Science.gov

Sample records for nanoparticulate ptru direct

  1. Preparation of carbon-supported PtRu nanoparticles for direct methanol fuel cell applications - a comparative study

    NASA Astrophysics Data System (ADS)

    Deivaraj, T. C.; Lee, Jim Yang

    Carbon-supported PtRu nanoparticles were prepared by different methods that involve the simultaneous chemical reduction of H 2PtCl 6 and RuCl 3 by NaBH 4 at room temperature ( PtRu-1), by ethanol under reflux ( PtRu-2), and by the thermal decomposition of a single-source molecular precursor [(bipy) 3Ru] (PtCl 6) ( PtRu-3). Transmission electron microscopy (TEM) examinations show that the mean diameter of the PtRu nanoparticles is lowest for PtRu-1 followed by PtRu-2 and PtRu-3. Measurements of electrocatalytic properties, however, reveal a different trend, namely: PtRu-3 > PtRu-1 > PtRu-2. This is attributed to the formation of a more homogenous alloy nanoparticle system from the thermolysis of the single-source molecular precursor. All three catalysts are more active than commercially available E-TEK (20 wt.%) Pt catalyst. PtRu-3 also displays the highest tolerance to carbon monoxide. Heat treatment of PtRu-1 and PtRu-2 only marginally affects their electrocatalytic performance, whereas the co-reduction of H 2PtCl 6 and RuCl 3 under alkaline conditions has more adverse outcomes.

  2. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.

    PubMed

    Li, Wenzhen; Wang, Xin; Chen, Zhongwei; Waje, Mahesh; Yan, Yushan

    2006-08-10

    Pt-Ru supported on carbon nanotubes (CNTs) (single-walled nanotubes, double-walled nanotubes (DWNTs), and multi-walled nanotubes) catalysts are prepared by an ethylene glycol reduction method. Pt-Ru nanoparticles with a diameter of 2-3 nm and narrow particle size distributions are uniformly deposited onto the CNTs. A simple and fast filtration method followed by a hot-press film transfer is employed to prepare the anode catalyst layer on a Nafion membrane. The Pt-Ru/DWNTs catalyst shows the highest specific activity for methanol oxidation reaction in rotating disk electrode experiments and the highest performance as an anode catalyst in direct methanol fuel cell (DMFC) single cell tests. The DMFC single cell with Pt-Ru/DWNTs (50 wt %, 0.34 mg Pt-Ru/cm(2)) produces a 68% enhancement of power density, and at the same time, an 83% reduction of Pt-Ru electrode loading when compared to Pt-Ru/C (40 wt %, 2.0 mg Pt-Ru/cm(2)). PMID:16884255

  3. Highly transparent and conductive Al-doped ZnO nanoparticulate thin films using direct write processing.

    PubMed

    Vunnam, S; Ankireddy, K; Kellar, J; Cross, W

    2014-05-16

    Solution processable Al-doped ZnO (AZO) thin films are attractive candidates for low cost transparent electrodes. We demonstrate here an optimized nanoparticulate ink for the fabrication of AZO thin films using scalable, low-cost direct write processing (ultrasonic spray deposition) in air at atmospheric pressure. The thin films were made via thermal processing of as-deposited films. AZO films deposited using the proposed nanoparticulate ink with further reducing in vacuum and rf plasma of forming gas exhibited optical transparency greater than 95% across the visible spectrum, and electrical resistivity of 0.5 Ω cm and it drops down to 7.0 × 10(-2) Ω cm after illuminating with UV light, which is comparable to commercially available tin doped indium oxide colloidal coatings. Various structural analyses were performed to investigate the influence of ink chemistry, deposition parameters, and annealing temperatures on the structural, optical, and electrical characteristics of the spray deposited AZO thin films. Optical micrographs confirmed the presence of surface defects and cracks using the AZO NPs ink without any additives. After adding N-(2-Aminoethyl)-3-aminopropylmethyldimethoxy silane to the ink, AZO films exhibited an optical transparency which was virtually identical to that of the plain glass substrate. PMID:24763438

  4. Optimized CeO2 content of the carbon nanofiber support of PtRu catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kunitomo, Hikari; Ishitobi, Hirokazu; Nakagawa, Nobuyoshi

    2015-11-01

    A series of CeO2 embedded carbon nanofibers, CECNFs, with different CeO2 contents was prepared by an electrospinning technique. About 15 wt% PtRu nanoparticles were deposited on the fibers, and the effect of the CeO2 content on the methanol oxidation activity of the catalyst, PtRu/CECNF, was investigated. Cyclic voltammetry (CV), chronoamperometry (CA) and CO stripping electrochemical measurements and physical characterization along with X-ray diffraction (XRD) analysis, energy dispersive X-ray (EDX) analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) were carried out on the prepared catalysts. The mass activity of the PtRu was significantly increased by the CeO2 addition up to Ce/C = 0.4, and the maximized activity was 2 times higher than that without CeO2. The increased activity was attributed to the strong interaction between the metal and oxide in the embedded nanofiber structure. A DMFC with the PtRu/CECNF exhibited more than 2.5 times high power density with one half the PtRu loading compared to that of the commercial catalyst, PtRu/Ccom.

  5. Effect of the structural characteristics of binary Pt-Ru and ternary Pt-Ru-M fuel cell catalysts on the activity of ethanol electrooxidation in acid medium.

    PubMed

    Antolini, Ermete

    2013-06-01

    In view of their possible use as anode materials in acid direct ethanol fuel cells, the electrocatalytic activity of Pt-Ru and Pt-Ru-M catalysts for ethanol oxidation has been investigated. This minireview examines the effects of the structural characteristics of Pt-Ru, such as the degree of alloying and Ru oxidation state, on the electrocatalytic activity for ethanol oxidation. PMID:23650220

  6. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst.

    PubMed

    Chen, De-Jun; Tong, YuYe J

    2015-08-01

    Based on detailed in situ attenuated total-reflection-surface-enhanced IR reflection absorption spectroscopy (ATR-SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson-Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt-Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway. PMID:26148459

  7. Comparative cytotoxicity assessments of some manufactured and anthropogenic nanoparticulate materials

    NASA Astrophysics Data System (ADS)

    Soto, Karla Fabiola

    Due to increasing diversity of newly engineered nanoparticles, it is important to consider the hazards of these materials. Very little is known regarding the potential toxicity of relatively new nanomaterials. However, beginning with several historical accounts of nanomaterials applications---chrysotile asbestos and silver---it was assumed that these examples would provide some awareness and guidelines for future nanomaterial and nanotechnology applications, especially health effects. In this study in vitro assays were performed on a murine alveolar macrophage cell line (RAW 264.7), human alveolar macrophage cell line (THB-1), and human epithelial lung cell line (A549) to assess the comparative cytotoxicity of a wide range of manufactured (Ag, TiO2, Fe2O3, Al2O3, ZrO2, black carbon, two different types of multiwall structures and chrysotile asbestos as the toxicity standard) and anthropogenic nanoparticulates. There are several parameters of nanoparticulates that are considered to trigger an inflammatory response (particularly respiratory) or cause toxicity. These parameters include: particle size, shape, specific surface area, transition metals in particulates, and organic compounds. Therefore, a wide variety of manufactured and anthropogenic nanoparticulates having different morphologies, sizes, specific surface area and chemistries as noted were tested. To determine the nanoparticulates' size and morphology, they were characterized by transmission electron microscopy, where it was observed that the commercial multiwall carbon nanotube aggregate had an identical morphology to chrysotile asbestos and combustion-formed carbon nanotubes, i.e.; those that form from natural gas combustion. Light optical microscopy was used to determine cell morphology upon exposure to nanoparticulates as an indication of cell death. Also, the polycyclic aromatic hydrocarbon (PAH) content of the collected nanoparticulates was analyzed and correlated with cytotoxic responses. For toxicity evaluation, cytokine production, mitochondrial function (MTT assay), reactive oxygen species generation (ROS), were assessed after 48 and 336 hours under control and exposed conditions. A simple, direct-contact assay was developed to evaluate the toxicity of anthropogenic particulate matter (PM), without removing it from high volume filter collections and exposing collected PM by direct contact with the human epithelial (A549) cells in culture. The cell viability data revealed that the manufactured nanomaterials exhibit cytotoxic response for the murine alveolar and human macrophage cell line, but in particular to the human epithelial cell line. Assay results for the direct-contact of filter-collected carbonaceous nanoparticulate, showed toxicity for all PM, but with various natural gas combustion PM being the most toxic. Light optical microscopy examination of affected human epithelial cells confirmed quantitative results. These nanoparticulate soots also produced the most reactive oxygen species (ROS) on the A549 cell culture as well as along with the Fe2O3, MWCNT-N, and black carbon (BC). Comparison of polycyclic aromatic hydrocarbon (PAH) content and concentration for the carbonaceous PM showed no PAH correlation with relative cell viability after 48 h. In addition, there was no correlation of cytotoxic response with specific surface area in the manufactured nanoparticulate materials. In conclusion, the manufactured as well as the anthropogenic nanomaterials were observed to generate large amounts of ROS and cytokines. This study suggests that the mechanism of toxicity is likely due to the generation of reactive oxygen species (ROS). Also, the comparative assessments presented, should be viewed as a precaution when considering the inhalation of the corresponding nanoparticulate materials in concentrations approaching those identified to be dangerous for recognized pathogens such as silica, black carbon, and asbestos. Humans should avoid breathing these nanoparticulate materials, although there are anthropogenic nanoparticulate materials such as MWCNT aggregates produced by natural gas stoves in homes which can provide low dose, long-term exposure prospects. Lastly, the implementation of nanomaterials or nanotechnology requires societal and ethical considerations as a principal part of design implementation, manufacturing, or life-cycle and re-cycle issues.

  8. Enhancement of ethanol oxidation at Pt and PtRu nanoparticles dispersed over hybrid zirconia-rhodium supports

    NASA Astrophysics Data System (ADS)

    Rutkowska, Iwona A.; Koster, Margaretta D.; Blanchard, Gary J.; Kulesza, Pawel J.

    2014-12-01

    A catalytic material for electrooxidation of ethanol that utilizes PtRu nanoparticles dispersed over thin films of rhodium-free and rhodium-containing zirconia (ZrO2) supports is described here. The enhancement of electrocatalytic activity (particularly in the potential range as low as 0.25-0.5 V vs. RHE), that has been achieved by dispersing PtRu nanoparticles (loading, 100 μg cm-2) over the hybrid Rh-ZrO2 support composed of nanostructured zirconia and metallic rhodium particles, is clearly evident from comparison of the respective voltammetric and chronoamperometric current densities recorded at room temperature (22 °C) in 0.5 mol dm-3 H2SO4 containing 0.5 mol dm-3 ethanol. Porous ZrO2 nanostructures, that provide a large population of hydroxyl groups in acidic medium in the vicinity of PtRu sites, are expected to facilitate the ruthenium-induced removal of passivating CO adsorbates from platinum, as is apparent from the diagnostic experiments with a small organic molecule such as methanol. Although Rh itself does not show directly any activity toward ethanol oxidation, the metal is expected to facilitate C-C bond splitting in C2H5OH. It has also been found during parallel voltammetric and chronoamperometric measurements that the hybrid Rh-ZrO2 support increases activity of the platinum component itself toward ethanol oxidation in the low potential range.

  9. Composites copolymer-nanoparticule : courbure

    NASA Astrophysics Data System (ADS)

    Hamdoun, B.; Ausserré, D.; Joly, S.

    1996-08-01

    The compression coefficient and the mean curvature coefficient of a composite of an A-B diblock copolymer charged with nanoparticles depend on the concentration of nanoparticles and on the dissymmetry of the copolymer chains. Concerning the curvature coefficient, a distinction must be done between an adiabatic and an isotherm coefficient when the copolymer chains are not symmetric or when Φ is not zero. Finally, the AB interfaces of the composite film present a spontaneous curvature that we calculate in the approximation of “small” nanoparticles. Les coefficients de compression et de courbure moyenne d'un composite de copolymères diblocs A-B et de nanoparticules dépendent de la concentration Φ en nanoparticules et de la dissymétrie du copolymères. Pour la courbure, on doit faire une distinction entre un coefficient adiabatique et un coefficient isotherme dès que le polymère n'est plus symétrique ou que Φ n'est plus nulle. Enfin, et surtout, les interfaces AB du composite présentent une courbure spontanée que nous calculons dans l'approximation des “petites” nanoparticules.

  10. The formation mechanism of bimetallic PtRu alloy nanoparticles in solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Mi, Jian-Li; Nrby, Peter; Bremholm, Martin; Becker, Jacob; Iversen, Bo B.

    2015-10-01

    An understanding of the nucleation and growth mechanism of bimetallic nanoparticles in solvothermal synthesis is important for further development of nanoparticles with tailored nanostructures and properties. Here the formation of PtRu alloy nanoparticles in a solvothermal synthesis using metal acetylacetonate salts as precursors and ethanol as both the solvent and reducing agent has been studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXRD). Unlike the classical mechanism for the synthesis of monodisperse sols, the nucleation and growth processes of bimetallic PtRu nanoparticles occur simultaneously under solvothermal conditions. In the literature co-reduction of Pt and Ru is often assumed to be required to form PtRu bimetallic nanocrystals, but it is shown that monometallic Pt nanocrystals nucleate first and rapidly grow to an average size of 5 nm. Subsequently, the PtRu bimetallic alloy is formed in the second nucleation stage through a surface nucleation mechanism related to the reduction of Ru. The calculated average crystallite size of the resulting PtRu nanocrystals is smaller than that of the primary Pt nanocrystals due to the large disorder in the PtRu alloyed structure.An understanding of the nucleation and growth mechanism of bimetallic nanoparticles in solvothermal synthesis is important for further development of nanoparticles with tailored nanostructures and properties. Here the formation of PtRu alloy nanoparticles in a solvothermal synthesis using metal acetylacetonate salts as precursors and ethanol as both the solvent and reducing agent has been studied by in situ synchrotron radiation powder X-ray diffraction (SR-PXRD). Unlike the classical mechanism for the synthesis of monodisperse sols, the nucleation and growth processes of bimetallic PtRu nanoparticles occur simultaneously under solvothermal conditions. In the literature co-reduction of Pt and Ru is often assumed to be required to form PtRu bimetallic nanocrystals, but it is shown that monometallic Pt nanocrystals nucleate first and rapidly grow to an average size of 5 nm. Subsequently, the PtRu bimetallic alloy is formed in the second nucleation stage through a surface nucleation mechanism related to the reduction of Ru. The calculated average crystallite size of the resulting PtRu nanocrystals is smaller than that of the primary Pt nanocrystals due to the large disorder in the PtRu alloyed structure. Electronic supplementary information (ESI) available: Details of experiments, details of Rietveld refinements and refined parameters. See DOI: 10.1039/c5nr04459f

  11. PtRu nanoparticles supported on nitrogen-doped polyhedral mesoporous carbons as electrocatalyst for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunsong; Zhu, Rong; Cui, Ying; Zhong, Jindi; Zhang, Xiaohua; Chen, Jinhua

    2014-04-01

    Nitrogen-doped mesoporous carbons (NMPCs) with well-developed polyhedral morphology were prepared by direct carbonization of zeolitic imidazolate framework-8 (ZIF-8) nanopolyhedrons. The fantastic structural characteristics of NMPCs such as ultrahigh BET surface area (1960 m2 g-1), large pore volume (1.16 cm3 g-1), and nitrogen doping make it an excellent catalyst support. PtRu nanoparticles (with a size of approximately 1.9 nm) were homogeneously supported on NMPCs by microwave-assisted reduction in ethylene glycol, and the obtained PtRu/NMPCs catalyst shows a significantly higher electrocatalytic activity and stability for methanol oxidation than the typical commercial PtRu/C (E-TEK) catalyst.

  12. PtRu nanoparticles supported on nitrogen-doped polyhedral mesoporous carbons as electrocatalyst for methanol oxidation.

    PubMed

    Zhang, Yunsong; Zhu, Rong; Cui, Ying; Zhong, Jindi; Zhang, Xiaohua; Chen, Jinhua

    2014-04-01

    Nitrogen-doped mesoporous carbons (NMPCs) with well-developed polyhedral morphology were prepared by direct carbonization of zeolitic imidazolate framework-8 (ZIF-8) nanopolyhedrons. The fantastic structural characteristics of NMPCs such as ultrahigh BET surface area (1960 m(2) g(-1)), large pore volume (1.16 cm(3) g(-1)), and nitrogen doping make it an excellent catalyst support. PtRu nanoparticles (with a size of approximately 1.9 nm) were homogeneously supported on NMPCs by microwave-assisted reduction in ethylene glycol, and the obtained PtRu/NMPCs catalyst shows a significantly higher electrocatalytic activity and stability for methanol oxidation than the typical commercial PtRu/C (E-TEK) catalyst. PMID:24594620

  13. Nanoparticulate drug delivery platforms for advancing bone infection therapies

    PubMed Central

    Uskoković, Vuk; Desai, Tejal A

    2015-01-01

    Introduction The ongoing surge of resistance of bacterial pathogens to antibiotic therapies and the consistently aging median member of the human race signal an impending increase in the incidence of chronic bone infection. Nanotechnological platforms for local and sustained delivery of therapeutics hold the greatest potential for providing minimally invasive and maximally regenerative therapies for this rare but persistent condition. Areas covered Shortcomings of the clinically available treatment options, including poly(methyl methacrylate) beads and calcium sulfate cements, are discussed and their transcending using calcium-phosphate/polymeric nanoparticulate composites is foreseen. Bone is a composite wherein the weakness of each component alone is compensated for by the strength of its complement and an ideal bone substitute should be fundamentally the same. Expert opinion Discrepancy between in vitro and in vivo bioactivity assessments is highlighted, alongside the inherent imperfectness of the former. Challenges entailing the cross-disciplinary nature of engineering a new generation of drug delivery vehicles are delineated and it is concluded that the future for the nanoparticulate therapeutic carriers belongs to multifunctional, synergistic and theranostic composites capable of simultaneously targeting, monitoring and treating internal organismic disturbances in a smart, feedback fashion and in direct response to the demands of the local environment. PMID:25109804

  14. Schottky barrier height behavior of Pt-Ru alloy contacts on single-crystal n-ZnO

    SciTech Connect

    Nagata, T.; Haemori, M.; Hayakawa, R.; Yoshitake, M.; Chikyow, T.; Volk, J.; Yamashita, Y.; Yoshikawa, H.; Ueda, S.; Kobayashi, K.

    2010-05-15

    We investigated the Schottky barrier height (SBH) behavior of binary alloy Schottky contacts on n-type zinc oxide (n-ZnO) single crystals. Pt-Ru alloy electrodes were deposited on the Zn-polar and O-polar faces of ZnO substrates by combinatorial ion-beam deposition under identical conditions. The crystal structures of the Pt-Ru alloy film changed from the Pt phase (cubic structure) to the Ru phase (hexagonal structure) in the Pt-Ru alloy phase diagram with decreasing Pt content. The SBH, determined from current-voltage measurements, decreased with decreasing Pt content, indicating that the SBH behavior also followed the Pt-Ru alloy phase diagram. The alloy electrodes on the Zn-polar face showed better Schottky properties than those on the O-polar face. Hard x-ray photoelectron spectroscopy revealed a difference in the interface oxidization of the Pt-Ru alloy: the interface of the O-polar face and Pt-Ru mixed phase with poor crystallinity had a more oxidized layer than that of the Zn-polar face. As a result of this oxidization, the O-polar face, Pt-Ru mixed, and Ru phases showed poor Schottky properties.

  15. Mucoadhesive nanoparticulate systems for peptide drug delivery.

    PubMed

    Takeuchi, H; Yamamoto, H; Kawashima, Y

    2001-03-23

    This chapter describes the preparation of and methods for evaluating mucoadhesive nanoparticulate systems, including liposomes and polymeric nanoparticles. Mucoadhesive ability is conferred on the particulate systems by coating their surface with mucoadhesive polymers such as chitosan and Carbopol. The feasibility of this surface modification was confirmed by measuring the zeta potential. Several methods of evaluating the mucoadhesive properties of particulate systems have been reported in the literature. We have also developed some novel evaluation procedures including a particle counting method using a Coulter counter for polymer-coated liposomes. The mucoadhesive properties of the polymer-coated liposomes and polymeric nanoparticles were confirmed by means of these mucoadhesion tests. In applying these mucoadhesive nanoparticles to the oral and pulmonary administration of peptide drugs, more effective and prolonged action was observed in comparison with non-coated systems, thereby confirming the usefulness of mucoadhesive nanoparticulate systems for the delivery of peptide drugs. PMID:11251244

  16. Activity-structure correlation of Pt/Ru catalysts for the electrodecomposition of methanol: the importance of RuO(2) and PtRu alloying.

    PubMed

    Wei, Yu-Chen; Liu, Chen-Wei; Wang, Kuan-Wen

    2009-06-01

    Bimetallic catalysts: The effect of PtRu alloying and the influence of RuO(2) species on the methanol oxidation activity of PtRu/C catalysts is studied. Different heat treatments-utilizing either N(2) or air-are applied to the bimetallic materials to enhance the degree of alloying or produce RuO(2) [picture: see text]. The catalysts with the best performance are characterized by a small particle size, a high degree of PtRu alloying, and the presence of a Pt-related species on their surface.Herein, we study the effect of both PtRu alloying and the presence of RuO(2) species on the promotion of the methanol oxidation activity of PtRu/C catalysts. Bimetallic catalysts composed of 15 wt % PtRu/Ce(x)C (x=0 or 10) are prepared by using the precipitation-deposition method and activated through hydrogen reduction at 470 K. Different heat treatments, utilizing either N(2) or air, are applied to the as-prepared catalysts to enhance the degree of alloying or produce RuO(2), respectively. The electrocatalytic properties, the structure, and the surface composition of the alloys are investigated systematically by means of electrochemical measurements coupled with X-ray diffraction (XRD) and temperature-programmed reduction (TPR) experiments. We find that the N(2) heat treatment improves the catalytic activity of the alloys more significantly than the air heat treatment. Also, the current density and long-term durability toward methanol oxidation can be significantly enhanced by combining a loading of 10 % CeO(2) and N(2) with a heat treatment at 570 K. Physical characterization performed by means of TPR reveals that the surface of the N(2)-treated sample is covered with Pt, thereby presenting a higher methanol oxidation current than the air-treated sample whose surface is composed of RuO(2) and some alloy species. Moreover, a model for describing the physical structures of the deposited bimetallic crystallites obtained after the N(2) and air treatments is proposed. This model suggests that the catalysts with the best performance should have a small particle size and exhibit a structure characterized by a high degree of PtRu alloying and a Pt-related surface species. Therefore, we can conclude that the effect of PtRu alloying on the electro-oxidation activity of the catalysts is superior to that of the presence of RuO(2) species under practical conditions. PMID:19396843

  17. Extracellular stability of nanoparticulate drug carriers

    PubMed Central

    Liu, Karen C.; Yeo, Yoon

    2014-01-01

    Nanoparticulate (NP) drug carrier systems are attractive vehicles for selective drug delivery to solid tumors. Ideally, NPs should evade clearance by the reticuloendothelial system while maintaining the ability to interact with tumor cells and facilitate cellular uptake. Great effort has been made to fulfill these design criteria, yielding various types of functionalized NPs. Another important consideration in NP design is the physical and functional stability during circulation, which, if ignored, can significantly undermine the promise of intelligently designed NP drug carriers. This commentary reviews several NP examples with stability issues and their consequences, ending in a discussion of experimental methods for reliable prediction of NP stability. PMID:24214175

  18. In Vitro Dissolution Testing Strategies for Nanoparticulate Drug Delivery Systems: Recent Developments and Challenges

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2013-01-01

    Nanoparticulate systems have emerged as prevalent drug delivery systems over the past few decades. These delivery systems (such as liposomes, emulsions, nanocrystals, and polymeric nanocarriers) have been extensively used to improve bioavailability, prolong pharmacological effects, achieve targeted drug delivery, as well as reduce side effects. Considering that any unanticipated change in product performance of such systems may result in toxicity and/or change in vivo efficacy, it is essential to develop suitable in vitro dissolution/release testing methods to ensure product quality and performance, and to assist in product development. The present review provides an overview of the current in vitro dissolution/release testing methods such as dialysis, sample and separate, as well as continuous flow methods. Challenges and future directions in the development of standardized and biorelevant in vitro dissolution/release testing methods for novel nanoparticulate systems are discussed. PMID:24069580

  19. First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy

    NASA Astrophysics Data System (ADS)

    Desai, Sanket K.; Neurock, Matthew

    2003-08-01

    Self-consistent gradient-corrected periodic density functional theoretical calculations are used to examine the effects of an aqueous environment on the dissociation of water over a Pt-Ru alloy. This reaction is thought to be one of the rate-limiting steps in oxidative removal of CO from the anode surface of both the direct methanol and reformate fuel cells. The reaction leads to the formation of surface hydroxyl (OH) intermediates that can subsequently oxidize adsorbed CO into CO2. We examine the energetics and mechanism for the dissociation of water over Pt66Ru33(111) in the presence of 23 water molecules (per 615 Å3 unit cell volume) that act as a solution phase and in the absence of solution (vapor phase). The reaction is endothermic by +53 kJ/mol and has an activation barrier of +105 kJ/mol when carried out in the vapor phase, but was found to be much less endothermic (+26 kJ/mol) and has a significantly lower activation barrier (+27 kJ/mol) when carried out in solution. In the vapor phase, the reaction occurs homolytically whereby the dissociation is activated by insertion of a Ru atom into the O-H bond of water. The products formed are adsorbed hydroxyl and hydrogen intermediates. In contrast, in solution, the dissociation occurs via a heterolytic path whereby the solvent molecules are directly involved in activating the O-H bond. The reaction leads to the formation of a hydroxyl intermediate that is bound to the alloy surface and a proton that is released into the solution phase. Ab initio molecular dynamics simulations were performed at 300 K to establish the sequence of elementary steps that can occur. The simulations show that water dissociates over Ru and that the hydroxyl intermediate that first forms over Ru rapidly diffuses along the metal surface, migrating over Pt as well as Ru sites. We believe that this evidence shows that diffusion occurs as the result of the proton transfer between the coadsorbed water and hydroxyl intermediates in an aqueous environment. This could have important consequences for CO oxidation in PEM fuel cells whereby the diffusion of CO and/or OH intermediates is important for the reaction at the edge of the Pt/Ru boundaries. The work reported herein applies at open-circuit potentials, but may also be appropriate at other potentials as well.

  20. Supporting PtRu catalysts on various types of carbon nanomaterials for fuel cell applications

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Ozaki, Masahiro; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki; Muramoto, Hirokazu

    2013-04-01

    PtRu catalysts were supported on five types of carbon nanomaterials of various shapes, sizes, and graphitic properties and the catalyst supports evaluated. The carbon nanomaterial used included three types of nanoparticles: Arc Black (AcB), Vulcan XC-72 (Vulcan) and graphene oxide (GO), and two types of nanofibers: carbon nanocoil (CNC) and carbon nanotube (CNT). Pt and Ru were supported by the reduction method using sodium borohydride. The metal catalyst loading was confirmed by thermo-gravimetric analysis (TGA), electron microscopy, and X-ray diffraction (XRD). Transmission electron microscopy (TEM) and XRD revealed that the diameter of PtRu catalyst nanoparticles loaded on reduced GO (rGO) and AcB were ~2 nm and was the smallest among all the samples. Shifts in Pt (111) XRD peaks of CNC and CNT were larger than those of AcB, Vulcan, and rGO. These results suggest that the diameters of catalyst nanoparticles became smaller by loading on the carbon nanoparticles with a large surface area including rGO, AcB, and Vulcan. Loading onto the carbon nanofibers enhanced the degree of PtRu alloying.

  1. Preparation and electrochemical behavior of PtRu(111) alloy single-crystal surfaces.

    PubMed

    El-Aziz, Ahmed M; Hoyer, Rüdiger; Kibler, Ludwig A

    2010-09-10

    The electrochemical behavior of a PtRu(111) single crystal with 1:1 bulk atomic ratio is investigated for the first time by means of cyclic voltammetry and scanning tunneling microscopy (STM). The electrode surfaces are enriched with either Ru or Pt, depending on the cooling conditions after inductive heating. Analysis of the surfaces by STM shows a typical topography with smooth terraces separated by monoatomic high steps. The voltammetric characterization of PtRu(111) in acid media clearly reveals an altered electrochemical behavior of the Pt and Ru surfaces compared to Pt(111) and Ru(0001), respectively. Systematic changes are observed for hydrogen adsorption and underpotential deposition of copper as test reactions. Based on theoretical calculations in the literature, it is experimentally verified that the Pt-rich and the Ru-rich surfaces of the PtRu(111) single-crystal alloy bind adsorbates such as hydrogen significantly weaker and stronger than the pure single-crystal electrode surfaces. Such changes in surface reactivity can be crucial for electrocatalytic reactions. PMID:20665619

  2. Uniform dispersion of 1 : 1 PtRu nanoparticles in ordered mesoporous carbon for improved methanol oxidation.

    PubMed

    Li, Fujun; Chan, Kwong-Yu; Yung, Hoi; Yang, Chunzhen; Ting, Siu Wa

    2013-08-28

    PtRu nanoparticles dispersed in CMK3 mesoporous carbons have been prepared via a CPDM (carbonization over poly-furfuryl alcohol-protected dispersed mixed metals) method. The as-synthesized CMK3 supported PtRu nanoparticles are characterized using tomography and cross-sectional TEM analysis and are compared against those synthesized by the conventional ethylene glycol (EG) method. The atomic ratio of Pt : Ru, which has an essential role on methanol oxidation, is found to be consistent at the nanometer scale. The good dispersion and uniform composition of PtRu nanoparticles result in improved methanol oxidation performance including higher methanol oxidation current and long-term stability. PMID:23827963

  3. Bioavailability of nanoparticulate hematite to Arabidopsis thaliana.

    PubMed

    Marusenko, Yevgeniy; Shipp, Jessie; Hamilton, George A; Morgan, Jennifer L L; Keebaugh, Michael; Hill, Hansina; Dutta, Arnab; Zhuo, Xiaoding; Upadhyay, Nabin; Hutchings, James; Herckes, Pierre; Anbar, Ariel D; Shock, Everett; Hartnett, Hilairy E

    2013-03-01

    The environmental effects and bioavailability of nanoparticulate iron (Fe) to plants are currently unknown. Here, plant bioavailability of synthesized hematite Fe nanoparticles was evaluated using Arabidopsis thaliana (A. thaliana) as a model. Over 56-days of growing wild-type A. thaliana, the nanoparticle-Fe and no-Fe treatments had lower plant biomass, lower chlorophyll concentrations, and lower internal Fe concentrations than the Fe-treatment. Results for the no-Fe and nanoparticle-Fe treatments were consistently similar throughout the experiment. These results suggest that nanoparticles (mean diameter 40.9 nm, range 22.3-67.0 nm) were not taken up and therefore not bioavailable to A. thaliana. Over 14-days growing wild-type and transgenic (Type I/II proton pump overexpression) A. thaliana, the Type I plant grew more than the wild-type in the nanoparticle-Fe treatment, suggesting Type I plants cope better with Fe limitation; however, the nanoparticle-Fe and no-Fe treatments had similar growth for all plant types. PMID:23262070

  4. Nanoparticulate-catalyzed oxygen transfer processes

    DOEpatents

    Hunt, Andrew T.; Breitkopf, Richard C.

    2009-12-01

    Nanoparticulates of oxygen transfer materials that are oxides of rare earth metals, combinations of rare earth metals, and combinations of transition metals and rare earth metals are used as catalysts in a variety of processes. Unexpectedly large thermal efficiencies are achieved relative to micron sized particulates. Processes that use these catalysts are exemplified in a multistage reactor. The exemplified reactor cracks C6 to C20 hydrocarbons, desulfurizes the hydrocarbon stream and reforms the hydrocarbons in the stream to produce hydrogen. In a first reactor stage the steam and hydrocarbon are passed through particulate mixed rare earth metal oxide to crack larger hydrocarbon molecules. In a second stage, the steam and hydrocarbon are passed through particulate material that desulfurizes the hydrocarbon. In a third stage, the hydrocarbon and steam are passed through a heated, mixed transition metal/rare earth metal oxide to reform the lower hydrocarbons and thereby produce hydrogen. Stages can be alone or combined. Parallel reactors can provide continuous reactant flow. Each of the processes can be carried out individually.

  5. Nanoparticulate Alnico Thin Films with High Coercivity

    NASA Astrophysics Data System (ADS)

    Akdogan, Ozan; Hadjipanayis, George C.

    2009-03-01

    Alnico V (Fe--8% Al--14% Ni--24% Co--3% Cu) nanoparticulate thin films have been produced by dc magnetron sputtering. The films were sputtered on Si substrates for magnetic measurements and carbon-coated copper grids for TEM measurements. The as-deposited films have a fine grained microstructure with the bcc crystal structure. The as-made films were subjected to a full heat treatment which consists of heating the sample to 900 ^oC, then cooling it to 600 ^oC and finally annealing it at 600 ^oC for several hours. After the heat treatment, the thin films broke up into large nanoparticles (20-60 nm) surrounded by small nanoparticles (2 nm). Electron diffraction data showed that the annealed samples had an fcc structure. The maximum room temperature coercivity was found to be 2 kOe after 6h of annealing at 600 ^oC. The high coercivity could be due to strain that was induced during precipitation. The evolution of crystal structure and microstructure with annealing will be monitored and related to the observed magnetic properties.

  6. Synthesis of boron and nitrogen doped graphene supporting PtRu nanoparticles as catalysts for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Lu, Jiming; Zhou, Yingke; Tian, Xiaohui; Xu, Xiao; Zhu, Hongxi; Zhang, Shaowei; Yuan, Tao

    2014-10-01

    In this study, we demonstrate a single-step heat treatment approach to synthesize boron and nitrogen doped graphene supporting PtRu electrocatalysts for methanol electro-oxidation reaction. The reduction of graphene oxide, boron or nitrogen doping of graphene and loading of PtRu nanoparticles happened simultaneously during the reaction process. The morphologies and microstructures of the as-prepared catalysts were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). The electrocatalytic methanol oxidation activity and durability of the obtained catalysts were evaluated by the cyclic voltammetry and chronoamperometric techniques. The results reveal that the boron and nitrogen doped graphene supporting PtRu electrocatalysts can be successfully prepared by the single step heat treatment technique, and the introduction of boron or nitrogen containing function groups into the reduced graphene sheets could modulate the particle size and dispersion of the supporting PtRu nanoparticles and improve the electrocatalytic performance of methanol oxidation reaction. The optimal annealing temperature is 800 °C, the preferable heat treatment time is 60 min for the nitrogen-doped catalysts and 90 min for the boron-doped catalysts, and the catalysts prepared under such conditions present superior catalytic activities for methanol oxidation than those prepared under other heat treatment conditions.

  7. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation.

    PubMed

    Xiao, Meiling; Feng, Ligang; Zhu, Jianbing; Liu, Changpeng; Xing, Wei

    2015-06-01

    A rapid strategy to synthesize a highly active PtRu alloy nano-sponge catalyst system for methanol electro-oxidation is presented. The greatly increased Pt utilization, anti-CO poisoning ability and electronic effect resulting from the porous nano-sponge structure could account for the performance improvement. PMID:25966842

  8. Rapid synthesis of a PtRu nano-sponge with different surface compositions and performance evaluation for methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Xiao, Meiling; Feng, Ligang; Zhu, Jianbing; Liu, Changpeng; Xing, Wei

    2015-05-01

    A rapid strategy to synthesize a highly active PtRu alloy nano-sponge catalyst system for methanol electro-oxidation is presented. The greatly increased Pt utilization, anti-CO poisoning ability and electronic effect resulting from the porous nano-sponge structure could account for the performance improvement.

  9. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice

    PubMed Central

    Aslam, Mohamad F.; Frazer, David M.; Faria, Nuno; Bruggraber, Sylvaine F. A.; Wilkins, Sarah J.; Mirciov, Cornel; Powell, Jonathan J.; Anderson, Greg J.; Pereira, Dora I. A.

    2014-01-01

    The ferritin core is composed of fine nanoparticulate Fe3+ oxohydroxide, and we have developed a synthetic mimetic, nanoparticulate Fe3+ polyoxohydroxide (nanoFe3+). The aim of this study was to determine how dietary iron derived in this fashion is absorbed in the duodenum. Following a 4 wk run-in on an Fe-deficient diet, mice with intestinal-specific disruption of the Fpn-1 gene (Fpn-KO), or littermate wild-type (WT) controls, were supplemented with Fe2+ sulfate (FeSO4), nanoFe3+, or no added Fe for a further 4 wk. A control group was Fe sufficient throughout. Direct intestinal absorption of nanoFe3+ was investigated using isolated duodenal loops. Our data show that FeSO4 and nanoFe3+ are equally bioavailable in WT mice, and at wk 8 the mean sem hemoglobin increase was 18 7 g/L in the FeSO4 group and 30 5 g/L in the nanoFe3+ group. Oral iron failed to be utilized by Fpn-KO mice and was retained in enterocytes, irrespective of the iron source. In summary, although nanoFe3+ is taken up directly by the duodenum its homeostasis is under the normal regulatory control of dietary iron absorption, namely via ferroportin-dependent efflux from enterocytes, and thus offers potential as a novel oral iron supplement.Aslam, M. F., Frazer, D. M., Faria, N., Bruggraber, S. F. A., Wilkins, S. J., Mirciov, C., Powell, J. J., Anderson, G. J., Pereira, D. I. A. Ferroportin mediates the intestinal absorption of iron from a nanoparticulate ferritin core mimetic in mice. PMID:24776745

  10. Rapid detection of cancer related DNA nanoparticulate biomarkers and nanoparticles in whole blood

    NASA Astrophysics Data System (ADS)

    Heller, Michael J.; Krishnan, Raj; Sonnenberg, Avery

    2010-08-01

    The ability to rapidly detect cell free circulating (cfc) DNA, cfc-RNA, exosomes and other nanoparticulate disease biomarkers as well as drug delivery nanoparticles directly in blood is a major challenge for nanomedicine. We now show that microarray and new high voltage dielectrophoretic (DEP) devices can be used to rapidly isolate and detect cfc-DNA nanoparticulates and nanoparticles directly from whole blood and other high conductance samples (plasma, serum, urine, etc.). At DEP frequencies of 5kHz-10kHz both fluorescent-stained high molecular weight (hmw) DNA, cfc-DNA and fluorescent nanoparticles separate from the blood and become highly concentrated at specific DEP highfield regions over the microelectrodes, while blood cells move to the DEP low field-regions. The blood cells can then be removed by a simple fluidic wash while the DNA and nanoparticles remain highly concentrated. The hmw-DNA could be detected at a level of <260ng/ml and the nanoparticles at <9.5 x 109 particles/ml, detection levels that are well within the range for viable clinical diagnostics and drug nanoparticle monitoring. Disease specific cfc-DNA materials could also be detected directly in blood from patients with Chronic Lymphocytic Leukemia (CLL) and confirmed by PCR genotyping analysis.

  11. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen.

    PubMed

    Johnson, Grant E; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-08-01

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 10(4) ions μm(-2) and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ∼9% and ∼33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He(+) and O(+) ions. The activity of electrodes containing 7 × 10(4) ions μm(-2) of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions. PMID:26148814

  12. Soft Landing of Bare PtRu Nanoparticles for Electrochemical Reduction of Oxygen

    SciTech Connect

    Johnson, Grant E.; Colby, Robert J.; Engelhard, Mark H.; Moon, DaeWon; Laskin, Julia

    2015-08-07

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu alloy nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 x 104 ions µm-2 and that their average height is centered at 4 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (STEM-HAADF) further confirm that the soft-landed PtRu alloy nanoparticles are uniform in size and have a Ru core decorated with small regions of Pt on the surface. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in relative atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt4f and Ru3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the alloy nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 x 104 ions µm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the alloy nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare alloy nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions

  13. Soft landing of bare PtRu nanoparticles for electrochemical reduction of oxygen

    NASA Astrophysics Data System (ADS)

    Johnson, Grant E.; Colby, Robert; Engelhard, Mark; Moon, Daewon; Laskin, Julia

    2015-07-01

    Magnetron sputtering of two independent Pt and Ru targets coupled with inert gas aggregation in a modified commercial source has been combined with soft landing of mass-selected ions to prepare bare 4.5 nm diameter PtRu nanoparticles on glassy carbon electrodes with controlled size and morphology for electrochemical reduction of oxygen in solution. Employing atomic force microscopy (AFM) it is shown that the nanoparticles bind randomly to the glassy carbon electrode at a relatively low coverage of 7 × 104 ions μm-2 and that their average height is centered at 4.5 nm. Scanning transmission electron microscopy images obtained in the high-angle annular dark field mode (HAADF-STEM) further confirm that the soft-landed PtRu nanoparticles are uniform in size. Wide-area scans of the electrodes using X-ray photoelectron spectroscopy (XPS) reveal the presence of both Pt and Ru in atomic concentrations of ~9% and ~33%, respectively. Deconvolution of the high energy resolution XPS spectra in the Pt 4f and Ru 3d regions indicates the presence of both oxidized Pt and Ru. The substantially higher loading of Ru compared to Pt and enrichment of Pt at the surface of the nanoparticles is confirmed by wide-area analysis of the electrodes using time-of-flight medium energy ion scattering (TOF-MEIS) employing both 80 keV He+ and O+ ions. The activity of electrodes containing 7 × 104 ions μm-2 of bare 4.5 nm PtRu nanoparticles toward the electrochemical reduction of oxygen was evaluated employing cyclic voltammetry (CV) in 0.1 M HClO4 and 0.5 M H2SO4 solutions. In both electrolytes a pronounced reduction peak was observed during O2 purging of the solution that was not evident during purging with Ar. Repeated electrochemical cycling of the electrodes revealed little evolution in the shape or position of the voltammograms indicating high stability of the nanoparticles supported on glassy carbon. The reproducibility of the nanoparticle synthesis and deposition was evaluated by employing the same experimental parameters to prepare nanoparticles on glassy carbon electrodes on three occasions separated by several days. Surfaces with almost identical electrochemical behavior were observed with CV, demonstrating the highly reproducible preparation of bare nanoparticles using physical synthesis in the gas-phase combined with soft landing of mass-selected ions.

  14. CO Coverage/Oxidation Correlated with PtRu Electrocatalyst Particle Morphology in 0.3 M Methanol by in situ XAS

    SciTech Connect

    Scott, F.; Mukerjee, S; Ramaker, D

    2007-01-01

    In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) at the Pt L{sub 3} and Ru K edges, were carried out on three different carbon-supported PtRu electrocatalysts in an electrochemical cell in 1 M HClO{sub 4} with 0.3 M methanol. The CO and OH adsorbate coverage on Pt and Ru were determined as a function of the applied potential via the novel delta XANES technique, and the particle morphology was determined from the EXAFS and a modeling technique. Both the bifunctional and direct CO oxidation mechanisms, the latter enhanced by electronic ligand effects, were evident for all three electrocatalysts; however, the dominant mechanism depended critically on the particle size and morphology. Both the Ru island size and overall cluster size had a very large effect on the CO oxidation mechanism and activation of water, with the bifunctional mechanism dominating for more monodispersed Ru islands, and the direct surface ligand effect dominating in the presence of larger Ru islands.

  15. CO Coverage/Oxidation Correlated with PtRu Electroscatalyst Particle Morphology in 0.3 M Methanol by In Situ XAS

    SciTech Connect

    Scott,F.; Mukerjee, S.; Ramaker, D.

    2007-01-01

    In situ X-ray absorption spectroscopy (XAS) measurements, including both X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) at the Pt L{sub 3} and Ru K edges, were carried out on three different carbon-supported PtRu electrocatalysts in an electrochemical cell in 1 M HClO{sub 4} with 0.3 M methanol. The CO and OH adsorbate coverage on Pt and Ru were determined as a function of the applied potential via the novel delta XANES technique, and the particle morphology was determined from the EXAFS and a modeling technique. Both the bifunctional and direct CO oxidation mechanisms, the latter enhanced by electronic ligand effects, were evident for all three electrocatalysts; however, the dominant mechanism depended critically on the particle size and morphology. Both the Ru island size and overall cluster size had a very large effect on the CO oxidation mechanism and activation of water, with the bifunctional mechanism dominating for more monodispersed Ru islands, and the direct surface ligand effect dominating in the presence of larger Ru islands.

  16. Adsorption of formaldehyde and formyl intermediates on Pt, PtRu-, and PtRuMo-alloy surfaces: A density functional study

    NASA Astrophysics Data System (ADS)

    Cahyanto, Wahyu Tri; Shukri, Ganes; Agusta, Mohammad Kemal; Kasai, Hideaki

    2013-02-01

    Stable binding configuration for formaldehyde (H2CO) and formyl (HCO) adsorption on Pt, PtRu, and PtRuMo are studied within the frame of density functional theory (DFT). We address this study to investigate the role of Ru and Mo on the binding characteristic of formaldehyde and formyl adsorption with respect to interaction strength and charge analysis. Several binding conformation on all possible surface adsorption sites are considered in determining the most stable adsorption geometry on three surfaces. Our results show that the presence of Ru in PtRu and Mo in PtRuMo stabilize the formaldehyde and formyl, which are indicated by stronger bond strength. Further electronic structure analysis shows that the addition of Ru in PtRu and Mo in PtRuMo modifies the electronic structure of Pt's surface significantly. The presence of both impurities shifted the derived anti-bonding state - which is originally located below the fermi level in pure Pt surface - to be above the fermi level in PtRu and PtRuMo systems. This fact explains the stronger adsorption found on PtRu & PtRuMo as compared to pure Pt surface.

  17. Mass-produced multi-walled carbon nanotubes as catalyst supports for direct methanol fuel cells.

    PubMed

    Jang, In Young; Park, Ki Chul; Jung, Yong Chae; Lee, Sun Hyung; Song, Sung Moo; Muramatsu, Hiroyuki; Kim, Yong Jung; Endo, Morinobu

    2011-01-01

    Commercially mass-produced multi-walled carbon nanotubes, i.e., VGNF (Showa Denko Co.), were applied to support materials for platinum-ruthenium (PtRu) nanoparticles as anode catalysts for direct methanol fuel cells. The original VGNFs are composed of high-crystalline graphitic shells, which hinder the favorable surface deposition of the PtRu nanoparticles that are formed via borohydride reduction. The chemical treatment of VGNFs with potassium hydroxide (KOH), however, enables highly dispersed and dense deposition of PtRu nanoparticles on the VGNF surface. This capability becomes more remarkable depending on the KOH amount. The electrochemical evaluation of the PtRu-deposited VGNF catalysts showed enhanced active surface areas and methanol oxidation, due to the high dispersion and dense deposition of the PtRu nanoparticles. The improvement of the surface deposition states of the PtRu nanoparticles was significantly due to the high surface area and mesorporous surface structure of the KOH-activated VGNFs. PMID:21446522

  18. Improved reaction kinetics and selectivity by the TiO2-embedded carbon nanofiber support for electro-oxidation of ethanol on PtRu nanoparticles

    NASA Astrophysics Data System (ADS)

    Nakagawa, Nobuyoshi; Ito, Yudai; Tsujiguchi, Takuya; Ishitobi, Hirokazu

    2014-02-01

    The electro-oxidation of ethanol by the catalyst of PtRu nanoparticles supported on a TiO2-embedded carbon nanofiber (PtRu/TECNF), which has recently been proposed by the authors as a highly active catalyst for methanol oxidation, is investigated by cyclic voltammetry using a glassy carbon electrode and by operating a direct ethanol fuel cell (DEFC) with the catalyst. The mass activity obtained from the cyclic voltammogram for the ethanol oxidation is compared to that for the methanol oxidation reported in our recent paper. The mass activity for the ethanol oxidation is comparable or slightly higher than that for the methanol oxidation, and the relationship between the TECNF composition, i.e., the Ti/C mass ratio, and the activity are also similar to that for the methanol oxidation. A DEFC fabricated with the PtRu/TECNF shows a higher power output compared to that with the commercial PtRu/C catalyst. An analysis of the reaction products by a simple two-step reaction model reveals that the PtRu/TECNF increases the rate constant for the reaction steps from ethanol to acetaldehyde and subsequently to CO2, but decreases that from acetaldehyde to acetic acid. This means that the PtRu/TECNF improves not only the kinetics, but also the selectivity to acetaldehyde.

  19. An experimental and computational investigation of structural dependence of catalytic properties of Pt-Ru nanoparticles

    NASA Astrophysics Data System (ADS)

    Prasai, Binay

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models are built by molecular dynamics simulations and further refined against the experimental PDF data by reverse Monte Carlo simulations and analyzed in terms of structural characteristics. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100 -x alloy NPs at x ~ 50. Central Michigan University, Department of Energy.

  20. Nanoporous PtRu Alloys with Unique Catalytic Activity toward Hydrolytic Dehydrogenation of Ammonia Borane.

    PubMed

    Zhou, Qiuxia; Xu, Caixia

    2016-03-01

    Nanoporous (NP) PtRu alloys with three different bimetallic components were straightforwardly fabricated by dealloying PtRuAl ternary alloys in hydrochloric acid. Selective etching of aluminum from source alloys generates bicontinuous network nanostructures with uniform size and structure. The as-made NP-PtRu alloys exhibit superior catalytic activity toward the hydrolytic dehydrogenation of ammonia borane (AB) than pure NP-Pt and NP-Ru owing to alloying platinum with ruthenium. The NP-Pt70 Ru30 alloy exhibits much higher specific activity toward hydrolytic dehydrogenation of AB than NP-Pt30 Ru70 and NP-Pt50 Ru50 . The hydrolysis activation energy of NP-Pt70 Ru30 was estimated to be about 38.9 kJ mol(-1) , which was lower than most of the reported activation energy values in the literature. In addition, recycling tests show that the NP-Pt70 Ru30 is still highly active in the hydrolysis of AB even after five runs, which indicates that NP-PtRu alloy accompanied by the network nanoarchitecture is beneficial to improve structural stability toward the dehydrogenation of AB. PMID:26573746

  1. Factors affecting the spontaneous adsorption of Bi(III) onto Pt and PtRu nanoparticles

    NASA Astrophysics Data System (ADS)

    Sawy, Ehab N. El; Khan, M. Akhtar; Pickup, Peter G.

    2016-02-01

    The influence of Bi(III) concentration and pH on the spontaneous adsorption of Bi species onto Pt nanoparticles has been systematically investigated in order to identify the adsorbing species, determine whether the nature of the adsorbing species changes, and investigate whether the activities of the resulting Bi decorated particles for formic acid oxidation can be influenced. The adsorption of Bi follows a Temkin-type isotherm, with a pH dependence indicating that the adsorbing species is [Bi6O4(OH)4]6+. Activities of Bi decorated Pt nanoparticles for formic acid oxidation are strongly influenced by the Bi coverage, with a maximum enhancement of a factor of ca. 60 at a coverage of 70%, but not by the Bi(III) concentration or pH used to adsorb the Bi species, other than through their influence on Bi coverage. These results support the conclusion that the adsorbing species is [Bi6O4(OH)4]6+ under all conditions investigated. Adsorbed Bi also activates PtRu nanoparticles for formic acid oxidation, although the effect is not as strong as for Pt. The maximum enhancement observed was only a factor of ca. 7. This has been attributed to attenuation of the effects of Bi adatoms that are adsorbed at Ru sites.

  2. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    NASA Astrophysics Data System (ADS)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of nanoparticulates. Additionally, the role of the surface in surfactant self-assembly was investigated. Mechanical and thermodynamic properties of the self-assembled layer at the solid-liquid interface were calculated based on experimental results, and compared to the corresponding properties in the bulk solution.

  3. Investigation of acute nanoparticulate aluminum toxicity in zebrafish.

    PubMed

    Griffitt, Robert J; Feswick, April; Weil, Roxana; Hyndman, Kelly; Carpinone, Paul; Powers, Kevin; Denslow, Nancy D; Barber, David S

    2011-10-01

    In freshwater fish, aluminum is a well-recognized gill toxicant, although responses are influenced by pH. Aluminum nanomaterials are being used in diverse applications that are likely to lead to environmental release and exposure. However, it is unclear if the effects of nanoparticulate aluminum are similar to those of other forms of aluminum or require special consideration. To examine the acute toxicological effects of exposure to aluminum nanoparticle (Al-NP)s, adult female zebrafish were exposed to either Al-NPs or aluminum chloride for up to 48 hours in moderately hard fresh water. Al-NPs introduced into test water rapidly aggregated and up to 80% sedimented from the water column during exposures. No mortality was caused by concentrations of Al-NP up to 12.5 mg/L. After exposure, tissue concentrations of aluminum, effects on gill morphology, Na+, K+ -ATPase (NKA) activity, and global gene expression patterns were examined. Exposure to both aluminum chloride and nanoparticulate aluminum resulted in a concentration dependent decrease in sodium potassium ATPase activity, although Al-NP exposure did not alter gill morphology as measured by filament widths. Decreased ATPase activity coincided with decreases in filamental NKA staining and mucous cell counts. Analysis of gill transcriptional responses demonstrated that exposure to 5 mg/L Al-NP only resulted in significant changes in expression of two genes, whereas aluminum chloride exposure significantly affected the expression of 105 genes. Taken together, these results indicate that nanoparticulate aluminum has little acute toxicity for zebrafish in moderately hard freshwater. PMID:21910207

  4. A review of research on nanoparticulate flow undergoing coagulation

    NASA Astrophysics Data System (ADS)

    Lin, Jianzhong; Huo, Linlin

    2015-06-01

    Nanoparticulate flows occur in a wide range of natural phenomena and engineering applications and, hence, have attracted much attention. The purpose of the present paper is to provide a review of the research conducted over the last decade. The research covered relates to the Brownian coagulation of monodisperse and polydisperse particles, the Taylor-series expansion method of moment, and nanoparticle distributions due to coagulation in pipe and channel flow, jet flow, and the mixing layer and in the process of flame synthesis and deposition.

  5. X-ray absorption and electrochemical studies of direct methanol fuel cell catalysts

    SciTech Connect

    Zurawski, D.J.; Aldykiewicz, A.J. Jr.; Baxter, S.F.; Krumpelt, M.

    1996-12-31

    In order for polymer electrolyte fuel cells to operate directly on methanol instead of hydrogen, methanol oxidation must be catalyzed in the acidic cell environment. Pt-Ru and Pt-Ru oxide are considered to be the most active catalysts for this purpose; Ru enhances the Pt activity for reasons not yet fully understood. XAS and electrochemical techniques were used to study this enhancement. Preliminary results indicate that Ru does effect the d-band occupancy of Pt, which in turn may effect the kinetics of the methanol oxidation reaction on this metal by altering the strength of the Pt-CO bond. Further research is needed.

  6. Sol-Gel Process for Making Pt-Ru Fuel-Cell Catalysts

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas; Kumta, Prashant; Kim, Y.

    2005-01-01

    A sol-gel process has been developed as a superior alternative to a prior process for making platinum-ruthenium alloy catalysts for electro-oxidation of methanol in fuel cells. The starting materials in the prior process are chloride salts of platinum and ruthenium. The process involves multiple steps, is time-consuming, and yields a Pt-Ru product that has relatively low specific surface area and contains some chloride residue. Low specific surface area translates to incomplete utilization of the catalytic activity that might otherwise be available, while chloride residue further reduces catalytic activity ("poisons" the catalyst). In contrast, the sol-gel process involves fewer steps and less time, does not leave chloride residue, and yields a product of greater specific area and, hence, greater catalytic activity. In this sol-gel process (see figure), the starting materials are platinum(II) acetylacetonate [Pt(C5H7O2)2, also denoted Pt-acac] and ruthenium(III) acetylacetonate [Ru(C5H7O2)3, also denoted Ru-acac]. First, Pt-acac and Ru-acac are dissolved in acetone at the desired concentrations (typically, 0.00338 moles of each salt per 100 mL of acetone) at a temperature of 50 C. A solution of 25 percent tetramethylammonium hydroxide [(CH3)4NOH, also denoted TMAH] in methanol is added to the Pt-acac/Ruacac/ acetone solution to act as a high-molecular-weight hydrolyzing agent. The addition of the TMAH counteracts the undesired tendency of Pt-acac and Ru-acac to precipitate as separate phases during the subsequent evaporation of the solvent, thereby helping to yield a desired homogeneous amorphous gel. The solution is stirred for 10 minutes, then the solvent is evaporated until the solution becomes viscous, eventually transforming into a gel. The viscous gel is dried in air at a temperature of 170 C for about 10 hours. The dried gel is crushed to make a powder that is the immediate precursor of the final catalytic product. The precursor powder is converted to the final product in a controlled-atmosphere heat treatment. Desirably, the final product is a phase-pure (Pt phase only) Pt-Ru powder with a high specific surface area. The conditions of the controlled- atmosphere heat are critical for obtaining the aforementioned desired properties. A typical heat treatment that yields best results for a catalytic alloy of equimolar amounts of Pt and Ru consists of at least two cycles of heating to a temperature of 300 C and holding at 300 C for several hours, all carried out in an atmosphere of 1 percent O2 and 99 percent N2. The resulting powder consists of crystallites with typical linear dimensions of <10 nm. Tests have shown that the powder is highly effective in catalyzing the electro-oxidation of methanol.

  7. Safety and mutagenicity evaluation of nanoparticulate red mold rice.

    PubMed

    Yu, Chiun-Chieh; Wang, Jyh-Jye; Lee, Chun-Lin; Lee, Shu-Hui; Pan, Tzu-Ming

    2008-11-26

    Nowadays, people have recognized the importance of Monascus fermented products due to their many health benefits. A previous study demonstrated a novel formulation approach for the preparation of nanoparticulate red mold rice (NRMR). The aim of this study is to determine the useability of stable NRMR dispersion by evaluating its safety and mutagenicity with the Ames test. The crude red mold rice (RMR) was processed using a wet milling technology in the presence of distilled water to form an aqueous-based nanoparticle dispersion with a mean particle size of 259.3 nm. The formulated diepersion was found to be homogeneous and exhibited unimodal particle size distribution when analyzed by dynamic laser scattering techniques. Ames test results indicated that the equivalent of up to 1 mg of ethanol extract of RMR per plate exhibited no genotoxicity toward Salmonella typhimurium strains TA 98, TA 100, and TA 102. In the feeding toxicity test, the no observed adverse effect level (NOAEL) of NRMR was found to be 1000 mg/kg/day for both male and female rats. In conclusion, red mold rice can be formulated as a stable nanoparticulate dispersion using wet milling technology. In vitro and in vivo safety evaluations of NRMR indicated that no mutagenic or toxic responses were observed in this study. PMID:18959419

  8. Concepts and practices used to develop functional PLGA-based nanoparticulate systems

    PubMed Central

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell–type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  9. Concepts and practices used to develop functional PLGA-based nanoparticulate systems.

    PubMed

    Sah, Hongkee; Thoma, Laura A; Desu, Hari R; Sah, Edel; Wood, George C

    2013-01-01

    The functionality of bare polylactide-co-glycolide (PLGA) nanoparticles is limited to drug depot or drug solubilization in their hard cores. They have inherent weaknesses as a drug-delivery system. For instance, when administered intravenously, the nanoparticles undergo rapid clearance from systemic circulation before reaching the site of action. Furthermore, plain PLGA nanoparticles cannot distinguish between different cell types. Recent research shows that surface functionalization of nanoparticles and development of new nanoparticulate dosage forms help overcome these delivery challenges and improve in vivo performance. Immense research efforts have propelled the development of diverse functional PLGA-based nanoparticulate delivery systems. Representative examples include PEGylated micelles/nanoparticles (PEG, polyethylene glycol), polyplexes, polymersomes, core-shell-type lipid-PLGA hybrids, cell-PLGA hybrids, receptor-specific ligand-PLGA conjugates, and theranostics. Each PLGA-based nanoparticulate dosage form has specific features that distinguish it from other nanoparticulate systems. This review focuses on fundamental concepts and practices that are used in the development of various functional nanoparticulate dosage forms. We describe how the attributes of these functional nanoparticulate forms might contribute to achievement of desired therapeutic effects that are not attainable using conventional therapies. Functional PLGA-based nanoparticulate systems are expected to deliver chemotherapeutic, diagnostic, and imaging agents in a highly selective and effective manner. PMID:23459088

  10. Nanoparticulate mineral matter from basalt dust wastes.

    PubMed

    Dalmora, Adilson C; Ramos, Claudete G; Querol, Xavier; Kautzmann, Rubens M; Oliveira, Marcos L S; Taffarel, Silvio R; Moreno, Teresa; Silva, Luis F O

    2016-02-01

    Ultra-fine and nano-particles derived from basalt dust wastes (BDW) during "stonemeal" soil fertilizer application have been the subject of some concern recently around the world for their possible adverse effects on human health and environmental pollution. Samples of BDW utilized were obtained from companies in the mining district of Nova Prata in southern Brazil for chemical characterization and nano-mineralogy investigation, using an integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis. The investigation has revealed that BDW materials are dominated by SiO2, Al2O3 and Fe2O3, with a complex micromineralogy including alkali feldspar, augite, barite, labradorite, hematite, heulandrite, gypsum, kaolinite, quartz, and smectite. In addition we have identified a number of trace metals such as Cd, Cu, Cr, Zn that are preferentially concentrated into the finer, inhalable, dust fraction and could so present a health hazard in the urban areas around the basalt mining zone. The implication of this observation is that use of these nanometric-sized particulates as soil fertilizer may present different health challenges to those of conventional fertilizers, inviting future work regarding the relative toxicities of these materials. Our investigation on the particle size distribution, nano-particle mineralogy and chemical composition in typical BDW samples highlights the need to develop cleaning procedures to minimise exposure to these natural fertilizing basalt dust wastes and is thus of direct relevance to both the industrial sector of basalt mining and to agriculture in the region. PMID:26551199

  11. Anisotropy adjustment and thickness of thin layer doped by nanoparticules magnetic for the realization of phase matching between fundamental modes in monomode waveguides

    NASA Astrophysics Data System (ADS)

    Lebbal, M. R.; Boumaza, T.; Bouchemat, M.; Hocini, A.; Hobar, F.; Benghalia, A.; Rosseau, J. J.; Royer, F.

    2008-05-01

    Recently, research has been concentrated on the study of the magnetic nanoparticules for their use in the design of magneto-optical devices. The magneto-optical waveguides for example exploit the Faraday effect to obtain a rotation of polarization TE and TM independent of the propagation direction. In this work, we study isolating component whose operating principle is based on the minimization of the phase mismatch between TE and TM fundamental propagation modes. It appeared promising to use as a guiding film the thin layers doped by magnetic nanoparticules γ-Fe2O3 in order to carry out an adequate phase mismatch. This last can be adjusted by permanent linear birefringence resulting from the application of an external magnetic field during the gelation of the solution which constitutes the guiding film. Many studies were undertaken primarily to minimize the birefringence between TE and TM modes, for that this work represents a new potential means to reach the phase matching by acting on the anisotropy and the thin layer thickness. This condition can be realized in the waveguides with SiO2/TiO2 guiding thin layer doped by nanoparticules of maghemite γ-Fe2O3. The simulations carried out by the FMM method and MATLAB allowed to deduce the conditions to decrease the phase mismatch and increase the conversion ratio of TE/TM modes in order to ameliorate the isolation.

  12. Fabrication and optical properties of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Wang, Bao-Ping; Zhang, Zhao-Chun; Zhang, Neng

    2010-07-01

    The gallium phosphide (GaP) nanoparticulate thin films were fabricated by colloidal suspensions deposition with GaP nanoparticles dispersed in N, N-dimethylformamide (DMF). The microstructure and optical properties of the film have been studied by scanning electron microscopy, high resolution transmission electron microscope, and optical absorption and fluorescence spectra. The morphology of the film was found to be composed of nanoparticle aggregates, and with an irregularly rough surface. From the result of fluorescence, it can be established that the film not only retains the violet and blue light emissions which ascribed to transition from conduction band to valence band of gallium phosphide particles, but has an excellent luminescence property. The correlation between the optical properties and the microstructure of the thin film is discussed.

  13. A TEM analysis of nanoparticulates in a Polar ice core

    SciTech Connect

    Esquivel, E.V.; Murr, L.E

    2004-03-15

    This paper explores the prospect for analyzing nanoparticulates in age-dated ice cores representing times in antiquity to establish a historical reference for atmospheric particulate regimes. Analytical transmission electron microscope (TEM) techniques were utilized to observe representative ice-melt water drops dried down on carbon/formvar or similar coated grids. A 10,000-year-old Greenland ice core was melted, and representative water drops were transferred to coated grids in a clean room environment. Essentially, all particulates observed were aggregates and either crystalline or complex mixtures of nanocrystals. Especially notable was the observation of carbon nanotubes and related fullerene-like nanocrystal forms. These observations are similar with some aspects of contemporary airborne particulates including carbon nanotubes and complex nanocrystal aggregates.

  14. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery

    PubMed Central

    Torchilin, Vladimir P.

    2015-01-01

    The use of nanoparticulate pharmaceutical drug delivery systems (NDDSs) to enhance the in vivo effectiveness of drugs is now well established. The development of multifunctional and stimulus-sensitive NDDSs is an active area of current research. Such NDDSs can have long circulation times, target the site of the disease and enhance the intracellular delivery of a drug. This type of NDDS can also respond to local stimuli that are characteristic of the pathological site by, for example, releasing an entrapped drug or shedding a protective coating, thus facilitating the interaction between drug-loaded nanocarriers and target cells or tissues. In addition, imaging contrast moieties can be attached to these carriers to track their real-time biodistribution and accumulation in target cells or tissues. Here, I highlight recent developments with multifunctional and stimuli-sensitive NDDSs and their therapeutic potential for diseases including cancer, cardiovascular diseases and infectious diseases. PMID:25287120

  15. Nanoparticulate carrier system: a novel treatment approach for hyperlipidemia.

    PubMed

    Sharma, Kritika; Kumar, Kulyash; Mishra, Neeraj

    2016-03-01

    Hyperlipidemia is a prevailing risk factor that leads to development and progression of atherosclerosis and consequently cardiovascular diseases. Several antihyperlipidemic drugs are having various disadvantages such as low water solubility and poor bioavailabilty due to presystemic gastrointestinal clearance. Thus, there is a considerable need for the development of efficient delivery methods and carriers. This review focuses on the importance and role of various nanoparticulate systems as carrier for antihyperlipidemic drugs in the treatment of hyperlipidemia. Some nanoparticle technology-based products are approved by FDA for effective treatment of hyperlipidemia, namely Tricor® by Abbott Laboratories (Chicago, IL, USA) and Triglide® by Skye Pharma (London, UK). Efforts to address each of these issues are going on, and should remain the focus on the future studies and look forward to many more clinical products in the future. PMID:24904976

  16. Composites copolymères-nanoparticules : I. Période lamellaire dans le régime des ``petites nanoparticules"

    NASA Astrophysics Data System (ADS)

    Hamdoun, B.; Ausserré, D.; Cabuil, V.; Joly., S.

    1996-04-01

    In the new composite materials made of lamellar diblock copolymer and ferrofluidics, the lamellar period L is experimentally shown to depend on the volume fraction Φ of nanoparticles according to: L=L_0(1+Φ/3), where L_0=L(Φ=0), while L=L_0(1+Φ) was rather expected. Knowing that the particles are exclusively located into one of the two polymeric components, we show that these two laws can be established in a simple way from two different assumptions about the spatial distribution of nanoparticles in the host layers. The hypothesis of particles confined in the center of the layers is finally rejected. Une étude expérimentale nous montre que dans les nouveaux matériaux composites élaborés récemment à partir de copolymères diblocs lamellaires et de ferrofluides, la période lamellaire L varie avec la fraction volumique de nanoparticules d'une façon à peu près bien décrite par une loi L=L_0(1+Φ/3), où L_0=L(Φ=0), alors qu'on attendait plutôt L=L_0(1+Φ). Sachant les nanoparticules localisées dans l'une des deux espèces du copolymère, nous montrons comment ces deux lois s'obtiennent théoriquement à partir de deux hypothèses fortes très différentes sur la distribution des particules à l'intérieur des domaines hôtes. Celle qui conduit à des prédictions infirmées par l'expérience est finalement écartée.

  17. On the differences in the reaction mechanism for CO and CO/H{sub 2} electrooxidation on PtRu and PtSn alloy electrodes

    SciTech Connect

    Gasteiger, H.A.; Markovic, N.M.; Ross, P.N. Jr.

    1997-04-01

    Electrooxidation kinetics of mixtures of carbon monoxide and hydrogen were studied on well-characterized surfaces of Pt and alloys of PtRu and PtSn in 0.5 M H{sub 2}SO{sub 4} at room temperature and 60 C. The alloy electrode surfaces were prepared in UHV by sputter/anneal cycles and their surface compositions were determined via low energy ion scattering. Subsequently, the electrodes were transferred contamination-free from UHV into a rotating disk electrode (RDE) configuration in a conventional electrochemical cell and their activity was measured both by CO stripping voltammetry and under the continuous flow of CO and CO/H{sub 2} gas mixtures in RDE-experiments. The overpotential for the continuous oxidation of pure CO on PtSn electrodes with a Sn surface composition of x{sub Sn,s} {approximately} 0.2 is significantly smaller than on PtRu alloys (x{sub Ru,s} {approximately} 0.5) and on pure Pt. The reaction order with respect to solution phase CO is negative on PtRu alloys due to the competition between OH{sub ads} nucleation and CO adsorption on Ru surface atoms. Owing to the lack of CO adsorption on OH{sub ads}-providing Sn surface atoms, the reaction order with respect to CO is positive on PtSn electrodes. Therefore, the activity enhancement of PtSn electrodes versus PtRu and Pt electrodes is most pronounced in pure CO and decreases with the CO concentration in CO/N{sub 2} and CO/H{sub 2} mixtures.

  18. Nanoparticulate carriers (NPC) for oral pharmaceutics and nutraceutics.

    PubMed

    Lopes, C M; Martins-Lopes, P; Souto, E B

    2010-02-01

    The introduction of nanoparticulate carriers (NPC) in the pharmaceutic and nutraceutic fields has changed the definitions of disease management and treatment, diagnosis, as well as the supply food chain in the agri-food sector. NPC composed of synthetic polymers, proteins or polysaccharides gather interesting properties to be used for oral administration of pharmaceutics and nutraceutics. Oral administration remains the most convenient way of delivering drugs (e.g. peptides, proteins and nucleic acids) since these suffer similar metabolic pathways as food supply. Recent advances in biotechnology have produced highly potent new molecules however with low oral bioavailability. A suitable and promising approach to overcome their sensitivity to chemical and enzymatic hydrolysis as well as the poor cellular uptake, would be their entrapment within suitable gastrointestinal (GI) resistant NPC. Increasing attention has been paid to the potential use of NPC for peptides, proteins, antioxidants (carotenoids, omega fatty acids, coenzyme Q10), vitamins, probiotics, for oral administration. This review focuses on the most important materials to produce NPC for oral administration, and the most recent achievements in the production techniques and bioactives successfully delivered by these means. PMID:20225647

  19. Microstructures and Nanostructures for Environmental Carbon Nanotubes and Nanoparticulate Soots

    PubMed Central

    Murr, L. E.

    2008-01-01

    This paper examines the microstructures and nanostructures for natural (mined) chrysotile asbestos nanotubes (Mg3 Si2O5 (OH)4) in comparison with commercial multiwall carbon nanotubes (MWCNTs), utilizing scanning and transmission electron microscopy (SEM and TEM). Black carbon (BC) and a variety of specific soot particulate (aggregate) microstructures and nanostructures are also examined comparatively by SEM and TEM. A range of MWCNTs collected in the environment (both indoor and outdoor) are also examined and shown to be similar to some commercial MWCNTs but to exhibit a diversity of microstructures and nanostructures, including aggregation with other multiconcentric fullerenic nanoparticles. MWCNTs formed in the environment nucleate from special hemispherical graphene “caps” and there is evidence for preferential or energetically favorable chiralities, tube growth, and closing. The multiconcentric graphene tubes (∼5 to 50 nm diameter) differentiate themselves from multiconcentric fullerenic nanoparticles and especially turbostratic BC and carbonaceous soot nanospherules (∼8 to 80 nm diameter) because the latter are composed of curved graphene fragments intermixed or intercalated with polycyclic aromatic hydrocarbon (PAH) isomers of varying molecular weights and mass concentrations; depending upon combustion conditions and sources. The functionalizing of these nanostructures and photoxidation and related photothermal phenomena, as these may influence the cytotoxicities of these nanoparticulate aggregates, will also be discussed in the context of nanostructures and nanostructure phenomena, and implications for respiratory health. PMID:19151426

  20. Use of nanoparticulate zinc oxide as intracanal medication in endodontics: pH and antimicrobial activity.

    PubMed

    Guerreiro-Tanomaru, Juliane M; Pereira, Kamila Figueiredo; Nascimento, Camila Almeida; Bernardi, Maria Inês Basso; Tanomaru-Filho, Mario

    2013-01-01

    The aim of this study was to evaluate the pH and antimicrobial activity of micro or nanoparticulate zinc oxide (ZnO) pastes with or without calcium hydroxide (CH). The following medications were evaluated: microparticulate ZnO + polyethylene glycol (PEG) 400; nanoparticulate ZnO + PEG 400; PEG 400; CH + microparticulate ZnO + PEG 400 and CH + nanoparticulate ZnO + PEG 400. The pH was assessed between 12 hours and 28 days, using a digital pH meter. The antimicrobial activity against Enterococcus faecalis (ATCC-9212), Candida albicans (ATCC-10231), Pseudomonas aeruginosa (ATCC-27853), Staphylococcus aureus (ATCC-6538) and Kocuria rhizophila (ATCC-9341) was determined in triplicate using agar diffusion test. The results were submitted to Kruskal-Wallis/Dunn and ANOVA/Tukey tests with 5% significance. The highest pH values were found for CH+ZnO, with higher values for nanoparticulate ZnO after 12 hours and 21 days (p < 0.05). CH+ZnO medication promoted higher growth inhibition against P. aeruginosa and lower against E. faecalis. Calcium hydroxide pastes have higher pH and antimicrobial activity when associated with either micro- or nanoparticulate zinc oxide. PMID:25335366

  1. Structure and electrochemical activity of WOx-supported PtRu catalyst using three-dimensionally ordered macroporous WO3 as the template

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Wang, Guoxiong; Sasaki, Keisuke; Takeguchi, Tatsuya; Yamanaka, Toshiro; Sadakane, Masahiro; Ueda, Wataru

    2013-11-01

    PtRu/WOx catalyst is prepared in a polyol process with three-dimensionally ordered macroporous (3DOM) WO3 as the template in combination with an ammonia-leaching treatment. The morphology, composition and structure of the prepared catalysts are characterized by scanning transmission electron microscopy, energy dispersion X-ray spectroscopy, N2 adsorption, X-ray photoelectron spectroscopy and X-ray diffraction. The electrochemical activities are evaluated by linear sweep voltammetry, cyclic voltammetry, and chronoamperometry measurements in combination with in situ IR reflection absorption spectroscopy (IRRAS). The composition and particle size of the PtRu/WOx catalyst are similar to those of the PtRu catalyst prepared without the 3DOM WOx template, and both of the catalysts have a uniform element distribution, however, the PtRu/WOx catalyst has a more porous structure and greater metallic Pt proportion due to the support role of the residual WOx template and the interaction between WOx and PtRu nanoparticles. Electrochemical and in situ IRRAS measurements indicate that the PtRu/WOx catalyst has a greater electro-catalytic activity for methanol oxidation than the PtRu catalyst due to the assisting catalytic role of WOx and mass transport benefit of the porous structure.

  2. Structurally inhomogeneous nanoparticulate catalysts in cobalt-catalyzed carbon nanotube growth

    SciTech Connect

    Kohigashi, Y.; Yoshida, H.; Takeda, S.; Homma, Y.

    2014-08-18

    The structure of nanoparticulate catalysts involved in cobalt-catalyzed chemical vapor deposition growth of carbon nanotubes (CNTs) was investigated by in situ environmental transmission electron microscopy (ETEM). In contrast to previous studies, the analyses of ETEM images showed that the nanoparticulate catalysts were structurally inhomogeneous during CNT growth in the source gas of acetylene at a rate of pressure increase of about 3 Pa/h and at 550 °C. The lattice fringes observed in the nanoparticulate catalysts can be accounted for by not a single crystalline structure but by several possible pairs of structures including pure Co and cobalt carbides. The inhomogeneous structures were unstable with time. The possible origin of the inhomogeneous structures is discussed.

  3. Chemical components, pharmacological properties, and nanoparticulate delivery systems of Brucea javanica

    PubMed Central

    Chen, Meiwan; Chen, Ruie; Wang, Shengpeng; Tan, Wen; Hu, Yangyang; Peng, Xinsheng; Wang, Yitao

    2013-01-01

    Brucea javanica has demonstrated a variety of antitumoral, antimalarial, and anti- inflammatory properties. As a Chinese herbal medicine, Brucea javanica is mainly used in the treatment of lung and gastrointestinal cancers. Pharmacological research has identified the main antitumor components are tetracyclic triterpene quassinoids. However, most of these active components have poor water solubility and low bioavailability, which greatly limit their clinical application. Nanoparticulate delivery systems are urgently needed to improve the bioavailability of Brucea javanica. This paper mainly focuses on the chemical components in Brucea javanica and its pharmacological properties and nanoparticulate formulations, in an attempt to encourage further research on its active components and nanoparticulate drug delivery systems to expand its clinical applications. It is expected to improve the level of pharmaceutical research and provide a strong scientific foundation for further study on the medicinal properties of this plant. PMID:23319860

  4. Electrocatalytical study of carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles for oxygen reduction reaction in alkaline media

    NASA Astrophysics Data System (ADS)

    Hosseini, M. G.; Zardari, P.

    2015-08-01

    Carbon supported Pt, Ru and bimetallic Pt-Ru nanoparticles (Pt/C, Ru/C and Pt.Ru/C) have been prepared by the chemical reduction method. Particle morphology, composition and structure of nanoparticles have been investigated by scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis. SEM results showed a uniform dispersion of nanoparticles with rough and porous structure into carbon supports with the average particle size of 30-64 nm. EDX analysis demonstrated the presence of both Pt and Ru nanoparticles in each gas diffusion electrode. The Pt/C, Ru/C and Pt.Ru/C composites were used as electrocatalyst for oxygen reduction reaction (ORR) in alkaline media. The ORR activities of cathodes were characterized using cyclic voltammetry (CV), polarization technique, AC impedance spectroscopy (EIS) and chronoamperometry. CV and polarization curves showed significantly higher activity on Pt.Ru/C electrocatalyst than observed on Pt/C and Ru/C catalysts, which can be related to synergistic effect, which is playing a critical role in ORR activity. The Tafel slope values of 120 mV/dec showed that the first electron transfer is the rate determining step. The EIS results of cathodes under different polarization potentials indicated two different behaviours which depend on the applied dc potentials and reveal different electrochemical processes occurring on the electrodes.

  5. Combustion-Generated Nanoparticulates in the El Paso, TX, USA / Juarez, Mexico Metroplex: Their Comparative Characterization and Potential for Adverse Health Effects

    PubMed Central

    Murr, L. E.; Soto, K. F.; Garza, K. M.; Guerrero, P. A.; Martinez, F.; Esquivel, E. V.; Ramirez, D. A.; Shi, Y.; Bang, J. J.; Venzor, J.

    2006-01-01

    In this paper we report on the collection of fine (PM1) and ultrafine (PM0.1), or nanoparticulate, carbonaceous materials using thermophoretic precipitation onto silicon monoxide/formvar-coated 3 mm grids which were examined in the transmission electron microscope (TEM). We characterize and compare diesel particulate matter (DPM), tire particulate matter (TPM), wood burning particulate matter, and other soot (or black carbons (BC)) along with carbon nanotube and related fullerene nanoparticle aggregates in the outdoor air, as well as carbon nanotube aggregates in the indoor air; and with reference to specific gas combustion sources. These TEM investigations include detailed microstructural and microdiffraction observations and comparisons as they relate to the aggregate morphologies as well as their component (primary) nanoparticles. We have also conducted both clinical surveys regarding asthma incidence and the use of gas cooking stoves as well as random surveys by zip code throughout the city of El Paso. In addition, we report on short term (2 day) and longer term (2 week) in vitro assays for black carbon and a commercial multiwall carbon nanotube aggregate sample using a murine macrophage cell line, which demonstrate significant cytotoxicity; comparable to a chrysotile asbestos nanoparticulate reference. The multi-wall carbon nanotube aggregate material is identical to those collected in the indoor and outdoor air, and may serve as a surrogate. Taken together with the plethora of toxic responses reported for DPM, these findings prompt concerns for airborne carbonaceous nanoparticulates in general. The implications of these preliminary findings and their potential health effects, as well as directions for related studies addressing these complex issues, will also be examined. PMID:16823077

  6. The in vitro stability and in vivo pharmacokinetics of curcumin prepared as an aqueous nanoparticulate formulation.

    PubMed

    Mohanty, Chandana; Sahoo, Sanjeeb K

    2010-09-01

    Curcumin, the natural anticancer drug and its optimum potential is limited due to lack of solubility in aqueous solvent, degradation at alkaline pH and poor tissue absorption. In order to enhance its potency and improve bioavailability, we have synthesized curcumin loaded nanoparticulate delivery system. Unlike free curcumin, it is readily dispersed in aqueous medium, showing narrow size distribution 192 nm ranges (as observed by microscope) with biocompatibility (confocal studies and TNF-alpha assay). Furthermore, it displayed enhanced stability in phosphate buffer saline by protecting encapsulated curcumin against hydrolysis and biotransformation. Most importantly, nanoparticulate curcumin was comparatively more effective than native curcumin against different cancer cell lines under in vitro condition with time due to enhanced cellular uptake resulting in reduction of cell viability by inducing apoptosis. Molecular basis of apoptosis studied by western blotting revealed blockade of nuclear factor kappa B (NFkappaB) and its regulated gene expression through inhibition of IkappaB kinase and Akt activation. In mice, nanoparticulate curcumin was more bioavailable and had a longer half-life than native curcumin as revealed from pharmacokinetics study. Thus, the results demonstrated nanoparticulate curcumin may be useful as a potential anticancer drug for treatment of various malignant tumors. PMID:20553984

  7. Nanoparticulate Delivery of Agents for Induced Elastogenesis in 3-Dimensional Collagenous Matrices

    PubMed Central

    Venkataraman, Lavanya; Sivaraman, Balakrishnan; Vaidya, Pratik; Ramamurthi, Anand

    2014-01-01

    The degradation of elastic matrix in the infrarenal aortic wall is a critical parameter underlying the formation and progression of abdominal aortic aneurysms (AAAs). It is mediated by the chronic overexpression of matrix metalloproteases (MMPs) -2 and -9, leading to a progressive loss of elasticity and weakening of the aortic wall. Delivery of therapeutic agents to inhibit MMPs, while concurrently coaxing cell-based regenerative repair of the elastic matrix represents a potential strategy for slowing or arresting AAA growth. Our prior studies have demonstrated elastogenic induction of healthy and aneurysmal aortic smooth muscle cells (SMCs) and inhibition of MMPs, following exogenous delivery of elastogenic factors such as TGF-β1, as well as MMP-inhibitors such as doxycycline (DOX) in two-dimensional (2-D) culture. Based on these findings, and others that demonstrated elastogenic benefits of nanoparticulate delivery of these agents in 2-D culture, we have developed poly(lactide-co-glycolide) nanoparticles for localized, controlled and sustained delivery of DOX and TGF-β1 to human aortic SMCs (HASMCs) within a three-dimensional (3-D) gels of type-I collagen gel, which closely evoke the arterial tissue microenvironment. DOX and TGF-β1 released from these NPs influenced elastogenic outcomes positively within the collagen constructs over 21 days of culture, which were comparable to that induced by exogenous supplementation of DOX and TGF-β1 within the culture medium. However, this was accomplished at doses ∼20-fold lower than the exogenous dosages of the agents, illustrating that their localized, controlled, and sustained delivery from NPs embedded within a 3-D scaffold is an efficient strategy for directed elastogenesis. PMID:24737693

  8. Dual-functional bio-derived nanoparticulates for apoptotic antitumor therapy.

    PubMed

    Ding, Yang; Wang, Yazhe; Opoku-Damoah, Yaw; Wang, Cheng; Shen, Lingjia; Yin, Lifang; Zhou, Jianping

    2015-12-01

    The application of bio-derived nanoparticulates has gained a remarkable degree of interest as a promising sustained-release, site-targeted and completely biodegradable delivery system for chemotherapeutics. We hereby introduce a dual-functionalized biomimetic nanovector, cell-penetrating peptide (CPP)-anchored recombinant high density lipoproteins (cp-rHDL), which affords high payload and improved targeting of gambogic acid (GA), a therapeutic agent for apoptotic antitumor therapy. GA-loaded cp-rHDL nanoparticles (cp-rHDL/GA) consisted of hydrophobic core modulating GA, apolipoprotein A-I (apo A-I) for attractive integrating and tumor-homing, and lipophilic anchored R6H4 (RRRRRRHHHH, a pH-responsive CPP) offering a pH-controlled penetrating potential. Upon stepwise incubation with apo A-I and R6H4, cp-rHDL/GA presented several merits, including desirable physicochemical properties, superior biostability, and favorable buffering capacity resulting in proton sponge effect. Synergistic intracellular mechanism for scavenger receptor class B type I (SR-BI)-mediated direct transmembrane delivery, and pH-responsive R6H4 associated endocytotic pathway with rapid endo-lysosomal escape was also observed. This tailored cp-rHDL/GA displayed remarkable cytotoxicity and apoptotic effect via triggering p53 pathway, and provided approximately 5-fold increase in IC50 compared to free GA. Moreover, this rational biomimetic therapeutic strategy attained superior tumor accumulation and significant inhibition of tumor growth in HepG2 xenograft tumor animal models without measurable adverse effect. Results of this study demonstrated that bio-derived cp-rHDL/GA presents pH-responsive penetrating potential and efficient cellular internalization. This dual-functionalization model will open an avenue for exploration of multi-functional bio-derived drug delivery, thereby rendering potential broad applications in apoptotic anticancer therapy. PMID:26344366

  9. Nanoparticules d'or: De l'imagerie par resonance magnetique a la radiosensibilisation

    NASA Astrophysics Data System (ADS)

    Hebert, Etienne M.

    Cette thèse approfondit l'étude de nanoparticules d'or de 5 nm de diamètre recouvertes de diamideéthanethioldiethylènetriaminepentacétate de gadolinium (DTDTPA:Gd), un agent de contraste pour l'imagerie par résonance magnétique (IRM). En guise de ciblage passif, la taille des nanoparticules a été contrôlée afin d'utiliser le réseau de néovaisseaux poreux et perméable des tumeurs. De plus les tumeurs ont un drainage lymphatique déficient qui permet aux nanoparticules de demeurer plus longtemps dans le milieu interstitiel de la tumeur. Les expériences ont été effectuées sur des souris Balb/c femelles portant des tumeurs MC7-L1. La concentration de nanoparticules a pu être mesurée à l'IRM in vivo. La concentration maximale se retrouvait à la fin de l'infusion de 10 min. La concentration s'élevait à 0.3 mM dans la tumeur et de 0.12 mM dans le muscle environnant. Les nanoparticules étaient éliminées avec une demi-vie de 22 min pour les tumeurs et de 20 min pour le muscle environnant. Les nanoparticules ont été fonctionnalisées avec le peptide Tat afin de leur conférer des propriétés de ciblage actif La rétention de ces nanoparticules a ainsi été augmentée de 1600 %, passant d'une demi-vie d'élimination de 22 min à 350 min. La survie des souris a été mesurée à l'aide de courbes Kaplan-Meier et d'un modèle mathématique évalue l'efficacité de traitements. Le modèle nous permet, à l'aide de la vitesse de croissance des tumeurs et de l'efficacité des traitements, de calculer la courbe de survie des spécimens. Un effet antagoniste a été observé au lieu de l'effet synergétique attendu entre une infusion de Au@DTDTPA:Gd et l'irradiation aux rayons X. L'absence d'effet synergétique a été attribuée à l'épaisseur du recouvrement de DTDTPA:Gd qui fait écran aux électrons produits par l'or. De plus, le moyen d'ancrage du recouvrement utilise des thiols qui peuvent s'avérer être des capteurs de radicaux. De plus, contrairement a ce qui était escompté, un effet chimiothérapeutique de ces nanoparticules a été observé in vitro et in vivo. Par contre, le mécanisme précis de cet effet est encore à être expliquer, mais on sait déjà que les nanoparticules d'or affectent les fonctions des macrophages ainsi que l'angiogenèse. MOTS-CLÉS : Radiosensibilisateur, Nanoparticules d'or, Agent de contraste pour l'IRM, Électrons de basses énergies, Kaplan-Meier, Effet chimiothérapeutique.

  10. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  11. Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish.

    PubMed

    Griffitt, Robert J; Lavelle, Candice M; Kane, Andrew S; Denslow, Nancy D; Barber, David S

    2013-04-15

    Increasing utilization of metallic nanomaterials in recent years implies an increasing rate of release to the environment, with potentially serious adverse effects on environmentally important species. Previously, we demonstrated that exposure to nanoparticulate silver for 24-48 h results in dramatic alterations in global gene expression patterns and increased tissue burdens in zebrafish gills. The present study reports outcomes associated with chronic exposure to nanoparticulate silver in zebrafish. Adult female Danio rerio were exposed to 5, 15, 25, or 50 μg/L nanoparticulate silver in a time course up to 28 days. A soluble silver treatment (5 μg/L) was also included. Results indicate that use of flow-through systems for chronic nanometal studies is a viable concept; measured concentrations of approximately 60% of nominal values over the course of the 28-day exposure were observed. Dissolution of nanoparticulate silver was measured twice weekly throughout the exposure ranging between 0.5 and 1.0 μg/L, and was relatively consistent between nanoparticulate silver tanks, with no differences between treatments. Gill samples from the 28-day time point were analyzed for global gene expression patterns and histopathology. Tissue accumulation in both gill and eviscerated carcass was dose-dependent, and remained elevated 4 days after the silver was removed. Microarray analysis also revealed a dose-dependent response pattern, with the largest number of genes affected in the 50 μg/L AgNP exposure. Pathway analysis of affected genes identified a number of GO terms that were significantly over-represented in the high AgNP dataset. These terms are associated with DNA damage repair, cellular restructuring, and developmental processes. PMID:23416412

  12. New Catalysts for Direct Methanol Oxidation Fuel Cells

    SciTech Connect

    Adzic, Radoslav

    1998-08-01

    A new class of efficient electrocatalytic materials based on platinum - metal oxide systems has been synthetized and characterized by several techniques. Best activity was found with NiWO{sub 4}-, CoWO{sub 4}-, and RuO{sub 2}- sr¡pported platinum catalysts. A very similar activity at room temperature was observed with the electrodes prepared with the catalyst obtained from International Fuel Cells Inc. for the same Pt loading. Surprisingly, the two tungstates per se show a small activity for methanol oxidation without any Pt loading. Synthesis of NiWO{sub 4} and CoWO{sub 4} were carried out by solid-state reactions. FTIR spectroscopy shows that the tungstates contain a certain amount of physically adsorbed water even after heating samples at 200{degrees}C. A direct relationship between the activity for methanol oxidation and the amount of adsorbed water on those oxides has been found. The Ru(0001) single crystal shows a very small activity for CO adsorption and oxidation, in contrast to the behavior of polycrystalline Ru. In situ extended x-ray absorption fine structure spectroscopy (EXAFS) and x-ray absorption near edge spectroscopy (XANES) showed that the OH adsorption on Ru in the Pt-Ru alloy appears to be the limiting step in methanol oxidation. This does not occur for Pt-RuO{SUB 2} electrocatalyst, which explains its advantages over the Pt-Ru alloys. The IFCC electrocatalyst has the properties of the Pt-Ru alloy.

  13. Fabrication of electrocatalyst layers for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, C. Y.; Yang, P.; Lee, Y. S.; Lin, K. F.

    To optimize the performance of the membrane electrode assembly (MEA), a manufacturing process for electrocatalyst layers is systematically studied by controlling physical parameters such as electrocatalyst loadings at each electrode, electrocatalyst compositions, and layer thickness. The MEA is evaluated in an air-breathing direct methanol fuel cell (DMFC) with various methanol concentrations. The investigation focuses on finding the best compromise between electrocatalyst loadings and utilization of methanol concentration. Surprisingly, the power density is influenced more by the Pt loading than by the Pt-Ru loading, and can be increased further by using a methanol concentration above 3 wt.% for a certain level of electrocatalyst loading. Current-voltage characteristics indicate that increasing Pt and Pt-Ru loadings at each electrode can reduce the activation overpotentials, but the respective variation of current density with cell voltage differs in the voltage range (0.3-0.8 V). Although MEA performance can be improved by increasing the Pt (and Pt-Ru) concentration, a penalty is paid due to the tendency towards increased nanoparticle aggregation. The MEAs are also applied to a small pack of air-breathing DMFCs to assess their operability in mobile phones.

  14. Novel Anode Catalyst for Direct Methanol Fuel Cells

    PubMed Central

    Basri, S.; Kamarudin, S. K.; Daud, W. R. W.; Yaakob, Z.; Kadhum, A. A. H.

    2014-01-01

    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2–5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g−1 catalyst. PMID:24883406

  15. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2012-03-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  16. Application of x-ray nano-particulate markers for the visualization of intermediate layers and interfaces using scanning electron microscopy

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Zakharevich, Andrey M.

    2011-10-01

    In this study the methodology of biological sample preparation for dental research using SEM/EDX has been elaborated. (1)The original cutting equipment supplied with 3D user-controlled sample fixation and an adjustable cooling system has been designed and evaluated. (2) A new approach to the root dentine drying procedure has been developed to preserve structure peculiarities of root dentine. (3) A novel adhesive system with embedded X-Ray nanoparticulate markers has been designed. (4)The technique allowing for visualization of bonding resins, interfaces and intermediate layers between tooth hard tissues and restorative materials of endodontically treated teeth using the X-ray nano-particulate markers has been developed and approved. These methods and approaches were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine. It has been shown that the depth of penetration in dentine is less for adhesive systems of generation VI in comparison with bonding resins of generation V, which is in agreement with theoretical evidence. The depth of penetration depends on the correlation between the direction of dentinal tubules, bonding resin delivery and gravity.

  17. Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.).

    PubMed

    Subbaiah, Layam Venkata; Prasad, Tollamadugu Naga Venkata Krishna Vara; Krishna, Thimmavajjula Giridhara; Sudhakar, Palagiri; Reddy, Balam Ravindra; Pradeep, Thalappil

    2016-05-18

    In the present investigation, nanoscale zinc oxide particulates (ZnO-nanoparticulates) were prepared using a modified oxalate decomposition method. Prepared ZnO-nanoparticulates (mean size = 25 nm) were characterized using techniques such as transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), and zeta potential analyzer. Different concentrations (50, 100, 200, 400, 600, 800, 1000, 1500, and 2000 ppm) of ZnO-nanoparticulates were examined to reveal their effects on maize crop on overall growth and translocation of zinc along with bulk ZnSO4 and control. Highest germination percentage (80%) and seedling vigor index (1923.20) were observed at 1500 ppm of ZnO-nanoparticulates. The yield was 42% more compared to control and 15% higher compared to 2000 ppm of ZnSO4. Higher accumulation of zinc (35.96 ppm) in grains was recorded with application of 100 ppm followed by 400 ppm (31.05 ppm) of ZnO-nanoparticulates. These results indicate that ZnO-nanoparticulates have significant effects on growth, yield, and zinc content of maize grains, which is an important feature in terms of human health. PMID:27089102

  18. MgO-Supported Cluster Catalysts with Pt-Ru Interactions Prepared from Pt3Ru6(CO)21(u3-H)(u-H)3

    SciTech Connect

    Chotisuwan,S.; Wittapyakun, J.; Lobo-Lapidus, R.; Gates, B.

    2007-01-01

    Bimetallic MgO-supported catalysts were prepared by adsorption of Pt{sub 3}Ru{sub 6}(CO){sub 21}({mu}{sub 3}-H)({mu}-H){sub 3} on porous MgO. Characterization of the supported clusters by infrared (IR) spectroscopy showed that the adsorbed species were still in the form of metal carbonyls. The supported clusters were decarbonylated by treatment in flowing helium at 300 C, as shown by IR and extended X-ray absorption fine structure (EXAFS) data, and the resulting supported PtRu clusters were shown by EXAFS spectroscopy to have metal frames that retained Pt-Ru bonds but were slightly restructured relative to those of the precursor; the average cluster size was almost unchanged as a result of the decarbonylation. These are among the smallest reported bimetallic clusters of group-8 metals. The decarbonylated sample catalyzed ethylene hydrogenation with an activity similar to that reported previously for {gamma}-Al{sub 2}O{sub 3}-supported clusters prepared in nearly the same way and having nearly the same structure. Both samples were also active for n-butane hydrogenolysis, with the MgO-supported catalyst being more active than the {gamma}-Al{sub 2}O{sub 3}-supported catalyst.

  19. Analytical Electron Microscopy for Characterization of Fluid or Semi-Solid Multiphase Systems Containing Nanoparticulate Material

    PubMed Central

    Klang, Victoria; Valenta, Claudia; Matsko, Nadejda B.

    2013-01-01

    The analysis of nanomaterials in pharmaceutical or cosmetic preparations is an important aspect both in formulation development and quality control of marketed products. Despite the increased popularity of nanoparticulate compounds especially in dermal preparations such as emulsions, methods and protocols of analysis for the characterization of such systems are scarce. This work combines an original sample preparation procedure along with different methods of analytical electron microscopy for the comprehensive analysis of fluid or semi-solid dermal preparations containing nanoparticulate material. Energy-filtered transmission electron microscopy, energy-dispersive X-ray spectroscopy, electron energy loss spectroscopy and high resolution imaging were performed on model emulsions and a marketed product to reveal different structural aspects of both the emulsion bulk phase and incorporated nanosized material. An innovative analytical approach for the determination of the physical stability of the emulsion under investigation is presented. Advantages and limitations of the employed analytical imaging techniques are highlighted. PMID:24300401

  20. A new x-ray adhesive system with embedded nanoparticulate silver markers for dental applications

    NASA Astrophysics Data System (ADS)

    Bessudnova, Nadezda O.; Bilenko, David I.; Venig, Sergey B.; Atkin, Vsevolod S.; Zacharevich, Andrey M.

    2013-02-01

    In the present study a new adhesive system with embedded PVP-stabilized nano-particulate silver markers has been designed. Nanosized silver was used as a radio-opaque contrast material in SEM examination of adhesive system in dentine. It was studied the impact of nano-particulate silver fillers on rheological properties of adhesive system and its penetration in dentine volume. A SEM comparative evaluation of resin replicas produced using adhesive system with embedded silver nanoparticles and that without ones was carried out. It was shown that embedding of silver nanoparticles into adhesive system did not make its penetration worse. It was established that embedding of nanosized silver changed adhesive system morphology. The methodology that allows visualizing interfaces and intermediate layers between dentine, adhesive system and restorative material using silver nano-particulate markers was developed and approved. Silver nanoparticles were used to compare the objective depth of penetration of adhesive systems of different generations in root dentine with differently oriented dentinal tubules, bonding resin delivery and gravity.

  1. Water-based nanoparticulate solar cells using a diketopyrrolopyrrole donor polymer.

    PubMed

    Vaughan, Ben; Williams, Evan L; Holmes, Natalie P; Sonar, Prashant; Dodabalapur, Ananth; Dastoor, Paul C; Belcher, Warwick J

    2014-02-14

    Organic photovoltaic devices with either bulk heterojunction (BHJ) or nanoparticulate (NP) active layers have been prepared from a 1 : 2 blend of (poly{3,6-dithiophene-2-yl-2,5-di(2-octyldodecyl)-pyrrolo[3,4-c]pyrrole-1,4-dione-alt-naphthalene}) (PDPP-TNT) and the fullerene acceptor, ([6,6]-phenyl C71-butyric acid methyl ester) (PC70BM). Atomic force microscopy (AFM) and scanning electron microscopy (SEM) have been used to investigate the morphology of the active layers of the two approaches. Mild thermal treatment of the NP film is required to promote initial joining of the NPs in order for the devices to function, however the NP structure is retained. Consequently, whereas gross phase segregation of the active layer occurs in the BHJ device spin cast from chloroform, the nanoparticulate approach retains control of the material domain sizes on the length scale of exciton diffusion in the materials. As a result, NP devices are found to generate more than twice the current density of BHJ devices and have a substantially greater overall efficiency. The use of aqueous nanoparticulate dispersions offers a promising approach to control the donor acceptor morphology on the nanoscale with the benefit of environmentally-friendly, solution-based fabrication. PMID:24382591

  2. On the mechanism of nanoparticulate CeO2 toxicity to freshwater algae.

    PubMed

    Angel, Brad M; Vallotton, Pascal; Apte, Simon C

    2015-11-01

    The factors affecting the chronic (72-h) toxicity of three nanoparticulate (10-34nm) and one micron-sized form of CeO2 to the green alga, Pseudokirchneriella subcapitata were investigated. To characterise transformations in solution, hydrodynamic diameters (HDD) were measured by dynamic light scatter, zeta potential values by electrophoretic mobility, and dissolution by equilibrium dialysis. The protective effects of humic and fulvic dissolved organic carbon (DOC) on toxicity were also assessed. To investigate the mechanisms of algal toxicity, the CytoViva hyperspectral imaging system was used to visualise algal-CeO2 interactions in the presence and absence of DOC, and the role of reactive oxygen species (ROS) was investigated by 'switching off' ROS production using UV-filtered lighting conditions. The nanoparticulate CeO2 immediately aggregated in solution to HDDs measured in the range 113-193nm, whereas the HDD and zeta potential values were significantly lower in the presence of DOC. Negligible CeO2 dissolution over the time course of the bioassay ruled out potential toxicity from dissolved cerium. The nanoparticulate CeO2 concentration that caused 50% inhibition of algal growth rate (IC50) was in the range 7.6-28mg/L compared with 59mg/L for micron-sized ceria, indicating that smaller particles were more toxic. The presence of DOC mitigated toxicity, with IC50s increasing to greater than 100mg/L. Significant ROS were generated in the nanoparticulate CeO2 bioassays under normal light conditions. However, 'switching off' ROS under UV-filtered light conditions resulted in a similar IC50, indicating that ROS generation was not the toxic mechanism. The CytoViva imaging showed negligible sorption of nanoparticulate CeO2 to algal cells in the presence of DOC, and strong sorption in its absence, suggesting that this was the toxic mechanism. The results suggest that DOC in natural waters will coat CeO2 particles and mitigate toxicity to algal cells. PMID:26461912

  3. Enhanced oral bioavailability of fenofibrate using polymeric nanoparticulated systems: physicochemical characterization and in vivo investigation

    PubMed Central

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon

    2015-01-01

    Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807

  4. Magnetic beads-based electrochemiluminescence immunosensor for determination of cancer markers using quantum dot functionalized PtRu alloys as labels.

    PubMed

    Zhang, Yan; Ge, Shenguang; Wang, Shaowei; Yan, Mei; Yu, Jinghua; Song, Xianrang; Liu, Weiyan

    2012-05-01

    A novel electrochemiluminescence (ECL) immunosensor for sensitive detection of human chorionic gonadotrophin antigen (HCG-Ag) was constructed using CdTe quantum dot functionalized nanoporous PtRu alloys (QDs@PtRu) as labels for signal amplification. In this paper, nanoporous PtRu alloy was employed as the carrier for immobilization of CdTe QDs and antibodies. Primary monoclonal antibody to alfa-HCG antigen (McAb(1)) was immobilized onto the surface of chitosan coated Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)/CS MNPs) by glutaraldehyde (GA) as coupling agent. Then McAb(1) could be easily separated and assembled on the surface of indium tin oxide glass (ITO) owing to their excellent magnetic properties with external magnetic forces holding the MNPs. Due to signal amplification from the high loading of CdTe QDs, 4.67-fold enhancements in ECL signal for HCG-Ag detection was achieved compared to the unamplified method (single QDs as labels). Under optimal conditions, a wide detection range (0.005~50 ng mL(-1)) and low detection limit (0.8 pg mL(-1)) were achieved through the sandwich-type immunosensor. The novel immunosensor showed high sensitivity and selectivity, excellent stability, and good reproducibility, and thus has great potential for clinical detection of HCG-Ag. In particular, this approach presents a novel class of combining bifunctional nanomaterials with preferable ECL properties and excellent magnetism, which suggests considerable potential in a wide range of applications for bioassays. PMID:22421801

  5. Nanoparticulate carriers for photodynamic therapy of cholangiocarcinoma: In vitro comparison of various polymer-based nanoparticles.

    PubMed

    Grünebaum, Jonas; Söbbing, Judith; Mulac, Dennis; Langer, Klaus

    2015-12-30

    The photodynamic therapy with porphyrin derivatives is an established approach to targeted tumor therapy, but is still afflicted with disadvantages of the physicochemical characteristics of the photosensitizer. To overcome drug-related restrictions in photodynamic therapy, three 5,10,15,20-tetrakis(m-hydroxyphenyl) porphyrin (mTHPP)-loaded nanoparticulate formulations based on poly(dl-lactide-co-glycolide) (PLGA), poly(d,l-lactide) (PLA), and Eudragit(®) E were prepared in a consistent diameter range and compared with free mTHPP in vitro. Formulation behavior was investigated in two different cholangiocellular cell lines, EGI-1 and TFK-1. High cytotoxicity was shown for all photosensitizer loaded nanoparticle (NP) formulations and free mTHPP, with EC50 values ranging from 0.2 to 1.3μM. PLA based NP were not as effective in all performed tests as other formulations. Nanoparticulate embedded mTHPP remained photodynamically active and resulted in caspase-3 activation even at low concentrations of 250nM. PLGA based NP exhibited highest caspase-3 activation. For all formulations an effective intracellular accumulation of mTHPP was observed, whereby for mTHPP-Eudragit(®) E-NP a 200-fold drug accumulation was shown. Polymer based nanoparticles were shown to be an effective and highly active transport vehicle for the photosensitizer mTHPP in vitro. Problems like low solubility of free drug can be circumvented by successful embedding into nanoparticulate carrier systems, maintaining therapeutic effects of the photosensitizer. PMID:26456264

  6. Dynamics of nanoparticules detected at 1 AU by S/WAVES onboard STEREO spacecraft

    NASA Astrophysics Data System (ADS)

    Belheouane, Soraya; Issautier, Karine; Meyer-Vernet, Nicole; Le Chat, Gaétan; Czechowski, Andrzej; Zaslavsky, Arnaud; Zouganelis, Yannis; Mann, Ingrid

    In order to interpret in detail the S/WAVES data on the interplanetary nanodust discovered by STEREO at 1 AU [Meyer-Vernet et al., 2009], we study the dynamics of nanoparticles in the inner interplanetary medium as well as the distribution of their velocities and directions of arrival, with a model based on [Czechowski and Mann, 2012]. We deduce the charges released by their impacts on the STEREO spacecraft at 1 AU and their dependence on the position of the spacecraft on their orbits. The model studies nanoparticles of size equal or smaller than about 70 nm, assumed to be created via collisional fragmentation of dust grains of larger size moving on keplerian orbits, and sublimation of dust, meteoroids and comets. The nanoparticles are released near the Sun with initial velocities close to keplerian, and mainly subjected to the Lorentz force calculated with a simple solar wind model. A part of the nanoparticles is accelerated to high speeds of the order of 300 km/s, thereby providing impact charges between 10(-14) and 10(-11) Cb [Belheouane, 2014] which enable them to be detected by S/WAVES, whereas another part is trapped within about 0.2 AU from the Sun. We discuss how the fluxes and direction of arrival at 1 AU are expected to change in function of the solar cycle. These results enable us to interpret in detail the STEREO/WAVES observations [Zaslavsky et al., 2012]; [Pantellini et al., 2013]; [Le Chat et al., 2013]. Belheouane, S. (2014). Nanoparticules dans le vent solaire, observations spatiales et theorie. PhD thesis, Pierre and Marie Curie University UPMC. Czechowski, A. and Mann, I. (2012). Nanodust Dynamics in Interplanetary Space, chapter Nanodust Dynamics in Interplanetary Space. Springer Berlin Heidelberg. Le Chat, G., Zaslavsky, A., Meyer-Vernet, N., Issautier, K., Belheouane, S., Pantellini, F., Maksimovic, M., Zouganelis, I., Bale, S., and Kasper, J. (2013). Interplanetary Nanodust Detection by the Solar Terrestrial Relations Observatory/WAVES Low Frequency Receiver. Solar Physics, 286(2):549-559. Meyer-Vernet, N., Maksimovic, M., Czechowski, A., Mann, I., Zouganelis, I., Goetz, K., Kaiser, M., Cyr, O. S., Bougeret, J.-L., and Bale, S. (2009). Dust Detection by the Wave Instrument on STEREO : Nanoparticles Picked up by the Solar Wind? Solar Phys, 256:463-474. Pantellini, F., Le Chat, G., Belheouane, S., Meyer-Vernet, N., and Zaslavsky, A. (2013). On the detection of nano dust using spacecraft based boom antennas. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, 1539:414-417. Zaslavsky, A., Meyer-Vernet, N., Mann, I., Czechowski, A., Issautier, K., Le Chat, G., Pantellini, F., Goetz, K., Maksimovic, M., Bale, S. D., and Kasper, J. K. (2012). Interplanetary dust detection by radio antennas: Mass calibration and fluxes measured by STEREO/WAVES. J. Geophys. Res., 117.

  7. Spleen injury and apoptotic pathway in mice caused by titanium dioxide nanoparticules.

    PubMed

    Li, Na; Duan, Yanmei; Hong, Mengmeng; Zheng, Lei; Fei, Min; Zhao, Xiaoyang; Wang, Jue; Cui, Yaling; Liu, Huiting; Cai, Jingwei; Gong, Songjie; Wang, Han; Hong, Fashui

    2010-06-01

    Nanoparticulate titanium dioxide (TiO(2)) has been demonstrated to decrease immunity of mice, but very little is known about the injury of spleen involved immunomodulation and its molecular mechanism. In order to understand the spleen injury induced by intraperitoneal injection of TiO(2) nanoparticules (NPs) for consecutive 45 days, the spleen pathological changes, apoptosis, the expression levels of the apoptotic genes and their proteins, and oxidative stress in the mouse spleen were investigated. The results demonstrated that TiO(2) NPs had obvious accumulation in the mouse spleen, leading to congestion and lymph nodule proliferation of spleen tissue, and splenocyte apoptosis. TiO(2) NPs effectively activated caspase-3 and -9, decreased the Bcl-2 the levels of gene and protein, and increase the levels of Bax, and cytochrome c genes and their protein expression, promoted ROS accumulation. Taken together, this study indicated that TiO(2) NPs-induced apoptosis in the mouse splenocyte via mitochondrial-mediated pathway. These findings provide strong evidence that the TiO(2) NPs can induce the spleen pathological changes, apoptosis, leading to the reduction of immunity of mice. PMID:20381595

  8. Ellipsometric analysis and optical absorption characterization of gallium phosphide nanoparticulate thin film

    NASA Astrophysics Data System (ADS)

    Zhang, Qi-Xian; Wei, Wen-Sheng; Ruan, Fang-Ping

    2011-04-01

    Gallium phosphide (GaP) nanoparticulate thin films were easily fabricated by colloidal suspension deposition via GaP nanoparticles dispersed in N,N-dimethylformamide. The microstructure of the film was performed by x-ray diffraction, high resolution transmission electron microscopy and field emission scanning electron microscopy. The film was further investigated by spectroscopic ellipsometry. After the model GaP+void|SiO2 was built and an effective medium approximation was adopted, the values of the refractive index n and the extinction coefficient k were calculated for the energy range of 0.75 eV-4.0 eV using the dispersion formula in DeltaPsi2 software. The absorption coefficient of the film was calculated from its k and its energy gaps were further estimated according to the Tauc equation, which were further verified by its fluorescence spectrum measurement. The structure and optical absorption properties of the nanoparticulate films are promising for their potential applications in hybrid solar cells.

  9. Cardiac oxidative damage in mice following exposure to nanoparticulate titanium dioxide.

    PubMed

    Sheng, Lei; Wang, Xiaochun; Sang, Xuezi; Ze, Yuguan; Zhao, Xiaoyang; Liu, Dong; Gui, Suxin; Sun, Qingqing; Cheng, Jie; Cheng, Zhe; Hu, Renping; Wang, Ling; Hong, Fashui

    2013-11-01

    Nanoparticulate titanium dioxide (nano-TiO2 ) is a widely used powerful nanoparticulate material with high stability, anticorrosion, and photocatalytic property. However, it is possible that during nano-TiO2 exposure, there may be negative effects on cardiovascular system in intoxicated mice. The present study was therefore undertaken to determine nano-TiO2 -induced oxidative stress and to determine whether nano-TiO2 intoxication alters the antioxidant system in the mouse heart exposed to 2.5, 5, and 10 mg/kg body weight nano-TiO2 for 90 consecutive days. The findings showed that long-term exposure to nano-TiO2 resulted in obvious titanium accumulation in heart, in turn led to sparse cardiac muscle fibers, inflammatory response, cell necrosis, and cardiac biochemical dysfunction. Nano-TiO2 exposure promoted remarkably reactive oxygen species production such as superoxide radicals, hydrogen peroxide, and increased malondialdehyde, carbonyl and 8-OHdG levels as degradation products of lipid, protein, and DNA peroxidation in heart. Furthermore, nano-TiO2 exposure attenuated the activities of antioxidative enzymes, such as superoxide dismutase, ascorbate peroxidase, glutathione reductase, glutathione-S-transferase, and levels of antioxidants including ascorbic acid, glutathione, and thiol in heart. Therefore, TiO2 NPs exposure may impair cardiovascular system in mice, and attention should be aroused on the application of nano-TiO2 and their potential long-term exposure effects especially on human beings. PMID:23553934

  10. Rate-programming of nano-particulate delivery systems for smart bioactive scaffolds in tissue engineering

    NASA Astrophysics Data System (ADS)

    Izadifar, Mohammad; Haddadi, Azita; Chen, Xiongbiao; Kelly, Michael E.

    2015-01-01

    Development of smart bioactive scaffolds is of importance in tissue engineering, where cell proliferation, differentiation and migration within scaffolds can be regulated by the interactions between cells and scaffold through the use of growth factors (GFs) and extra cellular matrix peptides. One challenge in this area is to spatiotemporally control the dose, sequence and profile of release of GFs so as to regulate cellular fates during tissue regeneration. This challenge would be addressed by rate-programming of nano-particulate delivery systems, where the release of GFs via polymeric nanoparticles is controlled by means of the methods of, such as externally-controlled and physicochemically/architecturally-modulated so as to mimic the profile of physiological GFs. Identifying and understanding such factors as the desired release profiles, mechanisms of release, physicochemical characteristics of polymeric nanoparticles, and externally-triggering stimuli are essential for designing and optimizing such delivery systems. This review surveys the recent studies on the desired release profiles of GFs in various tissue engineering applications, elucidates the major release mechanisms and critical factors affecting release profiles, and overviews the role played by the mathematical models for optimizing nano-particulate delivery systems. Potentials of stimuli responsive nanoparticles for spatiotemporal control of GF release are also presented, along with the recent advances in strategies for spatiotemporal control of GF delivery within tissue engineered scaffolds. The recommendation for the future studies to overcome challenges for developing sophisticated particulate delivery systems in tissue engineering is discussed prior to the presentation of conclusions drawn from this paper.

  11. Electric relaxation processes in chemodynamics of aqueous metal complexes: from simple ligands to soft nanoparticulate complexants.

    PubMed

    van Leeuwen, Herman P; Buffle, Jacques; Town, Raewyn M

    2012-01-10

    The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles. PMID:22126743

  12. The Science Behind Nanosun-Screens: Learning about Nanoparticulate Ingredients Used to Block the Sun's Ultraviolet Rays

    ERIC Educational Resources Information Center

    Wise, Alyssa; Schank, Patricia; Stanford, Tina; Horsma, Geri

    2009-01-01

    In this article, the authors provide a brief overview of the emerging field of nanoscience and why it is an important area of education. They next explain the science behind the new nanoparticulate sunscreens, describe the different elements of the unit, and reflect on some of the opportunities and challenges of teaching nanoscience at the high…

  13. Nano-particulate Aluminium Nitride/Al: An Efficient and Versatile Heterogeneous Catalyst for the Synthesis of Biginelli Scaffolds

    NASA Astrophysics Data System (ADS)

    Tekale, S. U.; Tekale, A. B.; Kanhe, N. S.; Bhoraskar, S. V.; Pawar, R. P.

    2011-12-01

    Nano-particulate aluminium nitride/Al (7:1) is reported as a new heterogeneous solid acid catalyst for the synthesis of 3, 4-dihydroxypyrimidi-2-(1H)-ones and their sulphur analogues using the Biginelli reaction. This method involves short reaction time, easy separation, high yields and purity of products.

  14. Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system

    SciTech Connect

    Roy, Aparna E-mail: aparnaroy15@gmail.com; Ferreira, J. M. F.; De Toro, J. A.; Muniz, P.; Riveiro, J. M.; Amaral, V. S.

    2014-02-21

    We report magnetic and exchange bias studies on Ni-NiO nanoparticulate systems synthesized by a two-step process, namely, chemical reduction of a Ni salt followed by air annealing of the dried precipitate in the temperature range 400–550 °C. Size of Ni and NiO crystallites as estimated from X–ray diffraction line broadening ranges between 10.5–13.5 nm and 2.3–4 nm, respectively. The magneto-thermal plots (M-T) of these bi-magnetic samples show a well developed peak in the vicinity of 130 K. This has been identified as the superparamagnetic blocking temperature “T{sub B}” of NiO. Interestingly, all samples exhibit exchange bias even above their respective NiO blocking temperatures, right up to 300 K, the maximum temperature of measurement. This is in contrast to previous reports since exchange bias requires the antiferromagnetic NiO to have a stable direction of its moment in order to pin the ferromagnet (Ni) magnetization, whereas such stability is unlikely above T{sub B} since the NiO is superparamagnetic, its moment flipping under thermal activation. Our observation is elucidated by taking into account the core-shell morphology of the Ni-NiO nanoparticles whereby clustering of some of these nanoparticles connects their NiO shells to form extended continuous regions of NiO, which because of their large size remain blocked at T > T{sub B}, with thermally stable spins capable of pinning the Ni cores and giving rise to exchange bias. The investigated samples may thus be envisaged as being constituted of both isolated core-shell Ni-NiO nanoparticles as well as clustered ones, with T{sub B} denoting the blocking temperature of the NiO shell of the isolated particles.

  15. Generation of Oxidants From the Reaction of Nanoparticulate Zero-Valent Iron and Oxygen for the use in Contaminant Remediation

    NASA Astrophysics Data System (ADS)

    Keenan, C. R.; Lee, C.; Sedlak, D. L.

    2007-12-01

    The reaction of zero-valent iron (ZVI) with oxygen can lead to the formation of oxidants, which may be used to transform recalcitrant contaminants including non-polar organics and certain metals. Nanoparticulate iron might provide a practical mechanism of remediating oxygen-containing groundwater and contaminated soil. To gain insight into the reaction mechanism and to quantify the yield of oxidants, experiments were performed with model organic compounds in the presence of nanoparticulate zero-valent iron and oxygen. At pH values below 5, ZVI nanoparticles were oxidized within 30 minutes with a stoichiometry of approximately two Fe0 oxidized per O2 consumed. Using the oxidation of methanol and ethanol to formaldehyde and acetaldehyde, respectively, we found that less than 2% of the consumed oxygen was converted to reactive oxidants under acidic conditions. The yield of aldehydes increased with pH up to pH 7, with maximum oxidant yields of around 5% relative to the mass of ZVI added. The increase of aldehyde yield with pH was attributable to changes in the processes responsible for oxidant production. At pH values below 5, the corrosion of ZVI by oxygen produces hydrogen peroxide, which subsequently reacts with ferrous iron [Fe(II)] via the Fenton reaction. At higher pH values, the aldehydes are produced when Fe(II), the initial product of ZVI oxidation, reacts with oxygen. The decrease in oxidant yield at pH values above 7 may be attributable to precipitation of Fe(II). The oxidation of benzoic acid and 2-propanol to para-hydroxybenzoic acid and acetone, respectively, followed a very different trend compared to the primary alcohols. In both cases, the highest product yields (approximately 2% with respect to ZVI added) were observed at pH 3. Yields decreased with increasing pH, with no oxidized product detected at neutral pH. These results suggest that two different oxidants may be produced by the system: hydroxyl radical (OH-·) at acidic pH and a more selective oxidant such as the ferryl ion [Fe(IV)] at neutral pH. This provides insight into the type of compounds that may be oxidized using the zero-valent iron and oxygen system. The addition of certain compounds such as oxalate and polyoxometalate (POM) may improve contaminant remediation efficiencies by enhancing oxidant yields. The introduction of 1 mM oxalate improved the formaldehyde yield by approximately 20% at neutral pH. Oxalate accelerates the Fenton reaction and limits the passivation of the ZVI surface by increasing iron solubility. The presence of excess POM greatly enhanced the yield of formaldehyde, with maximum yields of 60 and 35% with respect to ZVI added at pH 2 and 7, respectively. The mechanism of POM enhancement is a function of solution pH. At acidic pH, POM acts an electron shuttle by directly transferring electrons from ZVI to oxygen to increase the hydrogen peroxide production. At neutral pH, POM may act by forming soluble iron-complexes and preventing the build-up of an iron oxide layer on the ZVI surface.

  16. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    PubMed

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ∼ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified. PMID:25874741

  17. Nanoparticulate mackinawite formation; a stopped and continuous flow XANES and EXAFS investigation

    NASA Astrophysics Data System (ADS)

    Butler, I. B.; Bell, A. M.; Charnock, J. M.; Rickard, D.; Vaughan, D. J.; Oldroyd, A.

    2009-12-01

    The sequestration of sulfur and iron within sedimentary iron sulfides, and ultimately as pyrite, is a major sink in global biogeochemical cycles of those elements and has impacts on global carbon and oxygen cycles. The formation of the metastable black iron (II) monosulfide mackinawite is a key process because mackinawite forms in aqueous solutions where the Fe(II) and S(-II) IAP exceeds mackinawite’s Ksp. Mackinawite is the first formed iron sulfide phase, a consequence of Ostwald’s step rule and is a reactant phase during the formation of thermodynamically stable sedimentary iron sulfide minerals such as pyrite. The reaction of dissolved Fe(II) and sulfide is extremely fast and reactions in the environmentally significant near-neutral pH range tend to completion in <1 second. We have combined stopped and continuous flow techniques with X-ray absorption spectroscopy to evaluate the products of the fast precipitation kinetics of mackinawite over millisecond timescales. EXAFS spectra and data collected during flow experiments were compared with those from a well characterised freeze-dried nanoparticulate mackinawite standard and with published data. Published work has used Rietveld crystal structure refinement to determine bond distances of 2.2558 and 2.5976Å for Fe-S and Fe-Fe respectively. In our experiments Fe K edge XANES is consistent with tetrahedrally coordinated Fe in the precipitated sulfide phase. EXAFS data show that local Fe-S and Fe-Fe coordination and interatomic distances (Fe-S = 2.24Å; Fe-Fe = 2.57Å) are consistent with those determined for the standard mackinawite and published data. The coordination and spacing are developed in the precipitated phase after <10ms reaction at pH5, and considerably faster in experiments at near neutral to alkaline pH. No evidence for phases structurally intermediate between hexaqua Fe(II) and precipitated mackinawite was observed. Aqueous FeS° cluster complexes previously identified as intermediates during mackinawite formation and iron sulfide mineral transformations did not contribute significantly to the EXAFS spectra collected. For environmental, geological and biogeochemical applications, the precipitation of the mineral mackinawite can be considered to proceed rapidly from aqueous Fe(II) and S(-II) ions to the nanoparticulate crystalline mineral. The materials labelled “disordered mackinawite”, or “amorphous FeS” phase which have been widely quoted in the iron sulfide literature do not form at any stage of the precipitation of mackinawite from aqueous solutions. Physical and chemical properties previously ascribed to an amorphous or disordered structure are a consequence of the nanoparticulate form of the first precipitated solid.

  18. Mecanismes de deformation de nanoparticules d'Au par irradiation ionique

    NASA Astrophysics Data System (ADS)

    Harkati Kerbouah, Chahineze

    2011-12-01

    In the present thesis, we study the anisotropic deformation of gold nanoparticles embedded in amorphous silica or crystalline aluminum arsenide, under ion bombardment. We try to comprehend the mechanism responsible for this deformation and to remove any ambiguity related to the explanation of this phenomenon. A hybrid process combining sputtering and plasma enhanced chemical vapour deposition was used to fabricate Au/SiO2 layers on fused silica substrates. Structures with single and multilayer were obtained. Heating during or after deposition activates the Au atom agglomeration and favours the growth of the nanoparticles. Also, a Au/AlAs nanocomposite was obtained by ion implantation of AlAs films, followed by rapid thermal annealing. The samples of the two nanocomposites, cooled with liquid nitrogen, were irradiated with 2 to 40 MeV Cu, Si, Au or In ion beams, at fluences ranging from 1x10 13 to 4x1015 ions/cm2, using a Tandem or Tandetron accelerator. The structural and morphological properties of the Au/SiO2 nanocomposite were extracted by optical means; the frequency and the width of surface plasmon resonance band depend on the nanoparticle shape and size, their concentration, the inter-particle distance and the dielectric properties of material in which the particles are embedded. The aluminum arsenide crystallinity was studied by two techniques: Raman spectroscopy and Rutherford backscattering spectrometry in channelling configuration (RBS/ channelling). The Au concentration in the nanocomposite layers was deducted from RBS results. The size distribution and metallic nanoparticles shape transformation in both nanocomposites were observed by electronic transmission microscopy. The results obtained within the framework of this work are the subject of three journal papers. The first publication shows the possibility of manipulating the width and spectral position of the gold nanoparticle absorption band in Au/SiO2 nanocomposites by modifying their structure (form, size and inter-particle distance). The obtained Au nanoparticles are nearly spherical. The surface plasmon (PS) absorption band corresponding to the distant particles is located at 520 nm. After ion irradiation, the spherical nanoparticles transform into ellipsoids aligned along the ion beam. The absorption band splits into two bands: transversal and longitudinal. The band corresponding to the ellipsoids small axis (transversal) is blue-shifted and that corresponding to the long axis (longitudinal) is red-shifted indicating the elongation of particles in the beam direction. The second paper is consecrated to the crucial role of the plastic deformation of the matrix and to the importance of the metal atomic mobility in the anisotropic nanoparticles deformation in Au/SiO 2 nanocomposites. Our measurements show that a threshold value of 2 keV/nm (electronic stopping power) is necessary for the deformation of Au nanoparticles. This value is close to that required for silica deformation. Mobility of the Au atoms at the time of the ion passage is confirmed by temperature calculation within the ionic track. The third paper treats the attempt of formation and deformation of Au nanoparticles in crystalline aluminum arsenide matrix known by its high resistance to amorphisation and deformation under ionic bombardment. The principal result of the last article confirms the essential role of the matrix. It proves that the anisotropic deformation of surrounding material is indispensable for gold nanoparticles deformation. The experimental results mentioned above and temperature calculations within ionic tracks allowed us to propose the following anisotropic deformation scenario of Au nanoparticles embedded in Au/SiO2 nanocomposite: (1) Each ion crossing the silica melts (very briefly) a narrow cylinder around its trajectory forming thus a latent track. This is consistent with the observed threshold value in the electronic stopping power. (2) The cumulative effect of many separate ion impacts leads to the anisotropic growth of the silica matrix which contracts in the direction of the beam and elongates in the perpendicular direction. The overlap model of the ionic tracks was used to validate this phenomenon. (3) The deformation of silica generates strains which act on the nanoparticles in the plane perpendicular to the ion trajectory. In order to accommodate these strains, the Au nanoparticles deform in the beam direction. (4) The deformation of nanoparticles occurs each time an ion traverses the gold particle and melts a cylinder around its trajectory. The mobility of the gold atoms was confirmed by a calculation of the equivalent temperature from the deposited energy in the material by incident ions. The scenario above is compatible with our experimental data obtained in the case of the Au/SiO2 nanocomposite. It is further supported by the fact that the Au nanoparticules do not deform when they are integrated in AlAs which is resistant to the deformation. Keywords: ion irradiation, nanoparticles, Au, electronic stopping power, surface plasmon resonance, elongation, silica, aluminum arsenide.

  19. Emerging engineered magnetic nanoparticulate probes for molecular MRI of atherosclerosis: how far have we come?

    PubMed

    Kanwar, Rupinder K; Chaudhary, Rajneesh; Tsuzuki, Takuya; Kanwar, Jagat R

    2012-06-01

    Atherosclerosis is a chronic, progressive, immunoinflammatory disease of the large and medium-sized arteries, and a major cause of cardiovascular diseases. Atherosclerosis often progresses silently for decades until the occurrence of a major catastrophic clinical event such as myocardial infarction, cardiac arrest and stroke. The main challenge in the diagnosis and management of atherosclerosis is to develop a safe, noninvasive technique that is accurate and reproducible, which can detect the biologically active high-risk vulnerable plaques (with ongoing active inflammation, angiogenesis and apoptosis) before the occurrence of an acute clinical event. This article reviews the events involved in the pathogenesis of atherosclerosis in light of recently advanced understanding of the molecular pathogenesis of the disease. Next, we elaborate on the interesting developments in molecular MRI, by describing the recently engineered magnetic nanoparticulate probes targeting clinically promising molecular and cellular players/processes, involved in early atherosclerotic lesion formation to plaque rupture and erosion. PMID:22715913

  20. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified.An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the observed enhancement of the catalytic activity of PtxRu100-x alloy NPs at x ~ 50. Implications of so-established relationships between the atomic structure and catalytic activity of Pt-Ru alloy NPs on efforts aimed at improving further the latter by tuning-up the former are discussed and the usefulness of detailed NP structure studies to advancing science and technology of metallic NPs - exemplified. Electronic supplementary information (ESI) available: XRD patterns, TEM and 3D structure modelling methodology. See DOI: 10.1039/c5nr00800j

  1. Influence of polymolybdate adsorbates on electrooxidation of ethanol at PtRu nanoparticles: Combined electrochemical, mass spectrometric and X-ray photoelectron spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Gralec, Barbara; Lewera, Adam; Kulesza, Pawel J.

    2016-05-01

    The role Keggin-type phosphomolybdate (PMo12O403-) ions (adsorbed on carbon-supported PtRu, PtRu/C) on electrooxidation of ethanol is addressed here. The combined results obtained using Differential Electrochemical Mass Spectrometry, X-ray Photoelectron Spectroscopy and Cyclic Voltammetry are consistent with the view that presence of the Keggin-type polyoxometallate, phosphomolybdate, ions (adsorbates) leads to enlargement of the current densities associated with electrooxidation of ethanol at potentials greater than 700 mV vs. RHE. This increase of the anodic currents is correlated with the higher acetaldehyde yield which is likely to reflect changes in the reaction kinetics (e.g. more dynamic dehydrogenation of ethanol leading to acetaldehyde) or in the reaction mechanism defined by the preferential surface modification resulting not only in faster kinetics but also in higher selectivity with respect to acetaldehyde production. It is apparent from the spectroscopic data that modification of PtRu/C nanoparticles with phosphomolybdate ions leads to suppression of the formation of Ru surface oxides.

  2. Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with Pt-Ru anodic catalyst

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Yan, Wei-Mon; Chen, Chun-Chi; Hsu, Sui-Wei

    2013-12-01

    The reformate gas is one of the commonest solutions to the problem of fuel supply for proton exchange membrane fuel cell systems. Thus, it is important to understand the behaviors of a fuel cell using reformate gases. In this work, effects of nitrogen and carbon monoxide concentrations on unsteady characteristics of a proton exchange membrane fuel cell with the Pt-Ru anodic catalyst are investigated experimentally. Simulated reformate gases with hydrogen, nitrogen and carbon monoxide are employed as the fuel. The experimental data show that a larger dilution effect of nitrogen is noted for cases with lower hydrogen stoichiometric ratios. Furthermore, increasing the carbon monoxide concentration reduces the cell performance because the elevated carbon monoxide adsorption rate results in a severer poison effect. The voltage fluctuating phenomenon is observed at high CO ppm and is due to a periodical change of coverage on the catalyst surface. Meanwhile, it is verified that the voltage fluctuation is accompanied with a periodical change of the anode outlet carbon monoxide concentration. Furthermore, the fluctuating phenomena of voltage and the anode outlet carbon monoxide concentration are more easily triggered in diluted hydrogen than in non-diluted hydrogen.

  3. Nanoparticulated docetaxel exerts enhanced anticancer efficacy and overcomes existing limitations of traditional drugs

    PubMed Central

    Choi, Jinhyang; Ko, Eunjung; Chung, Hye-Kyung; Lee, Jae Hee; Ju, Eun Jin; Lim, Hyun Kyung; Park, Intae; Kim, Kab-Sig; Lee, Joo-Hwan; Son, Woo-Chan; Lee, Jung Shin; Jung, Joohee; Jeong, Seong-Yun; Song, Si Yeol; Choi, Eun Kyung

    2015-01-01

    Nanoparticulation of insoluble drugs improves dissolution rate, resulting in increased bioavailability that leads to increased stability, better efficacy, and reduced toxicity of drugs. Docetaxel (DTX), under the trade name Taxotere™, is one of the representative anticancer chemotherapeutic agents of this era. However, this highly lipophilic and insoluble drug has many adverse effects. Our novel and widely applicable nanoparticulation using fat and supercritical fluid (NUFS™) technology enabled successful nanoscale particulation of DTX (Nufs-DTX). Nufs-DTX showed enhanced dissolution rate and increased aqueous stability in water. After confirming the preserved mechanism of action of DTX, which targets microtubules, we showed that Nufs-DTX exhibited similar effects in proliferation and clonogenic assays using A549 cells. Interestingly, we observed that Nufs-DTX had a greater in vivo tumor growth delay effect on an A549 xenograft model than Taxotere™, which was in agreement with the improved drug accumulation in tumors according to the biodistribution result, and was caused by the enhanced permeability and retention (EPR) effect. Although both Nufs-DTX and Taxotere™ showed negative results for our administration dose in the hematologic toxicity test, Nufs-DTX showed much less toxicity than Taxotere™ in edema, paralysis, and paw-withdrawal latency on a hot plate analysis that are regarded as indicators of fluid retention, peripheral neuropathy, and thermal threshold, respectively, for toxicological tests. In summary, compared with Taxotere™, Nufs-DTX, which was generated by our new platform technology using lipid, supercritical fluid, and carbon dioxide (CO2), maintained its biochemical properties as a cytotoxic agent and had better tumor targeting ability, better in vivo therapeutic effect, and less toxicity, thereby overcoming the current hurdles of traditional drugs. PMID:26457052

  4. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials

    PubMed Central

    Xie, Jingwei; Jiang, Jiang; Davoodi, Pooya; Srinivasan, M. P.; Wang, Chi-Hwa

    2014-01-01

    Electrohydrodynamic atomization (EHDA), also called electrospray technique, has been studied for more than one century. However, since 1990s it has begun to be used to produce and process micro-/nanostructured materials. Owing to the simplicity and flexibility in EHDA experimental setup, it has been successfully employed to generate particulate materials with controllable compositions, structures, sizes, morphologies, and shapes. EHDA has also been used to deposit micro- and nanoparticulate materials on surfaces in a well-controlled manner. All these attributes make EHDA a fascinating tool for preparing and assembling a wide range of micro- and nanostructured materials which have been exploited for use in pharmaceutics, food, and healthcare to name a few. Our goal is to review this field, which allows scientists and engineers to learn about the EHDA technique and how it might be used to create, process, and assemble micro-/nanoparticulate materials with unique and intriguing properties. We begin with a brief introduction to the mechanism and setup of EHDA technique. We then discuss issues critical to successful application of EHDA technique, including control of composition, size, shape, morphology, structure of particulate materials and their assembly. We also illustrate a few of the many potential applications of particulate materials, especially in the area of drug delivery and regenerative medicine. Next, we review the simulation and modeling of Taylor cone-jet formation for a single and co-axial nozzle. The mathematical modeling of particle transport and deposition is presented to provide a deeper understanding of the effective parameters in the preparation, collection and pattering processes. We conclude this article with a discussion on perspectives and future possibilities in this field. PMID:25684778

  5. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    TOXLINE Toxicology Bibliographic Information

    Moche H; Chevalier D; Barois N; Lorge E; Claude N; Nesslany F

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.

  6. Tungsten carbide-cobalt as a nanoparticulate reference positive control in in vitro genotoxicity assays.

    PubMed

    Moche, Hlne; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice

    2014-01-01

    With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays. PMID:24085191

  7. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides.

    PubMed

    Zhang, Tong; Kucharzyk, Katarzyna H; Kim, Bojeong; Deshusses, Marc A; Hsu-Kim, Heileen

    2014-08-19

    The production of methylmercury (MeHg) by anaerobic microorganisms depends in part on the speciation and bioavailability of inorganic mercury to these organisms. Our previous work with pure cultures of methylating bacteria has demonstrated that the methylation potential of mercury decreased during the aging of mercuric sulfides (from dissolved to nanoparticulate and microcrystalline HgS). The objective of this study was to understand the relationship between mercury sulfide speciation and methylation potential in experiments that more closely simulate the complexity of sediment settings. The study involved sediment slurry microcosms that represented a spectrum of salinities in an estuary and were each amended with different forms of mercuric sulfides: dissolved Hg and sulfide, nanoparticulate HgS (3-4 nm in diameter), and microparticulate HgS (>500 nm). The results indicated that net MeHg production was influenced by both the activity of sulfate-reducing microorganisms (roughly represented by the rate of sulfate loss) and the bioavailability of mercury. In the presence of abundant sulfate and carbon sources (supporting relatively high microbial activity), net MeHg production in the slurries amended with dissolved Hg was greater than in slurries amended with nano-HgS, similar to previous experiments with pure bacterial cultures. In microcosms with minimal microbial activity (indicated by low rates of sulfate loss), the addition of either dissolved Hg or nano-HgS resulted in similar amounts of net MeHg production. For all slurries receiving micro-HgS, MeHg production did not exceed abiotic controls. In slurries amended with dissolved and nano-HgS, mercury was mainly partitioned to bulk-scale mineral particles and colloids, indicating that Hg bioavailability was not simply related to dissolved Hg concentration or speciation. Overall, the results suggest that models for mercury methylation potential in the environment will need to balance the relative contributions of mercury speciation and activity of methylating microorganisms. PMID:25007388

  8. In vitro and in vivo evaluation of a nanoparticulate bioceramic paste for dental pulp repair.

    PubMed

    Zhu, Lingxin; Yang, Jingwen; Zhang, Jie; Lei, Dongqi; Xiao, Lan; Cheng, Xue; Lin, Ying; Peng, Bin

    2014-12-01

    Bioactive materials play an important role in facilitating dental pulp repair when living dental pulp is exposed after injuries. Mineral trioxide aggregate is the currently recommended material of choice for pulp repair procedures though has several disadvantages, especially the inconvenience of handling. Little information is yet available about the early events and molecular mechanisms involved in bioceramic-mediated dental pulp repair. We aimed to characterize and determine the apatite-forming ability of the novel ready-to-use nanoparticulate bioceramic iRoot BP Plus, and investigate its effects on the in vitro recruitment of human dental pulp stem cells (DPSCs), as well as its capacity to induce dentin bridge formation in an in vivo model of pulp repair. It was found that iRoot BP Plus was nanosized and had excellent apatite-forming ability in vitro. Treatment with iRoot BP Plus extracts promoted the adhesion, migration and attachment of DPSCs, and optimized focal adhesion formation (Vinculin, p-Paxillin and p-Focal adhesion kinase) and stress fibre assembly. Consistent with the in vitro results, we observed the formation of a homogeneous dentin bridge and the expression of odontogenic (dentin sialoprotein, dentin matrix protein 1) and focal adhesion molecules (Vinculin, p-Paxillin) at the injury site of pulp repair model by iRoot BP Plus. Our findings provide valuable insights into the mechanism of bioceramic-mediated dental pulp repair, and the novel revolutionary ready-to-use nanoparticulate bioceramic paste shows promising therapeutic potential in dental pulp repair application. PMID:25182220

  9. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  10. Low-Pt-Content Anode Catalyst for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, Jay

    2008-01-01

    Combinatorial experiments have led to the discovery that a nanophase alloy of Pt, Ru, Ni, and Zr is effective as an anode catalyst material for direct methanol fuel cells. This discovery has practical significance in that the electronic current densities achievable by use of this alloy are comparable or larger than those obtained by use of prior Pt/Ru catalyst alloys containing greater amounts of Pt. Heretofore, the high cost of Pt has impeded the commercialization of direct methanol fuel cells. By making it possible to obtain a given level of performance at reduced Pt content (and, hence, lower cost), the discovery may lead to reduction of the economic impediment to commercialization.

  11. Electrophoretic deposition of TiO2/Er3+ nanoparticulate sols.

    PubMed

    Borlaf, Mario; Colomer, María Teresa; Cabello, Fátima; Serna, Rosalia; Moreno, Rodrigo

    2013-02-14

    TiO(2) and TiO(2)/Er(3+) nanoparticulate sols were obtained by the colloidal sol-gel route. Thanks to the combination of three optical techniques (laser diffraction, LD, dynamic light scattering, DLS, and multiple light scattering, MLS), the peptization time was quantified, demonstrating that erbium(III) ions retard the process. The isoelectric point of TiO(2) shifts up to higher pH's when Er(3+) ions are present, which suggests that they are adsorbed onto the surface of the TiO(2) nanoparticles. Moreover, the viscosity of the sols increases when the erbium(III) amount increases. The xerogels obtained from each sol were characterized by XRD and HRTEM, obtaining in all cases anatase as the major phase, although traces of brookite were also present. In the EPD experiments, the addition of ethanol was necessary to reduce the water hydrolysis and facilitate the drying process. As a result, transparent thin films were obtained at short times and low current densities and opal films for larger current densities and deposition times; in addition, the thickness, measured by ellipsometry, increased gradually, but the refractive index did not change significantly (1.9-2). The topography profile of the films and the particle size were obtained by atomic force microscopy (AFM), giving similar values to those measured by DLS, indicating that the addition of ethanol helps to maintain stabilization without further agglomeration or sedimentation. PMID:22799268

  12. Influence of Particle Size Distribution on Micromechanical Properties of thin Nanoparticulate Coatings

    NASA Astrophysics Data System (ADS)

    Barth, Nina; Schilde, Carsten; Kwade, Arno

    In this study the production of thin nanoparticulate coatings on solid stainless-steel substrates using dip-coating was investigated. Defined particle sizes and particle size distributions of Al2O3-nanoparticles were adjusted by stirred media milling using various operating parameters. Using nanoindentation the influence of particle size and width of the particle size distribution on the mechanical properties was investigated. In particular the establishment of nanoindentation routines for particulate thin films in contrast to hard coatings is discussed. Nanoindentation appears to be an efficient method for analysing mechanical properties of said thin coatings. It will be shown, that the influence of the substrate can be neglected for small indent depth while the coating's surface roughness influences the employed routine of the nanoindentation. The effect of the median particle size and the width of the particle size distribution on the coating structure and the micromechanical coating properties will be discussed. As a result, the maximum indentation force decreases with decreasing particle size but rises again once the nanoparticles reach very small sizes. A change in the width of the particle size distribution influences the micromechanical properties and coating structure as well.

  13. Health risks of nanoparticulate emissions during femtosecond and picosecond pulsed laser machining

    NASA Astrophysics Data System (ADS)

    Barcikowski, S.; Hahn, A.; Walter, J.

    2009-02-01

    Nanoparticles are known to cause adverse health effects. But the generation of nanoparticles cannot be avoided during laser machining, especially ultrashort-pulsed laser ablation which releases a high share of nanoparticles. The nanoparticulate size fractions emitted during picosecond (ps) laser ablation are compared with those released during femtosecond (fs) laser ablation using steel, zirconia and brass. At the same pulse energy, fs pulses release similar share of nanoparticles (>80%) in the aerosol fraction, with fs compared to ps generating a far higher share of ultrasmall (7 nm) sized particles during machining of metals and ceramics. The frequency maximum corresponds to the particle size of 50 nm independently of the ablated material and applied pulse duration. During ps laser ablation the absolute nanoparticle emission rate is higher than during fs laser ablation, whereas the emission rate per pulse is two magnitudes lower. Finally, the nanoparticle emission rates and its nanoparticle surface equivalent for ps and fs laser micromachining of metal and ceramic are compared with inflammatory thresholds derived from toxicology studies. It would take more than 6.500 working days to exceed this theoretical threshold of inflammation during laser operation at 0.5-2W and at least 260 working days using high-power lasers.

  14. Developing micro-/nanoparticulate drug delivery systems using “design of experiments”

    PubMed Central

    Singh, Bhupinder; Bhatowa, Rahul; Tripathi, Chandra Bhushan; Kapil, Rishi

    2011-01-01

    Of late, micro and nanoparticluate drug delivery systems have been gaining immense importance primarily attributed to their improved drug release controlling and targeting efficiencies. Also, the small particle size and desirable surface charge associated with these delivery systems render them suitable for specific applications like lymphatic uptake, pulmonary uptake, tumor targeting, brain targeting, etc. For decades, micro and nanoparticulate systems have been prepared by the conventional “trial and error” approach of changing One Variable at a Time (OVAT). Using this methodology, the solution of a specific problematic formulation characteristic can certainly be achieved, but attainment of the true optimal composition is never guaranteed. Thus, the present manuscript provides an updated account of the systematic approach “Design of Experiments (DoE)” as applicable to formulation development of microparticles and nanostructured systems. Besides providing a bird's eye view of the various experimental designs and optimization techniques employed for DoE optimization of such systems, the present manuscript also presents a copilation of the major micro/nano-structuctred systems optimized through DoE till date. In a nutshell, the article will act both as a ready reckoner of DoE optimization of micro/nano drug delivery systems and a catalyst in providing an impetus to young pharmaceutical “nano & micro” researchers to venture into the rewarding field of systematic DoE optimization. PMID:23071925

  15. Enhanced dielectric constant of Co-doped ZnO nanoparticulate powders

    NASA Astrophysics Data System (ADS)

    Franco, A.; Pessoni, H. V. S.

    2015-11-01

    In this work we studied the optical band-gap and dielectric properties of nanoparticulate powders of Co-doped ZnO with x=0.0, 0.5, 1.0, 3.0, 5, 7 and 9.0 at %Co synthesized by the combustion reaction method. X-ray diffraction patterns (XRD) of each sample showed broad peaks consistent with the ZnO wurtzite structure. The absence of extra reflections in the diffraction patterns ensures the phase purity. The average crystallite size determined from the most prominent (101) peak of the diffraction using Scherrer's equation was in good agreement with those determined by transmission electron microscopy (TEM), being ∼16 nm for undoped-ZnO sample and ∼21 nm for all Co-doped samples. Diffuse reflectance spectrum of each sample was obtained by using a UV/VIS/Near spectrometer and the optical band-gap Eg decreased with Co doping amount. The dielectric constant ε was determined using the Brus model (L.E. Brus, J. Chem. Phys. 80 (1984) 4403 [38]) increased with Co doping amount, reaching the maximum value of ∼10 for x=1.0 at %Co. These results were discussed in terms of the defects such as oxygen vacancies VO¨ or/and interstitial oxygen Oι¨″ present in Co-doped ZnO nanoparticles, which may be introduced during sample preparation.

  16. A novel nanoparticulate system for sustained delivery of acid-labile lansoprazole.

    PubMed

    Alai, Milind Sadashiv; Lin, Wen Jen

    2013-11-01

    In the present study, an effort was made to develop the Eudragit RS100 based nanoparticulate system for sustained delivery of an acid-labile drug, lansoprazole (LPZ). LPZ-loaded Eudragit RS100 nanoparticles (ERSNPs) were prepared by oil-in-water emulsion-solvent evaporation method. The effects of various formulation variables such as polymer concentration, drug amount and solvent composition on physicochemical performance of nanoparticles and in vitro drug release were investigated. All nanoparticles were spherical with particle size 198.9 ± 8.6-376.9 ± 5.6 nm and zeta potential +35.1 ± 1.7 to +40.2 ± 0.8 mV. The yield of nanoparticles was unaffected by change of these three variables. However, the drug loading and encapsulation efficiency were affected by polymer concentration and drug amount. On the other hand, the particle size of nanoparticles was significantly affected by polymer concentration and internal phase composition due to influence of droplet size during emulsification process. All nanoparticles prolonged drug release for 24h which was dominated by a combination of drug diffusion and polymer chain relaxation. The fastest and the slowest release rates were observed in C2-1002-10/0 and C8-4001-10/0, respectively, based on the release rate constant (k). Thus, the developed nanoparticles possessed a potential as a nano-carrier to sustain drug delivery for treatment of acid related disorders. PMID:23867305

  17. Core-shell fibrous stem cell carriers incorporating osteogenic nanoparticulate cues for bone tissue engineering.

    PubMed

    Olmos Buitrago, Jennifer; Perez, Roman A; El-Fiqi, Ahmed; Singh, Rajendra K; Kim, Joong-Hyun; Kim, Hae-Won

    2015-12-01

    Moldable hydrogels that incorporate stem cells hold great promise for tissue engineering. They secure the encapsulated cells for required periods while allowing a permeable exchange of nutrients and gas with the surroundings. Core-shell fibrous structured hydrogel system represents these properties relevant to stem cell delivery and defect-adjustable tissue engineering. A designed dual concentric nozzle is used to simultaneously deposit collagen and alginate with a core-shell structured continuous fiber form in the ionic calcium bath. We aimed to impart extrinsic osteogenic cues in the nanoparticulate form, i.e., bioactive glass nanoparticles (BGn), inside the alginate shell, while encapsulating rat mesenchymal stem cells in the collagen core. Ionic measurement in aqueous solution indicated a continuous release of calcium ions from the BGn-added and -free scaffolds, whereas silicon was only released from the BGn-containing scaffolds. The presence of BGn allowed higher number of cells to migrate into the scaffolds when implanted in subcutaneous tissues of rat. Cell viability was preserved in the presence of the BGn, with no significant differences noticed from the control. The presence of BGn enhanced the osteogenic differentiation of the encapsulated rat mesenchymal stem cells, presenting higher levels of alkaline phosphatase activity as well as bone related genes, including collagen type I, bone sialoprotein and osteocalcin. Taken together, the incorporated BGn potentiated the capacity of the core-shell fibrous hydrogel system to deliver stem cells targeting bone tissue engineering. PMID:26391494

  18. Effects of chronic nanoparticulate silver exposure to adult and juvenile sheepshead minnows (Cyprinodon variegatus).

    PubMed

    Griffitt, Robert J; Brown-Peterson, Nancy J; Savin, Daniel A; Manning, C Steve; Boube, Idrissa; Ryan, R A; Brouwer, Marius

    2012-01-01

    The use of nanoparticulate silver (AgNP) is increasingly widespread and recently has been shown to have a plausible release route into aquatic environments. To date, relatively little research has examined the effects of AgNP on estuarine fish. The authors present data indicating that chronic exposure to low levels of AgNP induces significant adverse effects in both juvenile and adult sheepshead minnows (Cyprinodon variegarus; SHMs). Chronic exposure to low levels of AgNP produced significant increases in tissue burdens in both juvenile and adult SHMs, resulting in significant thickening of epithelia gill tissue and in dramatically altered gene expression profiles. The results do not appear to be attributable to the release of silver ions through particle dissolution. The alteration in gene expression was greatest in adult gonads, but no evidence of AgNP-related dysfunction was found at the tissue level. In contrast, the authors found a significant effect on gill morphology, but very little evidence of effect on gill transcription profiles. PMID:21994144

  19. Mechanical degradation of TiO2 nanotubes with and without nanoparticulate silver coating.

    PubMed

    Shivaram, Anish; Bose, Susmita; Bandyopadhyay, Amit

    2016-06-01

    The primary objective of this research was to evaluate the extent of mechanical degradation on TiO2 nanotubes on Ti with and without nano-particulate silver coating using two different lengths of TiO2 nanotubes-300nm and ~1µm, which were fabricated on commercially pure Titanium (cp-Ti) rods using anodization method using two different electrolytic mediums-(1) deionized (DI) water with 1% HF, and (2) ethylene glycol with 1% HF, 0.5wt% NH4F and 10% DI water. Nanotubes fabricated rods were implanted into equine cadaver bone to evaluate mechanical damage at the surface. Silver was electrochemically deposited on these nanotubes and using a release study, silver ion concentrations were measured before and after implantation, followed by surface characterization using a Field Emission Scanning Electron Microscope (FESEM). In vitro cell-material interaction study was performed using human fetal osteoblast cells (hFOB) to understand the effect of silver coating using an MTT assay for proliferation and to determine any cytotoxic effect on the cells and to study its biocompatibility. No significant damage due to implantation was observed for nanotubes up to ~1µm length under current experimental conditions. Cell-materials interaction showed no cytotoxic effects on the cells due to silver coating and anodization of samples. PMID:27017285

  20. Speciation analysis of aqueous nanoparticulate diclofenac complexes by solid-phase microextraction.

    PubMed

    Zielińska, Katarzyna; van Leeuwen, Herman P; Thibault, Sylvain; Town, Raewyn M

    2012-10-16

    The dynamic sorption of an organic compound by nanoparticles (NPs) is analyzed by solid-phase microextraction (SPME) for the example case of the pharmaceutical diclofenac in dispersions of impermeable (silica, SiO(2)) and permeable (bovine serum albumin, BSA) NPs. It is shown that only the protonated neutral form of diclofenac is accumulated in the solid phase, and hence this species governs the eventual partition equilibrium. On the other hand, the rate of the solid/water partition equilibration is enhanced in the presence of the sorbing nanoparticles of SiO(2) and BSA. This feature demonstrates that the NPs themselves do not enter the solid phase to any appreciable extent. The enhanced rate of attainment of equilibrium is due to a shuttle-type of contribution from the NP-species to the diffusive supply of diclofenac to the water/solid interface. For both types of nanoparticulate complexes, the rate constant for desorption (k(des)) of bound diclofenac was derived from the measured thermodynamic affinity constant and a diffusion-limited rate of adsorption. The computed k(des) values were found to be sufficiently high to render the NP-bound species labile on the effective time scale of SPME. In agreement with theoretical prediction, the experimental results are quantitatively described by fully labile behavior of the diclofenac/nanoparticle system and an ensuing accumulation rate controlled by the coupled diffusion of neutral, deprotonated, and NP-bound diclofenac species. PMID:22989313

  1. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema

    PubMed Central

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol LG; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William KA; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c+ lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. DOI: http://dx.doi.org/10.7554/eLife.09623.001 PMID:26437452

  2. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans.

    PubMed

    Hawkings, Jon R; Wadham, Jemma L; Tranter, Martyn; Raiswell, Rob; Benning, Liane G; Statham, Peter J; Tedstone, Andrew; Nienow, Peter; Lee, Katherine; Telling, Jon

    2014-01-01

    The Greenland and Antarctic Ice Sheets cover ~ 10% of global land surface, but are rarely considered as active components of the global iron cycle. The ocean waters around both ice sheets harbour highly productive coastal ecosystems, many of which are iron limited. Measurements of iron concentrations in subglacial runoff from a large Greenland Ice Sheet catchment reveal the potential for globally significant export of labile iron fractions to the near-coastal euphotic zone. We estimate that the flux of bioavailable iron associated with glacial runoff is 0.40-2.54 Tg per year in Greenland and 0.06-0.17 Tg per year in Antarctica. Iron fluxes are dominated by a highly reactive and potentially bioavailable nanoparticulate suspended sediment fraction, similar to that identified in Antarctic icebergs. Estimates of labile iron fluxes in meltwater are comparable with aeolian dust fluxes to the oceans surrounding Greenland and Antarctica, and are similarly expected to increase in a warming climate with enhanced melting. PMID:24845560

  3. Osteogenesis on nanoparticulate mineralized collagen scaffolds via autogenous activation of the canonical BMP receptor signaling pathway

    PubMed Central

    Ren, Xiaoyan; Bischoff, David; Weisgerber, Daniel W.; Lewis, Michael S.; Tu, Victor; Yamaguchi, Dean T.; Miller, Timothy A.; Harley, Brendan A.C.; Lee, Justine C.

    2015-01-01

    Skeletal regenerative medicine frequently incorporates deliverable growth factors to stimulate osteogenesis. However, the cost and side effects secondary to supraphysiologic dosages of growth factors warrant investigation of alternative methods of stimulating osteogenesis for clinical utilization. In this work, we describe growth factor independent osteogenic induction of human mesenchymal stem cells (hMSCs) on a novel nanoparticulate mineralized collagen glycosaminoglycan scaffold (MC-GAG). hMSCs demonstrated elevated osteogenic gene expression and mineralization on MC-GAG with minimal to no effect upon addition of BMP-2 when compared to non-mineralized scaffolds (Col-GAG). To investigate the intracellular pathways responsible for the increase in osteogenesis, we examined the canonical and non-canonical pathways downstream from BMP receptor activation. Constitutive Smad1/5 phosphorylation with nuclear translocation occurred on MC-GAG independent of BMP-2, whereas Smad1/5 phosphorylation depended on BMP-2 stimulation on Col-GAG. When non-canonical BMPR signaling molecules were examined, ERK1/2 phosphorylation was found to be decreased in MC-GAG but elevated in Col-GAG. No differences in Smad2/3 or p38 activation were detected. Collectively, these results demonstrated that MC-GAG scaffolds induce osteogenesis without exogenous BMP-2 addition via endogenous activation of the canonical BMP receptor signaling pathway. PMID:25736501

  4. Effect of nanoparticulate bioactive glass particles on bioactivity and cytocompatibility of poly(3-hydroxybutyrate) composites

    PubMed Central

    Misra, Superb K.; Ansari, Tahera; Mohn, Dirk; Valappil, Sabeel P.; Brunner, Tobias J.; Stark, Wendelin J.; Roy, Ipsita; Knowles, Jonathan C.; Sibbons, Paul D.; Jones, Eugenia Valsami; Boccaccini, Aldo R.; Salih, Vehid

    2010-01-01

    This work investigated the effect of adding nanoparticulate (29 nm) bioactive glass particles on the bioactivity, degradation and in vitro cytocompatibility of poly(3-hydroxybutyrate) (P(3HB)) composites/nano-sized bioactive glass (n-BG). Two different concentrations (10 and 20 wt %) of nanoscale bioactive glass particles of 45S5 Bioglass composition were used to prepare composite films. Several techniques (Raman spectroscopy, scanning electron microscopy, atomic force microscopy, energy dispersive X-ray) were used to monitor their surface and bioreactivity over a 45-day period of immersion in simulated body fluid (SBF). All results suggested the P(3HB)/n-BG composites to be highly bioactive, confirmed by the formation of hydroxyapatite on material surfaces upon immersion in SBF. The weight loss and water uptake were found to increase on increasing bioactive glass content. Cytocompatibility study (cell proliferation, cell attachment, alkaline phosphatase activity and osteocalcin production) using human MG-63 osteoblast-like cells in osteogenic and non-osteogenic medium showed that the composite substrates are suitable for cell attachment, proliferation and differentiation. PMID:19640877

  5. Nanoparticulate carbon black in cigarette smoke induces DNA cleavage and Th17-mediated emphysema.

    PubMed

    You, Ran; Lu, Wen; Shan, Ming; Berlin, Jacob M; Samuel, Errol Lg; Marcano, Daniela C; Sun, Zhengzong; Sikkema, William Ka; Yuan, Xiaoyi; Song, Lizhen; Hendrix, Amanda Y; Tour, James M; Corry, David B; Kheradmand, Farrah

    2015-01-01

    Chronic inhalation of cigarette smoke is the major cause of sterile inflammation and pulmonary emphysema. The effect of carbon black (CB), a universal constituent of smoke derived from the incomplete combustion of organic material, in smokers and non-smokers is less known. In this study, we show that insoluble nanoparticulate carbon black (nCB) accumulates in human myeloid dendritic cells (mDCs) from emphysematous lung and in CD11c(+) lung antigen presenting cells (APC) of mice exposed to smoke. Likewise, nCB intranasal administration induced emphysema in mouse lungs. Delivered by smoking or intranasally, nCB persisted indefinitely in mouse lung, activated lung APCs, and promoted T helper 17 cell differentiation through double-stranded DNA break (DSB) and ASC-mediated inflammasome assembly in phagocytes. Increasing the polarity or size of CB mitigated many adverse effects. Thus, nCB causes sterile inflammation, DSB, and emphysema and explains adverse health outcomes seen in smokers while implicating the dangers of nCB exposure in non-smokers. PMID:26437452

  6. Transport of polymeric nanoparticulate drug delivery systems in the proximity of silica and sand.

    PubMed

    Chen, I-Cheng; Zhang, Ming; Teipel, Blake; de Araujo, Isa Silveira; Yegin, Yagmur; Akbulut, Mustafa

    2015-03-17

    The contamination of the environment with traditional therapeutics due to metabolic excretion, improper disposal, and industrial waste has been well-recognized. However, knowledge of the environmental distribution and fate of emerging classes of nanomedicine is scarce. This work investigates the effect of surface chemistry of polymeric nanoparticulate drug delivery systems (PNDDS) on their adsorption dynamics and transport in the vicinity of environmentally relevant surfaces for a concentration comparable with hospital and pharmaceutical manufacturing effluents. To this end, five different types of paclitaxel-based nanomedicine having different polymer stabilizers were employed. Their transport behavior was characterized via quartz crystal microbalance, sand column, spectrofluorometry, and dynamic light scattering techniques. PNDDS having positive zeta-potential displayed strong adsorption onto silica surfaces and no mobility in porous media of quartz sand, even in the presence of humic acid. The mobility of negatively charged PNDDS strongly depended on the amount and type of salt present in the aqueous media: Without any salt, such PNDDS demonstrated no adsorption on silica surfaces and high levels of mobility in sand columns. The presence of CaCl2 and CaSO4, even at low ionic strengths (i.e. 10 mM), induced PNDDS adsorption on silica surfaces and strongly limited the mobility of such PNDSS in sand columns. PMID:25695909

  7. Cytotoxic Responses and Potential Respiratory Health Effects of Carbon and Carbonaceous Nanoparticulates in the Paso del Norte Airshed Environment

    PubMed Central

    Soto, K. F.; Murr, L. E.; Garza, K. M.

    2008-01-01

    We have utilized a range of manufactured or commercial nanoparticulate materials, including surrogate carbon nano-PM along with combustion-generated carbonaceous (soot) nano-PM characteristic of environmental nano-PM (both indoor and outdoor) to investigate and compare their cytotoxic response in vitro with an immortalized human epithelial (lung model) cell line (A549). These have included nano-Ag, Al2O3, TiO2, Fe2O3, ZrO2, Si3N4, chrysotile asbestos, BC, 2 types of MWCNT-aggregate PM (MWCNT-R and MWCNT-N), and high-volume glass fiber collected soots: candle, wood, diesel (truck), tire, and 3-types of natural gas kitchen burner-generated soots: yellow (fuel-rich) flame, low-flow blue flame, and normal flow blue flame soot PM. These carbonaceous nano-PM species can be found in either the indoor and outdoor environments or microenvironments. Two-day and two-week in-vitro cultures of A549 showed cell death (or decreased cell viability) for all nanoparticulate materials, but especially significant for all but the TiO2 and candle, wood, and diesel PM. The natural gas kitchen burner combustion PM cell death response was characteristic of BC and MWCNT PM. There was no correlation with total PAH content of the soot PM. Cytokine release (IL-6, IL-8) was detected for the Ag, Fe2 O3, asbestos, BC and the MWCNT PM. Reactive oxygen species (ROS) production was also detected for Ag, Fe2 O3, ZrO2, asbestos, BC, and the MWCNT aggregate PM, as well as the natural gas kitchen burner combustion PM. TEM, FESEM, and optical microscopy examination of these nanomaterials illustrate the wide range in PM morphologies and crystallinities as well as cell morphologies. Taken together, these results illustrate proinflammatory and related respiratory health issues in relation to environmental nanoparticulates. PMID:18441401

  8. Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, W. J.; Zhou, B.; Li, W. Z.; Zhou, Z. H.; Song, S. Q.; Sun, G. Q.; Xin, Q.; Douvartzides, S.; Goula, M.; Tsiakaras, P.

    Low-temperature polymer electrolyte membrane fuel cells directly fed by methanol and ethanol were investigated employing carbon supported Pt, PtSn and PtRu as anode catalysts, respectively. Employing Pt/C as anode catalyst, both direct methanol fuel cell (DMFC) and direct ethanol fuel cell (DEFC) showed poor performances even in presence of high Pt loading on anode. It was found that the addition of Ru or Sn to the Pt dramatically enhances the electro-oxidation of both methanol and ethanol. It was also found that the single cell adopting PtRu/C as anode shows better DMFC performance, while PtSn/C catalyst shows better DEFC performance. The single fuel cell using PtSn/C as anode catalyst at 90 °C shows similar power densities whenever fueled by methanol or ethanol. The cyclic voltammetry (CV) and single fuel cell tests indicated that PtRu is more suitable for DMFC while PtSn is more suitable for DEFC.

  9. An aquaporin 4 antisense oligonucleotide loaded, brain targeted nanoparticulate system design.

    PubMed

    Kozlu, S; Caban, S; Yerlikaya, F; Fernandez-Megia, E; Novoa-Carballal, R; Riguera, R; Yemisci, M; Gursoy-Ozdemir, Y; Dalkara, T; Couvreur, P; Capan, Y

    2014-05-01

    Aquaporins (AQPs), members of the water-channel protein family, are highly expressed in brain tissue especially in astrocytic end-feet. They are important players for water hemostasis during development of cytotoxic as well as vasogenic edema. Increased expression of AQPs is important in pathophysiology of neurological diseases such as neuroinflammation and ischemia. Unfortunately, there are a few pharmacological inhibitors of AQP4 with several side effects limiting their translation as a drug for use in clinical conditions. Another therapeutic approach is using antisense oligonucleotides (ASOs) to block AQP4 activity. These are short, synthetic, modified nucleic acids that bind RNA to modulate its function. However, they cannot pass the blood brain barrier (BBB). To overcome this obstacle we designed a nanoparticulate system made up of chitosan nanoparticles surface modified with PEG and conjugated with monoclonal anti transferrin receptor-1 antibody via streptavidin-biotin binding. The nanocarrier system could be targeted to the transferrin receptor-1 at the brain endothelial capillaries through monoclonal antibodies. It is hypothesized that the nanoparticles could pass the BBB via receptor mediated transcytosis and reach brain parenchyma. Particle size, zeta potential, loading capacity and release profiles of nanoparticles were investigated. It was observed that all types of chitosau (CS) nanoparticles had positive zeta potential values and nanoparticle particle size distribution varied between 100 and 800 nm. The association efficiency of ASOs into the nanoparticles was between 80-97% and the release profiles of the nanoparticles exhibited an initial burst effect followed by a controlled release. The results showed that the designed chitosan based nanocarriers could be a promising carrier system to transport nucleic acid based drugs to brain parenchyma. PMID:24855824

  10. Microparticulated and nanoparticulated zirconium oxide added to calcium silicate cement: Evaluation of physicochemical and biological properties.

    PubMed

    Silva, Guilherme F; Bosso, Roberta; Ferino, Rafael V; Tanomaru-Filho, Mário; Bernardi, Maria I B; Guerreiro-Tanomaru, Juliane M; Cerri, Paulo S

    2014-12-01

    The physicochemical and biological properties of calcium silicate-based cement (CS) associated to microparticulated (micro) or nanoparticulated (nano) zirconium oxide (ZrO2 ) were compared with CS and bismuth oxide (BO) with CS. The pH, release of calcium ions, radiopacity, setting time, and compression strength of the materials were evaluated. The tissue reaction promoted by these materials in the subcutaneous was also investigated by morphological, immunohistochemical, and quantitative analyses. For this purpose, polyethylene tubes filled with materials were implanted into rat subcutaneous. After 7, 15, 30, and 60 days, the tubes surrounded by capsules were fixed and embedded in paraffin. In the H&E-stained sections, the number of inflammatory cells (ICs) in the capsule was obtained. Moreover, detection of interleukin-6 (IL-6) by immunohistochemistry and number of IL-6 immunolabeled cells were carried out. von Kossa method was also performed. The differences among the groups were subjected to Tukey test (p ≤ 0.05). The solutions containing the materials presented an alkaline pH and released calcium ions. The addition of radiopacifiers increased setting time and radiopacity of CS. A higher compressive strength in the CS + ZrO2 (micro and nano) was found compared with CS + BO. The number of IC and IL-6 positive cells in the materials with ZrO2 was significantly reduced in comparison with CS + BO. von Kossa-positive structures were observed adjacent to implanted materials. The ZrO2 associated to the CS provides satisfactory physicochemical properties and better biological response than BO. Thus, ZrO2 may be a good alternative for use as radiopacifying agent in substitution to BO. PMID:24497271

  11. Nanospray technology for an in situ gelling nanoparticulate powder as a wound dressing.

    PubMed

    De Cicco, Felicetta; Porta, Amalia; Sansone, Francesca; Aquino, Rita P; Del Gaudio, Pasquale

    2014-10-01

    In the current study the feasibility of the novel nano spray drying technique for the production of stable nanoparticulate dry powder, able to gel when administered locally on a wound, is explored. Gentamicin sulphate (GS) was loaded into alginate/pectin nanoparticles as highly soluble (hygroscopic) model drug with wide range antibacterial agent for wound dressing. The influence of process variables, mainly spray mesh size and feed concentration, on particle size and morphology, powder wound fluid uptake ability and gelling rate, as well as hydrogel water vapour transmission at wound site were studied. Particles morphology was spherical with few exceptions as slightly corrugated particles when the larger nozzle was used. Production of spherical nanoparticles (d50 ∼ 350 nm) in good yield (82-92%) required 4 μm spray mesh whereas 7 μm mesh produced larger wrinkled particles. Nano spray-dried particles showed high encapsulation efficiency (∼ 80%), good flowability, high fluid uptake, fast gel formation (15 min) and proper adhesiveness to fill the wound site and to remove easily the formulation after use. Moreover, moisture transmission of the in situ formed hydrogel was between 95 and 90 g/m(2)/h, an optimum range to avoid wound dehydration or occlusion phenomena. Release of the encapsulated GS, monitored as permeation rate using Franz cells in simulated wound fluid (SWF) was related to particle size and gelling rate. Sustained permeation profiles were obtained achieving total permeation of the drug between 3 and 6 days. However, all nano spray-dried formulations presented a burst effect, suitable to prevent infection spreading at the beginning of the therapy. Antimicrobial tests against Staphylococcus aureus and Pseudomonas aeruginosa showed stronger and prolonged antimicrobial effect of the nanoparticles compared to pure GS both shortly after administration and over time (till 12 days). PMID:24979533

  12. Phase I dose escalation safety study of nanoparticulate paclitaxel (CTI 52010) in normal dogs

    PubMed Central

    Axiak, Sandra M; Selting, Kim A; Decedue, Charles J; Henry, Carolyn J; Tate, Deborah; Howell, Jahna; Bilof, K James; Kim, Dae Y

    2011-01-01

    Background Paclitaxel is highly effective in the treatment of many cancers in humans, but cannot be routinely used in dogs as currently formulated due to the exquisite sensitivity of this species to surfactant-solubilizing agents. CTI 52010 is a formulation of nanoparticulate paclitaxel consisting of drug and normal saline. Our objectives were to determine the maximally tolerated dose, dose-limiting toxicities, and pharmacokinetics of CTI 52010 administered intravenously to normal dogs. Methods Three normal adult hound dogs were evaluated by physical examination, complete blood count, chemistry profile, and urinalysis. Dogs were treated with staggered escalating dosages of CTI 52010 with a 28-day washout. All dogs were treated with a starting dosage of 40 mg/m2, and subsequent dosages were escalated at 50% (dog 1), 100% (dog 2), or 200% (dog 3) with each cycle, to a maximum of 240 mg/m2. Dogs were monitored by daily physical assessment and weekly laboratory evaluation. Standard criteria were used to grade adverse events. Plasma was collected at regular intervals to determine pharmacokinetics. Dogs were euthanized humanely, and necropsy was performed one week after the last treatment. Results The dose-limiting toxicity was grade 4 neutropenia and the maximum tolerated dosage was 120 mg/m2. Grade 1–2 gastrointestinal toxicity was noted at higher dosages. Upon post mortem evaluation, no evidence of organ (liver, kidney, spleen) toxicity was noted. Conclusion CTI 52010 was well tolerated when administered intravenously to normal dogs. A starting dosage for a Phase I/II trial in tumor-bearing dogs is 80 mg/m2. PMID:22072863

  13. Nanoparticulate STING agonists are potent lymph node–targeted vaccine adjuvants

    PubMed Central

    Hanson, Melissa C.; Crespo, Monica P.; Abraham, Wuhbet; Moynihan, Kelly D.; Szeto, Gregory L.; Chen, Stephanie H.; Melo, Mariane B.; Mueller, Stefanie; Irvine, Darrell J.

    2015-01-01

    Cyclic dinucleotides (CDNs) are agonists of stimulator of IFN genes (STING) and have potential as vaccine adjuvants. However, cyclic di-GMP (cdGMP) injected s.c. shows minimal uptake into lymphatics/draining lymph nodes (dLNs) and instead is rapidly distributed to the bloodstream, leading to systemic inflammation. Here, we encapsulated cdGMP within PEGylated lipid nanoparticles (NP-cdGMP) to redirect this adjuvant to dLNs. Compared with unformulated CDNs, encapsulation blocked systemic dissemination and markedly enhanced dLN accumulation in murine models. Delivery of NP-cdGMP increased CD8+ T cell responses primed by peptide vaccines and enhanced therapeutic antitumor immunity. A combination of a poorly immunogenic liposomal HIV gp41 peptide antigen and NP-cdGMP robustly induced type I IFN in dLNs, induced a greater expansion of vaccine-specific CD4+ T cells, and greatly increased germinal center B cell differentiation in dLNs compared with a combination of liposomal HIV gp41 and soluble CDN. Further, NP-cdGMP promoted durable antibody titers that were substantially higher than those promoted by the well-studied TLR agonist monophosphoryl lipid A and comparable to a much larger dose of unformulated cdGMP, without the systemic toxicity of the latter. These results demonstrate that nanoparticulate delivery safely targets CDNs to the dLNs and enhances the efficacy of this adjuvant. Moreover, this approach can be broadly applied to other small-molecule immunomodulators of interest for vaccines and immunotherapy. PMID:25938786

  14. K-edge ratio method for identification of multiple nanoparticulate contrast agents by spectral CT imaging

    PubMed Central

    Ghadiri, H; Ay, M R; Shiran, M B; Soltanian-Zadeh, H

    2013-01-01

    Objective: Recently introduced energy-sensitive X-ray CT makes it feasible to discriminate different nanoparticulate contrast materials. The purpose of this work is to present a K-edge ratio method for differentiating multiple simultaneous contrast agents using spectral CT. Methods: The ratio of two images relevant to energy bins straddling the K-edge of the materials is calculated using an analytic CT simulator. In the resulting parametric map, the selected contrast agent regions can be identified using a thresholding algorithm. The K-edge ratio algorithm is applied to spectral images of simulated phantoms to identify and differentiate up to four simultaneous and targeted CT contrast agents. Results: We show that different combinations of simultaneous CT contrast agents can be identified by the proposed K-edge ratio method when energy-sensitive CT is used. In the K-edge parametric maps, the pixel values for biological tissues and contrast agents reach a maximum of 0.95, whereas for the selected contrast agents, the pixel values are larger than 1.10. The number of contrast agents that can be discriminated is limited owing to photon starvation. For reliable material discrimination, minimum photon counts corresponding to 140 kVp, 100 mAs and 5-mm slice thickness must be used. Conclusion: The proposed K-edge ratio method is a straightforward and fast method for identification and discrimination of multiple simultaneous CT contrast agents. Advances in knowledge: A new spectral CT-based algorithm is proposed which provides a new concept of molecular CT imaging by non-iteratively identifying multiple contrast agents when they are simultaneously targeting different organs. PMID:23934964

  15. Development and characterization of polymeric nanoparticulate delivery system for hydrophillic drug: Gemcitabine

    NASA Astrophysics Data System (ADS)

    Khurana, Jatin

    Gemcitabine is a nucleoside analogue, used in various carcinomas such as non small cell lung cancer, pancreatic cancer, ovarian cancer and breast cancer. The major setbacks to the conventional therapy with gemcitabine include its short half-life and highly hydrophilic nature. The objectives of this investigation were to develop and evaluate the physiochemical properties, drug loading and entrapment efficiency, in vitro release, cytotoxicity, and cellular uptake of polymeric nano-particulate formulations containing gemcitabine hydrochloride. The study also entailed development and validation of a high performance liquid chromatography (HPLC) method for the analysis of gemcitabine hydrochloride. A reverse phase HPLC method using a C18 Luna column was developed and validated. Alginate and Poly lactide co glycolide/Poly-epsilon-caprolactone (PLGA:PCL 80:20) nanoparticles were prepared by multiple emulsion-solvent evaporation methodology. An aqueous solution of low viscosity alginate containing gemcitabine was emulsified into 10% solution of dioctyl-sulfosuccinate in dichloro methane (DCM) by sonication. The primary emulsion was then emulsified in 0.5% (w/v) aqueous solution of polyvinyl alcohol (PVA). Calcium chloride solution (60% w/v) was used to cause cross linking of the polymer. For PLGA:PCL system, the polymer mix was dissolved in dichloromethane (DCM) and an aqueous gemcitabine (with and without sodium chloride) was emulsified under ultrasonic conditions (12-watts; 1-min). This primary emulsion was further emulsified in 2% (w/v) PVA under ultrasonic conditions (24-watts; 3-min) to prepare a multiple-emulsion (w/o/w). In both cases DCM, the organic solvent was evaporated (20- hours, magnetic-stirrer) prior to ultracentrifugation (10000-rpm for PLGA:PCL; 25000-rpm for alginate). The pellet obtained was washed thrice with de-ionized water to remove PVA and any free drug and re-centrifuged. The particles were re-suspended in de-ionized water and then lyophilized to obtain the dried powdered delivery formulation. Particle size and surface charge of the nano-particles were measured using zeta-sizer. The surface morphology and microstructure were evaluated by scanning electron microscopy The drug loading and entrapment efficiencies were evaluated by a HPLC method (Luna C18 column (4.6 X 250 mm), 95/5 (v/v) 0.04M ammonium acetate/acetonitrile mobile phase (pH 5.5), 1.0 ml/min flow rate and 268 nm UV detection). Differential scanning calorimetry (DSC) was used to determine the physical state of gemcitabine in the nanoparticles. The cytotoxicity in pancreatic cancer cells (BxPC-3) was evaluated by MTT assay. The cellular uptake of gemcitabine solution and gemcitabine loaded alginate nano-particle suspension in BxPC-3 cells was determined for 15, 30 and 60 minutes. The particle-size and surface-charge was 564.7+/-56.5nm and -25.65+/-1.94mV for PLGA:PCL and 210.6+/-6.90nm and -33.21+/-1.63mV for alginate. Both the nano-particles were distinctly spherical and non-porous. The drug load was 5.14% for PLGA:PCL and 6.87% for alginate-particles, and the practical entrapment efficiency was found to be 54.1 % and 22.4% respectively. However, in case of PLGA:PCL particles, a two-fold increase in the entrapment efficiency was observed with the addition of sodium-chloride. The absence of endothermic melting peak of the drug in the DSC thermogram was an indication of the non-crystalline state of gemcitabine in the nanoparticles. In addition, there was no cytotoxicity associated with nanoparticle concentrations at-or-below 5 mg/mL. The uptake of nano-particles was around 4 times higher than the solution with treatment for 15 minutes and increased to almost 7 times following treatment for 60 minutes. Gemcitabine hydrochloride could be successfully formulated into a sustained release nano-particulate formulation using calcium cross-linked alginate and dioctyl sulfo succinate system. The nano-particulate delivery system exhibited better cytotoxic activity and also significantly enhanced the accumulation of the drug in BxPC-3 cell monolayers.

  16. Effect of adsorbed extracellular polymeric substances (EPS) on colloidal mobility of nanoparticulate iron oxides

    NASA Astrophysics Data System (ADS)

    Pradip Narvekar, Sneha; Totsche, Kai Uwe

    2013-04-01

    Solubility and transport of nutrients and pollutants is affected by the presence of colloidal nanoparticles (CNP) which may act as mobile geosorbents. In soils and aquifers, pure and organically modified Fe- and Mn-oxy-hydroxides are of particular importance due to their ubiquitous presence and also due to their progressive use for environmental cleanup. Stability and aggregation behavior control the mobility of CNP and depend on pH, ionic strength, and the presence of monovalent or divalent anions. In natural environments, however, iron oxides are usually covered by organic matter. Such coverage will completely change the colloidal surface properties and impose additional control on the colloidal mobility. Important sources for natural organic coatings are extracellular polymeric substances (EPS), i.e., complex mixtures of biopolymers consisting of polysaccharides and proteins and variable amounts of lipids and nucleic acids. The objective of our study was to quantify the effect of EPS coatings on the colloidal stability, mobility and reactivity of hematite by column experiments. Columns (10 cm × 5 cm) were filled with glass beads (0.25 mm ø) as porous medium and operated in sterile closed flow conditions. Nanoparticulate hematite was coated to different degrees by extracellular polymeric substances (EPS) extracted from, liquid cultures of Bacillus subtillis. The pH was kept constant at 7. The hematite particles exhibited increasing colloidal stability with increasing amounts of EPS. Critical colloidal concentration (CCC) of the particles increased from 95 mM NaCl for uncoated particles to 250 mM NaCl for coated particles. EPS coated hematite did not react with the porous medium and stayed mobile while the uncoated hematite was immobile due to adsorption to the glass beads. Also colloidally unstable hematite particles did not show any mobility. Thus the organic coatings enhanced the colloidal stability, which consecutively increased the mobility of the particles. Also, the reactivity of these particles to the porous medium is reduced due to the masking of the reactive hematite surface sites with EPS. EPS coated CNP may define the major part of mobile material in natural environments like soils, sediments and aquifers.

  17. Inkjet-printed gold nanoparticulate patterns for surface finish in electronic package

    NASA Astrophysics Data System (ADS)

    Jang, Seonhee; Cho, Hyejin; Kang, Seongkoo; Oh, Sungil; Kim, Donghoon

    2011-11-01

    Gold (Au) pads for surface finish in electronic package were developed by the inkjet printing method. The Au ink for printing was prepared by Au nanoparticles (NPs) coated with capping molecules of dodecylamine (C12H25NH2). The microstructures of the inkjet-printed Au films were characterized after sintering in various gas flows. The film sintered in air showed that bonding between NPs was not enough for further grain growth due to the incomplete decomposition of the capping layer. The film sintered under nitrogen (N2) had NPs existing on the surface and the bottom which did not participate in sintering. When the film was sintered under N2-bubbled through formic acid (FA/N2), a large portion of the pores were observed to make a holey pancake-like structure of the film. The microstructures of the inkjet-printed Au film became denser with grain growth when Au NPs were sintered under mixed gas flows of FA/N2 and N2. The resistivity of film was 4.79 μΩ cm, about twice the bulk value. Organic analysis showed that about 0.43% of residual organics was left in the film. Therefore, this Au film was chosen for solder ball shear test because the microstructure was denser compared to the films sintered under other gasses such as N2 or FA/N2 and less organic residue was found from organic analyses. Even though the film sintered under N2 showed the best electrical property (4.35 μΩ cm), it was not adopted in the shear test because NPs remaining on the bottom of the film could lead to the poor adhesion between the film and substrate and show low shear strength. The shear force was 8.04 newton (N) on average and the strength was 64 MPa. This shear strength is good enough to substitute the inkjet-printed Au nanoparticulate film for electroplating in electronic package.

  18. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  19. Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells.

    PubMed

    Lee, Chang Hyun; Lee, So Young; Lee, Young Moo; McGrath, James E

    2009-07-21

    An anode for direct methanol fuel cells was chemically tuned by tailoring an aqueous hydrocarbon catalyst (SPI-BT) binder instead of using a conventional perfluorinated sulfonic acid ionomer (PFSI). SPI-BT designed in triethylamine salt form showed lower proton conductivity than PFSI, but it was stable in the catalyst ink forming the aqueous colloids. The aqueous colloidal particle size of SPI-BT was much smaller than that of PFSI. The small SPI-BT colloidal particles contributed to forming small catalyst agglomerates and simultaneously reducing their pore volume. Consequently, the high filling level of binders in the pores, where Pt-Ru catalysts are mainly located on the wall and physically interconnected, resulted in increased electrochemical active surface area of the anode, leading to high catalyst utilization. In addition, the chemical affinity between the SPI-BT binder and the membrane material derived from their similar chemical structure induced a stable interface on the membrane-electrode assembly (MEA) and showed low electric resistance. Upon adding SPI-BT, the synergistic effect of high catalyst utilization, improved mass transfer behavior to Pt-Ru catalyst, and low interfacial resistance of MEA became greater than the influence of reduced proton conductivity in the electrochemical performance of single cells. The electrochemical performance of MEAs with SPI-BT anode was enhanced to almost the same degree or somewhat higher than that with PFSI at 90 degrees C. PMID:19485372

  20. Photoelectrocatalytic hydrogen production using nanoparticulate titania and a novel Pt/carbon electrocatalyst: The concept of the "Photoelectrocatalytic Leaf"

    NASA Astrophysics Data System (ADS)

    Pop, Lucian-Cristian; Dracopoulos, Vassilios; Lianos, Panagiotis

    2015-04-01

    Photoelectrocatalytic hydrogen production was realized my means of a double electrode carrying photocatalyst and electrocatalyst, deposited side by side on an FTO electrode, acting as a "Photoelectrocatalytic Leaf". As photocatalyst we used plain commercial nanoparticulate titania and as electrocatalyst a conductive carbon film made by a commercial carbon paste enriched with a small quantity of Pt nanoparticles (0.0134 mg/cm2). This quantity of Pt is much smaller than used in other applications and it may be further optimized. Hydrogen was produced in an alkaline environment in the presence of ethanol acting as sacrificial agent. A few variants of electrode geometry were studied in order to set the basic terms for efficient hydrogen production. It was found that optimal electrode geometry necessitates a much larger area for photocatalyst coverage than electrocatalyst and that it is preferable to divide photocatalyst and electrocatalyst areas in alternating zones.

  1. Complement activation as a bioequivalence issue relevant to the development of generic liposomes and other nanoparticulate drugs.

    PubMed

    Szebeni, Janos; Storm, Gert

    2015-12-18

    Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs. long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. PMID:26182876

  2. Degradation of nanoparticulate-coated and uncoated sulfide-based cathodoluminescent phosphors.

    SciTech Connect

    Abrams, Billie Lynn; Bang, Jungsik S.; Thomes, William Joseph, Jr.; Holloway, Paul H.

    2003-07-01

    Changes in the cathodoluminescent (CL) brightness and in the surface chemistry of nanoparticulate SiO{sub 2}-coated and uncoated ZnS:Ag, Cl powder phosphor have been investigated using a PHI 545 scanning Auger electron spectrometer (AES), an Oriel optical spectrometer and a JEOL 6400 scanning electron microscope (SEM). The data were collected in a stainless steel UHV chamber with residual gas pressures between 1 x 10{sup -8} and 1 x 10{sup -6} Torr as measured by a Dycor LC residual gas analyzer (RGA). The primary electron current density was 272 {micro}A/cm{sup 2}, while the primary beam energy was varied bwteen 2 and 5 keV. In the presence of a 2keV primary electron beam in 1 x 10{sup -6} Torr of water for both the SiO{sub 2}-coated and the uncoated cases, the amounts of C and S on the surface decreased, that of O increased and the CL intensity decreased with electron dose. This surface chemistry change lead to the development of a surface dead layer and is explained by the electron beam stimulated surface chemical reaction model (ESSCR). The penetration range of the impinging low energy primary electrons is on the order of 10-100 nm creating a reaction region very close to the surface. The ESSCR takes this into account postulating that primary and secondary electrons dissociate physisorbed molecules to form reactive atomic species. These atomic species remove surface S as volatile SO{sub x} or H{sub 2}S. In the case of an oxidizing ambient (i.e. high partial pressure of water), a non-luminescent ZnO layer is formed. this oxide layer has been measured to be on the order of 3-30 nm. In the case where the vacuum of 1 x 10{sup -8} Torr was dominated by hydrogen and had a low water content, there was a small increase in the S signal, no rise in the O Auger signal, but the CL intensity still decreased. This is explained by the ESSCR whereby H removes S as H{sub 2}S leaving elemental Zn, which evaporates due to a high vapor pressure. In the case of ZnS:Ag,Cl coated with SiO{sub 2}, morphological changes were observed on the surface after extended electron beam exposure. Erosion of ZnS occurs more dramatically at an accelerating voltage of 5kV even at the same current density. Uncoated ZnS:Ag,Cl phosphors exhibited similar surface chemical changes to that of SiO{sub 2}-coated ZnS:Ag,Cl but did not degrade to the same extent. Also, no change in the surface morphology was observed. These SEM images as well as reaction rate data suggest that these nanometer sized SiO{sub 2} particles acted as a catalyst for decomposition of the ZnS especially in a reducing ambient (i.e. high hydrogen partial pressure). In order to reduce CL degradation of these and other phosphors, protective coatings were pulse laser deposited onto the phosphor surface. The effectiveness of these coatings was dependent upon both the thickness and the uniformity. Thicknesses of these coatings ranged from 1-5 nm and were uniform as determined using profilometry and TEM.

  3. Coal and tire burning mixtures containing ultrafine and nanoparticulate materials induce oxidative stress and inflammatory activation in macrophages.

    PubMed

    Gasparotto, Juciano; Somensi, Nauana; Caregnato, Fernanda F; Rabelo, Thallita K; DaBoit, Kátia; Oliveira, Marcos L S; Moreira, José C F; Gelain, Daniel P

    2013-10-01

    Ultra-fine and nano-particulate materials resulting from mixtures of coal and non-coal fuels combustion for power generation release to the air components with toxic potential. We evaluated toxicological and inflammatory effects at cellular level that could be induced by ultrafine/nanoparticles-containing ashes from burning mixtures of coal and tires from an American power plant. Coal fly ashes (CFA) samples from the combustion of high-S coal and tire-derived fuel, the latter about 2-3% of the total fuel feed, in a 100-MW cyclone utility boiler, were suspended in the cell culture medium of RAW 264.7 macrophages. Cell viability, assessed by MTT reduction, SRB incorporation and contrast-phase microscopy analysis demonstrated that CFA did not induce acute toxicity. However, CFA at 1mg/mL induced an increase of approximately 338% in intracellular TNF-α, while release of this proinflammatory cytokine was increased by 1.6-fold. The expression of the inflammatory mediator CD40 receptor was enhanced by 2-fold, the receptor for advanced glycation endproducts (RAGE) had a 5.7-fold increase and the stress response protein HSP70 was increased nearly 12-fold by CFA at 1mg/mL. Although CFA did not induce cell death, parameters of oxidative stress and reactive species production were found to be altered at several degrees, such as nitrite accumulation (22% increase), DCFH oxidation (3.5-fold increase), catalase (5-fold increase) and superoxide dismutase (35% inhibition) activities, lipoperoxidation (4.2 fold-increase) and sulfhydryl oxidation (40% decrease in free SH groups). The present results suggest that CFA containing ultra-fine and nano-particulate materials from coal and tire combustion may induce sub-chronic cell damage, as they alter inflammatory and oxidative stress parameters at the molecular and cellular levels, but do not induce acute cell death. PMID:23856402

  4. Nanoparticulate mineralized collagen scaffolds induce in vivo bone regeneration independent of progenitor cell loading or exogenous growth factor stimulation.

    PubMed

    Ren, Xiaoyan; Tu, Victor; Bischoff, David; Weisgerber, Daniel W; Lewis, Michael S; Yamaguchi, Dean T; Miller, Timothy A; Harley, Brendan A C; Lee, Justine C

    2016-05-01

    Current strategies for skeletal regeneration often require co-delivery of scaffold technologies, growth factors, and cellular material. However, isolation and expansion of stem cells can be time consuming, costly, and requires an additional procedure for harvest. Further, the introduction of supraphysiologic doses of growth factors may result in untoward clinical side effects, warranting pursuit of alternative methods for stimulating osteogenesis. In this work, we describe a nanoparticulate mineralized collagen glycosaminoglycan scaffold that induces healing of critical-sized rabbit cranial defects without addition of expanded stem cells or exogenous growth factors. We demonstrate that the mechanism of osteogenic induction corresponds to an increase in canonical BMP receptor signalling secondary to autogenous production of BMP-2 and -9 early and BMP-4 later during differentiation. Thus, nanoparticulate mineralized collagen glycosaminoglycan scaffolds may provide a novel growth factor-free and ex vivo progenitor cell culture-free implantable method for bone regeneration. PMID:26950166

  5. Synthesis, morphology and antifungal activity of nano-particulated amphotericin-B, ketoconazole and thymoquinone against Candida albicans yeasts and Candida biofilm.

    PubMed

    Randhawa, Mohammad A; Gondal, Mohammed A; Al-Zahrani, Al-Hosain J; Rashid, Siddique G; Ali, Ashraf

    2015-01-01

    In the current study, nano-particulated drugs-Amphotericin-B, Ketoconazole and Thymoquinone (an active ingredient of Nigella sativa)-were prepared using the ball milling technique, and their particle sizes were examined by transmission electron microscopy (TEM) and using a particle size analyzer. The grain sizes of the prepared compounds were found in between 5 to 20 nm, and exhibited quasi-spherical morphology. The antifungal activity of each nano-particulated drug was investigated in vitro against Candida albicans yeasts and Candida biofilm, and compared with their micro-structured conventional forms. Nano-sized drugs were found to be two to four times more effective in disinfecting both the Candida yeasts and Candida biofilm. The study is a first of its kind as nano-forms of drugs have not been studied against Candida and Candida biofilm before. Further investigations are required for the determination of the clinical significance of the nano-formulation of antifungal substances. PMID:25560257

  6. Chemodynamics of soft nanoparticulate metal complexes in aqueous media: basic theory for spherical particles with homogeneous spatial distributions of sites and charges.

    PubMed

    van Leeuwen, Herman P; Town, Raewyn M; Buffle, Jacques

    2011-04-19

    A theoretical discussion is presented to describe the formation and dissociation rate constants for metal ion binding by soft nanoparticulate complexants. The well-known framework of the Eigen mechanism for metal ion complexation by simple ligands in aqueous systems is the starting point. Expressions are derived for the rate constants for the intraparticulate individual outer-sphere and inner-sphere association and dissociation steps for the limiting cases of low and high charge densities. The charge density, binding site density, and size of the nanoparticle play crucial roles. The effects of the electrostatic potential and particle radius on the overall complexation reaction are compared with those for simple ligands. The limitations of the proposed approach for nanoparticulate ligands are discussed, and key issues for future developments are identified. PMID:21410210

  7. Three dimensional graphene foam supported platinum-ruthenium bimetallic nanocatalysts for direct methanol and direct ethanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Kung, Chih-Chien; Lin, Po-Yuan; Xue, Yuhua; Akolkar, Rohan; Dai, Liming; Yu, Xiong; Liu, Chung-Chiun

    2014-06-01

    A novel composite material of hierarchically structured platinum-ruthenium (PtRu) nanoparticles grown on large surface area three dimensional graphene foam (3D GF) is reported. 3D GF was incorporated with PtRu bimetallic nanoparticles as an electrochemical nanocatalyst for methanol and ethanol oxidation. PtRu/3D GF nanocatalyst showed a higher tolerance to poisoning by CO and exhibited improved catalytic activity for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). Cyclic voltammetry (CV) results and long-term cycling stability tests demonstrated that GF provided a promising platform for the development of electrochemical nanocatalysts. Specifically, PtRu/3D GF nanocatalyst showed excellent catalytic activity toward MOR and EOR compared with PtRu/Graphene (Commercial graphene), PtRu/C (Vulcan XC-72R carbon), and PtRu alone. The crystal size of PtRu on 3D GF was reduced to 3.5 nm and its active surface area was enhanced to 186.2 m2 g-1. Consequently, the MOR and EOR rates were nearly doubled on PtRu/3D GF compared to those on PtRu/Graphene.

  8. X-ray absorption and photoelectron spectroscopic study of the association of As(III) with nanoparticulate FeS and FeS-coated sand.

    PubMed

    Han, Young-Soo; Jeong, Hoon Y; Demond, Avery H; Hayes, Kim F

    2011-11-01

    Iron sulfide (FeS) has been demonstrated to have a high removal capacity for arsenic (As) in reducing environments. However, FeS may be present as a coating, rather than in nanoparticulate form, in both natural and engineered systems. Frequently, the removal capacity of coatings may be different than that of nanoparticulates in batch systems. To assess the differences in removal mechanisms between nanoparticulate FeS and FeS present as a coating, the solid phase products from the reaction of As(III) with FeS-coated sand and with suspensions of nanoparticulate (NP) FeS were determined using x-ray absorption spectroscopy and x-ray photoelectron spectroscopy. In reaction with NP FeS at pH 5, As(III) was reduced to As(II) to form realgar (AsS), while at pH 9, As(III) adsorbed as an As(III) thioarsenite species. In contrast, in the FeS-coated sand system, As(III) formed the solid phase orpiment (As(2)S(3)) at pH 5, but adsorbed as an As(III) arsenite species at pH 9. These different solid reaction products are attributed to differences in FeS concentration and the resultant redox (pe) differences in the FeS-coated sand system versus suspensions of NP FeS. These results point to the importance of accounting for differences in concentration and redox when making inferences for coatings based on batch suspension studies. PMID:21911241

  9. A combined in-situ and post-mortem investigation on local permanent degradation in a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Bresciani, F.; Rabissi, C.; Zago, M.; Gazdzicki, P.; Schulze, M.; Guétaz, L.; Escribano, S.; Bonde, J. L.; Marchesi, R.; Casalegno, A.

    2016-02-01

    Performance degradation is one of the key issues hindering direct methanol fuel cell commercialization, caused by different mechanisms interplaying locally and resulting in both temporary and permanent contributions. This work proposes a systematic experimental investigation, coupling in-situ diagnostics (electrochemical and mass transport investigation) with ex-situ analyses of pristine, activated and aged components (X-ray photoelectron spectroscopy and transmission electron microscopy), with an in-plane and through-plane local resolution. Such a combined approach allows to identify on one hand the degradation mechanisms, the affected components and the presence of heterogeneities; on the other hand, it allows to quantify the effect of the major mechanisms on performance decay. Thanks to a novel procedure, temporary (21 μV h-1) and permanent degradation (59 μV h-1) are separated, distinguishing the latter in different contributions: the effects of active area loss at both at anode (9 μV h-1) and cathode (31 μV h-1), mass transport issue (15 μV h-1) and membrane decay (4 μV h-1). The post-mortem analysis highlights the effect of degradation mechanisms consistent with the in-situ analysis and reveals the presence of considerable in plane and through plane heterogeneities in: particle size growth in catalyst layers, Pt/Ru and polymer content in catalyst and diffusion layers, Pt/Ru precipitates in the membrane.

  10. Effect of Ni precursor solution concentration on the magnetic properties and exchange bias of Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Marques, D. P.; Ferreira, J. M. F.

    2014-09-01

    We report on a comparative study of the exchange bias effect and magnetic properties of Ni-NiO nanoparticulate systems synthesized by the chemical reduction of NiCl2 solution of two different molar concentrations—1 M (high) and 0.05 M (low)—followed by annealing of the dried precipitate in the temperature range 400-600 °C in air. Interestingly, the samples derived from the low molarity solution have higher Ni content and larger crystallite size than those prepared from their high molarity counterparts. These molarity dependent features subsequently modulate the magnitude of the exchange bias field in the samples, which is found to be absent or small in the 0.05 M series, but of moderate value in the 1 M samples. The different physical attributes of the particles derived from different concentrations of Ni-precursor solution are explained by invoking different nucleation kinetics and supersaturation degrees surrounding the viable growing nucleus. Furthermore, an observed increase of exchange bias with increasing annealing temperature, in contrast to the reported agglomeration of particles on annealing and subsequent reduction in bias magnitude, has been explained in correlation to the Ni-NiO interface density.

  11. Spin-wave stiffness parameter in ferrimagnetic systems: Nanoparticulate powders of (Mg,Zn ) Fe2O4 mixed ferrites

    NASA Astrophysics Data System (ADS)

    Franco, A.; Pessoni, H. V. S.; Machado, F. L. A.

    2015-11-01

    We have evaluated the spin-wave stiffness parameter in nanoparticulate powders of Mg1 -xZnxFe2O4 ( 0.0 ≤x ≤0.6 ) mixed ferrites from magnetization data obtained at two different ranges of temperature: 5 -300 K and 300 -750 K . At the lower temperature range the T-dependence of the saturation magnetization, Ms, data could be fitted to the Bloch's law with T3 /2 . The spin-wave stiffness parameters D were determined from the coefficient of T3 /2 ; being ˜132 and ˜86 meVÅ for x = 0.0 and 0.6, respectively, with the corresponding exchange constant JAB of ˜1.10 and ˜0.72 meV , respectively. The values of D determined from the experimental Curie temperature Tc were ˜212 and ˜163 meVÅ2 for x = 0.0 and 0.6, respectively, with the corresponding exchange constant JAB of ˜1.77 and ˜1.30 meV . The difference in both JAB and D values obtained from the coefficient of T3 /2 and from Tc may be attributed to the fact that the magnetic measurements were performed at a different range of temperatures. The results are discussed in terms of the cation distribution among A- and B-sites of occupation on these spinel ferrites.

  12. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry1

    PubMed Central

    Uskoković, Vuk

    2013-01-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald–Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly. PMID:24490052

  13. Physicochemical characterization and toxicological evaluation of plant-based anionic polymers and their nanoparticulated system for ocular delivery.

    PubMed

    Pathak, Deepa; Kumar, Prashant; Kuppusamy, Gowthamarajan; Gupta, Ankur; Kamble, Bhagyashree; Wadhwani, Ashish

    2014-12-01

    The water-soluble fractions of mucilages and gum from the seeds of fenugreek, isphagula and mango bark exudate were isolated, purified and characterized using X-ray diffraction (XRD) spectrometry, Fourier transform infrared spectroscopy (FT-IR), maldi/GC-MS, elemental analysis, 1D ((1)H and (13)C) and 2D (HMQC, COSY) nuclear magnetic resonance spectroscopy (NMR). The fenugreek mucilage was identified to be a galactomannan chain consisting of 4 units of galactose attached to the backbone of 6 mannose units in 1:1.5 ratio. The isphagula mucilage was identified to be an arabinoxylan polysaccharide chain consisting of 4 units of arabinofuranose attached to the backbone of 9 xylopyrannose units in 1:3 ratio. The mango gum showed the presence of amylose, α-arabinofuranosyl and β-galactopyranosyl, respectively. The characterized mucilages and gum were individually formulated into nanoparticulate system using their complementarily charged polymer chitosan. The particles were observed to be spherical in shape in the range of 61.5-90 nm having zetapotential between 31 and 34 mV and PDI of 0.097-0.241. The prepared nanoparticles were observed to be nonirritant and nontoxic in vitro and in vivo upto 2000 μg/ml. Therefore, these mucilages and gum can be the alternatives of anionic polymers for the ocular drug delivery system. PMID:23952497

  14. Revisiting the Fundamentals in the Design and Control of Nanoparticulate Colloids in the Frame of Soft Chemistry.

    PubMed

    Uskokovi?, Vuk

    2013-10-01

    This review presents thoughts on some of the fundamental features of conceptual models applied in the design of fine particles in the frames of colloid and soft chemistry. A special emphasis is placed on the limitations of these models, an acknowledgment of which is vital in improving their intricacy and effectiveness in predicting the outcomes of the corresponding experimental settings. Thermodynamics of self-assembly phenomena illustrated on the examples of protein assembly and micellization is analyzed in relation to the previously elaborated thesis that each self-assembly in reality presents a co-assembly, since it implies a mutual reorganization of the assembling system and its immediate environment. Parameters used in the design of fine particles by precipitation are discussed while referring to solubility product, various measures of supersaturation levels, induction time, nucleation and crystal growth rates, interfacial energies, and the Ostwald-Lussac law of phases. Again, the main drawbacks and inadequacies of using the aforementioned parameters in tailoring the materials properties in a soft and colloidal chemical setting were particularly emphasized. The basic and practical limitations of zeta-potential analyses, routinely used to stabilize colloidal dispersions and initiate specific interactions between soft chemical entities, were also outlined. The final section of the paper reiterates the unavoidable presence of practical qualitative models in the design and control of nanoparticulate colloids, which is supported by the overwhelming complexity of quantitative relationships that govern the processes of their formation and assembly. PMID:24490052

  15. Thermal hysteresis kinetic effects of spin crossover nanoparticulated systems studied by FORC diagram method on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Stoleriu, Laurentiu; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2016-04-01

    The scientific community is manifesting a high research interest on spin crossover compounds and their recently synthesized nanoparticles, due to their various appealing properties, such as the bistability between a diamagnetic low spin state and a paramagnetic high spin state (HS), inter-switchable by temperature or pressure changes, light irradiation or magnetic field. The utility of these compounds showing hysteresis covers a broad area of applications, from the development of more efficient designs of temperature and pressure sensors to automotive and aeronautic industries and even a new type of molecular actuators. We are proposing in this work a study regarding the kinetic effects and the distribution of reversible and irreversible components on the thermal hysteresis of spin crossover nanoparticulated systems. We are considering here tridimensional systems with different sizes and also systems of nanoparticles with a Gaussian size distribution. The correlations between the kinetics of the thermal hysteresis, the distributions of sizes and intermolecular interactions and the transition temperature distributions were established by using the FORC (First Order Reversal Curves) method using a Monte Carlo technique within an Ising-like system.

  16. Using a modified shepards method for optimization of a nanoparticulate cyclosporine a formulation prepared by a static mixer technique.

    PubMed

    Douroumis, Dionysios; Scheler, Stefan; Fahr, Alfred

    2008-02-01

    An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations. PMID:17853428

  17. Large-scale Manufacturing of Nanoparticulate-based Lubrication Additives for Improved Energy Efficiency and Reduced Emissions

    SciTech Connect

    Erdemir, Ali

    2013-09-26

    This project was funded under the Department of Energy (DOE) Lab Call on Nanomanufacturing for Energy Efficiency and was directed toward the development of novel boron-based nanocolloidal lubrication additives for improving the friction and wear performance of machine components in a wide range of industrial and transportation applications. Argonne's research team concentrated on the scientific and technical aspects of the project, using a range of state-of-the art analytical and tribological test facilities. Argonne has extensive past experience and expertise in working with boron-based solid and liquid lubrication additives, and has intellectual property ownership of several. There were two industrial collaborators in this project: Ashland Oil (represented by its Valvoline subsidiary) and Primet Precision Materials, Inc. (a leading nanomaterials company). There was also a sub-contract with the University of Arkansas. The major objectives of the project were to develop novel boron-based nanocolloidal lubrication additives and to optimize and verify their performance under boundary-lubricated sliding conditions. The project also tackled problems related to colloidal dispersion, larger-scale manufacturing and blending of nano-additives with base carrier oils. Other important issues dealt with in the project were determination of the optimum size and concentration of the particles and compatibility with various base fluids and/or additives. Boron-based particulate additives considered in this project included boric acid (H{sub 3}BO{sub 3}), hexagonal boron nitride (h-BN), boron oxide, and borax. As part of this project, we also explored a hybrid MoS{sub 2} + boric acid formulation approach for more effective lubrication and reported the results. The major motivation behind this work was to reduce energy losses related to friction and wear in a wide spectrum of mechanical systems and thereby reduce our dependence on imported oil. Growing concern over greenhouse gas emissions was also a major reason. The transportation sector alone consumes about 13 million barrels of crude oil per day (nearly 60% of which is imported) and is responsible for about 30% of the CO{sub 2} emission. When we consider manufacturing and other energy-intensive industrial processes, the amount of petroleum being consumed due to friction and wear reaches more than 20 million barrels per day (from official energy statistics, U.S. Energy Information Administration). Frequent remanufacturing and/or replacement of worn parts due to friction-, wear-, and scuffing-related degradations also consume significant amounts of energy and give rise to additional CO{sub 2} emission. Overall, the total annual cost of friction- and wear-related energy and material losses is estimated to be rather significant (i.e., as much as 5% of the gross national products of highly industrialized nations). It is projected that more than half of the total friction- and wear-related energy losses can be recovered by developing and implementing advanced friction and wear control technologies. In transportation vehicles alone, 10% to 15% of the fuel energy is spent to overcome friction. If we can cut down the friction- and wear-related energy losses by half, then we can potentially save up to 1.5 million barrels of petroleum per day. Also, less friction and wear would mean less energy consumption as well as less carbon emissions and hazardous byproducts being generated and released to the environment. New and more robust anti-friction and -wear control technologies may thus have a significant positive impact on improving the efficiency and environmental cleanliness of the current legacy fleet and future transportation systems. Effective control of friction in other industrial sectors such as manufacturing, power generation, mining and oil exploration, and agricultural and earthmoving machinery may bring more energy savings. Therefore, this project was timely and responsive to the energy and environmental objectives of DOE and our nation. In this project, most of the boron-based materials with known and potential anti-friction and -wear properties have been manufactured as colloidal additives and tested for their effectiveness in controlling friction and wear. Unlike other anti-friction and -wear additives, which consist of zinc, molybdenum, sulfur, phosphorus, and even chlorine, lubricious boron compounds considered in this project are made of boron, oxygen, nitrogen, and hydrogen, which are more environmentally benign. Among others, boric acid is a natural mineral (known in mineralogy as "sassolite"). Based on our earlier exploratory research, it was found to offer the best overall prospect in terms of performance improvements, environmental friendliness, and ease of manufacturing and, hence, cost effectiveness. Hexagonal boron nitride and borax also offered good prospects for improving the tribological properties of lubricated sliding surfaces. Boron oxide particles were found to be rather hard and somewhat abrasive and, hence, were not considered beyond the initial screening studies. In our bench-top tribological evaluation, we also demonstrated that those additives which worked well with engine oils could work equally well with very common gear oils. When added at appropriate concentrations, such gear oils were found to provide significant resistance to micropitting and scuffing failures in bench-top tribological test systems. Their traction coefficients were also reduced substantially and their scuffing limits were improved considerably. Such impressive tribological behavior of boron-based additives may have been due to their high chemical affinities to interact with sliding contact surfaces and to form slick and protective boundary films. Indeed, our surface studies have confirmed that most of the boron-based nanoparticulate additives prepared in our project possess a strong tendency to form a boron-rich boundary film on sliding contact surfaces. It is believed that the formation of such slick and highly durable boundary films is perhaps one of the fundamental reasons for their superior anti-friction, -wear, and -scuffing performance. Boron-based additives developed under this project have shown potential to reduce or replace the uses of environmentally unsafe sulfur- and phosphorus-bearing anti-wear and friction additives, such as zinc dialkyl dithiophosphate (ZDDP) and molybdenum dialkyl dithiocarbamate (MoDTC), in current lubricating oils. Because ZDDP and MoDTC were suspected of adversely impacting the performance of after-treatment catalysts in current engines, the Environmental Protection Agency (EPA) and other regulatory agencies are demanding that the concentrations of these catalysts in current oils be curtailed drastically. The boron-based nano-additives developed in this project may help reduce the use of ZDDP and MoDTC additives and, hence, help ease the poisoning effects on after-treatment catalysts. When used as lubricity additives, these boron additives can chemically interact with sliding or contacting surfaces and form a protective and slick boundary film, which can, in turn, help reduce friction and wear and increase resistance to scuffing. In the cases of traditional anti-friction and -wear additives mentioned, such protective boundary films result from phosphorus, sulfur, and other elements in the additive package, and again they have been under increased scrutiny in recent years, mainly because of their adverse effects on after-treatment devices. Overall, the boron-based nano-additive technology of this project was shown to hold promise for a broad range of industrial and transportation applications where lower friction and higher resistance to wear and scuffing are needed. Due to more stringent operating conditions of modern machinery, rolling, rotating, and sliding components have been failing to meet the projected lifetimes, mainly because of failures related to mechanical wear, corrosion, and scuffing. The novel boron-based additive technology developed under this project may help such machine components to function reliably by cutting down the friction and wear losses and by increasing resistance to scuffing.

  18. Catalyst inks and method of application for direct methanol fuel cells

    DOEpatents

    Zelenay, Piotr; Davey, John; Ren, Xiaoming; Gottesfeld, Shimshon; Thomas, Sharon C.

    2004-02-24

    Inks are formulated for forming anode and cathode catalyst layers and applied to anode and cathode sides of a membrane for a direct methanol fuel cell. The inks comprise a Pt catalyst for the cathode and a Pt--Ru catalyst for the anode, purified water in an amount 4 to 20 times that of the catalyst by weight, and a perfluorosulfonic acid ionomer in an amount effective to provide an ionomer content in the anode and cathode surfaces of 20% to 80% by volume. The inks are prepared in a two-step process while cooling and agitating the solutions. The final solution is placed in a cooler and continuously agitated while spraying the solution over the anode or cathode surface of the membrane as determined by the catalyst content.

  19. Highly-optimized membrane electrode assembly for direct methanol fuel cell prepared by sedimentation method

    NASA Astrophysics Data System (ADS)

    Liu, Jing Hua; Jeon, Min Ku; Choi, Won Choon; Woo, Seong Ihl

    An electrode for a direct methanol fuel cell (DMFC) is prepared by means of the sedimentation method. A suspension containing Pt black, PTFE and water was filtered through a polycarbonate film and a thin catalyst layer remains on this film. This catalyst layer is then transferred to a gas-diffusion layer by applying a pressure to the assembly and then peeling off the filter film. For the anode catalyst layer, the suspension contained Pt-Ru black and water. The preparation process is optimized and single-cell performance is examined under different operating conditions. Operated at 60 °C, the output power density of the membrane electrode assembly (MEA) fabricated by the sedimentation method is 70% higher than that for an assembly prepared by the conventional brushing technique.

  20. Use of carbon nanocoil as a catalyst support in direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Suda, Yoshiyuki; Kaida, Shota; Ozaki, Masahiro; Shimizu, Yoshiaki; Okabe, Yuta; Tanoue, Hideto; Takikawa, Hirofumi; Ue, Hitoshi; Shimizu, Kazuki

    2014-02-01

    When carbon nanocoils (CNCs) are used in fuel cell electrodes, the diffusion of fuel and gas, and the removal of reaction products, becomes considerably smoother. In this paper, we used CNC as an anode or cathode catalyst support material in direct methanol fuel cells (DMFCs). Other carbon nanoparticles, Arc-Black (AcB) and Vulcan, were also used as catalyst supports to compare with the CNCs. Catalysts were loaded onto nanocarbon materials using the polyol method. We measured the methanol oxidation current of PtRu catalysts loaded on the carbon nanomaterials and the catalyst on CNC showed the highest current. Compared with the catalyst layers of AcB and Vulcan, the catalyst layer of CNCs was confirmed to have several voids. As for the cathode catalysts, the power density of Pt/CNC was 1.2 times higher than that of Pt/Vulcan and 1.6 times higher than that of Pt/AcB.

  1. D'une contribution dipolaire électrique à une contribution purement quadrupolaire électrique pour la génération de second harmonique de nanoparticules métalliques

    NASA Astrophysics Data System (ADS)

    Jonin, C.; Nappa, J.; Revillod, G.; Martin, G.; Russier-Antoine, I.; Bénichou, E.; Brevet, P.-F.

    2006-10-01

    La génération de second harmonique par des nanoparticules d'or dont le diamètre varie de 20 nm à 100 nm a été étudiée par diffusion hyper Rayleigh en polarisation. Pour les petites nanoparticules, la réponse non linéaire est purement dipolaire électrique indiquant une brisure de la symétrie sphérique de la forme de la particule. Pour des nanoparticules de plus grand diamètre les effets retard ne sont plus négligeables et la contribution quadrupolaire électrique devient prépondérante.

  2. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  3. The Production and Export of Bioavailable Iron from Ice Sheets - the Importance of Colloidal and Nanoparticulate Phases

    NASA Astrophysics Data System (ADS)

    Hawkings, J.; Wadham, J. L.; Tranter, M.; Raiswell, R.; Benning, L. G.; Statham, P. J.; Tedstone, A.; Nienow, P. W.; Telling, J.; Bagshaw, E.

    2013-12-01

    Glaciers cover approximately 10% of the world's land surface at present, but our knowledge of biogeochemical processes occurring beneath them is still limited, as is our understanding of their impact on downstream ecosystems via the export of nutrients in runoff. Recent work has suggested that glaciers are a primary source of nutrients to near coastal areas(1). For example, macronutrients, such as nitrogen and phosphorus, and micronutrients, such as iron, may support primary production(2,3). Nutrient limitation of primary producers is known to be prevalent in large sectors of the world's oceans and iron is a significant limiting nutrient in Polar waters(4,5). Significantly, large oceanic algal blooms have been observed in polar areas where glacial influence is large(6,7). Our knowledge of iron speciation, concentrations and export dynamics in glacial meltwater is limited due, in part, to problems associated with collecting trace measurements in remote field locations. For example, recent work has indicated large uncertainty in 'dissolved' meltwater iron concentrations (0.2 - 4000 μM(8,9)). There is currently a dearth of information about labile nanoparticulate iron in glacial meltwaters, as well as export dynamics from large ice sheet catchments. Existing research has focused on small catchment examples(8,10), which behave differently to larger catchments(11). Presented here is the first time series of daily variations in meltwater iron concentrations (dissolved, filterable colloidal/nanoparticulate and bioavailable suspended sediment bound) from two large contrasting glacial catchments in Greenland over the 2012 and 2013 summer melt seasons. We also present the first estimates of iron concentrations in Greenlandic icebergs, which have been identified as hot spots of biological activity in the open ocean(12,13). Budgets for ice sheets based on our data demonstrate the importance of glaciers in global nutrient cycles, and reveal a large and previously under-appreciated component of the global iron cycle. References 1 Hood, E. & Scott, D, Nat Geosci 1, 583-587 (2008) 2 Wadham, J. et al., Earth Env Sci T R So (2013) 3 Gerringa, L. J. A. et al., Deep-Sea Res Pt II 71-76, 16-31 (2012) 4 Martin, J. H. & Fitzwater, S. E., Nature 331, 341-343 (1988) 5 Martin, J. H., Fitzwater, S. E. & Gordon, R. M., Global Biogeochem Cy 4, 5-12 (1990) 6 Perrette, M., Yool, A., Quartly, G. D. & Popova, E. E., Biogeosciences 8, 515-524 (2011) 7 Frajka-Williams, E. & Rhines, P. B., Deep-Sea Res Pt I 57, 541-552 (2010) 8 Statham, P. J., Skidmore, M. & Tranter, M., Global Biogeochem Cy 22 (2008) 9 Mikucki, J. A. et al., Science 324, 397-400 (2009) 10 Bhatia, M. P. et al., Nat Geosci (2013) 11 Wadham, J. L. et al., Global Biogeochem Cy 24 (2010) 12 Smith, K. L. et al., Science 317, 478-482 (2007) 13 Raiswell, R. & Canfield, D. E., Geochemical Perspectives 1, 1-220 (2012)

  4. Osteogenic and antimicrobial nanoparticulate calcium phosphate and poly-(D,L-lactide-co-glycolide) powders for the treatment of osteomyelitis.

    PubMed

    Uskokovi?, Vuk; Hoover, Charles; Vukomanovi?, Marija; Uskokovi?, Dragan P; Desai, Tejal A

    2013-08-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of infection. PMID:23706222

  5. Chemodynamics of soft nanoparticulate complexes: Cu(II) and Ni(II) complexes with fulvic acids and aquatic humic acids.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P; Buffle, Jacques

    2012-10-01

    The dynamics of metal complexation by small humic substances (fulvic acid and aquatic humic acid, collectively denoted as fulvic-like substance, FS) are explored within the framework of concepts recently developed for soft nanoparticulate complexants. From a comprehensive collection of published equilibrium and dissociation rate constants for CuFS and NiFS complexes, the association rate constant, ka, is determined as a function of the degree of complexing site occupation, ?. From this large data set, it is shown for the first time that ka is independent of ?. This result has important consequences for finding the nature of the rate limiting step in the association process. The influence of electric effects on the rate of the association process is described, namely (i) the accelerating effect of the negatively charged electrostatic field of FS on the diffusion of metal ions toward it, and (ii) the extent to which metal ions electrostatically accumulate in the counterionic atmosphere of FS. These processes are discussed qualitatively in relation to the derived values of ka. For slowly dehydrating metal ions such as Ni(H2O)6 2+ (dehydration rate constant, kw), ka is expected to derive straight from kw. In contrast, for rapidly dehydrating metal ions such as Cu(H2O)6 2+, transport limitations and electric effects involved in the formation of the precursor outer-sphere associate appear to be important overall rate-limiting factors. This is of great significance for understanding the chemodynamics of humic complexes in the sense that inner-sphere complex formation would not always be the (sole) rate limiting step. PMID:22934531

  6. Nanoparticulate TiO2 protection of midgut damage in the silkworm (Bombyx mori) following phoxim exposure.

    PubMed

    Wang, Ling; Su, Mingyu; Zhao, Xiaoyang; Hong, Jie; Yu, Xiaohong; Xu, Bingqing; Sheng, Lei; Liu, Dong; Shen, Weide; Li, Bing; Hong, Fashui

    2015-04-01

    Bombyx mori (B. mori) is often subjected to phoxim poisoning in China due to phoxim exposure, which leads to a decrease in silk production. Nanoparticulate (NP) titanium dioxide (nano-TiO2) has been shown to attenuate damages in B. mori caused by phoxim exposure. However, little is known about the molecular mechanisms of midgut injury due to organophosphorus insecticide exposure and its repair by nano-TiO2 pretreatment. In this study, phoxim exposure for 36 h led to significant decreases in body weight and survival and increased oxidative stress and midgut injury. Pretreatment with nano-TiO2 attenuated the phoxim-induced midgut injury, increased body weight and survival, and decreased oxidative stress in the midgut of B. mori. Digital gene-expression data showed that exposure to phoxim results in significant changes in the expression of 254 genes in the phoxim-exposed midgut and 303 genes in phoxim + nano-TiO2-exposed midgut. Specifically, phoxim exposure led to upregulation of Tpx, α-amylase, trypsin, and glycoside hydrolase genes involved in digestion and absorption. Phoxim exposure also led to the downregulation of Cyp450 and Cyp4C1 genes involved in an antioxidant capacity. In contrast, a combination of both phoxim and nano-TiO2 treatment significantly decreased the change in α-amylase, trypsin, and glycoside hydrolases (GHs), which are involved in digestion and absorption. These results indicated that Tpx, α-amylase, trypsin, GHs, Cyp450, and Cyp4C1 may be potential biomarkers of midgut toxicity caused by phoxim exposure and the attenuation of these toxic impacts by nano-TiO2. PMID:25552327

  7. A Nanoparticulate Ferritin-Core Mimetic Is Well Taken Up by HuTu 80 Duodenal Cells and Its Absorption in Mice Is Regulated by Body Iron12

    PubMed Central

    Latunde-Dada, Gladys O; Pereira, Dora IA; Tempest, Bethan; Ilyas, Hibah; Flynn, Angela C; Aslam, Mohamad F; Simpson, Robert J; Powell, Jonathan J

    2014-01-01

    Background: Iron (Fe) deficiency anemia remains the largest nutritional deficiency disorder worldwide. How the gut acquires iron from nano Fe(III), especially at the apical surface, is incompletely understood. Objective: We developed a novel Fe supplement consisting of nanoparticulate tartrate-modified Fe(III) poly oxo-hydroxide [here termed nano Fe(III)], which mimics the Fe oxide core of ferritin and effectively treats iron deficiency anemia in rats. Methods: We determined transfer to the systemic circulation of nano Fe(III) in iron-deficient and iron-sufficient outbread Swiss mouse strain (CD1) mice with use of 59Fe-labeled material. Iron deficiency was induced before starting the Fe-supplementation period through reduction of Fe concentrations in the rodent diet. A control group of iron-sufficient mice were fed a diet with adequate Fe concentrations throughout the study. Furthermore, we conducted a hemoglobin repletion study in which iron-deficient CD1 mice were fed for 7 d a diet supplemented with ferrous sulfate (FeSO4) or nano Fe(III). Finally, we further probed the mechanism of cellular acquisition of nano Fe(III) by assessing ferritin formation, as a measure of Fe uptake and utilization, in HuTu 80 duodenal cancer cells with targeted inhibition of divalent metal transporter 1 (DMT1) and duodenal cytochrome b (DCYTB) before exposure to the supplemented iron sources. Differences in gene expression were assessed by quantitative polymerase chain reaction. Results: Absorption (means ± SEMs) of nano Fe(III) was significantly increased in iron-deficient mice (58 ± 19%) compared to iron-sufficient mice (18 ± 17%) (P = 0.0001). Supplementation of the diet with nano Fe(III) or FeSO4 significantly increased hemoglobin concentrations in iron-deficient mice (170 ± 20 g/L, P = 0.01 and 180 ± 20 g/L, P = 0.002, respectively). Hepatic hepcidin mRNA expression reflected the nonheme-iron concentrations of the liver and was also comparable for both nano Fe(III)– and FeSO4-supplemented groups, as were iron concentrations in the spleen and duodenum. Silencing of the solute carrier family 11 (proton-coupled divalent metal ion transporter), member 2 (Slc11a2) gene (DMT1) significantly inhibited ferritin formation from FeSO4 (P = 0.005) but had no effect on uptake and utilization of nano Fe(III). Inhibiting DCYTB with an antibody also had no effect on uptake and utilization of nano Fe(III) but significantly inhibited ferritin formation from ferric nitrilotriacetate chelate (Fe-NTA) (P = 0.04). Similarly, cellular ferritin formation from nano Fe(III) was unaffected by the Fe(II) chelator ferrozine, which significantly inhibited uptake and utilization from FeSO4 (P = 0.009) and Fe-NTA (P = 0.005). Conclusions: Our data strongly support direct nano Fe(III) uptake by enterocytes as an efficient mechanism of dietary iron acquisition, which may complement the known Fe(II)/DMT1 uptake pathway. PMID:25342699

  8. Effects of Chemical Conjugation of l-Leucine to Chitosan on Dispersibility and Controlled Release of Drug from a Nanoparticulate Dry Powder Inhaler Formulation.

    PubMed

    Muhsin, Mohammad D A; George, Graeme; Beagley, Kenneth; Ferro, Vito; Wang, Hui; Islam, Nazrul

    2016-05-01

    This study investigated l-leucine-conjugated chitosan as a drug delivery vehicle in terms of dispersibility and controlled release from a nanoparticulate dry powder inhaler (DPI) formulation for pulmonary delivery using diltiazem hydrochloride (DH) as the model drug. DH-loaded nanoparticles of chitosan and conjugate were prepared by water-in-oil emulsification followed by glutaraldehyde cross-linking. Nanoparticles were characterized by dynamic light scattering for particle size, X-ray photoelectron spectroscopy for surface composition, and twin stage impinger for drug dispersibility. The controlled release of DH was studied in phosphate-buffered saline (pH 7.3 ± 0.2, 37 °C) using UV spectrophotometry. The fine particle fractions of conjugated chitosan with and without drug were higher than those of nonconjugated chitosan nanoparticles. The conjugate nanoparticles were superior to those of unmodified chitosan in drug loading, entrapment efficiency, and controlled release profile. The higher dispersibility was attributed to the amphiphilic environment of the l-leucine conjugate and hydrophobic cross-links, and the release profile reflects the greater swelling. The conjugated chitosan nanoparticles could be useful, after appropriate testing for biodegradability and toxicity, as an alternative carrier for lung drug delivery with enhanced aerosolization and prolonged drug release from nanoparticulate DPI formulations. PMID:26998555

  9. 1-(3'-amino)propylsilatrane derivatives as covalent surface linkers to nanoparticulate metal oxide films for use in photoelectrochemical cells

    NASA Astrophysics Data System (ADS)

    Brennan, Bradley J.; Keirstead, Amy E.; Liddell, Paul A.; Vail, Sean A.; Moore, Thomas A.; Moore, Ana L.; Gust, Devens

    2009-12-01

    A triethanolamine-protected silane, 1-(3'-amino)propylsilatrane, was incorporated into the structure of porphyrin- and ruthenium-based dyes and used to link them to transparent semiconductor nanoparticulate metal oxide films. Silatrane reacts with the metal oxide to form strong, covalent silyl ether bonds. In this study, silatrane-functionalized dyes and analogous carboxylate-functionalized dyes were used as visible light sensitizers for porous nanoparticulate SnO2 photoanodes. The performance of the dyes was compared in photoelectrochemical cells incorporating either non-regenerative or regenerative redox components. The non-regenerative cell used NADH (β-nicotinamide adenine dinucleotide) as a sacrificial electron donor and Hg2SO4/Hg as a sacrificial cathode, whereas the regenerative cell used the iodide/triiodide redox couple. Experiments showed that the silyl ether bonding gave the electrodes increased stability toward sensitizer desorption compared to carboxylate surface linkages. Porphyrin-silatrane dyes also demonstrated similar or better performance than their carboxylate analogs in photoelectrochemical cells. The improvement correlates with the results from transient absorbance spectroscopy, which show that the longer linker on the silatrane porphyrins slows charge recombination between oxidized porphyrin and the electrode surface. The improved photoelectrochemical cell efficiency and stability of the silatrane-based dyes compared to carboxylates demonstrate that silatranes are promising agents for bonding organic molecules to metal oxide surfaces.

  10. Small Molecules and Sum Frequency Generation Probes of Nanoparticulate TiO2

    NASA Astrophysics Data System (ADS)

    Shultz, Mary Jane

    2006-03-01

    Anatase TiO2 is known to photo catalytically mineralize a wide variety of pollutants and pathogens, both airborne and in aqueous solution. One of the major benefits of basing water treatment systems on TiO2 is that it is environmentally benign and so non toxic that it is used as a colorant in creamy salad dressing. The primary impediment to wide spread implementation of a TiO2 based system for water decontamination is that the quantum efficiency in contact with condense phase water is less than 5%. Since the quantum efficiency for destruction of airborne materials is greater than 80%, the potential for increased efficiency is very real. To convert the potential to practice, the oxidation mechanism needs to be more fully understood. We will report on the results of using a nonlinear optical spectroscopy, sum frequency generation (SFG) as an in situ probe of interactions at the TiO2 surface. Results suggest that the dominant oxidation mechanism converts from a direct to an indirect mechanism as the water content (vapor pressure) increases. This presentation will discuss the probe technique as well as the results.

  11. Control Banding Nanotool: Evaluation of a qualitative risk assessment method for the control of nanoparticulate exposures

    SciTech Connect

    Zalk, D; Paik, S; Swuste, P

    2009-01-27

    Control Banding strategies offer a simplified control of worker exposures when there is an absence of firm toxicological and exposure information. The nanotechnology industry fits this classification as there are overwhelming uncertainties of work-related health risks posed by nanomaterials. Many experts have suggested Control Banding as a solution for these issues. A recent survey shows a majority of nanomaterial users are not performing a basic risk assessment of their product in use. A Control Banding Nanotool has been developed and implemented to afford a qualitative risk assessment toward the control of nanoparticle exposures. The international use of the Control Banding Nanotool reflects on both its need and its possibilities. By developing this dynamic Control Banding Nanotool within the realm of the scientific information available, this application of Control Banding appears to be a useful approach for assessing the risk of nanomaterial operations. This success can be seen in providing recommendations for appropriate engineering controls, facilitating the allocation of resources to the activities that most need them, and initiating an appropriate discussion of these risks with nonexperts. Experts have requested standardization of toxicological parameters, affording better utility and consistency of research. This database of toxicological research findings should be harnessed and presented in a format feeding directly into the Control Banding Nanotool severity and probability risk matrix. Making the latest research available for experts and practitioners alike will provide the best protection of workers in the nanotechnology industries. This presentation will also show the science behind the simplified Control Banding Nanotool approach, its structure, weighting of risks, utility for exposure mitigation, and the research needs to bolster its effectiveness.

  12. Synthese de nanoparticules plasmoniques par laser femtoseconde en milieu liquide pour des applications biomedicales

    NASA Astrophysics Data System (ADS)

    Besner, Sebastien

    The femtosecond laser synthesis of plasmonic nanoparticles (Au, Ag, Cu, AuAg, AuCu) is described. The approach relies on the fs laser ablation of a target immersed in a liquid, followed by the laser-induced fragmentation and growth of nanoparticles in solution. This two-step methodology significantly enhances the production rate, the reproducibility and the size control of nanoparticles in comparison to the direct laser ablation based technique. For gold, the laser-induced growth of nanometric seeds initially formed by laser ablation in the presence of a stabilizing agent allows the synthesis of functionalized nanoparticles with sizes ranging from 3-76 nm and coefficients of variation (COV) varying between 15-30%. In comparison to the direct laser ablation, the size control is much simpler, as it uniquely depends on the gold to stabilizing agent molecular concentration ratio. The approach has been described for dextran and polyethylene glycol (PEG), but can be extended to all stabilizing agents and open new avenues in the formation of various novel bioconjugates. The fs laser ablation and fragmentation also allow the synthesis of stable and low dispersed Au nanoparticles in pure water. These nanoparticles are unique for sensing applications with high sensitivity based on surface enhanced Raman scattering (SERS), since they greatly reduce the noise associated with surface contaminants and byproducts found in solution. The formation of various nanospheres with predetermined size, shape and composition (AuxAg(1-x), AuxCu(1-x) ) is also reported by the use of a fs irradiation of a mixture of two pure metallic ix colloidal solutions in a very simple chemical environment, e.g. water and a stabilizing agent. From a chemical point of view, oxidation of silver nanoparticles is significantly reduced by the incorporation of a small amount of gold and is completely inhibited for a gold atomic fraction larger than 0.4-0.5. The bifunctional nature related to the partial oxidation of the gold nanoparticle surface allows a wide range of stabilization mechanisms. The stabilization by hydrophobic-hydrophobic interaction, by hydrogen bonds formation, by chemisorptions of thiols and by electrostatic interactions is evaluated. A new class of stabilizing agents, biopolymers, is also introduced. The addition of these polymers during the laser ablation, fragmentation or growth process enables in situ surface functionalization and efficient size control. The biocompatibility of these stabilizers also allows the direct introduction of nanoparticles in in vitro or in vivo applications without further purification. Significant efforts have also been undertaken to check the possible degradation of the polymers used during the laser process. These studies demonstrate a low degradation via an oxidation mechanism, involving the production of free radicals and oxidizing species by dissociation of water molecules during the laser process. Finally, the mechanisms of laser ablation in liquids and a growth model for the nanoparticles are proposed based on experimental results from literature and this thesis. The formation of nanoparticles is described by three distinct phases. First, a fast nucleation and condensation of the ejected species occur in the plasma and are caused by extremely high cooling rates, which lead to a strong supersaturation. This short nucleation and condensation phase is followed by a marked growth of the liquid (and still hot) nuclei by coalescence. After solidification, these nuclei should have sizes below 2 nm and be mostly condensed at the liquid-vapor interface of the growing cavitation bubble. Without the presence of stabilizing agent, growth by atomic diffusion and coalescence continue inside the cavitation bubble and should be accelerated following its collapse. Nanoparticles and unreacted monomers are then propelled out of the ablation zone by the secondary shock wave associated with the collapse of the cavitation bubble and further grow in solution. This cycle is repeated for each laser pulse and interaction between species in solution and the ablated species and/or the incident radiation is expected to occur based on the geometry of the ablation cell. (Abstract shortened by UMI.)

  13. Combustion Synthesis of Nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1, 0.2) Carbon Composites

    SciTech Connect

    Doeff, Marca M; Chen, Jiajun; Conry, Thomas E.; Wang, Ruigang; Wilcox, James; Aumentado, Albert

    2009-12-14

    A combustion synthesis technique was used to prepare nanoparticulate LiMgxMn1-xPO4 (x=0, 0.1,0.2)/carbon composites. Powders consisted of carbon-coated particles about 30 nm in diameter, which were partly agglomerated into larger secondary particles. The utilization of the active materials in lithium cells depended most strongly upon the post-treatment and the Mg content, and was not influenced by the amount of carbon. Best results were achieved with a hydrothermally treated LiMg0.2Mn0.8PO4/C composite, which exhibited close to 50percent utilization of the theoretical capacity at a C/2 discharge rate.

  14. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  15. Effects of calcium and phosphate on uranium(IV) oxidation: Comparison between nanoparticulate uraninite and amorphous UIV-phosphate

    NASA Astrophysics Data System (ADS)

    Latta, Drew E.; Kemner, Kenneth M.; Mishra, Bhoopesh; Boyanov, Maxim I.

    2016-02-01

    The mobility of uranium in subsurface environments depends strongly on its redox state, with UIV phases being significantly less soluble than UVI minerals. This study compares the oxidation kinetics and mechanisms of two potential products of UVI reduction in natural systems, a nanoparticulate UO2 phase and an amorphous UIV-Ca-PO4 analog to ningyoite (CaUIV(PO4)2·1-2H2O). The valence of U was tracked by X-ray absorption near-edge spectroscopy (XANES), showing similar oxidation rate constants for UIVO2 and UIV-phosphate in solutions equilibrated with atmospheric O2 and CO2 at pH 7.0 (kobs,UO2 = 0.17 ± 0.075 h-1 vs. kobs,UIVPO4 = 0.30 ± 0.25 h-1). Addition of up to 400 μM Ca and PO4 decreased the oxidation rate constant by an order of magnitude for both UO2 and UIV-phosphate. The intermediates and products of oxidation were tracked by electron microscopy, powder X-ray diffraction (pXRD), and extended X-ray absorption fine-structure spectroscopy (EXAFS). In the absence of Ca or PO4, the product of UO2 oxidation is Na-uranyl oxyhydroxide (under environmentally relevant concentrations of sodium, 15 mM NaClO4 and low carbonate concentration), resulting in low concentrations of dissolved UVI (<2.5 × 10-7 M). Oxidation of UIV-phosphate produced a Na-autunite phase (Na2(UO2)PO4·xH2O), resulting in similarly low dissolved U concentrations (<7.3 × 10-8 M). When Ca and PO4 are present in the solution, the EXAFS data and the solubility of the UVI phase resulting from oxidation of UO2 and UIV-phosphate are consistent with the precipitation of Na-autunite. Bicarbonate extractions and Ca K-edge X-ray absorption spectroscopy of oxidized solids indicate the formation of a Ca-UVI-PO4 layer on the UO2 surface and suggest a passivation layer mechanism for the decreased rate of UO2 oxidation in the presence of Ca and PO4. Interestingly, the extractions were unable to remove all of the oxidized U from partially oxidized UO2 solids, suggesting that oxidized U is distributed between the interior of the UO2 nanoparticles and the labile surface layer. Accounting for the entire pool of oxidized U by XANES is the likely reason for the higher UO2 oxidation rate constants determined here relative to prior studies. Our results suggest that the natural presence or addition of Ca and PO4 in groundwater could slow the rates of UIV oxidation, but that the rates are still fast enough to cause complete oxidation of UIV within days under fully oxygenated conditions.

  16. Assembly of polygonal nanoparticle clusters directed by reversible noncovalent bonding interactions.

    PubMed

    Olson, Mark A; Coskun, Ali; Klajn, Rafal; Fang, Lei; Dey, Sanjeev K; Browne, Kevin P; Grzybowski, Bartosz A; Stoddart, J Fraser

    2009-09-01

    The reversible molecular template-directed self-assembly of gold nanoparticles (AuNPs), a process which relies solely on noncovalent bonding interactions, has been demonstrated by high-resolution transmission electron microscopy (HR-TEM). By employing a well-known host-guest binding motif, the AuNPs have been systemized into discrete dimers, trimers, and tetramers. These nanoparticulate twins, triplets, and quadruplets, which can be disassembled and reassembled either chemically or electrochemically, can be coalesced into larger, permanent polygonal structures by thermal treatment using a focused HR-TEM electron beam. PMID:19694461

  17. Nanoparticulate immunotherapy for cancer.

    PubMed

    Kapadia, Chintan H; Perry, Jillian L; Tian, Shaomin; Luft, J Christopher; DeSimone, Joseph M

    2015-12-10

    Although surgery, radiation therapy, and chemotherapy have significantly improved as treatments for cancer, they can rarely control metastatic disease and cures remain scarce. Promising recent developments suggest that cancer immunotherapy may become a powerful new therapy that clinicians can offer cancer patients. The opportunity to orchestrate the body's own immune system to target, fight, and eradicate cancer cells without destroying healthy cells makes this an extremely attractive treatment modality. Our increased knowledge in anti-tumor immunity and the immunosuppressive tumor microenvironment (TME) has provided many therapeutic strategies to battle cancer. That combined with advancements in the field of particulate delivery systems provide a mechanism to deliver these immunotherapeutics to their specific targeted cells and the TME. In this review we will focus on the current status of immunotherapy and the potential advantages of utilizing nanocarriers within the field. PMID:26432555

  18. SiO2 Nanoparticule-induced size-dependent genotoxicity - an in vitro study using sister chromatid exchange, micronucleus and comet assay.

    PubMed

    Battal, Dilek; Çelik, Ayla; Güler, Gizem; Aktaş, Ayça; Yildirimcan, Saadet; Ocakoglu, Kasim; Çömelekoǧlu, Ülkü

    2015-04-01

    Fine particles with a characteristic size smaller than 100 nm (i.e. nanoparticlesspread out in nowadays life. Silicon or Si, is one of the most abundant chemical elements found on the Earth. Its oxide forms, such as silicate (SiO4) and silicon dioxide, also known as silica (SiO2), are the main constituents of sand and quartz contributing to 90% of the Earth's crust. In this work, three genotoxicity systems "sister chromatid exchange, cytokinesis block micronucleus test and single cell gel electrophoresis (comet) assay" were employed to provide further insight into the cytotoxic and mutagenic/genotoxic potential of SiO2 nanoparticules (particle size 6 nm, 20 nm, 50 nm) in cultured peripheral blood lymphocytes as in vitro. It was observed that there is a significant decrease in Mitotic index (MI), Cytokinesis block proliferation index (CBPI), proliferation index (PRI) values expressed as Cell Kinetic parameters compared with negative control (p < 0.05). There is a statistically significant difference between negative control culture and culture exposed to SiO2 (6 nm, 20 nm, 50 nm) (p < 0.01, p < 0.01, p < 0.05, respectively). It is found that SiO2 nanoparticles at different size (6, 20, 50 nm) progressively increased the SCE frequency and DNA damage on the basis the AU values compared with negative control (p < 0.05). Results showed that the genotoxic/mutagenic and cytotoxic effects of SiO2 nanoparticules is dependent to particule size. PMID:24960636

  19. Photosensitization of nanoparticulate TiO2 using a Re(I)-polypyridyl complex: studies on interfacial electron transfer in the ultrafast time domain.

    PubMed

    Kar, Prasenjit; Banerjee, Tanmay; Verma, Sandeep; Sen, Anik; Das, Amitava; Ganguly, Bishwajit; Ghosh, Hirendra N

    2012-06-14

    We have synthesized a new photoactive rhenium(i)-complex having a pendant catechol functionality [Re(CO)(3)Cl(L)] (1) (L is 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) for studying the dynamics of the interfacial electron transfer between nanoparticulate TiO(2) and the photoexcited states of this Re(i)-complex using femtosecond transient absorption spectroscopy. Our steady state absorption studies revealed that complex 1 can bind strongly to TiO(2) surfaces through the catechol functionality with the formation of a charge transfer (CT) complex, which has been confirmed by the appearance of a new red-shifted CT band. The longer wavelength absorption band for 1, bound to TiO(2) through the proposed catecholate functionality, could also be explained based on the DFT calculations. Dynamics of the interfacial electron transfer between 1 and TiO(2) nanoparticles was investigated by studying kinetics at various wavelengths in the visible and near infrared regions. Electron injection into the conduction band of the nanoparticulate TiO(2) was confirmed by detection of the conduction band electron in TiO(2) ([e(-)](TiO(2)(CB))) and the cation radical of the adsorbed dye (1˙(+)) in real time as monitored by transient absorption spectroscopy. A single exponential and pulse-width limited (<100 fs) electron injection was observed. Back electron transfer dynamics was determined by monitoring the decay kinetics of 1˙(+) and . PMID:22549294

  20. Performance of a passive direct ethanol fuel cell

    NASA Astrophysics Data System (ADS)

    Pereira, J. P.; Falcão, D. S.; Oliveira, V. B.; Pinto, A. M. F. R.

    2014-06-01

    Ethanol emerges as an attractive fuel since it is less toxic and has higher energy density than methanol and can be produced from biomass. Direct ethanol fuel cells (DEFCs) appear as a good choice for producing sustainable energy for portable applications. However, they are still far from attaining acceptable levels of power output, since their performance is affected by the slow electrochemical ethanol oxidation and water and ethanol crossover. In the present work, an experimental study on the performance of a passive DEFC is described. Tailored MEAs (membrane electrode assembly) with different catalyst loadings, anode diffusion layers and membranes were tested in order to select optimal working conditions at high ethanol concentrations and low ethanol crossover. The performance increased with an increase of membrane and anode diffusion layer thicknesses and anode catalyst loading. A maximum power density of 1.33 mW cm-2, was obtained using a Nafion 117 membrane, 4 mg cm-2 of Pt-Ru and 2 mg cm-2 of Pt on the anode and cathode catalyst layers, ELAT as anode diffusion layer, carbon cloth as cathode diffusion layer and an ethanol concentration of 2 M. As far as the authors are aware this is the first work reporting an experimental optimization of passive DEFCs.

  1. One-Pot and Facile Fabrication of Hierarchical Branched Pt-Cu Nanoparticles as Excellent Electrocatalysts for Direct Methanol Fuel Cells.

    PubMed

    Cao, Yanqin; Yang, Yong; Shan, Yufeng; Huang, Zhengren

    2016-03-01

    Hierarchical branched nanoparticles are one promising nanostructure with three-dimensional open porous structure composed of integrated branches for superior catalysis. We have successfully synthesized Pt-Cu hierarchical branched nanoparticles (HBNDs) with small size of about 30 nm and composed of integrated ultrathin branches by using a modified polyol process with introduction of poly(vinylpyrrolidone) and HCl. This strategy is expected to be a general strategy to prepare various metallic nanostructures for catalysis. Because of the special open porous structure, the as-prepared Pt-Cu HBNDs exhibit greatly enhanced specific activity toward the methanol oxidation reaction as much as 2.5 and 1.7 times compared with that of the commercial Pt-Ru and Pt-Ru/C catalysts, respectively. Therefore, they are potentially applicable as electrocatalysts for direct methanol fuel cells. PMID:26885678

  2. Reactivity Descriptors for Direct Methanol Fuel Cell Anode Catalysts

    SciTech Connect

    Ferrin, Peter; Nilekar, Anand U.; Greeley, Jeffrey P.; Mavrikakis, Manos; Rossmeisl, Jan

    2008-11-01

    We have investigated the anode reaction in direct methanol fuel cells using a database of adsorption free energies for 16 intermediates on 12 close-packed transition metal surfaces calculated with periodic, selfconsistent, density functional theory (DFT–GGA). This database, combined with a simple electrokinetic model of the methanol electrooxidation reaction, yields mechanistic insights that are consistent with previous experimental and theoretical studies on Pt, and extends these insights to a broad spectrum of other transition metals. In addition, by using linear scaling relations between the adsorption free energies of various intermediates in the reaction network, we find that the results determined with the full database of adsorption energies can be estimated by knowing only two key descriptors for each metal surface: the free energies of OH and CO on the surface. Two mechanisms for methanol oxidation to CO₂ are investigated: an indirect mechanism that goes through a CO intermediate and a direct mechanism where methanol is oxidized to CO₂ without the formation of a CO intermediate. For the direct mechanism, we find that, because of CO poisoning, only a small current will result on all non-group 11 transition metals; of these metals, Pt is predicted to be the most active. For methanol decomposition via the indirect mechanism, we find that the onset potential is limited either by the ability to activate methanol, by the ability to activate water, or by surface poisoning by CO* or OH*/O*. Among pure metals, there is no obvious candidate for a good anode catalyst, and in order to design a better catalyst, one has to look for bi-functional surfaces such as the well-studied PtRu alloy.

  3. Initial in vitro screening approach to investigate the potential health and environmental hazards of Envirox™ – a nanoparticulate cerium oxide diesel fuel additive

    PubMed Central

    Park, Barry; Martin, Patricia; Harris, Chris; Guest, Robert; Whittingham, Andrew; Jenkinson, Peter; Handley, John

    2007-01-01

    Nanotechnology is the new industrial revolution of the 21st Century as the various processes lead to radical improvements in medicine, manufacturing, energy production, land remediation, information technology and many other everyday products and applications. With this revolution however, there are undoubted concerns for health, safety and the environment which arise from the unique nature of materials and processes at the nanometre scale. The in vitro assays used in the screening strategy are all validated, internationally accepted protocols and provide a useful indication of potential toxicity of a chemical as a result of effects on various toxicological endpoints such as local site of contact (dermal) irritation, general cytotoxicity and mutagenicity. The initial in vitro screening strategy described in this paper to investigate the potential health implications, if any, which may arise following exposure to one specific application of nanoparticulate cerium oxide used as a diesel fuel borne catalyst, reflects a precautionary approach and the results will inform judgement on how best to proceed to ensure safe use. PMID:18053256

  4. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  5. Polyoxometalate-Enhanced Oxidation of Organic Compounds by Nanoparticulate Zero-Valent Iron and Ferrous Ion in the Presence of Oxygen

    PubMed Central

    Lee, Changha; Keenan, Christina R.; Sedlak, David L.

    2008-01-01

    In the presence of oxygen, organic compounds can be oxidized by zero-valent iron or dissolved Fe(II). However, this process is not a very effective means of degrading contaminants because the yields of oxidants are usually low (i.e., typically less than 5% of the iron added is converted into oxidants capable of transforming organic compounds). The addition of polyoxometalate (POM) greatly increases the yield of oxidants in both systems. The mechanism of POM enhancement depends on solution pH. Under acidic conditions, POM-mediates the electron transfer from nanoparticulate zero-valent iron (nZVI) or Fe(II) to oxygen, increasing the production of hydrogen peroxide, which is subsequently converted to hydroxyl radical through the Fenton reaction. At neutral pH values, iron forms a complex with POM, preventing iron precipitation on the nZVI surface and in bulk solution. At pH 7, the yield of oxidant approaches the theoretical maximum in the nZVI/O2 and the Fe(II)/O2 systems when POM is present, suggesting that coordination of iron by POM alters the mechanism of the Fenton reaction by converting the active oxidant from ferryl ion to hydroxyl radical. Comparable enhancements in oxidant yields are also observed when nZVI or Fe(II) are exposed to oxygen in the presence of silica-immobilized POM. PMID:18678027

  6. Laser welding of nanoparticulate TiO2 and transparent conducting oxide electrodes for highly efficient dye-sensitized solar cell.

    PubMed

    Kim, Jinsoo; Kim, Jonghyun; Lee, Myeongkyu

    2010-08-27

    Poor interfacial contact is often encountered in nanoparticulate film-based devices. The dye-sensitized solar cell (DSSC) is a representative case in which a nanoporous TiO(2) electrode needs to be prepared on the transparent conducting oxide (TCO)-coated glass substrate. In this study, we demonstrate that the inter-electrode contact resistance accounts for a considerable portion of the total resistance of a DSSC and its efficiency can be greatly enhanced by welding the interface with a laser. TiO(2) films formed on the TCO-coated glass substrate were irradiated with a pulsed ultraviolet laser beam at 355 nm; this transmits through the TCO and glass but is strongly absorbed by TiO(2). Electron microscopy analysis and impedance measurements showed that a thin continuous TiO(2) layer is formed at the interface as a result of the local melting of TiO(2) nanoparticles and this layer completely bridges the gap between the two electrodes, improving the current flow with a reduced contact resistance. We were able to improve the efficiency by 35-65% with this process. DSSCs fabricated using a homemade TiO(2) paste revealed an efficiency improvement from eta = 3.3% to 5.4%, and an increase from 8.2% to 11.2% was achieved with the TiO(2) electrodes made from a commercial paste. PMID:20671364

  7. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.

    PubMed

    Ma, Feng; Yuan, Anbao; Xu, Jiaqiang

    2014-10-22

    In this work, highly conductive vapor grown carbon fiber (VGCF) was applied as an electrically conductive agent for facile synthesis of a nanoparticulate Mn3O4/VGCF composite material. This material exhibits super high specific capacity and excellent rate capability as a conversion-anode for lithium ion batteries. Rate performance test result demonstrates that at the discharge/charge current density of 0.2 A g(-1) a reversible capacity of ca. 950 mAh g(-1) is delivered, and when the current rate is increased to a high current density of 5 A g(-1), a reversible capacity of ca. 390 mAh g(-1) is retained. Cyclic performance examination conducted at the current density of 0.5 A g(-1) reveals that in the initial 20 cycles the reversible capacity decreases gradually from 855 to 747 mAh g(-1). However, since then, it increases gradually with cycle number increasing, and after 200 cycles an extraordinarily high reversible capacity of 1391 mAh g(-1) is achieved. PMID:25247688

  8. Intraparticulate speciation analysis of soft nanoparticulate metal complexes. The impact of electric condensation on the binding of Cd(2+)/Pb(2+)/Cu(2+) by humic acids.

    PubMed

    Town, Raewyn M; van Leeuwen, Herman P

    2016-04-21

    In aqueous dispersions of soft, charged nanoparticles, the physicochemical conditions prevailing within the particle body generally differ substantially from those in the bulk medium. Accordingly it is necessary to define intrinsic descriptors that appropriately reflect the chemical speciation inside the particle's microenvironment. Herein the speciation of divalent metal ions within the body of negatively charged soft nanoparticulate complexants is elaborated for the example case of humic acid association with Cd(ii), Pb(ii) and Cu(ii). The electrostatic effects are described by a two-state model that accounts for counterion condensation in the intraparticulate double layer shell at the particle/medium interface and Donnan partitioning within the bulk of the particle body. Inner-sphere complex formation is defined by an intrinsic binding constant expressed in terms of local reactant concentrations as controlled by the pertinent electrostatic conditions. For the high particle charge density case (Debye length smaller than charged site separation), three distinct intraparticulate metal species are identified, namely free hydrated ions, electrostatically condensed ions, and inner-sphere metal-humic complexes. For all metal ions studied, the electrostatic contribution to the association of the metal ion with the oppositely charged particle is found to account for a substantial fraction of the total metal bound. PMID:27004844

  9. Direct alcohol fuel cells: Increasing platinum performance by modification with sp-group metals

    NASA Astrophysics Data System (ADS)

    Figueiredo, Marta C.; Sorsa, Olli; Doan, Nguyet; Pohjalainen, Elina; Hildebrand, Helga; Schmuki, Patrik; Wilson, Benjamin P.; Kallio, Tanja

    2015-02-01

    By using sp group metals as modifiers, the catalytic properties of Pt can be improved toward alcohols oxidation. In this work we report the performance increase of direct alcohol fuel cells (DAFC) fuelled with ethanol or 2-propanol with platinum based anode electrodes modified with Bi and Sb adatoms. For example, by simply adding Sb to the Pt/C based anode ink during membrane electrode assembly fabrication of a direct ethanol fuel cell (DEFC) its performance is improved three-fold, with more than 100 mV increase in the open circuit potential. For the fuel cell fuelled with 2-propanol high power densities are obtained at very high potentials with these catalyst materials suggesting a great improvement for practical applications. Particularly in the case of Pt/C-Bi, the improvement is such that within 0.6 V (from 0.7 to 0.1 V) the power densities are between 7 and 9 mW/cm2. The results obtained with these catalysts are in the same range as those obtained with other bimetallic catalysts comprising of PtRu and PtSn, which are currently considered to be the best for these type of fuel cells and that are obtained by more complicated (and consequently more expensive) methods.

  10. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  11. MEMS-based micro direct methanol fuel cell using microfabrication technology

    NASA Astrophysics Data System (ADS)

    Liu, Xiaowei; Suo, Chunguang; Zhang, Yufeng; Lu, Xuebin; Xia, Hongyang

    2006-04-01

    The microfabrication and performance of a micro direct methanol fuel cell (μDMFC) by silicon processes are presented in this paper. Using the silicon micromachining techniques, including thermal oxidation, optical lithography, wet etching, silicon anodization, physical vapor deposition, electroless plating, laser beams cauterization, and anodic bonding, we have successfully made single μDMFC as small as 10mmx8mmx3mm. The main reason for the use of MEMS technology is the prospective potential for miniaturization and economical mass production of micro direct methanol fuel cells. The double side of silicon wafer deep wet etching was employed for the gas channels and fuel chamber preparation. The formation of porous silicon (PS) layers for electrode supports by electrochemical process is the key technologies to improve the MEMS-based μDMFC. The method of catalyst deposition reported here differs from previous work in the specific method of electroless plating Pt-deposition and platinum with ruthenium (Pt-Ru) co-deposition on the porous silicon substrates. The power density of the single cell reached only 2.5mW/cm2 lower than that single cell with traditional MEA (4.9mW/cm2) at the same operation conditions, but further improved performance of the μDMFC with the electro-catalytic electrodes is expectant. Moreover, using the MEMS technology makes the batch fabrication of μDMFC much easier and can reduce the usage of rare metals.

  12. High-activity PtRuPd/C catalyst for direct dimethyl ether fuel cells.

    PubMed

    Li, Qing; Wen, Xiaodong; Wu, Gang; Chung, Hoon T; Gao, Rui; Zelenay, Piotr

    2015-06-22

    Dimethyl ether (DME) has been considered as a promising alternative fuel for direct-feed fuel cells but lack of an efficient DME oxidation electrocatalyst has remained the challenge for the commercialization of the direct DME fuel cell. The commonly studied binary PtRu catalyst shows much lower activity in DME than methanol oxidation. In this work, guided by density functional theory (DFT) calculation, a ternary carbon-supported PtRuPd catalyst was designed and synthesized for DME electrooxidation. DFT calculations indicated that Pd in the ternary PtRuPd catalyst is capable of significantly decreasing the activation energy of the CO and CH bond scission during the oxidation process. As evidenced by both electrochemical measurements in an aqueous electrolyte and polymer-electrolyte fuel cell testing, the ternary catalyst shows much higher activity (two-fold enhancement at 0.5 V in fuel cells) than the state-of-the-art binary Pt50 Ru50 /C catalyst (HiSPEC 12100). PMID:25967867

  13. Design, development, and demonstration of a fully LabVIEW controlled in situ electrochemical Fourier transform infrared setup combined with a wall-jet electrode to investigate the electrochemical interface of nanoparticulate electrocatalysts under reaction conditions

    NASA Astrophysics Data System (ADS)

    Nesselberger, Markus; Ashton, Sean J.; Wiberg, Gustav K. H.; Arenz, Matthias

    2013-07-01

    We present a detailed description of the construction of an in situ electrochemical ATR-FTIR setup combined with a wall-jet electrode to investigate the electrocatalytic properties of nanoparticulate catalysts in situ under controlled mass transport conditions. The presented setup allows the electrochemical interface to be probed in combination with the simultaneous determination of reaction rates. At the same time, the high level of automation allows it to be used as a standard tool in electrocatalysis research. The performance of the setup was demonstrated by probing the oxygen reduction reaction on a platinum black catalyst in sulfuric electrolyte.

  14. Quasi-Instantaneous Bacterial Inactivation on Cu-Ag Nanoparticulate 3D Catheters in the Dark and Under Light: Mechanism and Dynamics.

    PubMed

    Rtimi, Sami; Sanjines, Rosendo; Pulgarin, Cesar; Kiwi, John

    2016-01-13

    The first evidence for Cu-Ag (50%/50%) nanoparticulate hybrid coatings is presented leading to a complete and almost instantaneous bacterial inactivation in the dark (≤5 min). Dark bacterial inactivation times on Cu-Ag (50%/50%) were observed to coincide with the times required by actinic light irradiation. This provides the evidence that the bimetal Cu-Ag driven inactivation predominates over a CuO/Cu2O and Ag2O oxides inducing a semiconductor driven behavior. Cu- or Ag-coated polyurethane (PU) catheters led to bacterial inactivation needing about ∼30 min. The accelerated bacterial inactivation by Cu-Ag coated on 3D catheters sputtered was investigated in a detailed way. The release of Cu/Ag ions during bacterial inactivation was followed by inductively coupled plasma mass-spectrometry (ICP-MS) and the amount of Cu and Ag-ions released were below the cytotoxicity levels permitted by the sanitary regulations. By stereomicroscopy the amount of live/dead cells were followed during the bacterial inactivation time. By Fourier transform infrared spectroscopy (FTIR), the systematic shift of the -(CH2) band stretching of the outer lipo-polysaccharide bilayer (LPS) was followed to monitor the changes leading to cell lysis. A hydrophobic to hydrophilic transformation of the Cu-Ag PU catheter surface under light was observed within 30 min followed concomitantly to a longer back transformation to the hydrophobic initial state in the dark. Physical insight is provided for the superior performance of Cu-Ag films compared to Cu or Ag films in view of the drastic acceleration of the bacterial inactivation observed on bimetal Cu-Ag films coating PU catheters. A mechanism of bacterial inactivation is suggested that is consistent with the findings reported in this study. PMID:26699928

  15. Choose your models wisely: how different murine bone marrow-derived dendritic cell protocols influence the success of nanoparticulate vaccines in vitro.

    PubMed

    Dewitte, Heleen; Verbeke, Rein; Breckpot, Karine; Vandenbroucke, Roosmarijn E; Libert, Claude; De Smedt, Stefaan C; Lentacker, Ine

    2014-12-10

    Dendritic cell (DC)-based cancer vaccination has shown great potential in cancer immunotherapy. As a result, novel nanoparticles aiming to load DCs with tumor antigens are being developed and evaluated in vitro. For this, murine bone marrow-derived DCs (BM-DCs) are most commonly used as model DCs. However, many different protocols exist to generate these cells. Therefore, we investigated to what extent different BM-DC culture protocols impact on the immunobiology of the cells, as well as their response to particulate antigens. We evaluated 4 different BM-DC protocols with 2 main variables: bovine serum and cytokine combinations. Our results show distinct differences in yield, phenotypical maturation status and the production of immune stimulatory and immune suppressive cytokines by the different BM-DCs. Importantly, we demonstrate that the antigen-loading of these different BM-DCs via transfection with mRNA lipoplexes results in large differences in transfection efficiency as well as in the capacity of mRNA-transfected BM-DCs to stimulate antigen-specific T cells. Thus, it is clear that the BM-DC model can have significant confounding effects on the evaluation of novel nanoparticulate vaccines. To take this into account when testing novel particulate antigen-delivery systems in BM-DC models, we propose to (1) perform a thorough immunological characterization of the BM-DCs and to (2) not only judge a particle's potential for cancer vaccination based on transfection efficiency, but also to include an evaluation of functional end-points such as T cell activation. PMID:24960224

  16. Osteogenic and Antimicrobial Nanoparticulate Calcium Phosphate and Poly-(D, L-Lactide-co-Glycolide) Powders for the Treatment of Osteomyelitis

    PubMed Central

    Uskoković, Vuk; Hoover, Charles; Vukomanović, Marija; Uskoković, Dragan P.; Desai, Tejal A.

    2013-01-01

    Development of a material for simultaneous sustained and localized delivery of antibiotics and induction of spontaneous regeneration of hard tissues affected by osteomyelitis stands for an important clinical need. In this work, a comparative analysis of the bacterial and osteoblastic cell response to two different nanoparticulate carriers of clindamycin, an antibiotic commonly prescribed in the treatment of bone infection, one composed of calcium phosphate and the other comprising poly-(D,L-lactide-co-glycolide)-coated calcium phosphate, was carried out. Three different non-cytotoxic phases of calcium phosphate, exhibiting dissolution and drug release profiles in the range of one week to two months to one year, respectively, were included in the analysis: monetite, amorphous calcium phosphate and hydroxyapatite. Spherical morphologies and narrow size distribution of both types of nanopowders were confirmed in transmission and scanning electron microscopic analyses. The antibiotic-containing powders exhibited sustained drug release contingent upon the degradation rate of the carrier. Assessment of the antibacterial performance of the antibiotic-encapsulated powders against Staphylococcus aureus, the most common pathogen isolated from infected bone, yielded satisfactory results both in broths and on blood agar plates for all the analyzed powders. In contrast, no cytotoxic behavior was detected upon the incubation of the antibiotic powders with the osteoblastic MC3T3-E1 cell line for up to three weeks. The cells were shown to engage in a close contact with the antibiotic-containing particles, irrespective of their internal or surface phase composition, polymeric or mineral. At the same time, both types of particles upregulated the expression of osteogenic markers osteocalcin, osteopontin, Runx2 and protocollagen type I, suggesting their ability to promote osteogenesis and enhance remineralization of the infected site in addition to eliminating the bacterial source of infection. PMID:23706222

  17. Novel silicon and tin alloy nano-particulate materials via spark erosion for high performance and high capacity anodes in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    White, Emma Marie Hamilton

    The advent and popularity of portable electronics, as well as the need to reduce carbon-based fuel dependence for environmental and economic reasons, has led to the search for higher energy density portable power storage methods. Lithium ion batteries offer the highest energy density of any portable energy storage technology, but their potential is limited by the currently used materials. Theoretical capacities of silicon (3580 mAh/g) and tin (990 mAh/g) are significantly higher than existing graphitic anodes (372 mAh/g). However, silicon and tin must be scaled down to the nano-level to mitigate the pulverization from drastic volume changes in the anode structure during lithium ion insertion/extraction. The available synthesis techniques for silicon and tin nano-particles are complicated and scale-up is costly. A unique one-step process for synthesizing Si-Sn alloy and Sn nano-particles via spark plasma erosion has been developed to achieve the ideal nano-particulate size and carbon coating architecture. Spark erosion produces crystalline and amorphous spherical nano-particles, averaging 5-500nm in diameter. Several tin and silicon alloys have been spark eroded and thoroughly characterized using SEM, TEM, EDS, XPS, Auger spectroscopy, NMR spectroscopy and TGA. The resulting nano-particles show improved performance as anodes over commercialized materials. In particular, pure sparked Sn particles show stable reversible capacity at ˜460 mAh/g with >99.5% coulombic efficiency for over 100 cycles. These particles are drop-in ready for existing commercial anode processing techniques and by only adding 10% of the sparked Sn particles the total current cell capacity will increase by ˜13%.

  18. A model for treating avian aspergillosis: serum and lung tissue kinetics for Japanese quail (Coturnix japonica) following single and multiple aerosol exposures of a nanoparticulate itraconazole suspension.

    PubMed

    Rundfeldt, Chris; Wyska, Elżbieta; Steckel, Hartwig; Witkowski, Andrzej; Jeżewska-Witkowska, Grażyna; Wlaź, Piotr

    2013-11-01

    Aspergillosis is frequently reported in parrots, falcons and other birds held in captivity. Inhalation is the main route of infection for Aspergillus fumigatus, resulting in both acute and chronic disease conditions. Itraconazole (ITRA) is an antifungal commonly used in birds, but administration requires repeated oral dosing and the safety margin is narrow. We describe lung tissue and serum pharmacokinetics of a nanoparticulate ITRA suspension administered to Japanese quail by aerosol exposure. Aerosolized ITRA (1 and 10% suspension) administered over 30 min did not induce adverse clinical reactions in quail upon single or 5-day repeated doses. High lung concentrations, well above the inhibitory levels for A. fumigatus, of 4.14 ± 0.19 μg/g and 27.5 ± 4.58 μg/g (mean ± SEM, n = 3), were achieved following single-dose inhalation of 1% and 10% suspension, respectively. Upon multiple dose administration of 10% suspension, mean lung concentrations reached 104.9 ± 10.1 μg/g. Drug clearance from the lungs was slow with terminal half-lives of 19.7 h and 35.8 h following inhalation of 1% and 10% suspension, respectively. Data suggest that lung clearance is solubility driven. Lung concentrations of hydroxy-itraconazole reached 1-2% of the ITRA lung tissue concentration indicating metabolism in lung tissue. Steady, but low, serum concentrations of ITRA could be measured after multiple dose administration, reaching less than 0.1% of the lung tissue concentration. This formulation may represent a novel, easy to administer treatment modality for fungal lung infection, preventing high systemic exposure. It may also be useful as metaphylaxis to prevent the outbreak of aspergillosis in colonized animals. PMID:23815436

  19. On the response of semitransparent nanoparticulated films of LuPO4:Eu in poly-energetic X-ray imaging applications

    NASA Astrophysics Data System (ADS)

    Seferis, I. E.; Zeler, J.; Michail, C.; Valais, I.; Fountos, G.; Kalyvas, N.; Bakas, A.; Kandarakis, I.; Zych, E.

    2016-05-01

    In the present work, we demonstrate the fabrication technique of highly translucent layers of nanoparticulated (~50 nm) LuPO4:Eu phosphor, present their basic luminescent properties and give results of their performance in a planar imaging system coupled to a CMOS photodetector. For comparison, the imaging performance of an opaque Gd2O2S:Eu phosphor screen prepared by sedimentation is also shown. The X-ray detection parameters as well as the luminescence efficiency of the investigated films were discussed. Results show that the in-line transmittance at ~600-700 nm, in the range of the phosphor luminescence, varies with respect to the thickness of the films from 40 to 50 % for a film of 67 μm thick to 4-12 % when the thickness increases to 460 μm. Yet, X-ray detection parameters get enhanced as the thickness of the films increases. Those results affect the luminescence efficiency curves of the films under poly-energetic X-ray radiation of various tube energies. The normalized noise power spectrum values were found similar for LuPO4:Eu films and a phosphor screen made using commercial Gd2O2S:Eu powder. The detective quantum efficiency of our films is clearly lower compared to the Gd2O2S:Eu screen from 2 to 10 cycles mm-1 frequency range while the modulation transfer function is lower from 0 to 5.5 cycles mm-1 frequency range. The acquired data allow to predict that high-temperature sintering of our films under pressure may help to improve their imaging quality, since such a processing should increase the luminescence efficiency without significant growth of the grains and thus without sacrificing their translucent character.

  20. Selective electrocatalysts toward a prototype of the membraneless direct methanol fuel cell

    PubMed Central

    Feng, Yan; Yang, Jinhua; Liu, Hui; Ye, Feng; Yang, Jun

    2014-01-01

    Mastery over the structure of nanomaterials enables control of their properties to enhance their performance for a given application. Herein we demonstrate the design and fabrication of Pt-based nanomaterials with enhanced catalytic activity and superior selectivity toward the reactions in direct methanol fuel cells (DMFCs) upon the deep understanding of the mechanisms of these electrochemical reactions. In particular, the ternary Au@Ag2S-Pt nanocomposites display superior methanol oxidation reaction (MOR) selectivity due to the electronic coupling effect among different domains of the nanocomposites, while the cage-bell structured Pt-Ru nanoparticles exhibit excellent methanol tolerance for oxygen reduction reaction (ORR) at the cathode because of the differential diffusion of methanol and oxygen in the porous Ru shell of the cage-bell nanoparticles. The good catalytic selectivity of these Pt-based nanomaterials via structural construction enables a DMFC to be built without a proton exchange membrane between the fuel electrode and the oxygen electrode. PMID:24448514

  1. Nanoparticulate iron(III) oxo-hydroxide delivers safe iron that is well absorbed and utilised in humans

    PubMed Central

    Pereira, Dora I.A.; Bruggraber, Sylvaine F.A.; Faria, Nuno; Poots, Lynsey K.; Tagmount, Mani A.; Aslam, Mohamad F.; Frazer, David M.; Vulpe, Chris D.; Anderson, Gregory J.; Powell, Jonathan J.

    2014-01-01

    Iron deficiency is the most common nutritional disorder worldwide with substantial impact on health and economy. Current treatments predominantly rely on soluble iron which adversely affects the gastrointestinal tract. We have developed organic acid-modified Fe(III) oxo-hydroxide nanomaterials, here termed nano Fe(III), as alternative safe iron delivery agents. Nano Fe(III) absorption in humans correlated with serum iron increase (P < 0.0001) and direct in vitro cellular uptake (P = 0.001), but not with gastric solubility. The most promising preparation (iron hydroxide adipate tartrate: IHAT) showed ~80% relative bioavailability to Fe(II) sulfate in humans and, in a rodent model, IHAT was equivalent to Fe(II) sulfate at repleting haemoglobin. Furthermore, IHAT did not accumulate in the intestinal mucosa and, unlike Fe(II) sulfate, promoted a beneficial microbiota. In cellular models, IHAT was 14-fold less toxic than Fe(II) sulfate/ascorbate. Nano Fe(III) manifests minimal acute intestinal toxicity in cellular and murine models and shows efficacy at treating iron deficiency anaemia. From the Clinical Editor This paper reports the development of novel nano-Fe(III) formulations, with the goal of achieving a magnitude less intestinal toxicity and excellent bioavailability in the treatment of iron deficiency anemia. Out of the tested preparations, iron hydroxide adipate tartrate met the above criteria, and may become an important tool in addressing this common condition. PMID:24983890

  2. In Vitro Analysis of Nanoparticulate Hydroxyapatite/Chitosan Composites as Potential Drug Delivery Platforms for the Sustained Release of Antibiotics in the Treatment of Osteomyelitis

    PubMed Central

    USKOKOVIĆ, VUK; DESAI, TEJAL A.

    2014-01-01

    Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one—HAp. Embedment of 5–10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm2 and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm2). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm2 HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles. Overall, the positive effect of chitosan coating on the drug elution profile of HAp nanoparticles as carriers for the controlled delivery of antibiotics in the treatment of osteomyelitis was compensated for by the lower bacteriostatic efficiency and the comparatively unviable cell response to the composite material, especially at higher dosages. PMID:24382825

  3. In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis.

    PubMed

    Uskoković, Vuk; Desai, Tejal A

    2014-02-01

    Nanoparticulate composites of hydroxyapatite (HAp) and chitosan were synthesized by ultrasound-assisted sequential precipitation and characterized for their microstructure at the atomic scale, surface charge, drug release properties, and combined antibacterial and osteogenic response. Crystallinity of HAp nanoparticles was reduced because of the interference of the surface layers of chitosan with the dissolution/reprecipitation-mediated recrystallization mechanism that conditions the transition from the as-precipitated amorphous calcium phosphate phase to the most thermodynamically stable one--HAp. Embedment of 5-10 nm sized, narrowly dispersed HAp nanoparticles within the polymeric matrix mitigated the burst release of the small molecule model drug, fluorescein, bound to HAp by physisorption, and promoted sustained-release kinetics throughout the 3 weeks of release time. The addition of chitosan to the particulate drug carrier formulation, however, reduced the antibacterial efficacy against S aureus. Excellent cell spreading and proliferation of osteoblastic MC3T3-E1 cells evidenced on microscopic conglomerates of HAp nanoparticles in vitro also markedly diminished on HAp/chitosan composites. Mitochondrial dehydrogenase activity exhibited normal values only for HAp/chitosan particle concentrations of up to 2 mg/cm(2) and significantly dropped, by about 50%, at higher particle concentrations (4 and 8 mg/cm(2)). The gene expression of osteocalcin, a mineralization inductor, and the transcription factor Runx2 was downregulated in cells incubated in the presence of 3 mg/cm(2) HAp/chitosan composite particles, whereas the expression of osteopontin, a potent mineralization inhibitor, was upregulated, further demonstrating the partially unfavorable osteoblastic cell response to the given particles. The peak in the expression of osteogenic markers paralleling the osteoblastic differentiation was also delayed most for the cell population incubated with HAp/chitosan particles. Overall, the positive effect of chitosan coating on the drug elution profile of HAp nanoparticles as carriers for the controlled delivery of antibiotics in the treatment of osteomyelitis was compensated for by the lower bacteriostatic efficiency and the comparatively unviable cell response to the composite material, especially at higher dosages. PMID:24382825

  4. Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording

    NASA Astrophysics Data System (ADS)

    Newman, Dave M.; Wears, M. Lesley; Jollie, Michael; Choo, Desmond

    2007-05-01

    The year-on-year growth in areal recording density maintained now for half a century by the hard disk industry has required a corresponding reduction in the size of the magnetic grains comprising the storage media employed. Grain dimensions are now such that the performance of materials which thus far have served the industry well can no longer be maintained as further reduction in their volume risks breaching the superparamagnetic limit with the attendant loss of data integrity. The high magnetocrystalline anisotropy of the Ll0 phase of PtCo allows particles as small as 4 nm diameter to remain magnetically stable in the elevated temperature environment typical of disk drive systems. A non-interacting dispersion of nanomagnetic particles suspended in an inert non-magnetic host such that each has its anisotropy axis directed perpendicular to the surface of the medium now constitutes the new ideal for a recording medium. Fabrication by a novel combination of conventional sputtering and thermal processing technologies of a medium closely approximating this ideal is demonstrated. An optimized two-stage fabrication process produces a near mono-dispersion of particles with magnetic activation volumes centred about 5 × 10-26 m-3 and crystallized in the L10 phase with an orientated tetragonal structure. The characteristics of this medium are discussed as a function of composition and crystalline structure. In the absence of a thermally assisted recording head, experiments are conducted on a degraded form of the medium that is shown to support perpendicular recording at linear densities in excess of 240 kfci (D50 point).

  5. Cancer Cell Gene Expression Modulated from Plasma Membrane Integrin αvβ3 by Thyroid Hormone and Nanoparticulate Tetrac

    PubMed Central

    Davis, Paul J.; Glinsky, Gennadi V.; Lin, Hung-Yun; Leith, John T.; Hercbergs, Aleck; Tang, Heng-Yuan; Ashur-Fabian, Osnat; Incerpi, Sandra; Mousa, Shaker A.

    2014-01-01

    Integrin αvβ3 is generously expressed by cancer cells and rapidly dividing endothelial cells. The principal ligands of the integrin are extracellular matrix proteins, but we have described a cell surface small molecule receptor on αvβ3 that specifically binds thyroid hormone and thyroid hormone analogs. From this receptor, thyroid hormone (l-thyroxine, T4; 3,5,3′-triiodo-l-thyronine, T3) and tetraiodothyroacetic acid (tetrac) regulate expression of specific genes by a mechanism that is initiated non-genomically. At the integrin, T4 and T3 at physiological concentrations are pro-angiogenic by multiple mechanisms that include gene expression, and T4 supports tumor cell proliferation. Tetrac blocks the transcriptional activities directed by T4 and T3 at αvβ3, but, independently of T4 and T3, tetrac modulates transcription of cancer cell genes that are important to cell survival pathways, control of the cell cycle, angiogenesis, apoptosis, cell export of chemotherapeutic agents, and repair of double-strand DNA breaks. We have covalently bound tetrac to a 200 nm biodegradable nanoparticle that prohibits cell entry of tetrac and limits its action to the hormone receptor on the extracellular domain of plasma membrane αvβ3. This reformulation has greater potency than unmodified tetrac at the integrin and affects a broader range of cancer-relevant genes. In addition to these actions on intra-cellular kinase-mediated regulation of gene expression, hormone analogs at αvβ3 have additional effects on intra-cellular protein-trafficking (cytosol compartment to nucleus), nucleoprotein phosphorylation, and generation of nuclear coactivator complexes that are relevant to traditional genomic actions of T3. Thus, previously unrecognized cell surface-initiated actions of thyroid hormone and tetrac formulations at αvβ3 offer opportunities to regulate angiogenesis and multiple aspects of cancer cell behavior. PMID:25628605

  6. Investigation of nano Pt and Pt-based alloys electrocatalysts for direct methanol fuel cells and their properties

    NASA Astrophysics Data System (ADS)

    Suo, Chunguang; Zhang, Wenbin; Shi, Xinghua; Ma, Chuxia

    2014-03-01

    The electrocatalysts used in micro direct methanol fuel cell (μDMFC), such as Pt/C and Pt alloy/C, prepared by liquid-phase NaBH4 reduction method have been investigated. XC-72 (Cobalt corp. Company, U.S.A) is chosen as the activated carrier for the electrocatalysts to keep the catalysts powder in the range of several nanometers. The XRD, SEM, EDX analyses indicated that the catalysts had small particle size in several nanometers, in excellent dispersed phase and the molar ratio of the precious metals was found to be optimal. The performances of the DMFCs using cathodic catalyst with Pt percentage of 30wt% and different anodic catalysts (Pt-Ru, Pt-Ru-Mo) were tested. The polarization curves and power density curves of the cells were measured to determine the optimal alloy composition and condition for the electrocatalysts. The results showed that the micro direct methanol fuel cell with 30wt% Pt/C as the cathodic catalyst and n(Pt):n(Ru):n(Mo) = 3:2:2 PtRuMo/C as the anodic catalyst at room temperature using 2.0mol/L methanol solution has the best performances.

  7. Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell

    SciTech Connect

    Wang, J.; Wasmus, S.; Savinell, R.F.

    1995-12-01

    Ethanol, 1-propanol, and 2-propanol have been evaluated as alternative fuels for direct methanol/oxygen fuel cells. The relative product distributions for the electro-oxidation of these alcohols under fuel-cell conditions were determined using on-line mass spectrometry. For water/ethanol mole ratios between 5 and 2, ethanol is the main product, while CO{sub 2} is a minor product. However, an increase of the water/ethanol mole ratio increased the relative product distribution of CO{sub 2} slightly. Propanol was the main product of the electro-oxidation of 1-propanol with a similar percentage of CO{sub 2} being formed as for ethanol. In contrast, the electro-oxidation of 2-propanol yielded practically only acetone. Between 150 and 190 C, the product distributions for the electro-oxidation of ethanol, 1-propanol, and 2-propanol do not depend significantly on the temperature. No differences in the product selectivities of Pt-Ru and Pt-black were found. Ethanol is a promising alternative fuel for direct methanol fuel cells (DMFCs) with an electrochemical activity comparable to that of methanol. Conversely, 1-propanol and 2-propanol are not suitable as fuels for DMFCs due to their low electrochemical activity.

  8. Study of catalysis for solid oxide fuel cells and direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Xirong

    Fuel cells offer the enticing promise of cleaner electricity with lower environmental impact than traditional energy conversion technologies. Driven by the interest in power sources for portable electronics, and distributed generation and automotive propulsion markets, active development efforts in the technologies of both solid oxide fuel cell (SOFC) and direct methanol fuel cell (DMFC) devices have achieved significant progress. However, current catalysts for fuel cells are either of low catalytic activity or extremely expensive, presenting a key barrier toward the widespread commercialization of fuel cell devices. In this thesis work, atomic layer deposition (ALD), a novel thin film deposition technique, was employed to apply catalytic Pt to SOFC, and investigate both Pt skin catalysts and Pt-Ru catalysts for methanol oxidation, a very important reaction for DMFC, to increase the activity and utilization levels of the catalysts while simultaneously reducing the catalyst loading. For SOFCs, we explored the use of ALD for the fabrication of electrode components, including an ultra-thin Pt film for use as the electrocatalyst, and a Pt mesh structure for a current collector for SOFCs, aiming for precise control over the catalyst loading and catalyst geometry, and enhancement in the current collect efficiency. We choose Pt since it has high chemical stability and excellent catalytic activity for the O2 reduction reaction and the H2 oxidation reaction even at low operating temperatures. Working SOFC fuel cells were fabricated with ALD-deposited Pt thin films as an electrode/catalyst layer. The measured fuel cell performance reveals that comparable peak power densities were achieved for ALD-deposited Pt anodes with only one-fifth of the Pt loading relative to a DC-sputtered counterpart. In addition to the continuous electrocatalyst layer, a micro-patterned Pt structure was developed via the technique of area selective ALD. By coating yttria-stabilized zirconia, a typical solid oxide electrolyte, with patterned (octadecyltrichlorosilane) ODTS self-assembled monolayers (SAMs), Pt thin films were grown selectively on the SAM-free surface regions. Features with sizes as small as 2 mum were deposited by this combined ALD-muCP method. The micro-patterned Pt structure deposited by area selective ALD was applied to SOFCs as a current collector grid/patterned catalyst. An improvement in the fuel cell performance by a factor of 10 was observed using the Pt current collector grids/patterned catalyst integrated onto cathodic La0.6Sr 0.4Co0.2Fe0.8O3-delta. For possible catalytic anodes in DMFCs employing a 1:1 stoichiometric methanol-water reforming mixture, two strategies were employed in this thesis. One approach is to fabricate skin catalysts, where ALD Pt films of various thicknesses were used to coat sputtered Ru films forming Pt skin catalysts for study of methanol oxidation. Another strategy is to replace or alloy Pt with Ru; for this effort, both dc-sputtering and atomic layer deposition were employed to fabricate Pt-Ru catalysts of various Ru contents. The electrochemical behavior of all of the Pt skin catalysts, the DC co-sputtered Pt-Ru catalysts and the ALD co-deposited Pt-Ru catalysts were evaluated at room temperature for methanol oxidation using cyclic voltammetry and chronoamperometry in highly concentrated 16.6 M MeOH, which corresponds to the stoichiometric fuel that will be employed in next generation DMFCs that are designed to minimize or eliminate methanol crossover. The catalytic activity of sputtered Ru catalysts toward methanol oxidation is strongly enhanced by the ALD Pt overlayer, with such skin layer catalysts displaying superior catalytic activity over pure Pt. For both the DC co-sputtered catalysts and ALD co-deposited catalysts, the electrochemical studies illustrate that the optimal stoichiometry ratio for Pt to Ru is approximately 1:1, which is in good agreement with most literature.

  9. Aggregate breakdown of nanoparticulate titania

    NASA Astrophysics Data System (ADS)

    Venugopal, Navin

    Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales. Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime. A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from compaction via dry pressing and tape casting secondary scale aggregates. Mercury porosimetry of tapes cast at 0.85 and 9.09 cm/sec exhibited pore sizes ranging from 200-500 nm suggesting packing of intact micron-sized primary aggregates. Porosimetry further showed that this peak was absent in pressed pellets corroborating arguments of ruptured primary aggregates during compaction to 750 MPa.

  10. Directing 101.

    ERIC Educational Resources Information Center

    Pintoff, Ernest

    Providing an introduction to anyone considering directing as a field of study or career, this book takes a broad look at the process of directing and encourages students and professionals alike to look outside of the movie industry for inspiration. Chapters in the book discuss selecting and acquiring material; budgeting and financing; casting and…

  11. Improved Anode for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    A modified chemical composition has been devised to improve the performance of the anode of a direct methanol fuel cell. The main feature of the modified composition is the incorporation of hydrous ruthenium oxide into the anode structure. This modification can reduce the internal electrical resistance of the cell and increase the degree of utilization of the anode catalyst. As a result, a higher anode current density can be sustained with a smaller amount of anode catalyst. These improvements can translate into a smaller fuel-cell system and higher efficiency of conversion. Some background information is helpful for understanding the benefit afforded by the addition of hydrous ruthenium oxide. The anode of a direct methanol fuel cell sustains the electro-oxidation of methanol to carbon dioxide in the reaction CH3OH + H2O--->CO2 + 6H(+) + 6e(-). An electrocatalyst is needed to enable this reaction to occur. The catalyst that offers the highest activity is an alloy of approximately equal numbers of atoms of the noble metals platinum and ruthenium. The anode is made of a composite material that includes high-surface-area Pt/Ru alloy particles and a proton-conducting ionomeric material. This composite is usually deposited onto a polymer-electrolyte (proton-conducting) membrane and onto an anode gas-diffusion/current-collector sheet that is subsequently bonded to the proton-conducting membrane by hot pressing. Heretofore, the areal density of noble-metal catalyst typically needed for high performance has been about 8 mg/cm2. However, not all of the catalyst has been utilized in the catalyzed electro-oxidation reaction. Increasing the degree of utilization of the catalyst would make it possible to improve the performance of the cell for a given catalyst loading and/or reduce the catalyst loading (thereby reducing the cost of the cell). The use of carbon and possibly other electronic conductors in the catalyst layer has been proposed for increasing the utilization of the catalyst by increasing electrical connectivity between catalyst particles. However, the relatively low density of carbon results in thick catalyst layers that impede the mass transport of methanol to the catalytic sites. Also, the electrical conductivity of carbon is less than 1/300th of typical metals. Furthermore, the polymer-electrolyte membrane material is acidic and most metals are not chemically stable in contact with it. Finally, a material that conducts electrons (but not protons) does not contribute to the needed transport of protons produced in the electro-oxidation reaction.

  12. Directives pralables

    PubMed Central

    OSullivan, Rory; Mailo, Kevin; Angeles, Ricardo; Agarwal, Gina

    2015-01-01

    Rsum Objectif tablir la prvalence de patients dots de directives pralables dans une pratique familiale et dcrire les points de vue des patients quant au rle du mdecin de famille dans lamorce de discussions propos des directives pralables. Conception Un questionnaire auquel les patients ont rpondu eux-mmes. Contexte Une clinique denseignement en mdecine familiale achalande en milieu urbain, Hamilton, en Ontario. Participants Un chantillon de commodit form de patients adultes qui se sont prsents la clinique durant une semaine de travail typique. Principaux paramtres ltude La prvalence des directives pralables dans une population de patients a t dtermine et les attentes lendroit du rle de leur mdecin de famille ont t sollicites. Rsultats Les rpondants au sondage taient au nombre de 800 (un taux de rponse de 72,5 %) et leurs groupes dges taient bien rpartis; 19,7 % dentre eux avaient rdig des directives pralables et 43,8 % avaient dj discut du sujet des directives pralables, mais seulement 4,3 % de ces discussions avaient eu lieu avec un mdecin de famille. Dans 5,7 % des cas, un mdecin de famille avait soulev la question; 72,3 % des rpondants croyaient que les patients devraient amorcer la discussion. Les patients qui considraient les directives pralables dune importance extrme taient considrablement plus enclins vouloir que leur mdecin de famille commence la conversation (rapport de cotes de 3,98; p < ,05). Conclusion Les directives pralables ntaient pas systmatiquement abordes dans la pratique familiale. La plupart des patients prfraient amorcer la discussion des directives pralables. Toutefois, les patients qui considraient le sujet dune extrme importance voulaient que leur mdecin de famille commence la discussion.

  13. Directed polymers versus directed percolation

    NASA Astrophysics Data System (ADS)

    Halpin-Healy, Timothy

    1998-10-01

    Universality plays a central role within the rubric of modern statistical mechanics, wherein an insightful continuum formulation rises above irrelevant microscopic details, capturing essential scaling behaviors. Nevertheless, occasions do arise where the lattice or another discrete aspect can constitute a formidable legacy. Directed polymers in random media, along with its close sibling, directed percolation, provide an intriguing case in point. Indeed, the deep blood relation between these two models may have sabotaged past efforts to fully characterize the Kardar-Parisi-Zhang universality class, to which the directed polymer belongs.

  14. Improved Cathode Structure for a Direct Methanol Fuel Cell

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas; Narayanan, Sekharipuram

    2005-01-01

    An improved cathode structure on a membrane/electrode assembly has been developed for a direct methanol fuel cell, in a continuing effort to realize practical power systems containing such fuel cells. This cathode structure is intended particularly to afford better cell performance at a low airflow rate. A membrane/electrode assembly of the type for which the improved cathode structure was developed (see Figure 1) is fabricated in a process that includes brush painting and spray coating of catalyst layers onto a polymer-electrolyte membrane and onto gas-diffusion backings that also act as current collectors. The aforementioned layers are then dried and hot-pressed together. When completed, the membrane/electrode assembly contains (1) an anode containing a fine metal black of Pt/Ru alloy, (2) a membrane made of Nafion 117 or equivalent (a perfluorosulfonic acid-based hydrophilic, proton-conducting ion-exchange polymer), (3) a cathode structure (in the present case, the improved cathode structure described below), and (4) the electrically conductive gas-diffusion backing layers, which are made of Toray 060(TradeMark)(or equivalent) carbon paper containing between 5 and 6 weight percent of poly(tetrafluoroethylene). The need for an improved cathode structure arises for the following reasons: In the design and operation of a fuel-cell power system, the airflow rate is a critical parameter that determines the overall efficiency, cell voltage, and power density. It is desirable to operate at a low airflow rate in order to obtain thermal and water balance and to minimize the size and mass of the system. The performances of membrane/electrode assemblies of prior design are limited at low airflow rates. Methanol crossover increases the required airflow rate. Hence, one way to reduce the required airflow rate is to reduce the effect of methanol crossover. Improvement of the cathode structure - in particular, addition of hydrophobic particles to the cathode - has been demonstrated to mitigate the effects of crossover and decrease the airflow required.

  15. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory

    NASA Astrophysics Data System (ADS)

    Ren, Xiaoming; Zelenay, Piotr; Thomas, Sharon; Davey, John; Gottesfeld, Shimshon

    This paper describes recent advances in the science and technology of direct methanol fuel cells (DMFCs) made at Los Alamos National Laboratory (LANL). The effort on DMFCs at LANL includes work devoted to portable power applications, funded by the Defense Advanced Research Project Agency (DARPA), and work devoted to potential transport applications, funded by the US DOE. We describe recent results with a new type of DMFC stack hardware that allows to lower the pitch per cell to 2 mm while allowing low air flow and air pressure drops. Such stack technology lends itself to both portable power and potential transport applications. Power densities of 300 W/l and 1 kW/l seem achievable under conditions applicable to portable power and transport applications, respectively. DMFC power system analysis based on the performance of this stack, under conditions applying to transport applications (joint effort with U.C. Davis), has shown that, in terms of overall system efficiency and system packaging requirements, a power source for a passenger vehicle based on a DMFC could compete favorably with a hydrogen-fueled fuel cell system, as well as with fuel cell systems based on fuel processing on board. As part of more fundamental studies performed, we describe optimization of anode catalyst layers in terms of PtRu catalyst nature, loading and catalyst layer composition and structure. We specifically show that, optimized content of recast ionic conductor added to the catalyst layer is a sensitive function of the nature of the catalyst. Other elements of membrane/electrode assembly (MEA) optimization efforts are also described, highlighting our ability to resolve, to a large degree, a well-documented problem of polymer electrolyte DMFCs, namely "methanol crossover". This was achieved by appropriate cell design, enabling fuel utilization as high as 90% in highly performing DMFCs.

  16. DIRECTIONAL COUPLERS

    DOEpatents

    Nigg, D.J.

    1961-12-01

    A directional coupler of small size is designed. Stripline conductors of non-rectilinear configuration, and separated from each other by a thin dielectric spacer. cross each other at least at two locations at right angles, thus providing practically pure capacitive coupling which substantially eliminates undesirable inductive coupling. The conductors are sandwiched between a pair of ground planes. The coupling factor is dependent only on the thickness and dielectric constant of the dielectric spacer at the point of conductor crossover. (AEC)

  17. DIRECTIONAL ANTENNA

    DOEpatents

    Bittner, B.J.

    1958-05-20

    A high-frequency directional antenna of the 360 d scaring type is described. The antenna has for its desirable features the reduction in both size and complexity of the mechanism for rotating the antenna through its scanning movement. These advantages result from the rotation of only the driven element, the reflector remaining stationary. The particular antenna structure comprises a refiector formed by a plurality of metallic slats arranged in the configuration of an annular cage having the shape of a zone of revolution. The slats are parallel to each other and are disposed at an angle of 45 d to the axis of the cage. A directional radiator is disposed inside the cage at an angle of 45 d to the axis of the cage in the same direction as the reflecting slats which it faces. As the radiator is rotated, the electromagnetic wave is reflected from the slats facing the radiator and thereafter passes through the cage on the opposite side, since these slats are not parallel with the E vector of the wave.

  18. Spin-glass state in nanoparticulate (La0.7Sr0.3Mn O3) 1 -x(BaTi O3)x solid solutions: Experimental and density-functional studies

    NASA Astrophysics Data System (ADS)

    Nayek, Chiranjib; Samanta, S.; Manna, Kaustuv; Pokle, A.; Nanda, B. R. K.; Anil kumar, P. S.; Murugavel, P.

    2016-03-01

    We report the transition from robust ferromagnetism to a spin-glass state in nanoparticulate L a0.7S r0.3Mn O3 through solid solution with BaTi O3 . The field- and temperature-dependent magnetization and the frequency-dependent ac magnetic susceptibility measurements strongly indicate the existence of a spin-glass state in the system, which is further confirmed from memory effect measurements. The breaking of long-range ordering into short-range magnetic domains is further investigated using density-functional calculations. We show that Ti ions remain magnetically inactive due to insufficient electron leakage from L a0.7S r0.3Mn O3 to the otherwise unoccupied Ti -d states. This results in the absence of a Mn-Ti-Mn spin exchange interaction and hence the breaking of the long-range ordering. Total-energy calculations suggest that the segregation of nonmagnetic Ti ions leads to the formation of short-range ferromagnetic Mn domains.

  19. Direct ELISA.

    PubMed

    Lin, Alice V

    2015-01-01

    First described by Engvall and Perlmann, the enzyme-linked immunosorbent assay (ELISA) is a rapid and sensitive method for detection and quantitation of an antigen using an enzyme-labeled antibody. Besides routine laboratory usage, ELISA has been utilized in medical field and food industry as diagnostic and quality control tools. Traditionally performed in 96-well or 384-well polystyrene plates, the technology has expanded to other platforms with increase in automation. Depending on the antigen epitope and availability of specific antibody, there are variations in ELISA setup. The four basic formats are direct, indirect, sandwich, and competitive ELISAs. Direct ELISA is the simplest format requiring an antigen and an enzyme-conjugated antibody specific to the antigen. This chapter describes the individual steps for detection of a plate-bound antigen using a horseradish peroxidase (HRP)-conjugated antibody and luminol-based enhanced chemiluminescence (ECL) substrate. The methodological approach to optimize the assay by chessboard titration is also provided. PMID:26160564

  20. Direct cervicoplasty.

    PubMed

    Jordan, J Randall

    2012-02-01

    The sagging neck, or "turkey gobbler" deformity, is one of the more common reasons that patients present to facial plastic surgeons. Although many of these patients might be best improved by a full rhytidectomy with periauricular incisions, skin flap undermining, and platysmal tightening, there are some patients who do not wish to undergo a full rhytidectomy. Some of these patients may be reasonably well served by a direct cervicoplasty or submentoplasty. The advantages of this approach include shorter operative time, faster recovery, and lower complication rates. The primary disadvantage is an anterior cervical incision that may be visible under some conditions. This article will review the options for skin incisions as well as technical details that may lead to a successful rejuvenation of the submental region. PMID:22418816

  1. Future direction of direct writing

    NASA Astrophysics Data System (ADS)

    Kim, Nam-Soo; Han, Kenneth N.

    2010-11-01

    Direct write technology using special inks consisting of finely dispersed metal nanoparticles in liquid is receiving an undivided attention in recent years for its wide range of applicability in modern electronic industry. The application of this technology covers radio frequency identification-tag (RFID-tag), flexible-electronics, organic light emitting diodes (OLED) display, e-paper, antenna, bumpers used in flip-chip, underfilling, frit, miniresistance applications and biological uses, artificial dental applications and many more. In this paper, the authors have reviewed various direct write technologies on the market and discussed their advantages and shortfalls. Emphasis has given on microdispensing deposition write (MDDW), maskless mesoscale materials deposition (M3D), and ink-jet technologies. All of these technologies allow printing various patterns without employing a mask or a resist with an enhanced speed with the aid of computer. MDDW and M3D are capable of drawing patterns in three-dimension and MDDW, in particular, is capable of writing nanoinks with high viscosity. However, it is still far away for direct write to be fully implemented in the commercial arena. One of the hurdles to overcome is in manufacturing conductive inks which are chemically and physically stable, capable of drawing patterns with acceptable conductivity, and also capable of drawing patterns with acceptable adhesiveness with the substrates. The authors have briefly discussed problems involved in manufacturing nanometal inks to be used in various writing devices. There are numerous factors to be considered in manufacturing such inks. They are reducing agents, concentrations, oxidation, compact ability allowing good conductivity, and stability in suspension.

  2. Direct cervicoplasty.

    PubMed

    Jordan, J Randall; Yellin, Seth

    2014-08-01

    Rejuvenation of the aging neck is one of the common reasons for the patients presented to facial plastic surgeons. In the author's opinion, most of these patients will be best served by a full rhytidectomy approach with periauricular incisions, skin flap undermining, and platysmaplasty. There is a subset of patients, however, who presented with complaints limited to the so-called Turkey Gobbler deformity, and who do not wish to undergo a full rhytidectomy approach. These patients may be well served by a lesser procedure such as a direct cervicoplasty or submentoplasty. The advantages of this approach include shorter operative time, faster recovery, and lower complication rates. The primary disadvantage of these more limited approaches is that there is an anterior cervical scar that may be visible under some conditions. This article will review the multiple options for skin incisions as well as details of the technique that the authors have found may lead to a successful rejuvenation of the submental region. PMID:25076453

  3. Nanostructured self-assembly materials from neat and aqueous solutions of C18 lipid pro-drug analogues of Capecitabine—a chemotherapy agent. Focus on nanoparticulate cubosomes™ of the oleyl analogue

    SciTech Connect

    Gong, Xiaojuan; Moghaddam, Minoo J.; Sagnella, Sharon M.; Conn, Charlotte E.; Mulet, Xavier; Danon, Stephen J.; Waddington, Lynne J.; Drummond, Calum J.

    2014-09-24

    A series of prodrug analogues based on the established chemotherapy agent, 5-fluorouracil, have been prepared and characterized. C18 alkyl and alkenyl chains with increasing degree of unsaturation were attached to the N4 position of the 5-fluorocytosine (5-FC) base via a carbamate bond. Physicochemical characterization of the prodrug analogues was carried out using a combination of differential scanning calorimetry, cross-polarized optical microscopy, X-ray diffraction and small-angle X-ray scattering. The presence of a monounsaturated oleyl chain was found to promote lyotropic liquid crystalline phase formation in excess water with a fluid lamellar phase observed at room temperature and one or more bicontinuous cubic phases at 37 °C. The bulk phase was successfully dispersed into liposomes or cubosomes at room and physiological temperature respectively. In vitro toxicity of the nanoparticulate 5-FCOle dispersions was evaluated against several normal and cancer cell types over a 48 h period and exhibited an IC50 of -100 μM against all cell types. The in vivo efficacy of 5-FCOle cubosomes was assessed against the highly aggressive mouse 4T1 breast cancer model and compared to Capecitabine (a water-soluble commercially available 5-FU prodrug) delivered at the same dosages. After 21 days of treatment, the 0.5 mmol 5-FCOle treatment group exhibited a significantly smaller average tumour volume than all other treatment groups including Capecitabine at similar dosage. These results exemplify the potential of self-assembled amphiphile prodrugs for delivery of bioactives in vivo.

  4. The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Amphlett, John C.; Peppley, Brant A.; Halliop, Ela; Sadiq, Aamir

    An experimental direct methanol fuel cell (DMFC), designed and manufactured in-house, was used in this study. The cell is of standard filter-press configuration with parallel rectangular single-pass anode channels. The membrane electrode assembly (MEA), with a suitable Pt-Ru anode electrocatalyst, was purchased from E-TEK Inc. A 1.0 M methanol in water solution was used as the fuel and pure oxygen was used as the oxidant in all experiments. Three graphite anode plates were machined with the same flow channel configuration but each with different depth of channels. The cathode was kept the same for all experiments. Polarisation curves and ac impedance spectra were obtained for varying temperatures and channel depths. To separate the contribution of the oxygen reduction reaction to the overvoltage from the anode and membrane contributions, reference hydrogen electrode (RHE) measurements were taken. By comparing the RHE polarisation with the methanol-oxygen polarisation experiments, it was found that polarisation losses at the oxygen cathode accounted for a 40-50% of the overpotential. The variation in the performance of the cell with flow of methanol/water mix, with temperature and with current density was studied. Polarisation measurements indicate that the medium channel depth flow channels performed better than either the shallow depth or deep depth flow channels indicating that there is a complex relationship between the effect of flow velocity and the influence of the rate of production of product CO 2. AC impedance spectroscopy measurements confirmed the observed polarisation results. This method proved to be able to provide a reliable indication of the performance of the cell even when the cell had not yet achieved steady-state. In the case of the shallow channel depth anode, ac impedance revealed that it required considerably longer to achieve steady-state than the time required for the medium and deep channel depths.

  5. Multilayered gold/silica nanoparticulate bilayer devices using layer-by-layer self organisation for flexible bending and pressure sensing applications

    SciTech Connect

    Shah Alam, Md.; Mohammed, Waleed S.; Dutta, Joydeep

    2014-02-17

    A pressure and bending sensor was fabricated using multilayer thin films fabricated on a flexible substrate based on layer-by-layer self-organization of 18 nm gold nanoparticles separated by a dielectric layer of 30 nm silica nanoparticles. 50, 75, and 100 gold-silica bi-layered films were deposited and the device characteristics were studied. A threshold voltage was required for electron conduction which increases from 2.4 V for 50 bi-layers to 3.3 V for 100 bi-layers. Upon bending of the device up to about 52°, the threshold voltage and slope of the I-V curves change linearly. Electrical characterization of the multilayer films was carried out under ambient conditions with different pressures and bending angles in the direct current mode. This study demonstrates that the developed multilayer thin films can be used as pressure as well as bending sensing applications.

  6. Ultrasmall titania nanocrystals and their direct assembly into mesoporous structures showing fast lithium insertion.

    PubMed

    Szeifert, Johann M; Feckl, Johann M; Fattakhova-Rohlfing, Dina; Liu, Yujing; Kalousek, Vit; Rathousky, Jiri; Bein, Thomas

    2010-09-15

    Ultrasmall and highly soluble anatase nanoparticles were synthesized from TiCl(4) using tert-butyl alcohol as a new reaction medium. This synthetic protocol widens the scope of nonaqueous sol-gel methods to TiO(2) nanoparticles of around 3 nm with excellent dispersibility in ethanol and tert-butanol. Microwave heating was found to enhance the crystallinity of the nanoparticles and to drastically shorten the reaction time to less than 1 h at temperatures as low as 50 degrees C. The extremely small size of the nanoparticles and their dispersibility make it possible to use commercial Pluronic surfactants for evaporation-induced self-assembly of the nanoparticulate building blocks into periodic mesoporous structures. A solution of particles after synthesis can be directly used for preparation of mesoporous films without the need for particle separation. The mesoporous titania coatings fabricated using this one-pot procedure are crystalline and exhibit high surface areas of up to 300 m(2)/g. The advantages of the retention of the mesoporous order with extremely thin nanocrystalline walls were shown by electrochemical lithium insertion. The films made using microwave-treated nanoparticles showed supercapacitive behavior with high maximum capacitance due to quantitative lithiation with a 10-fold increase of charging rates compared to a standard reference electrode made from 20 nm anatase particles. PMID:20726551

  7. Vapor Synthesis and Thermal Modification of Supportless Platinum-Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    SciTech Connect

    Atkinson III, Robert; Unocic, Raymond R; Unocic, Kinga A; Veith, Gabriel M; Papandrew, Alexander B; Zawodzinski, Thomas A

    2015-01-01

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.

  8. Vapor synthesis and thermal modification of supportless platinum-ruthenium nanotubes and application as methanol electrooxidation catalysts.

    PubMed

    Atkinson, Robert W; Unocic, Raymond R; Unocic, Kinga A; Veith, Gabriel M; Zawodzinski, Thomas A; Papandrew, Alexander B

    2015-05-20

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures, including alloy formation, crystallite growth, and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm(2)) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm(2)) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm(2)) at 0.65 V vs RHE. PMID:25905666

  9. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    DOE PAGESBeta

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; Veith, Gabriel M.; Zawodzinski, Jr., Thomas A.; Papandrew, Alexander B.

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relativelymore » high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.« less

  10. Vapor Synthesis and Thermal Modification of Supportless Platinum–Ruthenium Nanotubes and Application as Methanol Electrooxidation Catalysts

    SciTech Connect

    Atkinson III, Robert W.; Unocic, Raymond R.; Unocic, Kinga A.; Veith, Gabriel M.; Zawodzinski, Jr., Thomas A.; Papandrew, Alexander B.

    2015-04-23

    Metallic, mixed-phase, and alloyed bimetallic Pt-Ru nanotubes were synthesized by a novel route based on the sublimation of metal acetylacetonate precursors and their subsequent vapor deposition within anodic alumina templates. Nanotube architectures were tuned by thermal annealing treatments. As-synthesized nanotubes are composed of nanoparticulate, metallic platinum and hydrous ruthenium oxide whose respective thicknesses depend on the sample chemical composition. The Pt-decorated, hydrous Ru oxide nanotubes may be thermally annealed to promote a series of chemical and physical changes to the nanotube structures including alloy formation, crystallite growth and morphological evolution. Annealed Pt-Ru alloy nanotubes and their as-synthesized analogs demonstrate relatively high specific activities for the oxidation of methanol. As-synthesized, mixed-phase Pt-Ru nanotubes (0.39 mA/cm2) and metallic alloyed Pt64Ru36NTs (0.33 mA/cm2) have considerably higher area-normalized activities than PtRu black (0.22 mA/cm2) at 0.65 V vs. RHE.

  11. Direct Manipulation Interfaces.

    ERIC Educational Resources Information Center

    Hutchins, Edwin L.; And Others

    This paper presents a cognitive account of both the advantages and disadvantages of direct manipulation interfaces, i.e., the use of icons to manipulate and interact directly with data rather than writing programs or calling on a set of statistical subroutines. Two underlying phenomena that give rise to the sensation of directness are identified.…

  12. Descendants and advance directives.

    PubMed

    Buford, Christopher

    2014-01-01

    Some of the concerns that have been raised in connection to the use of advance directives are of the epistemic variety. Such concerns highlight the possibility that adhering to an advance directive may conflict with what the author of the directive actually wants (or would want) at the time of treatment. However, at least one objection to the employment of advance directives is metaphysical in nature. The objection to be discussed here, first formulated by Rebecca Dresser and labeled by Allen Buchanan as the slavery argument and David DeGrazia the someone else problem, aims to undermine the legitimacy of certain uses of advance directives by concluding that such uses rest upon an incorrect assumption about the identity over time of those ostensibly governed by the directives. There have been numerous attempts to respond to this objection. This paper aims to assess two strategies that have been pursued to cope with the problem. PMID:25743056

  13. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1991-01-01

    The long range goal of this program is to develop an improved understanding of phenomena of importance to directional solidification and to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  14. Direct Support Workforce Development.

    ERIC Educational Resources Information Center

    Impact, 1998

    1998-01-01

    The fourteen brief articles in this theme issue all examine challenges in the development of direct support staff working with people who have developmental disabilities. The articles also include the views of direct support providers and people with developmental disabilities themselves, as well as examples of strategies used by provider agencies…

  15. Decisions Concerning Directional Dependence

    ERIC Educational Resources Information Center

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,

  16. Direct current transformer

    NASA Technical Reports Server (NTRS)

    Khanna, S. M.; Urban, E. W. (Inventor)

    1979-01-01

    A direct current transformer in which the primary consists of an elongated strip of superconductive material, across the ends of which is direct current potential is described. Parallel and closely spaced to the primary is positioned a transformer secondary consisting of a thin strip of magnetoresistive material.

  17. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  18. Direct Instruction News, 2001.

    ERIC Educational Resources Information Center

    Tarver, Sara, Ed.

    2001-01-01

    These three issues of a newsletter offer diverse kinds of information deemed to be of interest to Association for Direct Instruction (ADI) members--stories of successful implementations in different settings, write-ups of ADI awards, tips on "how to" deliver direct instruction (DI) more effectively, topical articles focused on particular types of…

  19. Resuscitating advance directives.

    PubMed

    Lo, Bernard; Steinbrook, Robert

    2004-07-26

    Advance directives have not fulfilled their promise of facilitating decisions about end-of-life care for incompetent patients. Many legal requirements and restrictions concerning advance directives are counterproductive. Requirements for witnessing or notarizing advance directives make it difficult for patients to complete a written directive during a physician visit. State laws that establish a hierarchy of family surrogates for incompetent patients who have not appointed a proxy are inflexible and may not apply to common clinical situations. Advance directives would be more useful if they emphasized discussing end-of-life care with physicians rather than completing a legal document. State laws should be revised to encourage patients to discuss advance directives with physicians and to complete them during an office visit. Such patient-physician discussions about end-of-life care can lead to more informed patient decisions. Procedures for written advance directives should be simplified. Patients should be able to designate health care proxies through oral statements to physicians. These reforms will encourage discussions between patients and physicians about advance directives and may lead to more informed decisions near the end of life. PMID:15277279

  20. Decisions Concerning Directional Dependence

    ERIC Educational Resources Information Center

    von Eye, Alexander; DeShon, Richard P.

    2012-01-01

    In this rejoinder, von Eye and DeShon discuss the decision strategies proposed in their original article ("Directional Dependence in Developmental Research," this issue), as well as the ones proposed by the authors of the commentary (Pornprasertmanit and Little, "Determining Directional Dependency in Causal Associations," this issue). In addition,…

  1. Modelling Directional Solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Regel, Liya L.; Zhou, Jian; Yuan, Weijun

    1992-01-01

    The long range goal of this program has been to develop an improved understanding of phenomena of importance to directional solidification, in order to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Current emphasis is on determining the influence of perturbations on directional solidification.

  2. High performance of La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O1.95 nanoparticulate cathode for intermediate temperature microtubular solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Sumi, Hirofumi; Yamaguchi, Toshiaki; Hamamoto, Koichi; Suzuki, Toshio; Fujishiro, Yoshinobu

    2013-03-01

    The perovskite La0.6Sr0.4Co0.2Fe0.8O3-Ce0.9Gd0.1O1.95 (LSCF-GDC) nanoparticulate cathode was applied for microtubular solid oxide fuel cells operated at intermediate temperatures. For the cell with the cathode sintered at 950 °C, maximum power densities of 0.26, 0.54 and 0.73 W cm-2 were obtained at 550, 600 and 650 °C, respectively. The ohmic resistance increased for the cathode sintered at 850 °C, and the polarization resistance increased for the cathode sintered at 1050 °C. The cathode polarization resistances of ionic conduction process in the LSCF bulk and adsorption/desorption process on the LSCF surface were estimated by the distribution of relaxation times analysis, which were only 0.066 and 0.065 Ω cm2 at 600 °C for the cathode sintered at 950 °C. The grain size of the cathode was less than 100 nm, which resulted in high performance due to an overall decrease in cathode polarization resistance.

  3. Multimode Directional Coupler

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor); Wintucky, Edwin G. (Inventor)

    2016-01-01

    A multimode directional coupler is provided. In some embodiments, the multimode directional coupler is configured to receive a primary signal and a secondary signal at a first port of a primary waveguide. The primary signal is configured to propagate through the primary waveguide and be outputted at a second port of the primary waveguide. The multimode directional coupler also includes a secondary waveguide configured to couple the secondary signal from the primary waveguide with no coupling of the primary signal into the secondary waveguide. The secondary signal is configured to propagate through the secondary waveguide and be outputted from a port of the secondary waveguide.

  4. AISI direct steelmaking program

    SciTech Connect

    Aukrust, E.

    1991-01-09

    AISI with co-funding from DOE has initiated a research and development program aimed at the development of a new process for direct steelmaking, and the program is discussed in this document. The project is expected to cost about $30 million over a three-year period, with the government providing approximately 77 percent of the funds and AISI the balance. In contrast to current steelmaking processes which are largely open and batch, the direct steelmaking process would be closed and continuous. Further, it would use coal directly, thereby avoiding the need for coke ovens. The second year of the Direct Steelmaking Program (November 29, 1989, through November 28, 1990) was a year of significant accomplishment. The various research programs proceeded essentially on schedule and the pilot plant, the centerpiece of the program, was completed about three months behind schedule but began operation in almost a picture-perfect manner. This report presents the last years accomplishments.

  5. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  6. Directional gear ratio transmissions

    NASA Technical Reports Server (NTRS)

    Lafever, A. E. (Inventor)

    1984-01-01

    Epicyclic gear transmissions which transmit output at a gear ratio dependent only upon the input's direction are considered. A transmission housing envelops two epicyclic gear assemblies, and has shafts extending from it. One shaft is attached to a sun gear within the first epicyclic gear assembly. Planet gears are held symmetrically about the sun gear by a planet gear carrier and are in mesh with both the sun gear and a ring gear. Two unidirectional clutches restrict rotation of the first planet gear carrier and ring gear to one direction. A connecting shaft drives a second sun gear at the same speed and direction as the first planet gear carrier while a connecting portion drives a second planet gear carrier at the same speed and direction as the first ring gear. The transmission's output is then transmitted by the second ring gear to the second shaft. Input is transmitted at a higher gear ratio and lower speed for all inputs in the first direction than in the opposite direction.

  7. A direct advance on advance directives.

    PubMed

    Shaw, David

    2012-06-01

    Advance directives (ADs), which are also sometimes referred to as 'living wills', are statements made by a person that indicate what treatment she should not be given in the event that she is not competent to consent or refuse at the future moment in question. As such, ADs provide a way for patients to make decisions in advance about what treatments they do not want to receive, without doctors having to find proxy decision-makers or having recourse to the doctrine of necessity. While patients can request particular treatments in an AD, only refusals are binding. This paper will examine whether ADs safeguard the autonomy and best interests of the incompetent patient, and whether legislating for the use of ADs is justified, using the specific context of the legal situation in the United Kingdom to illustrate the debate. The issue of whether the law should permit ADs is itself dependent on the issue of whether ADs are ethically justified; thus we must answer a normative question in order to answer the legislative one. It emerges that ADs suffer from two major problems, one related to autonomy and one to consent. First, ADs' emphasis on precedent autonomy effectively sentences some people who want to live to death. Second, many ADs might not meet the standard criteria for informed refusal of treatment, because they fail on the crucial criterion of sufficient information. Ultimately, it transpires that ADs are typically only appropriate for patients who temporarily lose physical or mental capacity. PMID:21133977

  8. Directed network modules

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Farkas, Illés J.; Pollner, Péter; Derényi, Imre; Vicsek, Tamás

    2007-06-01

    A search technique locating network modules, i.e. internally densely connected groups of nodes in directed networks is introduced by extending the clique percolation method originally proposed for undirected networks. After giving a suitable definition for directed modules we investigate their percolation transition in the Erdos Rényi graph both analytically and numerically. We also analyse four real-world directed networks, including Google's own web-pages, an email network, a word association graph and the transcriptional regulatory network of the yeast Saccharomyces cerevisiae. The obtained directed modules are validated by additional information available for the nodes. We find that directed modules of real-world graphs inherently overlap and the investigated networks can be classified into two major groups in terms of the overlaps between the modules. Accordingly, in the word-association network and Google's web-pages, overlaps are likely to contain in-hubs, whereas the modules in the email and transcriptional regulatory network tend to overlap via out-hubs.

  9. Direct Photons at RHIC

    SciTech Connect

    Gabor,D.

    2008-07-29

    Direct photons are ideal tools to investigate kinematical and thermodynamical conditions of heavy ion collisions since they are emitted from all stages of the collision and once produced they leave the interaction region without further modification by the medium. The PHENIX experiment at RHIC has measured direct photon production in p+p and Au+Au collisions at 200 GeV over a wide transverse momentum (p{sub T}) range. The p+p measurements allow a fundamental test of QCD, and serve as a baseline when we try to disentangle more complex mechanisms producing high p{sub T} direct photons in Au+Au. As for thermal photons in Au+Au we overcome the difficulties due to the large background from hadronic decays by measuring 'almost real' virtual photons which appear as low invariant mass e{sup +}e{sup -} pairs: a significant excess of direct photons is measured above the above next-to-leading order perturbative quantum chromodynamics calculations. Additional insights on the origin of direct photons can be gained with the study of the azimuthal anisotropy which benefits from the increased statistics and reaction plane resolution achieved in RHIC Year-7 data.

  10. Highly directional thermal emitter

    SciTech Connect

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  11. Directed energy overview

    NASA Astrophysics Data System (ADS)

    Griff, Neil

    1990-06-01

    Directed energy weapons can add significantly to the effectiveness of a Strategic Defense System (SDS) by complementing the capabilty of phase I kinetic energy weapons. Component development for each of the directed energy concepts is progressing well. The chemical laser and neutral particle beam programs are nearing the stage where component integration tests are essential for establishing engineering proof-of-principle. For the somewhat less mature ground-based free electron laser technology, device development will be emphasized during the next several years. Development of the acquisition, tracking and pointing (ATP) program will continue at a fast pace, with an exciting proof-of-principle test to occur in space in early 1990. The directed energy program remains on track to provide information to support a national decision on strategic defense in the 1991/1993 timeframe.

  12. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  13. The direction of acceleration

    NASA Astrophysics Data System (ADS)

    Wilhelm, Thomas; Burde, Jan-Philipp; Lück, Stephan

    2015-11-01

    Acceleration is a physical quantity that is difficult to understand and hence its complexity is often erroneously simplified. Many students think of acceleration as equivalent to velocity, a ˜ v. For others, acceleration is a scalar quantity, which describes the change in speed Δ|v| or Δ|v|/Δt (as opposed to the change in velocity). The main difficulty with the concept of acceleration therefore lies in developing a correct understanding of its direction. The free iOS app AccelVisu supports students in acquiring a correct conception of acceleration by showing acceleration arrows directly at moving objects.

  14. Directed flux motor

    NASA Technical Reports Server (NTRS)

    Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)

    2011-01-01

    A directed flux motor described utilizes the directed magnetic flux of at least one magnet through ferrous material to drive different planetary gear sets to achieve capabilities in six actuated shafts that are grouped three to a side of the motor. The flux motor also utilizes an interwoven magnet configuration which reduces the overall size of the motor. The motor allows for simple changes to modify the torque to speed ratio of the gearing contained within the motor as well as simple configurations for any number of output shafts up to six. The changes allow for improved manufacturability and reliability within the design.

  15. Directional solidification of superalloys

    NASA Technical Reports Server (NTRS)

    Schmidt, Deborah Diane (Inventor); Alter, Wendy Sue (Inventor); Hamilton, William David (Inventor)

    1990-01-01

    This invention relates to the directional solidification of superalloys, in particular nickel-based superalloys, by imposition of a predetermined temperature profile in the solidification front and, depending on the desired results, a predetermined rate of advance of said solidification front, whereas castings of markedly superior fatigue resistance are produced.

  16. Core Directions in HRD.

    ERIC Educational Resources Information Center

    1996

    This document consists of four papers presented at a symposium on core directions in human resource development (HRD) moderated by Verna Willis at the 1996 conference of the Academy of Human Resource Development. "Reengineering the Organizational HRD Function: Two Case Studies" (Neal Chalofsky) reports an action research study in which the

  17. Direct Multizone System.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    Describes Lennox indoor direct multizone equipment and controls. The following areas are covered--(1) unit features, (2) controls and operations, (3) approvals, (4) air patterns, (5) typical applications, (6) specifications and ratings, (7) dimensioned drawings of a typical unit, (8) mixing boxes, (9) blower data, (10) water valve selection and…

  18. Direct fired heat exchanger

    DOEpatents

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  19. Direct Antiglobulin Test

    MedlinePlus

    ... services. Advertising & Sponsorship: Policy | Opportunities PLEASE NOTE: Your web browser does not have JavaScript enabled. Unless you enable Javascript , your ability to navigate and access the features of this website will be ... Direct Antiglobulin Test Share this page: Was this page helpful? Also ...

  20. Developing Ethical Direction

    ERIC Educational Resources Information Center

    Ribble, Mike S.; Bailey,Gerald D.

    2005-01-01

    When you read or hear an unethical suggestion, such as "Steal this article and sell it to another magazine," we're guessing that your internal compass indicates "wrong direction." In other words, your internal voice says, "No, that would be wrong!" Your internal compass tells you when something is right and something is wrong. In our example, your…

  1. Counseling: New Directions

    ERIC Educational Resources Information Center

    Dahm, John W.

    1974-01-01

    To achieve full professional maturity, counselors must begin the process of self-study and assess the direction and leadership that is developing within the profession. The acceptance and success of counseling in educational settings may depend on the degree to which counselors are change-oriented, team-oriented, and outcome-oriented. (Author)

  2. The Four Directions

    ERIC Educational Resources Information Center

    Willis, Steve

    2005-01-01

    This article presents the Native American cultural symbol, the Four Directions, as a sign that is culturally evident and inter-tribally significant. Through understanding the significance of the symbol, a deeper understanding is possible for non-Natives, especially an understanding of the Native Americans' relationship between their artwork and…

  3. The Directed Case Method.

    ERIC Educational Resources Information Center

    Cliff, William H.; Curtin, Leslie Nesbitt

    2000-01-01

    Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)

  4. Directional gamma detector

    DOEpatents

    LeVert, Francis E.; Cox, Samson A.

    1981-01-01

    An improved directional gamma radiation detector has a collector sandwiched etween two layers of insulation of varying thicknesses. The collector and insulation layers are contained within an evacuated casing, or emitter, which releases electrons upon exposure to gamma radiation. Delayed electrons and electrons entering the collector at oblique angles are attenuated as they pass through the insulation layers on route to the collector.

  5. Audio direct broadcast satellites

    NASA Technical Reports Server (NTRS)

    Miller, J. E.

    1983-01-01

    Satellite sound broadcasting is, as the name implies, the use of satellite techniques and technology to broadcast directly from space to low-cost, consumer-quality receivers the types of sound programs commonly received in the AM and FM broadcast bands. It would be a ubiquitous service available to the general public in the home, in the car, and out in the open.

  6. Conclusions and Future Directions

    ERIC Educational Resources Information Center

    Lillibridge, Fred

    2012-01-01

    Benchmarking, when done properly, offers a lot of promise for higher education units that want to improve how they do business. It is clear that much is known, but still more needs to be learned before it reaches its full potential as a useful tool. Readers of this issue of "New Directions for Institutional Research" have been treated to useful…

  7. Direct insolation models

    SciTech Connect

    Bird, R.; Hulstrom, R.L.

    1980-01-01

    Several recently published models of the direct component of the broadband insolation are compared for clear sky conditions. The comparison includes seven simple models and one rigorous model that is used as a basis for determining accuracy. Where possible, the comparison is made between the results of each model for each atmospheric constituent (H/sub 2/O, CO/sub 2/, O/sub 3/, O/sub 2/, aerosol and molecular scattering) separately as well as for the combined effect of all of the constituents. Two optimum simple models of varying degrees of complexity are developed as a result of this comparison. The study indicates: aerosols dominate the attenuation of the direct beam for reasonable atmospheric conditions; molecular scattering is next in importance; water vapor is an important absorber; and carbon dioxide and oxygen are relatively unimportant as attenuators of the broadband solar energy.

  8. Directionality of general beams.

    PubMed

    Ji, Xiaoling; Li, Xiaoqing; Ji, Guangming

    2008-11-10

    The directionality of general beams propagating in free space and in atmospheric turbulence is studied. Based on the partial-coherence theory, the analytical expressions for the mean-squared width and the angular spread of general beams are derived by using the integral transform technique. It is shown that the mean-squared width and the angular spread depend not only on the weighting factors of all basis modes but also on the weighting factors of the corresponding mode coherence coefficients of the ith and the (i+2)th if the Hermite-Gaussian modes are adopted. It is found that under a certain condition there exist the equivalent general beams which may have the same directionality as a fully coherent Gaussian beam in free space and also in atmospheric turbulence. The result holds true, irrespective of the model of turbulence used. PMID:19581974

  9. [Direct biosynthesis of ethylene].

    PubMed

    Sun, Zhilan; Chen, Yifeng

    2013-10-01

    Ethylene is the most widely used petrochemical feedstock globally. The development of bio-ethylene is essential due to limited fossil fuels and rising oil prices. Bio-ethylene is produced primarily by the dehydration of ethanol, but can alternatively be directly produced from ethylene biosynthesis pathways in plants, algae, or microorganisms by using cheap and renewable substrates. This review addressed the biosynthesis of ethylene in plants and microorganisms, the characterization of key enzymes, genetic engineering strategies for ethylene biosynthesis in microorganisms, and evaluated its perspective and successful cases toward the industrial application. The direct production of bio-ethylene from a biological process in situ is promising to supplement and even replace the petrochemical ethylene production. PMID:24432658

  10. Irradiation direction from texture

    NASA Astrophysics Data System (ADS)

    Koenderink, Jan J.; Pont, Sylvia C.

    2003-10-01

    We present a theory of image texture resulting from the shading of corrugated (three-dimensional textured) surfaces, Lambertian on the micro scale, in the domain of geometrical optics. The derivation applies to isotropic Gaussian random surfaces, under collimated illumination, in normal view. The theory predicts the structure tensors from either the gradient or the Hessian of the image intensity and allows inferences of the direction of irradiation of the surface. Although the assumptions appear prima facie rather restrictive, even for surfaces that are not at all Gaussian, with the bidirectional reflectance distribution function far from Lambertian and vignetting and multiple scattering present, we empirically recover the direction of irradiation with an accuracy of a few degrees.

  11. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1987-01-01

    An improved understanding of the phenomena of importance to directional solidification is attempted to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis is now on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection. A correlation is sought between heater temperature profiles, buoyancy-driven convection, and doping inhomogeneities using naphthalene doped with anthracene. The influence of spin-up/spin-down is determined on compositional homogeneity and microstructure of indium gallium antimonide. The effect is determined of imposed melting - freezing cycles on indium gallium antimonide. The mechanism behind the increase of grain size caused by using spin-up/spin-down in directional solidification of mercury cadimum telluride is sought.

  12. Modelling direction solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.

    1986-01-01

    The overall objective of this program is to develop an improved understanding of some phenomena of importance to directional solidification. The aim of this research is also to help predict differences in behavior between solidification on Earth and solidification in space. In this report, the validity of the Burton-Primslichter equation is explored. The influence of operating variables on grain and twin generation and propagation in single crystals of In sub (x) Ga sub (1-x) Sb is also investigated.

  13. Directional Spherical Cherenkov Detector

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Wrbanek, Susan Y.

    2010-01-01

    A proposed radiation-detecting apparatus would provide information on the kinetic energies, directions, and electric charges of highly energetic incident subatomic particles. The apparatus was originally intended for use in measuring properties of cosmic rays in outer space, but could also be adapted to terrestrial uses -- for example, radiation dosimetry aboard high-altitude aircraft and in proton radiation therapy for treatment of tumors.

  14. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  15. Directional Hearing Aid

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Lin, H. C.

    1989-01-01

    Hearing-aid device indicates visually whether sound is coming from left, right, back, or front. Device intended to assist individuals who are deaf in at least one ear and unable to discern naturally directions to sources of sound. Device promotes safety in street traffic, on loading docks, and in presence of sirens, alarms, and other warning sounds. Quadraphonic version of device built into pair of eyeglasses and binaural version built into visor.

  16. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  18. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct drive wind turbine

    DOEpatents

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Topologies on directed graphs

    NASA Technical Reports Server (NTRS)

    Lieberman, R. N.

    1972-01-01

    Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.

  1. Direct reciprocity on graphs.

    PubMed

    Ohtsuki, Hisashi; Nowak, Martin A

    2007-08-01

    Direct reciprocity is a mechanism for the evolution of cooperation based on the idea of repeated encounters between the same two individuals. Here we examine direct reciprocity in structured populations, where individuals occupy the vertices of a graph. The edges denote who interacts with whom. The graph represents spatial structure or a social network. For birth-death or pairwise comparison updating, we find that evolutionary stability of direct reciprocity is more restrictive on a graph than in a well-mixed population, but the condition for reciprocators to be advantageous is less restrictive on a graph. For death-birth and imitation updating, in contrast, both conditions are easier to fulfill on a graph. Moreover, for all four update mechanisms, reciprocators can dominate defectors on a graph, which is never possible in a well-mixed population. We also study the effect of an error rate, which increases with the number of links per individual; interacting with more people simultaneously enhances the probability of making mistakes. We provide analytic derivations for all results. PMID:17466339

  2. Direct gene expression analysis.

    PubMed

    Winter, Holger; Korn, Kerstin; Rigler, Rudolf

    2004-04-01

    The direct analysis of single biological molecules is getting increasingly important in basic as well as pharmaceutical research (e.g. for gene expression analysis). In particular single-molecule fluorescence detection provides exciting new opportunities to probe biochemical processes in unprecedented detail. Currently several academic and industrial research groups work on the development of single molecule detection based technologies in order to directly detect and analyze RNA and DNA molecules. As these developed methods are characterized as homogenous assays and obviate any amplification of the target or the signal, they provide clear advantages compared to methods like real-time PCR or DNA- arrays. In the following we describe a recently developed approach based on fluorescence correlation spectroscopy (FCS). This expression assay is based on gene-specific hybridization of two dye-labeled DNA probes to a selected target molecule (either DNA or RNA) in solution. The subsequent dual color cross-correlation analysis allows the quantification of the bio-molecule of interest in absolute numbers. Target concentrations of less than 10(-12) M can be easily monitored, covering the direct analysis of the expression levels of high, medium and low abundant genes. PMID:15078153

  3. Direct imaging of exoplanets.

    PubMed

    Lagrange, Anne-Marie

    2014-04-28

    Most of the exoplanets known today have been discovered by indirect techniques, based on the study of the host star radial velocity or photometric temporal variations. These detections allowed the study of the planet populations in the first 5-8 AU from the central stars and have provided precious information on the way planets form and evolve at such separations. Direct imaging on 8-10 m class telescopes allows the detection of giant planets at larger separations (currently typically more than 5-10 AU) complementing the indirect techniques. So far, only a few planets have been imaged around young stars, but each of them provides an opportunity for unique dedicated studies of their orbital, physical and atmospheric properties and sometimes also on the interaction with the 'second-generation', debris discs. These few detections already challenge formation theories. In this paper, I present the results of direct imaging surveys obtained so far, and what they already tell us about giant planet (GP) formation and evolution. Individual and emblematic cases are detailed; they illustrate what future instruments will routinely deliver for a much larger number of stars. I also point out the limitations of this approach, as well as the needs for further work in terms of planet formation modelling. I finally present the progress expected in direct imaging in the near future, thanks in particular to forthcoming planet imagers on 8-10 m class telescopes. PMID:24664924

  4. Spin Wave Directional Coupler

    NASA Astrophysics Data System (ADS)

    Nanayakkara, Kasuni; Kozhanov, Alexander

    2015-03-01

    Spin wave based logic devices are evolved as promising candidates for information processing due to potential in scaling and low power consumption. An element performing directional energy transfer between spin waveguides is required in order to implement existing proposed spin wave logic devices. Optical waveguide couplers are well studied and widely utilized in integrated and fiber optics applications. In this work we apply the concept of optical directional coupler to design and investigate the spin wave directional coupler comprised of the two ferromagnetic stripes separated by a nanometer scale air gap. Micromagnetic simulations and experimental spin wave energy transfer investigations using propagating spin wave spectroscopy were carried out. Spin waves are generated at one of the ends of the input waveguide while detected at remaining three ends of both spin waveguides. Spin wave coupling is investigated as the coupler geometry, biasing magnetic field amplitude and orientation and the spin wavelength are varied. Results are modeled as coupled backward volume magnetostatic spin wave modes. This work was supported in part by Georgia State University.

  5. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  6. Directional control of radiant heat

    NASA Technical Reports Server (NTRS)

    Howell, J. R.; Perlmutter, M.

    1970-01-01

    Surface with grooves having flat bases gives directional emissivities and absorptivities that can be made to approximate a perfect directional surface. Radiant energy can then be transferred in desired directions.

  7. Visual direction finding by fishes

    NASA Technical Reports Server (NTRS)

    Waterman, T. H.

    1972-01-01

    The use of visual orientation, in the absence of landmarks, for underwater direction finding exercises by fishes is reviewed. Celestial directional clues observed directly near the water surface or indirectly at an asymptatic depth are suggested as possible orientation aids.

  8. Directed energy planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Clayton-Warwick, Deborah; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark; Krogen, Peter; Kangas, Miikka

    2013-09-01

    Asteroids and comets that cross Earth's orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. Numerous risk mitigation strategies have been described, most involving dedicated missions to a threatening object. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of kilowatt class lasers powered by photovoltaic's. Modular design allows for incremental development, test, and initial deployment, lowering cost, minimizing risk, and allowing for technological co-development, leading eventually to an orbiting structure that would be developed in stages with both technological and target milestones. The main objective of DE-STAR is to use the focused directed energy to raise the surface spot temperature to ~3,000K, allowing direct vaporization of all known substances. In the process of heating the surface ejecting evaporated material a large reaction force would alter the asteroid's orbit. The baseline system is a DE-STAR 3 or 4 (1-10km array) depending on the degree of protection desired. A DE-STAR 4 allows for asteroid engagement starting beyond 1AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in one year. Small asteroids and comets can be diverted/evaporated with a DESTAR 2 (100m) while space debris is vaporized with a DE-STAR 1 (10m).

  9. Directional Antineutrino Detection

    NASA Astrophysics Data System (ADS)

    Safdi, B. R.; Suerfu, J.

    2014-12-01

    We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.

  10. Direct reading inductance meter

    NASA Technical Reports Server (NTRS)

    Kolby, R. B. (Inventor)

    1977-01-01

    A direct reading inductance meter comprised of a crystal oscillator and an LC tuned oscillator is presented. The oscillators function respectively to generate a reference frequency, f(r), and to generate an initial frequency, f(0), which when mixed produce a difference equal to zero. Upon connecting an inductor of small unknown value in the LC circuit to change its resonant frequency to f(x), a difference frequency (f(r)-f(x)) is produced that is very nearly a linear function of the inductance of the inductor. The difference frequency is measured and displayed on a linear scale in units of inductance.

  11. On Direct Social Perception.

    PubMed

    Spaulding, Shannon

    2015-11-01

    Direct Social Perception (DSP) is the idea that we can non-inferentially perceive others' mental states. In this paper, I argue that the standard way of framing DSP leaves the debate at an impasse. I suggest two alternative interpretations of the idea that we see others' mental states: others' mental states are represented in the content of our perception, and we have basic perceptual beliefs about others' mental states. I argue that the latter interpretation of DSP is more promising and examine the kinds of mental states that plausibly could satisfy this version of DSP. PMID:25623170

  12. Reciprocity in directed networks

    NASA Astrophysics Data System (ADS)

    Yin, Mei; Zhu, Lingjiong

    2016-04-01

    Reciprocity is an important characteristic of directed networks and has been widely used in the modeling of World Wide Web, email, social, and other complex networks. In this paper, we take a statistical physics point of view and study the limiting entropy and free energy densities from the microcanonical ensemble, the canonical ensemble, and the grand canonical ensemble whose sufficient statistics are given by edge and reciprocal densities. The sparse case is also studied for the grand canonical ensemble. Extensions to more general reciprocal models including reciprocal triangle and star densities will likewise be discussed.

  13. Omni-directional railguns

    SciTech Connect

    Shahinpoor, M.

    1994-12-31

    This invention is comprised of a device for electromagetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  14. Omni-directional railguns

    DOEpatents

    Shahinpoor, Mohsen

    1995-01-01

    A device for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire.

  15. Omni-directional railguns

    DOEpatents

    Shahinpoor, M.

    1995-07-25

    A device is disclosed for electromagnetically accelerating projectiles. The invention features two parallel conducting circular plates, a plurality of electrode connections to both upper and lower plates, a support base, and a projectile magazine. A projectile is spring-loaded into a firing position concentrically located between the parallel plates. A voltage source is applied to the plates to cause current to flow in directions defined by selectable, discrete electrode connections on both upper and lower plates. Repulsive Lorentz forces are generated to eject the projectile in a 360 degree range of fire. 4 figs.

  16. Direct to Digital Holography

    SciTech Connect

    Bingham, P.R.; Tobin, K.W.

    2007-09-30

    In this Cooperative Research and Development Agreement (CRADA), Oak Ridge National Laboratory (ORNL) assisted nLine Corporation of Austin, TX in the development of prototype semiconductor wafer inspection tools based on the direct-to-digital holographic (DDH) techniques invented at ORNL. Key components of this work included, testing of DDH for detection of defects in High Aspect Ratio (HAR) structures, development of image processing techniques to enhance detection capabilities through the use of both phase and intensity, and development of methods for autofocus on the DDH tools.

  17. Direct to Digital Holography

    SciTech Connect

    Bingham, P.R.; Tobin, K.W.

    2002-06-15

    In this CRADA, Oak Ridge National Laboratory (ORNL) assisted nLine Corporation of Austin, TX in the development of prototype semiconductor wafer inspection tools based on the direct-to-digital holographic (DDH) techniques invented at ORNL. Key components of this work included, testing of DDH for detection of defects in High Aspect Ratio (HAR) structures, development of image processing techniques to enhance detection capabilities through the use of both phase and intensity, and development of methods for autofocus on the DDH tools.

  18. Direct microwave demodulation

    NASA Astrophysics Data System (ADS)

    Marsac, J. P.

    1985-03-01

    The technical characteristics, advantages and disadvantages of three types of coherent direct microwave demodulators are discussed. Bypassing the intermediate frequencies normally present in radio circuitry is a means to lowering equipment costs and enhancing reliability. The phase, frequency and spectral demodulators described all allow carrier recapture with a Costas loop. In all cases, the demodulation is performed at an intermediate frequency after transposition of the modulated carrier wave. MSK, 4 PSK and 16 QAM modulations are considered, together with circuitry for each and experimental results. Finally, the progress toward development of an integrated receiver is assessed.

  19. Direct electroplating on nonconductors

    SciTech Connect

    Weng, D.; Landau, U.

    1995-08-01

    Recently proposed processes for direct electroplating on nonconductive substrates offer numerous advantages. The industrial implementation of such processes is, however, hampered by lack of understanding. Presented here is a model for this class of processes based on three synergistic mechanisms: (i) stepwise propagation through the seed clusters that serve as sequentially activated microelectrodes, (ii) preferential accessibility to current of the sharp edge, and (iii) kinetics-based enhancement due to the fast propagation of an additive-free edge. The model has been computer simulated and verified by experiments of copper electroplating on nonconductive substrates.

  20. Direct reading dosimeter

    SciTech Connect

    Thomson, I.

    1984-11-20

    A direct reading dosimeter having a range such that it can be used by personnel workers in the medical, nuclear and industrial fields, and provides and indication of dose rate as well as total received dosage. The dosimeter uses a semiconductor sensor of MOS or bipolar transistor or MOS capacitor form which traps positive charge under the influence of ionizing radiation. A current is applied to the sensor substrate, the voltage across a portion of the substrate is sensed, differentiated and displayed. The dosimeter circuit can be integrated and packaged in a wrist watchcase, in a probe, or other convenient form.

  1. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  2. Remote direct memory access

    DOEpatents

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  3. NON-DIRECTIVE PSYCHOTHERAPY

    PubMed Central

    Smith, Lloyd F.

    1950-01-01

    Psychotherapy is a word to describe an age-old process. It would be better not to speak of psychotherapy, but of psychotherapies. Specialists are not the only ones who act as psychotherapists, since every human being fills this role at one time or another. Besides this, no two persons follow an identical approach. Finally, all therapists change technique constantly. The kinds of psychotherapy must therefore approach infinity. Some physicians appear to assume that only one type of psychotherapy may claim a scientific basis. Although Freud first put psychotherapy on a scientific path, there is no reason to say that Freud must be the last in this field. Over the past few years a new trend has started in psychotherapy which deserves close study. This new trend challenges some old beliefs and gives a new tool to help patients of some types. It is called non-directive or client-centered psychotherapy. This therapy does not try to solve the patient's problems for him, but rather establishes the conditions under which a patient can work out his own salvation. Each year non-directive psychotherapy grows in importance. Much can be learned from the method. PMID:14778014

  4. Direct cavernous sinus sampling.

    PubMed

    Aoki, S; Okubo, T; Sasaki, Y; Shirouzu, I; Machida, T; Sasaki, Y; Nakamura, H; Suzuki, K; Nemoto, S; Teramoto, A

    1993-01-01

    To evaluate the potential of superselective cavernous sinus (CS) sampling in patients with functioning pituitary adenomas, we performed direct CS sampling in 18 patients with Cushing syndrome and other functioning adenomas using a mini-catheter. Samples from the inferior petrosal sinuses (IPS) were also obtained. All of the samples from 20 CS of 10 patients with Cushing syndrome and 13 of 16 samples from CS of eight patients with other adenomas were successfully obtained. No complication occurred. In three patients, the mini-catheter was introduced to the contralateral CS through intercavernous communication, and bilateral sampling could be performed via the unilateral jugular vein. The CS/peripheral (CS/P) ratio of ACTH (mean = 66.1) was significantly greater than the IPS/peripheral (IPS/P) ratio (mean = 14.9) in Cushing disease. In other functioning adenomas, the CS/P ratio (15.8) was not significantly higher than the IPS/P ratio (4.8). Direct CS sampling offers a much higher CS/P ratio than IPS/P ratio in Cushing disease, and may provide sufficient diagnostic accuracy without CRH stimulation or bilateral simultaneous sampling. PMID:8290695

  5. Site directed recombination

    DOEpatents

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  6. Directed acoustic shearography

    NASA Astrophysics Data System (ADS)

    Kurtz, Russell M.

    2010-04-01

    Modern vehicles use modern materials, including multiple metallic layers, composites, and ceramics. This has led to significant improvements in quality, reliability, and lifetime, at the cost of significantly increased complexity. It is particularly difficult to test these modern materials for buried defects such as internal corrosion, glue/weld failures, and disbonds, yet these defects can lead to damage and even failure of the part. As one tool in the array of nondestructive evaluation (NDE) technologies, we report on Directed Acoustic Shearography (DAS), which combines the sensitivity of shearography with the speed of ultrasonic imaging, and adds improved depth resolution. We show that DAS is particularly useful in detecting buried defects in modern materials, how it lends itself to automation, and present early tests of DAS detecting buried defects as small as 1/32 inch in a multilayer aluminum structure.

  7. Comprehension of Navigation Directions

    NASA Technical Reports Server (NTRS)

    Healy, Alice F.; Schneider, Vivian I.

    2002-01-01

    Subjects were shown navigation instructions varying in length directing them to move in a space represented by grids on a computer screen. They followed the instructions by clicking on the grids in the locations specified. Some subjects repeated back the instructions before following them, some did not, and others repeated back the instructions in reduced form, including only the critical words. The commands in each message were presented simultaneously for half of the subjects and sequentially for the others. For the longest messages, performance was better on the initial commands and worse on the final commands with simultaneous than with sequential presentation. Instruction repetition depressed performance, but reduced repetition removed this disadvantage. Effects of presentation format were attributed to visual scanning strategies. The advantage for reduced repetition was attributable either to enhanced visual scanning or to reduced output interference. A follow-up study with auditory presentation supported the visual scanning explanation.

  8. Fiber optic TV direct

    NASA Technical Reports Server (NTRS)

    Kassak, John E.

    1991-01-01

    The objective of the operational television (OTV) technology was to develop a multiple camera system (up to 256 cameras) for NASA Kennedy installations where camera video, synchronization, control, and status data are transmitted bidirectionally via a single fiber cable at distances in excess of five miles. It is shown that the benefits (such as improved video performance, immunity from electromagnetic interference and radio frequency interference, elimination of repeater stations, and more system configuration flexibility) can be realized if application of the proven fiber optic transmission concept is used. The control system will marry the lens, pan and tilt, and camera control functions into a modular based Local Area Network (LAN) control network. Such a system does not exist commercially at present since the Television Broadcast Industry's current practice is to divorce the positional controls from the camera control system. The application software developed for this system will have direct applicability to similar systems in industry using LAN based control systems.

  9. Magnetostrictive direct drive motors

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1990-01-01

    Developing magnetostrictive direct drive research motors to power robot joints is discussed. These type motors are expected to produce extraordinary torque density, to be able to perform microradian incremental steps and to be self-braking and safe with the power off. Several types of motor designs have been attempted using magnetostrictive materials. One of the candidate approaches (the magnetostrictive roller drive) is described. The method in which the design will function is described as is the reason why this approach is inherently superior to the other approaches. Following this, the design will be modelled and its expected performance predicted. This particular candidate design is currently undergoing detailed engineering with prototype construction and testing scheduled for mid 1991.

  10. Mutanome directed cancer immunotherapy.

    PubMed

    Vormehr, Mathias; Diken, Mustafa; Boegel, Sebastian; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur

    2016-04-01

    Somatic mutations are important drivers of cancer development. Accumulating evidence suggests that a significant subset of mutations result in neo-epitopes recognized by autologous T cells and thus may constitute the Achilles' heel of tumor cells. T cells directed against mutations have been shown to have a key role in clinical efficacy of potent cancer immunotherapy modalities, such as adoptive transfer of autologous tumor infiltrating lymphocytes and immune checkpoint inhibitors. Whereas these findings strengthen the idea of a prominent role of neo-epitopes in tumor rejection, the systematic therapeutic exploitation of mutations was hampered until recently by the uniqueness of the repertoire of mutations ('the mutanome') in every patient's tumor. This review highlights insights into immune recognition of neo-epitopes and novel concepts for comprehensive identification and immunotherapeutic exploitation of individual mutations. PMID:26716729

  11. Task directed sensing

    NASA Technical Reports Server (NTRS)

    Firby, R. James

    1990-01-01

    High-level robot control research must confront the limitations imposed by real sensors if robots are to be controlled effectively in the real world. In particular, sensor limitations make it impossible to maintain a complete, detailed world model of the situation surrounding the robot. To address the problems involved in planning with the resulting incomplete and uncertain world models, traditional robot control architectures must be altered significantly. Task-directed sensing and control is suggested as a way of coping with world model limitations by focusing sensing and analysis resources on only those parts of the world relevant to the robot's active goals. The RAP adaptive execution system is used as an example of a control architecture designed to deploy sensing resources in this way to accomplish both action and knowledge goals.

  12. Directed Polymerase Evolution

    PubMed Central

    Chen, Tingjian; Romesberg, Floyd E.

    2014-01-01

    Polymerases evolved in nature to synthesize DNA and RNA, and they underlie the storage and flow of genetic information in all cells. The availability of these enzymes for use at the bench has driven a revolution in biotechnology and medicinal research; however, polymerases did not evolve to function efficiently under the conditions required for some applications and their high substrate fidelity precludes their use for most applications that involve modified substrates. To circumvent these limitations, researchers have turned to directed evolution to tailor the properties and/or substrate repertoire of polymerases for different applications, and several systems have been developed for this purpose. These systems draw on different methods of creating a pool of randomly mutated polymerases and are differentiated by the process used to isolate the most fit members. A variety of polymerases have been evolved, providing new or improved functionality, as well as interesting new insight into the factors governing activity. PMID:24211837

  13. DIRECT CURRENT ELECTROMAGNETIC PUMP

    DOEpatents

    Barnes, A.H.

    1957-11-01

    An improved d-c electromagnetic pump is presented in which the poles, and consequently the magetic gap at the poles, are tapered to be wider at the upstream end. In addition, the cross section of the tube carryiQ the liquid metal is tapered so that the velocity of the pumped liquid increases in the downstream direction at a rate such that the counter-induced voltage in the liquid metal remains constant as it traverses the region between the poles. This configuration compensates for the distortion of the magnetic field caused by the induced voltage that would otherwise result in the lowering of the pumping capacity. This improved electromagnetic pump as practical application in the pumping of liquid metal coolants for nuclear reactors where conventional positive displacement pumps have proved unsatisfactory due to the high temperatures and the corrosive properties of the liquid metals involved.

  14. Direct Field Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Larkin, Paul; Goldstein, Bob

    2008-01-01

    This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.

  15. Laser assisted direct manufacturing

    NASA Astrophysics Data System (ADS)

    Bertrand, Ph.; Smurov, I.

    2007-06-01

    Direct Laser Manufacturing (DLM) with coaxial powder injection (TRUMPF DMD 505 installation) was applied for fabrication of 3D objects from metallic and ceramic powder. One of the advantages of DLM is the possibility to build functionally graded objects in one-step manufacturing cycle by application of a 2-channel powder feeder. Several models with different types of material gradients (smooth, sharp, periodic) and multi-layered structures were manufactured from SS, stellite (Cobalt alloy), Cu and W alloys. Technology of Selective Laser Melting (SLM) was applied for manufacturing of net shaped objects from different powders (PHENIX PM-100 machine) : Inox 904L, Ni625, Cu/Sn, W and Zr02-Y2O3. Performance and limitations of SLM technology for fabrication of elements for chemical and mechanical industries are analysed. Two-component objects (Stainless steel /Cu - H13/CuNi) were fabricated in a two-step manufacturing cycle.

  16. Directed Paramagnetic Colloidal Swimmers

    NASA Astrophysics Data System (ADS)

    Biswal, Sibani Lisa; Du, Di; Dept. Chemical; Biomolecular Engineering Team

    2015-03-01

    A novel micoscale swimmer can be generated by placing two paramagnetic colloids of different sizes in a rotating magnetic field. For propulsion at the microscale, viscous forces dominate over inertial forces. This results in the scallop theorem, where reversible displacements does not lead to any net motion. To achieve controlled swimming at the microscale, the swimmer must be able to make a sequence of deformations that are cyclic but not time reversible. Two paramagnetic bodies in a circular eccentric rotating magnetic field influence each other and propel together in a directed manne. The motion of each body tracks a half-moon course, shown in the figure below. We will describe this method and show how Brownian motion enhances this propulsion.

  17. Modelling directional solidification

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.

    1990-01-01

    The long range goal is to develop an improved understanding of phenomena of importance to directional solidification, to enable explanation and prediction of differences in behavior between solidification on Earth and in space. Emphasis during the period of this grant was on experimentally determining the influence of convection and freezing rate fluctuations on compositional homogeneity and crystalline perfection in the vertical Bridgman-Stockbarger technique. Heater temperature profiles, buoyancy-driven convection, and doping inhomogeneties were correlated using naphthalene doped with azulene. In addition the influence of spin-up/spin-down on compositional homogeneity and microstructure of indium gallium antimonide and the effect of imposed melting-freezing cycles on indium gallium antimonide are discussed.

  18. Speech research directions

    SciTech Connect

    Atal, B.S.; Rabiner, L.R.

    1986-09-01

    This paper presents an overview of the current activities in speech research. The authors discuss the state of the art in speech coding, text-to-speech synthesis, speech recognition, and speaker recognition. In the speech coding area, current algorithms perform well at bit rates down to 9.6 kb/s, and the research is directed at bringing the rate for high-quality speech coding down to 2.4 kb/s. In text-to-speech synthesis, what we currently are able to produce is very intelligible but not yet completely natural. Current research aims at providing higher quality and intelligibility to the synthetic speech that these systems produce. Finally, today's systems for speech and speaker recognition provide excellent performance on limited tasks; i.e., limited vocabulary, modest syntax, small talker populations, constrained inputs, etc.

  19. Directional antineutrino detection.

    PubMed

    Safdi, Benjamin R; Suerfu, Burkhant

    2015-02-20

    We propose the first event-by-event directional antineutrino detector using inverse beta decay (IBD) interactions on hydrogen, with potential applications including monitoring for nuclear nonproliferation, spatially mapping geoneutrinos, characterizing the diffuse supernova neutrino background and searching for new physics in the neutrino sector. The detector consists of adjacent and separated target and capture scintillator planes. IBD events take place in the target layers, which are thin enough to allow the neutrons to escape without scattering elastically. The neutrons are detected in the thicker boron-loaded capture layers. The location of the IBD event and the momentum of the positron are determined by tracking the positron's trajectory through the detector. Our design is a straightforward modification of existing antineutrino detectors; a prototype could be built with existing technology. PMID:25763953

  20. Conclusions and Policy Directions,

    SciTech Connect

    Wilbanks, Thomas J; Romero-Lankao, Paty; Gnatz, P

    2011-01-01

    This chapter briefly revisits the constraints and opportunities of mitigation and adaptation, and highlights and the multiple linkages, synergies and trade-offs between mitigation, adaptation and urban development. The chapter then presents future policy directions, focusing on local, national and international principles and policies for supporting and enhancing urban responses to climate change. In summary, policy directions for linking climate change responses with urban development offer abundant opportunities; but they call for new philosophies about how to think about the future and how to connect different roles of different levels of government and different parts of the urban community. In many cases, this implies changes in how urban areas operate - fostering closer coordination between local governments and local economic institutions, and building new connections between central power structures and parts of the population who have often been kept outside of the circle of consultation and discourse. The difficulties involved in changing deeply set patterns of interaction and decision-making in urban areas should not be underestimated. Because it is so difficult, successful experiences need to be identified, described and widely publicized as models for others. However, where this challenge is met, it is likely not only to increase opportunities and reduce threats to urban development in profoundly important ways, but to make the urban area a more effective socio-political entity, in general - a better city in how it works day to day and how it solves a myriad of problems as they emerge - far beyond climate change connections alone. It is in this sense that climate change responses can be catalysts for socially inclusive, economically productive and environmentally friendly urban development, helping to pioneer new patterns of stakeholder communication and participation.

  1. Direct cupration of fluoroform.

    PubMed

    Zanardi, Alessandro; Novikov, Maxim A; Martin, Eddy; Benet-Buchholz, Jordi; Grushin, Vladimir V

    2011-12-28

    We have found the first reaction of direct cupration of fluoroform, the most attractive CF(3) source for the introduction of the trifluoromethyl group into organic molecules. Treatment of CuX (X = Cl, Br, I) with 2 equiv of MOR (M = K, Na) in DMF or NMP produces novel alkoxycuprates that readily react with CF(3)H at room temperature and atmospheric pressure to give CuCF(3) derivatives. The CuCl and t-BuOK (1:2) combination provides best results, furnishing the CuCF(3) product within seconds in nearly quantitative yield. As demonstrated, neither CF(3)(-) nor CF(2) mediate the Cu-CF(3) bond formation, which accounts for its remarkably high selectivity. The fluoroform-derived CuCF(3) solutions can be efficiently stabilized with TREAT HF to produce CuCF(3) reagents that readily trifluoromethylate organic and inorganic electrophiles in the absence of additional ligands such as phenanthroline. A series of novel Cu(I) complexes have been structurally characterized, including K(DMF)[Cu(OBu-t)(2)] (1), Na(DMF)(2)[Cu(OBu-t)(2)] (2), [K(8)Cu(6)(OBu-t)(12)(DMF)(8)(I)](+) I(-) (3), and [Cu(4)(CF(3))(2)(C(OBu-t)(2))(2)(?(3)-OBu-t)(2)] (7). PMID:22136628

  2. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Significant advances have been made in the development of an environmentally stable coating for a very high strength, directionally solidified eutectic alloy designated NiTaC-13. Three duplex (two-layer) coatings survived 3,000 hours on a cyclic oxidation test (1,100 C to 90 C). These coatings were fabricated by first depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam heated source, followed by depositing an aluminizing overlayer. The alloy after exposure with these coatings was denuded of carbide fibers at the substrate/coating interface. It was demonstrated that TaC fiber denudation can be greatly retarded by applying a carbon-bearing coating. The coating was applied by thermal spraying followed by aluminization. Specimens coated with NiCrAlCY+Al survived over 2,000 hours in the cyclic oxidation test with essentially no TaC denudation. Coating ductility was studied for coated and heat-treated bars, and stress rupture life at 871 C and 1,100 C was determined for coated and cycled bars.

  3. New Directions in Biotechnology

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The macromolecule crystallization program within NASA is undergoing considerable pressure, particularly budgetary pressure. While it has shown some successes, they have not lived up to the expectations of others, and technological advances may rapidly overtake the natural advantages offered by crystallization in microgravity. Concomitant with the microgravity effort has been a research program to study the macromolecule crystallization process. It was believed that a better understanding of the process would lead to growth of improved crystals for X-ray diffraction studies. The results of the various research efforts have been impressive in improving our understanding of macromolecule crystallization, but have not led to any improved structures. Macromolecule crystallization for structure determination is "one of", the job being unique for every protein and finished once a structure is obtained. However, the knowledge gained is not lost, but instead lays the foundation for developments in new areas of biotechnology and nanotechnology. In this it is highly analogous to studies into small molecule crystallization, the results of which have led to our present day microelectronics-based society. We are conducting preliminary experiments into areas such as designed macromolecule crystals, macromolecule-inorganic hybrid structures, and macromolecule-based nanotechnology. In addition, our protein crystallization studies are now being directed more towards industrial and new approaches to membrane protein crystallization.

  4. Coatings for directional eutectics

    NASA Technical Reports Server (NTRS)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  5. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  6. Directed Incremental Symbolic Execution

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Yang, Guowei; Rungta, Neha; Khurshid, Sarfraz

    2011-01-01

    The last few years have seen a resurgence of interest in the use of symbolic execution -- a program analysis technique developed more than three decades ago to analyze program execution paths. Scaling symbolic execution and other path-sensitive analysis techniques to large systems remains challenging despite recent algorithmic and technological advances. An alternative to solving the problem of scalability is to reduce the scope of the analysis. One approach that is widely studied in the context of regression analysis is to analyze the differences between two related program versions. While such an approach is intuitive in theory, finding efficient and precise ways to identify program differences, and characterize their effects on how the program executes has proved challenging in practice. In this paper, we present Directed Incremental Symbolic Execution (DiSE), a novel technique for detecting and characterizing the effects of program changes. The novelty of DiSE is to combine the efficiencies of static analysis techniques to compute program difference information with the precision of symbolic execution to explore program execution paths and generate path conditions affected by the differences. DiSE is a complementary technique to other reduction or bounding techniques developed to improve symbolic execution. Furthermore, DiSE does not require analysis results to be carried forward as the software evolves -- only the source code for two related program versions is required. A case-study of our implementation of DiSE illustrates its effectiveness at detecting and characterizing the effects of program changes.

  7. Magnetostrictive direct drive motor

    NASA Technical Reports Server (NTRS)

    Naik, Dipak; Dehoff, P. H.

    1991-01-01

    Highly magnetostrictive materials such as Tb.3Dy.7Fe2, commercially known as TERFENOL-D, have been used to date in a variety of devices such as high power actuators and linear motors. The larger magnetostriction available in twinned single crystal TERFENOL-D, approx. 2000 ppm at moderate magnetic field strengths, makes possible a new generation of magnetomechanical devices. NASA researchers are studying the potential of this material as the basis for a direct microstepping rotary motor with torque densities on the order of industrial hydraulics and five times greater than that of the most efficient, high power electric motors. Such a motor would be a micro-radian stepper, capable of precision movements and self-braking in the power-off state. Innovative mechanical engineering techniques are juxtaposed on proper magnetic circuit design to reduce losses in structural flexures, inertias, thermal expansions, eddy currents, and magneto-mechanical coupling, thus optimizing motor performance and efficiency. Mathematical models are presented, including magnetic, structural, and both linear and nonlinear dynamic calculations and simulations. In addition, test results on prototypes are presented.

  8. Parsec's astrometry direct approaches .

    NASA Astrophysics Data System (ADS)

    Andrei, A. H.

    Parallaxes - and hence the fundamental establishment of stellar distances - rank among the oldest, keyest, and hardest of astronomical determinations. Arguably amongst the most essential too. The direct approach to obtain trigonometric parallaxes, using a constrained set of equations to derive positions, proper motions, and parallaxes, has been labeled as risky. Properly so, because the axis of the parallactic apparent ellipse is smaller than one arcsec even for the nearest stars, and just a fraction of its perimeter can be followed. Thus the classical approach is of linearizing the description by locking the solution to a set of precise positions of the Earth at the instants of observation, rather than to the dynamics of its orbit, and of adopting a close examination of the never many points available. In the PARSEC program the parallaxes of 143 brown dwarfs were aimed at. Five years of observation of the fields were taken with the WIFI camera at the ESO 2.2m telescope, in Chile. The goal is to provide a statistically significant number of trigonometric parallaxes to BD sub-classes from L0 to T7. Taking advantage of the large, regularly spaced, quantity of observations, here we take the risky approach to fit an ellipse in ecliptical observed coordinates and derive the parallaxes. We also combine the solutions from different centroiding methods, widely proven in prior astrometric investigations. As each of those methods assess diverse properties of the PSFs, they are taken as independent measurements, and combined into a weighted least-square general solution.

  9. Directed HK propagator

    NASA Astrophysics Data System (ADS)

    Kocia, Lucas; Heller, Eric J.

    2015-09-01

    We offer a more formal justification for the successes of our recently communicated "directed Heller-Herman-Kluk-Kay" (DHK) time propagator by examining its performance in one-dimensional bound systems which exhibit at least quasi-periodic motion. DHK is distinguished by its single one-dimensional integrala vast simplification over the usual 2N-dimensional integral in full Heller-Herman-Kluk-Kay (for an N-dimensional system). We find that DHK accurately captures particular coherent state autocorrelations when its single integral is chosen to lie along these states' fastest growing manifold, as long as it is not perpendicular to their action gradient. Moreover, the larger the action gradient, the better DHK will perform. We numerically examine DHK's accuracy in a one-dimensional quartic oscillator and illustrate that these conditions are frequently satisfied such that the method performs well. This lends some explanation for why DHK frequently seems to work so well and suggests that it may be applicable to systems exhibiting quite strong anharmonicity.

  10. Direct dark matter investigation

    NASA Astrophysics Data System (ADS)

    Bernabei, R.

    2013-12-01

    Experimental efforts and theoretical developments support that most of the Universe is dark and a large fraction of it should be made of relic particles; many possibilities are open on their nature and interaction types. This motivates experimental efforts to investigate the direct detection of these particles with various techniques. In particular, experiments offering a model independent signature for the presence of Dark Matter (DM) particles in the Galactic halo are mandatory. In this paper some general arguments will be summarized and particular care will be given to the results obtained by the DAMA/LIBRA experiment (sensitive mass: ˜250 kg) at the Gran Sasso National Laboratory of the I.N.F.N. by exploiting the model independent DM annual modulation signature with higly radiopure NaI(Tl) target-detectors. Cumulatively with the former DAMA/NaI (sensitive mass: ˜100 kg) an exposure of 1.17 ton yr, collected over 13 annual cycles, has been released so far; a model independent evidence of the presence of DM particles in the galactic halo is supported at 8.9 ρ confidence level (C.L.). In addition, experimental and theoretical uncertainties and their implications in the interpretation and comparison of different kinds of results will be shortly addressed. Some perspectives will be mentioned.

  11. Direct Mask Overlay Inspection

    NASA Astrophysics Data System (ADS)

    Hsia, Liang-Choo; Su, Lo-Soun

    1983-11-01

    In this paper, we present a mask inspection methodology and procedure that involves direct X-Y measurements. A group of dice is selected for overlay measurement; four measurement targets were laid out in the kerf of each die. The measured coordinates are then fit-ted to either a "historical" grid, which reflects the individual tool bias, or to an ideal grid squares fashion. Measurements are done using a Nikon X-Y laser interferometric measurement system, which provides a reference grid. The stability of the measurement system is essential. We then apply appropriate statistics to the residual after the fit to determine the overlay performance. Statistical methods play an important role in the product disposition. The acceptance criterion is, however, a compromise between the cost for mask making and the final device yield. In order to satisfy the demand on mask houses for quality of masks and high volume, mixing lithographic tools in mask making has become more popular, in particular, mixing optical and E-beam tools. In this paper, we also discuss the inspection procedure for mixing different lithographic tools.

  12. Direct syntheses of La{sub n+1}Ni{sub n}O{sub 3n+1} phases (n=1, 2, 3 and {infinity}) from nanosized co-crystallites

    SciTech Connect

    Weng Xiaole; Boldrin, Paul; Abrahams, Isaac; Skinner, Stephen J.; Kellici, Suela; Darr, Jawwad A.

    2008-05-15

    A new direct route for the 'bottom up' syntheses of phases in the La{sub n+1}Ni{sub n}O{sub 3n+1} series (n=1, 2, 3 and {infinity}) has been achieved via single-step heat treatments of nanosized co-crystallized precursors. The co-crystallized precursors were prepared using a continuous hydrothermal flow synthesis system that uses a superheated water flow at ca. 400 deg. C and 24.1 MPa to produce nanoparticulate slurries. Overall, a significant reduction in time and number of steps for the syntheses of La{sub 3}Ni{sub 2}O{sub 7} and La{sub 4}Ni{sub 3}O{sub 10} was achieved compared with more conventional synthesis methods, which typically require multiple homogenization and reheating steps over several days. - Graphical abstract: Scanning electron micrograph of La{sub 4}Ni{sub 3}O{sub 10} (bar=1 {mu}m) made by a single heat treatment at 1075 deg. C in air for 12 h of a 4:3 La:Ni ratio co-crystallite mixture of the metal hydroxides.

  13. Ximelagatran: direct thrombin inhibitor.

    PubMed

    Ho, Shir-Jing; Brighton, Tim A

    2006-01-01

    Warfarin sodium is an effective oral anticoagulant drug. However, warfarin has a narrow therapeutic window with significant risks of hemorrhage at therapeutic concentrations. Dosing is difficult and requires frequent monitoring. New oral anticoagulant agents are required to improve current anticoagulant therapy. Furthermore, while warfarin is effective in venous disease, it does not provide more than 60% risk reduction compared with placebo in venous thrombosis prophylaxis and considerably lower risk reduction in terms of arterial thrombosis. Ximelagatran is an oral pro-drug of melagatran, a synthetic small peptidomimetic with direct thrombin inhibitory actions and anticoagulant activity. As an oral agent, ximelagatran has a number of desirable properties including a rapid onset of action, fixed dosing, stable absorption, apparent low potential for medication interactions, and no requirement for monitoring of drug levels or dose adjustment. It has a short plasma elimination half-life of about 4 hours in cases of unexpected hemorrhage or need for reversal. Its main toxicity relates to the development of abnormal liver biochemistry and/or liver dysfunction with "long-term" use of the drug. This usually occurs within the first 6 months of commencing therapy, with a small percentage of patients developing jaundice. The biochemical abnormality usually resolves despite continuation of the drug. The cause of this toxicity remains unknown. Clinical studies to date have shown that ximelagatran is noninferior to warfarin in stroke prevention in patients with nonvalvular atrial fibrillation, noninferior to standard therapy as acute and extended therapy of deep vein thrombosis (DVT), and superior to warfarin for the prevention of venous thromboembolism post-major orthopedic surgery. It has also been shown to be more effective than aspirin alone for prevention of recurrent major cardiovascular events in patients with recent myocardial infarction. PMID:17319469

  14. Identification of Directional Couplings

    NASA Astrophysics Data System (ADS)

    Bezruchko, Boris P.; Smirnov, Dmitry A.

    An important piece of information, which can be extracted from parameters of empirical models, is quantitative characteristics of couplings between processes under study. The problem of coupling detection is encountered in multiple fields including physics (Bezruchko et al., 2003), geophysics (Maraun and Kurths, 2005; Mokhov and Smirnov, 2006, 2008; Mosedale et al., 2006; Palus and Novotna, 2006; Verdes, 2005; Wang et al., 2004), cardiology (Rosenblum et al., 2002; Palus and Stefanovska, 2003) and neurophysiology (Arnhold et al., 1999; Brea et al., 2006; Faes et al., 2008; Friston et al., 2003; Kreuz et al., 2007; Kiemel et al., 2003; Le Van Quyen et al., 1999; Mormann et al., 2000; Osterhage et al., 2007; Pereda et al., 2005; Prusseit and Lehnertz, 2008; Smirnov et al., 2005; Romano et al., 2007; Schelter et al., 2006; Schiff et al., 1996; Sitnikova et al., 2008; Smirnov et al., 2008, Staniek and Lehnertz, 2008; Tass, 1999; Tass et al., 2003). Numerous investigations are devoted to synchronisation, which is an effect of interaction between non-linear oscillatory systems (see, e.g., Balanov et al., 2008; Boccaletti et al., 2002; Hramov and Koronovskii, 2004; Kreuz et al., 2007; Maraun and Kurths, 2005; Mormann et al., 2000; Mosekilde et al., 2002; Osipov et al., 2007; Palus and Novotna, 2006; Pikovsky et al., 2001; Prokhorov et al., 2003; Tass et al., 2003). In the last decade, more careful attention is paid to directional coupling analysis. Such characteristics might help, e.g., to localise an epileptic focus (a pathologic area) in the brain from electroencephalogram (EEG) or magnetoencephalogram (MEG) recordings: hypothetically, an increasing influence of an epileptic focus on adjacent areas leads to the seizure onset for some kinds of epilepsy.

  15. Psychiatric Advance Directives: Getting Started

    MedlinePlus

    ... Getting Started State by State Info FAQs Educational Webcasts Links Current Research In the News Legal Issues ... How to write a Psychiatric Advance Directive?" View webcast (15:04) What are Psychiatric Advance Directives? View ...

  16. Undoped and boron doped diamond nanoparticles as platinum and platinum-ruthenium catalyst support for direct methanol fuel cell application

    NASA Astrophysics Data System (ADS)

    La Torre Riveros, Lyda

    Nanoparticular diamond is a promising material that can be used as a robust and chemically stable catalytic support. It has been studied and characterized physically and electrochemically, in its powder and thin film forms. This thesis work intends to demonstrate that undoped diamond nanoparticles (DNPs) and boron-doped diamond nanoparticles (BDDNPs) can be used as an electrode and a catalytic support material for platinum and ruthenium catalysts. The electrochemical properties of diamond nanoparticle electrodes, fabricated using the ink paste method, were investigated. As an initial step, we carried out chemical purification of commercially available undoped DNPs by refluxing in aqueous HNO3 as well as of BDDNPs which were doped through a collaborative work with the University of Missouri. The purified material was characterized by spectroscopic and surface science techniques. The reversibility of reactions such as ferricyanide/ferrocyanide (Fe(CN) 63-/Fe(CN)64-) and hexaamineruthenium (III) chloride complexes as redox probes were evaluated by cyclic voltammetry at the undoped DNPs and BDDNPs surface. These redox probes showed limited peak currents and presented linear relationships between current (i) and the square root of the potential scan rate (v1/2). However, compared to conventional electrodes, the peak currents were smaller. BDDNPs show an improvement in charge transfer currents when compared to undoped DNPs. Platinum and ruthenium nanoparticles were chemically deposited on undoped DNPs and BDDNPs through the use of the excess of a mild reducing agent such NaBH4. In order to improve the nanoparticle dispersion sodium dodecyl benzene sulfonate (SDBS), a surfactant agent, was used. Percentages of platinum and ruthenium metals were varied as well as the stoichiometric amount of the reducing agent to determine adequate parameters for optimum performance in methanol oxidation. Both before and after the reducing process the samples were characterized by scanning electron microscopy (SEM), energy dispersive analysis (EDX), infrared spectroscopy (IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), prompt gamma neutron activation analysis (PGNAA), and X-ray photoelectron spectroscopy (XPS). In order to demonstrate the utility of the catalyst obtained, the samples were tested in an electrochemical cell using methanol as a probe solution. As was performed with the undoped DNPs and BDDNPs, the ink paste method was used to prepare the electrodes with Pt/DNP, Pt-Ru/DNP, Pt/BDDNP and Pt-Ru/BDDNP catalytic systems, to perform the electrochemical experiments. The Pt and Pt-Ru modified diamond electrodes were tested with cyclic voltammetry in 0.5 M H2SO4 as electrolyte support showing hydrogen adsorption/desorption at platinum surfaces. CO gas adsorption/desorption experiments were also performed to determine the active surface area of Pt when Ru is present. Methanol oxidation current peaks were obtained when the electrodes were tested in a 1.0 M methanol/0.5 M H2SO4 solution. The experimental results demonstrated that diamond nanoparticles are useful as an electrode material. A fuel cell is a device which transforms the chemical energy of a fuel directly into electrical energy. As previously mentioned, the aim of this research is to demonstrate the utility of undoped DNPs and BDDNPs as catalytic supports, which was performed by testing the catalytic systems obtained in a single fuel cell station at different temperatures to observe the cell performance.

  17. A Change of Direction

    NASA Technical Reports Server (NTRS)

    2004-01-01

    [figure removed for brevity, see original site]

    Released July 21, 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth.

    Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms.

    In this image we can clearly see a major change in wind regimes. The classic yardang form occupies the top of the image. These older yardangs were formed by a NW/SE wind regime. The younger, smaller yardangs are forming in the rest of the image from a NE/SW wind. The age relationship is readily visible at the intersection area, where the large yardangs are being cut crosswise into NE/SW aligned forms. The top framelet of this image has vertical black/white lines caused by charge on the camera CCD.

    Image information: VIS instrument. Latitude -6.3, Longitude 183.8 East (176.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  18. New directions at NSF

    NASA Astrophysics Data System (ADS)

    Harvey, Albert B.

    1995-10-01

    The mission and scope of the National Science Foundation (NSF) and lightwave technology will be very briefly discussed. The focus of the presentation will be directed toward changes in research support that are taking place and the opportunities we have for aiming our research to meet the challenges and needs that face the nation. In the USA it is very clear that defense oriented research is downsizing and is being redirected into economy driven aresas, such as manufacturing, business, and industry. For those researchers who are willing to move into these areas and find a niche, the rewards may be very great. Industrial research partners should also seize these opportunities to enhance their resources in an otherwise bleak future for industrial support of basic research in lightwave technology and many other reserach disciplines. These activities of bringing together industry and academia will have the value added benefit of providing increased job opportunities for students. An outline of some of these opportunities and incentives will be presented. On the international front, there has never been a better time for the encouragement of joint research and collaboration across borders. The economic potential for involvement in Eastern Europe and Asia are enormous. Agencies like ourselves are open to help support of visiting scientist/engineer exchange, international conferences and forums and support of innovative ideas to help further enhance economic developemnt of the world and hence the quality of life. The presence of the Russian delegation here at these SPIE meetings in in part the result of NSF support. Concomitant with these changes is a growing interest in education. Academia is gradually realizing that education includes training for students to acquire jobs and hence we complete the cycle of the importance of interacting with industry. At the NSF a major new initiative is being introduced in Optical Science and Engineering (OSE). This effort has been created as an outgrowth of the NRC study being conducted in parallel under the same name. OSE is based on the fact that optics is a very interdisciplinary area and special emphasis on the interface between the relevant areas is where the action is. Lightwave technology and the implementation of organic materials to optoelectronic applications is clearly an area which has tremendous potential for economic impact and it fits the criteria for the OSE initiative. It is also exciting, challenging, and personally rewarding. But organic materials have been promising for quite some time and some are getting impatient. To provide credibility to those who support this research (governement, idustry, etc.), we must turn our attention to ways in which we can accelerate the transition from the laboratory discovery to the consumer. In this way everyone will become a winner.

  19. Directional detector of gamma rays

    DOEpatents

    Cox, Samson A.; Levert, Francis E.

    1979-01-01

    A directional detector of gamma rays comprises a strip of an electrical cuctor of high atomic number backed with a strip of a second electrical conductor of low atomic number. These elements are enclosed within an electrical conductor that establishes an electrical ground, maintains a vacuum enclosure and screens out low-energy gamma rays. The detector exhibits a directional sensitivity marked by an increased output in the favored direction by a factor of ten over the output in the unfavored direction.

  20. Strategic Defense Initiative Organization. Directive

    SciTech Connect

    Furtner, R.

    1987-06-04

    The Directive reissues DoD Directive 5141.5, February 21, 1986, and establishes, pursuant to the authority vested in the Secretary of Defense under Title 10, United States Code, and National Security Decision Directive 119, January 6, 1984, the Strategic Defense Initiative Organization as an agency of the Department of Defense with responsibilities, functions, relationships, and authorities as prescribed herein.

  1. Self-Directed Workplace Learning.

    ERIC Educational Resources Information Center

    1998

    This document contains four papers from a symposium on self-directed workplace learning. "Self-Directed Work Teams: Implementation and Performance" (Marcel van der Klink, Hilde ter Horst) discusses the results of a study examining the implementation and effects of self-directed work teams in a land register office and the role of the department's…

  2. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  3. Finding communities in directed networks

    NASA Astrophysics Data System (ADS)

    Kim, Youngdo; Son, Seung-Woo; Jeong, Hawoong

    2010-01-01

    To identify communities in directed networks, we propose a generalized form of modularity in directed networks by presenting the quantity LinkRank, which can be considered as the PageRank of links. This generalization is consistent with the original modularity in undirected networks and the modularity optimization methods developed for undirected networks can be directly applied to directed networks by optimizing our modified modularity. Also, a model network, which can be used as a benchmark network in further community studies, is proposed to verify our method. Our method is supposed to find communities effectively in citation- or reference-based directed networks.

  4. Direct Cardiomyocyte Reprogramming: A New Direction for Cardiovascular Regenerative Medicine

    PubMed Central

    Yi, B. Alexander; Mummery, Christine L.; Chien, Kenneth R.

    2013-01-01

    The past few years have seen unexpected new developments in direct cardiomyocyte reprogramming. Direct cardiomyocyte reprogramming potentially offers an entirely novel approach to cardiovascular regenerative medicine by converting cardiac fibroblasts into functional cardiomyocytes in situ. There is much to be learned, however, about the mechanisms of direct reprogramming in order that the process can be made more efficient. Early efforts have suggested that this new technology can be technically challenging. Moreover, new methods of inducing heart reprogramming will need to be developed before this approach can be translated to the bedside. Despite this, direct cardiomyocyte reprogramming may lead to new therapeutic options for sufferers of heart disease. PMID:24003244

  5. Dynamic behaviors in directed networks

    SciTech Connect

    Park, Sung Min; Kim, Beom Jun

    2006-08-15

    Motivated by the abundance of directed synaptic couplings in a real biological neuronal network, we investigate the synchronization behavior of the Hodgkin-Huxley model in a directed network. We start from the standard model of the Watts-Strogatz undirected network and then change undirected edges to directed arcs with a given probability, still preserving the connectivity of the network. A generalized clustering coefficient for directed networks is defined and used to investigate the interplay between the synchronization behavior and underlying structural properties of directed networks. We observe that the directedness of complex networks plays an important role in emerging dynamical behaviors, which is also confirmed by a numerical study of the sociological game theoretic voter model on directed networks.

  6. Median recoil direction as a WIMP directional detection signal

    NASA Astrophysics Data System (ADS)

    Green, Anne M.; Morgan, Ben

    2010-03-01

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP “smoking gun.” If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of ˜2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  7. The Influence of Directional Associations on Directed Forgetting and Interference

    ERIC Educational Resources Information Center

    Sahakyan, Lili; Goodmon, Leilani B.

    2007-01-01

    Two experiments examined how cross-list directional associations influenced list-method directed forgetting and the degree of interference observed on each list. Each List 1 item had a (a) bidirectionally related item on List 2 (chip ?? potato), (b) forward association with an item on List 2 (chip ? wood), (c) backward association from an item on…

  8. Median recoil direction as a WIMP directional detection signal

    SciTech Connect

    Green, Anne M.; Morgan, Ben

    2010-03-15

    Direct detection experiments have reached the sensitivity to detect dark matter weakly interacting massive particles (WIMPs). Demonstrating that a putative signal is due to WIMPs, and not backgrounds, is a major challenge, however. The direction dependence of the WIMP scattering rate provides a potential WIMP 'smoking gun'. If the WIMP distribution is predominantly smooth, the Galactic recoil distribution is peaked in the direction opposite to the direction of Solar motion. Previous studies have found that, for an ideal detector, of order 10 WIMP events would be sufficient to reject isotropy, and rule out an isotropic background. We examine how the median recoil direction could be used to confirm the WIMP origin of an anisotropic recoil signal. Specifically, we determine the number of events required to confirm the direction of solar motion as the median inverse recoil direction at 95% confidence. We find that for zero background 31 events are required, a factor of {approx}2 more than are required to simply reject isotropy. We also investigate the effect of a nonzero isotropic background. As the background rate is increased the number of events required increases, initially fairly gradually and then more rapidly, once the signal becomes subdominant. We also discuss the effect of features in the speed distribution at large speeds, as found in recent high resolution simulations, on the median recoil direction.

  9. The Influence of Directional Associations on Directed Forgetting and Interference

    ERIC Educational Resources Information Center

    Sahakyan, Lili; Goodmon, Leilani B.

    2007-01-01

    Two experiments examined how cross-list directional associations influenced list-method directed forgetting and the degree of interference observed on each list. Each List 1 item had a (a) bidirectionally related item on List 2 (chip ?? potato), (b) forward association with an item on List 2 (chip ? wood), (c) backward association from an item on

  10. Directionality Time - New Analytical Treatment of Directionally Biased, Crawling Motility

    NASA Astrophysics Data System (ADS)

    Tang, Jay; Loosley, Alexander

    Insights on crucial biological functions often emerge from measuring how animal cells crawl on surfaces, particularly in response to gradients of external cues that cause directionally biased motion. Most existing metrics commonly used to characterize directional migration, such as straightness index (or chemotactic index), persistence time, and turning angle distribution, tend to be sensitive to relatively large errors at short sampling times. In contrast, we recently introduced a new metric, called directionality time, to define the onset time by which a seemingly random motion becomes directionally biased (O'Brien et al., J Leukocyte Biol, 2014, 95:993-1004 Loosley et al., PLOS ONE, 2015, 10.1371). Directionality time is obtained by fitting the mean squared displacement as a function of time interval, in log-log coordinates, to a fit function based on biased and persistent random walk processes. We show that the fit function is approximately model invariant and is applicable to a variety of directionally biased motions. Simulations are performed to show the robustness of the directionality time model and its decoupling from measurement errors. Finally, we demonstrate as an example how to usefully apply the directionality time fit to trajectories of chemotactic neutrophils.

  11. Direct cooled power electronics substrate

    DOEpatents

    Wiles, Randy H [Powell, TN; Wereszczak, Andrew A [Oak Ridge, TN; Ayers, Curtis W. [Kingston, TN; Lowe, Kirk T. [Knoxville, TN

    2010-09-14

    The disclosure describes directly cooling a three-dimensional, direct metallization (DM) layer in a power electronics device. To enable sufficient cooling, coolant flow channels are formed within the ceramic substrate. The direct metallization layer (typically copper) may be bonded to the ceramic substrate, and semiconductor chips (such as IGBT and diodes) may be soldered or sintered onto the direct metallization layer to form a power electronics module. Multiple modules may be attached to cooling headers that provide in-flow and out-flow of coolant through the channels in the ceramic substrate. The modules and cooling header assembly are preferably sized to fit inside the core of a toroidal shaped capacitor.

  12. Scatterometer directional response during rain

    NASA Technical Reports Server (NTRS)

    Bliven, L.; Norcross, G.; Giovanangeli, J.-P.

    1989-01-01

    Rainfall modification of directional scatterometer response from the sea surface was simulated in wind-wave tank experiments. Data show that for the range of conditions in laboratory experiments, rain enhances radar cross section for all azimuthal angles relative to wind direction. This result broadens previous measurements, which showed that scatterometer response increases with increasing rainfall for radars pointing upwind. But more to the point, the data also show that the directional dynamic-range of scatterometry diminishes rapidly as rainfall rate increases. Thus, while it may be possible to determine wind speed and direction during rain, it will require adequate system sensitivity.

  13. Epidemic threshold in directed networks.

    PubMed

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τ(c) for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ(1) in directed networks, where λ(1), also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ(1), principal eigenvector x(1), spectral gap (λ(1)-|λ(2)|), and algebraic connectivity μ(N-1) is studied. Important findings are that the spectral radius λ(1) decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρ(D). Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution. PMID:24483506

  14. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ξ as the percentage of unidirectional links. The epidemic threshold τc for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/λ1 in directed networks, where λ1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ξ. The effect of ξ on the spectral radius λ1, principal eigenvector x1, spectral gap (λ1-λ2), and algebraic connectivity μN-1 is studied. Important findings are that the spectral radius λ1 decreases with the directionality ξ, whereas the spectral gap and the algebraic connectivity increase with the directionality ξ. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ρD. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  15. Directions in Center Director Training

    ERIC Educational Resources Information Center

    Bloom, Paula Jorde; Vinci, Yasmina; Rafanello, Donna; Donohue, Chip

    2011-01-01

    Exchange invited some of the leading trend watchers in the arena of director training to share their insights on the current state and future directions in this country. This article presents the authors' insights on the directions in center director training. They also share their views on whether the amount of and quality of training out there…

  16. Direct Manipulation and Procedural Reasoning.

    ERIC Educational Resources Information Center

    Owen, David

    Arguing that understanding what lies behind the apparent usability of direct manipulation style interfaces might not only help in building better interfaces, but can also draw attention to possible side effects, this paper uses examples from a prototype data manipulation system to pursue a characterization of direct manipulation interfaces as…

  17. Direct Marketing Goes to College.

    ERIC Educational Resources Information Center

    Merante, Joseph A.

    1980-01-01

    The only form of marketing important to an admissions department, direct marketing, whose principal vehicle is direct mail, is identified as an organized method for sharing and distributing information to prospective students. Target audiences, marketing administration, and effective mailings are discussed. (MLW)

  18. Advance directives in family practice.

    PubMed Central

    Kohut, N.; Singer, P. A.

    1993-01-01

    Family physicians can play an important role in helping patients and their families to discuss life-sustaining treatments and to complete advance directives. This article reviews the legal status of, and empirical studies on, advance directives and addresses some important clinical questions about their use relevant to family practice. PMID:8499789

  19. Defense Nuclear Agency (DNA). Directive

    SciTech Connect

    Furtner, R.

    1987-03-18

    Under the authority vested in the Secretary of Defense by Title 10, United States Code, the Directive reissues DoD Directive 5105.31, November 3, 1971, to update the responsibilities, functions, relationship, and authorities of the Defense Nuclear Agency.

  20. Test Directions and Student Personality.

    ERIC Educational Resources Information Center

    Hritz, R. J.; And Others

    The present study and a replication investigated the effects of personality variables on test scores obtained under Answer Every Item (AEI), Do Not Guess (DNG) and Coombs' Type (CT) directions. Subjects were administered a dominance scale and extreme scorers randomly assigned to one of the types of directions, then randomly assigned to complete an…

  1. Direct-Photon-Detection Communications

    NASA Technical Reports Server (NTRS)

    Lesh, J. R.; Katz, J.

    1985-01-01

    Optical communications system based on direct detection of photons rather than heterodyning of carrier with local oscillator. Direct-detection system uses single laser source, pulse-position modulation, and Reed-Solomon coding to protect against burst errors. Conventional photomultiplier tube is receiver. Technology applicable to terrestrial communications.

  2. Optically broadcasting wind direction indicator

    NASA Technical Reports Server (NTRS)

    Zysko, Jan A. (Inventor)

    1994-01-01

    An optically broadcasting wind direction indicator generates flashes of light which are separated by a time interval that is directly proportional to the angle of the wind direction relative to a fixed direction, such as north. An angle/voltage transducer generates a voltage that is proportional to the wind direction relative to the fixed direction, and this voltage is employed by timing circuitry or a microprocessor that generates pulses for actuating a light source trigger circuit first at the start of the time interval, and then at the end of the time interval. To aid an observer in distinguishing between the beginning and end of the interval, two stop flashes can be provided in quick succession. The time scale is preferably chosen so that each second of the time interval corresponds to 30 deg of direction relative to north. In this manner, an observer can easily correlate the measured time interval to the wind direction by visualizing the numbers on a conventional clock face, each of which correspond to one second of time and 30 deg of angle.

  3. Efficient Placement of Directional Antennas

    SciTech Connect

    Pan, Feng; Kasiviswanathan, Shiva

    2010-09-20

    Directional antenna is an technology for the proliferation of wireless networks. In centralized wireless network, wireless devices communicate through base stations. Directed antennas are placed on base stations and form a backbone of communication. The communication between base stations and wireless devices can be interfered due to a large number of wireless device. Methodically positioning and orienting directed antennas can help to reduce the interference while saving energy. An integer linear programming is developed for siting and directing antennas on multiple base stations, and this formulation can be extended to model non-overlapping channels. Through the integer programming formulation, optimal antenna positions can be used to analyze the performance of directed antennas with different parameters like the number base stations and the number of non-overlapping channels.

  4. Directivity function of muon detector

    NASA Astrophysics Data System (ADS)

    Karapetyan, G. G.

    2015-02-01

    We introduce a new concept of directivity function (DF) to describe directional sensitivity of a particle detector. DF is а 3D function, describing the sensitivity of a detector to asymptotic directions of primary protons. It defines the contribution of primary protons, arriving from different asymptotic directions to the count rate of the detector. We develop the approach for computing the DF and derive it in particular case of SEVAN muon detector, located at mount Aragats, Armenia. Obtained data enable one to outline the region of solid angles, inside of which the arriving protons contribute a given percentage of count rate. In general, the DF can have the multi peak shape. It provides the most detailed and accurate description of directional sensitivity of a particle detector and we suggest that it is used in space research based on neutron and muon detectors.

  5. Direct catastrophic injury in sports.

    PubMed

    Boden, Barry P

    2005-11-01

    Catastrophic sports injuries are rare but tragic events. Direct (traumatic) catastrophic injury results from participating in the skills of a sport, such as a collision in football. Football is associated with the greatest number of direct catastrophic injuries for all major team sports in the United States. Pole vaulting, gymnastics, ice hockey, and football have the highest incidence of direct catastrophic injuries for sports in which males participate. In most sports, the rate of catastrophic injury is higher at the collegiate than at the high school level. Cheerleading is associated with the highest number of direct catastrophic injuries for all sports in which females participate. Indirect (nontraumatic) injury is caused by systemic failure as a result of exertion while participating in a sport. Cardiovascular conditions, heat illness, exertional hyponatremia, and dehydration can cause indirect catastrophic injury. Understanding the common mechanisms of injury and prevention strategies for direct catastrophic injuries is critical in caring for athletes. PMID:16272269

  6. Hierarchical Structure Formation of Nanoparticulate Spray-Dried Composite Aggregates.

    PubMed

    Zellmer, Sabrina; Garnweitner, Georg; Breinlinger, Thomas; Kraft, Torsten; Schilde, Carsten

    2015-11-24

    The design of hierarchically structured nano- and microparticles of different sizes, porosities, surface areas, compositions, and internal structures from nanoparticle building blocks is important for new or enhanced application properties of high-quality products in a variety of industries. Spray-drying processes are well-suited for the design of hierarchical structures of multicomponent products. This structure design using various nanoparticles as building blocks is one of the most important challenges for the future to create products with optimized or completely new properties. Furthermore, the transfer of designed nanomaterials to large-scale products with favorable handling and processing can be achieved. The resultant aggregate structure depends on the utilized nanoparticle building blocks as well as on a large number of process and formulation parameters. In this study, structure formation and segregation phenomena during the spray drying process were investigated to enable the synthesis of tailor-made nanostructures with defined properties. Moreover, a theoretical model of this segregation and structure formation in nanosuspensions is presented using a discrete element method simulation. PMID:26505280

  7. Dual-nanoparticulate-reinforced aluminum matrix composite materials

    NASA Astrophysics Data System (ADS)

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al4C3) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al4C3. Along with the CNT and the nano-SiC, Al4C3 also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials.

  8. Dual-nanoparticulate-reinforced aluminum matrix composite materials.

    PubMed

    Kwon, Hansang; Cho, Seungchan; Leparoux, Marc; Kawasaki, Akira

    2012-06-01

    Aluminum (Al) matrix composite materials reinforced with carbon nanotubes (CNT) and silicon carbide nanoparticles (nano-SiC) were fabricated by mechanical ball milling, followed by hot-pressing. Nano-SiC was used as an active mixing agent for dispersing the CNTs in the Al powder. The hardness of the produced composites was dramatically increased, up to eight times higher than bulk pure Al, by increasing the amount of nano-SiC particles. A small quantity of aluminum carbide (Al(4)C(3)) was observed by TEM analysis and quantified using x-ray diffraction. The composite with the highest hardness values contained some nanosized Al(4)C(3). Along with the CNT and the nano-SiC, Al(4)C(3) also seemed to play a role in the enhanced hardness of the composites. The high energy milling process seems to lead to a homogeneous dispersion of the high aspect ratio CNTs, and of the nearly spherical nano-SiC particles in the Al matrix. This powder metallurgical approach could also be applied to other nanoreinforced composites, such as ceramics or complex matrix materials. PMID:22571898

  9. Thick film magnetic nanoparticulate composites and method of manufacture thereof

    NASA Technical Reports Server (NTRS)

    Ma, Xinqing (Inventor); Zhang, Yide (Inventor); Ge, Shihui (Inventor); Zhang, Zongtao (Inventor); Yan, Dajing (Inventor); Xiao, Danny T. (Inventor)

    2009-01-01

    Thick film magnetic/insulating nanocomposite materials, with significantly reduced core loss, and their manufacture are described. The insulator coated magnetic nanocomposite comprises one or more magnetic components, and an insulating component. The magnetic component comprises nanometer scale particles (about 1 to about 100 nanometers) coated by a thin-layered insulating phase. While the intergrain interaction between the immediate neighboring magnetic nanoparticles separated by the insulating phase provides the desired soft magnetic properties, the insulating material provides high resistivity, which reduces eddy current loss.

  10. Nanoparticulate gellants for metallized gelled liquid hydrogen with aluminum

    NASA Technical Reports Server (NTRS)

    Palaszewski, Bryan; Starkovich, John; Adams, Scott

    1996-01-01

    Gelled liquid hydrogen was experimentally formulated using sol-gel technology. As a follow-on to work with cryogenic simulants, hydrogen was gelled with an alkoxide material: BTMSE. Initial results demonstrated that gellants with a specific surface area of 1000 m(exp 2)/g could be repeatably fabricated. Gelled hexane and metallized gelled hexane (with 13.8-wt% Al) were produced. Propellant settling testing was conducted for acceleration levels of 2 to 10 times normal gravity and a minimum gellant percentage was determined for stable gelled hexane and metalized gelled hexane. A cryogenic capillary rheometer was also designed, constructed, and used to determine the viscosity of gelled hydrogen. Small volumes of liquid hydrogen were gelled with a 7- to 8-wt% gellant level. The gelled H2 viscosity was 1.5 to 3.7 times that of liquid hydrogen: 0.048 to 0.116 mPa-s versus 0.03 mPa-s for liquid H2 (at 16 K and approximately 1 atm pressure).

  11. Paclitaxel loaded PEGylated gleceryl monooleate based nanoparticulate carriers in chemotherapy.

    PubMed

    Jain, Vikas; Swarnakar, Nitin K; Mishra, Prabhat R; Verma, Ashwni; Kaul, Ankur; Mishra, Anil K; Jain, Narendra K

    2012-10-01

    A PEGylated drug delivery system of paclitaxel (PTX), based on glyceryl monooleate (GMO) was prepared by optimizing various parameters to explore its potential in anticancer therapy. The prepared system was characterized through polarized light microscopy, TEM, AFM and SAXS to reveal its liquid crystalline nature. As GMO based LCNPs exhibit high hemolytic toxicity and faster release of entrapped drug (66.2 ± 2.5% in 24 h), PEGylation strategy was utilized to increase the hemocompatibility (reduction in hemolysis from 60.3 ± 10.2 to 4.4 ± 1.3%) and control the release of PTX (43.6 ± 3.2% released in 24 h). The cytotoxic potential and cellular uptake was assessed in MCF-7 cell lines. Further, biodistribution studies were carried out in EAT (Ehrlich Ascites tumor) bearing mice using (99m)Tc-(Technetium radionuclide) labeled formulations and an enhanced circulation time and tumor accumulation (14 and 8 times, respectively) were observed with PEGylated carriers over plain ones, at 24 h. Finally, tumor growth inhibition experiment was performed and after 15 days, control group exhibited 15 times enhancement in tumor volume, while plain and PEGylated systems exhibited only 8 and 4 times enhancement, respectively, as compared to initial tumor volume. The results suggest that PEGylation enhances the hemocompatibility and efficacy of GMO based system that may serve as an efficient i.v. delivery vehicle for paclitaxel. PMID:22809646

  12. Photoproduction of iodine with nanoparticulate semiconductors and insulators.

    PubMed

    Karunakaran, Chockalingam; Anilkumar, Premkumar; Gomathisankar, Paramasivan

    2011-01-01

    The crystal structures of different forms of TiO2 and those of BaTiO3, ZnO, SnO2, WO3, CuO, Fe2O3, Fe3O4, ZrO2 and Al2O3 nanoparticles have been deduced by powder X-ray diffraction. Their optical edges have been obtained by UV-visible diffuse reflectance spectra. The photocatalytic activities of these oxides and also those of SiO2 and SiO2 porous to oxidize iodide ion have been determined and compared. The relationships between the photocatalytic activities of the studied oxides and the illumination time, wavelength of illumination, concentration of iodide ion, airflow rate, photon flux, pH, etc., have been obtained. Use of acetonitrile as medium favors the photogeneration of iodine. PMID:21679411

  13. Nanoparticulate Adjuvants and Delivery Systems for Allergen Immunotherapy

    PubMed Central

    De Souza Rebouas, Juliana; Esparza, Irene; Ferrer, Marta; Sanz, Mara Luisa; Irache, Juan Manuel; Gamazo, Carlos

    2012-01-01

    In the last decades, significant progress in research and clinics has been made to offer possible innovative therapeutics for the management of allergic diseases. However, current allergen immunotherapy shows limitations concerning the long-term efficacy and safety due to local side effects and risk of anaphylaxis. Thus, effective and safe vaccines with reduced dose of allergen have been developed using adjuvants. Nevertheless, the use of adjuvants still has several disadvantages, which limits its use in human vaccines. In this context, several novel adjuvants for allergen immunotherapy are currently being investigated and developed. Currently, nanoparticles-based allergen-delivery systems have received much interest as potential adjuvants for allergen immunotherapy. It has been demonstrated that the incorporation of allergens into a delivery system plays an important role in the efficacy of allergy vaccines. Several nanoparticles-based delivery systems have been described, including biodegradable and nondegradable polymeric carriers. Therefore, this paper provides an overview of the current adjuvants used for allergen immunotherapy. Furthermore, nanoparticles-based allergen-delivery systems are focused as a novel and promising strategy for allergy vaccines. PMID:22496608

  14. Topical nanoparticulate formulation of drugs for ocular keratitis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoyan

    The primary objective of this project is to develop drug-loaded polymeric nanoparticles suspended in a biocompatible gel for topical delivery of therapeutic agents commonly employed in the treatment of ocular viral/bacterial keratitis. PART 1: Poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NP) of dipeptide monoester prodrugs of ganciclovir (GCV) including L-Val-L-Val-GCV (LLGCV), L-Val-D-Val-GCV (LDGCV), D-Val-L-Val-GCV (DLGCV) were formulated and dispersed in thermosensitive PLGA-PEG-PLGA polymer gel for the treatment of herpes simplex virus type 1 (HSV-1) induced viral corneal keratitis. NP containing prodrugs of GCV were prepared by a double-emulsion solvent evaporation technique using various PLGA polymers with different drug/polymer ratios. Cytotoxicity studies suggested that all NP formulations are non-toxic. In vitro release of prodrugs from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels with near zero-order release kinetics. Prodrugs-loaded PLGA NP dispersed in thermosensitive gels can thus serve as a promising drug delivery system for the treatment of anterior eye diseases. Maximum uptake (around 60%) was noted at 3 h for NP. Cellular uptake and intracellular accumulation of prodrugs are significantly different among three stereoisomeric dipeptide prodrugs. The microscopic images show that NP are avidly internalized by HCEC cells and distributed throughout the cytoplasm instead of being localized on the cell surface. Following cellular uptake, prodrugs released from NP gradually bioreversed into parent drug GCV. LLGCV showed the highest degradation rate, followed by LDGCV and DLGCV. LLGCV, LDGCV and DLGCV released from NP exhibited superior uptake and bioreversion in corneal cells. PART 2: PLGA NP of hydrocortisone butyrate (HB) suspended in thermosensitive PLGA-PEG-PLGA gel were developed for the treatment of bacterial corneal keratitis. Experimental designs were employed in order to investigate specific effects of independent variables during preparation of HB-loaded PLGA NP and corresponding responses in optimizing the formulation. NP containing HB were prepared by an oil-in-water (O/W) emulsion evaporation technique with different surfactants including polyvinyl alcohol (PVA), pluronic F-108 and chitosan. NP were characterized with respect to particle size, entrapment efficiency, polydispersity, drug loading, surface morphology, zeta potential and crystallinity. In vitro release of HB from NP showed a biphasic release pattern with an initial burst phase followed by a sustained phase. Such burst effect was completely eliminated when NP were suspended in thermosensitive gels and zero-order release kinetics was observed. Percentage of uptake in HCEC after 4 h was 59.09+/-6.21% for PVA-emulsified NP relative to 55.74+/-6.26% for pluronic-emulsified NP, and 62.54+/-3.30% for chitosan-emulsified NP, respectively. In HCEC cell line, chitosan-emulsified NP with chitosan showed highest cellular uptake efficiency over PVA- and pluronic-emulsified NP. However, NP with chitosan indicated significant cytotoxicity under 200 and 500 ?g/mL after 48 h, while NP with PVA and pluronic showed no significant cytotoxicity. PLGA NP dispersed in thermosensitive gels can be considered as a promising drug delivery system for the treatment of anterior eye diseases.

  15. NOVEL NANOPARTICULATE CATALYSTS FOR IMPROVED VOC TREATMENT DEVICES - PHASE I

    EPA Science Inventory

    Catalytic oxidation of VOCs is increasingly used for treatment of large-volume emissions at relatively dilute VOC levels. The best performing catalytic oxidation devices for attainment of very high VOC destruction levels employ precious metal catalysts, the costs of which a...

  16. Direct Manipulation in Virtual Reality

    NASA Technical Reports Server (NTRS)

    Bryson, Steve

    2003-01-01

    Virtual Reality interfaces offer several advantages for scientific visualization such as the ability to perceive three-dimensional data structures in a natural way. The focus of this chapter is direct manipulation, the ability for a user in virtual reality to control objects in the virtual environment in a direct and natural way, much as objects are manipulated in the real world. Direct manipulation provides many advantages for the exploration of complex, multi-dimensional data sets, by allowing the investigator the ability to intuitively explore the data environment. Because direct manipulation is essentially a control interface, it is better suited for the exploration and analysis of a data set than for the publishing or communication of features found in that data set. Thus direct manipulation is most relevant to the analysis of complex data that fills a volume of three-dimensional space, such as a fluid flow data set. Direct manipulation allows the intuitive exploration of that data, which facilitates the discovery of data features that would be difficult to find using more conventional visualization methods. Using a direct manipulation interface in virtual reality, an investigator can, for example, move a data probe about in space, watching the results and getting a sense of how the data varies within its spatial volume.

  17. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  18. Nonimaging radiant energy direction device

    DOEpatents

    Winston, Roland (Chicago, IL)

    1980-01-01

    A raidant energy nonimaging light direction device is provided. The device includes an energy transducer and a reflective wall whose contour is particularly determined with respect to the geometrical vector flux of a field associated with the transducer.

  19. Directive Teaching in the Classroom

    ERIC Educational Resources Information Center

    Stephens, Thomas M.

    1974-01-01

    Five steps in directive teaching are delineated: a) select target children; b) identify target behaviors; c) identify reinforcing events; d) establish plan, including instructional goals, reinforcement, and reward schedule; and e) implement and evaluate. (HMD)

  20. Direct Broadcast Satellite: Radio Program

    NASA Technical Reports Server (NTRS)

    Hollansworth, James E.

    1992-01-01

    NASA is committed to providing technology development that leads to the introduction of new commercial applications for communications satellites. The Direct Broadcast Satellite-Radio (DBS-R) Program is a joint effort between The National Aeronautics and Space Administration (NASA) and The United States Information Agency/Voice of America (USIA/VOA) directed at this objective. The purpose of this program is to define the service and develop the technology for a direct-to-listener satellite sound broadcasting system. The DBS-R Program, as structured by NASA and VOA, is now a three-phase program designed to help the U.S. commercial communications satellite and receiver industry bring about this new communications service. Major efforts are being directed towards frequency planning hardware and service development, service demonstration, and experimentation with new satellite and receiver technology.

  1. DRIFT COMPENSATED DIRECT COUPLED AMPLIFIER

    DOEpatents

    Windsor, A.A.

    1959-05-01

    An improved direct-coupled amplifier having zerolevel drift correction is described. The need for an auxiliary corrective-potential amplifier is eliminated thereby giving protection against overload saturation of the zero- level drift correcting circuit. (T.R.H.)

  2. Direct Detectors for Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Clough, R. N.; Moldovan, G.; Kirkland, A. I.

    2014-06-01

    There is interest in improving the detectors used to capture images in transmission electron microscopy. Detectors with an improved modulation transfer function at high spatial frequencies allow for higher resolution in images at lower magnification, which leads to an increased effective field of view. Detectors with improved detective quantum efficiency are important for low dose applications. One way in which these performance enhancements can be achieved is through direct detection, where primary electrons are converted directly into suitable electrical signals by the detector rather than relying on an indirect electron to photon conversion before detection. In this paper we present the characterisation of detector performance for a number of different direct detection technologies, and compare these technologies to traditional indirect detectors. Overall our results show that direct detection enables a significant improvement in all aspects of detector performance.

  3. Directional archaeomagnetic observations from Egypt

    NASA Astrophysics Data System (ADS)

    Tarling, D. H.; Evans, M. E.; Kafafy, A. M.; Abdeldayem, A. L.

    2003-04-01

    Directional archaeomagnetic data have been obtained from sites in Luxor (500-400 BC), near Aswan (c.1700 BC), and at Giza (c.2300 BC). All samples have been subjected to AF demagnetisation and very high within-site consistency has been found in most sites, enabling the direction of the geomagnetic field to be determined for different times at different locations. The sites as Giza were the least well defined, possibly reflecting chemical changes during, or subsequent to, burial beneath the sand and therefore requiring more extensive sampling in the future. Nonetheless, these directional data provide constraints on geomagnetic directional changes in Egypt and enable an assessment of the extent to which the internal consistency of the Egyptian Calendar can be evaluated and the potential assessed for correlations with, for example, Minoan and Hebrew records.

  4. Quantum direct communication with authentication

    SciTech Connect

    Lee, Hwayean; Lim, Jongin; Yang, HyungJin

    2006-04-15

    We propose two quantum direct communication (QDC) protocols with user authentication. Users can identify each other by checking the correlation of Greenberger-Horne-Zeilinger (GHZ) states. Alice can directly send a secret message to Bob without any previously shared secret using the remaining GHZ states after authentication. Our second QDC protocol can be used even though there is no quantum link between Alice and Bob. The security of the transmitted message is guaranteed by properties of entanglement of GHZ states.

  5. Direct nuclear-powered lasers

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1983-01-01

    The development of direct nuclear pumped lasers is reviewed. Theoretical and experimental investigations of various methods of converting the energy of nuclear fission fragments to laser power are summarized. The development of direct nuclear pumped lasers was achieved. The basic processes involved in the production of a plasma by nuclear radiation were studied. Significant progress was accomplished in this area and a large amount of basic data on plasma formation and atomic and molecular processes leading to population inversions is available.

  6. Direct Measurement of Intracellular Pressure

    PubMed Central

    Petrie, Ryan J.; Koo, Hyun

    2014-01-01

    A method to directly measure the intracellular pressure of adherent, migrating cells is described in the Basic Protocol. This approach is based on the servo-null method where a microelectrode is introduced into the cell to directly measure the physical pressure of the cytoplasm. We also describe the initial calibration of the microelectrode as well as the application of the method to cells migrating inside three-dimensional (3D) extracellular matrix (ECM). PMID:24894836

  7. Directional microwave applicator and methods

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)

    2008-01-01

    A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.

  8. Asymmetric Wettability Directs Leidenfrost Droplets

    SciTech Connect

    Agapov, Rebecca L; Boreyko, Jonathan B; Briggs, Dayrl P; Srijanto, Bernadeta R; Retterer, Scott T; Collier, Pat; Lavrik, Nickolay V

    2014-01-01

    Leidenfrost phenomena on nano- and microstructured surfaces are of great importance for increasing control over heat transfer in high power density systems utilizing boiling phenomena. They also provide an elegant means to direct droplet motion in a variety of recently emerging fluidic systems. Here, we report the fabrication and characterization of tilted nanopillar arrays (TNPAs) that exhibit directional Leidenfrost water droplets under dynamic conditions, namely on impact with Weber numbers 40 at T 325 C. The batch fabrication of the TNPAs was achieved by glancing-angle anisotropic reactive ion etching of a thermally dewet platinum mask, with mean pillar diameters of 100 nm and heights of 200-500 nm. In contrast to previously implemented macro- and microscopic Leidenfrost ratchets, our TNPAs induce no preferential directional movement of Leidenfrost droplets under conditions approaching steady-state film boiling, suggesting that the observed droplet directionality is not a result of asymmetric vapor flow. Using high-speed imaging, phase diagrams were constructed for the boiling behavior upon impact for droplets falling onto TNPAs, straight nanopillar arrays, and smooth silicon surfaces. The asymmetric impact and directional trajectory of droplets was exclusive to the TNPAs for impacts corresponding to the transition boiling regime, revealing that asymmetric wettability upon impact is the mechanism for the droplet directionality.

  9. The underachieving advance directive: recommendations for increasing advance directive completion.

    PubMed

    Eiser, A R; Weiss, M D

    2001-01-01

    Advance directives have failed to achieve a substantial completion rate nationwide despite prior efforts. We hypothesize that the continued low completion rate itself inhibits their utility and application. In this commentary we recommend linking the completion of advance directives to the time when health insurance is initiated or renewed by amending the Patient Self Determination Act. This would relocate the time and locus of their completion from the emotional turmoil of hospital admission and acute illness to a more equanimous time when family and others can be consulted and involved. Moreover actuating increased utilization may require non-coercive incentives as well as education. Amending the Patient Self Determination Act to require providing advance directive forms at the initiation of healthcare insurance in conjunction with educational and/or incentives could be more effective than the current arrangements. PMID:12861997

  10. The health care information directive

    PubMed Central

    2001-01-01

    Background Developments in information technology promise to revolutionise the delivery of health care by providing access to data in a timely and efficient way. Information technology also raises several important concerns about the confidentiality and privacy of health data. New and existing legislation in Europe and North America may make access to patient level data difficult with consequent impact on research and health surveillance. Although research is being conducted on technical solutions to protect the privacy of personal health information, there is very little research on ways to improve individuals power over their health information. This paper proposes a health care information directive, analogous to an advance directive, to facilitate choices regarding health information disclosure. Results and Discussion A health care information directive is described which creates a decision matrix that combines the ethical appropriateness of the use of personal health information with the sensitivity of the data. It creates a range of possibilities with in which individuals can choose to contribute health information with or without consent, or not to contribute information at all. Conclusion The health care information directive may increase individuals understanding of the uses of health information and increase their willingness to contribute certain kinds of health information. Further refinement and evaluation of the directive is required. PMID:11331535

  11. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  12. "Let Me Be Direct": Using Direct Assessments with Student Leaders

    ERIC Educational Resources Information Center

    Lindsay, Nathan; Hourigan, Aimee; Smist, Jennifer; Wray, Larry

    2013-01-01

    A primary goal of assessment is to deliver truthful and clear information that can be used to inform and improve outcomes. Although there are multiple ways to achieve this goal, common approaches can be broken down into two major categories: (1) direct assessment; and (2) indirect assessment. Indirect assessment typically relies on general…

  13. Directive and Non-Directive Movement in Child Therapy.

    ERIC Educational Resources Information Center

    Krason, Katarzyna; Szafraniec, Grazyna

    1999-01-01

    Presents a new authorship method of child therapy based on visualization through motion. Maintains that this method stimulates motor development and musical receptiveness, and promotes personality development. Suggests that improvised movement to music facilitates the projection mechanism and that directed movement starts the channeling phase.…

  14. Multi-Directional Environmental Sensors

    NASA Technical Reports Server (NTRS)

    Manohara, Harish (Inventor); Del Castillo, Linda Y. (Inventor); Mojarradi, Mohammed M. (Inventor)

    2016-01-01

    Systems and methods in accordance with embodiments of the invention implement multi-directional environmental sensors. In one embodiment, a multi-directional environmental sensor includes: an inner conductive element that is substantially symmetrical about three orthogonal planes; an outer conductive element that is substantially symmetrical about three orthogonal planes; and a device that measures the electrical characteristics of the multi-directional environmental sensor, the device having a first terminal and a second terminal; where the inner conductive element is substantially enclosed within the outer conductive element; where the inner conductive element is electrically coupled to the first terminal of the device; and where the outer conductive element is electrically coupled to the second terminal of the device.

  15. Direct vs. Indirect Moral Enhancement.

    PubMed

    Schaefer, G Owen

    2015-09-01

    Moral enhancement is an ostensibly laudable project. Who wouldn't want people to become more moral? Still, the project's approach is crucial. We can distinguish between two approaches for moral enhancement: direct and indirect. Direct moral enhancements aim at bringing about particular ideas, motives or behaviors. Indirect moral enhancements, by contrast, aim at making people more reliably produce the morally correct ideas, motives or behaviors without committing to the content of those ideas, motives and/or actions. I will argue, on Millian grounds, that the value of disagreement puts serious pressure on proposals for relatively widespread direct moral enhancement. A more acceptable path would be to focus instead on indirect moral enhancements while staying neutral, for the most part, on a wide range of substantive moral claims. I will outline what such indirect moral enhancement might look like, and why we should expect it to lead to general moral improvement. PMID:26412738

  16. Solid state directional gamma detector

    NASA Astrophysics Data System (ADS)

    Baird, W.; Unruh, W. P.; Bjarke, G. O.; Beauchamp, P. K.

    A solid-state gamma-ray detector has been developed which exhibits directionality. Four PIN diode detectors are backed with Pb and arranged in a square array which exhibits an angular response to gamma rays. The high-Z material provides directionality and also enhances the sensitivity of the detectors to high-energy gammas by means of the X-ray fluorescence accompanying photon interactions in the backing. The array responses are used to identify the quadrant containing the source and obtain the radiation level. Ratios of the counting rates in opposite pairs of detectors are used to determine the angular position of the source within the quadrant.

  17. The AISI direct steelmaking program

    SciTech Connect

    Aukrust, E. ); Downing, K.B. )

    1991-01-01

    After six months of operation of the pilot plant, the viability of in-bath smelting combined with a high level of post combustion has been demonstrated, and the opportunity exists for an early commercialization of the direct ironmaking part of the process while we continue to research direct steelmaking. The program should be of equal interest to integrated and electric furnace producers. Smelting of ore provides virgin iron units. Additionally, the process has the flexibility of melting scrap and varying the ore-to-scrap ratio over wide ranges. This process does not require coke, thus eliminating the cokemaking operation, a major source of environmental concern.

  18. Directional drilling and earth curvature

    SciTech Connect

    Williamson, H.S.; Wilson, H.F.

    2000-03-01

    This paper provides a review of current practices for calculating directional drilling placement in the light of modern extended-reach applications. The review highlights the potential for gross errors in the application of geodetic reference information and errors inherent in the calculation method. Both types of error are quantified theoretically and illustrated with a real example. The authors borrow established land surveying calculation methods to develop a revised best practice for directional drilling. For the elimination of gross errors they prescribe increased awareness and a more disciplined approach to the handling of positional data.

  19. Sparse Direct Methods: An Introduction

    NASA Astrophysics Data System (ADS)

    Scott, J. A.

    The solution of large-scale linear systems lies at the heart of many computations in science, engineering, industry, and (more recently) finance. In this paper, we give a brief introduction to direct methods based on Gaussian elimination for the solution of such systems. We discuss the methods with reference to the sparse direct solvers that are available in the Harwell Subroutine Library. We briefly consider large sparse eigenvalue problems and show how the efficient solution of such problems depends upon the efficient solution of sparse linear systems.

  20. Directions for improved fusion reactors

    SciTech Connect

    Krakowski, R.A.; Miller, R.L.; Delene, J.G.

    1986-01-01

    Conceptual fusion reactor studies over the past 10 to 15 years have projected systems that may be too large, complex, and costly to be of commercial interest. One main direction for improved fusion reactors points towards smaller, higher-power-density approaches. First-order economic issues (i.e., unit direct cost and cost of electricity) are used to support the need for more compact fusion reactors. A generic fusion physics/engineering/costing model is used to provide a quantiative basis for these arguments for specific fusion concepts.

  1. Biocatalyst Development by Directed Evolution

    PubMed Central

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-01-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  2. Directional coupler for optical waveguides

    NASA Technical Reports Server (NTRS)

    Schineller, E. R.; Wilmot, D. W.

    1970-01-01

    Feasibility study of transmitting optical energy in single mode through photonic waveguides results in a conceptual directional coupler consisting of two types of optical waveguides /a stratified /core/ dielectric and a mirror wall/. Waveguide medium analysis produced formulation of mode cutoff conditions, field distributions, and propagation characteristics.

  3. The 1990 direct support infrastructure

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The airport and cargo terminal were individually analyzed in depth as the principal direct infrastructure components having cross impacts with aircraft carrying cargo. Containerization was also addressed in depth as an infrastructure component since it categorically is linked with and cross impacted by the aircraft, the cargo terminal, the surface transport system, the shipper and consignee, and the actual cargo being moved.

  4. The Direct Loan Reconciliation Game.

    ERIC Educational Resources Information Center

    Department of Education, Washington, DC.

    This training guide for a one-day workshop provides an introduction to the William D. Ford Federal Direct Loan Program for administrative personnel at higher education institutions. The six sections of the guide, each corresponding to a workshop session, include activity sheets, questions for participants to answer, and space for notes. Following…

  5. Direct Sum Decomposition of Groups

    ERIC Educational Resources Information Center

    Thaheem, A. B.

    2005-01-01

    Direct sum decomposition of Abelian groups appears in almost all textbooks on algebra for undergraduate students. This concept plays an important role in group theory. One simple example of this decomposition is obtained by using the kernel and range of a projection map on an Abelian group. The aim in this pedagogical note is to establish a direct…

  6. Laboratory-Directed Protein Evolution

    PubMed Central

    Yuan, Ling; Kurek, Itzhak; English, James; Keenan, Robert

    2005-01-01

    Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences. PMID:16148303

  7. High-directivity acoustic antenna

    NASA Technical Reports Server (NTRS)

    El-Sum, H. M. A.

    1974-01-01

    Acoustic antenna with unique electronic steering control is used to identify and define aerodynamic noise sources in free field, particularly in wind tunnel which is quite reverberant. Provision is made for high directivity as well as improved discrimination against unwanted background noise such as reverberation or echoes.

  8. Direct simulation of turbulent combustion

    NASA Technical Reports Server (NTRS)

    Poinsot, Thierry J.

    1991-01-01

    Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct simulation appears to be one of the most attractive tools to use in addressing this problem. From Sep. 1989 - Sep. 1990, the following problems were studied using direct simulation but also experiments and theoretical models: (1) the influence of curvature on premixed flame fronts; (2) the construction of a model for the flame stretch based on direct simulation and multifractal analysis; and (3) the simulation of the interaction between random flow field and a flame front. The general objective was to improve knowledge of turbulent combustion but also to use this information for turbulent combustion models. The transfer of direct simulation results towards models is also in progress. A submodel to evaluate the flame stretch was derived from the present study and incorporated in the Coherent Flame model used in France for piston and aircraft engines.

  9. Training of Direct Service Staff.

    ERIC Educational Resources Information Center

    Wallace, Teri, Ed.; And Others

    1992-01-01

    This newsletter theme issue features articles on training of direct service staff working with persons with developmental disabilities in employment, education, and residential settings. The articles examine job training, delivery systems, training models, and implications of current approaches. The newsletter includes three articles presenting…

  10. The Internet: Trends and Directions.

    ERIC Educational Resources Information Center

    Anderson, Byron

    1996-01-01

    Examines current trends and directions in information technology and telecommunications. Discusses legislation; mergers and acquisitions; Internet service providers; fiscal control in libraries and the pooling of electronic information access through consortiums; demand for more bandwidth; technology selection; Internet usage patterns; the…

  11. Directing Performers for the Cameras.

    ERIC Educational Resources Information Center

    Wilson, George P., Jr.

    An excellent way for an undergraduate, novice director of television and film to pick up background experience in directing performers for cameras is by participating in nonbroadcast-film activities, such as theatre, dance, and variety acts, both as performer and as director. This document describes the varieties of activities, including creative,…

  12. Reflections, Perceptions, and Future Directions.

    ERIC Educational Resources Information Center

    Renzulli, Joseph S.

    1999-01-01

    This response by the original author to critiques of his review of his own work in gifted education suggests possible new directions for the field. These include: the relationship between general and gifted education, the under representation of minority students as the "time bomb" of gifted education, achieving a balance between curricular…

  13. Direction discriminating hearing aid system

    NASA Technical Reports Server (NTRS)

    Jhabvala, M.; Lin, H. C.; Ward, G.

    1991-01-01

    A visual display was developed for people with substantial hearing loss in either one or both ears. The system consists of three discreet units; an eyeglass assembly for the visual display of the origin or direction of sounds; a stationary general purpose noise alarm; and a noise seeker wand.

  14. Oriented Matrix Promotes Directional Tubulogenesis

    PubMed Central

    Soucy, Patricia A.; Hoh, Maria; Heinz, Will; Hoh, Jan; Romer, Lewis

    2014-01-01

    Detailed control over the structural organization of scaffolds and engineered tissue constructs is a critical need in the quest to engineer functional tissues using biomaterials. This work presents a new approach to the spatial direction of endothelial tubulogenesis. Micropatterned fibronectin substrates were used to control lung fibroblast adhesion and growth and the subsequent deposition of fibroblast-derived matrix during culture. The fibroblast-derived matrix produced on the micropatterned substrates was tightly oriented by these patterns, with an average variation of only 8.5. Further, regions of this oriented extracellular matrix provided directional control of developing endothelial tubes to within 10 of the original micropatterned substrate design. Endothelial cells seeded directly onto the micropatterned substrate did not form tubes. A metric for matrix anisotropy showed a relationship between the fibroblast-derived matrix and the endothelial tubes that were subsequently developed on the same micropatterns with a resulting aspect ratio over 1.5 for endothelial tubulogenesis. Micropatterns in L and Y shapes were used to direct endothelial tubes to turn and branch with the same level of precision. These data demonstrate that anisotropic fibroblast-derived matrices instruct the alignment and shape of endothelial tube networks, thereby introducing an approach that could be adapted for future design of microvascular implants featuring organ-specific natural matrix that patterns microvascular growth. PMID:25219769

  15. Practice-Directed Engineering Education

    ERIC Educational Resources Information Center

    Dixon, John R.; Nelson, Carl W.

    1973-01-01

    Outlines the academic premises made in traditional engineering education in comparison with the educational objectives of practice-directed curricula. Suggests that the practice-audit-study learning mode should be adopted in place of the lecture-homework-exam-grade system. (CC)

  16. Directions for Defense Digital Libraries.

    ERIC Educational Resources Information Center

    Larsen, Ronald L.

    1998-01-01

    Describes directions, challenges, and objectives of the information management program of the United States Defense Advanced Research Projects Agency (DARPA). The program envisions the rigor and organization normally associated with a research library to be virtually rendered and extended in the networked world of distributed information. (AEF)

  17. Electromagnetic direct implicit PIC simulation

    SciTech Connect

    Langdon, A.B.

    1983-03-29

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.

  18. Curriculum Change: Direction and Process.

    ERIC Educational Resources Information Center

    Leeper, Robert R., Ed.

    Four conference presentations in this report provide insights into and understandings of both the process of curriculum change and the direction that such change should take. Professor John I. Goodlad, in the first address, urges the development of a "humanistic curriculum." In the second presentation, Dr. William G. Hollister, a mental health…

  19. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  20. Direct Growth of Patterned Graphene.

    PubMed

    Weber, Nils-Eike; Wundrack, Stefan; Stosch, Rainer; Turchanin, Andrey

    2016-03-01

    The direct growth of single-layer graphene patterns via electron irradiation of aromatic self-assembled monolayers and subsequent annealing is demonstrated. In this way, a reduction in the number of necessary manufacturing steps is achieved. The formed micro- and nanostructures can be arbitrarily shaped and eventually implemented in a manifold of applications. PMID:26765943

  1. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial SATCOM services that could be available in the 2005 time frame. The alternatives were evaluated and compared in terms of average daily system throughput and cost per bit. Throughput was estimated based on hypothetical scenarios supporting the International Space Station and polar orbiting missions. The feasibility of using standard TCP and a modified TCP was evaluated and risks were identified. An estimate of the TCP acknowledgment data rate required to support a return channel rate of 622 Mbps was developed using OPNET.

  2. Breakdown of interdependent directed networks.

    PubMed

    Liu, Xueming; Stanley, H Eugene; Gao, Jianxi

    2016-02-01

    Increasing evidence shows that real-world systems interact with one another via dependency connectivities. Failing connectivities are the mechanism behind the breakdown of interacting complex systems, e.g., blackouts caused by the interdependence of power grids and communication networks. Previous research analyzing the robustness of interdependent networks has been limited to undirected networks. However, most real-world networks are directed, their in-degrees and out-degrees may be correlated, and they are often coupled to one another as interdependent directed networks. To understand the breakdown and robustness of interdependent directed networks, we develop a theoretical framework based on generating functions and percolation theory. We find that for interdependent Erdős-Rényi networks the directionality within each network increases their vulnerability and exhibits hybrid phase transitions. We also find that the percolation behavior of interdependent directed scale-free networks with and without degree correlations is so complex that two criteria are needed to quantify and compare their robustness: the percolation threshold and the integrated size of the giant component during an entire attack process. Interestingly, we find that the in-degree and out-degree correlations in each network layer increase the robustness of interdependent degree heterogeneous networks that most real networks are, but decrease the robustness of interdependent networks with homogeneous degree distribution and with strong coupling strengths. Moreover, by applying our theoretical analysis to real interdependent international trade networks, we find that the robustness of these real-world systems increases with the in-degree and out-degree correlations, confirming our theoretical analysis. PMID:26787907

  3. Sampling properties of directed networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Christensen, C.; Bizhani, G.; Foster, D. V.; Grassberger, P.; Paczuski, M.

    2012-10-01

    For many real-world networks only a small “sampled” version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.

  4. Directed Evolution of Fungal Laccases

    PubMed Central

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution. PMID:21966249

  5. Directed forgetting of autobiographical events.

    PubMed

    Joslyn, Susan L; Oakes, Mark A

    2005-06-01

    Two diary experiments demonstrated directed forgetting (DF) of autobiographical events, previously observed only for less complex memory items. Using a 2-week diary paradigm, we compared recall between a group of participants who were directed to forget Week 1 memories (forget group) and a group who did not receive a forget instruction (remember group). In Experiment 1, the forget group remembered fewer items from Week 1 than did the remember group. The effect was observed for negative and positive valence events, as well as for high and low emotional intensity events. The effect was replicated in Experiment 2 despite a memorable holiday (Valentine's Day) that occurred during the manipulation week. Forget participants remembered fewer low emotional intensity items in Experiment 2. We conclude that intentional forgetting is a plausible explanation for the loss of some autobiographical memories. PMID:16248323

  6. Human promoters are intrinsically directional.

    PubMed

    Duttke, Sascha H C; Lacadie, Scott A; Ibrahim, Mahmoud M; Glass, Christopher K; Corcoran, David L; Benner, Christopher; Heinz, Sven; Kadonaga, James T; Ohler, Uwe

    2015-02-19

    Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in HeLa cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that about half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process but rather the consequence of the presence of both forward- and reverse-directed core promoters. PMID:25639469

  7. Setting a personal career direction.

    PubMed

    McCurdy, Fredrick A; Marcdante, Karen

    2003-01-01

    In summary, we believe that both you and your organization should have a set of core values, a well-defined mission (core purpose), and a vision of the future. Ideally, your projects and activities should be congruent with your mission and values, you should be pursuing your vision, and all of this should be congruent with the organization mission and values. Practically speaking, most individuals we have worked with over the years find themselves in two different groups at this point in the exercise. The minority find that their personal mission is not at all similar to the mission of their current organization and they find it necessary to seriously reevaluate their personal career direction. Sometimes, this results in them finding some other place to work. On the other hand, the majority discover their personal mission is in reasonable agreement with that of their organization. For both, this exercise has helped them clarify and better manage their personal career direction. PMID:12690951

  8. Ultra-wideband directional sampler

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in "real time", and the other two ports operate at a slow millisecond-speed, in "equivalent time". A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus.

  9. Ultra-wideband directional sampler

    DOEpatents

    McEwan, T.E.

    1996-05-14

    The Ultra-Wideband (UWB) Directional Sampler is a four port device that combines the function of a directional coupler with a high speed sampler. Two of the four ports operate at a high sub-nanosecond speed, in ``real time``, and the other two ports operate at a slow millisecond-speed, in ``equivalent time``. A signal flowing inbound to either of the high speed ports is sampled and coupled, in equivalent time, to the adjacent equivalent time port while being isolated from the opposite equivalent time port. A primary application is for a time domain reflectometry (TDR) situation where the reflected pulse returns while the outbound pulse is still being transmitted, such as when the reflecting discontinuity is very close to the TDR apparatus. 3 figs.

  10. OM300 Direction Drilling Module

    SciTech Connect

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  11. Human Promoters Are Intrinsically Directional

    PubMed Central

    Duttke, Sascha H.C.; Lacadie, Scott A.; Ibrahim, Mahmoud M.; Glass, Christopher K.; Corcoran, David L.; Benner, Christopher; Heinz, Sven; Kadonaga, James T.; Ohler, Uwe

    2015-01-01

    Divergent transcription, in which reverse-oriented transcripts occur upstream of eukaryotic promoters in regions devoid of annotated genes, has been suggested to be a general property of active promoters. Here we show that the human basal RNA polymerase II transcriptional machinery and core promoter are inherently unidirectional, and that reverse-oriented transcripts originate from their own cognate reverse-directed core promoters. In vitro transcription analysis and mapping of nascent transcripts in cells revealed that sequences at reverse start sites are similar to those of their forward counterparts. The use of DNase I accessibility to define proximal promoter borders revealed that up to half of promoters are unidirectional and that unidirectional promoters are depleted at their upstream edges of reverse core promoter sequences and their associated chromatin features. Divergent transcription is thus not an inherent property of the transcription process, but rather the consequence of the presence of both forward- and reverse-directed core promoters. PMID:25639469

  12. Direct search for dark matter

    SciTech Connect

    Yoo, Jonghee; /Fermilab

    2009-12-01

    Dark matter is hypothetical matter which does not interact with electromagnetic radiation. The existence of dark matter is only inferred from gravitational effects of astrophysical observations to explain the missing mass component of the Universe. Weakly Interacting Massive Particles are currently the most popular candidate to explain the missing mass component. I review the current status of experimental searches of dark matter through direct detection using terrestrial detectors.

  13. Volumetric direct nuclear pumped laser

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Hohl, F.; Deyoung, R. J.; Williams, M. D. (Inventor)

    1978-01-01

    A volumetric direct nuclear pumped laser was developed in which the gas is a mixture of He-3 and a minority gas from the group of argon, krypton, xenon, chlorine and fluorine. The mixture of He-3 and the minority gas produces lasing with a minority gas concentration of from 0.01 to 10 percent argon, 1 percent krypton, 0.01 to 5 percent xenon and small concentrations of chlorine or fluorine.

  14. AUTOMATIC AIR BURST DIRECTION FINDER

    DOEpatents

    Allard, G.A.

    1952-01-31

    This patent application describes an atomic explosion direction indicator comprising a geometric heat-scorchable indicating surface symmetrical about an axis, elevation and azimuth markings on the heat scorchable surface, and an indicating rod at the axis of said surface arranged to cast a shadow hereon, whereby heat from an atomic explosion will scorch a pattern on said surface indicative of the azimuth and elevation of said explosion.

  15. Relativistic propulsion using directed energy

    NASA Astrophysics Data System (ADS)

    Bible, Johanna; Johansson, Isabella; Hughes, Gary B.; Lubin, Philip M.

    2013-09-01

    We propose a directed energy orbital planetary defense system capable of heating the surface of potentially hazardous objects to the evaporation point as a futuristic but feasible approach to impact risk mitigation. The system is based on recent advances in high efficiency photonic systems. The system could also be used for propulsion of kinetic or nuclear tipped asteroid interceptors or other interplanetary spacecraft. A photon drive is possible using direct photon pressure on a spacecraft similar to a solar sail. Given a laser power of 70GW, a 100 kg craft can be propelled to 1AU in approximately 3 days achieving a speed of 0.4% the speed of light, and a 10,000 kg craft in approximately 30 days. We call the system DE-STAR for Directed Energy System for Targeting of Asteroids and exploRation. DE-STAR is a modular phased array of solid-state lasers, powered by photovoltaic conversion of sunlight. The system is scalable and completely modular so that sub elements can be built and tested as the technology matures. The sub elements can be immediately utilized for testing as well as other applications including space debris mitigation. The ultimate objective of DE-STAR would be to begin direct asteroid vaporization and orbital modification starting at distances beyond 1 AU. Using phased array technology to focus the beam, the surface spot temperature on the asteroid can be raised to more than 3000K, allowing evaporation of all known substances. Additional scientific uses of DE-STAR are also possible.

  16. Death, Taxes and Advance Directives

    PubMed Central

    D’Amore, J.D.; Jones, S.L.; Sittig, D.F.; Ness, R.B.

    2014-01-01

    Summary Suboptimal care at the end-of-life can be due to lack of access or knowledge of patient wishes. Ambiguity is often the result of non-standardized formats. Borrowing digital technology from other industries and using existing health information infrastructure can greatly improve the completion, storage, and distribution of advance directives. We believe several simple, low-cost adaptations to regional and federal programs can raise the standard of end-of-life care. PMID:25024771

  17. WHEN TOBACCO TARGETS DIRECT DEMOCRACY

    PubMed Central

    Laposata, Elizabeth; Kennedy, Allison P.

    2013-01-01

    Tobacco control advocates began to use ballot initiatives to enact tobacco control policies in the late 1970s. In response, the tobacco industry worked for over two decades to change laws governing initiative and referendum processes to prevent passage of tobacco control measures. In 1981, the tobacco industry’s political lobbying arm, the Tobacco Institute, created a front group that presented itself as a neutral initiative research clearinghouse to affect changes in state initiative and referenda laws. In 1990, the Tobacco Institute began creating an in-house team, and worked with third party groups to try to change state initiative laws. While the industry ultimately abandoned both efforts when neither achieved immediate success, over time, the industry’s goals have penetrated legitimate discourse on the I&R process in the United States and many specific ideas it advocated have garnered mainstream support. Direct democracy advocates, as well as public health advocates and policymakers, need to understand the tobacco industry’s goals (which other industries adopted) of limiting the direct democracy process in order to ensure that any changes do not inadvertently increase the power of the special interests that direct democracy was developed to counterbalance. PMID:24603083

  18. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1982-09-08

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single offshore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on an electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to te gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and angular rate information. Kalman estimation techniques are used to compensate for system errors. 25 figures.

  19. Wellbore inertial directional surveying system

    DOEpatents

    Andreas, Ronald D.; Heck, G. Michael; Kohler, Stewart M.; Watts, Alfred C.

    1991-01-01

    A wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block aboutthe gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and anular rate information. Kalman estimation techniques are used to compensate for system errors.

  20. Direct approach to modeling epistasis.

    PubMed

    Yang, Rong-Cai

    2015-01-01

    Genome-wide association studies have recently been conducted in humans and domesticated animals and plants to locate and identify chromosomal regions or genes (quantitative trait loci or QTLs) to select individuals with superior performance and qualities. QTL or genetic effects, including epistatic effects, can be defined at the genotypic (functional) and gene (statistical) levels. In the past, the functional or statistical genetic effects have been defined indirectly, and genotypic values were expressed as linear functions of additive, dominance, and epistatic genetic effects. In this chapter, we propose to reverse the thinking and define genetic effects as linear functions of genotypic values. The direct definition of functional genetic effects is straightforward for well-known gene action models [e.g., unweighted (UW), F2, and F∞ models]. However, the direct definition of statistical genetic effects is based on Fisher's concept of average excess, which is closely related to the well-known concept of the average effect of a gene substitution. These definitions can be easily extended to cases of two or more loci as long as the loci are independent of each other. Two numerical examples are used to illustrate the properties of the direct approach. PMID:25403532

  1. Direct reciprocity in structured populations.

    PubMed

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies. PMID:22665767

  2. Directed percolation with incubation times.

    PubMed

    Jiménez-Dalmaroni, Andrea

    2006-07-01

    We introduce a model for directed percolation with a long-range temporal diffusion, while the spatial diffusion is kept short ranged. In an interpretation of directed percolation as an epidemic process, this non-Markovian modification can be understood as incubation times, which are distributed accordingly to a Lévy distribution. We argue that the best approach to find the effective action for this problem is through a generalization of the Cardy-Sugar method, adding the non-Markovian features into the geometrical properties of the lattice. We formulate a field theory for this problem and renormalize it up to one loop in a perturbative expansion. We solve the various technical difficulties that the integrations possess by means of an asymptotic analysis of the divergences. We show the absence of field renormalization at one-loop order, and we argue that this would be the case to all orders in perturbation theory. Consequently, in addition to the characteristic scaling relations of directed percolation, we find a scaling relation valid for the critical exponents of this theory. In this universality class, the critical exponents vary continuously with the Lévy parameter. PMID:16907076

  3. BNL Direct Wind Superconducting Magnets

    SciTech Connect

    Parker, B.; Anerella, M.; Escallier, J.; Ghosh, A.; Jain, A.; Marone, A.; Muratore, A.; Wanderer, P.

    2011-09-12

    BNL developed Direct Wind magnet technology is used to create a variety of complex multi-functional multi-layer superconducting coil structures without the need for creating custom production tooling and fixturing for each new project. Our Direct Wind process naturally integrates prestress into the coil structure so external coil collars and yokes are not needed; the final coil package transverse size can then be very compact. Direct Wind magnets are produced with very good field quality via corrections applied during the course of coil winding. The HERA-II and BEPC-II Interaction Region (IR) magnet, J-PARC corrector and Alpha antihydrogen magnetic trap magnets and our BTeV corrector magnet design are discussed here along with a full length ILC IR prototype magnet presently in production and the coils that were wound for an ATF2 upgrade at KEK. A new IR septum magnet design concept for a 6.2 T combined-function IR magnet for eRHIC, a future RHIC upgrade, is introduced here.

  4. Optimized Direct-Drive Uniformity

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; McKenty, P. W.; Kessler, T. J.; Forties, R.; Kelly, J. A.; Waxer, L. J.

    2002-11-01

    The means of optimizing direct-drive illumination uniformity in laser fusion implosions will be discussed. To provide the most-uniform drive, the target must be illuminated by smooth single beams, symmetrically placed on target, with the optimum beam shape. On the 60-beam OMEGA laser system these near-optimum, direct-drive illumination conditions have been achieved by smoothing each beam with 1-THz smoothing by spectral dispersion (SSD), which incorporates distributed phase plates (DPP's) and polarization smoothing (PS), and by the modified soccer-ball orientation of the beams. The current beam smoothing provides for unprecedented levels of direct-drive uniformity, approaching σ_rms ˜ 2% up to ℓ = 200 after ˜300 ps. The sensitivity of the illumination to beam shape has been studied, and a new set of DPP's have been designed and are being built to further optimize the uniformity on OMEGA. Also, the sensitivity of the drive to beam balance, beam pointing, and target positioning has been studied both by calculation and by performing target implosions allowing quantitative limits to be placed on all contributors. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.

  5. Wellbore inertial directional surveying system

    SciTech Connect

    Andreas, R.D.; Heck, G.M.; Kohler, S.M.; Watts, A.C.

    1991-01-29

    This patent describes a wellbore inertial directional surveying system for providing a complete directional survey of an oil or gas well borehole to determine the displacement in all three directions of the borehole path relative to the well head at the surface. The information generated by the present invention is especially useful when numerous wells are drilled to different geographical targets from a single off-shore platform. Accurate knowledge of the path of the borehole allows proper well spacing and provides assurance that target formations are reached. The tool is lowered down into a borehole on the electrical cable. A computer positioned on the surface communicates with the tool via the cable. The tool contains a sensor block which is supported on a single gimbal, the rotation axis of which is aligned with the cylinder axis of the tool and, correspondingly, the borehole. The gyroscope measurement of the sensor block rotation is used in a null-seeking servo loop which essentially prevents rotation of the sensor block about the gimbal axis. Angular rates of the sensor block about axes which are perpendicular to the gimbal axis are measured by gyroscopes in a manner similar to a strapped-down arrangement. Three accelerometers provide acceleration information as the tool is lowered within the borehole. The uphole computer derives position information based upon acceleration information and annular rate information. Kalman estimation techniques are used to compensate for system errors.

  6. Entrance Counseling Guide for Direct Loan Borrowers

    ERIC Educational Resources Information Center

    Federal Student Aid, US Department of Education, 2010

    2010-01-01

    This guide describes the four types of loans offered by the Direct Loan Program[SM]: (1) Direct Subsidized Loans; (2) Direct Unsubsidized Loans; (3) Direct PLUS Loans; and (4) Direct Consolidation Loans. Among the topics covered in the guide are: Use of Your Loan Money, The Master Promissory Note, How Your Loans Will Be Disbursed (Paid Out),…

  7. Direct execution of LISP on a list-directed architecture

    SciTech Connect

    Sansonnet, J.P.; Castan, M.; Percebois, C.; Botella, D.; Perez, J.

    1982-03-01

    A direct-execution model dedicated to nonnumerical processing and based upon an internal representation of source programs derived from LISP has been defined. This model provides good support for sophisticated editing (syntactical parsing, tree manipulation, pretty-printing, ...) of conventional languages and artificial intelligence languages. A high level microprogramming language (LEM) was designed to write the interpreters and the editors. The influence of LISP on LEM and the architecture is discussed. The structure of the LISP is presented and evaluation measures dealing with size, development effort and speed are given. 30 references.

  8. Nerve lesioning with direct current

    NASA Astrophysics Data System (ADS)

    Ravid, E. Natalie; Shi Gan, Liu; Todd, Kathryn; Prochazka, Arthur

    2011-02-01

    Spastic hypertonus (muscle over-activity due to exaggerated stretch reflexes) often develops in people with stroke, cerebral palsy, multiple sclerosis and spinal cord injury. Lesioning of nerves, e.g. with phenol or botulinum toxin is widely performed to reduce spastic hypertonus. We have explored the use of direct electrical current (DC) to lesion peripheral nerves. In a series of animal experiments, DC reduced muscle force by controlled amounts and the reduction could last several months. We conclude that in some cases controlled DC lesioning may provide an effective alternative to the less controllable molecular treatments available today.

  9. Directed energy deflection laboratory measurements

    NASA Astrophysics Data System (ADS)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  10. Pregnancy after direct intraperitoneal insemination.

    PubMed

    Seracchioli, R; Melega, C; Maccolini, A; Cattoli, M; Bulletti, C; Bovicelli, L; Flamigni, C

    1991-04-01

    Direct intraperitoneal insemination (DIPI) and superovulation are simple procedures which may together represent a good alternative to gamete intra-Fallopian transfer (GIFT) in infertile women with patent Fallopian tubes. In the present study, pregnancy occurred in 25 of 96 couples (26%) and six (24%) of these aborted. The pregnancy rate for all cycles was 19.6% and multiple pregnancies were found in six of 25 (24%) patients. We observed no ectopic pregnancy. The combination of these techniques is concluded to be useful in achieving pregnancy in infertile women with patient Fallopian tubes. PMID:1918303

  11. Engineering directed excitonic energy transfer

    SciTech Connect

    Perdomo, Alejandro; Vogt, Leslie; Najmaie, Ali; Aspuru-Guzik, Alan

    2010-01-01

    We provide an intuitive platform for engineering exciton transfer dynamics. We show that careful consideration of the spectral density, which describes the system-bath interaction, leads to opportunities to engineer exciton transfer. Since excitons in nanostructures are proposed for use in quantum information processing and artificial photosynthetic designs, our approach paves the way for engineering a wide range of desired exciton dynamics. We carefully describe the validity of the model and use experimentally relevant material parameters to show counter-intuitive examples of directed exciton transfer in a linear chain of quantum dots.

  12. Direct application of geothermal energy

    SciTech Connect

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  13. Direct measure of quantum correlation

    SciTech Connect

    Yu, Chang-shui; Zhao, Haiqing

    2011-12-15

    The quantumness of the correlation known as quantum correlation is usually measured by quantum discord. So far various quantum discords can be roughly understood as indirect measure by some special discrepancy of two quantities. We present a direct measure of quantum correlation by revealing the difference between the structures of classically and quantum correlated states. Our measure explicitly includes the contributions of the inseparability and local nonorthogonality of the eigenvectors of a density matrix. Besides its relatively easy computability, our measure can provide a unified understanding of quantum correlation of all the present versions.

  14. Vitreous substitutes: challenges and directions

    PubMed Central

    Gao, Qian-Ying; Fu, Yue; Hui, Yan-Nian

    2015-01-01

    The natural vitreous body has a fine structure and complex functions. The imitation of the natural vitreous body by vitreous substitutes is a challenging work for both researchers and ophthalmologists. Gases, silicone oil, heavy silicone oil and hydrogels, particularly the former two vitreous substitutes are clinically widely used with certain complications. Those, however, are not real artificial vitreous due to lack of structure and function like the natural vitreous body. This article reviews the situations, challenges, and future directions in the development of vitreous substitutes, particularly the experimental and clinical use of a new artificial foldable capsular vitreous body. PMID:26085987

  15. Direct simulation of chemical reactions

    SciTech Connect

    Stark, J.P.W.; Boyd, I.D. )

    1990-07-01

    Bird (1979, 1981) developed procedures for modeling chemical reactions within the direct-simulation Monte Carlo (DSMC) framework. After presenting the instabilities associated with these formulations, a novel, simplified method in which such difficulties are removed is presented. The solution involves the introduction of a steric factor by means of which the reaction path can be calculated independently of the choice of the internal energy contribution. In simulations where temperature is constant, the new model is as efficient as Bird's original formula. 7 refs.

  16. Future direction in airline marketing

    NASA Technical Reports Server (NTRS)

    Colussy, D. A.

    1972-01-01

    The rapid growth and broadening of the air travel market, coupled with a more sophisticated consumer, will dramatically change airline marketing over the next decade. Discussed is the direction this change is likely to take and its implications for companies within the industry. New conceptualization approaches are required if the full potential of this expanding market is to be fully realized. Marketing strategies are developed that will enable various elements of the travel industry to compete not only against each other but also with other products that are competing for the consumer's discretionary income.

  17. Direct methods in protein crystallography.

    PubMed

    Karle, J

    1989-11-01

    It is pointed out that the 'direct methods' of phase determination for small-structure crystallography do not have immediate applicability to macromolecular structures. The term 'direct methods in macromolecular crystallography' is suggested to categorize a spectrum of approaches to macromolecular structure determination in which the analyses are characterized by the use of two-phase and higher-order-phase invariants. The evaluation of the invariants is generally obtained by the use of heavy-atom techniques. The results of a number of the more recent algebraic and probabilistic studies involving isomorphous replacement and anomalous dispersion thus become valid subjects for discussion here. These studies are described and suggestions are also presented concerning future applicability. Additional discussion concerns the special techniques of filtering, the use of non-crystallographic symmetry, some features of maximum entropy and attempts to apply phase-determining formulas to the refinement of macromolecular structure. It is noted that, in addition to the continuing remarkable progress in macromolecular crystallography based on the traditional applications of isomorphous replacement and anomalous dispersion, recent valuable advances have been made in the application of non-crystallographic symmetry, in particular, to virus structures and in applications of filtering. Good progress has also been reported in the application of exact linear algebra to multiple-wavelength anomalous-dispersion investigations of structures containing anomalous scatterers of only moderate scattering power. PMID:2692631

  18. In Vivo Continuous Directed Evolution

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2014-01-01

    The development and application of methods for the laboratory evolution of biomolecules has rapidly progressed over the last few decades. Advancements in continuous microbe culturing and selection design have facilitated the development of new technologies that enable the continuous directed evolution of proteins and nucleic acids. These technologies have the potential to support the extremely rapid evolution of biomolecules with tailor-made functional properties. Continuous evolution methods must support all of the key steps of laboratory evolution—translation of genes into gene products, selection or screening, replication of genes encoding the most fit gene products, and mutation of surviving genes—in a self-sustaining manner that requires little or no researcher intervention. Continuous laboratory evolution has been historically used to study problems including antibiotic resistance, organismal adaptation, phylogenetic reconstruction, and host-pathogen interactions, with more recent applications focusing on the rapid generation of proteins and nucleic acids with useful, tailor-made properties. The advent of increasingly general methods for continuous directed evolution should enable researchers to address increasingly complex questions and to access biomolecules with more novel or even unprecedented properties. PMID:25461718

  19. Plasma dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Clarke, J. D.; Foot, R.

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  20. Direct Vasodilators and Sympatholytic Agents.

    PubMed

    McComb, Meghan N; Chao, James Y; Ng, Tien M H

    2016-01-01

    Direct vasodilators and sympatholytic agents were some of the first antihypertensive medications discovered and utilized in the past century. However, side effect profiles and the advent of newer antihypertensive drug classes have reduced the use of these agents in recent decades. Outcome data and large randomized trials supporting the efficacy of these medications are limited; however, in general the blood pressure-lowering effect of these agents has repeatedly been shown to be comparable to other more contemporary drug classes. Nevertheless, a landmark hypertension trial found a negative outcome with a doxazosin-based regimen compared to a chlorthalidone-based regimen, leading to the removal of α-1 adrenergic receptor blockers as first-line monotherapy from the hypertension guidelines. In contemporary practice, direct vasodilators and sympatholytic agents, particularly hydralazine and clonidine, are often utilized in refractory hypertension. Hydralazine and minoxidil may also be useful alternatives for patients with renal dysfunction, and both hydralazine and methyldopa are considered first line for the treatment of hypertension in pregnancy. Hydralazine has also found widespread use for the treatment of systolic heart failure in combination with isosorbide dinitrate (ISDN). The data to support use of this combination in African Americans with heart failure are particularly robust. Hydralazine with ISDN may also serve as an alternative for patients with an intolerance to angiotensin antagonists. Given these niche indications, vasodilators and sympatholytics are still useful in clinical practice; therefore, it is prudent to understand the existing data regarding efficacy and the safe use of these medications. PMID:26033778

  1. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  2. Efficient goal-directed exploration

    SciTech Connect

    Smirnov, Y.; Koenig, S.; Veloso, M.M.; Simmons, R.G.

    1996-12-31

    If a state space is not completely known in advance, then search algorithms have to explore it sufficiently to locate a goal state and a path leading to it, performing therefore what we call goal-directed exploration. Two paradigms of this process are pure exploration and heuristic-driven exploitation: the former approaches explore the state space using only knowledge of the physically visited portion of the domain, whereas the latter approaches totally rely on heuristic knowledge to guide the search towards goal states. Both approaches have disadvantages: the first one does not utilize available knowledge to cut down the search effort, and the second one relies too much on the knowledge, even if it is misleading. We have therefore developed a framework for goal-directed exploration, called VECA, that combines the advantages of both approaches by automatically switching from exploitation to exploration on parts of the state space where exploitation does not perform well. VECA provides better performance guarantees than previously studied heuristic-driven exploitation algorithms, and experimental evidence suggests that this guarantee does not deteriorate its average-case performance.

  3. Modulated convection in directional solidification

    SciTech Connect

    Murray, B.T.

    1993-04-01

    It is well known that time-dependent modulation can significantly impact the stability behavior in fundamental fluid problems such as Rayleigh-Benard convection and Taylor-Couette flow. There are relevant applications in materials processing that require understanding of the effects of time-periodic forcing on hydrodynamic and interfacial instabilities in solidification from the melt. Studying temporal modulation is relevant as either a means of controlling the convective flows that can occur in the solidification of alloys under terrestrial conditions or to determine whether time-dependent accelerations can cause instabilities in low gravity conditions. One problem of particular interest is the effect of sinusoidal gravitational modulation on solutal or thermosolutal convection in directional solidification of a binary alloy. For solidification in a direction aligned with the gravitational acceleration vector a stability problem has been formulated based on Floquet theory; morphological stability can also be treated, and the influence of the solid-liquid interface on the convection instabilities in the presence of time-periodic modulation is considered. For high-frequency modulation, the method of averaging is employed which considerably simplifies the analysis. The stability behavior is highly dependent on how the temperature and solute fields contribute to the stratification of the melt density. Both semiconductor and metallic alloy systems are investigated.

  4. Direct detection polarimetric radiometer (DDPR)

    NASA Astrophysics Data System (ADS)

    Koenig, G.; Koh, G.; Ryerson, C.

    2009-05-01

    Polarimetric signatures of terrain features and man-made objects have been measured using unique Direct Detection Polarimetric Radiometers (DDPR). The DDPRs are lightweight inexpensive systems operating at 35 and 94 GHz. Each system consists of a single antenna, amplifier, and a truncated cylindrical waveguide that directly measures Q, U, and V. The highly portable DDPRs are ideal for obtaining the Stokes vectors needed to study the physical characteristics of natural and man-made features. Field evaluations using the DDPR systems include measurements from an airborne platform over different terrain features and water, and ground based measurements of the polarimetric signature of grass, asphalt, buildings, and concealed munitions. The DDPR can function as a bistatic system by using an active source of polarization. Using this configuration and a soil chamber, we have investigated the effect of soil type and soil moisture on linear and circular polarization. This report will describe the DDPR and present the analysis of the airborne and ground based measurements, including the effects of soil type and soil moisture on sources of linear and circular polarization.

  5. Direct Imprinting of Liquid Silicon.

    PubMed

    Masuda, Takashi; Takagishi, Hideyuki; Yamazaki, Ken; Shimoda, Tatsuya

    2016-04-20

    A polymeric precursor solution for semiconducting silicon called "liquid silicon" was synthesized and directly imprinted to form well-defined and fine amorphous silicon patterns. The spin-coated film was cured and imprinted followed by annealing at 380 °C to complete the polymer-to-silicon conversion. A pattern with dimensions of several hundreds of nanometers or less was obtained on a substrate. We demonstrated that the curing step before imprinting is particularly important in the imprinting process. A curing temperature of 140-180 °C was found to be optimal in terms of the film's deformability and molding properties. Fourier transform infrared spectroscopy and thermal analysis clarified that the cross-linking of the polymer due to the 1,2-hydrogen shift reaction was induced exponentially with the release of a large amount of SiH4/H2 gases at temperatures between 140 and 220 °C, leading to the solidification of the film. Consequently, the film completely lost its deformability at higher temperatures. Despite a volume shrinkage as large as 53-56% during the polymer-to-silicon conversion, well-defined angular patterns were preserved. Fine silicon patterns were formed via the direct imprinting of liquid silicon with high resolution and high throughput, demonstrating the usefulness of this technique for the future manufacturing of silicon electronics. PMID:27028558

  6. Overview: developmental toxicology: new directions.

    PubMed

    Shuey, Dana; Kim, James H

    2011-10-01

    Since regulatory agencies began implementing the use of standardized developmental toxicology protocols in the mid-1960s, our knowledge base of embryo-fetal development and technologies for experimentation has grown exponentially. These developmental toxicology protocols were a direct result of the thalidomide tragedy from earlier that decade, when large numbers of women were exposed to the drug and over 10,000 cases of phocomelia resulted. In preventing a recurrence of such tragedies, the testing protocols are immensely successful and the field of toxicology has been dedicated to using them to advance safety and risk assessment of chemicals and pharmaceuticals. Recently, our perspectives on toxicity testing have been challenged by a growing awareness that while we have excelled in hazard identification, we are in dire need of improved methodologies for human health risk assessment, particularly with respect to the large numbers of environmental chemicals for which we have little toxicology data and to the growing sentiment that better alternatives to whole animals tests are needed. To provide a forum for scientists, researchers, and regulators, the Developmental and Reproductive Toxicology Technical Committee of the Health and Environmental Sciences Institute organized a 2-day workshop titled "Developmental Toxicology-New Directions" to evaluate lessons learned over the past 30 years and discuss the future of toxicology testing. The following four articles describe different presentations and discussions that were held over the course of those 2 days. PMID:21770024

  7. Direct interpretation of dreams: neuropsychology.

    PubMed

    van den Daele, L

    1996-09-01

    Although the role and importance of the interpretation of dreams has been de-emphasized in clinical discussions for the past several decades, new models of dream physiology suggest the central role and importance of dreams in the regulation of behavior. According to a body of current research, dreams potentiate new pathways of problem solving. A review of the neurophysiological literature pertinent to direct interpretation suggests dreams are sustained by midbrain anatomical networks with feed-back and feed-forward links to the cortex. The anatomical networks are termed the endogenous-intraorganismic system, the exogenous-transactional system, and the relational system that correspond to subjective, objective, and relational dreams in direct interpretation. Just as ordinary thought is the province of the dominant or left hemisphere, dreams are the province of the nondominant or right hemisphere. During REM states new pathways of problem solving are laid down by the nondominant hemisphere. In the awake state, thought and behavior about content that relates to dream material follow these pathways. The new neuropsychology of dreams reaffirms the central role of dreams in the organization of affect, emotion, intention, and general adaptation. PMID:8886217

  8. Toward directed energy planetary defense

    NASA Astrophysics Data System (ADS)

    Lubin, Philip; Hughes, Gary B.; Bible, Johanna; Bublitz, Jesse; Arriola, Josh; Motta, Caio; Suen, Jon; Johansson, Isabella; Riley, Jordan; Sarvian, Nilou; Clayton-Warwick, Deborah; Wu, Jane; Milich, Andrew; Oleson, Mitch; Pryor, Mark; Krogen, Peter; Kangas, Miikka; O'Neill, Hugh

    2014-02-01

    Asteroids and comets that cross Earth's orbit pose a credible risk of impact, with potentially severe disturbances to Earth and society. We propose an orbital planetary defense system capable of heating the surface of potentially hazardous objects to the vaporization point as a feasible approach to impact risk mitigation. We call the system DE-STAR, for Directed Energy System for Targeting of Asteroids and exploRation. The DE-STAR is a modular-phased array of kilowatt class lasers powered by photovoltaic's. Modular design allows for incremental development, minimizing risk, and allowing for technological codevelopment. An orbiting structure would be developed in stages. The main objective of the DE-STAR is to use focused directed energy to raise the surface spot temperature to ˜3000 K, sufficient to vaporize all known substances. Ejection of evaporated material creates a large reaction force that would alter an asteroid's orbit. The baseline system is a DE-STAR 3 or 4 (1- to 10-km array) depending on the degree of protection desired. A DE-STAR 4 allows initial engagement beyond 1 AU with a spot temperature sufficient to completely evaporate up to 500-m diameter asteroids in 1 year. Small objects can be diverted with a DE-STAR 2 (100 m) while space debris is vaporized with a DE-STAR 1 (10 m).

  9. Semantics of directly manipulating spatializations.

    PubMed

    Hu, Xinran; Bradel, Lauren; Maiti, Dipayan; House, Leanna; North, Chris; Leman, Scotland

    2013-12-01

    When high-dimensional data is visualized in a 2D plane by using parametric projection algorithms, users may wish to manipulate the layout of the data points to better reflect their domain knowledge or to explore alternative structures. However, few users are well-versed in the algorithms behind the visualizations, making parameter tweaking more of a guessing game than a series of decisive interactions. Translating user interactions into algorithmic input is a key component of Visual to Parametric Interaction (V2PI) [13]. Instead of adjusting parameters, users directly move data points on the screen, which then updates the underlying statistical model. However, we have found that some data points that are not moved by the user are just as important in the interactions as the data points that are moved. Users frequently move some data points with respect to some other 'unmoved' data points that they consider as spatially contextual. However, in current V2PI interactions, these points are not explicitly identified when directly manipulating the moved points. We design a richer set of interactions that makes this context more explicit, and a new algorithm and sophisticated weighting scheme that incorporates the importance of these unmoved data points into V2PI. PMID:24051771

  10. Staged direct injection diesel engine

    DOEpatents

    Baker, Quentin A.

    1985-01-01

    A diesel engine having staged injection for using lower cetane number fuels than No. 2 diesel fuel. The engine includes a main fuel injector and a pilot fuel injector. Pilot and main fuel may be the same fuel. The pilot injector injects from five to fifteen percent of the total fuel at timings from 20.degree. to 180.degree. BTDC depending upon the quantity of pilot fuel injected, the fuel cetane number and speed and load. The pilot fuel injector is directed toward the centerline of the diesel cylinder and at an angle toward the top of the piston, avoiding the walls of the cylinder. Stratification of the early injected pilot fuel is needed to reduce the fuel-air mixing rate, prevent loss of pilot fuel to quench zones, and keep the fuel-air mixture from becoming too fuel lean to become effective. In one embodiment, the pilot fuel injector includes a single hole for injection of the fuel and is directed at approximately 48.degree. below the head of the cylinder.

  11. 75 FR 53611 - Direct Investment Surveys: BE-577, Quarterly Survey of U.S. Direct Investment Abroad-Direct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-01

    ... Survey of U.S. Direct Investment Abroad--Direct Transactions of U.S. Reporter With Foreign Affiliate.... Direct Investment Abroad--Transactions of U.S. Reporter With Foreign Affiliate.'' The exemption level was... transactions with one of its foreign affiliates in which it does not hold a direct equity interest unless...

  12. Boltzmann, Darwin and Directionality theory

    NASA Astrophysics Data System (ADS)

    Demetrius, Lloyd A.

    2013-09-01

    Boltzmann’s statistical thermodynamics is a mathematical theory which relates the macroscopic properties of aggregates of interacting molecules with the laws of their interaction. The theory is based on the concept thermodynamic entropy, a statistical measure of the extent to which energy is spread throughout macroscopic matter. Macroscopic evolution of material aggregates is quantitatively explained in terms of the principle: Thermodynamic entropy increases as the composition of the aggregate changes under molecular collision. Darwin’s theory of evolution is a qualitative theory of the origin of species and the adaptation of populations to their environment. A central concept in the theory is fitness, a qualitative measure of the capacity of an organism to contribute to the ancestry of future generations. Macroscopic evolution of populations of living organisms can be qualitatively explained in terms of a neo-Darwinian principle: Fitness increases as the composition of the population changes under variation and natural selection. Directionality theory is a quantitative model of the Darwinian argument of evolution by variation and selection. This mathematical theory is based on the concept evolutionary entropy, a statistical measure which describes the rate at which an organism appropriates energy from the environment and reinvests this energy into survivorship and reproduction. According to directionality theory, microevolutionary dynamics, that is evolution by mutation and natural selection, can be quantitatively explained in terms of a directionality principle: Evolutionary entropy increases when the resources are diverse and of constant abundance; but decreases when the resource is singular and of variable abundance. This report reviews the analytical and empirical support for directionality theory, and invokes the microevolutionary dynamics of variation and selection to delineate the principles which govern macroevolutionary dynamics of speciation and extinction. We also elucidate the relation between thermodynamic entropy, which pertains to the extent of energy spreading and sharing within inanimate matter, and evolutionary entropy, which refers to the rate of energy appropriation from the environment and allocation within living systems. We show that the entropic principle of thermodynamics is the limit as R→0, M→∞, (where R denote the resource production rate, and M denote population size) of the entropic principle of evolution. We exploit this relation between the thermodynamic and evolutionary tenets to propose a physico-chemical model of the transition from inanimate matter which is under thermodynamic selection, to living systems which are subject to evolutionary selection. Life history variation and the evolution of senescence The evolutionary dynamics of speciation and extinction Evolutionary trends in body size. The origin of sporadic forms of cancer and neurological diseases, and the evolution of cooperation are important recent applications of directionality theory. These applications, which draw from the medical sciences and sociobiology, appeal to methods which lie outside the formalism described in this report. A companion review, Demetrius and Gundlach (submitted for publication), gives an account of these applications.An important aspect of this report pertains to the connection between statistical mechanics and evolutionary theory and its implications towards understanding the processes which underlie the emergence of living systems from inanimate matter-a problem which has recently attracted considerable attention, Morowitz (1992), Eigen (1992), Dyson (2000), Pross (2012).The connection between the two disciplines can be addressed by appealing to certain extremal principles which are considered the mainstay of the respective theories.The extremal principle in statistical mechanics can be stated as follows:

  13. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  14. Direct imaging of photonic nanojets.

    PubMed

    Ferrand, Patrick; Wenger, Jérôme; Devilez, Alexis; Pianta, Martina; Stout, Brian; Bonod, Nicolas; Popov, Evgueni; Rigneault, Hervé

    2008-05-12

    We report the direct experimental observation of photonic nanojets created by single latex microspheres illuminated by a plane wave at a wavelength of 520 nm. Measurements are performed with a fast scanning confocal microscope in detection mode, where the detection pinhole defines a diffraction-limited observation volume that is scanned in three dimensions over the microsphere vicinity. From the collected stack of images, we reconstruct the full 3 dimensional photonic nanojet beam. Observations are conducted for polystyrene spheres of 1, 3 and 5 microm diameter deposited on a glass substrate, the upper medium being air or water. Experimental results are compared to calculations performed using the Mie theory. We measure nanojet sizes as small as 270 nm FWHM for a 3 microm sphere at a wavelength lambda of 520 nm. The beam keeps a subwavelength FWHM over a propagation distance of more than 3 lambda, displaying all the specificities of a photonic nanojet. PMID:18545397

  15. Direct Reduction of Iron Ore

    NASA Astrophysics Data System (ADS)

    Small, M.

    1981-04-01

    In the search for a pure, available iron source, steelmakers are focusing their attention on Directly Reduced Iron (DRI). This material is produced by the reaction of a low gangue iron ore with a hydrocarbonaceous substance. Commercially, DRI is generated in four different reactors: shaft (moving-bed), rotary kiln, fluidized bed, and retort (fixed-bed). Annual worldwide production capacity approaches 33 million metric tons. Detailed assessments have been made of the uses of DRI, especially as a substitute for scrap in electric furnace (EF) steelmaking. DRI is generally of a quality superior to current grades of scrap, with steels produced more efficiently in the EF and containing lower levels of impurities. However, present economics favor EF steel production with scrap. But this situation could change within this decade because of a developing scarcity of good quality scrap.

  16. Note: Direct piezoelectric effect microscopy

    NASA Astrophysics Data System (ADS)

    Mori, T. J. A.; Stamenov, P.; Dorneles, L. S.

    2015-07-01

    An alternative method for investigating piezoelectric surfaces is suggested, exploiting the direct piezoeffect. The technique relies on acoustic (ultrasonic) excitation of the imaged surface and mapping of the resulting oscillatory electric potential. The main advantages arise from the spatial resolution of the conductive scanning probe microscopy in combination with the relatively large magnitude of the forward piezo signal Upf, which can be of the order of tens of mV even for non-ferroelectric piezoelectric materials. The potency of this experimental strategy is illustrated with measurements on well-crystallized quartz surfaces, where Upf ˜ 50 mV, for a piezoelectric coefficient of d33 = - 2.27 × 10-12 m/V, and applied stress of about T3 ˜ 5.7 kPa.

  17. Direct band gap silicon allotropes.

    PubMed

    Wang, Qianqian; Xu, Bo; Sun, Jian; Liu, Hanyu; Zhao, Zhisheng; Yu, Dongli; Fan, Changzeng; He, Julong

    2014-07-16

    Elemental silicon has a large impact on the economy of the modern world and is of fundamental importance in the technological field, particularly in solar cell industry. The great demand of society for new clean energy and the shortcomings of the current silicon solar cells are calling for new materials that can make full use of the solar power. In this paper, six metastable allotropes of silicon with direct or quasidirect band gaps of 0.39-1.25 eV are predicted by ab initio calculations at ambient pressure. Five of them possess band gaps within the optimal range for high converting efficiency from solar energy to electric power and also have better optical properties than the Si-I phase. These Si structures with different band gaps could be applied to multiple p-n junction photovoltaic modules. PMID:24971657

  18. Direct synthesis of calcium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Majzoub, Eric H.

    2009-10-27

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Ca(BH.sub.4).sub.2, from the alkaline earth metal hydride and the alkaline earth metal boride. The borohydride thus prepared is doped with a small portion of a metal chloride catalyst compound, such as RuCl.sub.3, TiCl.sub.3, or a mixture of TiCl.sub.3 and palladium metal. The process provides for mechanically mixing the dry reagents under an inert atmosphere followed by charging the mixed materials with high pressure hydrogen at about 70 MPa while heating the mixture to about 400.degree. C. The method is relatively simple and inexpensive and provides reversible hydride compounds which are free of the usual contamination introduced by prior art wet chemical methods.

  19. Direct Evidence for Fluid Membranes

    PubMed Central

    Tamm, Sidney L.; Tamm, Signhild

    1974-01-01

    We describe a new kind of cell motility that provides direct, visual evidence for the fluid nature of cell membranes. The movement involves continual, unidirectional rotation of one part of a devescovinid flagellate in relation to a neighboring part, at speeds up to one rotation/1.5 sec (room temperature). Rotation includes the plasma membrane, using the flagellar bases and ectosymbiotic bacteria embedded in pockets of the membrane as visible markers. The plasma membrane between the rotating and stationary surfaces is continuous, without fusions with other membranes, and has the typical trilaminar structure of other cell membranes. The nucleus, helical Golgi complex, and stiff central axostyle also rotate. The head of the flagellate always rotates clockwise (as viewed from the anterior end) in relation to the body, but when the head becomes stuck to debris, the body rotates counterclockwise. Evidence suggests that the microtubular axostyle generates the motive force for rotation. Images PMID:4531002

  20. Direct reconstruction of dark energy.

    PubMed

    Clarkson, Chris; Zunckel, Caroline

    2010-05-28

    An important issue in cosmology is reconstructing the effective dark energy equation of state directly from observations. With so few physically motivated models, future dark energy studies cannot only be based on constraining a dark energy parameter space. We present a new nonparametric method which can accurately reconstruct a wide variety of dark energy behavior with no prior assumptions about it. It is simple, quick and relatively accurate, and involves no expensive explorations of parameter space. The technique uses principal component analysis and a combination of information criteria to identify real features in the data, and tailors the fitting functions to pick up trends and smooth over noise. We find that we can constrain a large variety of w(z) models to within 10%-20% at redshifts z≲1 using just SNAP-quality data. PMID:20867085

  1. Saccharomyces cerevisiae in directed evolution

    PubMed Central

    Gonzalez-Perez, David; Garcia-Ruiz, Eva; Alcalde, Miguel

    2012-01-01

    Over the past 20 years, directed evolution has been seen to be the most reliable approach to protein engineering. Emulating the natural selection algorithm, ad hoc enzymes with novel features can be tailor-made for practical purposes through iterative rounds of random mutagenesis, DNA recombination and screening. Of the heterologous hosts used in laboratory evolution experiments, the budding yeast Saccharomyces cerevisiae has become the best choice to express eukaryotic proteins with improved properties. S. cerevisiae not only allows mutant enzymes to be secreted but also, it permits a wide range of genetic manipulations to be employed, ranging from in vivo cloning to the creation of greater molecular diversity, thanks to its efficient DNA recombination apparatus. Here, we summarize some successful examples of the use of the S. cerevisiae machinery to accelerate artificial evolution, complementing the traditional in vitro methods to generate tailor-made enzymes. PMID:22572788

  2. Direct synthesis of magnesium borohydride

    DOEpatents

    Ronnebro, Ewa Carin Ellinor; Severa, Godwin; Jensen, Craig M.

    2012-04-03

    A method is disclosed for directly preparing an alkaline earth metal borohydride, i.e. Mg(BH.sub.4).sub.2, from the alkaline earth metal boride MgB.sub.2 by hydrogenating the MgB.sub.2 at an elevated temperature and pressure. The boride may also be doped with small amounts of a metal chloride catalyst such as TiCl.sub.3 and/or NiCl.sub.2. The process provides for charging MgB.sub.2 with high pressure hydrogen above at least 70 MPa while simultaneously heating the material to about 350.degree. C. to about 400.degree. C. The method is relatively simple and inexpensive and provides a reversible hydride compound having a hydrogen capacity of at least 11 wt %.

  3. Loxoscelism: old obstacles, new directions.

    PubMed

    Hogan, Christopher J; Barbaro, Katia Cristina; Winkel, Ken

    2004-12-01

    Loxosceles spiders have a worldwide distribution and are considered one of the most medically important groups of spiders. Envenomation (loxoscelism) can result in dermonecrosis and, less commonly, a systemic illness that can be fatal. The mechanism of venom action is multifactorial and incompletely understood. The characteristic dermonecrotic lesion results from the direct effects of the venom on the cellular and basal membrane components, as well as the extracellular matrix. The initial interaction between the venom and tissues causes complement activation, migration of polymorphic neutrophils, liberation of proteolytic enzymes, cytokine and chemokine release, platelet aggregation, and blood flow alterations that result in edema and ischemia, with development of necrosis. There is no definitive treatment for loxoscelism. However, animal model studies suggest the potential value of specific antivenom to decrease lesion size and limit systemic illness even when such administration is delayed. PMID:15573037

  4. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  5. Direct laser initiation of PETN

    SciTech Connect

    Early, J. W.; Kennedy, J. E.

    2001-01-01

    In the early 1970s Yang and Menichelli demonstrated that direct laser illumination of low-density secondary explosive prr:ssings through a transparent window could produce detonation. 'The energy requirement for threshold initiation of detonation was reduced when a thin metal coating of metal covered the side of the window against which the low-density explosive was pressed. We have obtained experimental results that are in general agreement with the results of Renllund, Stanton and Trott (1 989) and recent: work by Nagayama, hou and Nakahara (2001). We report exploration of the effects of laser beam diameter, PEiTN density and specific surface area, and thickness of a titanium coating on the window.

  6. Method for directional hydraulic fracturing

    DOEpatents

    Swanson, David E.; Daly, Daniel W.

    1994-01-01

    A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.

  7. Multi-directional local search

    PubMed Central

    Tricoire, Fabien

    2012-01-01

    This paper introduces multi-directional local search, a metaheuristic for multi-objective optimization. We first motivate the method and present an algorithmic framework for it. We then apply it to several known multi-objective problems such as the multi-objective multi-dimensional knapsack problem, the bi-objective set packing problem and the bi-objective orienteering problem. Experimental results show that our method systematically provides solution sets of comparable quality with state-of-the-art methods applied to benchmark instances of these problems, within reasonable CPU effort. We conclude that the proposed algorithmic framework is a viable option when solving multi-objective optimization problems. PMID:25140071

  8. Direct lateral maneuvers in hawkmoths.

    PubMed

    Greeter, Jeremy S M; Hedrick, Tyson L

    2016-01-01

    We used videography to investigate direct lateral maneuvers, i.e. 'sideslips', of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  9. Direct lateral maneuvers in hawkmoths

    PubMed Central

    Greeter, Jeremy S. M.; Hedrick, Tyson L.

    2016-01-01

    ABSTRACT We used videography to investigate direct lateral maneuvers, i.e. ‘sideslips’, of the hawkmoth Manduca sexta. M. sexta sideslip by rolling their entire body and wings to reorient their net force vector. During sideslip they increase net aerodynamic force by flapping with greater amplitude, (in both wing elevation and sweep), allowing them to continue to support body weight while rolled. To execute the roll maneuver we observed in sideslips, they use an asymmetric wing stroke; increasing the pitch of the roll-contralateral wing pair, while decreasing that of the roll-ipsilateral pair. They also increase the wing sweep amplitude of, and decrease the elevation amplitude of, the contralateral wing pair relative to the ipsilateral pair. The roll maneuver unfolds in a stairstep manner, with orientation changing more during downstroke than upstroke. This is due to smaller upstroke wing pitch angle asymmetries as well as increased upstroke flapping counter-torque from left-right differences in global reference frame wing velocity about the moth's roll axis. Rolls are also opposed by stabilizing aerodynamic moments from lateral motion, such that rightward roll velocity will be opposed by rightward motion. Computational modeling using blade-element approaches confirm the plausibility of a causal linkage between the previously mentioned wing kinematics and roll/sideslip. Model results also predict high degrees of axial and lateral damping. On the time scale of whole and half wing strokes, left-right wing pair asymmetries directly relate to the first, but not second, derivative of roll. Collectively, these results strongly support a roll-based sideslip with a high degree of roll damping in M. sexta. PMID:26740573

  10. 38 CFR 17.259 - Direct costs.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 38 Pensions, Bonuses, and Veterans' Relief 1 2012-07-01 2012-07-01 false Direct costs. 17.259... Exchange of Information § 17.259 Direct costs. Direct costs to which grant funds may be applied may include in proportion to time and effort spent, but are not limited to, fees and costs directly paid...

  11. Current Developments in Self-Directed Learning.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    This document contains the following papers examining current developments in self-directed learning: "Self-Directed Learning: Challenges and Opportunities" (Huey B. Long); "Examination of Self-Directed Learning Readiness and Selected Demographic Variables of Top Female Executives" (Lucy M. Guglielmino); "Enhancing Self-Directed Learning in the…

  12. 40 CFR 73.72 - Direct sales.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Direct sales. 73.72 Section 73.72... ALLOWANCE SYSTEM Auctions, Direct Sales, and Independent Power Producers Written Guarantee § 73.72 Direct sales. Allowances that were formerly part of the direct sale program, which has been terminated...

  13. Current Developments in Self-Directed Learning.

    ERIC Educational Resources Information Center

    Long, Huey B.; And Others

    This document contains the following papers examining current developments in self-directed learning: "Self-Directed Learning: Challenges and Opportunities" (Huey B. Long); "Examination of Self-Directed Learning Readiness and Selected Demographic Variables of Top Female Executives" (Lucy M. Guglielmino); "Enhancing Self-Directed Learning in the

  14. 31 CFR 357.26 - Direct Deposit.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... by the regulations at 31 CFR part 370. (b) Names on account. Where the Legacy Treasury Direct..., DEPARTMENT OF THE TREASURY BUREAU OF THE PUBLIC DEBT REGULATIONS GOVERNING BOOK-ENTRY TREASURY BONDS, NOTES... Legacy Treasury Direct Book-Entry Securities System (Legacy Treasury Direct) § 357.26 Direct Deposit....

  15. 31 CFR 357.26 - Direct Deposit.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... by the regulations at 31 CFR part 370. (b) Names on account. Where the Legacy Treasury Direct..., DEPARTMENT OF THE TREASURY BUREAU OF THE FISCAL SERVICE REGULATIONS GOVERNING BOOK-ENTRY TREASURY BONDS... Legacy Treasury Direct Book-Entry Securities System (Legacy Treasury Direct) § 357.26 Direct Deposit....

  16. Directional Stability of Towed Airplanes

    NASA Technical Reports Server (NTRS)

    Soehne, W.

    1956-01-01

    So far, very careful investigations have been made regarding the flight properties, in particular the static and dynamic stability, of engine-propelled aircraft and of untowed gliders. In contrast, almost no investigations exist regarding the stability of airplanes towed by a towline. Thus, the following report will aim at investigating the directional stability of the towed airplane and, particularly, at determining what parameters of the flight attitude and what configuration properties affect the stability. The most important parameters of the flight attitude are the dynamic pressure, the aerodynamic coefficients of the flight attitude, and the climbing angle. Among the configuration properties, the following exert the greatest influence on the stability: the tow-cable length, the tow-cable attachment point, the ratio of the wing loadings of the towing and the towed airplanes, the moments of inertia, and the wing dihedral of the towed airplane. In addition, the size and shape of the towed airplane vertical tail, the vertical tail length, and the fuselage configuration are decisive factors in determining the yawing moment and side force due to sideslip, respectively.

  17. Direct digital conversion detector technology

    NASA Astrophysics Data System (ADS)

    Mandl, William J.; Fedors, Richard

    1995-06-01

    Future imaging sensors for the aerospace and commercial video markets will depend on low cost, high speed analog-to-digital (A/D) conversion to efficiently process optical detector signals. Current A/D methods place a heavy burden on system resources, increase noise, and limit the throughput. This paper describes a unique method for incorporating A/D conversion right on the focal plane array. This concept is based on Sigma-Delta sampling, and makes optimum use of the active detector real estate. Combined with modern digital signal processors, such devices will significantly increase data rates off the focal plane. Early conversion to digital format will also decrease the signal susceptibility to noise, lowering the communications bit error rate. Computer modeling of this concept is described, along with results from several simulation runs. A potential application for direct digital conversion is also reviewed. Future uses for this technology could range from scientific instruments to remote sensors, telecommunications gear, medical diagnostic tools, and consumer products.

  18. Cooperation for direct fitness benefits.

    PubMed

    Leimar, Olof; Hammerstein, Peter

    2010-09-12

    Studies of the evolution of helping have traditionally used the explanatory frameworks of reciprocity and altruism towards relatives, but recently there has been an increasing interest in other kinds of explanations. We review the success or otherwise of work investigating alternative processes and mechanisms, most of which fall under the heading of cooperation for direct benefits. We evaluate to what extent concepts such as by-product benefits, pseudo-reciprocity, sanctions and partner choice, markets and the build-up of cross-species spatial trait correlations have contributed to the study of the evolution of cooperation. We conclude that these alternative ideas are successful and show potential to further increase our understanding of cooperation. We also bring up the origin and role of common interest in the evolution of cooperation, including the appearance of organisms. We note that there are still unresolved questions about the main processes contributing to the evolution of common interest. Commenting on the broader significance of the recent developments, we argue that they represent a justified balancing of the importance given to different major hypotheses for the evolution of cooperation. This balancing is beneficial because it widens considerably the range of phenomena addressed and, crucially, encourages empirical testing of important theoretical alternatives. PMID:20679106

  19. Direct Fast-Neutron Detection

    SciTech Connect

    DC Stromswold; AJ Peurrung; RR Hansen; PL Reeder

    2000-01-18

    Direct fast-neutron detection is the detection of fast neutrons before they are moderated to thermal energy. We have investigated two approaches for using proton-recoil in plastic scintillators to detect fast neutrons and distinguish them from gamma-ray interactions. Both approaches use the difference in travel speed between neutrons and gamma rays as the basis for separating the types of events. In the first method, we examined the pulses generated during scattering in a plastic scintillator to see if they provide a means for distinguishing fast-neutron events from gamma-ray events. The slower speed of neutrons compared to gamma rays results in the production of broader pulses when neutrons scatter several times within a plastic scintillator. In contrast, gamma-ray interactions should produce narrow pulses, even if multiple scattering takes place, because the time between successive scattering is small. Experiments using a fast scintillator confirmed the presence of broader pulses from neutrons than from gamma rays. However, the difference in pulse widths between neutrons and gamma rays using the best commercially available scintillators was not sufficiently large to provide a practical means for distinguishing fast neutrons and gamma rays on a pulse-by-pulse basis. A faster scintillator is needed, and that scintillator might become available in the literature. Results of the pulse-width studies were presented in a previous report (peurrung et al. 1998), and they are only summarized here.

  20. Some directions in ecological theory.

    PubMed

    Kendall, Bruce E

    2015-12-01

    The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field. PMID:26909419