designed to enable molecular imaging and improve detection in CT alone. Core-shell nanoparticles provide a powerful platform for designing tailored imaging probes. The composition of the core is chosen for enabling strong X-ray contrast, multi-agent imaging with photon-counting spectral CT, and multimodal imaging. A silica shell is used for protective, biocompatible encapsulation of the core composition, volume-loading fluorophores or radionuclides for multimodal imaging, and facile surface functionalization with antibodies or small molecules for targeted delivery. Multi-agent (k-edge) imaging and quantitative molecular imaging with spectral CT was demonstrated using current clinical agents (iodine and BaSO4) and a proposed spectral library of contrast agents (Gd2O3, HfO2, and Au). Bisphosphonate-functionalized Au nanoparticles were demonstrated to enhance sensitivity and specificity for the detection of breast microcalcifications by conventional radiography and CT in both normal and dense mammary tissue using murine models. Moreover, photon-counting spectral CT enabled quantitative material decomposition of the Au and calcium signals. Immunoconjugated Au@SiO2 nanoparticles enabled highly-specific targeting of CD133+ ovarian cancer stem cells for contrast-enhanced detection in model tumors.

  10. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  11. Initial Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently

  12. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has beenmore » used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and

  13. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  14. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  15. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  16. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides.

    PubMed

    Handkiewicz-Junak, Daria; Poeppel, Thorsten D; Bodei, Lisa; Aktolun, Cumali; Ezziddin, Samer; Giammarile, Francesco; Delgado-Bolton, Roberto C; Gabriel, Michael

    2018-05-01

    The skeleton is the most common metastatic site in patients with advanced cancer. Pain is a major healthcare problem in patients with bone metastases. Bone-seeking radionuclides that selectively accumulate in the bone are used to treat cancer-induced bone pain and to prolong survival in selected groups of cancer patients. The goals of these guidelines are to assist nuclear medicine practitioners in: (a) evaluating patients who might be candidates for radionuclide treatment of bone metastases using beta-emitting radionuclides such as strontium-89 ( 89 Sr), samarium-153 ( 153 Sm) lexidronam ( 153 Sm-EDTMP), and phosphorus-32 ( 32 P) sodium phosphate; (b) performing the treatments; and ©) understanding and evaluating the treatment outcome and side effects.

  17. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  18. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less

  19. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  20. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  1. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  2. Role of Nanoparticles in Drug Delivery and Regenerative Therapy for Bone Diseases.

    PubMed

    Gera, Sonia; Sampathi, Sunitha; Dodoala, Sujatha

    2017-01-01

    Osteoporosis is a disease characterized by progressive bone loss due to aging and menopause in women leading to bone fragility with increased susceptibility towards fractures. The silent disease weakens the bone by altering its microstructure and mass. Therapy is based on either promoting strength (via osteoblast action) or preventing disease (via osteoclast action). Current therapy with different drugs belonging to antiresorptive, anabolic and hormonal classification suffers from poor pharmacokinetic and pharmacodynamic profile. Nanoparticles provide breakthrough as an alternative therapeutic carrier and biomedical imaging tool in bone diseases. The current review highlights bone physiology and pathology along with potential applications of nanoparticles in osteoporosis through use of organic and inorganic particles for drug delivery, biomedical imaging as well as bone tissue regeneration therapy. Inorganic nanoparticles of gold, cerium, platinum and silica have effects on osteoblastic and osteoclastic lineage. Labelling and tracking of bone cells by quantum dots and gold nanoparticles are advanced and non-invasive techniques. Incorporation of nanoparticles into the scaffolds is a more recent technique for improving mechanical strength as well as regeneration during bone grafting. Promising results by in vitro and in vivo studies depicts effects of nanoparticles on biochemical markers and biomechanical parameters during osteoporosis suggesting the bright future of nanoparticles in bone applications. Any therapy which improves the drug profile and delivery to bone tissue will be promising approach. Superparamagnetic, gold, mesoporous silica nanoparticles and quantum dots provide golden opportunities for biomedical imaging by replacing the traditional invasive radionuclide techniques. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  4. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  5. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  6. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less

  7. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy.

    PubMed

    Zhao, Jun; Zhou, Min; Li, Chun

    2016-01-01

    Radiotherapy has been, and will continue to be, a critical modality to treat cancer. Since the discovery of radiation-induced cytotoxicity in the late 19th century, both external and internal radiation sources have provided tremendous benefits to extend the life of cancer patients. Despite the dramatic improvement of radiation techniques, however, one challenge persists to limit the anti-tumor efficacy of radiotherapy, which is to maximize the deposited dose in tumor while sparing the rest of the healthy vital organs. Nanomedicine has stepped into the spotlight of cancer diagnosis and therapy during the past decades. Nanoparticles can potentiate radiotherapy by specifically delivering radionuclides or radiosensitizers into tumors, therefore enhancing the efficacy while alleviating the toxicity of radiotherapy. This paper reviews recent advances in synthetic nanoparticles for radiotherapy and radiosensitization, with a focus on the enhancement of in vivo anti-tumor activities. We also provide a brief discussion on radiation-associated toxicities as this is an area that, up to date, has been largely missing in the literature and should be closely examined in future studies involving nanoparticle-mediated radiosensitization.

  8. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer

    PubMed Central

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D.; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-01-01

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1−x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories. PMID:26948389

  9. Formation and Geological Sequestration of Uranium Nanoparticles in Deep Granitic Aquifer.

    PubMed

    Suzuki, Yohey; Mukai, Hiroki; Ishimura, Toyoho; Yokoyama, Takaomi D; Sakata, Shuhei; Hirata, Takafumi; Iwatsuki, Teruki; Mizuno, Takashi

    2016-03-07

    The stimulation of bacterial activities that convert hexavalent uranium, U(VI), to tetravalent uranium, U(IV), appears to be feasible for cost-effective remediation of contaminated aquifers. However, U(VI) reduction typically results in the precipitation of U(IV) particles less than 5 nanometers in diameter, except for environmental conditions enriched with iron. Because these tiny particles are mobile and susceptible to oxidative dissolution after the termination of nutrient injection, in situ bioremediation remains to be impractical. Here we show that U(IV) nanoparticles of coffinite (U(SiO4)1-x(OH)4x) formed in fracture-filling calcium carbonate in a granitic aquifer. In situ U-Pb isotope dating demonstrates that U(IV) nanoparticles have been sequestered in the calcium carbonate for at least 1 million years. As the microbiologically induced precipitation of calcium carbonate in aquifer systems worldwide is extremely common, we anticipate simultaneous stimulation of microbial activities for precipitation reactions of calcium carbonate and U(IV) nanoparticles, which leads to long-term sequestration of uranium and other radionuclides in contaminated aquifers and deep geological repositories.

  10. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  12. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  13. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  14. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  15. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  16. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  17. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  18. Modeling radionuclide migration from underground nuclear explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.

    2017-03-06

    The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios

  19. Selected radionuclides important to low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less

  20. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  1. Tumor targeting efficiency of bare nanoparticles does not mean the efficacy of loaded anticancer drugs: importance of radionuclide imaging for optimization of highly selective tumor targeting polymeric nanoparticles with or without drug.

    PubMed

    Lee, Beom Suk; Park, Kyeongsoon; Park, Sangjin; Kim, Gui Chul; Kim, Hyo Jung; Lee, Sangjoo; Kil, Heeseup; Oh, Seung Jun; Chi, Daeyoon; Kim, Kwangmeyung; Choi, Kuiwon; Kwon, Ick Chan; Kim, Sang Yoon

    2010-10-15

    The better understanding of polymeric nanoparticles as a drug delivery carrier is a decisive factor to get more efficient therapeutic response in vivo. Here, we report the non-invasive imaging of bare polymeric nanoparticles and drug-loaded polymeric nanoparticles to evaluate biodistribution in tumor bearing mice. To make nano-sized drug delivery carrier, glycol chitosan was modified with different degrees of hydrophobic N-acetyl histidine (NAcHis-GC-1, -2, and -3). The biodistribution of polymeric nanoparticles and drug was confirmed by using gamma camera with (131)I-labeled NAcHis-GC and (131)I-labeled doxorubicin (DOX) and by using in vivo live animal imaging with near-infrared fluorescence Cy5.5-labeled NAcHis-GC. Among bare nanoparticles, NAcHis-GC3 (7.8% NAcHis content) showed much higher tumor targeting efficiency than NAcHis-GC1 (3.3% NAcHis content) and NAcHis-GC2 (6.8% NAcHis content). In contrast, for drug-loaded nanoparticles, DOX-NAcHis-GC1 displayed two-fold higher tumor targeting property than DOX-NAcHis-GC3. These data imply that the biodistribution and tumor targeting efficiency between bare and drug-loaded nanoparticles may be greatly different. Therapeutic responses for NAcHis-GC nanoparticles after drug loading were also evaluated. In xenograft animal model, we could find out that DOX-NAcHis-GC1 with higher tumor targeting of DOX has more excellent therapeutic effect than DOX-NAcHis-GC3 and free DOX. These results mean that the hydrophobic core stability might be a critical factor for tumor targeting efficiency of nanoparticles. The present study indicates that by using molecular imaging, we can select more appropriate nanoparticles with the highest tumor targeting properties, leading to exerting more excellent therapeutic results in cancer therapy. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Gold Nanoparticles Doped with (199) Au Atoms and Their Use for Targeted Cancer Imaging by SPECT.

    PubMed

    Zhao, Yongfeng; Pang, Bo; Luehmann, Hannah; Detering, Lisa; Yang, Xuan; Sultan, Deborah; Harpstrite, Scott; Sharma, Vijay; Cutler, Cathy S; Xia, Younan; Liu, Yongjian

    2016-04-20

    Gold nanoparticles have been labeled with various radionuclides and extensively explored for single photon emission computed tomography (SPECT) in the context of cancer diagnosis. The stability of most radiolabels, however, still needs to be improved for accurate detection of cancer biomarkers and thereby monitoring of tumor progression and metastasis. Here, the first synthesis of Au nanoparticles doped with (199)Au atoms for targeted SPECT tumor imaging in a mouse triple negative breast cancer (TNBC) model is reported. By directly incorporating (199)Au atoms into the crystal lattice of each Au nanoparticle, the stability of the radiolabel can be ensured. The synthetic procedure also allows for a precise control over both the radiochemistry and particle size. When conjugated with D-Ala1-peptide T-amide, the Au nanoparticles doped with (199)Au atoms can serve as a C-C chemokine receptor 5 (CCR5)-targeted nanoprobe for the sensitive and specific detection of both TNBC and its metastasis in a mouse tumor model. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  4. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.

  5. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  6. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  7. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  8. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  9. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  10. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  11. Minutes of the Explosives Safety Seminar (19th) Held at Los Angeles, California, 9-10-11 September 1980. Volume 1

    DTIC Science & Technology

    1980-01-01

    DOUBLE-BASE EXTRUSION COMPOSITIONS ................................... 89 Messrs. Craig E. Johnson and Paul F. Dendor V I GUN PROPELLANT PROPAGATION IN...Mullins and C. F. Baker RESULTS AND ANALYSIS OF STRENGTHENED STEEL BUILDING BLAST TESTS ..... 165 Messrs. Frederic E. Sock, Norval Dobbs, Paul Price and...347 Mr. J. Paul Glenn I viLR SESSION - EXPLOSION CONTAIMENT & VENTING Moderator - Mr. Irving Forsten EXPLOSION CONTAINMENT VESSELS AND M4TERIALS

  12. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  13. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  14. Considerations for Bioassay Monitoring of Mixtures of Radionuclides

    DOE PAGES

    Klumpp, John; Waters, Tom; Bertelli, Luiz

    2017-10-01

    Complying with regulations for bioassay monitoring of radionuclide intakes is significantly more complex for mixtures than it is for pure radionuclides. Different constituents will naturally have different dose coefficients, be detectable at significantly different levels, and may require very different amounts of effort to bioassay. The ability to use certain constituents as surrogates for others will depend on how well characterized the mixture is, as well as whether the employee is also working with other radionuclides. This is further compounded by the fact that the composition of a mixture (or even of a pure radionuclide) is likely to change overmore » time. Internal dosimetrists must decide how best to monitor employees who work with radionuclide mixtures. In particular, they must decide which constituents should be monitored routinely, which constituents only need to be monitored in the case of an intake, and how to estimate doses based on intakes of monitored and unmonitored constituents.« less

  15. Seven years of radionuclide laboratory at IMC - important achievements.

    PubMed

    Hrubý, M; Kučka, J; Pánek, J; Štěpánek, P

    2016-10-20

    For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.

  16. Image-guided interventional therapy for cancer with radiotherapeutic nanoparticles✩

    PubMed Central

    Phillips, William T.; Bao, Ande; Brenner, Andrew J.; Goins, Beth A.

    2015-01-01

    One of the major limitations of current cancer therapy is the inability to deliver tumoricidal agents throughout the entire tumor mass using traditional intravenous administration. Nanoparticles carrying beta-emitting therapeutic radionuclides that are delivered using advanced image-guidance have significant potential to improve solid tumor therapy. The use of image-guidance in combination with nanoparticle carriers can improve the delivery of localized radiation to tumors. Nanoparticles labeled with certain beta-emitting radionuclides are intrinsically theranostic agents that can provide information regarding distribution and regional dosimetry within the tumor and the body. Image-guided thermal therapy results in increased uptake of intravenous nanoparticles within tumors, improving therapy. In addition, nanoparticles are ideal carriers for direct intratumoral infusion of beta-emitting radionuclides by convection enhanced delivery, permitting the delivery of localized therapeutic radiation without the requirement of the radionuclide exiting from the nanoparticle. With this approach, very high doses of radiation can be delivered to solid tumors while sparing normal organs. Recent technological developments in image-guidance, convection enhanced delivery and newly developed nanoparticles carrying beta-emitting radionuclides will be reviewed. Examples will be shown describing how this new approach has promise for the treatment of brain, head and neck, and other types of solid tumors. PMID:25016083

  17. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  18. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  19. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  20. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    PubMed

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 173.435 or § 173.436 or for which no relevant data are available: (1) the radionuclide values in... package must satisfy: ER26JA04.001 Where: B(i) is the activity of radionuclide i in special form; and A1... activity which may be transported in a Type A package must satisfy: ER26JA04.002 Where: C(j) is the...

  3. Monitoring release of disposable radionuclides in the Kara sea: Bioaccumulation of long-lived radionuclides in echinoderms and molluscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, N.S.

    1994-01-01

    The objective of the present proposal is to continue and extend our research on the trophic transfer of important radionuclides in benthic fauna of the Kara Sea. This project is assessing the extent to which select species of seastars, brittle stars, and clams typical of the Kara Sea concentrate and retain a variety of long-lived radionuclides known to be (or suspected to be) present in the disposed wastes in the Russian Arctic. The rates and routes of uptake and depuration of isotopes in the same or in closely related species are being quantified so that endemic benthic organisms can bemore » assessed as potential bioindicators of released radionuclides in Arctic waters.« less

  4. Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.

    PubMed

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A S; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H; Choyke, Peter L; Urano, Yasuteru

    2007-11-01

    Current contrast agents generally have one function and can only be imaged in monochrome; therefore, the majority of imaging methods can only impart uniparametric information. A single nanoparticle has the potential to be loaded with multiple payloads. Such multimodality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multicolor in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near-infrared emission. To this end, we synthesized nanoprobes with multimodal and multicolor potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and five-color near-infrared optical lymphatic imaging using a multiple-excitation spectrally resolved fluorescence imaging technique.

  5. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  6. A random walk model to simulate the atmospheric dispersion of radionuclide

    NASA Astrophysics Data System (ADS)

    Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong

    2018-01-01

    To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.

  7. Radionuclide bone imaging: an illustrative review.

    PubMed

    Love, Charito; Din, Anabella S; Tomas, Maria B; Kalapparambath, Tomy P; Palestro, Christopher J

    2003-01-01

    Bone scintigraphy with technetium-99m-labeled diphosphonates is one of the most frequently performed of all radionuclide procedures. Radionuclide bone imaging is not specific, but its excellent sensitivity makes it useful in screening for many pathologic conditions. Moreover, some conditions that are not clearly depicted on anatomic images can be diagnosed with bone scintigraphy. Bone metastases usually appear as multiple foci of increased activity, although they occasionally manifest as areas of decreased uptake. Traumatic processes can often be detected, even when radiographic findings are negative. Most fractures are scintigraphically detectable within 24 hours, although in elderly patients with osteopenia, further imaging at a later time is sometimes indicated. Athletic individuals are prone to musculoskeletal trauma, and radionuclide bone imaging is useful for identifying pathologic conditions such as plantar fasciitis, stress fractures, "shin splints," and spondylolysis, for which radiographs may be nondiagnostic. A combination of focal hyperperfusion, focal hyperemia, and focally increased bone uptake is virtually diagnostic for osteomyelitis in patients with nonviolated bone. Bone scintigraphy is also useful for evaluating disease extent in Paget disease and for localizing avascular necrosis in patients with negative radiographs. Radionuclide bone imaging will likely remain a popular and important imaging modality for years to come. Copyright RSNA, 2003

  8. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases.

    PubMed

    Falzone, Nadia; Ackerman, Nicole L; Rosales, Liset de la Fuente; Bernal, Mario A; Liu, Xiaoxuan; Peeters, Sarah Gja; Soto, Manuel Sarmiento; Corroyer-Dulmont, Aurélien; Bernaudin, Myriam; Grimoin, Elisa; Touzani, Omar; Sibson, Nicola R; Vallis, Katherine A

    2018-01-01

    Brain metastases develop frequently in patients with breast cancer, and present a pressing therapeutic challenge. Expression of vascular cell adhesion molecule 1 (VCAM-1) is upregulated on brain endothelial cells during the early stages of metastasis and provides a target for the detection and treatment of early brain metastases. The aim of this study was to use a model of early brain metastasis to evaluate the efficacy of α-emitting radionuclides, 149 Tb, 211 At, 212 Pb, 213 Bi and 225 Ac; β-emitting radionuclides, 90 Y, 161 Tb and 177 Lu; and Auger electron (AE)-emitters 67 Ga, 89 Zr, 111 In and 124 I, for targeted radionuclide therapy (TRT). Histologic sections and two photon microscopy of mouse brain parenchyma were used to inform a cylindrical vessel geometry using the Geant4 general purpose Monte Carlo (MC) toolkit with the Geant4-DNA low energy physics models. Energy deposition was evaluated as a radial function and the resulting phase spaces were superimposed on a DNA model to estimate double-strand break (DSB) yields for representative β- and α-emitters, 177 Lu and 212 Pb. Relative biological effectiveness (RBE) values were determined by only evaluating DNA damage due to physical interactions. 177 Lu produced 2.69 ± 0.08 DSB per GbpGy, without significant variation from the lumen of the vessel to a radius of 100 µm. The DSB yield of 212 Pb included two local maxima produced by the 6.1 MeV and 8.8 MeV α-emissions from decay products, 212 Bi and 212 Po, with yields of 7.64 ± 0.12 and 9.15 ± 0.24 per GbpGy, respectively. Given its higher DSB yield 212 Pb may be more effective for short range targeting of early micrometastatic lesions than 177 Lu. MC simulation of a model of early brain metastases provides invaluable insight into the potential efficacy of α-, β- and AE-emitting radionuclides for TRT. 212 Pb, which has the attributes of a theranostic radionuclide since it can be used for SPECT imaging, showed a favorable dose profile and RBE.

  9. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  10. Radionuclide demonstration of urinary extravasation with ureteral obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, V.A.; Chiang, L.C.; Meade, R.C.

    Two cases of urinary extravasation with ureteral obstruction demonstrated by the radionuclide studies are reported. The value of radionuclide studies in patients with renal transplantation has been reported previously, but studies in patients without transplantation have rarely been described in the literature. Ureteral obstruction may cause urinary extravasation, which may be demonstrated by radionuclide studies even when radiologic studies are inconclusive. In one case, urinary extravasation was detected in the sitting position but not in the supine position. Renal imaging should probably be performed not only with multiple projections but also in different positions.

  11. Dynamics and transformations of radionuclides in soils and ecosystem health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, Robert J.; Ainsworth, Calvin C.; Driver, Crystal J.

    1998-12-01

    The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have tomore » be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.« less

  12. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  13. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 2: naturally occurring radionuclides.

    PubMed

    Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M

    2009-09-01

    Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.

  14. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide

  15. Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.

    PubMed

    Harel, François; Ngo, Quam; Finnerty, Vincent; Hernandez, Edgar; Khairy, Paul; Dupuis, Jocelyn

    2007-08-01

    We validated a novel mobile detection system to evaluate reactive hyperemia using the radionuclide plethysmography technique. Twenty-six subjects underwent simultaneously radionuclide plethysmography with strain gauge plethysmography. Strain gauge and radionuclide methods showed excellent reproducibility with intraclass correlation coefficients of 0.96 and 0.89 respectively. There was also a good correlation of flows between the two methods during reactive hyperemia (r = 0.87). We conclude that radionuclide plethysmography using this mobile detection system is a non-invasive alternative to assess forearm blood flow and its dynamic variations during reactive hyperemia.

  16. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  17. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that usesmore » thisstrategy.« less

  18. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  19. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  20. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  1. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  2. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  3. Gallbladder radionuclide scan (image)

    MedlinePlus

    ... gallbladder radionuclide scan is performed by injecting a tracer (radioactive chemical) into the bloodstream. A gamma camera ... detect the gamma rays being emitted from the tracer, and the image of where the tracer is ...

  4. Fukushima Daiichi Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey N.; Jankovsky, Zachary Kyle

    Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated asmore » functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.« less

  5. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  6. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  7. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  8. Production of novel diagnostic radionuclides in small medical cyclotrons.

    PubMed

    Synowiecki, Mateusz Adam; Perk, Lars Rutger; Nijsen, J Frank W

    2018-01-01

    The global network of cyclotrons has expanded rapidly over the last decade. The bulk of its industrial potential is composed of small medical cyclotrons with a proton energy below 20 MeV for radionuclides production. This review focuses on the recent developments of novel medical radionuclides produced by cyclotrons in the energy range of 3 MeV to 20 MeV. The production of the following medical radionuclides will be described based on available literature sources: Tc-99 m, I-123, I-124, Zr-89, Cu-64, Ga-67, Ga-68, In-111, Y-86 and Sc-44. Remarkable developments in the production process have been observed in only some cases. More research is needed to make novel radionuclide cyclotron production available for the medical industry.

  9. Cyclotron Production of Radionuclides for Nuclear Medicine at Academic Centers

    NASA Astrophysics Data System (ADS)

    Lapi, Suzanne

    2016-09-01

    The increase in use of radioisotopes for medical imaging has led to the development of new accelerator targetry and separation techniques for isotope production. For example, the development of longer-lived position emitting radionuclides has been explored to allow for nuclear imaging agents based on peptides, antibodies and nanoparticles. These isotopes (64Cu, 89Zr, 86Y) are typically produced via irradiation of solid targets on smaller cyclotrons (10-25 MeV) at academic or hospital based facilities. Recent research has further expanded the toolbox of PET tracers to include additional isotopes such as 52Mn, 55Co, 76Br and others. The smaller scale of these types of facilities can enable the straightforward involvement of students, thus adding to the next generation of nuclear science leaders. Research pertaining to development of robust and larger scale production technologies including solid target systems and remote systems for transport and purification of these isotopes has enabled both preclinical and clinical imaging research for many diseases. In particular, our group has focused on the use of radiolabeled antibodies for imaging of receptor expression in preclinical models and in a clinical trial of metastatic breast cancer patients.

  10. Exposure to radionuclides in smoke from vegetation fires.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Malta, Margarida

    2014-02-15

    Naturally occurring radionuclides of uranium, thorium, radium, lead and polonium were determined in bushes and trees and in the smoke from summer forest fires. Activity concentrations of radionuclides in smoke particles were much enriched when compared to original vegetation. Polonium-210 ((210)Po) in smoke was measured in concentrations much higher than all other radionuclides, reaching 7,255 ± 285 Bq kg(-1), mostly associated with the smaller size smoke particles (<1.0 μm). Depending on smoke particle concentration, (210)Po in surface air near forest fires displayed volume concentrations up to 70 m Bq m(-3), while in smoke-free air (210)Po concentration was about 30 μ Bq m(-3). The estimated absorbed radiation dose to an adult member of the public or a firefighter exposed for 24h to inhalation of smoke near forest fires could exceed 5 μSv per day, i.e, more than 2000 times above the radiation dose from background radioactivity in surface air, and also higher than the radiation dose from (210)Po inhalation in a chronic cigarette smoker. It is concluded that prolonged exposure to smoke allows for enhanced inhalation of radionuclides associated with smoke particles. Due to high radiotoxicity of alpha emitting radionuclides, and in particular of (210)Po, the protection of respiratory tract of fire fighters is strongly recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Radionuclides in nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lausanne, A.B.D.

    In 47 expert contributions, this volume provides a summary of the latest research on radionuclides in nephro-urology together with current and new clinical applications especially in renovascular hypertension, kidney transplantation, and metabolic and urological diseases. In addition, attention is given to aspects of basic renal physiology and function and possible applications of nuclear magnetic resonance and spectroscopy in nephro-urology. New testing procedures which promise to improve diagnosis, and new radiopharmaceuticals are described. The reports are divided into eight sections, the first of which features studies on the renin-angiotensin system, cisplatin, atrial natriuretic factor and determining plasma oxalate. Four papers describemore » a number of new radiopharmaceuticals which have the potential to replace hippuran. In the third section, radionuclide methods for the measurement of renal function parameters are discussed. The book then focuses on the potential role of captopril in the improved diagnosis of renovascular hypertension. Applications of nuclear magnetic resonance and spectroscopy are demonstrated in the diagnosis of acute pyelonephritis, kidney assessment after lithotripsy, kidney evaluation prior to transplantation, and in monitoring renal ischemia during hypotension.« less

  12. Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides

    PubMed Central

    Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636

  13. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively.

  14. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  15. Multi-Modal Nano-Probes for Radionuclide and 5-color Near Infrared Optical Lymphatic Imaging

    PubMed Central

    Kobayashi, Hisataka; Koyama, Yoshinori; Barrett, Tristan; Hama, Yukihiro; Regino, Celeste A. S.; Shin, In Soo; Jang, Beom-Su; Le, Nhat; Paik, Chang H.; Choyke, Peter L.; Urano, Yasuteru

    2008-01-01

    Current contrast agents generally have one function and can only be imaged in monochrome, therefore, the majority of imaging methods can only impart uniparametric information. A single nano-particle has the potential to be loaded with multiple payloads. Such multi-modality probes have the ability to be imaged by more than one imaging technique, which could compensate for the weakness or even combine the advantages of each individual modality. Furthermore, optical imaging using different optical probes enables us to achieve multi-color in vivo imaging, wherein multiple parameters can be read from a single image. To allow differentiation of multiple optical signals in vivo, each probe should have a close but different near infrared emission. To this end, we synthesized nano-probes with multi-modal and multi-color potential, which employed a polyamidoamine dendrimer platform linked to both radionuclides and optical probes, permitting dual-modality scintigraphic and 5-color near infrared optical lymphatic imaging using a multiple excitation spectrally-resolved fluorescence imaging technique. PMID:19079788

  16. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    PubMed Central

    Marshall, Matthew J; Dohnalkova, Alice C; Kennedy, David W; Shi, Liang; Wang, Zheming; Boyanov, Maxim I; Lai, Barry; Kemner, Kenneth M; McLean, Jeffrey S; Reed, Samantha B; Culley, David E; Bailey, Vanessa L; Simonson, Cody J; Saffarini, Daad A; Romine, Margaret F; Zachara, John M

    2006-01-01

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments. PMID:16875436

  17. An Efficient and Straightforward Method for Radiolabeling of Nanoparticles with {sup 64}Cu via Click Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dong-Eun; Kim, Kwangmeyung; Park, Sang Hyun

    2015-07-01

    Recently, nanoparticles have received a great deal of interest in diagnosis and therapy applications. Since nanoparticles possess intrinsic features that are often required for a drug delivery system and diagnosis, they have potential to be used as platforms for integrating imaging and therapeutic functions, simultaneously. Intrinsic issues that are associated with theranostic nanoparticles, particularly in cancer treatment, include an efficient and straightforward radiolabeling method for understanding the in vivo biodistribution of nanoparticles to reach the tumor region, and monitoring therapeutic responses. Herein, we investigated a facile and highly efficient strategy to prepare radiolabeled nanoparticles with {sup 64}Cu via a strain-promotedmore » azide, i.e., an alkyne cycloaddition strategy, which is often referred to as click chemistry. First, the azide (N3) group, which allows for the preparation of radiolabeled nanoparticles by copper-free click chemistry, was incorporated into glycol chitosan nanoparticles (CNPs). Second, the strained cyclooctyne derivative, dibenzyl cyclooctyne (DBCO) conjugated with a 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid (DOTA) chelator, was synthesized for preparing the pre-radiolabeled alkyne complex with {sup 64}Cu radionuclide. Following incubation with the {sup 64}Cu-radiolabeled DBCO complex (DBCO-PEG4-Lys-DOTA-{sup 64}Cu with high specific activity, 18.5 GBq/μ mol), the azide-functionalized CNPs were radiolabeled successfully with {sup 64}Cu, with a high radiolabeling efficiency and a high radiolabeling yield (>98%). Importantly, the radiolabeling of CNPs by copper-free click chemistry was accomplished within 30 min, with great efficiency in aqueous conditions. After {sup 64}Cu-CNPs were intravenously administered to tumor-bearing mice, the real time, in vivo biodistribution and tumor-targeting ability of {sup 64}Cu-CNPs were quantitatively evaluated by micro-PET images of tumor-bearing mice. These

  18. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.

    2008-10-01

    This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intakemore » or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many

  19. Radionuclide Transport in Fracture-Granite Interface Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Mori, A

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less

  20. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  1. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  2. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    PubMed Central

    Hrycushko, Brian A.; Li, Shihong; Goins, Beth; Otto, Randal A.; Bao, Ande

    2011-01-01

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods:99mTc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts in nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, 186Re∕188Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy∕MBq (318.2 Gy∕mCi) and 5.7 Gy∕MBq (209.1 Gy∕mCi) could be delivered with this protocol of radiation delivery for 186Re∕188Re liposomes, respectively, and 37–92 MBq (1–2.5 mCi)∕g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes encapsulating radionuclides

  3. Direct intratumoral infusion of liposome encapsulated rhenium radionuclides for cancer therapy: Effects of nonuniform intratumoral dose distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrycushko, Brian A.; Li Shihong; Goins, Beth

    2011-03-15

    Purpose: Focused radiation therapy by direct intratumoral infusion of lipid nanoparticle (liposome)-carried beta-emitting radionuclides has shown promising results in animal model studies; however, little is known about the impact the intratumoral liposomal radionuclide distribution may have on tumor control. The primary objective of this work was to investigate the effects the intratumoral absorbed dose distributions from this cancer therapy modality have on tumor control and treatment planning by combining dosimetric and radiobiological modeling with in vivo imaging data. Methods: {sup 99m}Tc-encapsulated liposomes were intratumorally infused with a single injection location to human head and neck squamous cell carcinoma xenografts inmore » nude rats. High resolution in vivo planar imaging was performed at various time points for quantifying intratumoral retention following infusion. The intratumoral liposomal radioactivity distribution was obtained from 1 mm resolution pinhole collimator SPECT imaging coregistered with CT imaging of excised tumors at 20 h postinfusion. Coregistered images were used for intratumoral dosimetric and radiobiological modeling at a voxel level following extrapolation to the therapeutic analogs, {sup 186}Re/{sup 188}Re liposomes. Effective uniform dose (EUD) and tumor control probability (TCP) were used to assess therapy effectiveness and possible methods of improving upon tumor control with this radiation therapy modality. Results: Dosimetric analysis showed that average tumor absorbed doses of 8.6 Gy/MBq (318.2 Gy/mCi) and 5.7 Gy/MBq (209.1 Gy/mCi) could be delivered with this protocol of radiation delivery for {sup 186}Re/{sup 188}Re liposomes, respectively, and 37-92 MBq (1-2.5 mCi)/g tumor administered activity; however, large intratumoral absorbed dose heterogeneity, as seen in dose-volume histograms, resulted in insignificant values of EUD and TCP for achieving tumor control. It is indicated that the use of liposomes

  4. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation.

    PubMed

    Abou, D S; Pickett, J E; Thorek, D L J

    2015-10-01

    Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed.

  5. Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation

    PubMed Central

    Abou, D S; Pickett, J E

    2015-01-01

    Molecular imaging provides considerable insight into biological processes for greater understanding of health and disease. Numerous advances in medical physics, chemistry and biology have driven the growth of this field in the past two decades. With exquisite sensitivity, depth of detection and potential for theranostics, radioactive imaging approaches have played a major role in the emergence of molecular imaging. At the same time, developments in materials science, characterization and synthesis have led to explosive progress in the nanoparticle (NP) sciences. NPs are generally defined as particles with a diameter in the nanometre size range. Unique physical, chemical and biological properties arise at this scale, stimulating interest for applications as diverse as energy production and storage, chemical catalysis and electronics. In biomedicine, NPs have generated perhaps the greatest attention. These materials directly interface with life at the subcellular scale of nucleic acids, membranes and proteins. In this review, we will detail the advances made in combining radioactive imaging and NPs. First, we provide an overview of the NP platforms and their properties. This is followed by a look at methods for radiolabelling NPs with gamma-emitting radionuclides for use in single photon emission CT and planar scintigraphy. Next, utilization of positron-emitting radionuclides for positron emission tomography is considered. Finally, recent advances for multimodal nuclear imaging with NPs and efforts for clinical translation and ongoing trials are discussed. PMID:26133075

  6. The interference of medical radionuclides with occupational in vivo gamma spectrometry.

    PubMed

    Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B

    2003-06-01

    Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.

  7. Shielding of Sensitive Electronic Devices in Magnetic Nanoparticle Hyperthermia Using Arrays of Coils

    NASA Astrophysics Data System (ADS)

    Spirou, S. V.; Tsialios, P.; Loudos, G.

    2015-09-01

    In Magnetic Nanoparticle Hyperthermia (MNH) an externally applied electromagnetic field transfers energy to the magnetic nanoparticles in the body, which in turn convert this energy into heat, thus locally heating the tissue they are located in. This external electromagnetic field is sufficiently strong so as to cause interference and affect sensitive electronic equipment. Standard shielding of magnetic fields involves Faraday cages or coating with high-permeability shielding alloys; however, these techniques cannot be used with optically sensitive devices, such as those employed in Optical Coherence Tomography or radionuclide imaging. In this work we present a method to achieve magnetic shielding using an array of coils. The magnetic field generated by a single coil was calculated using the COMSOL physics simulation toolkit. Software was written in C/C++ to import the single-coil data, and then calculate the positions, number of turns and currents in the shielding coils in order to minimize the magnetic field strength at the desired location. Simulations and calculations have shown that just two shielding coils can reduce the magnetic field by 2-3 orders of magnitude.

  8. Meeting report from the Prostate Cancer Foundation PSMA-directed radionuclide scientific working group.

    PubMed

    Miyahira, Andrea K; Pienta, Kenneth J; Morris, Michael J; Bander, Neil H; Baum, Richard P; Fendler, Wolfgang P; Goeckeler, William; Gorin, Michael A; Hennekes, Hartwig; Pomper, Martin G; Sartor, Oliver; Tagawa, Scott T; Williams, Scott; Soule, Howard R

    2018-05-01

    The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer. © 2018 Wiley Periodicals, Inc.

  9. Diffusion of Radionuclides in Concrete and Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability ofmore » the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.« less

  10. Methods of increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity.

    PubMed

    Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc

    2014-06-10

    Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to

  11. Radionuclides in drinking water: the recent legislative requirements of the European Union.

    PubMed

    Grande, Sveva; Risica, Serena

    2015-03-01

    In November 2013, a new EURATOM Directive was issued on the protection of public health from the radionuclide content in drinking water. After introducing the contents of the Directive, the paper analyses the hypotheses about drinking water ingestion adopted in documents of international and national organizations and the data obtained from national/regional surveys. Starting from the Directive's parametric value for the Indicative Dose, some examples of derived activity concentrations of radionuclides in drinking water are reported for some age classes and three exposure situations, namely, (i) artificial radionuclides due to routine water release from nuclear power facilities, (ii) artificial radionuclides from nuclear medicine procedures, and (iii) naturally occurring radionuclides in drinking water or resulting from existing or past NORM industrial activities.

  12. Radionuclides from past uranium mining in rivers of Portugal.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia

    2007-01-01

    During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.

  13. Ensemble Simulation of the Atmospheric Radionuclides Discharged by the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2013-04-01

    Enormous amounts of radionuclides were discharged into the atmosphere by a nuclear accident at the Fukushima Daiichi nuclear power plant (FDNPP) after the earthquake and tsunami on 11 March 2011. The radionuclides were dispersed from the power plant and deposited mainly over eastern Japan and the North Pacific Ocean. A lot of numerical simulations of the radionuclide dispersion and deposition had been attempted repeatedly since the nuclear accident. However, none of them were able to perfectly simulate the distribution of dose rates observed after the accident over eastern Japan. This was partly due to the error of the wind vectors and precipitations used in the numerical simulations; unfortunately, their deterministic simulations could not deal with the probability distribution of the simulation results and errors. Therefore, an ensemble simulation of the atmospheric radionuclides was performed using the ensemble Kalman filter (EnKF) data assimilation system coupled with the Japan Meteorological Agency (JMA) non-hydrostatic mesoscale model (NHM); this mesoscale model has been used operationally for daily weather forecasts by JMA. Meteorological observations were provided to the EnKF data assimilation system from the JMA operational-weather-forecast dataset. Through this ensemble data assimilation, twenty members of the meteorological analysis over eastern Japan from 11 to 31 March 2011 were successfully obtained. Using these meteorological ensemble analysis members, the radionuclide behavior in the atmosphere such as advection, convection, diffusion, dry deposition, and wet deposition was simulated. This ensemble simulation provided the multiple results of the radionuclide dispersion and distribution. Because a large ensemble deviation indicates the low accuracy of the numerical simulation, the probabilistic information is obtainable from the ensemble simulation results. For example, the uncertainty of precipitation triggered the uncertainty of wet deposition; the

  14. A new approach to nuclear fuel safeguard enhancement through radionuclide profiling

    NASA Astrophysics Data System (ADS)

    Peterson, Aaron Dawon

    The United States has led the effort to promote peaceful use of nuclear power amongst states actively utilizing it as well as those looking to deploy the technology in the near future. With the attraction being demonstrated by various countries towards nuclear power comes the concern that a nation may have military aspirations for the use of nuclear energy. The International Atomic Energy Agency (IAEA) has established nuclear safeguard protocols and procedures to mitigate nuclear proliferation. The work herein proposed a strategy to further enhance existing safeguard protocols by considering safeguard in nuclear fuel design. The strategy involved the use of radionuclides to profile nuclear fuels. Six radionuclides were selected as identifier materials. The decay and transmutation of these radionuclides were analyzed in reactor operation environment. MCNPX was used to simulate a reactor core. The perturbation in reactivity of the core due to the loading of the radionuclides was insignificant. The maximum positive and negative reactivity change induced was at day 1900 with a value of 0.00185 +/- 0.00256 and at day 2000 with -0.00441 +/- 0.00249, respectively. The mass of the radionuclides were practically unaffected by transmutation in the core; the change in radionuclide inventory was dominated by natural decay. The maximum material lost due to transmutation was 1.17% in Eu154. Extraneous signals from fission products identical to the radionuclide compromised the identifier signals. Eu154 saw a maximum intensity change at EOC and 30 days post-irradiation of 1260% and 4545%, respectively. Cs137 saw a minimum change of 12% and 89%, respectively. Mitigation of the extraneous signals is cardinal to the success of the proposed strategy. The predictability of natural decay provides a basis for the characterization of the signals from the radionuclide.

  15. Bioremediation: a genuine technology to remediate radionuclides from the environment

    PubMed Central

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-01-01

    Summary Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of ‘-omics’-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. PMID:23617701

  16. Testing and characterizations of infrared sensor over the temperature range of 2 Kelvin to 300 Kelvin

    NASA Technical Reports Server (NTRS)

    Hansen, R. G.

    1983-01-01

    Various cryogenic techniques were used to evaluate state of the art electro-optic devices. As research, development, and production demands require more sensitive testing techniques, faster test results, and higher production throughput, the emphasis on supporting cryogenic systems increases. The three traditional methods currently utilized in electro-optic device testing are discussed: (1) liquid contaiment dewars; (2) liquid transfer systems; and (3) closed cycle refrigeration systems. Advantages, disadvantages, and the current state of the art of each of these cryogenic techniques is discussed.

  17. Selection of plants for phytoremediation of soils contaminated with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entry J.A.; Vance, N.C.; Watrud, L.S.

    1996-12-31

    Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.

  18. Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by callianassid bioturbation.

    PubMed

    McMurtry, G M; Schneider, R C; Colin, P L; Buddemeier, R W; Suchanek, T H

    The lagoon sediments of Enewetak Atoll in the Marshall Islands contain a large selection of fallout radionuclides as a result of 43 nuclear weapon tests conducted there between 1948 and 1958. Studies of the burial of fallout radionuclides have been conducted on the islands and in several of the large craters, but studies of their vertical distribution have been limited to about the upper 20 cm of the lagoon sediments. We have found elevated fallout radionuclide concentrations buried more deeply in the lagoon sediments and evidence of burrowing into the sediment by several species of callianassid ghost shrimp (Crustacea: Thalassinidea) which has displaced highly radioactive sediment. The burrowing activities of callianassids, which are ubiquitous on the lagoon floor, facilitate radionuclide redistribution and complicate the fallout radionuclide inventory of the lagoon.

  19. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  20. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  1. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGES

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  2. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    PubMed

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

    PubMed Central

    Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.

    2012-01-01

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  4. GHSI Emergency Radionuclide Bioassay Laboratory Network - Summary of the Second Exercise

    PubMed Central

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L.; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szabó, Gyula

    2017-01-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO REMPAN (Radiation Emergency Medical Preparedness and Assistance Network) and the IAEA RANET (Response and Assistance Network), to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 hours following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. PMID:27574317

  5. SOLID PHASE MICROEXTRACTION SAMPLING OF HIGH EXPLOSIVE RESIDUES IN THE PRESENCE OF RADIONUCLIDES AND RADIONUCLIDE SURROGATE METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2007-04-13

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolvedmore » radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  6. Cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Cosmic rays interact with the earth's atmosphere and surface to produce the “cosmogenic” nuclides. In many instances the radioactive ones are readily distinguished from the anthropogenic and meteoritic backgrounds. Measurements of these cosmogenic radionuclides (RCN) can contribute to the solution of a variety of geophysical problems [Lai and Peters, 1967]. Recent progress in this area was discussed at a symposium entitled Application of Cosmic-Ray-Produced Nuclides in Geophysics held May 30, 1983, at the AGU Spring Meeting in Baltimore (see Eos, May 3, 1983, pp. 282-284, for the abstracts). We summarize here the symposium presentations.

  7. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  8. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  9. Cosmogenic radionuclides as a synchronisation tool - present status

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Mekhaldi, Florian; Mellström, Anette; Svensson, Anders; Aldahan, Ala; Possnert, Göran

    2014-05-01

    Changes in the flux of galactic cosmic rays into Earth's atmosphere produce variations in the production rates of cosmogenic radionuclides. The resulting globally synchronous signal in cosmogenic radionuclide records can be used to compare time scales and synchronise climate records. The most prominent example is the 14C wiggle match dating approach where variations in the atmospheric 14C concentration are used to match climate records and the tree-ring based part of the 14C calibration record. This approach can be extended to other cosmogenic radionuclide records such as 10Be time series provided that the different geochemical behaviour of 10Be and 14C is taken into account. Here we will present some recent results that illustrate the potential of using cosmogenic radionuclide records for comparing and synchronising different time scales. The focus will be on the last 50000 years where we will show examples how geomagnetic field, solar activity and unusual short-term cosmic ray changes can be used for comparing ice core, tree ring and sediment time scales. We will discuss some unexpected offsets between Greenland ice core and 14C time scale and we will examine how far back in time solar induced 10Be and 14C variations presently can be used to reliably synchronise ice core and 14C time scales.

  10. Radiation, radionuclides and bacteria: An in-perspective review.

    PubMed

    Shukla, Arpit; Parmar, Paritosh; Saraf, Meenu

    2017-12-01

    There has been a significant surge in consumption of radionuclides for various academic and commercial purposes. Correspondingly, there has been a considerable amount of generation of radioactive waste. Bacteria and archaea, being earliest inhabitants on earth serve as model microorganisms on earth. These microbes have consistently proven their mettle by surviving extreme environments, even extreme ionizing radiations. Their ability to accept and undergo stable genetic mutations have led to development of recombinant mutants that are been exploited for remediation of various pollutants such as; heavy metals, hydrocarbons and even radioactive waste (radwaste). Thus, microbes have repeatedly presented themselves to be prime candidates suitable for remediation of radwaste. It is interesting to study the behind-the-scenes interactions these microbes possess when observed in presence of radionuclides. The emphasis is on the indigenous bacteria isolated from radionuclide containing environments as well as the five fundamental interaction mechanisms that have been studied extensively, namely; bioaccumulation, biotransformation, biosorption, biosolubilisation and bioprecipitation. Application of microbes exhibiting such mechanisms in remediation of radioactive waste depends largely on the individual capability of the species. Challenges pertaining to its potential bioremediation activity is also been briefly discussed. This review provides an insight into the various mechanisms bacteria uses to tolerate, survive and carry out processes that could potentially lead the eco-friendly approach for removal of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Preformed Liposomes for Diagnostic Imaging and Radionuclide Therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2017-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ( 99m Tc), for noninvasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ( 186/188 Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load 99m Tc or 186/188 Re into preformed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport 99m Tc or 186/188 Re across the lipid bilayer of the preformed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the 99m Tc and 186/188 Re within the liposomes. In the first method, 99m Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and 99m Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, 99m Tc or 186/188 Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and 99m Tc-BMEDA or 186/188 Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for 99m Tc or 186/188 Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, 99m Tc/ 186/188 Re-BMEDA complex becomes protonated and more hydrophilic, which results in stable

  12. PLGA Nanoparticles for Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: A Novel Approach towards Reduction of Renal Radiation Dose

    PubMed Central

    Arora, Geetanjali; Shukla, Jaya; Ghosh, Sourabh; Maulik, Subir Kumar; Malhotra, Arun; Bandopadhyaya, Gurupad

    2012-01-01

    Background Peptide receptor radionuclide therapy (PRRT), employed for treatment of neuroendocrine tumors (NETs) is based on over-expression of Somatostatin Receptors (SSTRs) on NETs. It is, however, limited by high uptake and retention of radiolabeled peptide in kidneys resulting in unnecessary radiation exposure thus causing nephrotoxicity. Employing a nanocarrier to deliver PRRT drugs specifically to the tumor can reduce the associated nephrotoxicity. Based on this, 177Lu-DOTATATE loaded PLGA nanoparticles (NPs) were formulated in the present study, as a potential therapeutic model for NETs. Methodology and Findings DOTATATE was labeled with Lutetium-177 (177Lu) (labeling efficiency 98%; Rf∼0.8). Polyethylene Glycol (PEG) coated 177Lu-DOTATATE-PLGA NPs (50∶50 and 75∶25) formulated, were spherical with mean size of 304.5±80.8 and 733.4±101.3 nm (uncoated) and 303.8±67.2 and 494.3±71.8 nm (coated) for PLGA(50∶50) and PLGA(75∶25) respectively. Encapsulation efficiency (EE) and In-vitro release kinetics for uncoated and coated NPs of PLGA (50∶50 & 75∶25) were assessed and compared. Mean EE was 77.375±4.98% & 67.885±5.12% (uncoated) and 65.385±5.67% & 58.495±5.35% (coated). NPs showed initial burst release between 16.64–21.65% with total 42.83–44.79% over 21days. The release increased with coating to 20.4–23.95% initially and 60.97–69.12% over 21days. In-vivo studies were done in rats injected with 177Lu-DOTATATE and 177Lu-DOTATATE-NP (uncoated and PEG-coated) by imaging and organ counting after sacrificing rats at different time points over 24 hr post-injection. With 177Lu-DOTATATE, renal uptake of 37.89±10.2%ID/g was observed, which reduced to 4.6±1.97% and 5.27±1.66%ID/g with uncoated and coated 177Lu-DOTATATE-NP. The high liver uptake with uncoated 177Lu-DOTATATE-NP (13.68±3.08% ID/g), reduced to 7.20±2.04%ID/g (p = 0.02) with PEG coating. Conclusion PLGA NPs were easily formulated and modified for desired release properties

  13. Estimation of aquifer radionuclide concentrations by postprocessing of conservative tracer model results

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Vandersteen, K.; Rogiers, B.

    2012-04-01

    Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes

  14. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the workmore » described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: • Defining contaminated reaches of sediments along the IOU waterways • Identifying separate segments within each IOU waterway to evaluate individually • Computing the volume and mass of contaminated soil associated with each segment, or “compartment” • Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU • Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, • Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs • Computing

  15. SU-F-T-663: Cerenkov Radiation Enhanced Radiotherapy with Titanium Dioxide Nanoparticle: A Monte Carlo Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B; Sajo, E; Ouyang, Z

    2016-06-15

    Purpose: A recent publication has shown that by delivering titanium dioxide nanoparticles (titania) as a photosensitizer into tumors, Cerenkov radiation (CR) produced by radionuclides could be used for substantially boosting damage to cancer cells. The present work compares CR production by various clinically relevant radiation sources including internal radionuclides and external beam radiotherapy (EBRT), and provides preliminarily computational results of CR absorption by titania. Methods: 1) Geant4.10.1 was used to simulate ionizing radiation-induced CR production in a 1cm diameter spherical volume using external radiotherapy sources: Varian Clinac IX 6MV and Eldorado {sup 60}Co, both with 10*10 cm{sup 2} field size.more » In each case the volume was placed at the maximum dose depth (1.5cm for 6MV source and 0.5cm for {sup 60}Co). In addition, {sup 18}F, {sup 192}Ir and {sup 60}Co were simulated using Geant4 radioactive decay models as internal sources. Dose deposition and CR production spectra in 200nm-400nm range were calculated as it is the excitation range of titania. 2) Using 6MV external source, the absorption by titania was calculated via the track length of CR in the spherical volume. The nanoparticle concentration was varied from 0.25 to 5µg/g. Results: Among different radioactive sources, results showed that {sup 18}F induced the highest amount of CR per disintegration, but {sup 60}Co had the highest yield per unit dose. When compared with external sources, 6MV source was shown to be the most efficient for the the same delivered dose. Simulations indicated increased absorption for increasing concentrations, with up to 68% absorption of generated CR for 5µg/g titania concentration. Conclusion: The results demonstrate that 6MV beam is favored with a higher CR yield, compared to radionuclides, and that the use of higher concentrations of titania may increase photosensitization. From the findings, we propose that if sufficiently potent concentrations

  16. GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK - SUMMARY OF THE SECOND EXERCISE.

    PubMed

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szab, Gyula

    2017-05-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO Radiation Emergency Medical Preparedness and Assistance Network and the IAEA Response and Assistance Network, to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 h following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two-third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    EPA Science Inventory

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  18. Reactor-released radionuclides in Susquehanna River sediments

    USGS Publications Warehouse

    Olsen, C.R.; Larsen, I.L.; Cutshall, N.H.; Donoghue, J.F.; Bricker, O.P.; Simpson, H.J.

    1981-01-01

    Three Mile Island (TMI) and Peach Bottom (PB) reactors have introduced 137Cs, 134Cs, 60Co, 58Co and several other anthropogenic radionuclides into the lower Susquehanna River. Here we present the release history for these nuclides (Table 1) and radionuclide concentration data (Table 2) for sediment samples collected in the river and upper portions of the Chesapeake Bay (Fig. 1) within a few months after the 28 March 1979 loss-of-coolant-water problem at TMI. Although we found no evidence for nuclides characteristic of a ruptured fuel element, we did find nuclides characteristic of routine operations. Despite the TMI incident, more than 95% of the total 134Cs input to the Susquehanna has been a result of controlled low-level releases from the PB site. 134Cs activity released into the river is effectively trapped by sediments with the major zones of reactor-nuclide accumulation behind Conowingo Dam and in the upper portions of Chesapeake Bay. The reported distributions document the fate of reactor-released radionuclides and their extent of environmental contamination in the Susquehanna-Upper Chesapeake Bay System. ?? 1981 Nature Publishing Group.

  19. Radionuclide development at BNL for nuclear medicine therapy.

    PubMed

    Mausner, L F; Kolsky, K L; Joshi, V; Srivastava, S C

    1998-04-01

    Radionuclides with medium energy beta emission and a several day half-life have often been viewed as attractive candidates for radioimmunotherapy. Among the most promising in this category are 47Sc, 67Cu, 153Sm, 188Re, and 199Au. The production of 67Cu, 153Sm, 199Au at BNL is summarized and the development of the latest candidate for this application, 47Sc, is described in detail. We also summarize the development of another important therapeutic radionuclide, 117mSn for bone pain palliation.

  20. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; Diprete, D. P.

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that

  1. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; DiPrete, D. P.

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that

  2. Microbiological Transformations of Radionuclides in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-04

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore,more » environmental behavior.« less

  3. Characteristics of radionuclide contamination of different zones of Semipalatinsk Nuclear Test Site ``Opytnoe pole''

    NASA Astrophysics Data System (ADS)

    Kadyrzhanov, K. K.; Khazhekber, S.; Lukashenko, S. N.; Solodukhin, V. P.; Kazachevskiy, I. V.; Poznyak, V. L.; Knyazev, B. B.; Rofer, Ch.

    2003-01-01

    Data on the spatial distribution of radionuclides (241Am, 239Pu, 137Cs and 152Eu) formed during nuclear explosions of different types near P2 SNTS test site are presented. Radionuclide contamination induced by the explosions varies in the concentrations of individual radionuclides, their proportions and species. Examination of the variations is a crucial task to plan remediation activities as well as those aimed at decrease of radiation risk for population and prevention of repeated contamination. Concentrations of 241Am and 239+240Pu that are the most toxic radionuclides in the area lie in hundred thousands of Bqkg-1. The most contaminated areas are classified by the radionuclide concentration, ratio and form present in soil.

  4. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.

  5. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  6. Accumulation of artificial radionuclides in deep sediments of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Garcia-Orellana, J.; Sanchez-Cabeza, J. A.; Masque, P.; Costa, E.; Bruach, J. M.; Morist, A.; Luna, J. A.

    2003-04-01

    Concentrations and inventories of artificial radionuclides (90Sr, 137Cs and 239,40Pu) were determined in deep sediment cores (3.000 m) collected in the western and eastern basins of the Mediterranean Sea in the frame of the ADIOS project. Artificial radionuclides enter the Mediterranean Sea mainly though atmospheric deposition after nuclear weapons tests and the Chernobyl accident, but also through the river discharge of effluents of nuclear facilities (e.g. Rhone and Ebro rivers). The aim of this work is to investigate the degree by which pollutants are transferred to the deep environment of the Mediterranean Sea as a basis to elucidate their effects on benthic organisms. The mean inventories of 239+240Pu, 137Cs and 90Sr in the Western basin are 2.77 ± 0.26, 68 ± 12 and < 7 Bq\\cdotm-2 respectively and 3.29 ± 0.60, 115 ± 33 and 249±154 Bq\\cdotm-2 in the Eastern basin. The activity - depth profiles of 210Pb, together with 14C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2 cm of the sedimentary column. Artificial radionuclides inventories in the deep-sea sediments were used to calculate the fraction of the total inventory of artificial radionuclides that is accumulated in the deep sea sediments after scavenging from the water column. Indeed, a balance of the radionuclide distributions in the water column allows evaluating the importance of lateral transport of particulate matter from the continental margins on the accumulation of artificial radionuclides in the deep, open Mediterranean Sea. This is achieved in i) comparison with reported data from coastal areas at different locations in the Mediterranean Sea, and ii) balance of the distribution of the natural radionuclide 210Pb in studied areas (vertical profiles of dissolved and particulate activities, fluxes determined by using sediment trap deployed at different depths and inventories in the bottom sediments). The results, taking into account radioactive

  7. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency. Fabric...

  8. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency. Fabric...

  9. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  10. Assessment of radionuclide contents in food in Hong Kong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.N.; Mao, S.Y.

    1999-12-01

    Baseline values of concentrations of the natural radionuclides ({sup 238}U, {sup 226}Ra, {sup 228}Ra/{sup 232}Th, {sup 210}Pb) and artificial radionuclides ({sup 137}Cs, {sup 60}Co) in food and drinks (tap water, milk, and water-based drinks) were determined by gamma spectroscopy. All food and drinks were found to contain detectable {sup 40}K contents: 0.1 to 160 Bq Kg{sup {minus}1} for food and 0.006 to 61 Bq L{sup {minus}1} for drinks. Most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activities (MDA). More samples in the leafy vegetable, tomato, carrot and potato categories containedmore » detectable amounts of {sup 228}Ra than the meat, cereal, and fish categories, with concentrations up to 1.2 Bq kg{sup {minus}1} for the former categories and 0.35 Bq kg{sup {minus}1} for the latter categories. The {sup 238}U and {sup 226}Ra radionuclides were detectable in most of the water-based drink samples, and the {sup 228}Ra and {sup 210}Pb radionuclides were detectable in fewer water-based drink samples. The {sup 137}Cs contents in solid food were detectable in most of the solid food samples (reaching 0.59 Bq kg{sup {minus}1}), but in drinks the {sup 137}Cs contents were very low and normally lower than the MDA values. Nearly all the {sup 60}Co contents in food and drinks were below the MDA values and their contents were below those of {sup 137}Cs.« less

  11. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into pre-formed liposomes for diagnostic imaging and radionuclide therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2010-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ((99m)Tc), for non-invasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ((186/188)Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load (99m)Tc or (186/188)Re into pre-formed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport (99m)Tc or (186/188)Re across the lipid bilayer of the pre-formed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the (99m)Tc and (186/188)Re within the liposomes. In the first method, (99m)Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and (99m)Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, (99m)Tc or (186/188)Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and (99m)Tc-BMEDA or (186/188)Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for (99m)Tc or (186/188)Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, (99m)Tc/(186/188)Re-BMEDA complex becomes protonated and more hydrophilic, which

  12. Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, S.C.; Evenden, W.G.

    Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with twomore » first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.« less

  13. Vesicoureteral reflux in asymptomatic siblings of patients with known reflux: radionuclide cystography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Abbeele, A.D.; Treves, S.T.; Lebowitz, R.L.

    1987-01-01

    The familial nature of vesicoureteral reflux among siblings of patients with vesicoureteral reflux has been reported to be from 8% to 32%. These included both symptomatic and asymptomatic siblings. The incidence of vesicoureteral reflux in asymptomatic siblings, however, has not been studied extensively. Sixty asymptomatic siblings of patients known to have vesicoureteral reflux were studied with radionuclide voiding cystography. Their ages ranged from 2 months to 15 years (mean, 4.2 years). Vesicoureteral reflux was detected in 27 of 60 (45%) of the siblings. Vesicoureteral reflux was unilateral in 15 and bilateral in 12 of the siblings. Radionuclide cystography is moremore » sensitive than radiographic cystography and results in a very low radiation dose to the patient. The gonadal dose with radionuclide cystography is only 1.0 to 2.0 mrads. Because of these features, radionuclide cystography is a nearly ideal technique for the diagnosis of vesicoureteral reflux in siblings of patients with known vesicoureteral reflux. All siblings (symptomatic or asymptomatic) of patients with known vesicoureteral reflux should have a screening radionuclide cystography.« less

  14. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery.

    PubMed

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid-polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA.

  15. Development of polymeric–cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery

    PubMed Central

    Jain, Arvind K; Massey, Ashley; Yusuf, Helmy; McDonald, Denise M; McCarthy, Helen O; Kett, Vicky L

    2015-01-01

    We report the formulation of novel composite nanoparticles that combine the high transfection efficiency of cationic peptide-DNA nanoparticles with the biocompatibility and prolonged delivery of polylactic acid–polyethylene glycol (PLA-PEG). The cationic cell-penetrating peptide RALA was used to condense DNA into nanoparticles that were encapsulated within a range of PLA-PEG copolymers. The composite nanoparticles produced exhibited excellent physicochemical properties including size <200 nm and encapsulation efficiency >80%. Images of the composite nanoparticles obtained with a new transmission electron microscopy staining method revealed the peptide-DNA nanoparticles within the PLA-PEG matrix. Varying the copolymers modulated the DNA release rate >6 weeks in vitro. The best formulation was selected and was able to transfect cells while maintaining viability. The effect of transferrin-appended composite nanoparticles was also studied. Thus, we have demonstrated the manufacture of composite nanoparticles for the controlled delivery of DNA. PMID:26648722

  16. Programmed Nanoparticle-Loaded Nanoparticles for Deep-Penetrating 3D Cancer Therapy.

    PubMed

    Kim, Jinhwan; Jo, Changshin; Lim, Won-Gwang; Jung, Sungjin; Lee, Yeong Mi; Lim, Jun; Lee, Haeshin; Lee, Jinwoo; Kim, Won Jong

    2018-05-18

    Tumors are 3D, composed of cellular agglomerations and blood vessels. Therapies involving nanoparticles utilize specific accumulations due to the leaky vascular structures. However, systemically injected nanoparticles are mostly uptaken by cells located on the surfaces of cancer tissues, lacking deep penetration into the core cancer regions. Herein, an unprecedented strategy, described as injecting "nanoparticle-loaded nanoparticles" to address the long-lasting problem is reported for effective surface-to-core drug delivery in entire 3D tumors. The "nanoparticle-loaded nanoparticle" is a silica nanoparticle (≈150 nm) with well-developed, interconnected channels (diameter of ≈30 nm), in which small gold nanoparticles (AuNPs) (≈15 nm) with programmable DNA are located. The nanoparticle (AuNPs)-loaded nanoparticles (silica): (1) can accumulate in tumors through leaky vascular structures by protecting the inner therapeutic AuNPs during blood circulation, and then (2) allow diffusion of the AuNPs for penetration into the entire surface-to-core tumor tissues, and finally (3) release a drug triggered by cancer-characteristic pH gradients. The hierarchical "nanoparticle-loaded nanoparticle" can be a rational design for cancer therapies because the outer large nanoparticles are effective in blood circulation and in protection of the therapeutic nanoparticles inside, allowing the loaded small nanoparticles to penetrate deeply into 3D tumors with anticancer drugs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    NASA Astrophysics Data System (ADS)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  18. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    NASA Astrophysics Data System (ADS)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  1. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research wasmore » to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  2. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    PubMed

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  3. Hydrology and radionuclide migration program 1987 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparablemore » to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.« less

  4. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure

  5. Verifying the operational set-up of a radionuclide air-monitoring station.

    PubMed

    Werzi, R; Padoani, F

    2007-05-01

    A worldwide radionuclide network of 80 stations, part of the International Monitoring System, was designed to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty. After installation, the stations are certified to comply with the minimum requirements laid down by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization. Among the several certification tests carried out at each station, the verification of the radionuclide activity concentrations is a crucial one and is based on an independent testing of the airflow rate measurement system and of the gamma detector system, as well as on the assessment of the samples collected during parallel sampling and measured at radionuclide laboratories.

  6. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, Robert A; Kubilius, Walter P.

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less

  7. Sedimentation Deposition Patterns on the Chukchi Shelf Using Radionuclide Inventories

    NASA Astrophysics Data System (ADS)

    Cooper, L. W.; Grebmeier, J. M.

    2016-02-01

    Sediment core collections and assays of the anthropogenic and natural radioisotopes, 137Cs and 210Pb, respectively, are providing long-term indications of sedimentation and current flow processes on the Chukchi and East Siberian sea continental shelf. This work, which has been integrated into interdisciplinary studies of the Chukchi Sea supported by both the US Bureau of Ocean Energy Management (COMIDA Hanna Shoal Project) and the National Oceanic and Atmospheric Administration (Russian-US Long Term Census of the Arctic, RUSALCA) includes studies of total radiocesium inventories, sedimentation rate determinations, where practical, and depths of maxima in radionuclide deposition. Shallow maxima in the activities of the anthropogenic radionuclide in sediment cores reflect areas with higher current flow (Barrow Canyon and Herald Canyon; 3-6 cm) or low sedimentation (Hanna Shoal; 1-3 cm). The first sedimentation studies from Long Strait are consistent with quiescent current conditions and steady recent sedimentation of clay particles. Elsewhere, higher and more deeply buried radionuclide inventories (> 2 mBq cm-2 at 15-17 cm depth) in the sediments correspond to areas of high particle deposition north of Bering Strait where bioturbation in productive sediments is also clearly an important influence. Radiocesium activities from bomb fallout dating to 1964 are now present at low levels (<1 mBq cm-2) at the sediment surface, but burial of the bomb era radionuclide in sediments is observed to >20 cm. Independent sedimentation rate measurements with the natural radionuclide 210Pb are largely consistent with the radiocesium measurements.

  8. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean.

    PubMed

    Povinec, P P; Gera, M; Holý, K; Hirose, K; Lujaniené, G; Nakano, M; Plastino, W; Sýkora, I; Bartok, J; Gažák, M

    2013-11-01

    Large quantities of radionuclides were released in March-April 2011 during the accident of the Fukushima Dai-ichi Nuclear Power Plant to the atmosphere and the ocean. Atmospheric and marine modeling has been carried out to predict the dispersion of radionuclides worldwide, to compare the predicted and measured radionuclide concentrations, and to assess the impact of the accident on the environment. Atmospheric Lagrangian dispersion modeling was used to simulate the dispersion of (137)Cs over America and Europe. Global ocean circulation model was applied to predict the dispersion of (137)Cs in the Pacific Ocean. The measured and simulated (137)Cs concentrations in atmospheric aerosols and in seawater are compared with global fallout and the Chernobyl accident, which represent the main sources of the pre-Fukushima radionuclide background in the environment. The radionuclide concentrations in the atmosphere have been negligible when compared with the Chernobyl levels. The maximum (137)Cs concentration in surface waters of the open Pacific Ocean will be around 20 Bq/m(3). The plume will reach the US coast 4-5 y after the accident, however, the levels will be below 3 Bq/m(3). All the North Pacific Ocean will be labeled with Fukushima (137)Cs 10 y after the accident with concentration bellow 1 Bq/m(3). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Activity measurement and effective dose modelling of natural radionuclides in building material.

    PubMed

    Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M

    2013-11-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Consultative Committee on Ionizing Radiation: Impact on Radionuclide Metrology

    PubMed Central

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM’s consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. PMID:26688351

  11. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  12. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  13. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  14. Past and present levels of some radionuclides in fish from Bikini and Enewetak Atolls.

    PubMed

    Noshkin, V E; Robison, W L; Wong, K M; Brunk, J L; Eagle, R J; Jones, H E

    1997-07-01

    Bikini and Enewetak were the sites in the Northern Marshall Islands that were used by the United States as testing grounds for nuclear devices between 1946 and 1958. The testing produced close-in fallout debris that was contaminated with different radionuclides and which entered the aquatic environment. The contaminated lagoon sediments became a reservoir and source term of manmade radionuclides for the resident marine organisms. This report contains a summary of all the available data on the concentrations of 137Cs, 60Co and 207Bi in flesh samples of reef and pelagic fish collected from Bikini and Enewetak Atolls between 1964 and 1995. The selection of these three radionuclides for discussion is based on the fact that these are the only radionuclides that have been routinely detected by gamma spectrometry in flesh samples from all fish for the last 20 y. Flesh from fish is an important source of food in the Marshallese diet. These radionuclides along with the transuranic radionuclides and 90Sr contribute most of the small radiological dose from ingesting marine foods. Some basic relationships among concentrations in different tissues and organs are discussed. The reef fish can be used as indicator species because their body burden is derived from feeding, over a lifetime, within a relatively small contaminated area of the lagoon. Therefore, the emphasis of this report is to use this extensive and unique concentration data base to describe the effective half lives and cycling for the radionuclides in the marine environments during the 31-y period between 1964 and 1995. The results from an analysis of the radionuclide concentrations in the flesh samples indicate the removal rates for the 3 radionuclides are significantly different. 137Cs is removed from the lagoons with an effective half life of 9-12 y. Little 60Co is mobilized to the water column so that it is depleted in both environments, primarily through radioactive decay. The properties of 207Bi are different

  15. Dynamic phantom for radionuclide cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickles, R.J.

    1979-06-01

    A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.

  16. Effect of Nanoparticle Surface on the HPLC Elution Profile of Liposomal Nanoparticles.

    PubMed

    Itoh, Naoki; Yamamoto, Eiichi; Santa, Tomofumi; Funatsu, Takashi; Kato, Masaru

    2016-06-01

    Nanoparticles have been used in diverse areas, and even broader applications are expected in the future. Since surface modification can influence the configuration and toxicity of nanoparticles, a rapid screening method is important to ensure nanoparticle quality. We examined the effect of the nanoparticle surface morphology on the HPLC elution profile using two types of 100-nm liposomal nanoparticles (AmBisome(Ⓡ) and DOXIL(Ⓡ)). These 100-nm-sized nanoparticles eluted before the holdup time (about 4 min), even when a column packed with particles with a relatively large pore size (30 nm) was used. The elution time of the nanoparticles increased with pegylation of the nanoparticles and protein adsorption to the nanoparticles; however, the nanoparticles still eluted before the holdup time. The results of this study indicate that HPLC is a suitable tool for rapid evaluation of the surface of liposomal nanoparticles.

  17. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  18. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  19. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  20. Radionuclides and heavy metals in Borovac, Southern Serbia.

    PubMed

    Popovic, Dragana; Todorovic, Dragana; Frontasyeva, Marina; Ajtic, Jelena; Tasic, Mirjana; Rajsic, Slavica

    2008-09-01

    The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions. In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide ((7)Be, (40)K, (137)Cs, (210)Pb, (226)Ra, (232)Th, (235)U, (238)U) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA). The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks. This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area. The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen

  1. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  2. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand.

    PubMed

    Wattanavatee, Komrit; Krmar, Miodrag; Bhongsuwan, Tripob

    2017-10-01

    The aim of this study was to determine the activity concentrations of natural terrestrial radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) and airborne radionuclides ( 210 Pb, 210 Pb ex and 7 Be) in natural terrestrial mosses. The collected moss samples (46) representing 17 species were collected from 17 sampling localities in the National Parks and Wildlife Sanctuaries of Thailand, situated in the mountainous areas between the northern and the southern ends of peninsular Thailand (∼7-12 °N, 99-102 °E). Activity concentrations of radionuclides in the samples were measured using a low background gamma spectrometer. The results revealed non-uniform spatial distributions of all the radionuclides in the study area. Principal component analysis and cluster analysis revealed two distinct origins for the studied radionuclides, and furthermore, the Pearson correlations were strong within 226 Ra, 232 Th, 238 U and 40 K as well as within 210 Pb and 210 Pb ex , but there was no significant correlation between these two groups. Also 7 Be was uncorrelated to the others, as expected due to different origins of the airborne and terrestrial radionuclides. The radionuclide activities of moss samples varied by moss species, topography, geology, and meteorology of each sampling area. The observed abnormally high concentrations of some radionuclides probably indicate that the concentrations of airborne and terrestrial radionuclides in moss samples were directly related to local geological features of the sampling site, or that high levels of 7 Be were most probably linked with topography and regional NE monsoonal winds from mainland China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying

    NASA Astrophysics Data System (ADS)

    Semaltianos, N. G.; Chassagnon, R.; Moutarlier, V.; Blondeau-Patissier, V.; Assoul, M.; Monteil, G.

    2017-04-01

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  4. Nanoparticles alloying in liquids: Laser-ablation-generated Ag or Pd nanoparticles and laser irradiation-induced AgPd nanoparticle alloying.

    PubMed

    Semaltianos, N G; Chassagnon, R; Moutarlier, V; Blondeau-Patissier, V; Assoul, M; Monteil, G

    2017-04-18

    Laser irradiation of a mixture of single-element micro/nanomaterials may lead to their alloying and fabrication of multi-element structures. In addition to the laser induced alloying of particulates in the form of micro/nanopowders in ambient atmosphere (which forms the basis of the field of additive manufacturing technology), another interesting problem is the laser-induced alloying of a mixture of single-element nanoparticles in liquids since this process may lead to the direct fabrication of alloyed-nanoparticle colloidal solutions. In this work, bare-surface ligand-free Ag and Pd nanoparticles in solution were prepared by laser ablation of the corresponding bulk target materials, separately in water. The two solutions were mixed and the mixed solution was laser irradiated for different time durations in order to investigate the laser-induced nanoparticles alloying in liquid. Nanoparticles alloying and the formation of AgPd alloyed nanoparticles takes place with a decrease of the intensity of the surface-plasmon resonance peak of the Ag nanoparticles (at ∼405 nm) with the irradiation time while the low wavelength interband absorption peaks of either Ag or Pd nanoparticles remain unaffected by the irradiation for a time duration even as long as 30 min. The nanoalloys have lattice constants with values between those of the pure metals, which indicates that they consist of Ag and Pd in an approximately 1:1 ratio similar to the atomic composition of the starting mixed-nanoparticle solution. Formation of nanoparticle networks consisting of bimetallic alloyed nanoparticles and nanoparticles that remain as single elements (even after the end of the irradiation), joining together, are also formed. The binding energies of the 3d core electrons of both Ag and Pd nanoparticles shift to lower energies with the irradiation time, which is also a typical characteristic of AgPd alloyed nanoparticles. The mechanisms of nanoparticles alloying and network formation are also

  5. Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Buesseler, K.

    2014-11-01

    Employing some 40 years of North Pacific drifter-track observations from the Global Drifter Program database, statistics defining the horizontal spread of radionuclides from Fukushima nuclear power plant into the Pacific Ocean are investigated over a time scale of 5 years. A novel two-iteration method is employed to make the best use of the available drifter data. Drifter-based predictions of the temporal progression of the leading edge of the radionuclide distribution are compared to observed radionuclide concentrations from research surveys occupied in 2012 and 2013. Good agreement between the drifter-based predictions and the observations is found.

  6. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  7. Compositions and methods for removal of toxic metals and radionuclides

    NASA Technical Reports Server (NTRS)

    McKay, David S. (Inventor); Cuero, Raul G. (Inventor)

    2007-01-01

    The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin or chitosan. Toxic metals may also be removed using volcanic ash alone or in combination with chitin or chitosan. Radionuclides may be removed using volcanic ash alone or in combination with chitin or chitosan.

  8. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects.

    PubMed

    Bhardwaj, R; van der Meer, A; Das, S K; de Bruin, M; Gascon, J; Wolterbeek, H T; Denkova, A G; Serra-Crespo, P

    2017-03-13

    177 Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β - emission results in very efficient energy deposition in small-size tumours. Because of this, 177 Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177m Lu and 177 Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177m Lu/ 177 Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177 Lu and can bring significant growth in the research and development of 177 Lu based pharmaceuticals.

  9. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  10. Evaluation of Sustainability of the Carbon and Silicon Ecosystem: From Nanoparticles to Macroworld

    NASA Astrophysics Data System (ADS)

    Dolin, V.

    Rapid development of nanotechnologies has led to a complicated problem of utilization, storage and treatment of waste nanodevices of silicon and carbon origin. The processes of physico-chemical and biogeochemical destruction of carbon—silicon—uranium nanoparticles of Chernobyl origin has been studied. The period of half-destruction assessed by leaching of different radionuclide from particles is between 5 and 25 years. Natural ecosystems are generally of carbon and silicon origin. The behavior of radionuclide in natural media is observed over a period of 20 years. For the balance calculations we have utilized the Geochemical Transition Factor (GTF) that represents the quantity of substance, which is accumulated by living matter from the area unit. The main part of total carbon is involved in biogeochemical cycles in the forest ecosystem. Anthropogenic activity leads to a considerable imbalance of carbon isotopes. The distribution of carbon isotopes between different biotic levels demonstrates that radiocarbon of artificial emission is substantially less bio-available than those from natural sources. The environmental ability to recovery, lies in decontamination of carbon trophic circuits, is an order of magnitude greater than the rate of natural attenuation and corresponds to the removal of artificial matter from natural silicon media. The modern sustainability of the silicon and carbon ecosystem is determined by an insignificant quantity of artificial matter involved in biogeochemical cycles.

  11. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  12. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  13. IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.

  14. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  15. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  16. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules

    2015-07-14

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  17. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2015-11-20

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  18. Intermetallic nanoparticles

    DOEpatents

    Singh, Dileep; Yusufoglu, Yusuf; Timofeeva, Elena; Routbort, Jules L.

    2017-01-03

    A process for preparing intermetallic nanoparticles of two or more metals is provided. In particular, the process includes the steps: a) dispersing nanoparticles of a first metal in a solvent to prepare a first metal solution, b) forming a reaction mixture with the first metal solution and a reducing agent, c) heating the reaction mixture to a reaction temperature; and d) adding a second metal solution containing a salt of a second metal to the reaction mixture. During this process, intermetallic nanoparticles, which contain a compound with the first and second metals are formed. The intermetallic nanoparticles with uniform size and a narrow size distribution is also provided. An electrochemical device such as a battery with the intermetallic nanoparticles is also provided.

  19. WORKER INHALATION DOSE COEFFICIENTS FOR RADIONUCLIDES NOT PREVIOUSLY IDENTIFIED IN ICRP PUBLICATION 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, David A; Schwahn, Scott O

    2011-01-01

    While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.

  20. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  1. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  2. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  3. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  4. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Sterne, R.J.

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less

  5. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  6. Silver Nanoparticles

    NASA Astrophysics Data System (ADS)

    Khaydarov, R. R.; Khaydarov, R. A.; Estrin, Y.; Evgrafova, S.; Scheper, T.; Endres, C.; Cho, S. Y.

    The bactericidal effect of silver nanoparticles obtained by a novel electrochemical method on Escherichia coli, Staphylococcus aureus, Aspergillus niger and Penicillium phoeniceum cultures has been studied. The tests conducted have demonstrated that synthesized silver nanoparticles — when added to water paints or cotton fabrics — show a pronounced antibacterial/antifungal effect. It was shown that smaller silver nanoparticles have a greater antibacterial/antifungal efficacy. The paper also provides a review of scientific literature with regard to recent developments in the field of toxicity of silver nanoparticles and its effect on environment and human health.

  7. Interaction of nanoparticles with proteins: relation to bio-reactivity of the nanoparticle.

    PubMed

    Saptarshi, Shruti R; Duschl, Albert; Lopata, Andreas L

    2013-07-19

    Interaction of nanoparticles with proteins is the basis of nanoparticle bio-reactivity. This interaction gives rise to the formation of a dynamic nanoparticle-protein corona. The protein corona may influence cellular uptake, inflammation, accumulation, degradation and clearance of the nanoparticles. Furthermore, the nanoparticle surface can induce conformational changes in adsorbed protein molecules which may affect the overall bio-reactivity of the nanoparticle. In depth understanding of such interactions can be directed towards generating bio-compatible nanomaterials with controlled surface characteristics in a biological environment. The main aim of this review is to summarise current knowledge on factors that influence nanoparticle-protein interactions and their implications on cellular uptake.

  8. Recent Advances in Inorganic Nanoparticle-Based NIR Luminescence Imaging: Semiconductor Nanoparticles and Lanthanide Nanoparticles.

    PubMed

    Kim, Dokyoon; Lee, Nohyun; Park, Yong Il; Hyeon, Taeghwan

    2017-01-18

    Several types of nanoparticle-based imaging probes have been developed to replace conventional luminescent probes. For luminescence imaging, near-infrared (NIR) probes are useful in that they allow deep tissue penetration and high spatial resolution as a result of reduced light absorption/scattering and negligible autofluorescence in biological media. They rely on either an anti-Stokes or a Stokes shift process to generate luminescence. For example, transition metal-doped semiconductor nanoparticles and lanthanide-doped inorganic nanoparticles have been demonstrated as anti-Stokes shift-based agents that absorb NIR light through two- or three-photon absorption process and upconversion process, respectively. On the other hand, quantum dots (QDs) and lanthanide-doped nanoparticles that emit in NIR-II range (∼1000 to ∼1350 nm) were suggested as promising Stokes shift-based imaging agents. In this topical review, we summarize and discuss the recent progress in the development of inorganic nanoparticle-based luminescence imaging probes working in NIR range.

  9. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  10. Evaluation of meniscus tears of the knee by radionuclide imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marymont, J.V.; Lynch, M.A.; Henning, C.E.

    We compare the accuracy of radionuclide imaging of the knee with Tc99m-pyrophosphate with arthrography for the evaluation of meniscus tears in young athletes with clinically suspected knee injury. All patients had arthroscopy which was used as the standard against which the other two diagnostic procedures were compared. Radionuclide scintigraphy and arthrography were comparable in their ability to detect tears of the medial meniscus. Scintigraphy was superior for the detection of tears of the lateral meniscus and of both menisci.

  11. Transfer of radionuclides to plants of natural ecosystems at the Semipalatinsk Test Site.

    PubMed

    Larionova, N V; Lukashenko, S N; Kabdyrakova, A M; Kunduzbayeva, A Ye; Panitskiy, A V; Ivanova, A R

    2018-06-01

    A systematic study devoted to 137 Cs, 90 Sr, 241 Am, 239+240 Pu radionuclides in vegetation cover from several spots of the Semipalatinsk test site (STS) is summarised in this paper, highlighting the main findings obtained. The analysed spots are characterized by various types of radioactive contamination. Transfer factors (Tf) required for the quantitative description of the radionuclides transition from the soil to aboveground plant parts were determined, being found that, on average, the minimum Tf for all the radionuclides concerned were determined on the "Experimental Field" ground, followed by the determined ones in the "plumes" of radioactive fallout and in the conditionally "background" territories analysed. The highest transfer factors were characteristic of zones of radioactive streamflows and places of warfare radioactive agent (WRA) tests. On the other hand, ordering the radionuclide transferring factors in descending order, the following sequence was obtained: 90 Sr Tf > Cs Tf >  239+240 Pu Tf >  241 Am Tf, with the 90 Sr Tf, on the average, exceeding the 137 Cs Tf by 8 times and exceeding the 239+240 Pu Tf by up 16 times. 239+240 Pu Tf values were up to 3 times higher than the 241 Am Tf. The exception to the indicated radionuclide Tf descending order corresponded to places of WRA tests where Tf of radionuclides of interest by plants follows the sequence 90 Sr >  239+240 Pu >  137 Cs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  13. Dual-radiolabeled nanoparticle probes for depth-independent in vivo imaging of enzyme activation

    NASA Astrophysics Data System (ADS)

    Black, Kvar C. L.; Zhou, Mingzhou; Sarder, Pinaki; Kuchuk, Maryna; Al-Yasiri, Amal Y.; Gunsten, Sean P.; Liang, Kexian; Hennkens, Heather M.; Akers, Walter J.; Laforest, Richard; Brody, Steven L.; Cutler, Cathy S.; Achilefu, Samuel

    2018-02-01

    Quantitative and noninvasive measurement of protease activities has remained an imaging challenge in deep tissues such as the lungs. Here, we designed a dual-radiolabeled probe for reporting the activities of proteases such as matrix metalloproteinases (MMPs) with multispectral single photon emission computed tomography (SPECT) imaging. A gold nanoparticle (NP) was radiolabeled with 125I and 111In and functionalized with an MMP9-cleavable peptide to form a multispectral SPECT imaging contrast agent. In another design, incorporation of 199Au radionuclide into the metal crystal structure of gold NPs provided a superior and stable reference signal in lungs, and 111In was linked to the NP surface via a protease-cleavable substrate, which can serve as an enzyme activity reporter. This work reveals strategies to correlate protease activities with diverse pathologies in a tissue-depth independent manner.

  14. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  15. Nanoparticle mediated micromotor motion

    NASA Astrophysics Data System (ADS)

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y.

    2015-03-01

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ~200 μm s-1. By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ~10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric

  16. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Anisa, E-mail: coppering@ymail.com; Hamzah, Zaini; Wood, Ab. Khalik

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marinemore » biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.« less

  17. De-alloyed platinum nanoparticles

    DOEpatents

    Strasser, Peter [Houston, TX; Koh, Shirlaine [Houston, TX; Mani, Prasanna [Houston, TX; Ratndeep, Srivastava [Houston, TX

    2011-08-09

    A method of producing de-alloyed nanoparticles. In an embodiment, the method comprises admixing metal precursors, freeze-drying, annealing, and de-alloying the nanoparticles in situ. Further, in an embodiment de-alloyed nanoparticle formed by the method, wherein the nanoparticle further comprises a core-shell arrangement. The nanoparticle is suitable for electrocatalytic processes and devices.

  18. GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK: SUMMARY OF A RECENT EXERCISE.

    PubMed

    Li, Chunsheng; Ansari, Armin; Bartizel, Christine; Battisti, Paolo; Franck, Didier; Gerstmann, Udo; Giardina, Isabella; Guichet, Claude; Hammond, Derek; Hartmann, Martina; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Morhard, Ryan; Quayle, Deborah; Sadi, Baki; Saunders, David; Paquet, Francois

    2016-11-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop their collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency. A recent exercise was conducted to test the participating laboratories for their capabilities in screening and in vitro assay of biological samples, performing internal dose assessment and providing advice on medical intervention, if necessary, using a urine sample spiked with a single radionuclide, 241 Am. The laboratories were required to submit their reports according to the exercise schedule and using pre-formatted templates. Generally, the participating laboratories were found to be capable with respect to rapidly screening samples for radionuclide contamination, measuring the radionuclide in the samples, assessing the intake and radiation dose, and providing advice on medical intervention. However, gaps in bioassay measurement and dose assessment have been identified. The network may take steps to ensure that procedures and practices within this network be harmonised and a follow-up exercise be organised on a larger scale, with potential participation of laboratories from the networks coordinated by the International Atomic Energy Agency and the World Health Organization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Computational modeling of radiobiological effects in bone metastases for different radionuclides.

    PubMed

    Liberal, Francisco D C Guerra; Tavares, Adriana Alexandre S; Tavares, João Manuel R S

    2017-06-01

    Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 ( 89 Sr), Samarium-153 ( 153 Sm), Lutetium-177 ( 177 Lu), and Radium-223 ( 223 Ra). Cellular kinetics post-irradiation using 89 Sr β - particles, 153 Sm β -  particles, 177 Lu β -  particles and 223 Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177 Lu beta minus particles and, in particular, 223 Ra alpha particles, yielded the lowest survival fraction of all investigated particles. 223 Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β -  radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.

  20. Tracing Fukushima Radionuclides in the Northern Hemisphere -An Overview

    NASA Astrophysics Data System (ADS)

    Thakur, Punam; Ballard, Sally; Nelson, Roger

    2013-04-01

    A massive 9.0 earthquake and ensuing tsunami struck the northern coast of the Honshu-island, Japan on March 11, 2011 and severely damaged the electric system of the Fukushima- Daiichi Nuclear Power Plant (NPP). The structural damage to the plant disabled the reactor's cooling systems. Subsequent fires, a hydrogen explosion and possible partial core meltdowns released radioactive fission products into the atmosphere. The atmospheric release from the crippled Fukushima NPP started on March 12, 2011 with a maximum release phase from March 14 to 17. The radioactivity released was dominated by volatile fission products including isotopes of the noble gases xenon (Xe-133) and krypton (Kr-85); iodine (I-131,I-132); cesium (Cs-134,Cs-136,Cs-137); and tellurium (Te-132). The non-volatile radionuclides such as isotopes of strontium and plutonium are believed to have remained largely inside the reactor, although there is evidence of plutonium release into the environment. Global air monitoring across the northern hemisphere was increased following the first reports of atmospheric releases. According to the source term, declared by the Nuclear and Industrial Safety Agency (NISA) of Japan), approximately 160 PBq (1 PBq (Peta Becquerel = 10^15 Bq)) of I-131 and 15 PBq of Cs-137 (or 770 PBq "iodine-131 equivalent"), were released into the atmosphere. The 770 PBq figure is about 15% of the Chernobyl release of 5200 PBq of "iodine-131 equivalent". For the assessment of contamination after the accident and to track the transport time of the contaminated air mass released from the Fukushima NPP across the globe, several model calculations were performed by various research groups. All model calculations suggested long-range transport of radionuclides from the damaged Fukushima NPP towards the North American Continent to Europe and to Central Asia. As a result, an elevated level of Fukushima radionuclides were detected in air, rain, milk, and vegetation samples across the northern

  1. Bone stress: a radionuclide imaging perspective. [/sup 99m/Tc-pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schemamore » is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress.« less

  2. Versatile Methodology to Encapsulate Gold Nanoparticles in PLGA Nanoparticles Obtained by Nano-Emulsion Templating.

    PubMed

    Fornaguera, Cristina; Feiner-Gracia, Natàlia; Dols-Perez, Aurora; García-Celma, Maria José; Solans, Conxita

    2017-05-01

    Gold nanoparticles have been proved useful for many biomedical applications, specifically, for their use as advanced imaging systems. However, they usually present problems related with stability and toxicity. In the present work, gold-nanoparticles have been encapsulated in polymeric nanoparticles using a novel methodology based on nano-emulsion templating. Firstly, gold nanoparticles have been transferred from water to ethyl acetate, a solvent classified as class III by the NIH guidelines (low toxic potential). Next, the formation of nano-emulsions loaded with gold nanoparticles has been performed using a low-energy, the phase inversion composition (PIC) emulsification method, followed by solvent evaporation giving rise to polymeric nanoparticles. Using this methodology, high concentrations of gold nanoparticles (>100 pM) have been encapsulated. Increasing gold nanoparticle concentration, nano-emulsion and nanoparticle sizes increase, resulting in a decrease on the stability. It is noteworthy that the designed nanoparticles did not produce cytotoxicity neither hemolysis at the required concentration. Therefore, it can be concluded that a novel and very versatile methodology has been developed for the production of polymeric nanoparticles loaded with gold nanoparticles. Graphical Abstract Schematic representation of AuNP-loaded polymeric nanoparticles preparation from nano-emulsion templating.

  3. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  4. Cadastral valuation of lands polluted with radionuclides

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Tsvetnov, E. V.; Shcheglov, A. I.; Romashkina, A. D.; Ermiyaev, Ya. R.

    2016-11-01

    The major method to correct the cadastral value of land for contamination with radionuclides is to reduce it by the sum of expenses necessary for land remediation and for special measures ensuring the obtaining of agricultural and forestry products satisfying safety norms. Lands contaminated with radionuclides and used in agriculture and forestry are often removed from the system of land taxation. In this case, their cadastral value becomes an excessive element of the state cadaster of real estate. An approach toward cadastral valuation of such lands suggested by the authors assumes the creation of a system of compensation payments as the main source of financing of land rehabilitation and soil conservation measures. An original system of calculation of such payments has been tested for radioactively contaminated lands in Plavsk district of Tula oblast. It is argued that compensation payments for radioactively contaminated agrocenoses should be higher than those for natural cenoses.

  5. Experimental and theoretical investigation of intratumoral nanoparticle distribution to enhance magnetic nanoparticle hyperthermia

    NASA Astrophysics Data System (ADS)

    Attaluri, Anilchandra

    Magnetic nanoparticles have gained prominence in recent years for use in clinical applications such as imaging, drug delivery, and hyperthermia. Magnetic nanoparticle hyperthermia is a minimally invasive and effective approach for confined heating in tumors with little collateral damage. One of the major problems in the field of magnetic nanoparticle hyperthermia is irregular heat distribution in tumors which caused repeatable heat distribution quite impossible. This causes under dosage in tumor area and overheating in normal tissue. In this study, we develop a unified approach to understand magnetic nanoparticle distribution and temperature elevations in gel and tumors. A microCT imaging system is first used to visualize and quantify nanoparticle distribution in both tumors and tissue equivalent phantom gels. The microCT based nanoparticle concentration is related to specific absorption rate (SAR) of the nanoparticles and is confirmed by heat distribution experiments in tissue equivalent phantom gels. An optimal infusion protocol is identified to generate controllable and repeatable nanoparticle distribution in tumors. In vivo animal experiments are performed to measure intratumoral temperature elevations in PC3 xenograft tumors implanted in mice during magnetic nanoparticle hyperthermia. The effect of nanofluid injection parameters on the resulted temperature distribution is studied. It shows that the tumor temperatures can be elevated above 50°C using very small amounts of ferrofluid with a relatively low magnetic field. Slower ferrofluid infusion rates result in smaller nanoparticle distribution volumes in the tumors, however, it gives the much required controllability and repeatability when compared to the higher infusion rates. More nanoparticles occupy a smaller volume in the vicinity of the injection site with slower infusion rates, causing higher temperature elevations in the tumors. Based on the microCT imaging analyses of nanoparticles in tumors, a mass

  6. Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava S. C.

    2011-06-06

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrantmore » it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.« less

  7. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease

    PubMed Central

    Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches, such as PET and SPECT, can offer novel insight into PVD by providing non-invasive assessment of biological processes such as angiogenesis and atherosclerosis. This review discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment. PMID:26590787

  8. Cellular Binding of Anionic Nanoparticles is Inhibited by Serum Proteins Independent of Nanoparticle Composition.

    PubMed

    Fleischer, Candace C; Kumar, Umesh; Payne, Christine K

    2013-09-01

    Nanoparticles used in biological applications encounter a complex mixture of extracellular proteins. Adsorption of these proteins on the nanoparticle surface results in the formation of a "protein corona," which can dominate the interaction of the nanoparticle with the cellular environment. The goal of this research was to determine how nanoparticle composition and surface modification affect the cellular binding of protein-nanoparticle complexes. We examined the cellular binding of a collection of commonly used anionic nanoparticles: quantum dots, colloidal gold nanoparticles, and low-density lipoprotein particles, in the presence and absence of extracellular proteins. These experiments have the advantage of comparing different nanoparticles under identical conditions. Using a combination of fluorescence and dark field microscopy, flow cytometry, and spectroscopy, we find that cellular binding of these anionic nanoparticles is inhibited by serum proteins independent of nanoparticle composition or surface modification. We expect these results will aid in the design of nanoparticles for in vivo applications.

  9. Organ doses from radionuclides on the ground. Part I. Simple time dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, P.; Paretzke, H.G.; Rosenbaum, H.

    1988-06-01

    Organ dose equivalents of mathematical, anthropomorphical phantoms ADAM and EVA for photon exposures from plane sources on the ground have been calculated by Monte Carlo photon transport codes and tabulated in this article. The calculation takes into account the air-ground interface and a typical surface roughness, the energy and angular dependence of the photon fluence impinging on the phantom and the time dependence of the contributions from daughter nuclides. Results are up to 35% higher than data reported in the literature for important radionuclides. This manuscript deals with radionuclides, for which the time dependence of dose equivalent rates and dosemore » equivalents may be approximated by a simple exponential. A companion manuscript treats radionuclides with non-trivial time dependences.« less

  10. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All

  11. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  12. Synthesis and Characterization of BSA Conjugated Silver Nanoparticles (Ag/BSA Nanoparticles) and Evaluation of Biological Properties of Ag/BSA Nanoparticles and Ag/BSA Nanoparticles Loaded Poly(hydroxy butyrate valerate) PHBV Films

    NASA Astrophysics Data System (ADS)

    Ambaye, Almaz

    Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa are the etiological agents of several infectious diseases. Antibiotic resistance by these three microbes has emerged as a prevalent problem due in part to the misuse of existing antibiotics and the lack of novel antibiotics. Nanoparticles have emerged as an alternative antibacterial agents to conventional antibiotics owing to their high surface area to volume ratio and their unique chemical and physical properties. Among the nanoparticles, silver nanoparticles have gained increasing attention because silver nanoparticles exhibit antibacterial activity against a range of gram positive and gram negative bacteria. Nanoparticles of well-defined chemistry and morphology can be used in broad biomedical applications, especially in bone tissue engineering applications, where bone infection by bacteria can be acute and lethal. It is commonly noted in the literature that the activity of nanoparticles against microorganisms is dependent upon the size and concentration of the nanoparticles as well as the chemistry of stabilizing agent. To the best of our knowledge, a comprehensive study that evaluates the antibacterial activity of well characterized silver nanoparticles in particular Bovine Serum Albumin (BSA) stabilized against S. aureus and E. coli and cytotoxicity level of BSA stabilized silver nanoparticles towards osteoblast cells (MC3T3-E1) is currently lacking. Therefore, the primary objective of this study was to characterize protein conjugated silver nanoparticles prepared by chemical reduction of AgNO3 and BSA mixture. The formation of Ag/BSA nanoparticles was studied by UV-Vis spectroscopy. The molar ratio of silver to BSA in the Ag/BSA nanoparticles was established to be 27+/- 3: 1, based on Thermogravimetric Analysis and Atomic Absorption Spectroscopy. Based on atomic force microscopy, dynamic light scattering,and transmission electron microscopy(TEM) measurements, the particle size (diameter) of

  13. Rare Earth Oxide Fluoride Nanoparticles And Hydrothermal Method For Forming Nanoparticles

    DOEpatents

    Fulton, John L.; Hoffmann, Markus M.

    2003-12-23

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  14. Rare earth oxide fluoride nanoparticles and hydrothermal method for forming nanoparticles

    DOEpatents

    Fulton, John L [Richland, WA; Hoffmann, Markus M [Richland, WA

    2001-11-13

    A hydrothermal method for forming nanoparticles of a rare earth element, oxygen and fluorine has been discovered. Nanoparticles comprising a rare earth element, oxygen and fluorine are also described. These nanoparticles can exhibit excellent refractory properties as well as remarkable stability in hydrothermal conditions. The nanoparticles can exhibit excellent properties for numerous applications including fiber reinforcement of ceramic composites, catalyst supports, and corrosion resistant coatings for high-temperature aqueous solutions.

  15. Determination of the Distribution and Inventory of Radionuclides within a Savannah River Site Waterway - 13202

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.A.; Phifer, M.A.

    2013-07-01

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU itmore » is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq

  16. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  17. Nanoparticle mediated micromotor motion.

    PubMed

    Liu, Mei; Liu, Limei; Gao, Wenlong; Su, Miaoda; Ge, Ya; Shi, Lili; Zhang, Hui; Dong, Bin; Li, Christopher Y

    2015-03-21

    In this paper, we report the utilization of nanoparticles to mediate the motion of a polymer single crystal catalytic micromotor. Micromotors have been fabricated by directly self-assembling functional nanoparticles (platinum and iron oxide nanoparticles) onto one or both sides of two-dimensional polymer single crystals. We show that the moving velocity of these micromotors in fluids can be readily tuned by controlling the nanoparticles' surface wettability and catalytic activity. A 3 times velocity increase has been achieved for a hydrophobic micromotor as opposed to the hydrophilic ones. Furthermore, we demonstrate that the catalytic activity of platinum nanoparticles inside the micromotor can be enhanced by their synergetic interactions with iron oxide nanoparticles and an electric field. Both strategies lead to dramatically increased moving velocities, with the highest value reaching ∼200 μm s(-1). By decreasing the nanoparticles' surface wettability and increasing their catalytic activity, a maximum of a ∼10-fold increase in the moving speed of the nanoparticle based micromotor can be achieved. Our results demonstrate the advantages of using nanoparticles in micromotor systems.

  18. Decontamination of radionuclides using γ-Fe2O3 as a Nanosorbent

    NASA Astrophysics Data System (ADS)

    Bagla, Hemlata; Thakur, Jyotsna

    2017-04-01

    The release of radioactive waste into the environment and the disposal of conditioned waste is a major environmental concern which demands the improvement in the remediation processes [1]. Due to the advancements in Nanotechnology, novel and simple nanoparticles have been proved very efficient worldwide, in the radioactive waste treatment processes [2]. These nanoparticles prove to be an excellent nanosorbents owing to its very high surface area and other size dependent properties [3]. In the present study, nanocrystalline γ-Fe2O3 was synthesized by gel-combustion method. Gel combustion method [4, 5] is the most facile method of synthesis of nanocrystalline oxides. Fuel deficient composition of ferric nitrate (oxidant) and malonyl dihydrazide (fuel) were mixed well in de-ionised water and heated at temperature 300 °C. The smouldering combustion took place resulting in formation of γ-Fe2O3 which further calcined at 500 °C to remove undesirable impurities. The prepared powder further characterized by various techniques such as X-ray diffractometer, transmission electron microscopy, BET technique and zeta potential measurements. The crystallite size of γ-Fe2O3 was found to be 11 nm. TEM images showed that the grain size obtained was in agreement with the XRD report. Sorption study have been carried out using tracer technique for batch equilibration method at room temperature and atmospheric pressure. A known amount of sorbent (γ-Fe2O3) was mixed with 10 mL of solution containing radiotracer and 1mg/mL solution of carrier. Various parameters such as contact time, pH, amount of sorbent, concentration, temperature, agitation speed were optimized, determination of sorption capacity and interference study was also conducted. The activity is measured by using single channel NaI(Tl) well type gamma ray spectrometer. γ-Fe2O3 was found to be an efficient and cost effective sorbent for the decontamination of heavy radionuclides such as Cs-137, Sr-90, Cd-115m, Cr-51, Hg

  19. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  20. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  1. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  3. Nevada National Security Site Underground Radionuclide Inventory, 1951-1992: Accounting for Radionuclide Decay through September 30, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, David Lawrence; Bowen, Scott Michael; Thompson, Joseph L.

    This report is an update of report LA-13859-MS (Bowen et al., 2001). In that original report, the underground radionuclide inventory at the Nevada National Security Site (NNSS) was decay corrected to September 23, 1992, the date of the last underground nuclear test at the NNSS. In this report, the inventory is updated to account for the decay of radionuclides over two additional decades (1992-2012) and revised tritium, fission product and actinide inventory figures and tables are presented. The maximum contaminant levels for radionuclides were also updated to Safe Drinking Water Act Maximum Contaminant Levels (MCLs) (CFR, 2013). Also, a numbermore » of minor errata found in the original publication were corrected. An inventory of radionuclides produced by 828 underground nuclear tests conducted at the NNSS by the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, and the Department of the Defense from 1951 to 1992 includes tritium, fission products, actinides, and activation products. The inventory presented in this report provides an estimate of radioactivity remaining underground at the NNSS after nuclear testing. The original test inventory is decayed to September 30, 2012, and predictions of inventory decay over the subsequent 1000 years are presented. For the purposes of summary and publication, the Los Alamos National Laboratory and Lawrence Livermore National Laboratory authors of this report subdivided the inventory into five areas corresponding to the principal geographic test centers at the NNSS. The five areas roughly correspond to Underground Test Area “Corrective Action Units” (CAUs) for remediation of groundwater. In addition, the inventory is further subdivided for the Yucca Flat region by tests where the working point depth is more than 328 feet (100 meters) above the water table and tests that were detonated below that level. Water levels used were those from the U. S. Department of Energy, Nevada Operations Office

  4. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  5. Nanoparticles for Biomedical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nune, Satish K.; Gunda, Padmaja; Thallapally, Praveen K.

    2009-11-01

    Background: Synthetic nanoparticles are emerging as versatile tools in biomedical applications, particularly in the area of biomedical imaging. Nanoparticles 1 to 100 nm in diameter possess dimensions comparable to biological functional units. Diverse surface chemistries, unique magnetic properties, tunable absorption and emission properties, and recent advances in the synthesis and engineering of various nanoparticles suggest their potential as probes for early detection of diseases such as cancer. Surface functionalization has further expanded the potential of nanoparticles as probes for molecular imaging. Objective: To summarize emerging research of nanoparticles for biomedical imaging with increased selectivity and reduced non-specific uptake with increasedmore » spatial resolution containing stabilizers conjugated with targeting ligands. Methods: This review summarizes recent technological advances in the synthesis of various nanoparticle probes, and surveys methods to improve the targeting of nanoparticles for their applications in biomedical imaging. Conclusion: Structural design of nanomaterials for biomedical imaging continues to expand and diversify. Synthetic methods have aimed to control the size and surface characteristics of nanoparticles to control distribution, half-life and elimination. Although molecular imaging applications using nanoparticles are advancing into clinical applications, challenges such as storage stability and long-term toxicology should continue to be addressed. Keywords: nanoparticle synthesis, surface modification, targeting, molecular imaging, and biomedical imaging.« less

  6. Maternal transfer of anthropogenic radionuclides to eggs in a small shark.

    PubMed

    Jeffree, Ross A; Oberhansli, Francois; Teyssie, Jean-Louis; Fowler, Scott W

    2015-09-01

    Maternal transfer of radionuclides to progeny is one of the least known sources of contamination in marine biota and more information is needed to assess its radiological significance. A radiotracer study on spotted dogfish, Scyliorhinus canicula, evaluated the hypothesis that four anthropogenic radionuclides (Cobalt-60, Zinc-65, Americium-241 and Cesium-134) could be maternally transferred to eggs and each of their major components during maternal ingestion of radiolabelled food. The linear regressions between cumulative radioactivity that had been maternally ingested and the level in subsequently laid eggs were used to derive maternal-to-egg transfer factors (mTFs). These maternal transfers varied over an order of magnitude and were ranked (134)Cs > (65)Zn > (60)Co > (241)Am. This ranking was the same as their relative assimilation efficiencies in radiolabelled food consumed by adults. Among these four radionuclides the potential radiological exposure of embryos is accentuated for (65)Zn and (134)Cs due to their predominant transfer to egg yolk where they are available for subsequent absorption by the embryo as it develops prior to hatching from the egg capsule. Thus, for cartilaginous fish like shark, the potential radioecological consequences of a pulsed release of these radionuclides into the marine environment may extend beyond the temporal duration of the release. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Reuse of Material Containing Natural Radionuclides - 12444

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metlyaev, E.G.; Novikova, N.J.

    2012-07-01

    Disposal of and use of wastes containing natural radioactive material (NORM) or technologically enhanced natural radioactive material (TENORM) with excessive natural background as a building material is very important in the supervision body activity. At the present time, the residents of Octyabrsky village are under resettlement. This village is located just near the Priargunsky mining and chemical combine (Ltd. 'PPGHO'), one of the oldest uranium mines in our country. The vacated wooden houses in the village are demolished and partly used as a building material. To address the issue of potential radiation hazard of the wooden beams originating from demolitionmore » of houses in Octyabrsky village, the contents of the natural radionuclides (K-40, Th-232, Ra-226, U- 238) are being determined in samples of the wooden beams of houses. The NORM contents in the wooden house samples are higher, on average, than their content in the reference sample of the fresh wood shavings, but the range of values is rather large. According to the classification of waste containing the natural radionuclides, its evaluation is based on the effective specific activity. At the effective specific activity lower 1.5 kBq/kg and gamma dose rate lower 70 μR/h, the material is not considered as waste and can be used in building by 1 - 3 classes depending upon A{sub eff} value. At 1.5 kBq/kg < A{sub eff} ≤ 4 kBq/kg (4 class), the wooden beams might be used for the purpose of the industrial building, if sum of ratios between the radionuclide specific activity and its specific activity of minimum significance is lower than unit. The material classified as the waste containing the natural radionuclides has A{sub eff} higher 1.5 kBq /kg, and its usage for the purpose of house-building and road construction is forbidden. As for the ash classification and its future usage, such usage is unreasonable, because, according to the provided material, more than 50% of ash samples are considered as

  8. Radionuclide Methods and Instrumentation for Breast Cancer Detection and Diagnosis

    PubMed Central

    Surti, Suleman

    2013-01-01

    Breast cancer mammography is a well-acknowledged technique for patient screening due to its high sensitivity. However, in addition to its low specificity the sensitivity of mammography is limited when imaging patients with dense breasts. Radionuclide imaging techniques, such as coincidence photon-based positron emission tomography and single photon emission computed tomography or scintimammography, can play a role in assisting screening of such patients. Radionuclide techniques can also be useful in assessing treatment response of patients with breast cancer to therapy, and staging of patients to diagnose the disease extent. However, the performance of these imaging modalities is generally limited because of the poor spatial resolution and sensitivity of the commercially available multipurpose imaging systems. Here, we describe some of the dedicated imaging systems (positron emission mammography [PEM] and breast-specific gamma imaging [BSGI]) that have been developed both commercially and in research laboratories for radionuclide imaging of breast cancer. Clinical studies with dedicated PEM scanners show improved sensitivity to detecting cancer in patients when using PEM in conjunction with additional imaging modalities, such as magnetic resonance imaging or mammography or both, as well as improved disease staging that can have an effect on surgical planning. High-resolution BSGI systems are more widely available commercially and several clinical studies have shown very high sensitivity and specificity in detecting cancer in high-risk patients. Further development of dedicated PEM and BSGI systems is ongoing, promising further expansion of radionuclide imaging techniques in the realm of breast cancer detection and treatment. PMID:23725989

  9. Breast-Dedicated Radionuclide Imaging Systems.

    PubMed

    Hsu, David F C; Freese, David L; Levin, Craig S

    2016-02-01

    Breast-dedicated radionuclide imaging systems show promise for increasing clinical sensitivity for breast cancer while minimizing patient dose and cost. We present several breast-dedicated coincidence-photon and single-photon camera designs that have been described in the literature and examine their intrinsic performance, clinical relevance, and impact. Recent tracer development is mentioned, results from recent clinical tests are summarized, and potential areas for improvement are highlighted. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  11. Sources and pathways of artificial radionuclides to soils at a High Arctic site.

    PubMed

    Lokas, E; Bartmiński, P; Wachniew, P; Mietelski, J W; Kawiak, T; Srodoń, J

    2014-11-01

    Activity concentrations, inventories and activity ratios of (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am in soil profiles were surveyed in the dry tundra and the adjoining proglacial zones of glaciers at a High Arctic site on Svalbard. Vertical profiles of radionuclide activities were determined in up to 14-cm-thick soil sequences. Additionally, soil properties (pH, organic matter, texture, mineral composition and sorption capacity) were analyzed. Results obtained in this study revealed a large range of activity concentrations and inventories of the fallout radionuclides from the undetectable to the uncommonly high levels (inventories of 30,900 ± 940, 47 ± 6, 886 ± 80 and 296 ± 19 Bq/m(2) for (137)Cs, (238)Pu, (239 + 240)Pu and (241)Am, respectively) found in two profiles from the proglacial zone. Concentration of these initially airborne radionuclides in the proglacial zone soils is related to their accumulation in cryoconites that have a large ability to concentrate trace metals. The cryoconites develop on the surface of glaciers, and the material they accumulate is deposited on land surface after the glaciers retreat. The radionuclide inventories in the tundra soils, which effectively retain radionuclides due to high organic matter contents, were comparable to the global fallout deposition for this region of the world. The (238)Pu/(239 + 240)Pu activity ratios for tundra soils suggested global fallout as the dominant source of Pu. The (238)Pu/(239 + 240)Pu and (239 + 240)Pu/(137)Cs activity ratios in the proglacial soils pointed to possible contributions of these radionuclides from other, unidentified sources.

  12. Vegetation fires, smoke emissions, and dispersion of radionuclides in the chernobyl exclusion zone

    Treesearch

    Wei Min Hao; Oleg O. Bondarenko; Sergiy Zibtsev; Diane Hutton

    2009-01-01

    The accident of the Chernobyl nuclear power plant (ChNPP) in 1986 was probably the worst environmental disaster in the past 30 years. The fallout and accumulation of radionuclides in the soil and vegetation could have long-term impacts on the environment. Radionuclides released during large, catastrophic vegetation fires could spread to continental Europe, Scandinavia...

  13. Improving cancer treatment with cyclotron produced radionuclides. Progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M.; Finn, R.D.

    1993-11-01

    This report describes our continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis, treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program includes 3 interactive components: Radiochemistry/Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section will be employed in the Pharmacology and Immunology sections during the next year. The development of novel radionuclides and tracers is of course useful in and of itself, but their utility is greatly enhanced by the interaction with the immunologymore » and pharmacology components of the program.« less

  14. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-07-01

    Electrochemical separation techniques are not widely used in radionuclide generator technology and only a few studies have been reported [1-4]. Nevertheless, this strategy is useful when other parent-daughter separation techniques are not effective or not possible. Such situations are frequent when low specific activity (LSA) parent radionuclides are used for instance with adsorption chromatographic separations, which can result in lower concentration of the daughter radionuclide in the eluent. In addition, radiation instability of the column matrix in many cases can affect the performance of the generator when long lived parent radionuclides are used. Intricate knowledge of the chemistry involved in the electrochemical separation is crucial to develop a reproducible technology that ensures that the pure daughter radionuclide can be obtained in a reasonable time of operation. Crucial parameters to be critically optimized include the applied potential, choice of electrolyte, selection of electrodes, temperature of electrolyte bath and the time of electrolysis in order to ensure that the daughter radionuclide can be reproducibly recovered in high yields and high purity. The successful electrochemical generator technologies which have been developed and are discussed in this paper include the (90)Sr/(90)Y, (188)W/(188)Re and (99)Mo/(99m)Tc generators. Electrochemical separation not only acts as a separation technique but also is an effective concentration methodology which yields high radioactive concentrations of the daughter products. The lower consumption of reagents and minimal generation of radioactive wastes using such electrochemical techniques are compatible with 'green chemistry' principles.

  15. Real-time radionuclide identification in γ-emitter mixtures based on spiking neural network.

    PubMed

    Bobin, C; Bichler, O; Lourenço, V; Thiam, C; Thévenin, M

    2016-03-01

    Portal radiation monitors dedicated to the prevention of illegal traffic of nuclear materials at international borders need to deliver as fast as possible a radionuclide identification of a potential radiological threat. Spectrometry techniques applied to identify the radionuclides contributing to γ-emitter mixtures are usually performed using off-line spectrum analysis. As an alternative to these usual methods, a real-time processing based on an artificial neural network and Bayes' rule is proposed for fast radionuclide identification. The validation of this real-time approach was carried out using γ-emitter spectra ((241)Am, (133)Ba, (207)Bi, (60)Co, (137)Cs) obtained with a high-efficiency well-type NaI(Tl). The first tests showed that the proposed algorithm enables a fast identification of each γ-emitting radionuclide using the information given by the whole spectrum. Based on an iterative process, the on-line analysis only needs low-statistics spectra without energy calibration to identify the nature of a radiological threat. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam

    USGS Publications Warehouse

    Nelson, Jack L.; Haushild, W.L.

    1970-01-01

    Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.

  17. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation

    PubMed Central

    Davies, Helena S.; Cox, Filipa; Robinson, Clare H.; Pittman, Jon K.

    2015-01-01

    Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of 238U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi–plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted. PMID:26284096

  18. Radioactivity and the environment: technical approaches to understand the role of arbuscular mycorrhizal plants in radionuclide bioaccumulation.

    PubMed

    Davies, Helena S; Cox, Filipa; Robinson, Clare H; Pittman, Jon K

    2015-01-01

    Phytoaccumulation of radionuclides is of significant interest with regards to monitoring radionuclide build-up in food chains, developing methods for environmental bioremediation and for ecological management. There are many gaps in our understanding of the characteristics and mechanisms of plant radionuclide accumulation, including the importance of symbiotically-associated arbuscular mycorrhizal (AM) fungi. We first briefly review the evidence that demonstrates the ability of AM fungi to enhance the translocation of (238)U into plant root tissues, and how fungal association may prevent further mobilization into shoot tissues. We then focus on approaches that should further advance our knowledge of AM fungi-plant radionuclide accumulation. Current research has mostly used artificial cultivation methods and we consider how more ecologically-relevant analysis might be performed. The use of synchrotron-based X-ray fluorescence imaging and absorption spectroscopy techniques to understand the mechanisms of radionuclide transfer from soil to plant via AM fungi is evaluated. Without such further knowledge, the behavior and mobilization of radionuclides cannot be accurately modeled and the potential risks cannot be accurately predicted.

  19. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... atmosphere). This generic type of device may include signal analysis and display equipment, patient and...

  20. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... atmosphere). This generic type of device may include signal analysis and display equipment, patient and...

  1. 21 CFR 892.1390 - Radionuclide rebreathing system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide rebreathing system. 892.1390 Section 892.1390 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... atmosphere). This generic type of device may include signal analysis and display equipment, patient and...

  2. 40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...

  3. 40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...

  4. 40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...

  5. 40 CFR 142.65 - Variances and exemptions from the maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum contaminant levels for radionuclides. 142.65 Section 142.65 Protection of Environment... Available § 142.65 Variances and exemptions from the maximum contaminant levels for radionuclides. (a)(1) Variances and exemptions from the maximum contaminant levels for combined radium-226 and radium-228, uranium...

  6. Probing nanoparticles and nanoparticle-conjugated biomolecules using time-of-flight secondary ion mass spectrometry.

    PubMed

    Kim, Young-Pil; Shon, Hyun Kyong; Shin, Seung Koo; Lee, Tae Geol

    2015-01-01

    Bio-conjugated nanoparticles have emerged as novel molecular probes in nano-biotechnology and nanomedicine and chemical analyses of their surfaces have become challenges. The time-of-flight (TOF) secondary ion mass spectrometry (SIMS) has been one of the most powerful surface characterization techniques for both nanoparticles and biomolecules. When combined with various nanoparticle-based signal enhancing strategies, TOF-SIMS can probe the functionalization of nanoparticles as well as their locations and interactions in biological systems. Especially, nanoparticle-based SIMS is an attractive approach for label-free drug screening because signal-enhancing nanoparticles can be designed to directly measure the enzyme activity. The chemical-specific imaging analysis using SIMS is also well suited to screen nanoparticles and nanoparticle-biomolecule conjugates in complex environments. This review presents some recent applications of nanoparticle-based TOF-SIMS to the chemical analysis of complex biological systems. © 2014 Wiley Periodicals, Inc.

  7. Effects of groundwater on radionuclides buried at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, B.A.; Maestas, S.; Thompson, J.L.

    A large fraction of the radioactive source from a nuclear test is confined to the cavity created by the event. A {open_quotes}melt glass{close_quotes} accumulates at the bottom of the cavity where the highest concentrations of refractory radionuclides (e.g., Zr-95, Eu-155, Pu-239) are found. Most of the movement of radionuclides underground at the Nevada Test Site occurs through the agency of moving groundwater. Results from samples that were taken from the cavity formed in 1981 by the underground test named Baseball indicate that radioactive materials have remained where they were deposited during the formation of the cavity and chimney. There maymore » not be a mechanism for radionuclides to migrate at this location due to small hydraulic gradients and a low hydraulic conductivity. The study done at this site offers further evidence that extensive migration of radioactive materials away from underground nuclear test sites does not occur in the absence of appreciable groundwater movement.« less

  8. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  9. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: an overview and comments.

    PubMed

    Durán, Nelson; Nakazato, Gerson; Seabra, Amedea B

    2016-08-01

    The antimicrobial impact of biogenic-synthesized silver-based nanoparticles has been the focus of increasing interest. As the antimicrobial activity of nanoparticles is highly dependent on their size and surface, the complete and adequate characterization of the nanoparticle is important. This review discusses the characterization and antimicrobial activity of biogenic synthesized silver nanoparticles and silver chloride nanoparticles. By revising the literature, there is confusion in the characterization of these two silver-based nanoparticles, which consequently affects the conclusion regarding to their antimicrobial activities. This review critically analyzes recent publications on the synthesis of biogenic silver nanoparticles and silver chloride nanoparticles by attempting to correlate the characterization of the nanoparticles with their antimicrobial activity. It was difficult to correlate the size of biogenic nanoparticles with their antimicrobial activity, since different techniques are employed for the characterization. Biogenic synthesized silver-based nanoparticles are not completely characterized, particularly the nature of capped proteins covering the nanomaterials. Moreover, the antimicrobial activity of theses nanoparticles is assayed by using different protocols and strains, which difficult the comparison among the published papers. It is important to select some bacteria as standards, by following international foundations (Pharmaceutical Microbiology Manual) and use the minimal inhibitory concentration by broth microdilution assays from Clinical and Laboratory Standards Institute, which is the most common assay used in antibiotic ones. Therefore, we conclude that to have relevant results on antimicrobial effects of biogenic silver-based nanoparticles, it is necessary to have a complete and adequate characterization of these nanostructures, followed by standard methodology in microbiology protocols.

  10. Estimates of internal-dose equivalent from inhalation and ingestion of selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunning, D.E.

    1982-01-01

    This report presents internal radiation dose conversion factors for radionuclides of interest in environmental assessments of nuclear fuel cycles. This volume provides an updated summary of estimates of committed dose equivalent for radionuclides considered in three previous Oak Ridge National Laboratory (ORNL) reports. Intakes by inhalation and ingestion are considered. The International Commission on Radiological Protection (ICRP) Task Group Lung Model has been used to simulate the deposition and retention of particulate matter in the respiratory tract. Results corresponding to activity median aerodynamic diameters (AMAD) of 0.3, 1.0, and 5.0 ..mu..m are given. The gastorintestinal (GI) tract has been representedmore » by a four-segment catenary model with exponential transfer of radioactivity from one segment to the next. Retention of radionuclides in systemic organs is characterized by linear combinations of decaying exponential functions, recommended in ICRP Publication 30. The first-year annual dose rate, maximum annual dose rate, and fifty-year dose commitment per microcurie intake of each radionuclide is given for selected target organs and the effective dose equivalent. These estimates include contributions from specified source organs plus the systemic activity residing in the rest of the body; cross irradiation due to penetrating radiations has been incorporated into these estimates. 15 references.« less

  11. Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.

    PubMed

    Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon

    2015-05-01

    At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. Concerning initial and secondary character of radionuclide distribution in elementary landscape geochemical systems

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2017-04-01

    Specificity of radionuclide distribution in elementary landscape geochemical systems (ELGS) treated as local system of geochemically linked elementary terrestrial units (in toposequence: watershed-slope-closing depression), belongs to one of the less investigated but practically significant problems of current geochemistry. First measurements after the Chernobyl accident showed a considerable variation of Cs-137 distribution in all examined ELGS (Shcheglov et al, 2001; Romanov, 1989; Korobova, Korovaykov, 1990; Linnik, 2008). The results may be interpreted in frames of two alternative hypotheses: 1) irregularity of the initial contamination; 2) secondary redistribution of the initially regular level of fallout. But herewith only a disproof of the first hypothesis automatically justifies the second one. Factors responsible for initial irregularity of surface contamination included: 1) the presence of the so-called "hot" particles in the initial fallout; 2) interception of radionuclides by forest canopy; 3) irregular aerial particles deposition; 4) uneven initial precipitation. Basing on monitoring Cs-137 spatial distribution that has been performed since 2005, we demonstrate that the observed spatial irregularity in distribution of Cs-137 in ELGS reflects a purely secondary distribution of initial reserves of radionuclides in fallout matter due to its migration with water in local geochemical systems. This statement has some significant consequences. 1. Mechanism of migration of matter in ELGS is complicated and could not be reduced solely to a primitive moving from watershed to closing depression. 2. The control of migration of "labeled atoms" (Cs-137) permits to understand common mechanism of migration of water in all systems on the level of ELGS. 3. Understanding formation of the structure of contamination zones in ELGS permits to use mathematical model to solve the inverse problem of restoration of the initially equable level of their contamination. Performed

  13. Ordering nanoparticles with polymer brushes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  14. Ordering nanoparticles with polymer brushes

    NASA Astrophysics Data System (ADS)

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-01

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a single layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. An interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.

  15. Ordering nanoparticles with polymer brushes

    DOE PAGES

    Cheng, Shengfeng; Stevens, Mark J.; Grest, Gary S.

    2017-12-08

    Ordering nanoparticles into a desired super-structure is often crucial for their technological applications. We use molecular dynamics simulations to study the assembly of nanoparticles in a polymer brush randomly grafted to a planar surface as the solvent evaporates. Initially, the nanoparticles are dispersed in a solvent that wets the polymer brush. After the solvent evaporates, the nanoparticles are either inside the brush or adsorbed at the surface of the brush, depending on the strength of the nanoparticle-polymer interaction. For strong nanoparticle-polymer interactions, a 2-dimensional ordered array is only formed when the brush density is finely tuned to accommodate a singlemore » layer of nanoparticles. When the brush density is higher or lower than this optimal value, the distribution of nanoparticles shows large fluctuations in space and the packing order diminishes. For weak nanoparticle-polymer interactions, the nanoparticles order into a hexagonal array on top of the polymer brush as long as the grafting density is high enough to yield a dense brush. As a result, an interesting healing effect is observed for a low-grafting-density polymer brush that can become more uniform in the presence of weakly adsorbed nanoparticles.« less

  16. Humid Heat Autoclaving of Hybrid Nanoparticles Achieved by Decreased Nanoparticle Concentration and Improved Nanoparticle Stability Using Medium Chain Triglycerides as a Modifier.

    PubMed

    Gou, Jingxin; Chao, Yanhui; Liang, Yuheng; Zhang, Ning; He, Haibing; Yin, Tian; Zhang, Yu; Xu, Hui; Tang, Xing

    2016-09-01

    Humid heat autoclaving is a facile technique widely used in the sterilization of injections, but the high temperature employed would destroy nanoparticles composed of biodegradable polymers. The aim of this study was to investigate whether incorporation of medium chain triglycerides (MCT) could stabilize nanoparticles composed of poly (ethylene glycol)-b-polycaprolactone (PEG-b-PCL) during autoclaving (121°C, 10 min). Polymeric nanoparticles with different MCT contents were prepared by dialysis. Block copolymer degradation was studied by GPC. The critical aggregation concentrations of nanoparticles at different temperatures were determined using pyrene fluorescence. The size, morphology and weight averaged molecular weight of pristine/autoclaved nanoparticles were studied using DLS, TEM and SLS, respectively. Drug loading content and release profile were determined using RP-HPLC. The protecting effect of MCT on nanoparticles was dependent on the amount of MCT incorporated. Nanoparticles with high MCT contents, which assumed an emulsion-like morphology, showed reduced block copolymer degradation and particle disassociation after incubation at 100°C for 24 h. Nanoparticles with high MCT content showed the lowest critical aggregation concentration (CAC) under either room temperature or 60°C and the lowest particle concentration among all samples. And the particle size, drug loading content, physical stability and release profile of nanoparticles with high MCT contents remained nearly unchanged after autoclaving. Incorporation of high amount of MCT changed the morphology of PEG-b-PCL based nanoparticles to an emulsion-like structure and the nanoparticles prepared could withstand autoclaving due to improved particle stability and decreased particle concentration caused by MCT incorporation.

  17. Progress toward clonable inorganic nanoparticles

    NASA Astrophysics Data System (ADS)

    Ni, Thomas W.; Staicu, Lucian C.; Nemeth, Richard S.; Schwartz, Cindi L.; Crawford, David; Seligman, Jeffrey D.; Hunter, William J.; Pilon-Smits, Elizabeth A. H.; Ackerson, Christopher J.

    2015-10-01

    Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular electron tomography shows the nanoparticles as intracellular, of narrow dispersity, symmetrically irregular and without any observable membrane or structured protein shell. Protein mass spectrometry of a fractionated soluble cytosolic material with selenite reducing capability identified nitrite reductase and glutathione reductase homologues as NADPH dependent candidate enzymes for the reduction of selenite to zerovalent Se nanoparticles. In vitro experiments with commercially sourced glutathione reductase revealed that the enzyme can reduce SeO32- (selenite) to Se nanoparticles in an NADPH-dependent process. The disappearance of the enzyme as determined by protein assay during nanoparticle formation suggests that glutathione reductase is associated with or possibly entombed in the nanoparticles whose formation it catalyzes. Chemically dissolving the nanoparticles releases the enzyme. The size of the nanoparticles varies with SeO32- concentration, varying in size form 5 nm diameter when formed at 1.0 μM [SeO32-] to 50 nm maximum diameter when formed at 100 μM [SeO32-]. In aggregate, we suggest that glutathione reductase possesses the key attributes of a clonable nanoparticle system: ion reduction, nanoparticle retention and size control of the nanoparticle at the enzyme site.Pseudomonas moraviensis stanleyae was recently isolated from the roots of the selenium (Se) hyperaccumulator plant Stanleya pinnata. This bacterium tolerates normally lethal concentrations of SeO32- in liquid culture, where it also produces Se nanoparticles. Structure and cellular ultrastructure of the Se nanoparticles as determined by cellular

  18. Workshop on development of radionuclide getters for the Yucca Mountain waste repository: proceedings.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Robert Charles; Lukens, Wayne W.

    The proposed Yucca Mountain repository, located in southern Nevada, is to be the first facility for permanent disposal of spent reactor fuel and high-level radioactive waste in the United States. Total Systems Performance Assessment (TSPA) analysis has indicated that among the major radionuclides contributing to dose are technetium, iodine, and neptunium, all of which are highly mobile in the environment. Containment of these radionuclides within the repository is a priority for the Yucca Mountain Project (YMP). These proceedings review current research and technology efforts for sequestration of the radionuclides with a focus on technetium, iodine, and neptunium. This workshop alsomore » covered issues concerning the Yucca Mountain environment and getter characteristics required for potential placement into the repository.« less

  19. Soil and vegetation influence in plants natural radionuclides uptake at a uranium mining site

    NASA Astrophysics Data System (ADS)

    Charro, E.; Moyano, A.

    2017-12-01

    The main objective of this work is to investigate the uptake of several radionuclides by the vegetation characteristic of a dehesa ecosystem in uranium mining-impacted soils in Central-West of Spain. The activity concentration for 238U, 226Ra, 210Pb, 232Th, and 224Ra was measured in soil and vegetation samples using a Canberra n-type HPGe gamma-ray spectrometer. Transfer factors of natural radionuclides in different tissues (leaves, branches, twigs, and others) of native plants were evaluated. From these data, the influence of the mine, the physicochemical parameters of the soils and the type of vegetation were analyzed in order to explain the accumulation of radionuclides in the vegetation. A preferential uptake of 210Pb and 226Ra by plants, particularly by trees of the Quercus species (Quercus pyrenaica and Quercus ilex rotundifolia), has been observed, being the transfer factors for 226Ra and 210Pb in these tree species higher than those for other plants (like Pinus pinaster, Rubur ulmifolius and Populus sp.). The analysis of radionuclide contents and transfer factors in the vegetation showed no evidence of influence of the radionuclide concentration in soils, although it could be explained in terms of the type of plants and, in particular, of the tree's species, with special attention to the tree's rate of growth, being higher in slow growing species.

  20. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less

  1. Nanoparticles in the clinic

    PubMed Central

    Anselmo, Aaron C.

    2016-01-01

    Abstract Nanoparticle/microparticle‐based drug delivery systems for systemic (i.e., intravenous) applications have significant advantages over their nonformulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery systems cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here, we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems. PMID:29313004

  2. Variation of radiation level and radionuclide enrichment in high background area.

    PubMed

    Shetty, P K; Narayana, Y

    2010-12-01

    Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400nGyh⁻¹. Gamma radiation level is found to be maximum at a distance of 20m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of (232)Th and (226)Ra was found to be enriched in 125-63μ size fraction. The preferential accumulation of (40)K was found in <63μ fraction. The minimum (232)Th activity was 30.2Bqkg⁻¹, found in 1000-500μ particle size fraction at Kollam and maximum activity of 3250.4Bqkg⁻¹ was observed in grains of size 125-63μ at Neendakara. The lowest (226)Ra activity observed was 33.9Bqkg⁻¹ at Neendakara in grains of size 1000-500μ and the highest activity observed was 482.6Bqkg⁻¹ in grains of size 125-63μ in Neendakara. The highest (40)K activity found was 1923Bqkg⁻¹ in grains of size <63μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between (232)Th and (226)Ra was also moderately high. The results of these investigations are presented and discussed in this paper. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Nanoparticle Approaches against Bacterial Infections

    PubMed Central

    Gao, Weiwei; Thamphiwatana, Soracha; Angsantikul, Pavimol; Zhang, Liangfang

    2014-01-01

    Despite the wide success of antibiotics, the treatment of bacterial infection still faces significant challenges, particularly the emergence of antibiotic resistance. As a result, nanoparticle drug delivery platforms including liposomes, polymeric nanoparticles, dendrimers, and various inorganic nanoparticles have been increasingly exploited to enhance the therapeutic effectiveness of existing antibiotics. This review focuses on areas where nanoparticle approaches hold significant potential to advance the treatment of bacterial infection. These areas include targeted antibiotic delivery, environmentally responsive antibiotic delivery, combinatorial antibiotic delivery, nanoparticle-enabled antibacterial vaccination, and nanoparticle-based bacterial detection. In each area we highlight the innovative antimicrobial nanoparticle platforms and review their progress made against bacterial infections. PMID:25044325

  4. Study on vertical distribution of radionuclides ({sup 40}K, Th and U) in soil collected from Manjung district

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zainal, Fetri; Hamzah, Zaini; Wood, Khalik

    2016-01-22

    The accumulation of radionuclides in soil is a greatest concerns due to their toxicity. This study investigated the vertical distribution of radionuclides and radiological assessment in a soil profile were collected in three different directions [North (N), North-East (NE) and South-East (SE)] within 40 km from Manjung district. All profile samples were collected down to 45cm at 7.5cm interval using hand auger. Soil density and radionuclides ({sup 40}K, Th and U) concentrations were determined by gravimetric method and Energy Dispersive X-Ray Fluorescence (EDXRF) technique, respectively. The radionuclides concentrations was in decreasing order of {sup 40}K > Th > U. Soil qualitymore » assessment was carried out using Enrichment Factor (EF), Pollution Index (PI) and Geoaccumulation Index (I {sub geo}) where all radionuclides show significant enrichment (5 < EF < 20), PI classified as middle pollution classes and 0 < Igeo < 1, indicating moderately polluted, respectively. From the concentration of radionuclides, the radiological risk was calculated and the present result show external hazard index (H{sub ex}) is below than unity indicate low radiological risk.« less

  5. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles.

    PubMed

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly- N -isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH 2 -based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO 3 using NaBH 4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative ( Escherichia coli ) and Gram-positive ( Staphylococcus aureus ) bacteria depending on the nanoparticle size and amount of AgNO 3 used during fabrication.

  6. Antimicrobial activity of silver nanoparticles encapsulated in poly-N-isopropylacrylamide-based polymeric nanoparticles

    PubMed Central

    Qasim, Muhammad; Udomluck, Nopphadol; Chang, Jihyun; Park, Hansoo; Kim, Kyobum

    2018-01-01

    In this study, we analyzed the antimicrobial activities of poly-N-isopropylacrylamide (pNIPAM)-based polymeric nanoparticles encapsulating silver nanoparticles (AgNPs). Three sizes of AgNP-encapsulating pNIPAM- and pNIPAM-NH2-based polymeric nanoparticles were fabricated. Highly stable and uniformly distributed AgNPs were encapsulated within polymeric nanoparticles via in situ reduction of AgNO3 using NaBH4 as the reducing agent. The formation and distribution of AgNPs was confirmed by UV-visible spectroscopy, transmission electron microscopy, and inductively coupled plasma optical emission spectrometry, respectively. Both polymeric nanoparticles showed significant bacteriostatic activities against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria depending on the nanoparticle size and amount of AgNO3 used during fabrication. PMID:29379284

  7. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  8. Distribution of radionuclides during melting of carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurber, W.C.; MacKinney, J.

    1997-02-01

    During the melting of steel with radioactive contamination, radionuclides may be distributed among the metal product, the home scrap, the slag, the furnace lining and the off-gas collection system. In addition, some radionuclides will pass through the furnace system and vent to the atmosphere. To estimate radiological impacts of recycling radioactive scrap steel, it is essential to understand how radionuclides are distributed within the furnace system. For example, an isotope of a gaseous element (e.g., radon) will exhaust directly from the furnace system into the atmosphere while a relatively non-volatile element (e.g., manganese) can be distributed among all the othermore » possible media. This distribution of radioactive contaminants is a complex process that can be influenced by numerous chemical and physical factors, including composition of the steel bath, chemistry of the slag, vapor pressure of the particular element of interest, solubility of the element in molten iron, density of the oxide(s), steel melting temperature and melting practice (e.g., furnace type and size, melting time, method of carbon adjustment and method of alloy additions). This paper discusses the distribution of various elements with particular reference to electric arc furnace steelmaking. The first two sections consider the calculation of partition ratios for elements between metal and slag based on thermodynamic considerations. The third section presents laboratory and production measurements of the distribution of various elements among slag, metal, and the off-gas collection system; and the final section provides recommendations for the assumed distribution of each element of interest.« less

  9. Can More Nanoparticles Induce Larger Viscosities of Nanoparticle-Enhanced Wormlike Micellar System (NEWMS)?

    PubMed

    Zhao, Mingwei; Zhang, Yue; Zou, Chenwei; Dai, Caili; Gao, Mingwei; Li, Yuyang; Lv, Wenjiao; Jiang, Jianfeng; Wu, Yining

    2017-09-18

    There have been many reports about the thickening ability of nanoparticles on the wormlike micelles in the recent years. Through the addition of nanoparticles, the viscosity of wormlike micelles can be increased. There still exists a doubt: can viscosity be increased further by adding more nanoparticles? To answer this issue, in this work, the effects of silica nanoparticles and temperature on the nanoparticles-enhanced wormlike micellar system (NEWMS) were studied. The typical wormlike micelles (wormlike micelles) are prepared by 50 mM cetyltrimethyl ammonium bromide (CTAB) and 60 mM sodium salicylate (NaSal). The rheological results show the increase of viscoelasticity in NEWMS by adding nanoparticles, with the increase of zero-shear viscosity and relaxation time. However, with the further increase of nanoparticles, an interesting phenomenon appears. The zero-shear viscosity and relaxation time reach the maximum and begin to decrease. The results show a slight increasing trend for the contour length of wormlike micelles by adding nanoparticles, while no obvious effect on the entanglement and mesh size. In addition, with the increase of temperature, remarkable reduction of contour length and relaxation time can be observed from the calculation. NEWMS constantly retain better viscoelasticity compared with conventional wormlike micelles without silica nanoparticles. According to the Arrhenius equation, the activation energy E a shows the same increase trend of NEWMS. Finally, a mechanism is proposed to explain this interesting phenomenon.

  10. 77 FR 16547 - Radionuclide National Emission Standards for Hazardous Air Pollutants; Notice of Construction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... Creek In-Situ Recovery Project. The holding ponds at the Lost Creek facility are subject to 40 CFR part... in 2011 by EPA Region 8 for the construction or modification of sources subject to the Radionuclide... Provisions to the Radionuclide NESHAP in 40 CFR part 61, subpart A, require a source owner or operator to...

  11. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  12. Stochastic approach for radionuclides quantification

    NASA Astrophysics Data System (ADS)

    Clement, A.; Saurel, N.; Perrin, G.

    2018-01-01

    Gamma spectrometry is a passive non-destructive assay used to quantify radionuclides present in more or less complex objects. Basic methods using empirical calibration with a standard in order to quantify the activity of nuclear materials by determining the calibration coefficient are useless on non-reproducible, complex and single nuclear objects such as waste packages. Package specifications as composition or geometry change from one package to another and involve a high variability of objects. Current quantification process uses numerical modelling of the measured scene with few available data such as geometry or composition. These data are density, material, screen, geometric shape, matrix composition, matrix and source distribution. Some of them are strongly dependent on package data knowledge and operator backgrounds. The French Commissariat à l'Energie Atomique (CEA) is developing a new methodology to quantify nuclear materials in waste packages and waste drums without operator adjustment and internal package configuration knowledge. This method suggests combining a global stochastic approach which uses, among others, surrogate models available to simulate the gamma attenuation behaviour, a Bayesian approach which considers conditional probability densities of problem inputs, and Markov Chains Monte Carlo algorithms (MCMC) which solve inverse problems, with gamma ray emission radionuclide spectrum, and outside dimensions of interest objects. The methodology is testing to quantify actinide activity in different kind of matrix, composition, and configuration of sources standard in terms of actinide masses, locations and distributions. Activity uncertainties are taken into account by this adjustment methodology.

  13. Bifunctional Coupling Agents for Radiolabeling of Biomolecules and Target-Specific Delivery of Metallic Radionuclides

    PubMed Central

    Liu, Shuang

    2008-01-01

    Receptor-based radiopharmaceuticals are of great current interest in early molecular imaging and radiotherapy of cancers, and provide a unique tool for target-specific delivery of radionuclides to the diseased tissues. In general, a target-specific radiopharmaceutical can be divided into four parts: targeting biomolecule (BM), pharmacokinetic modifying (PKM) linker, bifunctional coupling or chelating agent (BFC), and radionuclide. The targeting biomolecule serves as a “carrier” for specific delivery of the radionuclide. PKM linkers are used to modify radiotracer excretion kinetics. BFC is needed for radiolabeling of biomolecules with a metallic radionuclide. Different radiometals have significant difference in their coordination chemistry, and require BFCs with different donor atoms and chelator frameworks. Since the radiometal chelate can have a significant impact on physical and biological properties of the target-specific radiopharmaceutical, its excretion kinetics can be altered by modifying the coordination environment with various chelators or coligand, if needed. This review will focus on the design of BFCs and their coordination chemistry with technetium, copper, gallium, indium, yttrium and lanthanide radiometals. PMID:18538888

  14. The necessity of nuclear reactors for targeted radionuclide therapies.

    PubMed

    Krijger, Gerard C; Ponsard, Bernard; Harfensteller, Mark; Wolterbeek, Hubert T; Nijsen, Johannes W F

    2013-07-01

    Nuclear medicine has been contributing towards personalized therapies. Nuclear reactors are required for the working horses of both diagnosis and treatment, i.e., Tc-99m and I-131. In fact, reactors will remain necessary to fulfill the demand for a variety of radionuclides and are essential in the expanding field of targeted radionuclide therapies for cancer. However, the main reactors involved in the global supply are ageing and expected to shut down before 2025. Therefore, the fields of (nuclear) medicine, nuclear industry and politics share a global responsibility, faced with the task to secure future access to suitable nuclear reactors. At the same time, alternative production routes should be industrialized. For this, a coordinating entity should be put into place. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Formation of stable uranium(VI) colloidal nanoparticles in conditions relevant to radioactive waste disposal.

    PubMed

    Bots, Pieter; Morris, Katherine; Hibberd, Rosemary; Law, Gareth T W; Mosselmans, J Frederick W; Brown, Andy P; Doutch, James; Smith, Andrew J; Shaw, Samuel

    2014-12-09

    The favored pathway for disposal of higher activity radioactive wastes is via deep geological disposal. Many geological disposal facility designs include cement in their engineering design. Over the long term, interaction of groundwater with the cement and waste will form a plume of a hyperalkaline leachate (pH 10-13), and the behavior of radionuclides needs to be constrained under these extreme conditions to minimize the environmental hazard from the wastes. For uranium, a key component of many radioactive wastes, thermodynamic modeling predicts that, at high pH, U(VI) solubility will be very low (nM or lower) and controlled by equilibrium with solid phase alkali and alkaline-earth uranates. However, the formation of U(VI) colloids could potentially enhance the mobility of U(VI) under these conditions, and characterizing the potential for formation and medium-term stability of U(VI) colloids is important in underpinning our understanding of U behavior in waste disposal. Reflecting this, we applied conventional geochemical and microscopy techniques combined with synchrotron based in situ and ex situ X-ray techniques (small-angle X-ray scattering and X-ray adsorption spectroscopy (XAS)) to characterize colloidal U(VI) nanoparticles in a synthetic cement leachate (pH > 13) containing 4.2-252 μM U(VI). The results show that in cement leachates with 42 μM U(VI), colloids formed within hours and remained stable for several years. The colloids consisted of 1.5-1.8 nm nanoparticles with a proportion forming 20-60 nm aggregates. Using XAS and electron microscopy, we were able to determine that the colloidal nanoparticles had a clarkeite (sodium-uranate)-type crystallographic structure. The presented results have clear and hitherto unrecognized implications for the mobility of U(VI) in cementitious environments, in particular those associated with the geological disposal of nuclear waste.

  16. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Sierros, Konstantinos A. (Inventor); Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Shafran, Matthew S. (Inventor)

    2017-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment including a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  17. Stimulus responsive nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darren Robert (Inventor); Shafran, Matthew S. (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor)

    2013-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  18. Stimulus Responsive Nanoparticles

    NASA Technical Reports Server (NTRS)

    Cairns, Darran Robert (Inventor); Huebsch, Wade W. (Inventor); Sierros, Konstantinos A. (Inventor); Shafran, Matthew S. (Inventor)

    2015-01-01

    Disclosed are various embodiments of methods and systems related to stimulus responsive nanoparticles. In one embodiment includes a stimulus responsive nanoparticle system, the system includes a first electrode, a second electrode, and a plurality of elongated electro-responsive nanoparticles dispersed between the first and second electrodes, the plurality of electro-responsive nanorods configured to respond to an electric field established between the first and second electrodes.

  19. Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya.

    PubMed

    Børretzen, P; Salbu, B

    2000-10-30

    To assess the impact of radionuclides entering the marine environment from dumped nuclear waste, information on the physico-chemical forms of radionuclides and their mobility in seawater-sediment systems is essential. Due to interactions with sediment components, sediments may act as a sink, reducing the mobility of radionuclides in seawater. Due to remobilisation, however, contaminated sediments may also act as a potential source of radionuclides to the water phase. In the present work, time-dependent interactions of low molecular mass (LMM, i.e. species < 10 kDa) radionuclides with sediments from the Stepovogo Fjord, Novaya Zemlya and their influence on the distribution coefficients (Kd values) have been studied in tracer experiments using 109Cd2+ and 60Co2+ as gamma tracers. Sorption of the LMM tracers occurred rapidly and the estimated equilibrium Kd(eq)-values for 109Cd and 60Co were 500 and 20000 ml/g, respectively. Remobilisation of 109Cd and 60Co from contaminated sediment fractions as a function of contact time was studied using sequential extraction procedures. Due to redistribution, the reversibly bound fraction of the gamma tracers decreased with time, while the irreversibly (or slowly reversibly) associated fraction of the gamma tracers increased. Two different three-compartment models, one consecutive and one parallel, were applied to describe the time-dependent interaction of the LMM tracers with operationally defined reversible and irreversible (or slowly reversible) sediment fractions. The interactions between these fractions were described using first order differential equations. By fitting the models to the experimental data, apparent rate constants were obtained using numerical optimisation software. The model optimisations showed that the interactions of LMM 60Co were well described by the consecutive model, while the parallel model was more suitable to describe the interactions of LMM 109Cd with the sediments, when the squared sum of

  20. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake.

    PubMed

    Bertoli, Filippo; Davies, Gemma-Louise; Monopoli, Marco P; Moloney, Micheal; Gun'ko, Yurii K; Salvati, Anna; Dawson, Kenneth A

    2014-08-27

    Nanoparticles in contact with cells and living organisms generate quite novel interactions at the interface between the nanoparticle surface and the surrounding biological environment. However, a detailed time resolved molecular level description of the evolving interactions as nanoparticles are internalized and trafficked within the cellular environment is still missing and will certainly be required for the emerging arena of nanoparticle-cell interactions to mature. In this paper promising methodologies to map out the time resolved nanoparticle-cell interactome for nanoparticle uptake are discussed. Thus silica coated magnetite nanoparticles are presented to cells and their magnetic properties used to isolate, in a time resolved manner, the organelles containing the nanoparticles. Characterization of the recovered fractions shows that different cell compartments are isolated at different times, in agreement with imaging results on nanoparticle intracellular location. Subsequently the internalized nanoparticles can be further isolated from the recovered organelles, allowing the study of the most tightly nanoparticle-bound biomolecules, analogous to the 'hard corona' that so far has mostly been characterized in extracellular environments. Preliminary data on the recovered nanoparticles suggest that significant portion of the original corona (derived from the serum in which particles are presented to the cells) is preserved as nanoparticles are trafficked through the cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Gold Nanoparticles Cytotoxicity

    NASA Astrophysics Data System (ADS)

    Mironava, Tatsiana

    Over the last two decades gold nanoparticles (AuNPs) have been used for many scientific applications and have attracted attention due to the specific chemical, electronic and optical size dependent properties that make them very promising agents in many fields such as medicine, imagine techniques and electronics. More specifically, biocompatible gold nanoparticles have a huge potential for use as the contrast augmentation agent in X-ray Computed Tomography and Photo Acoustic Tomography for early tumor diagnostic as well these nanoparticles are extensively researched for enhancing the targeted cancer treatment effectiveness such as photo-thermal and radiotherapy. In most biomedical applications biocompatible gold nanoparticles are labeled with specific tumor or other pathology targeting antibodies and used for site specific drug delivery. However, even though gold nanoparticles poses very high level of anti cancer properties, the question of their cytotoxicity ones they are released in normal tissue has to be researched. Moreover, the huge amount of industrially produced gold nanoparticles raises the question of these particles being a health hazard, since the penetration is fairly easy for the "nano" size substances. This study focuses on the effect of AuNPs on a human skin tissue, since it is fall in both categories -- the side effects for biomedical applications and industrial workers and users' exposure during production and handling. Therefore, in the present project, gold nanoparticles stabilized with the biocompatible agent citric acid were generated and characterized by Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). The cytotoxic effect of AuNPs release to healthy skin tissue was modeled on 3 different cell types: human keratinocytes, human dermal fibroblasts, and human adipose derived stromal (ADS) cells. The AuNPs localization inside the cell was found to be cell type dependent. Overall cytotoxicity was found to be dependent

  2. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)

    1999-01-01

    The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.

  3. Electronically cloaked nanoparticles

    NASA Astrophysics Data System (ADS)

    Shen, Wenqing

    The concept of electronic cloaking is to design objects invisible to conduction electrons. The approach of electronic cloaking has been recently suggested to design invisible nanoparticle dopants with electronic scattering cross section smaller than 1% of the physical cross section (pi a2), and therefore to enhance the carrier mobility of bulk materials. The proposed nanoparticles have core-shell structures. The dopants are incorporated inside the core, while the shell layer serves both as a spacer to separate the charge carriers from their parent atoms and as a cloaking shell to minimize the scattering cross section of the electrons from the ionized nanoparticles. Thermoelectric materials are usually highly doped to have enough carrier density. Using invisible dopants could achieve larger thermoelectric power factors by enhancing the electronic mobility. Core-shell nanoparticles show an advantage over one-layer nanoparticles, which are proposed in three-dimensional modulation doping. However designing such nanoparticles is not easy as there are too many parameters to be considered. This thesis first shows an approach to design hollow nanoparticles by applying constrains on variables. In the second part, a simple mapping approach is introduced where one can identify possible core-shell particles by comparing the dimensionless parameters of chosen materials with provided maps. In both parts of this work, several designs with realistic materials were made and proven to achieve electronic cloaking. Improvement in the thermoelectric power factor compared to the traditional impurity doping method was demonstrated in several cases.

  4. Shape tunable plasmonic nanoparticles

    DOEpatents

    El-Sayed, Mostafa A.; El-Sayed, Ivan Homer

    2017-03-07

    Noble metal nanoparticles and methods of their use are provided. Certain aspects provided solid noble metal nanoparticles tuned to the near infrared. The disclosed nanoparticles can be used in molecular imaging, diagnosis, and treatment. Methods for imaging cells are also provided.

  5. Separation of protactinum, actinium, and other radionuclides from proton irradiated thorium target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fassbender, Michael E.; Radchenko, Valery

    Protactinium, actinium, radium, radiolanthanides and other radionuclide fission products were separated and recovered from a proton-irradiated thorium target. The target was dissolved in concentrated HCl, which formed anionic complexes of protactinium but not with thorium, actinium, radium, or radiolanthanides. Protactinium was separated from soluble thorium by loading a concentrated HCl solution of the target onto a column of strongly basic anion exchanger resin and eluting with concentrated HCl. Actinium, radium and radiolanthanides elute with thorium. The protactinium that is retained on the column, along with other radionuclides, is eluted may subsequently treated to remove radionuclide impurities to afford a fractionmore » of substantially pure protactinium. The eluate with the soluble thorium, actinium, radium and radiolanthanides may be subjected to treatment with citric acid to form anionic thorium, loaded onto a cationic exchanger resin, and eluted. Actinium, radium and radiolanthanides that are retained can be subjected to extraction chromatography to separate the actinium from the radium and from the radio lanthanides.« less

  6. Tricuspid regurgitation by radionuclide angiography and contrast right ventriculography: a preliminary observation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumia, F.J.; Patil, A.; Germon, P.A.

    In a retrospective study correlating the degree of tricuspid regurgitation seen on first-pass radionuclide angiography with that seen on contrast right ventriculography in 51 patients, ten had no tricuspid regurgitation by contrast ventriculography, whereas by radionuclide angiography nine had no regurgitation and one had minimal regurgitation. Of eight patients with minimal tricuspid regurgitation by contrast ventriculography, five had minimal regurgitation by nuclide angiography and three had no regurgitation. Of the 11 patients with mild to moderate tricuspid regurgitation by contrast studies, ten had mild to moderate regurgitation and one had severe regurgitation by nuclide angiography. Of 22 patients with moderatemore » to severe tricuspid regurgitation by contrast studies, 15 had moderate to severe regurgitation and seven had mild to moderate regurgitation by nuclear angiography. In this preliminary study comparing radionuclide angiography with contrast right ventriculography, there were three false-negative and one false-positive nuclide angiograms, giving a sensitivity of 93% and a specificity of 90%.« less

  7. Marine plankton as an indicator of low-level radionuclide contamination in the Southern Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, K.V.; Buddemeier, R.W.

    1984-07-01

    We have initiated an investigation of the utility of marine plankton as bioconcentrating samplers of low-level marine radioactivity in the southern hemisphere. A literature review shows that both freshwater and marine plankton have trace element and radionuclide concentration factors (relative to water) of up to 10/sup 4/. In the years 1956-1958, considerable work was done on the accumulation and distribution of a variety of fission and activation products produced by the nuclear tests in the Marshall Islands. Since then, studies have largely been confined to a few selected radionuclides, and by far most of this work has been done inmore » the northern hemisphere. We participated in Operation Deepfreeze 1981, collecting 32 plankton samples from the U.S. Coast Guard Cutter Glacier on its Antarctic cruise, while Battelle Pacific Northwest Laboratories concurrently sampled air, water, rain and fallout. We were able to measure concentrations of the naturally occurring radionuclides /sup 7/Be, /sup 40/K and the U and th series, and we believe that we have detected low levels of /sup 144/Ce and /sup 95/Nb in seven samples ranging as far south as 68/sup 0/. There is a definite association between the radionuclide content of plankton and air filters, suggesting that aerosol resuspension of marine radioactivity may be occurring. Biological identification of the plankton suggests a possible correlation between radionuclide concentration and foraminifera content of the samples. 38 references, 7 figures, 3 tables.« less

  8. Innovative methodology for intercomparison of radionuclide calibrators using short half-life in situ prepared radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, P. A.; Santos, J. A. M., E-mail: joao.santos@ipoporto.min-saude.pt; Serviço de Física Médica do Instituto Português de Oncologia do Porto Francisco Gentil, EPE, Porto

    2014-07-15

    Purpose: An original radionuclide calibrator method for activity determination is presented. The method could be used for intercomparison surveys for short half-life radioactive sources used in Nuclear Medicine, such as{sup 99m}Tc or most positron emission tomography radiopharmaceuticals. Methods: By evaluation of the resulting net optical density (netOD) using a standardized scanning method of irradiated Gafchromic XRQA2 film, a comparison of the netOD measurement with a previously determined calibration curve can be made and the difference between the tested radionuclide calibrator and a radionuclide calibrator used as reference device can be calculated. To estimate the total expected measurement uncertainties, a carefulmore » analysis of the methodology, for the case of{sup 99m}Tc, was performed: reproducibility determination, scanning conditions, and possible fadeout effects. Since every factor of the activity measurement procedure can influence the final result, the method also evaluates correct syringe positioning inside the radionuclide calibrator. Results: As an alternative to using a calibrated source sent to the surveyed site, which requires a relatively long half-life of the nuclide, or sending a portable calibrated radionuclide calibrator, the proposed method uses a source preparedin situ. An indirect activity determination is achieved by the irradiation of a radiochromic film using {sup 99m}Tc under strictly controlled conditions, and cumulated activity calculation from the initial activity and total irradiation time. The irradiated Gafchromic film and the irradiator, without the source, can then be sent to a National Metrology Institute for evaluation of the results. Conclusions: The methodology described in this paper showed to have a good potential for accurate (3%) radionuclide calibrators intercomparison studies for{sup 99m}Tc between Nuclear Medicine centers without source transfer and can easily be adapted to other short half

  9. Quantification of nanoparticle endocytosis based on double fluorescent pH-sensitive nanoparticles.

    PubMed

    Kurtz-Chalot, Andréa; Klein, Jean-Philippe; Pourchez, Jérémie; Boudard, Delphine; Bin, Valérie; Sabido, Odile; Marmuse, Laurence; Cottier, Michèle; Forest, Valérie

    2015-04-01

    Amorphous silica is a particularly interesting material because of its inertness and chemical stability. Silica nanoparticles have been recently developed for biomedical purposes but their innocuousness must be carefully investigated before clinical use. The relationship between nanoparticles physicochemical features, their uptake by cells and their biological activity represents a crucial issue, especially for the development of nanomedicine. This work aimed at adapting a method for the quantification of nanoparticle endocytosis based on pH-sensitive and double fluorescent particles. For that purpose, silica nanoparticles containing two fluorophores: FITC and pHrodo(TM) were developed, their respective fluorescence emission depends on the external pH. Indeed, FITC emits a green fluorescence at physiological pH and pHrodo(TM) emits a red fluorescence which intensity increased with acidification. Therefore, nanoparticles remained outside the cells could be clearly distinguished from nanoparticles uptaken by cells as these latter could be spotted inside cellular acidic compartments (such as phagolysosomes, micropinosomes…). Using this model, the endocytosis of 60 nm nanoparticles incubated with the RAW 264.7 macrophages was quantified using time-lapse microscopy and compared to that of 130 nm submicronic particles. The amount of internalized particles was also evaluated by fluorimetry. The biological impact of the particles was also investigated in terms of cytotoxicity, pro-inflammatory response and oxidative stress. Results clearly demonstrated that nanoparticles were more uptaken and more reactive than submicronic particles. Moreover, we validated a method of endocytosis quantification.

  10. PHOTON SPECTRA IN NPL STANDARD RADIONUCLIDE NEUTRON FIELDS.

    PubMed

    Roberts, N J

    2017-09-23

    A HPGe detector has been used to measure the photon spectra from the majority of radionuclide neutron sources in use at NPL (252Cf, 241Am-Be, 241Am-Li, 241Am-B). The HPGe was characterised then modelled to produce a response matrix. The measured pulse height spectra were then unfolded to produce photon fluence spectra. Changes in the photon spectrum with time from a 252Cf source are evident. Spectra from a 2-year-old and 42-year-old 252Cf source are presented showing the change from a continuum to peaks from long-lived isotopes of Cf. Other radionuclide neutron source spectra are also presented and discussed. The new spectra were used to improve the photon to neutron dose equivalent ratios from some earlier work at NPL with GM tubes and EPDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Measurement of natural radionuclides in U.K. diet.

    PubMed

    Smith-Briggs, J L; Bradley, E J

    1984-05-01

    The levels of radium-226, lead-210 and polonium-210 in the U.K. diet have been determined. The important food groups contributing to the intake of these radionuclides have been identified. Seventy-five percent of the daily intake of radium-226 is derived from beverages, cereals, other vegetables, bread, sugars and preserves. Seventy-five percent of the intake of lead-210 and polonium-210 is derived from bread, milk, cereals, beverages, other vegetables, sugars and preserves, and meat products. The average daily intakes of these radionuclides are tentatively calculated to be 30 mBq for radium-226 and 82 mBq for both lead-210 and polonium-210. These levels are compared with data from other countries. The annual effective dose equivalents resulting from the intakes are approximately 3 muSv for radium-226 and 54 muSv from lead-210 and polonium-210 together. The differences between these doses and other current estimates are discussed.

  12. Durability improvements of two-dimensional metal nanoparticle sheets by molecular cross-linked structures between nanoparticles

    NASA Astrophysics Data System (ADS)

    Saito, Noboru; Ryuzaki, Sou; Wang, Pangpang; Park, Susie; Sakai, Nobuyuki; Tatsuma, Tetsu; Okamoto, Koichi; Tamada, Kaoru

    2018-03-01

    The durability of two-dimensional metal nanoparticle sheets is a crucial factor for realizing next-generation optoelectronic devices based on plasmonics such as organic light-emitting diodes. Here, we report improvements in the durability of Ag nanoparticle sheets by forming alkanedithiol (DT16) cross-linked structures between the nanoparticles. The cross-linked structures in a sheet were fabricated by the self-assembly of DT16-capped Ag nanoparticles with 10% coverage (AgDT16). The durabilities for thermal, organic solvent, and oxidation reactions of AgDT16 sheets were found to be improved owing to the cross-linked structures by comparing Ag nanoparticle sheets without the cross-linked structures. The absorbance spectra revealed that the Ag nanoparticle sheets without the structure are markedly damaged by each durability test, whereas the AgDT16 sheets remain. The molecular cross-linked structures between nanoparticles in two-dimansional metal nanoparticle sheets were found to have the potential to play a key role in the realization of plasmonic optoelectronic devices including metal nanoparticles.

  13. Calibration of the NPL secondary standard radionuclide calibrator for 32P, 89Sr and 90Y

    NASA Astrophysics Data System (ADS)

    Woods, M. J.; Munster, A. S.; Sephton, J. P.; Lucas, S. E. M.; Walsh, C. Paton

    1996-02-01

    Pure beta particle emitting radionuclides have many therapeutic applications in nuclear medicine. The response of the NPL secondary standard radionuclide calibrator to 32P, 89Sr and 90Y has been measured using accurately calibrated solutions. For this purpose, high efficiency solid sources were prepared gravimetrically from dilute solutions of each radionuclide and assayed in a 4π proportional counter; the source activities were determined using known detection efficiency factors. Measurements were made of the current response (pA/MBq) of the NPL secondary standard radionuclide calibrator using the original concentrated solutions. Calibration figures have been derived for 2 and 5 ml British Standard glass ampoules and Amersham International plc P6 vials. Volume correction factors have also been determined. Gamma-ray emitting contaminants can have a disproportionate effect on the calibrator response and particular attention has been paid to this.

  14. APT radionuclide production experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullmann, J.L.; Gavron, A.; King, J.D.

    1994-07-02

    Tritium ({sup 3}H, a heavy isotope of hydrogen) is produced by low energy neutron-induced reactions on various elements. One such reaction is n+{sup 3}He {yields}>{sup 3}H+{sup 1}H in which {sup 3}He is transmuted to tritium. Another reaction, which has been used in reactor production of tritium, is the n+{sup 6}Li {yields}> {sup 3}H+{sup 4}He reaction. Accelerator Production of Tritium relies on a high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy proton beam to produce these neutrons using the spallation reaction, in which high-energy protons reacting with a heavy nucleus produce a shower of low-energymore » neutrons and a lower-mass residual nucleus. It is important to quantify the residual radionuclides produced in the spallation target for two reasons. From an engineering point of view, one must understand short-lived isotopes that may contribute to decay heat. From a safety viewpoint, one must understand what nuclei and decay gammas are produced in order to design adequate shielding, to estimate ultimate waste disposal problems, and to predict possible effects due to accidental dispersion during operation. The authors have performed an experiment to measure the production of radioisotopes in stopping-length W and Pb targets irradiated by a 800 MeV proton beam, and are comparing the results to values obtained from calculations using LAHET and MCNP. The experiment was designed to pay particular attention to the short half-life radionuclides, which have not been previously measured. In the following, they present details of the experiment, explain how they analyzed the data and obtain the results, how they perform the calculations, and finally, how the experimental data agree with the calculations.« less

  15. Activity concentrations of radionuclides in energy production from peat, wood chips and straw

    NASA Astrophysics Data System (ADS)

    Hedvall, Robert Hans

    1997-11-01

    In this thesis quantitative analyses of radionuclide concentrations in bioenergy fuels such as peat, wood chips and straw are presented. For comparison a brief description is included of radionuclide concentrations and radiation doses from other sources of power and also from some industrial applications. Radiation is a natural phenomenon and radionuclides occur naturally. The first man-made spread of concentrated radioactivity occurred some 100,000 years ago when the first fireplace was lit, with fallout as a later consequence. Radioactive potassium is found in most materials and is the most easily detected nuclide in fuels. Its activity concentration in Bq kg-1 normally dominates over the concentration of other natural radionuclides. The radiation dose from potassium in the emission is nevertheless negligible. The most important radionuclides in the dose to humans are the U- and Th-isotopes and also 210Pb and 210Po. Of fission products in fallout from the atmospheric nuclear tests and after the Chernobyl accident, 137Cs was shown to be the most common nuclide. Compared to natural nuclides, the contribution from emission of 137Cs was shown to be the most common nuclide. Compared to natural nuclides, the contribution from emission of 137Cs is less than a few percent of the total dose to the population. A total dose of approximately a few μSv from inhalation only can be calculated from the emission of a district heating plant in Sweden. This dose can be compared with the annual dose limit to the public from nuclear industry, which is 0.1 mSv and the global collective effective dose of 5 person Sv a-1.

  16. Usefulness of radionuclide angiocardiography in predicting stenotic mitral orifice area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, R.J.; Armitage, D.L.; Fountas, P.N.

    1986-12-01

    Fifteen patients with pure mitral stenosis (MS) underwent high-temporal-resolution radionuclide angiocardiography for calculation of the ratio of peak left ventricular (LV) filling rate divided by mean LV filling rate (filling ratio). Whereas LV filling normally occurs in 3 phases, in MS it is more uniform. Thus, in 13 patients the filling ratio was below the normal range of 2.21 to 2.88 (p less than 0.001). In 11 patients in atrial fibrillation, filling ratio divided by mean cardiac cycle length and by LV ejection fraction provided good correlation (r = 0.85) with modified Gorlin formula derived mitral area and excellent correlationmore » with echocardiographic mitral area (r = 0.95). Significant MS can be detected using radionuclide angiocardiography to calculate filling ratio. In the absence of the confounding influence of atrial systole calculation of 0.14 (filling ratio divided by cardiac cycle length divided by LV ejection fraction) + 0.40 cm2 enables accurate prediction of mitral area (+/- 4%). Our data support the contention that the modified Gorlin formula, based on steady-state hemodynamics, provides less certain estimates of mitral area for patients with MS and atrial fibrillation, in whom echocardiography and radionuclide angiocardiography may be more accurate.« less

  17. Polymeric nanoparticles

    PubMed Central

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems. PMID:24128651

  18. Progress of soil radionuclide distribution studies for the Nevada Applied Ecology Group: 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essington, E.H.

    Two nuclear sites have been under intensive study by the Nevada Applied Ecology Group (NAEG) during 1980 and 1981, NS201 in area 18 and NS219,221 in area 20. In support of the various studies Los Alamos National Laboratory (Group LS-6) has provided consultation and evaluations relative to radionuclide distributions in soils inundated with radioactive debris from those tests. In addition, a referee effort was also conducted in both analysis of replicate samples and in evaluating various data sets for consistency of results. This report summarizes results of several of the data sets collected to test certain hypotheses relative to radionuclidemore » distributions and factors affecting calculations of hypotheses relative to radionuclide distributions and factors affecting calculations of radionuclide inventories and covers the period February 1980 to May 1981.« less

  19. Single-photon ultrashort-lived radionuclides: symposium proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paras, P.; Thiessen, J.W.

    1985-01-01

    The purpose was to define the current role and state-of-the-art regarding the development, clinical applications, and usefulness of generator-produced single-photon ultrashort-lived radionuclides (SPUSLR's) and to predict their future impact on medicine. Special emphasis was placed on the generator production of iridium-191, gold-195, and krypton-81. This report contains expanded summaries of the included papers. (ACR)

  20. The effects of bacteria-nanoparticles interface on the antibacterial activity of green synthesized silver nanoparticles.

    PubMed

    Ahmad, Aftab; Wei, Yun; Syed, Fatima; Tahir, Kamran; Rehman, Aziz Ur; Khan, Arifullah; Ullah, Sadeeq; Yuan, Qipeng

    2017-01-01

    Neutralization of bacterial cell surface potential using nanoscale materials is an effective strategy to alter membrane permeability, cytoplasmic leakage, and ultimate cell death. In the present study, an attempt was made to prepare biogenic silver nanoparticles using biomolecules from the aqueous rhizome extract of Coptis Chinensis. The biosynthesized silver nanoparticles were surface modified with chitosan biopolymer. The prepared silver nanoparticles and chitosan modified silver nanoparticles were cubic crystalline structures (XRD) with an average particle size of 15 and 20 nm respectively (TEM, DLS). The biosynthesized silver nanoparticles were surface stabilized by polyphenolic compounds (FTIR). Coptis Chinensis mediated silver nanoparticles displayed significant activity against E. coli and Bacillus subtilus with a zone of inhibition 12 ± 1.2 (MIC = 25 μg/mL) and 18 ± 1.6 mm (MIC = 12.50 μg/mL) respectively. The bactericidal efficacy of these nanoparticles was considerably increased upon surface modification with chitosan biopolymer. The chitosan modified biogenic silver nanoparticles exhibited promising activity against E. coli (MIC = 6.25 μg/mL) and Bacillus subtilus (MIC = 12.50 μg/mL). Our results indicated that the chitosan modified silver nanoparticles were promising agents in damaging bacterial membrane potential and induction of high level of intracellular reactive oxygen species (ROS). In addition, these nanoparticles were observed to induce the release of the high level of cytoplasmic materials especially protein and nucleic acids into the media. All these findings suggest that the chitosan functionalized silver nanoparticles are efficient agents in disrupting bacterial membrane and induction of ROS leading to cytoplasmic leakage and cell death. These findings further conclude that the bacterial-nanoparticles surface potential modulation is an effective strategy in enhancing the antibacterial potency of silver nanoparticles

  1. Radionuclides in Ecosystems| RadTown USA | US EPA

    EPA Pesticide Factsheets

    2017-08-07

    Radioactive elements are part of our ecosystem, part of the air we breathe, the water we drink and the food we eat. Radionuclides can occur naturally, or can be man-made. Over half of the average annual radiation exposure of people in the U.S. comes from natural sources.

  2. Site Characterization for MNA of Radionuclides in Ground Water

    EPA Science Inventory

    Monitored natural attenuation is often evaluated as a component of the remedy for ground water contaminated with radionuclides. When properly employed, monitored natural attenuation (MNA) may provide an effective knowledge-based remedy where a thorough engineering analysis inform...

  3. Nanoparticles and direct immunosuppression

    PubMed Central

    Ngobili, Terrika A

    2016-01-01

    Targeting the immune system with nanomaterials is an intensely active area of research. Specifically, the capability to induce immunosuppression is a promising complement for drug delivery and regenerative medicine therapies. Many novel strategies for immunosuppression rely on nanoparticles as delivery vehicles for small-molecule immunosuppressive compounds. As a consequence, efforts in understanding the mechanisms in which nanoparticles directly interact with the immune system have been overshadowed. The immunological activity of nanoparticles is dependent on the physiochemical properties of the nanoparticles and its subsequent cellular internalization. As the underlying factors for these reactions are elucidated, more nanoparticles may be engineered and evaluated for inducing immunosuppression and complementing immunosuppressive drugs. This review will briefly summarize the state-of-the-art and developments in understanding how nanoparticles induce immunosuppressive responses, compare the inherent properties of nanomaterials which induce these immunological reactions, and comment on the potential for using nanomaterials to modulate and control the immune system. PMID:27229901

  4. Solubility of 238U radionuclide from various types of soil in synthetic gastrointestinal fluids using "US in vitro" digestion method

    NASA Astrophysics Data System (ADS)

    Rashid, Nur Shahidah Abdul; Sarmani, Sukiman; Majid, Amran Ab.; Mohamed, Faizal; Siong, Khoo Kok

    2015-04-01

    238U radionuclide is a naturally occuring radioactive material that can be found in soil. In this study, the solubility of 238U radionuclide obtained from various types of soil in synthetic gastrointestinal fluids was analysed by "US P in vitro" digestion method. The synthetic gastrointestinal fluids were added to the samples with well-ordered, mixed throughly and incubated according to the human physiology digestive system. The concentration of 238U radionuclide in the solutions extracted from the soil was measured using Induced Coupling Plasma Mass Spectrometer (ICP-MS). The concentration of 238U radionuclide from the soil samples in synthetic gastrointestinal fluids showed different values due to different homogenity of soil types and chemical reaction of 238U radionuclide. In general, the solubility of 238U radionuclide in gastric fluid was higher (0.050 - 0.209 ppm) than gastrointestinal fluids (0.024 - 0.050 ppm). It could be concluded that the US P in vitro digestion method is practicle for estimating the solubility of 238U radionuclide from soil materials and could be useful for monitoring and risk assessment purposes applying to environmental, health and contaminated soil samples.

  5. Assessment of the vertical distribution of natural radionuclides in a mineralized uranium area in south-west Spain.

    PubMed

    Blanco Rodríguez, P; Vera Tomé, F; Lozano, J C

    2014-01-01

    Low-level alpha spectrometry techniques using semiconductor detectors (PIPS) and liquid scintillation (LKB Quantulus 1220™) were used to determine the activity concentration of (238)U, (234)U, (230)Th, (226)Ra, (232)Th, and (210)Pb in soil samples. The soils were collected from an old disused uranium mine located in southwest Spain. The soils were sampled from areas with different levels of influence from the installation and hence had different levels of contamination. The vertical profiles of the soils (down to 40 cm depth) were studied in order to evaluate the vertical distribution of the natural radionuclides. To determine the origin of these natural radionuclides the Enrichment Factor was used. Also, study of the activity ratios between radionuclides belonging to the same radioactive series allowed us to assess the different types of behaviors of the radionuclides involved. The vertical profiles for the radionuclide members of the (238)U series were different at each sampling point, depending on the level of influence of the installation. However, the profiles of each point were similar for the long-lived radionuclides of the (238)U series ((238)U, (234)U, (230)Th, and (226)Ra). Moreover, a major imbalance was observed between (210)Pb and (226)Ra in the surface layer, due to (222)Rn exhalation and the subsequent surface deposition of (210)Pb. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Controlled assembly of nanoparticle structures: spherical and toroidal superlattices and nanoparticle-coated polymeric beads.

    PubMed

    Isojima, Tatsushi; Suh, Su Kyung; Vander Sande, John B; Hatton, T Alan

    2009-07-21

    The emulsion droplet solvent evaporation method has been used to prepare nanoclusters of monodisperse magnetite nanoparticles of varying morphologies depending on the temperature and rate of solvent evaporation and on the composition (solvent, presence of polymer, nanoparticle concentration, etc.) of the emulsion droplets. In the absence of a polymer, and with increasing solvent evaporation temperatures, the nanoparticles formed single- or multidomain crystalline superlattices, amorphous spherical aggregates, or toroidal clusters, as determined by the energetics and dynamics of the solvent evaporation process. When polymers that are incompatible with the nanoparticle coatings were included in the emulsion formulation, monolayer- and multilayer-coated polymer beads and partially coated Janus beads were prepared; the nanoparticles were expelled by the polymer as its concentration increased on evaporation of the solvent and accumulated on the surfaces of the beads in a well-ordered structure. The precise number of nanoparticle layers depended on the polymer/magnetic nanoparticle ratio in the oil droplet phase parent emulsion. The magnetic nanoparticle superstructures responded to the application of a modest magnetic field by forming regular chains with alignment of nonuniform structures (e.g., toroids and Janus beads) that are in accord with theoretical predictions and with observations in other systems.

  7. Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Eckerman, Keith F

    A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother.more » It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.« less

  8. Comparing highly ordered monolayers of nanoparticles fabricated using electrophoretic deposition: Cobalt ferrite nanoparticles versus iron oxide nanoparticles

    DOE PAGES

    Dickerson, James H.; Krejci, Alex J.; Garcia, Adriana -Mendoza; ...

    2015-08-01

    Ordered assemblies of nanoparticles remain challenging to fabricate, yet could open the door to many potential applications of nanomaterials. Here, we demonstrate that locally ordered arrays of nanoparticles, using electrophoretic deposition, can be extended to produce long-range order among the constituents. Voronoi tessellations along with multiple statistical analyses show dramatic increases in order compared with previously reported assemblies formed through electric field-assisted assembly. As a result, based on subsequent physical measurements of the nanoparticles and the deposition system, the underlying mechanisms that generate increased order are inferred.

  9. Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play

    PubMed Central

    Cicone, Francesco; Viertl, David; Quintela Pousa, Ana Maria; Denoël, Thibaut; Gnesin, Silvano; Scopinaro, Francesco; Vozenin, Marie-Catherine; Prior, John O.

    2017-01-01

    The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions. PMID:28424774

  10. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    PubMed Central

    Hu, QH; Zavarin, M; Rose, TP

    2008-01-01

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various

  11. Assessment of radionuclide databases in CAP88 mainframe version 1.0 and Windows-based version 3.0.

    PubMed

    LaBone, Elizabeth D; Farfán, Eduardo B; Lee, Patricia L; Jannik, G Timothy; Donnelly, Elizabeth H; Foley, Trevor Q

    2009-09-01

    In this study the radionuclide databases for two versions of the Clean Air Act Assessment Package-1988 (CAP88) computer model were assessed in detail. CAP88 estimates radiation dose and the risk of health effects to human populations from radionuclide emissions to air. This program is used by several U.S. Department of Energy (DOE) facilities to comply with National Emission Standards for Hazardous Air Pollutants regulations. CAP88 Mainframe, referred to as version 1.0 on the U.S. Environmental Protection Agency Web site (http://www.epa.gov/radiation/assessment/CAP88/), was the very first CAP88 version released in 1988. Some DOE facilities including the Savannah River Site still employ this version (1.0) while others use the more user-friendly personal computer Windows-based version 3.0 released in December 2007. Version 1.0 uses the program RADRISK based on International Commission on Radiological Protection Publication 30 as its radionuclide database. Version 3.0 uses half-life, dose, and risk factor values based on Federal Guidance Report 13. Differences in these values could cause different results for the same input exposure data (same scenario), depending on which version of CAP88 is used. Consequently, the differences between the two versions are being assessed in detail at Savannah River National Laboratory. The version 1.0 and 3.0 database files contain 496 and 838 radionuclides, respectively, and though one would expect the newer version to include all the 496 radionuclides, 35 radionuclides are listed in version 1.0 that are not included in version 3.0. The majority of these has either extremely short or long half-lives or is no longer in production; however, some of the short-lived radionuclides might produce progeny of great interest at DOE sites. In addition, 122 radionuclides were found to have different half-lives in the two versions, with 21 over 3 percent different and 12 over 10 percent different.

  12. Industrial applications of nanoparticles.

    PubMed

    Stark, W J; Stoessel, P R; Wohlleben, W; Hafner, A

    2015-08-21

    Research efforts in the past two decades have resulted in thousands of potential application areas for nanoparticles - which materials have become industrially relevant? Where are sustainable applications of nanoparticles replacing traditional processing and materials? This tutorial review starts with a brief analysis on what makes nanoparticles attractive to chemical product design. The article highlights established industrial applications of nanoparticles and then moves to rapidly emerging applications in the chemical industry and discusses future research directions. Contributions from large companies, academia and high-tech start-ups are used to elucidate where academic nanoparticle research has revolutionized industry practice. A nanomaterial-focused analysis discusses new trends, such as particles with an identity, and the influence of modern instrument advances in the development of novel industrial products.

  13. Traces of natural radionuclides in animal food

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merli, Isabella Desan; Guazzelli da Silveira, Marcilei A.; Medina, Nilberto H.

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine themore » concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.« less

  14. Traces of natural radionuclides in animal food

    NASA Astrophysics Data System (ADS)

    Merli, Isabella Desan; da Silveira, Marcilei A. Guazzelli; Medina, Nilberto H.

    2014-11-01

    Naturally occurring radioactive materials are present everywhere, e.g., in soil, air, housing materials, food, etc. Therefore, human beings and animals receive internal exposure from radioactive elements inside their bodies through breathing and alimentation. Gamma radiation has enough energy to remove an electron from the atom and compromise the rearrangement of electrons in the search for a more stable configuration which can disturb molecule chemical bonding. Food ingestion is one of the most common forms of radioisotopes absorption. The goal of this work is the measurement of natural gamma radiation rates from natural radioisotopes present in animal food. To determine the concentration of natural radionuclides present in animal food gamma-ray spectrometry was applied. We have prepared animal food samples for poultry, fish, dogs, cats and cattle. The two highest total ingestion effective doses observed refers to a sample of mineral salt cattle, 95.3(15) μSv/year, rabbit chow, with a value of 48(5) μSv/year, and cattle mineral salt, with a value of 69(7) μSv/year, while the annual total dose value from terrestrial intake radionuclide is of the order of 290 μSv/year.

  15. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  16. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  17. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  18. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  19. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... patient's body. This generic type of device may include signal analysis and display equipment, patient and...

  20. An international database of radionuclide concentration ratios for wildlife: development and uses.

    PubMed

    Copplestone, D; Beresford, N A; Brown, J E; Yankovich, T

    2013-12-01

    A key element of most systems for assessing the impact of radionuclides on the environment is a means to estimate the transfer of radionuclides to organisms. To facilitate this, an international wildlife transfer database has been developed to provide an online, searchable compilation of transfer parameters in the form of equilibrium-based whole-organism to media concentration ratios. This paper describes the derivation of the wildlife transfer database, the key data sources it contains and highlights the applications for the data. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Radionuclide evaluation of left-ventricular function in chronic Chagas' cardiomyopathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arreaza, N.; Puigbo, J.J.; Acquatella, H. Casal, H.

    1983-07-01

    Left-ventricular ejection fraction (LVEF) and abnormalities of regional wall motion (WMA) were studied by means of radionuclide ventriculography in 41 patients prospectively diagnosed as having chronic Chagas' disease. Thirteen patients were asymptomatic (ASY), 16 were arrhythmic (ARR), and 12 had congestive heart failure (CHF). Mean LVEF was normal in ASY but markedly depressed in CHF. Regional WMAs were minimal in ASY and their severity increased in ARR. Most CHFs (75%) had diffuse hypokinesia of the left ventricle. Seven patients had a distinct apical aneurysm. Correlation between radionuclide and contrast ventriculography data was good in 17 patients. Selective coronary arteriography showedmore » normal arteries in all patients. Therefore, chronic Chagas' heart disease joins ischemic heart disease as a cause of regional WMA.« less

  2. Facile, one-pot synthesis, and antibacterial activity of mesoporous silica nanoparticles decorated with well-dispersed silver nanoparticles.

    PubMed

    Tian, Yue; Qi, Juanjuan; Zhang, Wei; Cai, Qiang; Jiang, Xingyu

    2014-08-13

    In this study, we exploit a facile, one-pot method to prepare MCM-41 type mesoporous silica nanoparticles decorated with silver nanoparticles (Ag-MSNs). Silver nanoparticles with diameter of 2-10 nm are highly dispersed in the framework of mesoporous silica nanoparticles. These Ag-MSNs possess an enhanced antibacterial effect against both Gram-positive and Gram-negative bacteria by preventing the aggregation of silver nanoparticles and continuously releasing silver ions for one month. The cytotoxicity assay indicates that the effective antibacterial concentration of Ag-MSNs shows little effect on human cells. This report describes an efficient and economical route to synthesize mesoporous silica nanoparticles with uniform silver nanoparticles, and these nanoparticles show promising applications as antibiotics.

  3. Monitored natural attenuation forum: MNA of metals and radionuclides

    EPA Science Inventory

    While the natural attenuation of many organic compounds is established and accepted by the regulated and regulatory communities, there is some debate whether monitored natural attenuation (MNA) of metals and radionuclides is a reasonable remedial alternative to consider. Do you...

  4. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.

    1994-03-08

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  5. Waste site reclamation with recovery of radionuclides and metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.

    1994-01-01

    A method for decontaminating radionuclides and other toxic metal-contaminate The U.S. government has certain rights in this invention pursuant to Contract Number DE-AC02-76CH00016 between the U.S. Department of Energy and Associated Universities, Inc.

  6. Old and new radionuclide presence in Romania after Chernobyl and Fukushima disasters

    NASA Astrophysics Data System (ADS)

    Cosma, Constantin; Iurian, Andra; Nita, Dan; Pantelica, Ana; Prodan, Eugen

    2013-04-01

    Our laboratory measured the radionuclide presence in Transylvania region both after Chernobyl and Fukushima accidents. The paper presents old and new data connected with these disasters obtained not only by us but also by others laboratories from Romania. It is an attempt to mark the mainly aspects regarding the radioactive contamination in our country connected with these catastrophes. After the Chernobyl accident the radioactive cloud passage over Romania on NE - SW direction brought relatively intesive radionuclide deposition. On this direction the highest deposition were found in the areas where this passage during April 30-st and May 1-st were accompanied by rainfalls. In the rain water and fresh sediment colected at May 1-st, 1986 and measured the next days, all radionuclide species from Chernobyl could be identified [1]. Additional measurements of 90Sr and 239/240Pu have been made several years later in different environmental samples (roof sediment, soil, pollen, sand, roof-water, street dust) collected in 1986 from Cluj-Napoca, Romania [2]. In the case of Fukushima disaster the air transport from west and north-west brought small quantities of radionuclides over the Romanian teritorry. Even if in this case the radioactive cloud was very dilluted, 131I could be clearly identified and measured in air, rain water and other products as: milk, vegetables, grass, fresh meat from the NW of Romania [3]. Measurements have been also conducted in Bucharest and Pitesti. During the last 5 years suplimentary 137Cs measurements were made in different areas as an attempt to use this radionuclide as soil and sediment tracer. [1]. C. Cosma, Some Aspects of Radioactive Contamination after Chernobyl Accident in Romania, J. Radioanal. Nucl. Chem., 251, 2, 221-226 (2002) [2]. C. Cosma, Strontium-90 Measurement without Chemical Separation in Samples after Chernobyl Accident, Spectrochimica Acta, Part B, 55, 1165-1171 (2000) [3]. C. Cosma, AR. Iurian, DC. Ni?, R. Begy R, C. C

  7. Interfacial functionalization and engineering of nanoparticles

    NASA Astrophysics Data System (ADS)

    Song, Yang

    The intense research interest in nanoscience and nanotechnology is largely fueled by the unique properties of nanoscale materials. In this dissertation, the research efforts are focused on surface functionalization and interfacial engineering of functional nanoparticles in the preparation of patchy nanoparticles (e.g., Janus nanoparticles and Neapolitan nanoparticles) such that the nanoparticle structures and properties may be manipulated to an unprecedented level of sophistication. Experimentally, Janus nanoparticles were prepared by an interfacial engineering method where one hemisphere of the originally hydrophobic nanoparticles was replaced with hydrophilic ligands at the air|liquid or solid|liquid interface. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. In a further study, a mercapto derivative of diacetylene was used as the hydrophilic ligands to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold nanoparticles as the starting materials. Exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands and hence marked enhancement of the structural integrity of the Janus nanoparticles, which was attributable to the impeded surface diffusion of the thiol ligands on the nanoparticle surface, as manifested in fluorescence measurements of aged nanoparticles. More complicated bimetallic AgAu Janus nanoparticles were prepared by interfacial galvanic exchange reactions of a Langmuir-Blodgett monolayer of 1-hexanethiolate-passivated silver nanoparticles on a glass slide with gold(I)-mercaptopropanediol complex in a water/ethanol solution. The resulting nanoparticles exhibited an asymmetrical distribution not only of the organic capping ligands on the nanoparticle surface but

  8. Nanoparticles: pharmacological and toxicological significance

    PubMed Central

    Medina, C; Santos-Martinez, M J; Radomski, A; Corrigan, O I; Radomski, M W

    2007-01-01

    Nanoparticles are tiny materials (<1000 nm in size) that have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical development. However, nanoparticles can act on living cells at the nanolevel resulting not only in biologically desirable, but also in undesirable effects. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. Therefore, there is a pressing need for careful consideration of benefits and side effects of the use of nanoparticles in medicine. This review article aims at providing a balanced update of these exciting pharmacological and potentially toxicological developments. The classes of nanoparticles, the current status of nanoparticle use in pharmacology and therapeutics, the demonstrated and potential toxicity of nanoparticles will be discussed. PMID:17245366

  9. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less

  10. Heteroaggregation of cerium oxide nanoparticles and nanoparticles of pyrolyzed biomass

    USDA-ARS?s Scientific Manuscript database

    Heteroaggregation with indigenous particles is an important process controlling the mobility of engineered nanomaterials in the environment. We studied heteroaggregation of cerium oxide nanoparticles (n-CeO2), which are widely used commercially, with nanoparticles of pyrogenic carbonaceous material ...

  11. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived frommore » re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the

  12. Assessment of radionuclides and heavy metals in marine sediments along the Upper Gulf of Thailand

    NASA Astrophysics Data System (ADS)

    Khuntong, S.; Phaophang, C.; Sudprasert, W.

    2015-05-01

    Due to the Fukushima Daiichi nuclear disaster in 2011 and the development of nuclear power plant in neighboring countries such as Vietnam in the near future, radionuclide assessment in marine sediment during 2010 - 2011 may be useful as background levels for radiation protection in Thailand. Marine sediments (10 samples) were collected approximately 1 km away from the coastline along Chonburi to Pattaya, Chonburi Province. The sediments were ground and sieved through 2-mm test sieve after air drying. Radionuclides were measured with a gamma spectrometer equipped with a well-calibrated HPGe detector. The samples were prepared in the same geometry as the reference material. The optimal counting time was 60,000 - 80,000 s for statistical evaluation and uncertainties. No contamination of 137Cs as an artificial radionuclide was found. Naturally-occurring radionuclides including 238U, 232Th and 40K were found. The mean specific activities of 238U, 232Th and 40K were 44 ± 10, 59 ± 17 and 463 ± 94 Bq/kg in the rainy season (2010); 41 ± 6, 50 ± 9 and 484 ± 83 Bq/kg in the winter (2010), and 39 ± 6, 41 ± 7 and 472 ± 81 Bq/kg in the summer (2011), respectively. The mean specific activities were higher than the values in the UNSCEAR report of 35, 30 and 400 Bq/kg for 238U, 232Th and 40K, respectively. From the measured specific activities, the absorbed dose rate, radium equivalent activity, external hazard index and annual external effective dose rate were calculated in order to assess the health risk. No radiation hazards related to the radioactivity in the sediment were expected. The accumulation of radionuclides varied with the particle size and the organic matter content in the sediment. The accumulation of heavy metals showed similar results to that of the radionuclides in the sediment.

  13. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.

    The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less

  14. Reconstruction of radionuclide intakes for the residents of East Urals Radioactive Trace (1957–2011)

    DOE PAGES

    Tolstykh, Evgenia I.; Peremyslova, Lyudmila M.; Degteva, Marina O.; ...

    2017-01-19

    The East Urals Radioactive Trace (EURT) was formed after a chemical explosion in the radioactive waste-storage facility of the Mayak Production Association in 1957 (Southern Urals, Russia) and resulted in an activity dispersion of 7.4 × 10 16 Bq into the atmosphere. Internal exposure due to ingestion of radionuclides with local foodstuffs was the main factor of public exposure at the EURT. The EURT cohort, combining residents of most contaminated settlements, was formed for epidemiological study at the Urals Research Center for Radiation Medicine, Russia (URCRM). For the purpose of improvement of radionuclide intake estimates for cohort members, the followingmore » data sets collected in URCRM were used: (1) Total β-activity and radiochemical measurements of 90Sr in local foodstuffs over all of the period of interest (1958–2011; n = 2200), which were used for relative 90Sr intake estimations. (2) 90Sr measurements in human bones and whole body ( n = 338); these data were used for average 90Sr intake derivations using an age- and gender-dependent Sr-biokinetic model. Non-strontium radionuclide intakes were evaluated on the basis of 90Sr intake data and the radionuclide composition of contaminated foodstuffs. Validation of radionuclide intakes during the first years after the accident was first carried out using measurements of the feces β-activity of EURT residents ( n = 148). The comparison of experimental and reconstructed values of feces β-activity shows good agreement. 90Sr intakes for residents of settlements evacuated 7–14 days after the accident were also obtained from 90Sr measurements in human bone and whole body. Furthermore, the results of radionuclide intake reconstruction will be used to estimate the internal doses for the members of the EURT cohort.« less

  15. Laboratory Training Manual on the Use of Radionuclides and Radiation in Animal Research, Third Edition.

    ERIC Educational Resources Information Center

    International Atomic Energy Agency, Vienna (Austria).

    This publication is written for those researchers who are interested in the use of radionuclides and radiation in the animal science field. Part I presents topics intended to provide the theoretical base of radionuclides which is important in order to design an experiment for drawing maximum information from it. The topics included in this…

  16. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.

    PubMed

    Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K

    2018-06-26

    The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus

  17. Radionuclide studies in coccidioidal meningitis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbus, H.F.; Lippert, R.G.; Radding, J.

    1976-10-01

    Although the uniformly fatal outcome in untreated meningitis due to Coccidioides immitis has been modified by amphotericin B, use of this drug presents a challenge to therapists striving to maximize its effectiveness and minimize its not inconsiderable toxicity. Many of the complications of intraventricular therapy, using an Ommaya reservoir, were encountered in a patient with coccidioidal meningitis, and this experience is reported to reemphasize the usefulness of radionuclide studies in guiding therapy and assessing the progress of the disease. The examples presented may be of interest to those faced with the difficult task of treating this still dangerous infection.

  18. Dynamic radionuclide determination of regional left ventricular wall motion using a new digital imaging device

    NASA Technical Reports Server (NTRS)

    Steele, P.; Kirch, D.

    1975-01-01

    In 47 men with arteriographically defined coronary artery disease comparative studies of left ventricular ejection fraction and segmental wall motion were made with radionuclide data obtained from the image intensifier camera computer system and with contrast cineventriculography. The radionuclide data was digitized and the images corresponding to left ventricular end-diastole and end-systole were identified from the left ventricular time-activity curve. The left ventricular end-diastolic and end-systolic images were subtracted to form a silhouette difference image which described wall motion of the anterior and inferior left ventricular segments. The image intensifier camera allows manipulation of dynamically acquired radionuclide data because of the high count rate and consequently improved resolution of the left ventricular image.

  19. Nanoparticles in medicine: Current challenges facing inorganic nanoparticle toxicity assessments and standardizations.

    PubMed

    Hofmann-Amtenbrink, Margarethe; Grainger, David W; Hofmann, Heinrich

    2015-10-01

    Although nanoparticles research is ongoing since more than 30years, the development of methods and standard protocols required for their safety and efficacy testing for human use is still in development. The review covers questions on toxicity, safety, risk and legal issues over the lifecycle of inorganic nanoparticles for medical applications. The following topics were covered: (i) In vitro tests may give only a very first indication of possible toxicity as in the actual methods interactions at systemic level are mainly neglected; (ii) the science-driven and the regulation-driven approaches do not really fit for decisive strategies whether or not a nanoparticle should be further developed and may receive a kind of "safety label". (iii) Cost and time of development are the limiting factors for the drug pipeline. Knowing which property of a nanoparticle makes it toxic it may be feasible to re-engineer the particle for higher safety (safety by design). Testing the safety and efficacy of nanoparticles for human use is still in need of standardization. In this concise review, the author described and discussed the current unresolved issues over the application of inorganic nanoparticles for medical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Radionuclide observables for the Platte underground nuclear explosive test on 14 April 1962.

    PubMed

    Burnett, Jonathan L; Milbrath, Brian D

    2016-11-01

    Past nuclear weapon explosive tests provide invaluable information for understanding the radionuclide observables expected during an On-site Inspection (OSI) for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). These radioactive signatures are complex and subject to spatial and temporal variability. The Platte underground nuclear explosive test on 14 April 1962 provides extensive environmental monitoring data that can be modelled and used to calculate the maximum time available for detection of the OSI-relevant radionuclides. The 1.6 kT test is especially useful as it released the highest amounts of recorded activity during Operation Nougat at the Nevada Test Site - now known as the Nevada National Security Site (NNSS). It has been estimated that 0.36% of the activity was released, and dispersed in a northerly direction. The deposition ranged from 1 × 10 -11 to 1 × 10 -9 of the atmospheric release (per m 2 ), and has been used in this paper to evaluate an OSI and the OSI-relevant radionuclides at 1 week to 2 years post-detonation. Radioactive decay reduces the activity of the OSI-relevant radionuclides by 99.7% within 2 years of detonation, such that detection throughout the hypothesized inspection is only achievable close to the explosion where deposition was highest. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Thermally stable nanoparticles on supports

    DOEpatents

    Roldan Cuenya, Beatriz; Naitabdi, Ahmed R.; Behafarid, Farzad

    2012-11-13

    An inverse micelle-based method for forming nanoparticles on supports includes dissolving a polymeric material in a solvent to provide a micelle solution. A nanoparticle source is dissolved in the micelle solution. A plurality of micelles having a nanoparticle in their core and an outer polymeric coating layer are formed in the micelle solution. The micelles are applied to a support. The polymeric coating layer is then removed from the micelles to expose the nanoparticles. A supported catalyst includes a nanocrystalline powder, thin film, or single crystal support. Metal nanoparticles having a median size from 0.5 nm to 25 nm, a size distribution having a standard deviation .ltoreq.0.1 of their median size are on or embedded in the support. The plurality of metal nanoparticles are dispersed and in a periodic arrangement. The metal nanoparticles maintain their periodic arrangement and size distribution following heat treatments of at least 1,000.degree. C.

  2. Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model

    NASA Astrophysics Data System (ADS)

    Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro

    2017-11-01

    In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.

  3. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  4. Worldwide dispersion and deposition of radionuclides produced in atmospheric tests.

    PubMed

    Bennett, Burton G

    2002-05-01

    Radionuclides produced in atmospheric nuclear tests were widely dispersed in the global environment. From the many measurements of the concentrations in air and the deposition amounts, much was learned of atmospheric circulation and environmental processes. Based on these results and the reported fission and total yields of individual tests, it has been possible to devise an empirical model of the movement and residence times of particles in the various atmospheric regions. This model, applied to all atmospheric weapons tests, allows extensive calculations of air concentrations and deposition amounts for the entire range of radionuclides produced throughout the testing period. Especially for the shorter-lived fission radionuclides, for which measurement results at the time of the tests are less extensive, a more complete picture of levels and isotope ratios can be obtained, forming a basis for improved dose estimations. The contributions to worldwide fallout can be inferred from individual tests, from tests at specific sites, or by specific countries. Progress was also made in understanding the global hydrological and carbon cycles from the tritium and 14C measurements. A review of the global measurements and modeling results is presented in this paper. In the future, if injections of materials into the atmosphere occur, their anticipated motions and fates can be predicted from the knowledge gained from the fallout experience.

  5. Bayesian statistics in radionuclide metrology: measurement of a decaying source

    NASA Astrophysics Data System (ADS)

    Bochud, François O.; Bailat, Claude J.; Laedermann, Jean-Pascal

    2007-08-01

    The most intuitive way of defining a probability is perhaps through the frequency at which it appears when a large number of trials are realized in identical conditions. The probability derived from the obtained histogram characterizes the so-called frequentist or conventional statistical approach. In this sense, probability is defined as a physical property of the observed system. By contrast, in Bayesian statistics, a probability is not a physical property or a directly observable quantity, but a degree of belief or an element of inference. The goal of this paper is to show how Bayesian statistics can be used in radionuclide metrology and what its advantages and disadvantages are compared with conventional statistics. This is performed through the example of an yttrium-90 source typically encountered in environmental surveillance measurement. Because of the very low activity of this kind of source and the small half-life of the radionuclide, this measurement takes several days, during which the source decays significantly. Several methods are proposed to compute simultaneously the number of unstable nuclei at a given reference time, the decay constant and the background. Asymptotically, all approaches give the same result. However, Bayesian statistics produces coherent estimates and confidence intervals in a much smaller number of measurements. Apart from the conceptual understanding of statistics, the main difficulty that could deter radionuclide metrologists from using Bayesian statistics is the complexity of the computation.

  6. Radiation Doses to Members of the U.S. Population from Ubiquitous Radionuclides in the Body: Part 1, Autopsy and In Vivo Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, David J.; Strom, Daniel J.

    This paper is part one of a three-part series investigating annual effective doses to residents of the United States from intakes of ubiquitous radionuclides, including radionuclides occurring naturally, radionuclides whose concentrations are technologically enhanced, and anthropogenic radionuclides. This series of papers explicitly excludes intakes from inhaling 222Rn, 220Rn, and their short-lived decay products; it also excludes intakes of radionuclides in occupational and medical settings. The goal of part one of this work was to review, summarize, and characterize all published and some unpublished data for U.S. residents on ubiquitous radionuclide concentrations in tissues and organs. Forty-five papers and reports weremore » obtained and their data reviewed, and three data sets were obtained via private communication. The 45 radionuclides of interest are the 238U series (14 nuclides), the actinium series (headed by 235U; 11 nuclides), and the 232Th series (11 nuclides); primordial radionuclides 87Rb and 40 K; cosmogenic and fallout radionuclides 14C and 3H; and purely anthropogenic radionuclides 137Cs-137mBa, 129I, and 90Sr-90Y. Measurements judged to be relevant were available for only 15 of these radionuclides: 238U, 235U, 234U, 232Th, 230Th, 228Th, 228Ra, 226Ra, 210Pb, 210Po, 137Cs, 87Rb, 40K, 14C, and 3H. Recent and relevant measurements were not available for 129I and 90Sr-90Y. A total of 11,714 radionuclide concentration measurements were found in one or more tissues or organs from 14 States. Data on age, sex, geographic locations, height, and weight of subjects were available only sporadically. Too often authors did not provide meaningful values of uncertainty of measurements so that variability in data sets is confounded with measurement uncertainty. The following papers detail how these shortcomings are overcome to achieve the goals of the three-part series.« less

  7. Radio-nuclide mixture identification using medium energy resolution detectors

    DOEpatents

    Nelson, Karl Einar

    2013-09-17

    According to one embodiment, a method for identifying radio-nuclides includes receiving spectral data, extracting a feature set from the spectral data comparable to a plurality of templates in a template library, and using a branch and bound method to determine a probable template match based on the feature set and templates in the template library. In another embodiment, a device for identifying unknown radio-nuclides includes a processor, a multi-channel analyzer, and a memory operatively coupled to the processor, the memory having computer readable code stored thereon. The computer readable code is configured, when executed by the processor, to receive spectral data, to extract a feature set from the spectral data comparable to a plurality of templates in a template library, and to use a branch and bound method to determine a probable template match based on the feature set and templates in the template library.

  8. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling

  9. [Qualitative composition of dominating forms of microorganisms isolated from radionuclide contaminated soil and their ability to accumulate 137Cs].

    PubMed

    Pareniuk, O Iu; Moshynets', O V; Tytova, L V; Levchuk, S Ie

    2013-01-01

    Qualitative composition of the dominating forms of microorganisms isolated from radionuclide contaminated soils has been studied. The ability to accumulate 137Cs by freshly isolated species and collection cultures that were not adapted to the presence of the radionuclide has been analyzed. It is shown that among the analyzed microorganisms the greatest ability to accumulate the radionuclide is inherent in the collection culture Bacillus megaterium UKMV-5724.

  10. Friction mechanism of individual multilayered nanoparticles.

    PubMed

    Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef

    2011-12-13

    Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS(2) in the relatively low range of normal stress (0.96 ± 0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces.

  11. Friction mechanism of individual multilayered nanoparticles

    PubMed Central

    Tevet, Ofer; Von-Huth, Palle; Popovitz-Biro, Ronit; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef

    2011-01-01

    Inorganic nanoparticles of layered [two-dimensional (2D)] compounds with hollow polyhedral structure, known as fullerene-like nanoparticles (IF), were found to have excellent lubricating properties. This behavior can be explained by superposition of three main mechanisms: rolling, sliding, and exfoliation-material transfer (third body). In order to elucidate the tribological mechanism of individual nanoparticles in different regimes, in situ axial nanocompression and shearing forces were applied to individual nanoparticles using a high resolution scanning electron microscope. Gold nanoparticles deposited onto the IF nanoparticles surface served as markers, delineating the motion of individual IF nanoparticle. It can be concluded from these experiments that rolling is an important lubrication mechanism for IF-WS2 in the relatively low range of normal stress (0.96±0.38 GPa). Sliding is shown to be relevant under slightly higher normal stress, where the spacing between the two mating surfaces does not permit free rolling of the nanoparticles. Exfoliation of the IF nanoparticles becomes the dominant mechanism at the high end of normal stress; above 1.2 GPa and (slow) shear; i.e., boundary lubrication conditions. It is argued that the modus operandi of the nanoparticles depends on their degree of crystallinity (defects); sizes; shape, and their mechanical characteristics. This study suggests that the rolling mechanism, which leads to low friction and wear, could be attained by improving the sphericity of the IF nanoparticle, the dispersion (deagglomeration) of the nanoparticles, and the smoothness of the mating surfaces. PMID:22084073

  12. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  13. Nanoparticle Tracking Analysis for Determination of Hydrodynamic Diameter, Concentration, and Zeta-Potential of Polyplex Nanoparticles.

    PubMed

    Wilson, David R; Green, Jordan J

    2017-01-01

    Nanoparticle tracking analysis (NTA) is a recently developed nanoparticle characterization technique that offers certain advantages over dynamic light scattering for characterizing polyplex nanoparticles in particular. Dynamic light scattering results in intensity-weighted average measurements of nanoparticle characteristics. In contrast, NTA directly tracks individual particles, enabling concentration measurements as well as the direct determination of number-weighted particle size and zeta-potential. A direct number-weighted assessment of nanoparticle characteristics is particularly useful for polydisperse samples of particles, including many varieties of gene delivery particles that can be prone to aggregation. Here, we describe the synthesis of poly(beta-amino ester)/deoxyribonucleic acid (PBAE/DNA) polyplex nanoparticles and their characterization using NTA to determine hydrodynamic diameter, zeta-potential, and concentration. Additionally, we detail methods of labeling nucleic acids with fluorophores to assess only those polyplex nanoparticles containing plasmids via NTA. Polymeric gene delivery of exogenous plasmid DNA has great potential for treating a wide variety of diseases by inducing cells to express a gene of interest.

  14. Applications of white rot fungi in bioremediation with nanoparticles and biosynthesis of metallic nanoparticles.

    PubMed

    He, Kai; Chen, Guiqiu; Zeng, Guangming; Huang, Zhenzhen; Guo, Zhi; Huang, Tiantian; Peng, Min; Shi, Jiangbo; Hu, Liang

    2017-06-01

    White rot fungi (WRF) are important environmental microorganisms that have been widely applied in many fields. To our knowledge, the application performance of WRF in bioremediation can be greatly improved by the combination with nanotechnology. And the preparation of metallic nanoparticles using WRF is an emerging biosynthesis approach. Understanding the interrelation of WRF and nanoparticles is important to further expand their applications. Thus, this mini-review summarizes the currently related reports mainly from the two different point of views. We highlight that nanoparticles as supports or synergistic agents can enhance the stability and bioremediation performance of WRF in wastewater treatment and the biosynthesis process and conditions of several important metallic nanoparticles by WRF. Furthermore, the potential toxicity of nanoparticles on WRF and challenges encountered are also discussed. Herein, we deem that this mini-review will strengthen the basic knowledge and provide valuable insight for the applications of WRF and nanoparticles.

  15. Optical Characterization of Single Plasmonic Nanoparticles

    PubMed Central

    Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan

    2015-01-01

    This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351

  16. Non-Engineered Nanoparticles of C60

    PubMed Central

    Deguchi, Shigeru; Mukai, Sada-atsu; Sakaguchi, Hide; Nonomura, Yoshimune

    2013-01-01

    We discovered that rubbing bulk solids of C60 between fingertips generates nanoparticles including the ones smaller than 20 nm. Considering the difficulties usually associated with nanoparticle production by pulverisation, formation of nanoparticles by such a mundane method is unprecedented and noteworthy. We also found that nanoparticles of C60 could be generated from bulk solids incidentally without deliberate engineering of any sort. Our findings imply that there exist highly unusual human exposure routes to nanoparticles of C60, and elucidating formation mechanisms of nanoparticles is crucial in assessing their environmental impacts. PMID:23807024

  17. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  18. Preparation and characterization of copper oxide nanoparticles decorated carbon nanoparticles using laser ablation in liquid

    NASA Astrophysics Data System (ADS)

    Khashan, K. S.; Jabir, M. S.; Abdulameer, F. A.

    2018-05-01

    Carbon nanoparticles CNPs ecorated by copper oxide nano-sized particles would be successfully equipped using technique named pulsed laser ablation in liquid. The XRD pattern proved the presence of phases assigned to carbon and different phases of copper oxide. The chemical structure of the as-prepared nanoparticles samples was decided by Energy Dispersive Spectrum (EDS) measurement. EDS analysis results show the contents of Carbon, Oxygen and Copper in the final product. These nanoparticles were spherical shaped with a size distribution 10 to 80 nm or carbon nanoparticles and 5 to 50 nm for carbon decorated copper oxide nanoparticles, according to Transmission Electron Microscopy (TEM) images and particle-size distribution histogram. It was found that after doping with copper oxide, nanoparticles become smaller and more regular in shape. Optical absorption spectra of prepared nanoparticles were measured using UV–VIS spectroscopy. The absorption spectrum of carbon nanoparticles without doping indicates absorption peak at about 228 nm. After doping with copper oxide, absorption shows appearance of new absorption peak at about (254-264) nm, which is referred to the movement of the charge between 2p and 4s band of Cu2+ ions.

  19. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  20. Observation-based estimate of the Fukushima radionuclide in the North Pacific

    NASA Astrophysics Data System (ADS)

    Yoshida, Sachiko; Jayne, Steven; Macdonald, Alison; Buesseler, Ken; Rypina, Irina

    2014-05-01

    Contaminated waters from Fukushima nuclear power plant (FNPP) were discharged directly into the North Pacific Ocean in March 2011. Coastal current system in this region and time scale of the water exchange with the open ocean is not well understood, however both observational evidence and numerical model simulation results indicate relatively rapid advection of contaminants eastward into the highly energetic mixed water region in the confluence of the Kuroshio and Oyashio. Surface drifters deployed near the FNPP in early summer 2011 show trajectories crossing the North Pacific generally following the large scale ocean circulation after one year. Previously obtained cesium (Cs) samples from multiple cruises near FNPP and off shore region between 2011 and 2013 are collected and evaluated to diagnose the propagating Cs signal crossing North Pacific Ocean. In this presentation, we use radionuclides of Fukushima origin as a tracer to understand the North Pacific circulation and mixing process after two years of release. Large numbers of the observation are repeatedly took place near shore where Cs shows still relatively higher about 10-30 Bq/m3 in 2013. Temperature-salinity (T-S) properties for the available hydrographic data indicate that the majority of the samples were obtained in the region where the water is highly influenced by the warm-salty Kuroshio origin water. Depth profiles of 35N section in March-May 2013 cruise of the U.S. Climate Variability and Predictability and Carbon (CLIVAR) repeat Hydrography sections are examined to track the radionuclide penetration into the subsurface ocean and the subduction pathways along isopycnal surfaces. Available large drifter datasets that accumulated over decades of field work can guide us in estimating the spread of these radionuclides. By applying an innovative statistical analysis to the drifter data, we investigate the spreading of radionuclides in the Pacific Ocean over 5-year time scales.

  1. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  2. Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.

    PubMed

    Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P

    1999-09-30

    In 1997 an expedition to Mururoa and Fangataufa Atolls was carried out to sample underground waters from cavity-chimneys and carbonate monitoring wells. The aim of this study was to determine the prevailing concentration and distribution status of radionuclides. Elemental analysis of interstitial waters was carried out in the water fraction as well as in particles collected at 11 underground monitoring wells. 238Pu, 239,240Pu, 241Am, 137Cs, 90Sr, 3H, 125Sb, 155Eu and 60Co were analyzed in both fractions by alpha-, beta- and gamma-spectrometry. Measurements showed that at 60% of the sites, pH and Eh seemed to be related to tidal cycles; in contrast HTO was constant during the sampling time. Interstitial waters from carbonates and transition zones shared similar chemical composition that were not different from that of the surrounding seawater. Waters collected from basalt cavities left after nuclear tests, (Aristee and Ceto) have a different chemical signature characterized by a deficiency in Mg, K and SO4 as well as enrichment in Sr, Si, Al and Cl compared to the rest of the stations. Radionuclide concentrations present in both, water and particulate fractions, were significantly higher at Ceto and Aristee than at any other monitoring wells, except for Fuseau and Mitre monitoring wells (Fangataufa) where values similar to Ceto were found (e.g. 239,240Pu: > 20 mBq g-1). Considering that Pu isotopes showed high Kd values compared to non-sorbing radionuclides such as 3H, 90Sr and 137Cs it is very unlikely that migration from cavities to monitoring wells accounts for the concentration of Pu isotopes and Am at Fuseau 30 and Mitre 27. Perhaps the contact of lagoon waters with the well before sealing could be a possible source of the transuranics found at these sites. The 238Pu/239,240Pu ratios measured in the particles were similar to that of the lagoon (0.38), thus supporting this hypothesis. The fact that transuranics were found only in the particle fraction, in the

  3. The use of Eupatorium Odoratum as bio-monitor for radionuclides determination in Manjung, Perak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zainal, Fetri, E-mail: fetrizainal@yahoo.com; Hamzah, Zaini; Wood, Khalik

    2015-04-29

    The accumulation of radionuclides in plants can be used as bio-monitoring in the environment. This technique is a cost-effective as the plants used to uptake deposited radionuclides from soil, commonly as soil-to-plant transfer factor (TF), which is widely used for calculating radiological risk. Radionuclides deposited in the soil carry by the air as particles or gases lead to the accumulation in soil. Eupatorium odoratum, known as pokok kapal terbang in Malaysia was chosen as sample for their abundances and properties to measure surface soil contamination. The plants were collected in three different directions (North, North-East and South-East) from Manjung district.more » The plants were collected in same size and then separated in to three parts (roots, stems and leaves) to determine the transfer factor from soil to each part. The concentrations of thorium (Th) and uranium (U) were analyzed using Energy Disperse X-Ray Fluorescence (EDXRF) and found in the range of 1.20-3.50 mg/kg and 1.20-3.90 mg/kg in roots, 1.40-3.90 mg/kg and 1.50-5.90 mg/kg in stems and 1.50-2.50 mg/kg and 2.00-6.00 mg/kg in leaves, respectively. Transfer factor (TF) was calculated through concentrations as reported in this article and show that the plants have transferred and accumulated radionuclides in significant values. From radionuclides concentrations in topsoil, the radiological risk was calculated and the present result show that external hazard index (H{sub ex}) is below than unity indicate low radiological risk at that area.« less

  4. 40 CFR 141.66 - Maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...

  5. 40 CFR 141.66 - Maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...

  6. 40 CFR 141.66 - Maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...

  7. 40 CFR 141.66 - Maximum contaminant levels for radionuclides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Maximum contaminant levels for... Regulations: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels § 141.66 Maximum contaminant levels for radionuclides. (a) [Reserved] (b) MCL for combined radium-226 and -228. The maximum...

  8. WORKSHOP ON DEVELOPMENT OF RADIONUCLIDE GETTERS FOR THE YUCCA MOUNTAIN WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.C. Holt

    One of the important that the U.S. Department of Energy (DOE) is currently undertaking is the development of a high-level nuclear waste repository to be located at Yucca Mountain, Nevada. Concern is generated by the Yucca Mountain Project (YMP) is due to potential releases as groundwater contamination, as described in the Total System Performance Assessment (TSPA). The dose to an off-site individual using this groundwater for drinking and irrigation is dominated by four radionuclides: Tc-99, I-127, Np-237, and U-238. Ideally, this dose would be limited to a single radionuclide, U-238; in other words, YMP would resemble a uranium ore body,more » a common geologic feature in the Western U.S. For this reason and because of uncertainties in the behavior of Tc-99, I-127, and Np-237, it would be helpful to limit the amount of Tc, I, and Np leaving the repository, which would greatly increase the confidence in the long-term performance of YMP. An approach to limiting the migration of Tc, I, and Np that is complementary to the existing YMP repository design plans is to employ sequestering agents or ''getters'' for these radionuclides such that their migration is greatly hindered, thus decreasing the amount of radionuclide leaving the repository. Development of such getters presents a number of significant challenges. The getter must have a high affinity and high selectivity for the radionuclide in question since there is approximately a 20- to 50-fold excess of other fission products and a 1000-fold excess of uranium in addition to the ions present in the groundwater. An even greater challenge is that the getters must function over a period greater than the half-life of the radionuclide (greater than 5 half-lives would be ideal). Typically, materials with a high affinity for Tc, I, or Np are not sufficiently durable. For example, strong-base ion exchange resins have a very high affinity for TcO{sub 4}{sup -} but are not expected to be durable. On the other hand, durable

  9. Study of the association between exposure to transuranic radionuclides and cancer death

    NASA Astrophysics Data System (ADS)

    Fallahian, Naz Afarin

    An exploratory epidemiological study has been conducted on 319 deceased nuclear workers, who had recorded intakes and histories of employment for at least one year during the time period from 1943 to 1995, at different facilities including the United States Department of Energy (DOE) sites, and thorium and uranium mining and milling plants. These workers voluntarily agreed to donate their organs or whole body to the United States Transuranium and Uranium Registries (USTUR) for scientific research purposes. The majority of this population was involved in documented radiological incidents during their careers. Many were exposed to transuranic radionuclides primarily via inhalation or puncture wounds. The purpose of this study was to find the level of dose that was received by the USTUR registrants following accidents and subsequent to mitigating actions, and to investigate whether or not there is any association between exposure to these transuranic radionuclides and cancer deaths. The external and internal dose assessments were performed using occupational radiation exposure histories and postmortem concentrations of transuranic radionuclides in critical organs, respectively. Statistical data analyses were performed to identify whether or not the USTUR registrants can be categorized as a 'low-dose' population and to investigate the potential correlation between exposure to transuranic radionuclides and causes of death within this population due to cancers of the lungs and liver as well as cancers of all sites, while controlling for the effects of other confounders. Based on the statistical tests performed, the USTUR registrants can be categorized as a low-dose population in terms of their occupational external exposures. However, when considering their total effective dose equivalents from both external penetrating radiation and internal exposure to transuranic radionuclides, they can not be categorized as a low-dose population with a 95% confidence level (alpha = 0

  10. Imaging with Second-Harmonic Generation Nanoparticles

    NASA Astrophysics Data System (ADS)

    Hsieh, Chia-Lung

    Second-harmonic generation nanoparticles show promise as imaging probes due to their coherent and stable signal with a broad flexibility in the choice of excitation wavelength. In this thesis, we developed and demonstrated barium titanate nanoparticles as second-harmonic radiation imaging probes. We studied the absolute second-harmonic generation efficiency of the nanoparticles on single-particle level. The polarization dependent second-harmonic signal of single nanoparticles was studied in detail. From the measured polar response, we were able to find the orientation of the nanoparticle. We developed a biochemical interface for using the second-harmonic nanoprobes as biomarkers, including in vitro cellular imaging and in vivo live animal imaging. The nanoparticles were surface functionalized with primary amine groups for stable colloidal dispersion. We achieved specific labeling of the second-harmonic nanoprobes via immunostaining where the antibodies were covalently conjugated onto the nanoparticles. We observed no toxicity of the functionalized nanoparticles to biological cells. The coherent second-harmonic signal radiated from the nanoparticles offers opportunities for new imaging techniques. Using interferometric detection, namely harmonic holography, both amplitude and phase of the second-harmonic field can be captured. Through digital beam propagation, three-dimensional field distribution, reflecting three-dimensional distribution of the nanoparticles, can be reconstructed. We achieved a scan-free three-dimensional imaging of nanoparticles in biological cells with sub-micron spatial resolution by using the harmonic holographic microscope. We further exploited the coherent second-harmonic signal for imaging through scattering media by performing optical phase conjugation of the second-harmonic signal. We demonstrated an all-digital optical phase conjugation of the second-harmonic signal originated from a nanoparticle by combining harmonic holography and

  11. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.

    PubMed

    Glover, Richard D; Miller, John M; Hutchison, James E

    2011-11-22

    The use of silver nanoparticles (AgNPs) in antimicrobial applications, including a wide range of consumer goods and apparel, has attracted attention because of the unknown health and environmental risks associated with these emerging materials. Of particular concern is whether there are new risks that are a direct consequence of their nanoscale size. Identifying those risks associated with nanoscale structure has been difficult due to the fundamental challenge of detecting and monitoring nanoparticles in products or the environment. Here, we introduce a new strategy to directly monitor nanoparticles and their transformations under a variety of environmental conditions. These studies reveal unprecedented dynamic behavior of AgNPs on surfaces. Most notably, under ambient conditions at relative humidities greater than 50%, new silver nanoparticles form in the vicinity of the parent particles. This humidity-dependent formation of new particles was broadly observed for a variety of AgNPs and substrate surface coatings. We hypothesize that nanoparticle production occurs through a process involving three stages: (i) oxidation and dissolution of silver from the surface of the particle, (ii) diffusion of silver ion across the surface in an adsorbed water layer, and (iii) formation of new, smaller particles by chemical and/or photoreduction. Guided by these findings, we investigated non-nanoscale sources of silver such as wire, jewelry, and eating utensils that are placed in contact with surfaces and found that they also formed new nanoparticles. Copper objects display similar reactivity, suggesting that this phenomenon may be more general. These findings challenge conventional thinking about nanoparticle reactivity and imply that the production of new nanoparticles is an intrinsic property of the material that is not strongly size dependent. The discovery that AgNPs and CuNPs are generated spontaneously from manmade objects implies that humans have long been in direct

  12. Modeling the Dispersal and Deposition of Radionuclides: Lessons from Chernobyl.

    ERIC Educational Resources Information Center

    ApSimon, H. M.; And Others

    1988-01-01

    Described are theoretical models that simulate the dispersion of radionuclides on local and global scales following the accident at the Chernobyl nuclear power plant. Discusses the application of these results to nuclear weapons fallout. (CW)

  13. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  14. Isonitrile radionuclide complexes for labelling and imaging agents

    DOEpatents

    Jones, Alun G.; Davison, Alan; Abrams, Michael J.

    1984-06-04

    A coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta, is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.

  15. Illicit Trafficking of Natural Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less

  16. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  17. Primary calibrations of radionuclide solutions and sources for the EML quality assessment program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisenne, I.M.

    1993-12-31

    The quality assurance procedures established for the operation of the U.S. Department of Energy`s Environmental Measurements Laboratory (DOE-EML`s) Quality Assessment Program (QAP) are essentially the same as those that are in effect for any EML program involving radiometric measurements. All these programs have at their core the use of radionuclide standards for their instrument calibration. This paper focuses on EML`s approach to the acquisition, calibration and application of a wide range of radionuclide sources that are required to meet its programmatic needs.

  18. Nanoparticles for Imaging: Top or Flop?

    PubMed Central

    Mertens, Marianne E.; Grimm, Jan; Lammers, Twan

    2014-01-01

    Nanoparticles are frequently suggested as diagnostic agents. However, except for iron oxide nanoparticles, diagnostic nanoparticles have been barely incorporated into clinical use so far. This is predominantly due to difficulties in achieving acceptable pharmacokinetic properties and reproducible particle uniformity as well as to concerns about toxicity, biodegradation, and elimination. Reasonable indications for the clinical utilization of nanoparticles should consider their biologic behavior. For example, many nanoparticles are taken up by macrophages and accumulate in macrophage-rich tissues. Thus, they can be used to provide contrast in liver, spleen, lymph nodes, and inflammatory lesions (eg, atherosclerotic plaques). Furthermore, cells can be efficiently labeled with nanoparticles, enabling the localization of implanted (stem) cells and tissue-engineered grafts as well as in vivo migration studies of cells. The potential of using nanoparticles for molecular imaging is compromised because their pharmacokinetic properties are difficult to control. Ideal targets for nanoparticles are localized on the endothelial luminal surface, whereas targeted nanoparticle delivery to extravascular structures is often limited and difficult to separate from an underlying enhanced permeability and retention (EPR) effect. The majority of clinically used nanoparticle-based drug delivery systems are based on the EPR effect, and, for their more personalized use, imaging markers can be incorporated to monitor biodistribution, target site accumulation, drug release, and treatment efficacy. In conclusion, although nanoparticles are not always the right choice for molecular imaging (because smaller or larger molecules might provide more specific information), there are other diagnostic and theranostic applications for which nanoparticles hold substantial clinical potential. PMID:25247562

  19. Standardization of Nanoparticle Characterization: Methods for Testing Properties, Stability, and Functionality of Edible Nanoparticles.

    PubMed

    McClements, Jake; McClements, David Julian

    2016-06-10

    There has been a rapid increase in the fabrication of various kinds of edible nanoparticles for oral delivery of bioactive agents, such as those constructed from proteins, carbohydrates, lipids, and/or minerals. It is currently difficult to compare the relative advantages and disadvantages of different kinds of nanoparticle-based delivery systems because researchers use different analytical instruments and protocols to characterize them. In this paper, we briefly review the various analytical methods available for characterizing the properties of edible nanoparticles, such as composition, morphology, size, charge, physical state, and stability. This information is then used to propose a number of standardized protocols for characterizing nanoparticle properties, for evaluating their stability to environmental stresses, and for predicting their biological fate. Implementation of these protocols would facilitate comparison of the performance of nanoparticles under standardized conditions, which would facilitate the rational selection of nanoparticle-based delivery systems for different applications in the food, health care, and pharmaceutical industries.

  20. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  1. Nanoparticle-Cell Interactions: Relevance for Public Health.

    PubMed

    Runa, Sabiha; Hussey, Michael; Payne, Christine K

    2018-01-25

    Nanoparticles, especially metal oxide nanoparticles, are used in a wide range of commercial and industrial applications that result in direct human contact, such as titanium dioxide nanoparticles in paints, food colorings, and cosmetics, or indirectly through release of nanoparticle-containing materials into the environment. Workers who process nanoparticles for downstream applications are exposed to especially high concentrations of nanoparticles. For physical chemists, nanoparticles present an interesting area of study as the small size of nanoparticles changes the properties from that of the bulk material, leading to novel properties and reactivity. For the public health community, this reduction in particle size means that exposure limits and outcomes that were determined from bulk material properties are not necessarily valid. Informed determination of exposure limits requires a fundamental understanding of how nanoparticles interact with cells. This Feature Article highlights the areas of intersection between physical chemistry and public health in understanding nanoparticle-cell interactions, with a focus on titanium dioxide nanoparticles. It provides an overview of recent research examining the interaction of titanium dioxide nanoparticles with cells in the absence of UV light and provides recommendations for additional nanoparticle-cell research in which physical chemistry expertise could help to inform the public health community.

  2. Nanolubricant: magnetic nanoparticle based

    NASA Astrophysics Data System (ADS)

    Trivedi, Kinjal; Parekh, Kinnari; Upadhyay, Ramesh V.

    2017-11-01

    In the present study magnetic nanoparticles of Fe3O4 having average particle diameter, 11.7 nm were synthesized using chemical coprecipitation technique and dispersed in alpha olefin hydrocarbon synthetic lubricating oil. The solid weight fraction of magnetic nanoparticles in the lubricating oil was varied from 0 wt% to 10 wt%. The tribological properties were studied using four-ball tester. The results demonstrate that the coefficient of friction and wear scar diameter reduces by 45% and 30%, respectively at an optimal value, i.e. 4 wt% of magnetic nanoparticles concentration. The surface characterization of worn surface was carried out using a scanning electron microscope, and energy dispersive spectroscopy. These results implied that rolling mechanism is responsible to reduce coefficient of friction while magnetic nanoparticles act as the spacer between the asperities and reduces the wear scar diameter. The surface roughness of the worn surface studied using an atomic force microscope shows a reduction in surface roughness by a factor of four when magnetic nanoparticles are used as an additive. The positive response of magnetic nanoparticles in a lubricating oil, shows the potential replacement of conventional lubricating oil.

  3. Radionuclide transport in the "sediments - water - plants" system of the water bodies at the Semipalatinsk test site.

    PubMed

    Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V

    2018-04-01

    This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Single Nanoparticle Plasmonic Sensors

    PubMed Central

    Sriram, Manish; Zong, Kelly; Vivekchand, S. R. C.; Gooding, J. Justin

    2015-01-01

    The adoption of plasmonic nanomaterials in optical sensors, coupled with the advances in detection techniques, has opened the way for biosensing with single plasmonic particles. Single nanoparticle sensors offer the potential to analyse biochemical interactions at a single-molecule level, thereby allowing us to capture even more information than ensemble measurements. We introduce the concepts behind single nanoparticle sensing and how the localised surface plasmon resonances of these nanoparticles are dependent upon their materials, shape and size. Then we outline the different synthetic approaches, like citrate reduction, seed-mediated and seedless growth, that enable the synthesis of gold and silver nanospheres, nanorods, nanostars, nanoprisms and other nanostructures with tunable sizes. Further, we go into the aspects related to purification and functionalisation of nanoparticles, prior to the fabrication of sensing surfaces. Finally, the recent developments in single nanoparticle detection, spectroscopy and sensing applications are discussed. PMID:26473866

  5. 21 CFR 892.5700 - Remote controlled radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Remote controlled radionuclide applicator system. 892.5700 Section 892.5700 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5700 Remote controlled...

  6. Radionuclide studies in Hodgkin's disease and lymphomas.

    PubMed

    Richman, S D; Levenson, S M; Jones, A E; Johnston, G S

    1975-01-01

    A rational, multidisciplinary approach to Hodgkin's disease and the non-Hodgkin's lymphomas has been responsible for major advances in therapy. Invasive diagnostic procedures and exploratory laparotomy, with their associated complications, make nontraumatic radionuclide imaging most appealing in both the clinical staging of disease and in evaluating therapy. Gallium-67-citrate, the tumor scanning agent of the early 1970's, has demonstrated a marked affinity for Hodgkin's disease and the other lymphomas. False positives are few, with sensitivity greater than 70% throughout the spectrum of Hodgkin's disease and the histiocytic lymphomas. In addition to confirming sites of suspected neoplasm, this agent has proved useful in the detection of occult involvement. Moreover, resolution of abnormal gallium-67 concentrations on follow-up studies functions as a visual ancillary index of therapeutic response. The value of wholebody gallium-67 scintigraphy is further enhanced when used in conjunction with routine technetium brain, bone, liver, and spleen scans. While the diagnostic accuracy of gallium-67 studies has been limited in the abdomen due to bowel activity, our attempts to improve these results with the tumor-seeking radiopharmaceutical indium-111-Bleomycin were unrewarding and subsequently were discontinued. Finally, radionuclide lymphography has also been explored. Its diagnostic usefulness in detecting pelvic and abdominal lymph node involvement warrants further investigation.

  7. Radionuclide Migration at the Rio Blanco Site, A Nuclear-stimulated Low-permeability Natural Gas Reservoir

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clay A. Cooper; Ming Ye; Jenny Chapman

    2005-10-01

    The U.S. Department of Energy and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability gas reservoirs. The third and final project in the program, Project Rio Blanco, was conducted in Rio Blanco County, in northwestern Colorado. In this experiment, three 33-kiloton nuclear explosives were simultaneously detonated in a single emplacement well in the Mesaverde Group and Fort Union Formation, at depths of 1,780, 1,899, and 2,039 m below land surface on May 17, 1973. The objective of this work is to estimate lateral distances that tritium released frommore » the detonations may have traveled in the subsurface and evaluate the possible effect of postulated natural-gas development on radionuclide migration. Other radionuclides were considered in the analysis, but the majority occur in relatively immobile forms (such as nuclear melt glass). Of the radionuclides present in the gas phase, tritium dominates in terms of quantity of radioactivity in the long term and contribution to possible whole body exposure. One simulation is performed for {sup 85}Kr, the second most abundant gaseous radionuclide produced after tritium.« less

  8. Monte Carlo dose distribution calculation at nuclear level for Auger-emitting radionuclide energies.

    PubMed

    Di Maria, S; Belchior, A; Romanets, Y; Paulo, A; Vaz, P

    2018-05-01

    The distribution of radiopharmaceuticals in tumor cells represents a fundamental aspect for a successful molecular targeted radiotherapy. It was largely demonstrated at microscopic level that only a fraction of cells in tumoral tissues incorporate the radiolabel. In addition, the distribution of the radionuclides at sub-cellular level, namely inside each nucleus, should also be investigated for accurate dosimetry estimation. The most used method to perform cellular dosimetry is the MIRD one, where S-values are able to estimate cellular absorbed doses for several electron energies, nucleus diameters, and considering homogeneous source distributions. However the radionuclide distribution inside nuclei can be also highly non-homogeneous. The aim of this study is to show in what extent a non-accurate cellular dosimetry could lead to misinterpretations of surviving cell fraction vs dose relationship; in this context, a dosimetric case study with 99m Tc is also presented. The state-of-art MCNP6 Monte Carlo simulation was used in order to model cell structures both in MIRD geometry (MG) and MIRD modified geometries (MMG), where also entire mitotic chromosome volumes were considered (each structure was modeled as liquid water material). In order to simulate a wide energy range of Auger emitting radionuclides, four mono energetic electron emissions were considered, namely 213eV, 6keV, 11keV and 20keV. A dosimetric calculation for 99m Tc undergoing inhomogeneous nuclear internalization was also performed. After a successful validation step between MIRD and our computed S-values for three Auger-emitting radionuclides ( 99m Tc, 125 I and 64 Cu), absorbed dose results showed that the standard MG could differ from the MMG from one to three orders of magnitude. These results were also confirmed by considering the 99m Tc spectrum emission (Auger and internal conversion electrons). Moreover, considering an inhomogeneous radionuclide distribution, the average electron energy that

  9. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection

  10. Lipid nanoparticle interactions and assemblies

    NASA Astrophysics Data System (ADS)

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  11. Stress injuries of the pars interarticularis: Radiologic classification and indications for radionuclide imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennell, R.; Maurer, A.R.; Bonakdarpour, A.

    Lumbar spine radiographs and radionuclide images were compared and correlated with clinical histories of 20 athletes with low back pain. Radiographs were classified as: Normal (Type 0); showing a healing stress fracture (an irregular lucent line) with sclerosis (Type I); as an evolving or healed stress injury with either sclerosis, narrowing, or demineralization (Type II); and as a chronic fracture showing a large lucency with well-defined margins classically referred to as spondylolysis (Type III). Patients were grouped clinically on the basis of their pain: acute onset (Group A, n = 7), acute superimposed on chronic (Group B, n = 9),more » and chronic pain without an acute event (Group C, n = 4). Radiographic abnormalities were present in 95% (19/20) of the patients and radionuclide studies were positive in 60% (12/20). Scintigraphy was positive most often with Type I pars abnormalities (77%, 10/13) and negative most often with Type III abnormalities (91%, 11/12). Of all positive scintigraphy 12/14 (86%) were in pts in Groups A and B (acute symptoms). The authors' findings support theories that radiographic pars abnormalities exist which correspond to stages in the healing of stress induced fractures. With acute symptoms radionuclide imaging need not be obtained if a Type I radiographic abnormality is seen. Radionuclide imaging is indicated with either Type 0, II or III radiographs to confirm or rule out recent stress injury.« less

  12. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  13. Monitored Natural Attenuation For Radionuclides In Ground Water - Technical Issues

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attentuation) within the subsurface. In gen...

  14. Influence of nanoparticle-ion and nanoparticle-polymer interactions on ion transport and viscoelastic properties of polymer electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mogurampelly, Santosh; Sethuraman, Vaidyanathan; Pryamitsyn, Victor

    We use atomistic simulations to probe the ion conductivities and mechanical properties of polyethylene oxide electrolytes containing Al{sub 2}O{sub 3} nanoparticles. We specifically study the influence of repulsive polymer-nanoparticle and ion-nanoparticle interactions and compare the results with those reported for electrolytes containing the polymorph β-Al{sub 2}O{sub 3} nanoparticles. We observe that incorporating repulsive nanoparticle interactions generally results in increased ionic mobilities and decreased elastic moduli for the electrolyte. Our results indicate that both ion transport and mechanical properties are influenced by the polymer segmental dynamics in the interfacial zones of the nanoparticle in the ion-doped systems. Such effects were seenmore » to be determined by an interplay between the nanoparticle-polymer, nanoparticle-ion, and ion-polymer interactions. In addition, such interactions were also observed to influence the number of dissociated ions and the resulting conductivities. Within the perspective of the influence of nanoparticles on the polymer relaxation times in ion-doped systems, our results in the context of viscoelastic properties were consistent with the ionic mobilities. Overall, our results serve to highlight some issues that confront the efforts to use nanoparticle dispersions to simultaneously enhance the conductivity and the mechanical strength of polymer electrolyte.« less

  15. Platinum nanoparticles on gallium nitride surfaces: effect of semiconductor doping on nanoparticle reactivity.

    PubMed

    Schäfer, Susanne; Wyrzgol, Sonja A; Caterino, Roberta; Jentys, Andreas; Schoell, Sebastian J; Hävecker, Michael; Knop-Gericke, Axel; Lercher, Johannes A; Sharp, Ian D; Stutzmann, Martin

    2012-08-01

    Platinum nanoparticles supported on n- and p-type gallium nitride (GaN) are investigated as novel hybrid systems for the electronic control of catalytic activity via electronic interactions with the semiconductor support. In situ oxidation and reduction were studied with high pressure photoemission spectroscopy. The experiments revealed that the underlying wide-band-gap semiconductor has a large influence on the chemical composition and oxygen affinity of supported nanoparticles under X-ray irradiation. For as-deposited Pt cuboctahedra supported on n-type GaN, a higher fraction of oxidized surface atoms was observed compared to cuboctahedral particles supported on p-type GaN. Under an oxygen atmosphere, immediate oxidation was recorded for nanoparticles on n-type GaN, whereas little oxidation was observed for nanoparticles on p-type GaN. Together, these results indicate that changes in the Pt chemical state under X-ray irradiation depend on the type of GaN doping. The strong interaction between the nanoparticles and the support is consistent with charge transfer of X-ray photogenerated free carriers at the semiconductor-nanoparticle interface and suggests that GaN is a promising wide-band-gap support material for photocatalysis and electronic control of catalysis.

  16. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  17. Calculating Hematopoietic-Mode-Lethality Risk Avoidance Associated with Radionuclide Decorporation Countermeasures Related to a Radiological Terrorism Incident

    PubMed Central

    Scott, Bobby R.

    2009-01-01

    This paper provides theoretical health-risk-assessment tools that are designed to facilitate planning for and managing radiological terrorism incidents that involve ingestion exposure to bone-seeking radionuclides (e.g., radiostrontium nuclides). The focus is on evaluating lethality risk avoidance (RAV; i.e., the decrease in risk) that is associated with radionuclide decorporation countermeasures employed to remove ingested bone-seeking beta and/or gamma-emitting radionuclides from the body. To illustrate the application of tools presented, hypothetical radiostrontium decorporation scenarios were considered that involved evaluating the hematopoietic-mode-lethality RAV. For evaluating the efficacy of specific decorporation countermeasures, the lethality risk avoidance proportion (RAP; which is the RAV divided by the total lethality risk in the absence of protective countermeasures) is introduced. The lethality RAP is expected to be a useful tool for designing optimal radionuclide decorporation schemes and for identifying green, yellow and red dose-rate zones. For the green zone, essentially all of the lethality risk is expected to be avoided (RAP = 1) as a consequence of the radionuclide decorporation scheme used. For the yellow zone, some but not all of the lethality risk is expected to be avoided. For the red zone, none of the lethality risk (which equals 1) is expected to be avoided. PMID:20011652

  18. Magnetoacoustic Sensing of Magnetic Nanoparticles.

    PubMed

    Kellnberger, Stephan; Rosenthal, Amir; Myklatun, Ahne; Westmeyer, Gil G; Sergiadis, George; Ntziachristos, Vasilis

    2016-03-11

    The interaction of magnetic nanoparticles and electromagnetic fields can be determined through electrical signal induction in coils due to magnetization. However, the direct measurement of instant electromagnetic energy absorption by magnetic nanoparticles, as it relates to particle characterization or magnetic hyperthermia studies, has not been possible so far. We introduce the theory of magnetoacoustics, predicting the existence of second harmonic pressure waves from magnetic nanoparticles due to energy absorption from continuously modulated alternating magnetic fields. We then describe the first magnetoacoustic system reported, based on a fiber-interferometer pressure detector, necessary for avoiding electric interference. The magnetoacoustic system confirmed the existence of previously unobserved second harmonic magnetoacoustic responses from solids, magnetic nanoparticles, and nanoparticle-loaded cells, exposed to continuous wave magnetic fields at different frequencies. We discuss how magnetoacoustic signals can be employed as a nanoparticle or magnetic field sensor for biomedical and environmental applications.

  19. Liquid-liquid interfacial nanoparticle assemblies

    DOEpatents

    Emrick, Todd S [South Deerfield, MA; Russell, Thomas P [Amherst, MA; Dinsmore, Anthony [Amherst, MA; Skaff, Habib [Amherst, MA; Lin, Yao [Amherst, MA

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  20. Biogenic synthesized nanoparticles and their applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Abhijeet, E-mail: abhijeet.singh@jaipur.manipal.edu; Sharma, Madan Mohan

    In the present scenario, there are growing concerns over the potential impacts of bioengineered nanoparticles in the health sector. However, our understanding of how bioengineered nanoparticles may affect organisms within natural ecosystems, lags far behind our rapidly increasing ability to engineer novel nanoparticles. To date, research on the biological impacts of bioengineered nanoparticles has primarily consisted of controlled lab studies of model organisms with single species in culture media. Here, we described a cost effective and environment friendly technique for green synthesis of silver nanoparticles. Silver nanoparticles were successfully synthesized from 1 mM AgNO{sub 3} via a green synthesis processmore » using leaf extract as reducing as well as capping agent. Nanoparticles were characterized with the help of UV–vis absorption spectroscopy, X-ray diffraction and TEM analysis which revealed the size of nanoparticles of 30-40 nm size. Further the nanoparticles synthesized by green route are found highly toxic against pathogenic bacteria and plant pathogenic fungi viz. Escherichia coli, Pseudomonas syringae and Sclerotiniasclerotiorum. The most important outcome of this work will be the development of value-added products and protection of human health from pathogens viz., bacteria, virus, fungi etc.« less

  1. An environmentally benign antimicrobial nanoparticle based ...

    EPA Pesticide Factsheets

    Silver nanoparticles have antibacterial properties but their use has been a cause for concern because they persist in the environment. Here we show that lignin nanoparticles infused with silver ions and coated with a cationic polyelectrolyte layer form a biodegradable and green alternative to silver nanoparticles. The polyelectrolyte layer promotes the adhesion of the particles to bacterial cell membranes and together with silver ions can kill a broad spectrum of bacteria, including Escherichia coli, Pseudomonas aeruginosa and quaternary-amine-resistant Ralstonia sp. Ion depletion studies showed that the bioactivity of these nanoparticles is time-limited because of the desorption of silver ions. High-throughput bioactivity screening did not reveal increased toxicity of the particles when compared to an equivalent mass of metallic silver nanoparticles or silver nitrate solution. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles. Our results demonstrate that the application of green chemistry principles may allow the synthesis of nanoparticles with biodegradable cores that have higher antimicrobial activity and smaller environmental impact than metallic silver nanoparticles

  2. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  3. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ning

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less

  4. Effects of Containment on Radionuclide Releases from Underground Nuclear Explosions

    NASA Astrophysics Data System (ADS)

    Carrigan, C. R.; Sun, Y.

    2016-12-01

    Confirming the occurrence of an underground nuclear explosion can require capturing short-lived noble gas radioisotopes produced by the explosion, sometimes referred to as the "smoking gun" for nuclear explosion detection. It is well known that the radioisotopic distribution resulting from the detonation evolves with time in the explosion cavity. In effect, the explosion cavity or chimney behaves as a chemical reactor. As long as the parent and daughter radionuclides remain in a closed and well-mixed cavity, parameters, such as radioxenon isotopic ratios, can be calculated analytically from a decay-chain network model. When gases from the cavity migrate into the containment regime, consideration of a "leaky reactor" model is more appropriate. We consider several implications of such a leaky reactor model relevant to interpretations of gas samples from the subsurface during an on-site inspection that could potentially be carried out under the Comprehensive Nuclear Test Ban Treaty. Additionally, we have attempted to validate our leaky reactor model against atmospheric observations of radioactive xenon isotopes detected by radionuclide monitoring stations in Japan and Russia following the February 2013 DPRK underground nuclear explosion (Carrigan et al., 2016). While both model uncertainty and observational error are significant, our model of isotopic evolution appears to be in broad agreement with radionuclide observations, and for the first time links atmospheric measurements of radioxenon isotopic ratios to estimates of seismic yield. Carrigan et al., Scientific Reports 6, Article number: 23032 (2016) doi:10.1038/srep23032

  5. Mesoporous silica templated zirconia nanoparticles

    NASA Astrophysics Data System (ADS)

    Ballem, Mohamed A.; Córdoba, José M.; Odén, Magnus

    2011-07-01

    Nanoparticles of zirconium oxide (ZrO2) were synthesized by infiltration of a zirconia precursor (ZrOCl2·8H2O) into a SBA-15 mesoporous silica mold using a wet-impregnation technique. X-ray diffractometry and high-resolution transmission electron microscopy show formation of stable ZrO2 nanoparticles inside the silica pores after a thermal treatment at 550 °C. Subsequent leaching out of the silica template by NaOH resulted in well-dispersed ZrO2 nanoparticles with an average diameter of 4 nm. The formed single crystal nanoparticles are faceted with 110 surfaces termination suggesting it to be the preferred growth orientation. A growth model of these nanoparticles is also suggested.

  6. A comparison of the dose from natural radionuclides and artificial radionuclides after the Fukushima nuclear accident

    PubMed Central

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Ishikawa, Tetsuo; Iwaoka, Kazuki

    2016-01-01

    Due to the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, the evacuees from Namie Town still cannot reside in the town, and some continue to live in temporary housing units. In this study, the radon activity concentrations were measured at temporary housing facilities, apartments and detached houses in Fukushima Prefecture in order to estimate the annual internal exposure dose of residents. A passive radon–thoron monitor (using a CR-39) and a pulse-type ionization chamber were used to evaluate the radon activity concentration. The average radon activity concentrations at temporary housing units, including a medical clinic, apartments and detached houses, were 5, 7 and 9 Bq m−3, respectively. Assuming the residents lived in these facilities for one year, the average annual effective doses due to indoor radon in each housing type were evaluated as 0.18, 0.22 and 0.29 mSv, respectively. The average effective doses to all residents in Fukushima Prefecture due to natural and artificial sources were estimated using the results of the indoor radon measurements and published data. The average effective dose due to natural sources for the evacuees from Namie Town was estimated to be 1.9 mSv. In comparison, for the first year after the FDNPP accident, the average effective dose for the evacuees due to artificial sources from the accident was 5.0 mSv. Although residents' internal and external exposures due to natural radionuclides cannot be avoided, it might be possible to lower external exposure due to the artificial radionuclides by changing some behaviors of residents. PMID:26838130

  7. Electrosprayed Cerium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Azar, Pedram Bagherzadeh; Tavanai, Hossein; Allafchian, Ali Reza

    2018-04-01

    Cerium oxide nanoparticles were fabricated via the calcination of electrosprayed polyvinyl alcohol (PVA)/cerium nitrate nanoparticles. The effect of material variables of PVA/cerium nitrate electrospraying solution, i.e. viscosity, surface tension and electrical conductivity, as well as important process variables like voltage, nozzle-collector distance and feed rate on cerium oxide nanoparticle size, are investigated. Scanning electron microscopy and Fourier-transform infrared (FTIR) spectroscopy analysis have also been carried out. The results showed that electrospraying of PVA/cerium nitrate (25% w/v) was only possible with PVA concentrations in the range of 5-8% w/v. With other conditions constant, decreasing PVA concentration, decreasing feed rate, increasing nozzle-collector distance and increasing voltage decreased the size of the final cerium oxide nanoparticles. The gross average size of all cerium oxide nanoparticles obtained in this work was about 80 nm. FTIR analysis proved the formation of cerium oxide after the calcination process.

  8. Recent developments in assessment of long-term radionuclide behavior in the geosphere-biosphere subsystem.

    PubMed

    Smith, G M; Smith, K L; Kowe, R; Pérez-Sánchez, D; Thorne, M; Thiry, Y; Read, D; Molinero, J

    2014-05-01

    Decisions on permitting, controlling and monitoring releases of radioactivity into the environment rely on a great variety of factors. Important among these is the prospective assessment of radionuclide behavior in the environment, including migration and accumulation among and within specific environmental media, and the resulting environmental and human health impacts. Models and techniques to undertake such assessments have been developed over several decades based on knowledge of the ecosystems involved, as well as monitoring of previous radionuclide releases to the environment, laboratory experiments and other related research. This paper presents developments in the assessment of radiation doses and related research for some of the key radionuclides identified as of potential significance in the context of releases to the biosphere from disposal facilities for solid radioactive waste. Since releases to the biosphere from disposal facilities involve transfers from the geosphere to the biosphere, an important aspect is the combined effects of surface hydrology, near-surface hydrogeology and chemical gradients on speciation and radionuclide mobility in the zone in which the geosphere and biosphere overlap (herein described as the geosphere-biosphere subsystem). In turn, these aspects of the environment can be modified as a result of environmental change over the thousands of years that have to be considered in radioactive waste disposal safety assessments. Building on the experience from improved understanding of the behavior of the key radionuclides, this paper proceeds to describe development of a generic methodology for representing the processes and environmental changes that are characteristic of the interface between the geosphere and the biosphere. The information that is provided and the methodology that is described are based on international collaborative work implemented through the BIOPROTA forum, www.bioprota.org. Copyright © 2013 Elsevier Ltd. All

  9. Situ formation of apatite for sequestering radionuclides and heavy metals

    DOEpatents

    Moore, Robert C.

    2003-07-15

    Methods for in situ formation in soil of a permeable reactive barrier or zone comprising a phosphate precipitate, such as apatite or hydroxyapatite, which is capable of selectively trapping and removing radionuclides and heavy metal contaminants from the soil, while allowing water or other compounds to pass through. A preparation of a phosphate reagent and a chelated calcium reagent is mixed aboveground and injected into the soil. Subsequently, the chelated calcium reagent biodegrades and slowly releases free calcium. The free calcium reacts with the phosphate reagent to form a phosphate precipitate. Under the proper chemical conditions, apatite or hydroxyapatite can form. Radionuclide and heavy metal contaminants, including lead, strontium, lanthanides, and uranium are then selectively sequestered by sorbing them onto the phosphate precipitate. A reducing agent can be added for reduction and selective sequestration of technetium or selenium contaminants.

  10. Age-specific inhalation radiation dose commitment factors for selected radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strenge, D.L.; Peloquin, R.A.; Baker, D.A.

    Inhalation dose commitment factors are presented for selected radionuclides for exposure of individuals in four age groups: infant, child, teen and adult. Radionuclides considered are /sup 35/S, /sup 36/Cl, /sup 45/Ca, /sup 67/Ga, /sup 75/Se, /sup 85/Sr, /sup 109/Cd, /sup 113/Sn, /sup 125/I, /sup 133/Ba, /sup 170/Tm, /sup 169/Yb, /sup 182/Ta, /sup 192/Ir, /sup 198/Au, /sup 201/Tl, /sup 204/Tl, and /sup 236/Pu. The calculational method is based on the human metabolic model of ICRP as defined in Publication 2 (ICRP 1959) and as used in previous age-specific dose factor calculations by Hoenes and Soldat (1977). Dose commitment factors are presentedmore » for the following organs of reference: total body, bone, liver, kidney, thyroid, lung and lower large intestine.« less

  11. Terbium Radionuclides for Theranostics Applications: A Focus On MEDICIS-PROMED

    NASA Astrophysics Data System (ADS)

    Cavaier, R. Formento; Haddad, F.; Sounalet, T.; Stora, T.; Zahi, I.

    A new facility, named CERN-MEDICIS, is under construction at CERN to produce radionuclides for medical applications. In parallel, the MEDICIS-PROMED, a Marie Sklodowska-Curie innovative training network of the Horizon 2020 European Commission's program, is being coordinated by CERN to train young scientists on the production and use of innovative radionuclides and develop a network of experts within Europe. One program within MEDICIS-PROMED is to determine the feasibility of producing innovative radioisotopes for theranostics using a commercial middle-sized high-current cyclotron and the mass separation technology developed at CERN-MEDICIS. This will allow the production of high specific activity radioisotopes not achievable with the common post-processing by chemical separation. Radioisotopes of scandium, copper, arsenic and terbium have been identified. Preliminary studies of activation yield and irradiation parameters optimization for the production of Tb-149 will be described.

  12. Selected natural and fallout radionuclides in plant foods around the Kudankulam Nuclear Power Project, India.

    PubMed

    Ross, E Mahiban; Raj, Y Lenin; Wesley, S Godwin; Rajan, M P

    2013-01-01

    The activity concentrations of certain radionuclides were quantified in some plant foods cultivated around Kudankulam, where a mega-nuclear power plant is being established. The activity concentrations were found more in the 'pulses' group and were the lowest in 'other vegetable' category. The annual effective dose was computed based on the activity concentration of radionuclides and it was found to be higher due to the consumption of cereals and pulses. Other vegetables, cereals, pulses and nuts recorded high transfer factors for the radionuclide (228)Ra. Fruits, leafy vegetables, tubers and roots, and palm embryo registered high transfer factors for (226)Ra. Group-wise activity concentration, radiation dose to the public and soil-plant-to-transfer factor are discussed in detail. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. An experimental study on the application of radionuclide imaging in repair of the bone defect

    PubMed Central

    Zhu, Weimin; Wang, Daping; Zhang, Xiaojun; Lu, Wei; Liu, Jianquan; Peng, Liangquan; Li, Hao; Han, Yun; Zeng, Yanjun

    2011-01-01

    The aim of our study was to validate the effect of radionuclide imaging in early monitoring of the bone’s reconstruction, the animal model of bone defect was made on the rabbits repaired with HA artificial bone. The ability of bone defect repair was evaluated by using radionuclide bone imaging at 2, 4, 8 and 12 weeks postoperatively. The results indicate that the experimental group stimulated more bone formation than that of the control group. The differences of the bone reconstruction ability were statistically significant (p<0.05). The nano-HA artificial has good bone conduction, and it can be used for the treatment of bone defects. Radionuclide imaging may be an effective and first choice method for the early monitoring of the bone’s reconstruction. PMID:21875418

  14. Assessment of radionuclide and metal contamination in a thorium rich area in Norway.

    PubMed

    Popic, Jelena Mrdakovic; Salbu, Brit; Strand, Terje; Skipperud, Lindis

    2011-06-01

    The Fen Central Complex in southern Norway, a geologically well investigated area of magmatic carbonatite rocks, is assumed to be among the world largest natural reservoirs of thorium ((232)Th). These rocks, also rich in iron (Fe), niobium (Nb), uranium ((238)U) and rare earth elements (REE), were mined in several past centuries. Waste locations, giving rise to enhanced levels of both radionuclides and metals, are now situated in the area. Estimation of radionuclide and metal contamination of the environment and radiological risk assessment were done in this study. The average outdoor gamma dose rate measured in Fen, 2.71 μGy h(-1), was significantly higher than the world average dose rate of 0.059 μGy h(-1). The annual exposure dose from terrestrial gamma radiation, related to outdoor occupancy, was in the range 0.18-9.82 mSv. The total activity concentrations of (232)Th and (238)U in soil ranged from 69 to 6581 and from 49 to 130 Bq kg(-1), respectively. Enhanced concentrations were also identified for metals, arsenic (As), lead (Pb), chromium (Cr) and zinc (Zn), in the vicinity of former mining sites. Both radionuclide and heavy metal concentrations suggested leaching, mobilization and distribution from rocks into the soil. Correlation analysis indicated different origins for (232)Th and (238)U, but same or similar for (232)Th and metals As, Cr, Zn, nickel (Ni) and cadmium (Cd). The results from in situ size fractionation of water demonstrated radionuclides predominately present as colloids and low molecular mass (LMM) species, being potentially mobile and available for uptake in aquatic organisms of Norsjø Lake. Transfer factors, calculated for different plant species, showed the highest radionuclide accumulation in mosses and lichens. Uptake in trees was, as expected, lower. Relationship analysis of (232)Th and (238)U concentrations in moss and soil samples showed a significant positive linear correlation.

  15. Interactions of nanomaterials with biological systems: A study of bio-mineralized nanoparticles and nanoparticle antibiotics

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer Chappell

    Nature is continually able to out-perform laboratory syntheses of nanomaterials with control of specific properties under ambient temperatures, pressures and pH. The investigation of existing biomolecule-mediated nanoparticle synthesis provides insight and knowledge necessary for duplicating these processes. In this way, peptides or proteins with nanomaterial mediation capabilities can be: 1) explored to further understand the ways in which biomolecules create specific nanoparticles then 2) used to create genetically encodable tags for use in electron tomography. The goal of designing such a tag was to assist in closing the resolution gap that exists in current imaging techniques between approximately 5 nm and 100 nm. Presented in this thesis are examples of peptides and proteins that form iron oxide, silver or gold nanoparticles under discrete circumstances. Three iron oxide-related bacterial proteins -- bacterioferritin, Dps and Mms6 -- were investigated for potential use. Similarly, a silver mineralizing peptide, Ge8, was studied upon attachment to the filamentous protein, FtsZ, and a gold mineralizing peptide, A3, was examined to characterize the way in which it mediates the formation of both Au0 nanoclusters and nanoparticles. Given the established interactions that occur between nanoparticles and biomolecules, it may not be surprising that gold nanoparticles displaying specific ratios of functional groups are able to interact with bacteria, in some cases inhibiting growth or causing cell death as antibiotics. A previously developed small molecule variable ligand display (SMVLD) method was expanded to identify a nanoparticle conjugate with a minimal inhibitory concentration (MIC99.9) of 6 muM for Mycobacterium smegmatis, a common laboratory model for M. tuberculosis and the first example of SMVLD applied to mycobacteria. Nanoparticle structure-activity relationships, modes of action and approximations of mammalian cell toxicities were also explored to expand

  16. Radionuclide diagnosis of splenic rupture in infectious mononucleosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vezina, W.C.; Nicholson, R.L.; Cohen, P.

    1984-06-01

    Spontaneous splenic rupture is a rare but serious complication of infectious mononucleosis. Although radionuclide spleen imaging is a well accepted method for diagnosis of traumatic rupture, interpretation can be difficult in the setting of mononucleosis, as tears may be ill-defined and diagnosis hampered by inhomogeneous splenic uptake. Four proven cases of spontaneous rupture are presented, three of which illustrate these diagnostic problems.

  17. Resveratrol-loaded glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles: Preparation, characterization, and targeting effect on liver tumors.

    PubMed

    Wu, Mingfang; Lian, Bolin; Deng, Yiping; Feng, Ziqi; Zhong, Chen; Wu, Weiwei; Huang, Yannian; Wang, Lingling; Zu, Chang; Zhao, Xiuhua

    2017-08-01

    In this study, glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were prepared to establish a tumor targeting nano-sized drug delivery system. Glycyrrhizic acid was coupled to human serum albumin, and resveratrol was encapsulated in glycyrrhizic acid-conjugated human serum albumin by high-pressure homogenization emulsification. The average particle size of sample nanoparticles prepared under the optimal conditions was 108.1 ± 5.3 nm with a polydispersity index (PDI) of 0.001, and the amount of glycyrrhizic acid coupled with human serum albumin was 112.56 µg/mg. The drug encapsulation efficiency and drug loading efficiency were 83.6 and 11.5%, respectively. The glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles were characterized through laser light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analyses, and gas chromatography. The characterization results showed that resveratrol in glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles existed in amorphous state and the residual amounts of chloroform and methanol in nanoparticles were separately less than the international conference on harmonization (ICH) limit. The in vitro drug-release study showed that the nanoparticles released the drug slowly and continuously. The inhibitory rate of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide method. The IC50 values of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles and resveratrol were 62.5 and 95.5 µg/ml, respectively. The target ability of glycyrrhizic acid-conjugated human serum albumin nanoparticles wrapping resveratrol nanoparticles

  18. Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece

    NASA Astrophysics Data System (ADS)

    Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R.

    2008-08-01

    West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides 40K, 235U, 238U, 226Ra, 228Ra and 232Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for 232Th, 228Ra and 40K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

  19. Chemoelectronic circuits based on metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  20. Chemoelectronic circuits based on metal nanoparticles.

    PubMed

    Yan, Yong; Warren, Scott C; Fuller, Patrick; Grzybowski, Bartosz A

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the 'jammed' nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems 'chemoelectronic'. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also 'green', in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  1. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  2. Tissue radionuclide concentrations in water birds and upland birds on the Hanford Site (USA) from 1971-2009.

    PubMed

    Delistraty, Damon; Van Verst, Scott

    2011-08-01

    Historical operations at the Hanford Site (Washington State, USA) have released a wide array of non-radionuclide and radionuclide contaminants into the environment. As a result, there is a need to characterize contaminant effects on site biota. Within this framework, the main purpose of our study was to evaluate radionuclide concentrations in bird tissue, obtained from the Hanford Environmental Information System (HEIS). The database was sorted by avian group (water bird vs. upland bird), radionuclide (over 20 analytes), tissue (muscle, bone, liver), location (onsite vs. offsite), and time period (1971-1990 vs. 1991-2009). Onsite median concentrations in water birds were significantly higher (Bonferroni P < 0.05) than those in onsite upland birds for Cs-137 in muscle (1971-1990) and Sr-90 in bone (1991-2009), perhaps due to behavioral, habitat, or trophic species differences. Onsite median concentrations in water birds were higher (borderline significance with Bonferroni P = 0.05) than those in offsite birds for Cs-137 in muscle (1971-1990). Onsite median concentrations in the earlier time period were significantly higher (Bonferroni P < 0.05) than those in the later time period for Co-60, Cs-137, Eu-152, and Sr-90 in water bird muscle and for Cs-137 in upland bird muscle tissue. Median concentrations of Sr-90 in bone were significantly higher (Bonferroni P < 0.05) than those in muscle for both avian groups and both locations. Over the time period, 1971-2009, onsite median internal dose was estimated for each radionuclide in water bird and upland bird tissues. However, a meaningful dose comparison between bird groups was not possible, due to a dissimilar radionuclide inventory, mismatch of time periods for input radionuclides, and lack of an external dose estimate. Despite these limitations, our results contribute toward ongoing efforts to characterize ecological risk at the Hanford Site. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Interaction of Colloidal Gold Nanoparticles with Model Serum Proteins: The Nanoparticle-Protein 'Corona' from a PhysicoChemical Viewpoint

    NASA Astrophysics Data System (ADS)

    Dominguez Medina, Sergio

    When nanoparticles come in contact with biological fluids they become coated with a mixture of proteins present in the media, forming what is known as the nanoparticle-protein 'corona'. This corona changes the nanoparticles' original surface properties and plays a central role in how these get screened by cellular receptors. In the context of biomedical research, this presents a bottleneck for the transition of nanoparticles from research laboratories to clinical settings. It is therefore fundamental to probe these nanoparticle-protein interactions in order to understand the different physico-chemical mechanisms involved. This thesis is aimed to investigate the exposure of colloidal gold nanoparticles to model serum proteins, particularly serum albumin, the main transporter of molecular compounds in the bloodstream of mammals. A set of experimental tools based on optical microscopy and spectroscopy were developed in order to probe these interactions in situ. First, the intrinsic photoluminescence and elastic scattering of individual gold nanoparticles were investigated in order to understand its physical origin. These optical signals were then used to measure the size of the nanoparticles while in Brownian diffusion using fluctuation correlation spectroscopy. This spectroscopic tool was then applied to detect the binding of serum albumin onto the nanoparticle surface, increasing its hydrodynamic size. By performing a binding isotherm as a function of protein concentration, it was determined that serum albumin follows an anti-cooperative binding mechanism on negatively charged gold nanoparticles. This protein monolayer substantially enhanced the stability of the colloid, preventing their aggregation in saline solutions with ionic strength higher than biological media. Cationic gold nanoparticles in contrast, aggregated when serum albumin was present at a low protein-to-nanoparticle ratio, but prevented aggregation if exposed in excess. Single-molecule fluorescence

  4. Radionuclides in groundwater flow system understanding

    NASA Astrophysics Data System (ADS)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  5. Antibacterial effects of laser ablated Ni nanoparticles

    NASA Astrophysics Data System (ADS)

    Shamaila, S.; Wali, H.; Sharif, R.; Nazir, J.; Zafar, N.; Rafique, M. S.

    2013-10-01

    The interaction of nickel nanoparticles with Escherichia coli (E. coli) bacteria has been studied. The nickel nanoparticles have been fabricated by continuous wave laser ablation of nickel target and their properties are studied using different characterization techniques. The antibacterial activity of nickel nanoparticles was checked against E. coli bacteria. Escherichia coli were cultured in nutrients broth and different concentrations of nickel nanoparticles were added to bacterial culture solution to investigate the interaction of nickel nanoparticles with bacteria and to check toxicity of the nickel nanoparticles against E. coli. The fabricated Ni nanoparticles have exhibited considerable antimicrobial activity against E. coli.

  6. Quantitation of aortic and mitral regurgitation in the pediatric population: evaluation by radionuclide angiocardiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurwitz, R.A.; Treves, S.; Freed, M.

    The ability to quantitate aortic (AR) or mitral regurgitation (MR), or both, by radionuclide angiocardiography was evaluated in children and young adults at rest and during isometric exercise. Regurgitation was estimated by determining the ratio of left ventricular stroke volume to right ventricular stroke volume obtained during equilibrium ventriculography. The radionuclide measurement was compared with results of cineangiography, with good correlation between both studies in 47 of 48 patients. Radionuclide stroke volume ratio was used to classify severity: the group with equivocal regurgitation differed from the group with mild regurgitation (p less than 0.02); patients with mild regurgitation differed frommore » those with moderate regurgitation (p less than 0.001); and those with moderate regurgitation differed from those with severe regurgitation (p less than 0.01). The stroke volume ratio was responsive to isometric exercise, remaining constant or increasing in 16 of 18 patients. After surgery to correct regurgitation, the stroke volume ratio significantly decreased from preoperative measurements in all 7 patients evaluated. Results from the present study demonstrate that a stroke volume ratio greater than 2.0 is compatible with moderately severe regurgitation and that a ratio greater than 3.0 suggests the presence of severe regurgitation. Thus, radionuclide angiocardiography should be useful for noninvasive quantitation of AR or MR, or both, helping define the course of young patients with left-side valvular regurgitation.« less

  7. Tracing Fallout Radionuclide Behavior During Atmospheric Deposition and Pedogenesis

    NASA Astrophysics Data System (ADS)

    Landis, J. D.

    2017-12-01

    Short-lived fallout radionuclides 7Be (54 day half-life) and 210Pbexcess (22.3 year half-life) inform problems in geomorphology covering timespans of days to decades. Linking these radionuclides together is a powerful strategy, since the ratio 7Be:210Pb can control for changes in the activity of each, provided that the tracers have similar behavior through relevant chemical and physical processes such as interception, sorption, dilution, transport, etc. To investigate the extent to which 7Be and 210Pbxs share a common behavior, I measured these radionuclides in atmospheric deposition, vegetation, and stable soil, sediment and peat profiles. Bulk deposition of 7Be and 210Pb was measured in weekly intervals for 6 years of continuous record. Samples of red oak leaves (Quercus rubra) were collected regularly over 4 years at a site co-located with precipitation collection. Soil pits were sampled by high resolution methods at regional, undisturbed sites. In all samples 7Be, 210Pb, and other nuclides were measured by high-precision gamma spectrometry. Depositional fluxes of 7Be and 210Pb were highly correlated, with 7Be:210Pb converging to the long-term mean activity ratio of ca. 10.5 over intervals of 7 to 14 days. Red oak foliage accumulated 7Be and 210Pb at a linear rate during both growth and senescence, and appeared to maintain a dynamic equilibrium with atmospheric deposition. Canopies of both forest and grass intercepted on the order of 50% of deposition; the remainder reached underlying soil, where 7Be activity showed an exponential decline due to rapid hydrologic penetration of soil surface. Features of 210Pbxs soil profiles, including a subsurface maximum, reflect the same penetration pattern integrated over decades of deposition. Application of the Linked Radionuclide aCcumulation (LRC) model demonstrated that 210Pb moves through soil, peat and fluvial sediment profiles at rates on the order of 1 mm per year, similar to other atmospherically-derived metals

  8. Toxicity of CeO2 nanoparticles - the effect of nanoparticle properties.

    PubMed

    Leung, Yu Hang; Yung, Mana M N; Ng, Alan M C; Ma, Angel P Y; Wong, Stella W Y; Chan, Charis M N; Ng, Yip Hang; Djurišić, Aleksandra B; Guo, Muyao; Wong, Mabel Ting; Leung, Frederick C C; Chan, Wai Kin; Leung, Kenneth M Y; Lee, Hung Kay

    2015-04-01

    Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Targeting therapeutics to the glomerulus with nanoparticles.

    PubMed

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. DNA-programmable nanoparticle crystallization.

    PubMed

    Park, Sung Yong; Lytton-Jean, Abigail K R; Lee, Byeongdu; Weigand, Steven; Schatz, George C; Mirkin, Chad A

    2008-01-31

    It was first shown more than ten years ago that DNA oligonucleotides can be attached to gold nanoparticles rationally to direct the formation of larger assemblies. Since then, oligonucleotide-functionalized nanoparticles have been developed into powerful diagnostic tools for nucleic acids and proteins, and into intracellular probes and gene regulators. In contrast, the conceptually simple yet powerful idea that functionalized nanoparticles might serve as basic building blocks that can be rationally assembled through programmable base-pairing interactions into highly ordered macroscopic materials remains poorly developed. So far, the approach has mainly resulted in polymerization, with modest control over the placement of, the periodicity in, and the distance between particles within the assembled material. That is, most of the materials obtained thus far are best classified as amorphous polymers, although a few examples of colloidal crystal formation exist. Here, we demonstrate that DNA can be used to control the crystallization of nanoparticle-oligonucleotide conjugates to the extent that different DNA sequences guide the assembly of the same type of inorganic nanoparticle into different crystalline states. We show that the choice of DNA sequences attached to the nanoparticle building blocks, the DNA linking molecules and the absence or presence of a non-bonding single-base flexor can be adjusted so that gold nanoparticles assemble into micrometre-sized face-centred-cubic or body-centred-cubic crystal structures. Our findings thus clearly demonstrate that synthetically programmable colloidal crystallization is possible, and that a single-component system can be directed to form different structures.

  11. Production and study of radionuclides at the research institute of atomic reactors (NIIAR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karelin, E.A.; Gordeev, Y.N.; Filimonov, V.T.

    1995-01-01

    The main works of the Radionuclide Sources and Preparations Department (ORIP) of the Research Institute of Atomic Reactors (NIIAR) are summarized. The major activity of the Radionuclide Sources and Preparations Department (ORIP) is aimed at production of radioactive preparations of trans-plutonium elements (TPE) and also of lighter elements (from P to Ir), manufacture of ionizing radiation sources thereof, and scientific research to develop new technologies. One of the radionuclides that recently has received major attention is gadolinium-153. Photon sources based on it are used in densimeters for diagnostics of bone deseases. The procedure for separating gadolinium and europium, which ismore » currently used at the Research Institute of Atomic Reactors (NILAR), is based on europium cementation with the use of sodium amalgam. The method, though efficient, did not until recently permit an exhaustive removal of radioactive europium from {sup 153}Gd. The authors have thoroughly studied the separation process in semi-countercurrent mode, using citrate solutions. A special attention was given to the composition of europium complex species.« less

  12. Characteristics of Chernobyl-derived radionuclides in particulate form in surface waters in the exclusion zone around the Chernobyl Nuclear Power Plant

    NASA Astrophysics Data System (ADS)

    Matsunaga, Takeshi; Ueno, Takashi; Amano, Hikaru; Tkatchenko, Y.; Kovalyov, A.; Watanabe, Miki; Onuma, Yoshikazu

    1998-12-01

    The distribution of Chernobyl-derived radionuclides in river and lake water bodies at 6-40 km from the Chernobyl Nuclear Power Plant was studied. Current levels of radionuclides (Cesium-137, Strontium-90, Plutonium, Americium and Curium isotopes) in water bodies and their relation to the ground contamination are presented. The investigation of the radionuclide composition of aqueous and ground contamination revealed that radionuclides on suspended solids (particulate form) originate mainly from the erosion of the contaminated surface soil layer in the zone. Apparent distribution ratios between particulate and dissolved forms are compared to known distribution coefficients.

  13. Cytoprotective nanoparticles by conjugation of a polyhis tagged annexin V to a nanoparticle drug.

    PubMed

    Chen, Howard H; Yuan, Hushan; Cho, Hoonsung; Sosnovik, David E; Josephson, Lee

    2015-02-14

    We synthesized a cytoprotective magnetic nanoparticle by reacting a maleimide functionalized Feraheme (FH) with a disulfide linked dimer of a polyhis tagged annexin V. Following reductive cleavage of disulfide, the resulting annexin-nanoparticle (diameter = 28.0 ± 2.0 nm by laser light scattering, 7.6 annexin's/nanoparticle) was cytoprotective to cells subjected to plasma membrane disrupting chemotherapeutic or mechanical stresses, and significantly more protective than the starting annexin V. Annexin-nanoparticles provide an approach to the design of nanomaterials which antagonize the plasma membrane permeability characteristic of necrosis and which may have applications as cytoprotective agents.

  14. Core-shell biopolymer nanoparticle delivery systems: synthesis and characterization of curcumin fortified zein-pectin nanoparticles.

    PubMed

    Hu, Kun; Huang, Xiaoxia; Gao, Yongqing; Huang, Xulin; Xiao, Hang; McClements, David Julian

    2015-09-01

    Biopolymer core-shell nanoparticles were fabricated using a hydrophobic protein (zein) as the core and a hydrophilic polysaccharide (pectin) as the shell. Particles were prepared by coating cationic zein nanoparticles with anionic pectin molecules using electrostatic deposition (pH 4). The core-shell nanoparticles were fortified with curcumin (a hydrophobic bioactive molecule) at a high loading efficiency (>86%). The resulting nanoparticles were spherical, relatively small (diameter ≈ 250 nm), and had a narrow size distribution (polydispersity index ≈ 0.24). The encapsulated curcumin was in an amorphous (rather than crystalline form) as detected by differential scanning calorimetry (DSC). Fourier transform infrared (FTIR) and Raman spectra indicated that the encapsulated curcumin interacted with zein mainly through hydrophobic interactions. The nanoparticles were converted into a powdered form that had good water-dispersibility. These core-shell biopolymer nanoparticles could be useful for incorporating curcumin into functional foods and beverages, as well as dietary supplements and pharmaceutical products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Nanoparticles as potential clinical therapeutic agents in Alzheimer's disease: focus on selenium nanoparticles.

    PubMed

    Nazıroğlu, Mustafa; Muhamad, Salina; Pecze, Laszlo

    2017-07-01

    In etiology of Alzheimer's disease (AD), involvement of amyloid β (Aβ) plaque accumulation and oxidative stress in the brain have important roles. Several nanoparticles such as titanium dioxide, silica dioxide, silver and zinc oxide have been experimentally using for treatment of neurological disease. In the last decade, there has been a great interest on combination of antioxidant bioactive compounds such as selenium (Se) and flavonoids with the oxidant nanoparticles in AD. We evaluated the most current data available on the physiological effects of oxidant and antioxidant nanoparticles. Areas covered: Oxidative nanoparticles decreased the activities of reactive oxygen species (ROS) scavenging enzymes such as glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase in the brain of rats and mice. However, Se-rich nanoparticles in small size (5-15 nm) depleted Aβ formation through decreasing ROS production. Reports on low levels of Se in blood and tissue samples and the low activities of GSH-Px, catalase and SOD enzymes in AD patients and animal models support the proposed crucial role of oxidative stress in the pathogenesis of AD. Expert commentary: In conclusion, present literature suggests that Se-rich nanoparticles appeared to be a potential therapeutic compound for the treatment of AD.

  16. New irradiation facilities for development of production methods of medical radionuclides at cyclotrons at Forschungszentrum Jülich

    NASA Astrophysics Data System (ADS)

    Spellerberg, S.; Scholten, B.; Spahn, I.; Felden, O.; Gebel, R.; Qaim, S. M.; Bai, M.; Neumaier, B.

    2017-05-01

    An essential basis for research and development work on radiopharmaceuticals is the efficient production of radionuclides of high quality. In this process research-oriented studies aiming for elucidation of biochemical processes require novel products. The radionuclide development at INM-5 entails basic research, e.g. the determination of nuclear reaction data, as well as technical aspects of practical production, such as high-current targetry, chemical separation, formulation and quality control. In this work developments, adaptation and optimization of irradiation facilities at the BC 1710, JULIC as Injector of COSY and COSY itself are summarized, which shall allow the extension of radionuclide production possibilities, aiming at innovations in medical applications.

  17. Fabrication of transparent ceramics using nanoparticles

    DOEpatents

    Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A

    2012-09-18

    A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.

  18. Electrocardiograph-gated single photon emission computed tomography radionuclide angiography presents good interstudy reproducibility for the quantification of global systolic right ventricular function.

    PubMed

    Daou, Doumit; Coaguila, Carlos; Vilain, Didier

    2007-05-01

    Electrocardiograph-gated single photon emission computed tomography (SPECT) radionuclide angiography provides accurate measurement of right ventricular ejection fraction and end-diastolic and end-systolic volumes. In this study, we report the interstudy precision and reliability of SPECT radionuclide angiography for the measurement of global systolic right ventricular function using two, three-dimensional volume processing methods (SPECT-QBS, SPECT-35%). These were compared with equilibrium planar radionuclide angiography. Ten patients with chronic coronary artery disease having two SPECT and planar radionuclide angiography acquisitions were included. For the right ventricular ejection fraction, end-diastolic volume and end-systolic volume, the interstudy precision and reliability were better with SPECT-35% than with SPECT-QBS. The sample sizes needed to objectify a change in right ventricular volumes or ejection fraction were lower with SPECT-35% than with SPECT-QBS. The interstudy precision and reliability of SPECT-35% and SPECT-QBS for the right ventricle were better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography on the same population. SPECT-35% and SPECT-QBS present good interstudy precision and reliability for right ventricular function, with the results favouring the use of SPECT-35%. The results are better than those of equilibrium planar radionuclide angiography, but poorer than those previously reported for the left ventricle with SPECT radionuclide angiography. They need to be confirmed in a larger population.

  19. Microfluidic Synthesis of Hybrid Nanoparticles with Controlled Lipid Layers: Understanding Flexibility-Regulated Cell-Nanoparticle Interaction.

    PubMed

    Zhang, Lu; Feng, Qiang; Wang, Jiuling; Zhang, Shuai; Ding, Baoquan; Wei, Yujie; Dong, Mingdong; Ryu, Ji-Young; Yoon, Tae-Young; Shi, Xinghua; Sun, Jiashu; Jiang, Xingyu

    2015-10-27

    The functionalized lipid shell of hybrid nanoparticles plays an important role for improving their biocompatibility and in vivo stability. Yet few efforts have been made to critically examine the shell structure of nanoparticles and its effect on cell-particle interaction. Here we develop a microfluidic chip allowing for the synthesis of structurally well-defined lipid-polymer nanoparticles of the same sizes, but covered with either lipid-monolayer-shell (MPs, monolayer nanoparticles) or lipid-bilayer-shell (BPs, bilayer nanoparticles). Atomic force microscope and atomistic simulations reveal that MPs have a lower flexibility than BPs, resulting in a more efficient cellular uptake and thus anticancer effect than BPs do. This flexibility-regulated cell-particle interaction may have important implications for designing drug nanocarriers.

  20. Isosorbide dinitrate and nifedipine treatment of achalasia: a clinical, manometric and radionuclide evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelfond, M.; Rozen, P.; Gilat, T.

    1982-11-01

    The effects of sublingual isosorbide dinitrate (5 mg) and nifedipine (20 mg) were compared in 15 patients with achalasia. The parameters examined included the manometric measurement of the lower esophageal sphincter pressure, the radionuclide assessment of esophageal emptying and the clinical response. The mean basal lower esophageal sphincter pressure fell significantly after both drugs (p less than 0.01), with a maximum fall of 63.5% 10 min after receiving isosorbide dinitrate, but by only 46.7% 30 min after nifedipine. The esophageal radionuclide test meal retention was significantly less (p less than 0.01) only after receiving isosorbide dinitrate. The drug improved initialmore » esophageal emptying by its effect on the lower esophageal sphincter and by relieving the test meal hold-up noted to occur at the junction of the upper and midesophagus. Eight patients cleared their test meal within 10 min after isosorbide dinitrate administration while only two did so after nifedipine. Subjectively, 13 patients had their dysphagia relieved by isosorbide dinitrate and 8 by nifedipine. However, this relief was not confirmed in 4 patients by the radionuclide study and they, as well as the other 3 patients who did not respond to therapy, were referred to pneumatic dilatation. Side effects were more prominent after nitrates. Three of the patients are currently receiving nifedipine and 5 patients received isosorbide dinitrate therapy for 8-14 mo. The radionuclide test meal is currently the best way of objectively evaluating drug therapy in patients with achalasia. Isosorbide dinitrate is more effective than nifedipine in relieving their symptoms.« less