Science.gov

Sample records for nanophase ferric oxide

  1. High Resolution Transmission Electron Microscopy (HRTEM) of nanophase ferric oxides

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1994-01-01

    Iron oxide minerals are the prime candidates for Fe(III) signatures in remotely sensed Martian surface spectra. Magnetic, Mossbauer, and reflectance spectroscopy have been carried out in the laboratory in order to understand the mineralogical nature of Martian analog ferric oxide minerals of submicron or nanometer size range. Out of the iron oxide minerals studied, nanometer sized ferric oxides are promising candidates for possible Martian spectral analogs. 'Nanophase ferric oxide (np-Ox)' is a generic term for ferric oxide/oxihydroxide particles having nanoscale (less than 10 nm) particle dimensions. Ferrihydrite, superparamagnetic particles of hematite, maghemite and goethite, and nanometer sized particles of inherently paramagnetic lepidocrocite are all examples of nanophase ferric oxides. np-Ox particles in general do not give X-ray diffraction (XRD) patterns with well defined peaks and would often be classified as X-ray amorphous. Therefore, different np-Oxs preparations should be characterized using a more sensitive technique e.g., high resolution transmission electron microscopy (HRTEM). The purpose of this study is to report the particle size, morphology and crystalline order, of five np-Ox samples by HRTEM imaging and electron diffraction (ED).

  2. Nanophase iron oxides as a key ultraviolet sunscreen for ancient photosynthetic microbes

    NASA Astrophysics Data System (ADS)

    Bishop, Janice L.; Louris, Stephanie K.; Rogoff, Dana A.; Rothschild, Lynn J.

    2006-07-01

    We propose that nanophase iron-oxide-bearing materials provided important niches for ancient photosynthetic microbes on the Earth that ultimately led to the oxygenation of the Earth's atmosphere and the formation of iron-oxide deposits. Atmospheric oxygen and ozone attenuate ultraviolet radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose early and played a critical role in subsequent evolution. Of primary importance was protection below 290 nm, where peak nucleic acid (~260 nm) and protein (~280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal ultraviolet radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Furthermore, they were available in early environments, and are synthesized by many organisms. Based on experiments using nanophase ferric oxide/oxyhydroxide minerals as a sunscreen for photosynthetic microbes, we suggest that iron, an abundant element widely used in biological mechanisms, may have provided the protection that early organisms needed in order to be able to use photosynthetically active radiation while being protected from ultraviolet-induced damage. The results of this study are broadly applicable to astrobiology because of the abundance of iron in other potentially habitable bodies and the evolutionary pressure to utilize solar radiation when available as an energy source. This model could apply to a potential life form on Mars or other bodies where liquid water and ultraviolet radiation could have been present at significant levels. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the

  3. Modified electrochromism of tungsten oxide via platinum nanophases

    NASA Astrophysics Data System (ADS)

    Park, Kyung-Won; Shim, Hee-Sang; Seong, Tae-Yeon; Sung, Yung-Eun

    2006-05-01

    We report electrochromic properties of WO3 modified by platinum nanophases. The WO3 incorporated by Pt metallic nanophases (Pt -WO3) showed exactly reverse electrochromic phenomenon compared with that of both pure WO3 and WO3 intercepted and coated by metallic Pt thin-film layer. In addition, to investigate the origin of modified electrochromic properties, electrodes consisting of WO3 and/or Pt layers were designed and observed in optical properties during electrochemical reaction. The change of electrochromic properties in the Pt -WO3 is caused by modified structural and electrochemical properties of the WO3 by Pt metallic nanophases dispersed in the oxide matrix.

  4. Mid-infrared transmission spectra of crystalline and nanophase iron oxides/oxyhydroxides and implications for remote sensing of Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, Ted L.; Morris, Richard V.

    1995-01-01

    Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review exisiting data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+) - 0(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.

  5. Mid-infrared transmission spectra of crystalline and nanophase iron oxides/oxyhydroxides and implications for remote sensing of Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Roush, Ted L.; Morris, Richard V.

    1995-01-01

    Ferric-iron-bearing materials play an important role in the interpretation of visible to near-IR Mars spectra, and they may play a similarly important role in the analysis of new mid-IR spacecraft spectral observations to be obtained over the next decade. We review existing data on mid-IR transmission spectra of ferric oxides/oxyhydroxides and present new transmission spectra for ferric-bearing materials spanning a wide range of mineralogy and crystallinity. These materials include 11 samples of well-crystallized ferric oxides (hematite, maghemite, and magnetite) and ferric oxyhydroxides (goethite, lepidocrocite). We also report the first transmission spectra for purely nanophase ferric oxide samples that have been shown to exhibit spectral similarities to Mars in the visible to near-IR and we compare these data to previous and new transmission spectra of terrestrial palagonites. Most of these samples show numerous, diagnostic absorption features in the mid-IR due to Fe(3+)-O(2-) vibrational transitions, structural and/or bound OH, and/or silicates. These data indicate that high spatial resolution, moderate spectral resolution mid-IR ground-based and spacecraft observations of Mars may be able to detect and uniquely discriminate among different ferric-iron-bearing phases on the Martian surface or in the airborne dust.

  6. Nanophase Iron Oxides as an Ultraviolet Sunscreen for Ancient Photosynthetic Microbes: A Possible Link Between Early Organisms, Banded-Iron Formations, and the Oxygenation of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Bishop, Janice L.; Rothschild, Lynn J.; Rothschild, Lynn J.; Rogoff, Dana A.

    2006-01-01

    We propose that nanophase iron oxide-bearing materials provided important niches for ancient photosynthetic microbes on the early Earth that ultimately led to the oxygenation of the Earth s atmosphere and the formation of iron oxide deposits. Atmospheric oxygen and ozone attenuate UV radiation on the Earth today providing substantial protection for photosynthetic organisms. With ultraviolet radiation fluxes likely to have been even higher on the early Earth than today, accessing solar radiation was particularly risky for early organisms. Yet, we know that photosynthesis arose then and played a critical role in subsequent evolution. Of primary importance was protection at approx.250-290 nm, where peak nucleic acid (approx.260 nm) and protein (approx.280 nm) absorptions occur. Nanophase ferric oxide/oxyhydroxide minerals absorb, and thus block, the lethal UV radiation, while transmitting light through much of the visible and near-infrared regions of interest to photosynthesis (400 to 1100 nm). Further, they were available in early environments, and are synthesized by many organisms. Based on ferric oxide/oxyhydroxide spectral properties, likely geologic processes, and the results of experiments with the photosynthetic organisms, Euglena sp. and Chlumydomonus reinhardtii, we propose a scenario where photosynthesis, and ultimately the oxygenation of the atmosphere, depended on the protection of early microbes by nanophase ferric oxides/oxyhydroxides. The results of this study are also applicable to other potentially habitable iron-bearing planetary bodies because of the evolutionary pressure to utilize solar radiation when available as an energy source.

  7. Optical determination of the oxygen stoichiometry of nanophase metal-oxide materials

    SciTech Connect

    Parker, J.C. ); Siegel, R.W. )

    1990-10-01

    In this paper we present an overview and assessment of the use optical techniques, primarily Raman scattering, for analyzing the composition and stoichiometry of nanophase metal-oxide ceramics. Raman scattering has been shown to be a useful technique for evaluating the oxygen stoichiometry of some metal oxide materials. However, it is essential for nanophase materials that grain size effects are considered since their ultrafine grain sizes can produce large shifting and broadening of the Raman spectrum. 18 refs., 4 figs.

  8. Microwave drying of ferric oxide pellets

    SciTech Connect

    Pickles, C.A.; Xia, D.K.

    1997-12-31

    The application of microwave energy for the drying of ferric oxide pellets has been investigated and evaluated. It is shown that the microwave drying rates are much higher than those observed in the conventional process. Also there is some potential for improved quality of the product. As a stand-alone technology it is unlikely that microwave drying would be economical for pellets due to the low cost of conventional fuels. However, based on an understanding of the drying mechanisms in the conventional process and in the microwave process, it is shown that microwave-assisted drying offers considerable potential. In this hybrid process, the advantages of the two drying techniques are combined to provide an improved drying process.

  9. Ferric iron reduction by sulfur- and iron-oxidizing bacteria.

    PubMed Central

    Brock, T D; Gustafson, J

    1976-01-01

    Acidophilic bacteria of the genera Thiobacillus and Sulfolobus are able to reduce ferric iron when growing on elemental sulfur as an energy source. It has been previously thought that ferric iron serves as a nonbiological oxidant in the formation of acid mine drainage and in the leaching of ores, but these results suggest that bacterial catalysis may play a significant role in the reactivity of ferric iron. PMID:825043

  10. Pigmenting agents in Martian soils: inferences from spectral, Mossbauer, and magnetic properties of nanophase and other iron oxides in Hawaiian palagonitic soil PN-9

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Golden, D. C.; Lauer, H. V. Jr; Adams, J. B.

    1993-01-01

    We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.

  11. Lunar dust simulant containing nanophase iron and method for making the same

    NASA Technical Reports Server (NTRS)

    Hung, Chin-cheh (Inventor); McNatt, Jeremiah (Inventor)

    2012-01-01

    A lunar dust simulant containing nanophase iron and a method for making the same. Process (1) comprises a mixture of ferric chloride, fluorinated carbon powder, and glass beads, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles, Fe.sub.2O.sub.3, and Fe.sub.3O.sub.4. Process (2) comprises a mixture of a material of mixed-metal oxides that contain iron and carbon black, treating the mixture to produce nanophase iron, wherein the resulting lunar dust simulant contains .alpha.-iron nanoparticles and Fe.sub.3O.sub.4.

  12. Reactive nanophase oxide additions to melt-processed high-{Tc} superconductors

    SciTech Connect

    Goretta, K.C.; Brandel, B.P.; Lanagan, M.T.; Hu, J.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Ali, M.N.; Chen, Nan

    1994-10-01

    Nanophase TiO{sub 2} and Al{sub 2}O{sub 3} powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa{sub 2}Cu{sub 3}O{sub x} and TlBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O{sub 2} above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density (J{sub c}) increased dramatically with the oxide additions. At 35--50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J{sub c}, probably because of inducing a depresion of the transition temperature.

  13. Reactive nanophase oxide additions to melt-processed high-T(sub c) superconductors

    NASA Astrophysics Data System (ADS)

    Goretta, K. C.; Brandel, B. P.; Lanagan, M. T.; Hu, J.; Miller, D. J.; Sengupta, S.; Parker, J. C.; Ali, M. N.; Chen, Nan

    1994-10-01

    Nanophase TiO2 and Al2O3 powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa2Cu3O(x) and TlBa2Ca2Cu3O(x) powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O2 above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density J(sub c)) increased dramatically with the oxide additions. At 35-50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J(sub c), probably because of inducing a depression of the transition temperature.

  14. What ferric oxide/oxyhydroxide phases are present on Mars

    NASA Technical Reports Server (NTRS)

    Morris, Richard V.

    1988-01-01

    The weathering history of Mars can be deduced largely from the mineralogy and distribution of ferric oxide/oxyhydroxide phases. As discussed, some insights can be gained through spectrophotometric remote sensing, but absolute determinations must depend on direct laboratory analysis of returned Martian samples.

  15. Rapidly reversible redox transformation in nanophase manganese oxides at room temperature triggered by changes in hydration

    PubMed Central

    Birkner, Nancy; Navrotsky, Alexandra

    2014-01-01

    Chemisorption of water onto anhydrous nanophase manganese oxide surfaces promotes rapidly reversible redox phase changes as confirmed by calorimetry, X-ray diffraction, and titration for manganese average oxidation state. Surface reduction of bixbyite (Mn2O3) to hausmannite (Mn3O4) occurs in nanoparticles under conditions where no such reactions are seen or expected on grounds of bulk thermodynamics in coarse-grained materials. Additionally, transformation does not occur on nanosurfaces passivated by at least 2% coverage of what is likely an amorphous manganese oxide layer. The transformation is due to thermodynamic control arising from differences in surface energies of the two phases (Mn2O3 and Mn3O4) under wet and dry conditions. Such reversible and rapid transformation near room temperature may affect the behavior of manganese oxides in technological applications and in geologic and environmental settings. PMID:24733903

  16. Ferric oxide quantum dots in stable phosphate glass system and their magneto-optical study

    SciTech Connect

    Garaje, Sunil N.; Apte, Sanjay K.; Kumar, Ganpathy; Panmand, Rajendra P.; Naik, Sonali D.; Mahajan, Satish M.; Chand, Ramesh; Kale, Bharat B.

    2013-02-15

    Graphical abstract: We report synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles (NCs) content on the optical and magneto-optical properties of the glasses. Faraday rotation of the glass nanocomposites was measured and showed variation in Verdet constant with concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and there is a threefold enhancement in the Verdet constant of ferric oxide quantum dot-glass nanocomposite. Highlights: ► We synthesize ferric oxide embedded low melting stable phosphate glass nanocomposite. ► Glasses doped with 0.25 and 2% ferric oxide show particle size in the range of 4–12 nm. ► The host phosphate glass itself shows fairly good Verdet constant (11.5°/T cm). ► Glasses doped with 0.25% ferric oxide show high Verdet constant (30.525°/T cm). ► The as synthesis glasses may have potential application in magneto optical devices. -- Abstract: Herein, we report the synthesis of ferric oxide embedded low melting phosphate glass nanocomposite and also the effect of ferric oxide nanoparticles content on the optical and magneto-optical properties of the glasses. The optical study clearly showed red shift in optical cut off with increasing ferric oxide concentration. The band gap of the host glass was observed to be 3.48 eV and it shifted to 3.14 eV after doping with ferric oxide. The glasses doped with 0.25 and 2% ferric oxide showed particle size of 4–6 nm and 8–12 nm, respectively. Faraday rotation of the glass nanocomposites was measured and showed variation in the Verdet constant as per increasing concentration of ferric oxide. Interestingly, the host glass itself showed fairly good Verdet constant (11.5°/T cm) and threefold enhancement was observed in the Verdet constant of ferric oxide quantum dot-glass nanocomposite.

  17. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates.

    PubMed

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-09-10

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms. PMID:23980143

  18. Magnetotactic bacteria form magnetite from a phosphate-rich ferric hydroxide via nanometric ferric (oxyhydr)oxide intermediates

    PubMed Central

    Baumgartner, Jens; Morin, Guillaume; Menguy, Nicolas; Perez Gonzalez, Teresa; Widdrat, Marc; Cosmidis, Julie; Faivre, Damien

    2013-01-01

    The iron oxide mineral magnetite (Fe3O4) is produced by various organisms to exploit magnetic and mechanical properties. Magnetotactic bacteria have become one of the best model organisms for studying magnetite biomineralization, as their genomes are sequenced and tools are available for their genetic manipulation. However, the chemical route by which magnetite is formed intracellularly within the so-called magnetosomes has remained a matter of debate. Here we used X-ray absorption spectroscopy at cryogenic temperatures and transmission electron microscopic imaging techniques to chemically characterize and spatially resolve the mechanism of biomineralization in those microorganisms. We show that magnetite forms through phase transformation from a highly disordered phosphate-rich ferric hydroxide phase, consistent with prokaryotic ferritins, via transient nanometric ferric (oxyhydr)oxide intermediates within the magnetosome organelle. This pathway remarkably resembles recent results on synthetic magnetite formation and bears a high similarity to suggested mineralization mechanisms in higher organisms. PMID:23980143

  19. Evaluation of ferric oxide and ferric citrate for their effects on fermentation, production of sulfide and methane, and abundance of select microbial populations using in vitro rumen cultures.

    PubMed

    Wu, Hao; Meng, Qingxiang; Yu, Zhongtang

    2016-07-01

    This study systematically evaluated the effect of ferric iron on sulfate reduction to sulfide, feed digestion and fermentation, methane production, and populations of select ruminal microbes using in vitro rumen cultures. Ferric oxide (Fe2O3) and ferric citrate (C6H5FeO7) at six concentrations (0, 25, 50, 100, 150, and 200mg/L as Fe(3+)) were tested. Ferric iron decreased production of both H2S gas in culture headspace (up to 71.9%) and aqueous sulfide (up to 80.8%), without adversely affecting other fermentation parameters, with ferric citrate being more effective than ferric oxide. Total archaeal population was increased by ferric citrate, but methane production was not affected significantly. The population of sulfate reducing bacteria was affected differently by ferric oxide than by ferric citrate. The results of this study could guide future in vivo studies to develop effective solutions to abate sulfur-associated polioencephalomalacia in cattle fed high-sulfur diet such as dried distiller's grains with solubles. PMID:27043055

  20. Dietary bioavailability of Cu adsorbed to colloidal hydrous ferric oxide

    USGS Publications Warehouse

    Cain, Daniel J.; Croteau, Marie-Noële; Fuller, Christopher C.

    2013-01-01

    The dietary bioavailability of copper (Cu) adsorbed to synthetic colloidal hydrous ferric oxide (HFO) was evaluated from the assimilation of 65Cu by two benthic grazers, a gastropod and a larval mayfly. HFO was synthesized, labeled with 65Cu to achieve a Cu/Fe ratio comparable to that determined in naturally formed HFO, and then aged. The labeled colloids were mixed with a food source (the diatom Nitzschia palea) to yield dietary 65Cu concentrations ranging from 211 to 2204 nmol/g (dry weight). Animals were pulse fed the contaminated diet and assimilation of 65Cu from HFO was determined following 1–3 days of depuration. Mass transfer of 65Cu from HFO to the diatom was less than 1%, indicating that HFO was the source of 65Cu to the grazers. Estimates of assimilation efficiency indicated that the majority of Cu ingested as HFO was assimilated (values >70%), implying that colloidal HFO potentially represents a source of dietary Cu to benthic grazers, especially where there is active formation and infiltration of these particles into benthic substrates.

  1. Location of nanophase Fe-oxides in palagonitic soils: Implication for Martian pigments

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Morris, R. V.; Ming, D. W.; Lauer, H. V., Jr.

    1992-01-01

    Palagonitic materials from Mauna Kea, Hawaii, were identified as Mars analogs based on their spectral and magnetic properties. These materials probably resulted from hydrothermal alteration during eruption of the volcano and/or from weathering under ambient conditions. The reflectance spectra of the Mars surface obtained by Earth-based telescopes and the reflectance spectra of analogs obtained in the laboratory show features due to electronic transitions of Fe(III) in oxide particles that range in size from nanometer (nanophase) to micrometer sized or larger. The presence of Fe(III) suggests oxidizing conditions during the alteration process in Mars that may have occurred in the past or during a slow ongoing process. Two naturally altered basaltic samples from Hawaii (HWMK12 and HWMK13) and a laboratory-altered (PH-13-DCGT2) basaltic glass similar in elemental composition to the above two samples was examined. All three samples exhibited spectral characteristics similar to martian bright-region spectra. Chemical and mineralogical changes occurring at the surface of these basalts were studied in order to understand the basis for their Mars-like properties. The spectral properties of the three samples were examined after the removal of Fe oxides by chemical extractants.

  2. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-ADA-02101 Ford*, R. Rates of Hydrous Ferric Oxide Crystallization and the Influence on Coprecipitated Arsenate. Environmental Science & Technology 36 (11):2459-2463 (2002). EPA/600/J-02/240. Arsenate coprecipitated with hydrous fer...

  3. Granulation and ferric oxides loading enable biochar derived from cotton stalk to remove phosphate from water.

    PubMed

    Ren, Jing; Li, Nan; Li, Lei; An, Jing-Kun; Zhao, Lin; Ren, Nan-Qi

    2015-02-01

    Granulation of biochar powder followed by immobilization of ferric oxides on the macroporous granular biochar (Bg-FO-1) substantially enhanced phosphate removal from water. BET analysis confirmed that both granulation and ferric oxides loading can increase the surface areas and pore volumes effectively. Bg-FO-1 was proven to be a favorable adsorbent for phosphate. The phosphate adsorption capacity was substantially increased from 0 mg/g of raw biochar powder to 0.963 mg/g (Bg-FO-1). When the ferric oxides loading was prior to granulation, the adsorption capacity was decreased by 59-0.399 mg/g, possibly due to the decrease of micropore and mesopore area as well as the overlaying of binders to the activated sites produced by ferric oxides. PMID:25446788

  4. Interaction of nanoparticles of ferric oxide with brain nerve terminals and blood platelets

    NASA Astrophysics Data System (ADS)

    Borisova, Tatiana; Krisanova, Natalia; Sivko, Roman; Borisov, Arseniy

    2012-07-01

    Nanoparticles of ferric oxide are the components of Lunar and Martian soil simulants. The observations suggest that exposure to Lunar soli simulant can be deleterious to human physiology and the components of lunar soil may be internalized by lung epithelium and may overcome the blood-brain barrier. The study focused on the effects of nanoparticles of ferric oxide on the functional state of rat brain nerve terminals (synaptosomes) and rabbit blood platelets. Using photon correlation spectroscopy, we demonstrated the binding of nanoparticles of ferric oxide with nerve terminals and platelets. Nanoparticles did not depolarize the plasma membrane of nerve terminals and platelets that was shown by fluorimetry with potential-sensitive fluorescent dye rhodamine 6G. Using pH-sensitive fluorescent dye acridine orange, we revealed that the acidification of synaptic vesicles of nerve terminals and secretory granules of platelets did not change in the presence of nanoparticles. The initial velocity of uptake of excitatory neurotransmitter glutamate was not influenced by nanoparticles of ferric oxide, whereas glutamate binding to nerve terminals was altered. Thus, it was suggested that nanoparticles of ferric oxide might disturb glutamate transport in the mammalian CNS.

  5. Synthesis and characterization of γ-ferric oxide nanoparticles and their effect on Solanum lycopersicum.

    PubMed

    Pavani, Tambur; Rao, K Venkateswara; Chakra, Ch Shilpa; Prabhu, Y T

    2016-05-01

    γ-Ferric oxide nanoparticles are synthesized through modern and facile ayurvedic route followed by normal and special purification steps, which are both cost-effective and eco-friendly. These synthesized γ-ferric oxide nanoparticles were applied on Solanum lycopersicum to search the effect on chlorophyll content. This process involves multiple filtration and calcination steps. The synthesized samples were analyzed by X-ray diffraction (XRD), UV-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), and particle size analysis (PSA) to identify the purification step's influence on the structural, optical, morphological, magnetic, and particle size properties of ferric oxide nanoparticles (γ-phase). X-ray diffraction has revealed that ferric oxide nanoparticles have rhombohedral structure of α-phase (hematite) in initial purification process later transformed into cubic structure γ-phase (maghemite). UV-vis spectroscopy analysis has clearly shown that by repetitive purification steps, λmax has increased from 230 to 340 nm. TEM result has an intercorrelation with XRD results. γ-Ferric oxide nanoparticles were tested on Solanum lycopersicum (tomato seeds). The changes in the contents of chlorophyll a, chlorophyll b, and total carotene were studied using spectral measurements at two different dosages-0.5 and 2 M. As a result, at 0.5-M concentration, magnetic nanoparticles exhibit fruitful results by increasing the crop yield and being more resistant to chlorosis. PMID:26296507

  6. RATES OF HYDROUS FERRIC OXIDE CRYSTALLIZATION AND THE INFLUENCE ON COPRECIPITATED ARSENATE

    EPA Science Inventory

    Arsenate coprecipitated with hydrous ferric oxide (HFO) was stabilized against dissolution during transformation of HFO to more crystalline iron (hydr)oxides. The rate of arsenate stabilization approximately coincided with the rate of HFO transformation at pH 6 and 40 ?C. Compa...

  7. A Ferric-Peroxo Intermediate in the Oxidation of Heme by IsdI.

    PubMed

    Takayama, Shin-Ichi J; Loutet, Slade A; Mauk, A Grant; Murphy, Michael E P

    2015-04-28

    The canonical heme oxygenases (HOs) catalyze heme oxidation via a heme-bound hydroperoxo intermediate that is stabilized by a water cluster at the active site of the enzyme. In contrast, the hydrophobic active site of IsdI, a heme-degrading enzyme from Staphylococcus aureus, lacks a water cluster and is expected to oxidize heme by an alternative mechanism. Reaction of the IsdI-heme complex with either H2O2 or m-chloroperoxybenzoic acid fails to produce a specific oxidized heme iron intermediate, suggesting that ferric-hydroperoxo or ferryl derivatives of IsdI are not involved in the catalytic mechanism of this enzyme. IsdI lacks a proton-donating group in the distal heme pocket, so the possible involvement of a ferric-peroxo intermediate has been evaluated. Density functional theory (DFT) calculations indicate that heme oxidation involving a ferric-peroxo intermediate is energetically accessible, whereas the energy barrier for a reaction involving a ferric-hydroperoxo intermediate is too great in the absence of a proton donor. We propose that IsdI catalyzes heme oxidation through nucleophilic attack by the heme-bound peroxo species. This proposal is consistent with our previous demonstration by nuclear magnetic resonance spectroscopy that heme ruffling increases the susceptibility of the meso-carbon of heme to nucleophilic attack. PMID:25853501

  8. Complexation of ferric oxide particles with pectins of ordered and random distribution of charged units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Complexation between ferric oxide particles and pectins with degree of methylation 50%, but having blockwise (ordered) or random arrangement of free carboxyl groups, are investigated by electric light scattering and electrophoresis. The influence of charge distribution in pectin chain on the electri...

  9. Shock ignition of pyrotechnic heat powders. [Aluminium/ferric oxide mixture

    SciTech Connect

    Hornig, H.C.; Kury, J.W.; Simpson, R.L.; Helm, F.H.; Von Holle, W.G.

    1986-05-14

    Over a dozen pyrotechnic mixtures of alloy forming elements or solid oxidizers and fuels were subjected to shock pressures of from 2 to 35 GPa. More than half of these formulations were ignited by the shock. Visible and ir time resolved radiometry experiments using one of these mixtures, aluminum/ferric oxide, showed that this shock induced ignition occurred in less than 0.1 usec. 9 refs., 15 figs., 3 tabs.

  10. Energetic basis of catalytic activity of layered nanophase calcium manganese oxides for water oxidation

    PubMed Central

    Birkner, Nancy; Nayeri, Sara; Pashaei, Babak; Najafpour, Mohammad Mahdi; Casey, William H.; Navrotsky, Alexandra

    2013-01-01

    Previous measurements show that calcium manganese oxide nanoparticles are better water oxidation catalysts than binary manganese oxides (Mn3O4, Mn2O3, and MnO2). The probable reasons for such enhancement involve a combination of factors: The calcium manganese oxide materials have a layered structure with considerable thermodynamic stability and a high surface area, their low surface energy suggests relatively loose binding of H2O on the internal and external surfaces, and they possess mixed-valent manganese with internal oxidation enthalpy independent of the Mn3+/Mn4+ ratio and much smaller in magnitude than the Mn2O3-MnO2 couple. These factors enhance catalytic ability by providing easy access for solutes and water to active sites and facile electron transfer between manganese in different oxidation states. PMID:23667149

  11. The biostimulation of anaerobic digestion with (semi)conductive ferric oxides: their potential for enhanced biomethanation.

    PubMed

    Baek, Gahyun; Kim, Jaai; Cho, Kyungjin; Bae, Hyokwan; Lee, Changsoo

    2015-12-01

    The effect of biostimulation with ferric oxides, semiconductive ferric oxyhydroxide, and conductive magnetite on the anaerobic digestion of dairy wastewater was examined in a batch mode. The reactors supplemented with ferric oxyhydroxide (R2) and magnetite (R3) showed significantly enhanced biomethanation performance compared with the control (R1). The removal of chemical oxygen demand (COD) after 30 days was 31.9, 59.3, and 82.5% in R1, R2, and R3, respectively. The consumed COD was almost fully recovered as biogas in R2 and R3, while only 79% was recovered in R1. The total energy production as biogas was accordingly 32.2, 71.0, and 97.7 kJ in R1, R2, and R3, respectively. The reactors also differed in the acid formation profile with more propionate and butyrate found in R1 and more acetate found in R3. The enhanced biomethanation seems to be associated with variations in the bacterial community structure supposedly induced by the ferric oxides added. In contrast, no evident variation was observed in the archaeal community structure among the reactors. The potential electric syntrophy formed between Methanosaeta concilii-like methanogens and electroactive iron-reducing bacteria, particularly Trichococcus, was likely responsible for the enhanced performance. The stimulated growth of fermentative iron reducers may also have contributed by altering the metabolic characteristics of the bacterial communities to produce more favorable acidogenic products for methanogenesis. The overall results suggest the potential of biostimulation with (semi)conductive ferric oxides to enhance the rate and efficiency of the biomethanation of organic wastes. This seems to be potentially attractive, as increasing attention is being paid to the energy self-sufficiency of waste/wastewater treatment processes today. PMID:26272096

  12. Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels

    SciTech Connect

    Combes, J.M.; Manceau, A.; Calas, G. ); Bottero, J.Y. )

    1989-03-01

    X-ray absorption spectroscopy (XAS) was used to follow the evolution of local structural environments around ferric ions during the formation of ferric hydrous oxide gels from 1 M chloride and 0.1 M nitrate solutions. Fe K-XANES and EXAFS confirm that ferric ions remain 6-fold coordinated during this evolution. With increasing OH availability in the solution, Cl{sup {minus}} anions tend gradually to be exchanged for (O, OH, OH{sub 2}) ligands. Below OH/Fe = 1, no structural order is detected beyond the first coordination sphere. Above this ratio, two Fe-Fe distances at 3.05 {angstrom} and 3.44 {angstrom} are observed and correspond to the presence of edge- and vertex-sharing Fe-octahedra. XAS results show that ferric gels and highly polymerized aqueous species are short-range ordered. The main contribution to disorder in the gels arises from the small size of coherently scattering domains also responsible for their X-ray amorphous character. From the initial to the final stage of hydrolysis, particles possess a nearly spherical shape with a minimum average diameter ranging from 10-30 {angstrom} for polymers formed from chloride and nitrate solutions. As polymerization proceeds, the local order extends to several tens of angstroms and the particle structures becomes progressively closer to that of akaganeite ({beta}-FeOOH) or goethite ({alpha}-FeOOH). This local structure is distinct from that of the lepidocrocite ({gamma}-FeOOH)-like structure of ferric gels precipitated after oxidation of divalent Fe solutions. The growth of the crystalline Fe-oxyhydroxides from gels takes place by the progressive long-range ordering in the ferric polymers without modifying the short-range order around Fe.

  13. Soluble microbial products decrease pyrite oxidation by ferric iron at pH < 2.

    PubMed

    Yacob, Tesfayohanes; Pandey, Sachin; Silverstein, Joann; Rajaram, Harihar

    2013-08-01

    Research on microbial activity in acid mine drainage (AMD) has focused on transformations of iron and sulfur. However, carbon cycling, including formation of soluble microbial products (SMP) from cell growth and decay, is an important biogeochemical component of the AMD environment. Experiments were conducted to study the interaction of SMP with soluble ferric iron in acidic conditions, particularly the formation of complexes that inhibit its effectiveness as the primary oxidant of pyrite during AMD generation. The rate of pyrite oxidation by ferric iron in sterile suspensions at pH 1.8 was reduced by 87% in the presence of SMP produced from autoclaved cells at a ratio of 0.3 mg DOC per mg total soluble ferric iron. Inhibition of pyrite oxidation by SMP was shown to be comparable to, but weaker than, the effect of a chelating synthetic siderophore, DFAM. Two computational models incorporating SMP complexation were fitted to experimental results. Results suggest that bacterially produced organic matter can play a role in slowing pyrite oxidation. PMID:23777272

  14. Reduction of Soluble Iron and Reductive Dissolution of Ferric Iron-Containing Minerals by Moderately Thermophilic Iron-Oxidizing Bacteria

    PubMed Central

    Bridge, Toni A. M.; Johnson, D. Barrie

    1998-01-01

    Five moderately thermophilic iron-oxidizing bacteria, including representative strains of the three classified species (Sulfobacillus thermosulfidooxidans, Sulfobacillus acidophilus, and Acidimicrobium ferrooxidans), were shown to be capable of reducing ferric iron to ferrous iron when they were grown under oxygen limitation conditions. Iron reduction was most readily observed when the isolates were grown as mixotrophs or heterotrophs with glycerol as an electron donor; in addition, some strains were able to couple the oxidation of tetrathionate to the reduction of ferric iron. Cycling of iron between the ferrous and ferric states was observed during batch culture growth in unshaken flasks incubated under aerobic conditions, although the patterns of oxidoreduction of iron varied in different species of iron-oxidizing moderate thermophiles and in strains of a single species (S. acidophilus). All three bacterial species were able to grow anaerobically with ferric iron as a sole electron acceptor; the growth yields correlated with the amount of ferric iron reduced when the isolates were grown in the absence of oxygen. One of the moderate thermophiles (identified as a strain of S. acidophilus) was able to bring about the reductive dissolution of three ferric iron-containing minerals (ferric hydroxide, jarosite, and goethite) when it was grown under restricted aeration conditions with glycerol as a carbon and energy source. The significance of iron reduction by moderately thermophilic iron oxidizers in both environmental and applied contexts is discussed. PMID:9603832

  15. Iron Oxidation and Precipitation of Ferric Hydroxysulfates by Resting Thiobacillus ferrooxidans Cells

    PubMed Central

    Lazaroff, Norman; Sigal, Warren; Wasserman, Andrew

    1982-01-01

    The oxidation of ferrous ions, in acid solution, by resting suspensions of Thiobacillus ferrooxidans produced sediments consisting of crystalline jarosites, amorphous ferric hydroxysulfates, or both. These products differed conspicuously in chemical composition and infrared spectra from precipitates formed by abiotic oxidation under similar conditions. The amorphous sediments, produced by bacterial oxidation, exhibited a distinctive fibroporous microstructure when examined by scanning electron microscopy. Infrared spectra indicated outer-sphere coordination of Fe(III) by sulfate ions, as well as inner-sphere coordination by water molecules and bridging hydroxo groups. In the presence of excess sulfate and appropriate monovalent cations, jarosites, instead of amorphous ferric hydroxysulfates, precipitated from bacterially oxidized iron solutions. It is proposed that the jarositic precipitates result from the conversion of outer-sphere (Td) sulfate, present in a soluble polymeric Fe(III) complex, to inner-sphere (C3v) bridging sulfate. The amorphous precipitates result from the further polymerization of hydroxo-linked iron octahedra and charge stabilized aggregation of the resulting iron complexes in solution. This view was supported by observations that bacterially oxidized iron solutions gave rise to either amorphous or jarositic sediments in response to ionic environments imposed after oxidation had been completed and the bacteria had been removed by filtration. Images PMID:16345996

  16. Sorption of Ferric Iron from Ferrioxamine B to Synthetic and Biogenic Layer Type Manganese Oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, O.; John, B.; Sposito, G.

    2006-12-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments to increase the bioavailablity of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but no information appears to be available about the effect of solid-phase Mn(IV). To probe the effects of predominantly Mn(IV) oxides, we studied the sorption reaction of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] with two synthetic birnessites [layer type Mn(III, IV) oxides] and a biogenic birnessite produced by Pseudomonas putida MnB1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ over at pH 8. After 72 hours equilibration time, the sorption behavior for the synthetic birnessites could be accurately described by a Langmuir isotherm; for the biogenic oxide, a Freundlich isotherm was best utilized to model the sorption data. To study the molecular nature of the interaction between the Fe(III)HDFOB+ complex and the oxide surface, Fe K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy was employed. Analysis of the EXAFS spectra indicated that Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to into the mineral structure at multiple sites with no evidence of DFOB complexation, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that manganese oxides, including biominerals, may strongly sequester iron from soluble ferric complexes and thus may play a significant role in the biogeochemical cycling of iron in marine and terrestrial environments.

  17. Sorption of ferric iron from ferrioxamine B to synthetic and biogenic layer type manganese oxides

    NASA Astrophysics Data System (ADS)

    Duckworth, Owen W.; Bargar, John R.; Sposito, Garrison

    2008-07-01

    Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB +, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB + at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.

  18. Oxidation of sulphide minerals--I: determination of ferrous and ferric iron in samples of pyrrhotite, pyrite and chalcopyrite.

    PubMed

    Steger, H F

    1977-04-01

    A method has been developed for determining small amounts of both ferrous and ferric iron in oxidized samples of pyrrhotite, pyrite and chalcopyrite. The oxidized iron is selectively dissolved in 10M phosphoric acid under reflux and can be determined with the accuracy generally accepted in chemical phase analysis. PMID:18962075

  19. Effect of functional groups on the crystallization of ferric oxides/oxyhydroxides in suspension environment

    NASA Astrophysics Data System (ADS)

    Zhou, Qiong; Albert, Olga; Deng, Hua; Yu, Xiao-Long; Cao, Yang; Li, Jian-Bao; Huang, Xin

    2012-12-01

    This paper investigated the effects of five kinds of Au surfaces terminated with and without functional groups on the crystallization of ferric oxides/oxyhydroxides in the suspension condition. Self-assembled monolayers (SAMs) were used to create hydroxyl (-OH), carboxyl (-COOH), amine (-NH2) and methyl (-CH3) functionalized surfaces, which proved to be of the same surface density. The immersion time of substrates in the Fe(OH)3 suspension was divided into two time portions. During the first period of 2 h, few ferric oxide/oxyhydroxide was deposited except that ɛ-Fe2O3 was detected on -NH2 surface. Crystallization for 10 h evidenced more kinds of iron compounds on the functional surfaces. Goethite and maghemite were noticed on four functional surfaces, and maghemite also grew on Au surface. Deposition of ɛ-Fe2O3 was found on -OH surface, while the growth of orthorhombic and hexagon FeOOH were indicated on -NH2 surface. Considering the wide existence of iron compounds in nature, our investigation is a precedent work to the study of iron biomineralization in the suspension area.

  20. A Beverage Containing Fermented Black Soybean Ameliorates Ferric Nitrilotriacetate-Induced Renal Oxidative Damage in Rats

    PubMed Central

    Okazaki, Yasumasa; Iqbal, Mohammad; Kawakami, Norito; Yamamoto, Yorihiro; Toyokuni, Shinya; Okada, Shigeru

    2010-01-01

    It is beneficial to seek scientific basis for the effects of functional foods. Natural pigments derived from plants are widely known as possible antioxidants. Black soybean contains a larger amount of anthocyanins than regular soybean. Here we studied the antioxidative effect of a beverage obtained via citric acid fermentation of black soybean (BBS), using a rat model of renal oxidative injury induced by a renal carcinogen, ferric nitrilotriacetate. BBS (10 ml/kg) was orally administered 30 min before ferric nitrilotriacetate treatment. Renal lipid peroxidation was significantly suppressed in the BBS-pretreated animals concomitant with decrease in 4-hydroxy-2-nonenal-modified proteins and 8-hydroxy-2'-deoxyguanosine. Maintenance of renal activities of antioxidative enzymes including catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, glucose-6-phosphate dehydrogenase and quinone reductase was significantly better in the BBS-pretreated rats. Elevation of serum creatinine and urea nitrogen was significantly suppressed in the BBS-pretreated rats. These data suggest that dietary intake of BBS is useful for the prevention of renal tubular oxidative damage mediate by iron, and warrant further investigation. PMID:21103028

  1. Gold coated ferric oxide nanoparticles based disposable magnetic genosensors for the detection of DNA hybridization processes.

    PubMed

    Loaiza, Óscar A; Jubete, Elena; Ochoteco, Estibalitz; Cabañero, German; Grande, Hans; Rodríguez, Javier

    2011-01-15

    In this article, a disposable magnetic DNA sensor using an enzymatic amplification strategy for the detection of specific hybridization processes, based on the coupling of streptavidin-peroxidase to biotinylated target sequences, has been developed. A thiolated 19-mer capture probe was attached to gold coated ferric oxide nanoparticles and hybridization with the biotinylated target was allowed to proceed. Then, a streptavidin-peroxide was attached to the biotinylated target and the resulting modified gold coated ferric oxide nanoparticles were captured by a magnetic field on the surface of a home-made carbon screen printed electrode (SPE). Using hydroquinone as a mediator, a square wave voltammetric procedure was chosen to detect the hybridization process after the addition of hydrogen peroxide. Different aspects concerning the assay protocol and nanoparticles fabrication were optimized in order to improve the sensitivity of the developed methodology. A low detection limit (31 pM) with good stability (RSD=7.04%, n=10) was obtained without the need of polymerase chain reaction (PCR) amplification. PMID:20951565

  2. Hydrous ferric oxide precipitation in the presence of nonmetabolizing bacteria: Constraints on the mechanism of a biotic effect

    NASA Astrophysics Data System (ADS)

    Rancourt, Denis G.; Thibault, Pierre-Jean; Mavrocordatos, Denis; Lamarche, Gilles

    2005-02-01

    We have used room temperature and cryogenic 57Fe Mössbauer spectroscopy, powder X-ray diffraction (pXRD), mineral magnetometry, and transmission electron microscopy (TEM), to study the synthetic precipitation of hydrous ferric oxides (HFOs) prepared either in the absence (abiotic, a-HFO) or presence (biotic, b-HFO) of nonmetabolizing bacterial cells ( Bacillus subtilis or Bacillus licheniformis, ˜10 8 cells/mL) and under otherwise identical chemical conditions, starting from Fe(II) (10 -2, 10 -3, or 10 -4 mol/L) under open oxic conditions and at different pH (6-9). We have also performed the first Mössbauer spectroscopy measurements of bacterial cell wall ( Bacillus subtilis) surface complexed Fe, where Fe(III) (10 -3.5-10 -4.5 mol/L) was added to a fixed concentration of cells (˜10 8 cells/mL) under open oxic conditions and at various pH (2.5-4.3). We find that non-metabolic bacterial cell wall surface complexation of Fe is not passive in that it affects Fe speciation in at least two ways: (1) it can reduce Fe(III) to sorbed-Fe 2+ by a proposed steric and charge transfer effect and (2) it stabilizes Fe(II) as sorbed-Fe 2+ against ambient oxidation. The cell wall sorption of Fe occurs in a manner that is not compatible with incorporation into the HFO structure (different coordination environment and stabilization of the ferrous state) and the cell wall-sorbed Fe is not chemically bonded to the HFO particle when they coexist (the sorbed Fe is not magnetically polarized by the HFO particle in its magnetically ordered state). This invalidates the concept that sorption is the first step in a heterogeneous nucleation of HFO onto bacterial cell walls. Both the a-HFOs and the b-HFOs are predominantly varieties of ferrihydrite (Fh), often containing admixtures of nanophase lepidocrocite (nLp), yet they show significant abiotic/biotic differences: Biotic Fh has less intraparticle (including surface region) atomic order (Mössbauer quadrupole splitting), smaller primary

  3. Moessbauer search for ferric oxide phases in lunar materials and simulated lunar materials

    NASA Technical Reports Server (NTRS)

    Forester, D. W.

    1973-01-01

    Moessbauer studies were carried out on lunar fines and on simulated lunar glasses containing magnetic-like precipitates with the primary objective of determining how much, if any, ferric oxide is present in the lunar soils. Although unambiguous evidence of lunar Fe(3+) phases was not obtained, an upper limit was estimated from different portions of the Moessbauer spectra to be between 0.1 and 0.4 wt.% (as Fe3O4). A smaller than 62 microns fraction of 15021,118 showed 0.5 wt.% ferromagnetic iron at 300 K in as-returned condition. After heating to 650 C in an evacuated, sealed quartz tube for 1400 hours, the same sample exhibited 1 wt.% ferromagnetic iron at room temperature. An accompanying decrease in excess absorption area near zero velocity was noted. Thus, the result of the vacuum heat treatment was to convert fine grained iron to larger particles, apparently without the oxidation effects commonly reported.

  4. Are there multiple mechanisms of anaerobic sulfur oxidation with ferric iron in Acidithiobacillus ferrooxidans?

    PubMed

    Kucera, Jiri; Pakostova, Eva; Lochman, Jan; Janiczek, Oldrich; Mandl, Martin

    2016-06-01

    To clarify the pathway of anaerobic sulfur oxidation coupled with dissimilatory ferric iron reduction in Acidithiobacillus ferrooxidans strain CCM 4253 cells, we monitored their energy metabolism gene transcript profiles. Several genes encoding electron transporters involved in aerobic iron and sulfur respiration were induced during anaerobic growth of ferrous iron-grown cells. Most sulfur metabolism genes were either expressed at the basal level or their expression declined. However, transcript levels of genes assumed to be responsible for processing of elemental sulfur and other sulfur intermediates were elevated at the beginning of the growth period. In contrast, genes with predicted functions in formation of hydrogen sulfide and sulfate were significantly repressed. The main proposed mechanism involves: outer membrane protein Cyc2 (assumed to function as a terminal ferric iron reductase); periplasmic electron shuttle rusticyanin; c4-type cytochrome CycA1; the inner membrane cytochrome bc1 complex I; and the quinone pool providing connection to the sulfur metabolism machinery, consisting of heterodisulfide reductase, thiosulfate:quinone oxidoreductase and tetrathionate hydrolase. However, an alternative mechanism seems to involve a high potential iron-sulfur protein Hip, c4-type cytochrome CycA2 and inner membrane cytochrome bc1 complex II. Our results conflict with findings regarding the type strain, indicating strain- or phenotype-dependent pathway variation. PMID:26924114

  5. Novel regeneration method for phosphate loaded granular ferric (hydr)oxide--a contribution to phosphorus recycling.

    PubMed

    Kunaschk, Marco; Schmalz, Viktor; Dietrich, Norman; Dittmar, Thomas; Worch, Eckhard

    2015-03-15

    At a progressive rate, small wastewater treatment plants in rural areas need to be equipped with an additional phosphorus removal stage in order to achieve a good chemical status in the receiving natural water bodies. A conventional regeneration method for ferric (hydr)oxides such as phosphate specific adsorbents, which can be applied to remove and recover phosphorus in fixed bed filters, was investigated and improved. It was shown that a loss of up to 85% of the initial capacity can be observed when regeneration with 1 M NaOH is implemented. The losses are caused by surface blocking with different calcium-containing compounds as revealed by an EDX analysis. These blocking compounds could be removed completely with an additional acidic regeneration step at pH = 2.5. During the alkaline desorption that followed, complete phosphorus removal and a full recovery of the adsorption capacity were achieved for goethite-rich Bayoxide(®) E 33 HC (E33HC) and akaganéite-rich GEH(®) 104 (GEH). The regeneration procedure was repeated up to eight times without any signs of further decline in the phosphate adsorption capacity or any changes in the specific surface area or pore size distribution of the adsorbent. In contrast to GEH and E33HC, ferric hydroxide- and calcite-rich FerroSorp(®) Plus (FSP) was partly dissolved during acid treatment. PMID:25618522

  6. The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Becerra, Patricio; Keane, James T.; Byrne, Shane

    2016-05-01

    We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy-loss spectroscopy (EELS) coupled to an aberration-corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen-rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.

  7. The oxidation state of nanophase Fe particles in lunar soil: Implications for space weathering

    NASA Astrophysics Data System (ADS)

    Thompson, Michelle S.; Zega, Thomas J.; Becerra, Patricio; Keane, James T.; Byrne, Shane

    2016-06-01

    We report measurements of the oxidation state of Fe nanoparticles within lunar soils that experienced varied degrees of space weathering. We measured >100 particles from immature, submature, and mature lunar samples using electron energy-loss spectroscopy (EELS) coupled to an aberration-corrected transmission electron microscope. The EELS measurements show that the nanoparticles are composed of a mixture of Fe0, Fe2+, and Fe3+ oxidation states, and exhibit a trend of increasing oxidation state with higher maturity. We hypothesize that the oxidation is driven by the diffusion of O atoms to the surface of the Fe nanoparticles from the oxygen-rich matrix that surrounds them. The oxidation state of Fe in the nanoparticles has an effect on modeled reflectance properties of lunar soil. These results are relevant to remote sensing data for the Moon and to the remote determination of relative soil maturities for various regions of the lunar surface.

  8. Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes.

    PubMed

    Lin, Richen; Cheng, Jun; Ding, Lingkan; Song, Wenlu; Liu, Min; Zhou, Junhu; Cen, Kefa

    2016-05-01

    Ferric oxide nanoparticles (FONPs) were used to facilitate dark hydrogen fermentation using Enterobacter aerogenes. The hydrogen yield of glucose increased from 164.5±2.29 to 192.4±1.14mL/g when FONPs concentration increased from 0 to 200mg/L. SEM images of E. aerogenes demonstrated the existence of bacterial nanowire among cells, suggesting FONPs served as electron conduits to enhance electron transfer. TEM showed cellular internalization of FONPs, indicating hydrogenase synthesis and activity was potentially promoted due to the released iron element. When further increasing FONPs concentration to 400mg/L, the hydrogen yield of glucose decreased to 147.2±2.54mL/g. Soluble metabolic products revealed FONPs enhanced acetate pathway of hydrogen production, but weakened ethanol pathway. This shift of metabolic pathways allowed more nicotinamide adenine dinucleotide for reducing proton to hydrogen. PMID:26890796

  9. Bovine lactoferrin ameliorates ferric nitrilotriacetate-induced renal oxidative damage in rats

    PubMed Central

    Okazaki, Yasumasa; Kono, Isato; Kuriki, Takayoshi; Funahashi, Satomi; Fushimi, Soichiro; Iqbal, Mohammad; Okada, Shigeru; Toyokuni, Shinya

    2012-01-01

    Milk provides a well-balanced source of amino acids and other ingredients. One of the functional ingredients in milk is lactoferrin (LF). LF presents a wide variety of bioactivities and functions as a radical scavenger in models using iron-ascorbate complexes and asbestos. Human clinical trials of oral LF administration for the prevention of colon polyps have been successful and demonstrated that dietary compounds exhibit direct interactions. However, antioxidative properties of LF in distant organs require further investigation. To study the antioxidant property of LF, we employed bovine lactoferrin (bLF) using the rat model of ferric nitrilotriacetate (Fe-NTA)-induced renal tubular oxidative injury. We fed rats with bLF (0.05%, w/w) in basal chow for 4 weeks and sacrificed them after Fe-NTA treatment. After intraperitoneal administration of 9.0 mg iron/kg Fe-NTA for 4 and 24 h, bLF pretreatment suppressed elevation of serum creatinine and blood urea nitrogen levels. In addition, we observed protective effects against renal oxidative tubular damage and maintenance of antioxidant enzyme activities in the bLF-pretreated group. We thus demonstrated the antioxidative effect of bLF against Fe-NTA-induced renal oxidative injury. These results suggest that LF intake is useful for the prevention of renal tubular oxidative damage mediated by iron. PMID:22962523

  10. Defect Clustering and Nano-phase Structure Characterization of Multicomponent Rare Earth-Oxide-Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2004-01-01

    Advanced thermal barrier coatings (TBCs) have been developed by incorporating multicomponent rare earth oxide dopants into zirconia-based thermal barrier coatings to promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nanophases within the coating systems. In this paper, the defect clusters, induced by Nd, Gd, and Yb rare earth dopants in the zirconia-yttria thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The TEM lattice imaging, selected area diffraction (SAD), and electron energy-loss spectroscopy (EELS) analyses demonstrated that the extensive nanoscale rare earth dopant segregation exists in the plasma-sprayed and electron-physical-vapor-deposited (EB PVD) thermal barrier coatings. The nanoscale concentration heterogeneity and the resulting large lattice distortion promoted the formation of parallel and rotational defective lattice clusters in the coating systems. The presence of the 5-to 100-nm-sized defect clusters and nanophases is believed to be responsible for the significant reduction of thermal conductivity, improved sintering resistance, and long-term high temperature stability of the advanced thermal barrier coating systems.

  11. Carvedilol and trimetazidine attenuates ferric nitrilotriacetate-induced oxidative renal injury in rats.

    PubMed

    Singh, Devinder; Chander, Vikas; Chopra, Kanwaljit

    2003-09-30

    Intraperitoneal (i.p.) injection of ferric nitrilotriacetate (Fe-NTA) induces acute proximal tubular necrosis as a consequence of lipid peroxidation and oxidative tissue damage, which eventually leads to high incidence of renal adenocarcinoma in rodents. This study was designed to investigate the effect of carvedilol, an antihypertensive and trimetazidine, an antiischemic, both the drugs with additional antioxidative potentials, on Fe-NTA induced nephrotoxicity in rats. One hour after a single i.p. injection of Fe-NTA (8 mg iron per kg), a marked deterioration of renal architecture and renal function as evidenced by a sharp increase in blood urea nitrogen (BUN) and serum creatinine was observed. Fe-NTA induced a significant renal oxidative stress demonstrated by elevated thiobarbituric acid reacting substances (TBARS) and reduction in activities of renal catalase, superoxide dismutase (SOD) and glutathione reductase (GR). Pretreatment of animals with carvedilol (2 mg/kg, i.p.) as well as with trimetazidine (3 mg/kg, i.p.), 30 min before Fe-NTA administration markedly attenuated renal dysfunction, reduced elevated TBARS, restored the depleted renal antioxidant enzymes and normalised the renal morphological alterations. These results clearly demonstrate the role of oxidative stress and its relation to renal dysfunction, and suggest a protective effect of carvedilol and trimetazidine on Fe-NTA-induced nephrotoxicity in rats. PMID:12965117

  12. Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study.

    PubMed

    Xu, Ying; Axe, Lisa; Boonfueng, Thipnakarin; Tyson, Trevor A; Trivedi, Paras; Pandya, Kaumudi

    2007-10-01

    Ni(II) sorption onto iron oxides and in particular hydrous ferric oxide (HFO) is among the important processes impacting its distribution, mobility, and bioavailability in environment. To develop mechanistic models for Ni, extended X-ray absorption fine structure (EXAFS) analysis has been conducted on Ni(II) sorbed to HFO. Coprecipitation revealed the formation of the metastable alpha-Ni(OH)(2) at a Ni(II) loading of 3.5 x 10(-3) molg(-1). On the other hand, Ni(II) formed inner-sphere mononuclear bidentate complexes along edges of FeO(6) octahedra when sorbed to HFO surfaces with Ni-O distances of 2.05-2.07 A and Ni-Fe distances of 3.07-3.11 A. This surface complex was observed by EXAFS study over 2.8 x 10(-3) to 10(-1) ionic strength, pH from 6 to 7, a Ni(II) loading of 8 x 10(-4) to 8.1 x 10(-3) molg(-1) HFO, and reaction times from 4 hours to 8 months. The short- and long-range structure analyses suggest that the presence of Ni(II) inhibited transformation of the amorphous iron oxide into a more crystalline form. However, Ni(2+) was not observed to substitute for Fe(3+) in the oxide structure. This study systematically addresses Ni(II) adsorption mechanisms to amorphous iron oxide. The experimentally defined surface complexes can be used to constrain surface complexation modeling for improved prediction of metal distribution at the iron oxide/aqueous interface. PMID:17561066

  13. Nitric oxide binding to the cardiolipin complex of ferric cytochrome C.

    PubMed

    Silkstone, G; Kapetanaki, S M; Husu, I; Vos, M H; Wilson, M T

    2012-08-28

    Cardiolipin, a phospholipid specific to the mitochondrion, interacts with the small electron transfer heme protein cytochrome c through both electrostatic and hydrophobic interactions. Once in a complex with cardiolipin, cytochrome c has been shown to undergo a conformational change that leads to the rupture of the bond between the heme iron and the intrinsic sulfur ligand of a methionine residue and to enhance the peroxidatic properties of the protein considered important to its apoptotic activity. Here we report that the ferric cytochrome c/cardiolipin complex binds nitric oxide tightly through a multistep process in which the first step is the relatively slow displacement (5 s(-1)) from heme coordination of an intrinsic ligand that replaces methionine in the complex. Nanosecond photolysis of the nitrosyl adduct demonstrated that a fraction of the nitric oxide escapes from the heme pocket and subsequently recombines to the heme in second-order processes (k = 1.8 × 10(6) and 5.5 × 10(5) M(-1) s(-1)) that, under these conditions, were much faster than recombination of the intrinsic ligand with which they compete. Ultrafast (femtosecond) laser photolysis showed that the geminate recombination of nitric oxide to the heme occurred with time constants (τ = 22 and 72 ps) and that ~23% of the photolyzed nitric oxide escaped into the bulk phase. This high value for the escape fraction relative to other heme proteins indicates the open nature of the heme pocket in this complex. These results are summarized in a scheme and are discussed in terms of the possible modulation of the apoptotic activity of cytochrome c by nitric oxide. PMID:22803508

  14. Mediated electron transfer between Fe(II) adsorbed onto hydrous ferric oxide and a working electrode.

    PubMed

    Klein, Annaleise R; Silvester, Ewen; Hogan, Conor F

    2014-09-16

    The redox properties of Fe(II) adsorbed onto mineral surfaces have been highly studied over recent years due to the wide range of environmental contaminants that react with this species via abiotic processes. In this work the reactivity of Fe(II) adsorbed onto hydrous ferric oxide (HFO) has been studied using ferrocene (bis-cyclopentadienyl iron(II); Fc) derivatives as electron shuttles in cyclic voltammetry (CV) experiments. The observed amplification of the ferrocene oxidation peak in CV is attributed to reaction between the electrochemically generated ferrocenium (Fc(+)) ion and adsorbed Fe(II) species in a catalytic process (EC' mechanism). pH dependence studies show that the reaction rate increases with Fe(II) adsorption and is maintained in the absence of aqueous Fe(2+), providing strong evidence that the electron transfer process involves the adsorbed species. The rate of reaction between Fc(+) and adsorbed Fe(II) increases with the redox potential of the ferrocene derivative, as expected, with bimolecular rate constants in the range 10(3)-10(5) M(-1) s(-1). The ferrocene-mediated electrochemical method described has considerable promise in the development of a technique for measuring electron-transfer rates in geochemical and environmental systems. PMID:25157830

  15. Complexation of ferric oxide particles with pectins of ordered and random distribution of charged units.

    PubMed

    Milkova, Viktoria; Kamburova, Kamelia; Cameron, Randall; Radeva, Tsetska

    2012-01-01

    Complexation between ferric oxide particles and pectins with degree of methylation 50% but having ordered or random arrangement of free carboxyl groups is investigated by electric light scattering and electrophoresis. The influence of charge distribution in pectin chain on the electrical properties of oppositely charged oxide particles and stability of their suspensions is examined as a function of pectin concentration. Although the difference in charge density of pectin samples is ~5%, we found small but measurable difference in the behavior of both oxide/pectin complexes. This is attributed to condensation of counterions near the chains of pectin with ordered distribution of charges, leading to a decrease in the effective charge density and to a corresponding decrease in the contour length of the adsorbing pectin chains. Two parameters are sensitive to the conformation of the adsorbed chains in suspensions, stabilized by pectin adsorption (at particle charge reversal). The electro-optical effect is higher for the complex with less charged pectin, which is explained with larger amount of chains, adsorbed in more coiled conformation than the chains of pectin with random distribution of free carboxyl groups. The addition of small amounts of CaCl(2) has no significant influence on the thickness of the layer from the less charged pectin, in agreement with a more compact conformation of the chains in this adsorbed layer. In contrast, the thickness of the layer from pectin with random distribution of charged groups decreases with increasing concentration of CaCl(2), indicating a more loose structure of this layer. PMID:22114903

  16. The Campylobacter jejuni Ferric Uptake Regulator Promotes Acid Survival and Cross-Protection against Oxidative Stress.

    PubMed

    Askoura, Momen; Sarvan, Sabina; Couture, Jean-François; Stintzi, Alain

    2016-05-01

    Campylobacter jejuni is a prevalent cause of bacterial gastroenteritis in humans worldwide. The mechanisms by which C. jejuni survives stomach acidity remain undefined. In the present study, we demonstrated that the C. jejuni ferric uptake regulator (Fur) plays an important role in C. jejuni acid survival and acid-induced cross-protection against oxidative stress. A C. jejuni Δfur mutant was more sensitive to acid than the wild-type strain. Profiling of the acid stimulon of the C. jejuni Δfur mutant allowed us to uncover Fur-regulated genes under acidic conditions. In particular, Fur was found to upregulate genes involved in flagellar and cell envelope biogenesis upon acid stress, and mutants with deletions of these genes were found to be defective in surviving acid stress. Interestingly, prior acid exposure of C. jejuni cross-protected against oxidative stress in a catalase (KatA)- and Fur-dependent manner. Western blotting and reverse transcription-quantitative PCR revealed increased expression of KatA upon acid stress. Electrophoretic mobility shift assays (EMSAs) demonstrated that the binding affinity between Fur and the katA promoter is reduced in vitro under conditions of low pH, rationalizing the higher levels of expression of katA under acidic conditions. Strikingly, the Δfur mutant exhibited reduced virulence in both human epithelial cells and the Galleria mellonella infection model. Altogether, this is the first study showing that, in addition to its role in iron metabolism, Fur is an important regulator of C. jejuni acid responses and this function cross-protects against oxidative stress. Moreover, our results clearly demonstrate Fur's important role in C. jejuni pathogenesis. PMID:26883589

  17. Hydrous ferric oxide doped alginate beads for fluoride removal: Adsorption kinetics and equilibrium studies

    NASA Astrophysics Data System (ADS)

    Sujana, M. G.; Mishra, A.; Acharya, B. C.

    2013-04-01

    A new biopolymer beads, composite of hydrous ferric oxide (HFO) and alginate were synthesised, characterised and studied for its fluoride efficiency from water. The beads were characterised by chemical analysis, BET surface area, pHPZC and X-ray diffraction (XRD) analysis. The optimum conditions for fluoride removal were determined by studying operational variables viz. pH, contact time, initial F- concentration, bead dose and temperature. Presence of other anions like SO42-, PO43-, NO3-, Cl- and HCO3- effect on fluoride removal efficiency of prepared beads was also tested. The beads were 0.8-0.9 mm in size and contain 32-33% Fe (III) and showed specific surface area of 25.80 m2 g-1 and pHPZC of 5.15. Modified beads demonstrated Langmuir F- adsorption capacity of 8.90 mg g-1 at pH 7.0. The adsorption kinetics were best described by the pseudo-second order kinetic model followed by intra-particle diffusion as the rate determining step. It was found that about 80% of the adsorbed fluoride could be desorbed by using 0.05 M HCl. The FTIR, Raman and SEM-EDAX analysis were used to study the fluoride adsorption mechanisms on beads. Studies were also conducted to test the potential application of beads for F- removal from drinking water and the treated water quality.

  18. Liquid-liquid phase separation on melts and glasses in ferric ferrous oxide-silica system

    SciTech Connect

    Yasumori, A.; Koike, A.; Kameshima, Y.; Okada, K.; Yano, T.; Yamane, M.; Inoue, S.

    1997-12-31

    The existence of liquid-liquid miscibility gap in ferric ferrous oxide-silica system has been reported, however, the phase separation phenomena and the derived morphology of the phase separated glasses are uncertain. In this study, the melt-quenched samples of 5 Fe{sub 3}O{sub 4}-95 SiO{sub 2} and 15 Fe{sub 3}O{sub 4}-085 SiO{sub 2} (mol%) were prepared by melting at 2,300 C or 2,200 C (expected to be above miscibility gap), and subsequently at 1,800 C or 1,750 C (in immiscible region) by use of infrared image furnace and quenching at the rate of {approx}10{sup 2} K/sec. The glassy materials exhibited phase separation having discrete spherical particles or interconnected structure due to the composition, melting temperature and time. Also, the segregation of Fe component occurred during melting, which was caused by the difference of specific gravity of components in the melt.

  19. ATR-FTIR spectroscopic studies of boric acid adsorption on hydrous ferric oxide

    NASA Astrophysics Data System (ADS)

    Peak, Derek; Luther, George W.; Sparks, Donald L.

    2003-07-01

    Boron is an important micronutrient for plants, but high B levels in soils are often responsible for toxicity effects in plants. It is therefore important to understand reactions that may affect B availability in soils. In this study, Attenuated Total Reflectance Fourier transform Infrared (ATR-FTIR) spectroscopy was employed to investigate mechanisms of boric acid (B(OH) 3) and borate (B(OH) 4-) adsorption on hydrous ferric oxide (HFO). On the HFO surface, boric acid adsorbs via both physical adsorption (outer-sphere) and ligand exchange (inner-sphere) reactions. Both trigonal (boric acid) and tetrahedral (borate) boron are complexed on the HFO surface, and a mechanism where trigonal boric acid in solution reacts to form either trigonal or tetrahedral surface complexes is proposed based upon the spectroscopic results. The presence of outer-sphere boric acid complexes can be explained based on the Lewis acidity of the B metal center, and this complex has important implications for boron transport and availability. Outer-sphere boric acid is more likely to leach downward in soils in response to water flow. Outer-sphere boron would also be expected to be more available for plant uptake than more strongly bound boron complexes, and may more readily return to the soil solution when solution concentrations decrease.

  20. Indirect spectrophotometric determination of arbutin, whitening agent through oxidation by periodate and complexation with ferric chloride

    NASA Astrophysics Data System (ADS)

    Barsoom, B. N.; Abdelsamad, A. M. E.; Adib, N. M.

    2006-07-01

    A simple and accurate spectrophotometric method for the determination of arbutin (glycosylated hydroquinone) is described. It is based on the oxidation of arbutin by periodate in presence of iodate. Excess periodate causes liberation of iodine at pH 8.0. The unreacted periodate is determined by measurement of the liberated iodine spectrophotometrically in the wavelength range (300-500 nm). A calibration curve was constructed for more accurate results and the correlation coefficient of linear regression analysis was -0.9778. The precision of this method was better than 6.17% R.S.D. ( n = 3). Regression analysis of Bear-Lambert plot shows good correlation in the concentration range 25-125 ug/ml. The identification limit was determined to be 25 ug/ml a detailed study of the reaction conditions was carried out, including effect of changing pH, time, temperature and volume of periodate. Analyzing pure and authentic samples containing arbutin tested the validity of the proposed method which has an average percent recovery of 100.86%. An alternative method is also proposed which involves a complexation reaction between arbutin and ferric chloride solution. The produced complex which is yellowish-green in color was determined spectophotometrically.

  1. The influence of ferrous/ferric ions on the efficiency of photocatalytic oxidation of pollutants in groundwater.

    PubMed

    Klauson, D; Preis, S; Portjanskaja, E; Kachina, A; Krichevskaya, M; Kallas, J

    2005-06-01

    The complex influence of ferrous/ferric ions on the efficiency of aqueous photocatalytic oxidation (PCO) of 2-ethoxyethanol (2-EE), methyl tert-butyl ether (MTBE) and humic substances (HS) was established. A drastic efficiency increase at lower concentration of ferrous/ferric ions was observed to change to a sharp decrease at higher concentrations for 2-EE and MTBE, whereas for HS only an inhibitive effect of Fe2+/3+ on the PCO efficiency was noticed. The authors proposed an explanation for the observed phenomena based on the different sensitivities of pollutants towards radical-oxidation reactions and the competitive adsorption of metallic ions and pollutants on the TiO2 surface. PMID:16035658

  2. The kinetics of the oxidation of pyrite by ferric ions and dissolved oxygen: An electrochemical study

    SciTech Connect

    Holmes, P.R.; Crundwell, F.K.

    2000-01-01

    The dissolution of pyrite is important in the geochemical cycling of iron and sulphur, in the formation of acid mine drainage, and in the extraction of metals by bacterial leaching. Many researchers have studied the kinetics of dissolution, and the rate of dissolution has often been found to be half-order in ferric ions or oxygen. Previous work has not adequately explained the kinetics of dissolution of pyrite. The dissolution of pyrite is an oxidation-reduction reaction. The kinetics of the oxidation and reduction half-reactions was studied independently using electrochemical techniques of voltammetry. The kinetics of the overall reaction was studied by the electrochemical technique of potentiometry, which consisted of measuring the mixed potential of a sample of corroding pyrite in solutions of different compositions. The kinetics of the half reactions are related to the kinetics of the overall dissolution reaction by the condition that there is no accumulation of charge. This principle is used to derive expressions for the mixed potential and the rate of dissolution, which successfully describe the mixed potential measurements and the kinetics of dissolution reported in the literature. It is shown that the observations of half-order kinetics and that the oxygen in the sulphate product arises from water are both a direct consequence of the electrochemical mechanism. Thus it is concluded that the electrochemical reaction steps occurring at the mineral-solution interface control the rate of dissolution. Raman spectroscopy was used to analyze reaction products formed on the pyrite surface. The results indicated that small amounts of polysulphides form on the surface of the pyrite. However, it was also found that the mixed (corrosion) potential does not change over a 14-day leaching period. This indicates that even though polysulphide material is present on the surface, it does not influence the rate of the reactions occurring at the surface. Measurement of the

  3. Synthesis of waste cooking oil based biodiesel via ferric-manganese promoted molybdenum oxide / zirconia nanoparticle solid acid catalyst: influence of ferric and manganese dopants.

    PubMed

    Alhassan, Fatah H; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The utilization of ferric-manganese promoted molybdenum oxide/zirconia (Fe-Mn- MoO3/ZrO2) (FMMZ) solid acid catalyst for production of biodiesel was demonstrated. FMMZ is produced through impregnation reaction followed by calcination at 600°C for 3 h. The characterization of FMMZ had been done using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), transmission electron microscopy(TEM) and Brunner-Emmett-Teller (BET) surface area measurement. The effect of waste cooking oil methyl esters (WCOME's) yield on the reactions variables such as reaction temperature, catalyst loading, molar ratio of methanol/oil and reusability were also assessed. The catalyst was used to convert the waste cooking oil into corresponding methyl esters (95.6%±0.15) within 5 h at 200℃ reaction temperature, 600 rpm stirring speed, 1:25 molar ratio of oil to alcohol and 4% w/w catalyst loading. The reported catalyst was successfully recycled in six connective experiments without loss in activity. Moreover, the fuel properties of WCOME's were also reported using ASTM D 6751 methods. PMID:25843280

  4. Rare earth element partitioning between hydrous ferric oxides and acid mine water during iron oxidation

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Taylor, H.E.; Kimball, B.A.

    2004-01-01

    Ferrous iron rapidly oxidizes to Fe (III) and precipitates as hydrous Fe (III) oxides in acid mine waters. This study examines the effect of Fe precipitation on the rare earth element (REE) geochemistry of acid mine waters to determine the pH range over which REEs behave conservatively and the range over which attenuation and fractionation occur. Two field studies were designed to investigate REE attenuation during Fe oxidation in acidic, alpine surface waters. To complement these field studies, a suite of six acid mine waters with a pH range from 1.6 to 6.1 were collected and allowed to oxidize in the laboratory at ambient conditions to determine the partitioning of REEs during Fe oxidation and precipitation. Results from field experiments document that even with substantial Fe oxidation, the REEs remain dissolved in acid, sulfate waters with pH below 5.1. Between pH 5.1 and 6.6 the REEs partitioned to the solid phases in the water column, and heavy REEs were preferentially removed compared to light REEs. Laboratory experiments corroborated field data with the most solid-phase partitioning occurring in the waters with the highest pH. ?? 2004 Elsevier Ltd. All rights reserved.

  5. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride, FeC13, CAS Reg. No. 7705-08-0) may be prepared from iron and chlorine or from ferric oxide and hydrogen chloride. The...

  6. Removal of arsenate with hydrous ferric oxide coprecipitation: effect of humic acid.

    PubMed

    Du, Jingjing; Jing, Chuanyong; Duan, Jinming; Zhang, Yongli; Hu, Shan

    2014-02-01

    Insights from the adverse effect of humic acid (HA) on arsenate removal with hydrous ferric oxide (HFO) coprecipitation can further our understanding of the fate of As(V) in water treatment process. The motivation of our study is to explore the competitive adsorption mechanisms of humic acid and As(V) on HFO on the molecular scale. Multiple complementary techniques were used including macroscopic adsorption experiments, surface enhanced Raman scattering (SERS), extended X-ray absorption fine structure (EXAFS) spectroscopy, flow-cell attenuated total reflectance Fourier transform infrared (ATR-FTIR) measurement, and charge distribution multisite complexation (CD-MUSIC) modeling. The As(V) removal efficiency was reduced from over 95% to about 10% with the increasing HA concentration to 25 times of As(V) mass concentration. The SERS analysis excluded the HA-As(V) complex formation. The EXAFS results indicate that As(V) formed bidentate binuclear surface complexes in the presence of HA as evidenced by an As-Fe distance of 3.26-3.31 angstroms. The in situ ATR-FTIR measurements show that As(V) replaces surface hydroxyl groups and forms innersphere complex. High concentrations of HA may physically block the surface sites and inhibit the As(V) access. The adsorption of As(V) and HA decreased the point of zero charge of HFO from 7.8 to 5.8 and 6.3, respectively. The CD-MUSIC model described the zeta potential curves and adsorption edges of As(V) and HA reasonably well. PMID:25076514

  7. Surface complexation modeling of Cu(II) adsorption on mixtures of hydrous ferric oxide and kaolinite

    PubMed Central

    Lund, Tracy J; Koretsky, Carla M; Landry, Christopher J; Schaller, Melinda S; Das, Soumya

    2008-01-01

    Background The application of surface complexation models (SCMs) to natural sediments and soils is hindered by a lack of consistent models and data for large suites of metals and minerals of interest. Furthermore, the surface complexation approach has mostly been developed and tested for single solid systems. Few studies have extended the SCM approach to systems containing multiple solids. Results Cu adsorption was measured on pure hydrous ferric oxide (HFO), pure kaolinite (from two sources) and in systems containing mixtures of HFO and kaolinite over a wide range of pH, ionic strength, sorbate/sorbent ratios and, for the mixed solid systems, using a range of kaolinite/HFO ratios. Cu adsorption data measured for the HFO and kaolinite systems was used to derive diffuse layer surface complexation models (DLMs) describing Cu adsorption. Cu adsorption on HFO is reasonably well described using a 1-site or 2-site DLM. Adsorption of Cu on kaolinite could be described using a simple 1-site DLM with formation of a monodentate Cu complex on a variable charge surface site. However, for consistency with models derived for weaker sorbing cations, a 2-site DLM with a variable charge and a permanent charge site was also developed. Conclusion Component additivity predictions of speciation in mixed mineral systems based on DLM parameters derived for the pure mineral systems were in good agreement with measured data. Discrepancies between the model predictions and measured data were similar to those observed for the calibrated pure mineral systems. The results suggest that quantifying specific interactions between HFO and kaolinite in speciation models may not be necessary. However, before the component additivity approach can be applied to natural sediments and soils, the effects of aging must be further studied and methods must be developed to estimate reactive surface areas of solid constituents in natural samples. PMID:18783619

  8. Genotoxicity of ferric oxide nanoparticles in Raphanus sativus: Deciphering the role of signaling factors, oxidative stress and cell death.

    PubMed

    Saquib, Quaiser; Faisal, Mohammad; Alatar, Abdulrahman A; Al-Khedhairy, Abdulaziz A; Ahmed, Mukhtar; Ansari, Sabiha M; Alwathnani, Hend A; Okla, Mohammad K; Dwivedi, Sourabh; Musarrat, Javed; Praveen, Shelly; Khan, Shams T; Wahab, Rizwan; Siddiqui, Maqsood A; Ahmad, Javed

    2016-09-01

    We have studied the genotoxic and apoptotic potential of ferric oxide nanoparticles (Fe2O3-NPs) in Raphanus sativus (radish). Fe2O3-NPs retarded the root length and seed germination in radish. Ultrathin sections of treated roots showed subcellular localization of Fe2O3-NPs, along with the appearance of damaged mitochondria and excessive vacuolization. Flow cytometric analysis of Fe2O3-NPs (1.0mg/mL) treated groups exhibited 219.5%, 161%, 120.4% and 161.4% increase in intracellular reactive oxygen species (ROS), mitochondrial membrane potential (ΔΨm), nitric oxide (NO) and Ca(2+) influx in radish protoplasts. A concentration dependent increase in the antioxidative enzymes glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and lipid peroxidation (LPO) has been recorded. Comet assay showed a concentration dependent increase in deoxyribonucleic acid (DNA) strand breaks in Fe2O3-NPs treated groups. Cell cycle analysis revealed 88.4% of cells in sub-G1 apoptotic phase, suggesting cell death in Fe2O3-NPs (2.0mg/mL) treated group. Taking together, the genotoxicity induced by Fe2O3-NPs highlights the importance of environmental risk associated with improper disposal of nanoparticles (NPs) and radish can serve as a good indicator for measuring the phytotoxicity of NPs grown in NP-polluted environment. PMID:27593272

  9. Enhancement of Fenton oxidation for removing organic matter from hypersaline solution by accelerating ferric system with hydroxylamine hydrochloride and benzoquinone.

    PubMed

    Peng, Siwei; Zhang, Weijun; He, Jie; Yang, Xiaofang; Wang, Dongsheng; Zeng, Guisheng

    2016-03-01

    Fenton oxidation is generally inhibited in the presence of a high concentration of chloride ions. This study investigated the feasibility of using benzoquinone (BQ) and hydroxylamine hydrochloride (HA) as Fenton enhancers for the removal of glycerin from saline water under ambient temperature by accelerating the ferric system. It was found that organics removal was not obviously affected by chloride ions of low concentration (less than 0.1mol/L), while the mineralization rate was strongly inhibited in the presence of a large amount of chloride ions. In addition, ferric hydrolysis-precipitation was significantly alleviated in the presence of HA and BQ, and HA was more effective in reducing ferric ions into ferrous ions than HA, while the H2O2 decomposition rate was higher in the BQ-Fenton system. Electron spin resonance analysis revealed that OH production was reduced in high salinity conditions, while it was enhanced after the addition of HA and BQ (especially HA). This study provided a possible solution to control and alleviate the inhibitory effect of chloride ions on the Fenton process for organics removal. PMID:26969046

  10. Synthesis of petal-like ferric oxide/cysteine architectures and their application in affinity separation of proteins.

    PubMed

    Zou, Xueyan; Li, Kun; Yin, Yanbin; Zhao, Yanbao; Zhang, Yu; Li, Binjie; Yao, Shasha; Song, Chunpeng

    2014-01-01

    Petal-like ferric oxide/cysteine (FeOOH/Cys) architectures were prepared through a solvothermal route, which possessed high thiol group density. These thiol groups as binding sites can chelate Ni(2+) ions, which can be further used to enrich and separate his-tagged proteins directly from the mixture of lysed cells without sample pretreatment. These results show that the FeOOH/Cys architectures with immobilized Ni(2+) ions present negligible nonspecific protein adsorption and high protein adsorption capacity, with the saturation capacity being 88mg/g, which are especially suitable for purification of his-tagged proteins. PMID:24268283

  11. Mafic Silicate and Ferric Oxide Mineralogy of Gale Crater and the Mars Science Laboratory Rover Field Site

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Anderson, R. B.; Milliken, R.; Hamilton, V. E.; Edgett, K. S.

    2011-12-01

    Gale, a 155 km diameter impact crater on the boundary of the Martian southern highlands near 5S, 222W, has been selected as the field site for NASA's Mars Science Laboratory (MSL) rover, Curiosity. Several published studies have focused on the discovery, mapping, and analysis of hydrated or hydroxylated minerals (e.g., sulfates, phyllosilicates) in Gale as exciting potential targets for in situ exploration. Less attention has generally been paid to the anhydrous mafic (ferrous) silicates and ferric oxides which have also been detected in Gale from orbital remote sensing studies and which may be the precursor parent materials that weathered into the observed aqueous phases. Here we review previous and new observations regarding the presence and spatial distribution of anhydrous ferrous silicates and ferric oxides in Gale and discuss the scientific implications for the close-up study of these materials with the MSL payload. Despite a common misconception that Gale is a "dusty" site, visible to near-IR observations from the Mars Express OMEGA and Mars Reconnaissance Orbiter CRISM and thermal infrared observations from Mars Global Surveyor TES and Mars Odyssey THEMIS provide evidence for olivine and pyroxene and the anhydrous ferric oxide, hematite, associated with distinct geologic materials in Gale. Olivine-bearing mafic (likely basaltic) materials have been interpreted to occur in low albedo aeolian dunes near and around the base of the 5 km high mound of sedimentary rock in the crater. Both low and high calcium pyroxene (LCP, HCP) have been identified in and around the crater, with CRISM data showing HCP-bearing material occurring primarily within a "cap rock" on the relatively flat crater floor and within the relatively dust-free units of the lower few km of the sedimentary rock mound. Potentially more mobile (via wind) LCP-bearing material occurs throughout the crater and the lower few km of the mound and into the low albedo wind streak that extends ~200 km to

  12. Optical Study of Cuprous Oxide and Ferric Oxide Based Materials for Applications in Low Cost Solar Cells

    NASA Astrophysics Data System (ADS)

    Than, Thi Cuc; Bui, Bao Thoa; Wegmuller, Benjamin; Nguyen, Minh Hieu; Hoang Ngoc, Lam Huong; Bui, Van Diep; Nguyen, Quoc Hung; Hoang, Chi Hieu; Nguyen-Tran, Thuat

    2016-05-01

    One of the interesting forms of cuprous oxide and ferric oxide based materials is CuFeO2 which can be a delafossite-type compound and is a well known p-type semiconductor. This compound makes up an interesting family of materials for technological applications. CuFeO2 thin films recently gained renewed interest for potential applications in solar cell devices especially as absorption layers. One of the interesting facts is that CuFeO2 is made from cheap materials such as copper and iron. In this study, CuFeO2 thin films are intentionally deposited on corning glass and silicon substrates by the radio-frequency and direct current sputtering method with complicated and well developed co-sputtering recipes. The deposition was performed at room temperature which leads to an amorphous phase with extremely low roughness and high density. The films also were annealed at 500°C in 5% H2 in Ar for the passivation. A detailed optical study was performed on these thin films by spectroscopic ellipsometry and by ultra-violet visible near infrared spectroscopy. Depending on sputtering conditions, the direct band gap was extrapolated to be from 1.96 eV to 2.2 eV and 2.92 eV to 2.96 eV and the indirect band gap is about 1.22 eV to 1.42 eV. A good electrical conduction is also observed which is suitable for solar cell applications. In future more study on the structural properties will be carried out in order to fully understand these materials.

  13. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  14. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  15. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  16. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  17. 21 CFR 73.1298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Identity. (1) The color additive ferric ammonium ferrocyanide is the blue pigment obtained by oxidizing... product is filtered, washed, and dried. The pigment consists principally of ferric ammonium...

  18. The Induction of Oxidative/Nitrosative Stress, Inflammation, and Apoptosis by a Ferric Carboxymaltose Copy Compared to Iron Sucrose in a Non-Clinical Model

    PubMed Central

    Cao, Gabriel; Angerosa, Margarita

    2015-01-01

    Introduction Ferric carboxymaltose is a next-generation polynuclear iron(III)-hydroxide carbohydrate complex for intravenous iron therapy belonging to the class of so-called non-biological complex drugs. The product characteristics and therapeutic performance of non-biological complex drugs are largely defined by the manufacturing process. A follow-on product, termed herein as ferric carboxymaltose similar, is available in India. Given that non-biological complex drugs may display differences in diverse product properties not characterisable by physico-chemical methods alone. Aim The aim is to assess the effects of this ferric carboxymaltose similar in our non-clinical model in non-anaemic healthy rats. Materials and Methods Non-anaemic rats were treated with intravenous ferric carboxymaltose similar or iron sucrose both at (40 mg iron/kg body weight), or with saline solution (control) for four weeks, after which the animals were sacrificed. Parameters for tissue iron distribution, oxidative stress, nitrosative stress, inflammation and apoptosis were assessed by immunohistomorphometry. Results Ferric carboxymaltose similar resulted in deranged iron distribution versus iron sucrose originator as indicated by increased serum iron, transferrin saturation and tissue iron(III) deposits as well as decreased ferritin deposits in the liver, heart and kidneys versus iron sucrose originator. Ferric carboxymaltose similar also increased significantly oxidative/nitrosative stress, pro-inflammatory, and apoptosis markers in the liver, heart and kidneys versus iron sucrose originator. Conclusion In our rat model, ferric carboxymaltose similar had a less favourable safety profile than iron sucrose originator, adversely affecting iron deposition, oxidative and nitrosative stress, inflammatory responses, with impaired liver and kidney function. PMID:26816915

  19. Visible Wavelength Spectroscopy of Ferric Minerals: A Key Tool for Identification of Ancient Martian Aqueous Environments

    NASA Technical Reports Server (NTRS)

    Murchie, Scott L.; Bell, J. F., III; Morris, Richard V.

    2000-01-01

    The mineralogic signatures of past aqueous alteration of a basaltic Martian crust may include iron oxides and oxyhydroxides, zeolites, carbonates, phyllosilicates, and silica. The identities, relative abundances, and crystallinities of the phases formed in a particular environment depend on physicochemical conditions. At one extreme, hot spring environments may be characterized by smectite-chlorite to talc-kaolinite silicate assemblages, plus crystalline ferric oxides dominated by hematite. However, most environments, including cold springs, pedogenic layers, and ponded surface water, are expected to deposit iron oxides and oxyhydroxides, carbonates, and smectite-dominated phyllosilicates. A substantial fraction of the ferric iron is expected to occur in nanophase form, with the exact mineralogy strongly influenced by Eh-pH conditions. Detection of these phases has been an objective of a large body of terrestrial telescopic, Mars orbital, and landed spectral investigations and in situ compositional measurements. However, clear identifications of many of these phases is lacking. Neither carbonate nor silica has been unequivocally detected by any method. Although phyllosilicates may occur near the limit of detection by remote sensing, in general they appear to occur in only poorly crystalline form. In contrast, compelling evidence for ferric iron minerals has been gathered by recent telescopic investigations, the Imager for Mars Pathfinder (IMP), and the Thermal Emission Spectrometer (TES) on the Mars Global Surveyor (MGS). These data yield two crucial findings: (1) In the global, high spatial resolution TES data set, highly crystalline ferric iron (as coarse-grained 'gray' hematite) has been recognized but with only very limited spatial occurrence and (2) Low-resolution telescopic reflectance spectroscopy, very limited orbital reflectance spectroscopy, and landed multispectral imaging provide strong indications that at least two broad classes of ferric iron minerals

  20. Comparative proteomic analysis of sulfur-oxidizing Acidithiobacillus ferrooxidans CCM 4253 cultures having lost the ability to couple anaerobic elemental sulfur oxidation with ferric iron reduction.

    PubMed

    Kucera, Jiri; Sedo, Ondrej; Potesil, David; Janiczek, Oldrich; Zdrahal, Zbynek; Mandl, Martin

    2016-09-01

    In extremely acidic environments, ferric iron can be a thermodynamically favorable electron acceptor during elemental sulfur oxidation by some Acidithiobacillus spp. under anoxic conditions. Quantitative 2D-PAGE proteomic analysis of a resting cell suspension of a sulfur-grown Acidithiobacillus ferrooxidans CCM 4253 subculture that had lost its iron-reducing activity revealed 147 protein spots that were downregulated relative to an iron-reducing resting cell suspension of the antecedent sulfur-oxidizing culture and 111 that were upregulated. Tandem mass spectrometric analysis of strongly downregulated spots identified several physiologically important proteins that apparently play roles in ferrous iron oxidation, including the outer membrane cytochrome Cyc2 and rusticyanin. Other strongly repressed proteins were associated with sulfur metabolism, including heterodisulfide reductase, thiosulfate:quinone oxidoreductase and sulfide:quinone reductase. Transcript-level analyses revealed additional downregulation of other respiratory genes. Components of the iron-oxidizing system thus apparently play central roles in anaerobic sulfur oxidation coupled with ferric iron reduction in the studied microbial strain. PMID:27394989

  1. Fayalite Oxidation Processes: Experimental Evidence for the Stability of Pure Ferric Fayalite?

    NASA Technical Reports Server (NTRS)

    Martin, A. M.; Righter, K.; Keller, L. P.; Medard, E.; Devouard, B.; Rahman, Z.

    2011-01-01

    Olivine is one of the most important minerals in Earth and planetary sciences. Fayalite Fe2(2+)SiO4, the ferrous end-member of olivine, is present in some terrestrial rocks and primitive meteorites (CV3 chondrites). A ferric fayalite (or ferri-fayalite), Fe(2+) Fe2(3+)(SiO4)2 laihunite, has been reported in Earth samples (magnetite ore, metamorphic and volcanic rocks...) and in Martian meteorites (nakhlites). Laihunite was also synthesized at 1 atmosphere between 400 and 700 C. We show evidence for the stability of a pure ferrifayalite end-member and for potential minerals with XFe(3+) between 2/3 and 1.

  2. Detecting Adsorbed Sulfate and Phosphate on Nanophase Weathering Products on Mars

    NASA Astrophysics Data System (ADS)

    Rampe, E. B.; Morris, R. V.

    2012-12-01

    Characterizing the mineralogy and chemistry of aqueous alteration phases on the martian surface is essential for understanding past aqueous processes because the types of secondary phases present and their chemical compositions tell us about the environments in which they formed. Orbital mid-infrared data and in-situ mineralogical and chemical data from the martian surface indicate that Si/Al- and Fe-bearing nanophase weathering products are widespread, including allophane and nanophase ferric oxide (npOx), which includes any combination of superparamagnetic hematite and goethite, ferrihydrite, schwertmannite, akaganeite, iddingsite, and palagonite (altered basaltic glass) [Morris et al., 2006; Michalski et al., 2006; Rampe et al., in press]. These weathering products have larger surface areas and variable surface charge and can adsorb anions and cations onto their surfaces. Some anions, such as sulfate and phosphate, specifically chemically adsorb onto mineral/mineraloid surfaces so that these complexes are covalently bonded and form ligands. Nanophase weathering products on Earth can specifically adsorb up to a few weight percent to a few tens of weight percent phosphate and sulfate, respectively [Parfitt and Smart, 1978; Jara et al., 2006]. Phosphate and sulfate have been identified in martian rocks and soils in abundances of up to ~5 wt.% and ~30 wt.%, respectively [Gellert et al., 2006; Ming et al., 2006], and it has been suggested that phosphate and sulfate ions may be adsorbed on nanophase weathering products on the martian surface [Greenwood and Blake, 2006; Morris et al., 2006]. What is relatively unknown is how to use in-situ and orbital instruments on Mars to determine if these ions are present as discrete minerals or adsorbed onto the surfaces of weathering products. We adsorbed phosphate and sulfate onto allophane surfaces in the laboratory. Here, we present laboratory measurements of phosphate- and sulfate-adsorbed allophane to compare to in

  3. Enhancement of growth and ferrous iron oxidation rates of T. ferrooxidans by electrochemical reduction of ferric iron

    SciTech Connect

    Yunker, S.B.; Radovich, J.M.

    1986-01-01

    Thiobacillus ferrooxidans, the bacterium most widely used in bioleaching or microbial desulfurization of coal, was grown in an electrolytic bioreactor containing a synthetic, ferrous sulfate medium. Passage of current through the medium reduced the bacterially generated ferric iron to the ferrous iron substrate. When used in conjunction with an inoculum that had been adapted to the electrolytic growth conditions, this technique increased the protein (cell) concentration by 3.7 times, increased the protein (cell) production rate by 6.5 times, increased the yield coefficient (cellular efficiency) by 8.0 times, and increased the ferrous iron oxidation rate by 1.5 times at 29/sup 0/C, compared with conventional cultivation techniques. A Monod-type equation with accepted values for the maximum specific growth rate could not account for the increased growth rate under electrolytic conditions.

  4. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate.

    PubMed

    Pieme, Constant Anatole; Ngoupayo, Joseph; Nkoulou, Claude Herve Khou-Kouz; Moukette, Bruno Moukette; Nono, Borgia Legrand Njinkio; Moor, Vicky Jocelyne Ama; Minkande, Jacqueline Ze; Ngogang, Jeanne Yonkeu

    2014-01-01

    The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. PMID:26785075

  5. Syzyguim guineense Extracts Show Antioxidant Activities and Beneficial Activities on Oxidative Stress Induced by Ferric Chloride in the Liver Homogenate

    PubMed Central

    Pieme, Constant Anatole; Ngoupayo, Joseph; Khou-Kouz Nkoulou, Claude Herve; Moukette Moukette, Bruno; Njinkio Nono, Borgia Legrand; Ama Moor, Vicky Jocelyne; Ze Minkande, Jacqueline; Yonkeu Ngogang, Jeanne

    2014-01-01

    The aim of this study was to determine the in vitro antioxidant activity, free radical scavenging property and the beneficial effects of extracts of various parts of Syzygium guineense in reducing oxidative stress damage in the liver. The effects of extracts on free radicals were determined on radicals DPPH, ABTS, NO and OH followed by the antioxidant properties using Ferric Reducing Antioxidant Power assay (FRAP) and hosphomolybdenum (PPMB). The phytochemical screening of these extracts was performed by determination of the phenolic content. The oxidative damage inhibition in the liver was determined by measuring malondialdehyde (MDA) as well as the activity of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and peroxidase. Overall, the bark extract of the ethanol/water or methanol showed the highest radical scavenging activities against DPPH, ABTS and OH radicals compared to the other extracts. This extract also contained the highest phenolic content implying the potential contribution of phenolic compounds towards the antioxidant activities. However, the methanol extract of the root demonstrated the highest protective effects of SOD and CAT against ferric chloride while the hydro-ethanol extract of the leaves exhibited the highest inhibitory effects on lipid peroxidation. These findings suggest that antioxidant properties of S. guineense extracts could be attributed to phenolic compounds revealed by phytochemical studies. Thus, the present results indicate clearly that the extracts of S. guineense possess antioxidant properties and could serve as free radical inhibitors or scavengers, acting possibly as primary antioxidants. The antioxidant properties of the bark extract may thus sustain its various biological activities. PMID:26785075

  6. Oxidation of sulphide minerals-VI Ferrous and ferric iron in the water-soluble oxidation products of iron sulphide minerals.

    PubMed

    Steger, H F

    1979-06-01

    A pseudo-kinetic method has been developed for determining the ferrous and ferric iron in the water-soluble oxidation products of pyrrhotite, pyrite and chalcopyrite, and ores and concentrates containing them. Two determinations are required for each material. In one, the total iron is determined with 1,10-phenanthroline after reduction to Fe(II). In the other, the reduction of Fe(III) is retarded by complexation with fluoride. The difference in the amount of ferrous phenanthranoline complex produced in these two determinations is a function of the original FE(III) concentration and of time. PMID:18962467

  7. Ferric Oxide Mediated Formation of PCDD/Fs from 2-Monochlorophenol

    PubMed Central

    Nganai, Shadrack; Lomnicki, Slawo; Dellinger, Barry

    2012-01-01

    The copper oxide, surface-mediated formation of polychlorinated dibenzop-dioxins and dibenzofurans (PCDD/F) from precursors such as chlorinated phenols is considered to be a major source of PCDD/F emissions from combustion sources. In spite of being present at 2–50x higher concentrations than copper oxide, virtually no studies of the iron oxide-mediated formation of PCDD/F have been reported in the literature. We have performed packed bed, flow reactor studies of the reaction of 50 ppm gas phase 2-monochlorophenol (2-MCP) over a surface of 5% iron oxide on silica over a temperature range of 200–500 °C. Dibenzo-p-dioxin (DD), 1-monochlorodibenzo-p-dioxin (1-MCDD), 4,6-dichlorodibenzofuran (4,6-DCDF), and dibenzofuran (DF) were formed in maximum yields of 0.1, 0.2, 0.3, and 0.4 %, respectively. The yield of PCDD/F over iron oxide peaked at temperatures 50–100 °C higher in temperature than over copper oxide. The maximum yields of DD, 1-MCDD and 4,6-DCDF were 2x and 5x higher over iron oxide, respectively, than over copper oxide, while DF was not observed at all for copper oxide. The resulting PCDD/PCDF ratio was 0.39 versus 1.2 observed for iron oxide and copper oxide, respectively, which is in agreement with PCDD to PCDF ratios in full-scale combustors that are typically ≪1. The combination of 2–50x higher concentrations of iron oxide than copper oxide in most full-scale combustors and 2.5x higher yields of PCDD/F observed in the laboratory, suggest that iron oxide may contribute as much as 5–125x more than copper oxide to the emissions of PCDD/F from full-scale combustors. PMID:19238966

  8. Biodiesel synthesis catalyzed by transition metal oxides: ferric-manganese doped tungstated/molybdena nanoparticle catalyst.

    PubMed

    Alhassan, Fatah Hamid; Rashid, Umer; Taufiq-Yap, Yun Hin

    2015-01-01

    The solid acid Ferric-manganese doped tungstated/molybdena nananoparticle catalyst was prepared via impregnation reaction followed by calcination at 600°C for 3 h. The characterization was done using X-ray diffraction (XRD), Raman spectroscopy, thermal gravimetric analysis (TGA), temperature programmed desorption of NH3 (TPD-NH3), X-ray fluorescence (XRF), Transmission electron microscope (TEM) and Brunner-Emmett-Teller surface area measurement (BET). Moreover, dependence of biodiesel yield on the reaction variables such as the reaction temperature, catalyst loading, as well as molar ratio of methanol/oil and reusability were also appraised. The catalyst was reused six times without any loss in activity with maximum yield of 92.3% ±1.12 achieved in the optimized conditions of reaction temperature of 200°C; stirring speed of 600 rpm, 1:25 molar ratio of oil to alcohol, 6 % w/w catalyst loading as well as 8 h as time of the reaction. The fuel properties of WCOME's were evaluated, including the density, kinematic viscosity, pour point, cloud point and flash point whereas all properties were compared with the limits in the ASTM D6751 standard. PMID:25492234

  9. Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells.

    PubMed

    Chintagari, Narendranath Reddy; Jana, Sirsendu; Alayash, Abdu I

    2016-08-01

    Lung alveoli are lined by alveolar type (AT) 1 cells and cuboidal AT2 cells. The AT1 cells are likely to be exposed to cell-free hemoglobin (Hb) in multiple lung diseases; however, the role of Hb redox (reduction-oxidation) reactions and their precise contributions to AT1 cell injury are not well understood. Using mouse lung epithelial cells (E10) as an AT1 cell model, we demonstrate here that higher Hb oxidation states, ferric Hb (HbFe(3+)) and ferryl Hb (HbFe(4+)) and subsequent heme loss play a central role in the genesis of injury. Exposures to HbFe(2+) and HbFe(3+) for 24 hours induced expression of heme oxygenase (HO)-1 protein in E10 cells and HO-1 translocation in the purified mitochondrial fractions. Both of these effects were intensified with increasing oxidation states of Hb. Next, we examined the effects of Hb oxidation and free heme on mitochondrial bioenergetic function by measuring changes in the mitochondrial transmembrane potential and oxygen consumption rate. In contrast to HbFe(2+), HbFe(3+) reduced basal oxygen consumption rate, indicating compromised mitochondrial activity. However, HbFe(4+) exposure not only induced early expression of HO-1 but also caused mitochondrial dysfunction within 12 hours when compared with HbFe(2+) and HbFe(3+). Exposure to HbFe(4+) for 24 hours also caused mitochondrial depolarization in E10 cells. The deleterious effects of HbFe(3+) and HbFe(4+) were reversed by the addition of scavenger proteins, haptoglobin and hemopexin. Collectively, these data establish, for the first time, a central role for cell-free Hb in lung epithelial injury, and that these effects are mediated through the redox transition of Hb to higher oxidation states. PMID:26974230

  10. Effect of ferric oxide on the high-temperature removal of hydrogen sulfide over ZnO-Fe{sub 2}O{sub 3} mixed metal oxide sorbent

    SciTech Connect

    Lee, Y.S.; Kim, H.T.; Yoo, K.O.

    1995-04-01

    The effect of ferric oxide on the removal of hydrogen sulfide over ZnO-Fe{sub 2}O{sub 3} mixed metal oxide sorbents and on the oxidative regeneration of sulfided sorbents was investigated. When ferric oxide was added to the zinc oxide, the reduction of ZnO was retarded by interaction of ZnO with ZnFe{sub 2}O{sub 4}. This interaction was confirmed by larger binding energies of Zn 2P{sub 3/2} and Zn 2P{sub 1/2}, identified by ESCA, of the ZnO-ZnFe{sub 2}O{sub 4} sorbent than those of ZnO. Zinc ferrite with a spinel structure yielded not only high H{sub 2}S removal capacity but also much SO{sub 2} generation. A linear increase of SO{sub 2} generation was confirmed up to 50 wt % Fe{sub 2}O{sub 3}. Resulting from the thermal decomposition of H{sub 2}S over metal sulfides, H{sub 2} generation increased with respect to Fe{sub 2}O{sub 3} according to a quadratic equation. Channeling, caused by sintering during sulfidation, made the flow path of the reactant change and thus pure ZnO sorbent and the sorbent containing 3 wt % Fe{sub 2}O did not sulfurate completely. Addition of Fe{sub 2}O{sub 3} prevented surface structural change like sintering of ZnO during sulfidation.

  11. Mechanical properties of nanophase materials

    SciTech Connect

    Siegel, R.W.; Fougere, G.E.

    1993-11-01

    It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

  12. A comparative study on surface morphological investigations of ferric oxide for LPG and opto-electronic humidity sensors

    NASA Astrophysics Data System (ADS)

    Singh, Satyendra; Verma, Nidhi; Yadav, B. C.; Prakash, Rajiv

    2012-09-01

    In the present work nanostructured ferric oxides were synthesized via hydroxide precipitation method without using any surfactant and size selection medium. The surface morphologies and structure of samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The structural analysis confirmed the formation of Fe2O3 with α-phase and rhombohedral structure. Optical and thermal properties were investigated by using UV-visible absorption spectroscopy and differential scanning calorimetry (DSC) techniques. Pelletizations of materials were done using hydraulic press and these pellets were investigated with the exposition of liquefied petroleum gas. Variations in resistance of the pellet with time for different concentrations of LPG were recorded at room temperature (27 °C). The maximum value of average sensitivity was found ˜5 for 5 vol.% of LPG. Our results show that the LPG sensing behavior was inspired by the different kinds of surface morphologies of Fe2O3 and inferred that the spherical porous nanoparticles synthesized via hydroxide precipitation process (S-3) had best response to LPG.

  13. Novel approach to zinc removal from circum-neutral mine waters using pelletised recovered hydrous ferric oxide.

    PubMed

    Mayes, William M; Potter, Hugh A B; Jarvis, Adam P

    2009-02-15

    Data are presented which evaluate the performance of a pilot-scale treatment system using pelletised hydrous ferric oxide (HFO; a waste stream from coal mine water treatment) as a high surface area sorbent for removing zinc (Zn) from a metal mine water discharge in the North Pennines Orefield, UK. Over a 10-month period the system removed Zn at mean area- and volume-adjusted removal rates of 3.7 and 8.1gm(-3)day(-1), respectively, with a mean treatment efficiency of 32% at a low mean residence time of 49min. There were seasonal effects in Zn removal owing to establishment and dieback of algae in the treatment tank. This led to increased Zn uptake in early summer months followed by slight Zn release upon algae senescence. In addition to these biosorptive processes, the principal sinks for Zn appear to be (1) sorption onto the HFO surface, and (2) precipitation with calcite-dominated secondary minerals. The latter were formed as a product of dissolution of portlandite in the cement binder and calcium recarbonation. Further optimisation of the HFO pelletisation process holds the possibility for providing a low-cost, low footprint treatment option for metal rich mine waters, in addition to a valuable after-use for recovered HFO from coal mine water treatment facilities. PMID:18583040

  14. Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron

    PubMed Central

    D'Autréaux, Benoît; Touati, Danièle; Bersch, Beate; Latour, Jean-Marc; Michaud-Soret, Isabelle

    2002-01-01

    Ferric uptake regulation protein (Fur) is a bacterial global regulator that uses iron as a cofactor to bind to specific DNA sequences. The function of Fur is not limited to iron homeostasis. A wide variety of genes involved in various mechanisms such as oxidative and acid stresses are under Fur control. Flavohemoglobin (Hmp) is an NO-detoxifying enzyme induced by NO and nitrosothiol compounds. Fur recently was found to regulate hmp in Salmonella typhimurium, and in Escherichia coli, the iron-chelating agent 2,2′-dipyridyl induces hmp expression. We now establish direct inhibition of E. coli Fur activity by NO. By using chromosomal Fur-regulated lacZ reporter fusion in E. coli, Fur activity is switched off by NO at micromolar concentration. In vitro Fur DNA-binding activity, as measured by protection of restriction site in aerobactin promoter, is directly sensitive to NO. NO reacts with FeII in purified FeFur protein to form a S = 1/2 low-spin FeFur–NO complex with a g = 2.03 EPR signal. Appearance of the same EPR signal in NO-treated cells links nitrosylation of the iron with Fur inhibition. The nitrosylated Fur protein is still a dimer and is stable in anaerobiosis but slowly decays in air. This inhibition probably arises from a conformational switch, leading to an inactive dimeric protein. These data establish a link between control of iron metabolism and the response to NO effects. PMID:12475930

  15. Thermodynamic and Properties of Nanophases

    SciTech Connect

    Wunderlich, Bernhard {nmn}

    2009-01-01

    A large volume of today s research deals with nanophases of various types. The materials engineer, chemist, or physicist, however, when dealing with applications of nanophases is often unaware of the effect of the small size on structure and properties. The smallest nanophases reach the limit of phase definitions by approaching atomic dimensions. There, the required homogeneity of a phase is lost and undue property fluctuations destroy the usefulness of thermodynamic functions. In fact, itwas not expected that a definite nanophasewould exist belowthe size of a microphase.Aneffort ismadein this reviewto identify macrophases, microphases, and nanophases. It is shown that nanophases should contain no bulk matter as defined by macrophases and also found in microphases. The structure and properties of nanophases, thus, must be different from macrophases and microphases. These changes may include different crystal and amorphous structures, and phase transitions of higher or of lower temperature. The phase properties are changing continuously when going from one surface to the opposite one. The discussion makes use of results from structure determination, calorimetry, molecular motion evaluations, and molecular dynamics simulations.

  16. The Formation, Structure, and Ageing of As-Rich Hydrous Ferric Oxide at the Abandoned Sb Deposit Pezinok (Slovakia)

    SciTech Connect

    Majzlan,J.; Lalinska, B.; Chovan, M.; Jurkovic, L.; Milovska, S.; Gottlicher, J.

    2007-01-01

    The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold {approx}380,000 m{sup 3} of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 {+-} 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS{sub 2}; arsenopyrite, FeAsS; berthierite, FeSb{sub 2}S{sub 4}) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ {mu}-XANES experiments indicate that As in the weathering rims is fully oxidized (As{sup 5+}). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As{sub 2}O{sub 5} and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As{sup 5+}. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3

  17. The formation, structure, and ageing of As-rich hydrous ferric oxide at the abandoned Sb deposit Pezinok (Slovakia)

    NASA Astrophysics Data System (ADS)

    Majzlan, Juraj; Lalinská, Bronislava; Chovan, Martin; Jurkovič, L.'ubomír; Milovská, Stanislava; Göttlicher, Jörg

    2007-09-01

    The abandoned Sb deposit Pezinok in Slovakia is a significant source of As and Sb pollution that can be traced in the upper horizons of soils kilometers downstream. The source of the metalloids are two tailing impoundments which hold ˜380,000 m 3 of mining waste. The tailings and the discharged water have circumneutral pH values (7.0 ± 0.6) because the acidity generated by the decomposition of the primary sulfides (pyrite, FeS 2; arsenopyrite, FeAsS; berthierite, FeSb 2S 4) is rapidly neutralized by the abundant carbonates. The weathering rims on the primary sulfides are iron oxides which act as very efficient scavengers of As and Sb (with up to 19.2 wt% As and 23.7 wt% Sb). In-situ μ-XANES experiments indicate that As in the weathering rims is fully oxidized (As 5+). The pore solutions in the impoundment body contain up to 81 ppm As and 2.5 ppm Sb. Once these solutions are discharged from the impoundments, they precipitate or deposit masses of As-rich hydrous ferric oxide (As-HFO) with up to 28.3 wt% As 2O 5 and 2.7 wt% Sb. All As-HFO samples are amorphous to X-rays. They contain Fe and As in their highest oxidation state and in octahedral and tetrahedral coordination, respectively, as suggested by XANES and EXAFS studies on Fe K and As K edges. The iron octahedra in the As-HFO share edges to form short single chains and the chains polymerize by sharing edges or corners with the adjacent units. The arsenate ions attach to the chains in a bidentate-binuclear and monodentate fashion. In addition, hydrogen-bonded complexes may exist to satisfy the bonding requirements of all oxygen atoms in the first coordination sphere of As 5+. Structural changes in the As-HFO samples were traced by chemical analyses and Fe EXAFS spectroscopy during an ageing experiment. As the samples age, As becomes more easily leachable. EXAFS spectra show a discernible trend of increasing number of Fe-Fe pairs at a distance of 3.3-3.5 Å, that is, increasing polymerization of the iron

  18. Can ferric-superoxide act as a potential oxidant in P450(cam)? QM/MM investigation of hydroxylation, epoxidation, and sulfoxidation.

    PubMed

    Lai, Wenzhen; Shaik, Sason

    2011-04-13

    In view of recent reports of high reactivity of ferric-superoxide species in heme and nonheme systems (Morokuma et al. J. Am. Chem. Soc. 2010, 132, 11993-12005; Que et al. Inorg. Chem. 2010, 49, 3618-3628; Nam et al. J. Am. Chem. Soc. 2010, 132, 5958-5959; J. Am. Chem. Soc. 2010, 132, 10668-10670), we use herein combined quantum mechanics/molecular mechanics (QM/MM) methods to explore the potential reactivity of P450(cam) ferric-superoxide toward hydroxylation, epoxidation, and sulfoxidation. The calculations demonstrate that P450 ferric-superoxide is a sluggish oxidant compared with the high-valent oxoiron porphyrin cation-radical species. As such, unlike heme enzymes with a histidine axial ligand, the P450 superoxo species does not function as an oxidant in P450(cam). The origin of this different behavior of the superoxo species of P450 vis-à-vis other heme enzymes like tryptophan 2, 3-dioxygenase (TDO) is traced to the ability of the latter superoxo species to make a stronger FeOO-X (X = H,C) bond and to stabilize the corresponding bond-activation transition states by resonance with charge-transfer configurations. By contrast, the negatively charged thiolate ligand in the P450 superoxo species minimizes the mixing of charge transfer configurations in the transition state and raises the reaction barrier. However, as we demonstrate, an external electric field oriented along the Fe-O axis with a direction pointing from Fe toward O will quench Cpd I formation by slowing the reduction of ferric-superoxide and will simultaneously lower the barriers for oxidation by the latter species, thereby enabling observation of superoxo chemistry in P450. Other options for nascent superoxo reactivity in P450 are discussed. PMID:21413763

  19. Nuclear fuel elements made from nanophase materials

    SciTech Connect

    Heubeck, Norman B.

    1997-12-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain-related failure even at high temperatures, in the order of about 3,000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion and mechanical characteristics.

  20. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, Norman B.

    1998-01-01

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.

  1. Nuclear fuel elements made from nanophase materials

    DOEpatents

    Heubeck, N.B.

    1998-09-08

    A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.

  2. Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions

    SciTech Connect

    Bailey, J.K.; Brinker, C.J. ); MeCartney, M.L. )

    1993-04-01

    To determine the growth mechanisms responsible for the different morphologies, the authors used time resolved transmission electron microscopy to follow the growth of iron oxide particles produced by the forced hydrolysis of ferric chloride solutions. The growth of three different hematite particle morphologies were investigated: cubes, spheres, and so-called double ellipsoids. The morphology of the particles depends on the concentration of FeCl[sub 3], the pH, and the temperature of aging. All solutions were seen to first produce rod-like particles of akaganeite ([beta]-FeOOH) which would then transform to hematite ([alpha]-Fe[sub 2]O[sub 3]), leading under different conditions to spheres, cubes, or double ellipsoids. For all solutions, the initially produced akaganeite rods form by homogeneous nucleation and subsequent growth. The hematite particles are produced by dissolution of the akaganeite rods and reprecipitation as hematite. For the double-ellipsoid-producing solution, the akaganeite rods remain unaggregated in solution. Hematite heterogeneously nucleates on these rods. In addition to growing outward, the hematite particle uses the rod as a template, and a collar forms, which grows along the rod, producing the double-ellipsoid shape. For a sphere-producing solution, the [beta]-FeOOH rods also remain unaggregated in solution but the akaganeite rods which are formed are shorter and dissolve before the growing hematite particles can use the rods as templates. For the cube-producing solution, the initially produced akaganeite rods aggregate into rafts. These rafts, formed from rods of similar length, have a cubic shape that they impart to the hematite which nucleates on the akaganeite raft. The findings indicate that the concentrations of starting compounds not only influence the kinetics of the reaction, but also influence the colloidal behavior.

  3. Antimony(V) removal from water by hydrated ferric oxides supported by calcite sand and polymeric anion exchanger.

    PubMed

    Miao, Yangyang; Han, Feichao; Pan, Bingcai; Niu, Yingjie; Nie, Guangze; Lv, Lu

    2014-02-01

    We fabricated and characterized two hybrid adsorbents originated from hydrated ferric oxides (HFOs) using a polymeric anion exchanger D201 and calcite as host. The resultant adsorbents (denoted as HFO-201 and IOCCS) were employed for Sb(V) removal from water. Increasing solution pH from 3 to 9 apparently weakened Sb(V) removal by both composites, while increasing temperature from 293 to 313 K only improved Sb(V) uptake by IOCCS. HFO-201 exhibited much higher capacity for Sb(V) than for IOCCS in the absence of other anions in solution. Increasing ionic strength from 0.01 to 0.1 mol/L NaNO3 would result in a significant drop of the capacity of HFO-201 in the studied pH ranges; however, negligible effect was observed for IOCCS under similar conditions. Similarly, the competing chloride and sulfate pose more negative effect on Sb(V) adsorption by HFO-201 than by IOCCS, and the presence of silicate greatly decreased their adsorption simultaneously, while calcium ions were found to promote the adsorption of both adsorbents. XPS analysis further demonstrated that preferable Sb(V) adsorption by both hybrids was attributed to the inner sphere complexation of Sb(V) and HFO, and Ca(II) induced adsorption enhancement possibly resulted from the formation of HFO-Ca-Sb complexes. Column adsorption runs proved that Sb(V) in the synthetic water could be effectively removed from 30 microg/L to below 5 microg/L (the drinking water standard regulated by China), and the effective treatable volume of IOCCS was around 6 times as that of HFO-201, implying that HFO coatings onto calcite might be a more effective approach than immobilization inside D201. PMID:25076522

  4. Arsenate Adsorption by Hydrous Ferric Oxide Nanoparticles Embedded in Cross-linked Anion Exchanger: Effect of the Host Pore Structure.

    PubMed

    Li, Hongchao; Shan, Chao; Zhang, Yanyang; Cai, Jianguo; Zhang, Weiming; Pan, Bingcai

    2016-02-10

    Three composite adsorbents were fabricated via confined growth of hydrous ferric oxide (HFO) nanoparticles within cross-linked anion exchangers (NS) of different pore size distributions to investigate the effect of host pore structure on the adsorption of As(V). With the decrease in the average pore size of the NS hosts from 38.7 to 9.2 nm, the mean diameter of the confined HFO nanoparticles was lessened from 31.4 to 11.6 nm as observed by transmission electron microscopy (TEM), while the density of active surface sites was increased due to size-dependent effect proved by potentiometric titration. The adsorption capacity of As(V) yielded by Sips model was elevated from 24.2 to 31.6 mg/g via tailoring the pore size of the NS hosts, and the adsorption kinetics was slightly accelerated with the decrease of pore size in background solution containing 500 mg/L of Cl(-). Furthermore, the enhanced adsorption of As(V) was achieved over a wide pH range from 3 to 10, as well as in the presence of competing anions including Cl(-), SO4(2-), HCO3(-), NO3(-) (up to 800 mg/L), and PO4(3-) (up to 10 mg P/L). In addition, the fixed-bed working capacity increased from 2200 to 2950 bed volumes (BV) owing to the size confinement effect, which did not have adverse effect on the desorption of As(V) as the cumulative desorption efficiency reached 94% with 10 BV of binary solution (5% NaOH + 5% NaCl) for all the three adsorbents. Therefore, this study provided a promising strategy to regulate the reactivity of the nanoparticles via the size confinement effect of the host pore structure. PMID:26765396

  5. Effects of electron transport inhibitors and uncouplers on the oxidation of ferrous iron and compounds interacting with ferric iron in Acidithiobacillus ferrooxidans.

    PubMed

    Chen, Yongqiang; Suzuki, Isamu

    2005-08-01

    Oxidation of Fe2+, ascorbic acid, propyl gallate, tiron, L-cysteine, and glutathione by Acidithiobacillus ferrooxidans was studied with respect to the effect of electron transport inhibitors and uncouplers on the rate of oxidation. All the oxidations were sensitive to inhibitors of cytochrome c oxidase, KCN, and NaN3. They were also partially inhibited by inhibitors of complex I and complex III of the electron transport system. Uncouplers at low concentrations stimulated the oxidation and inhibited it at higher concentrations. The oxidation rates of Fe2+ and L-cysteine inhibited by complex I and complex III inhibitors (amytal, rotenone, antimycin A, myxothiazol, and HQNO) were stimulated more extensively by uncouplers than the control rates. Atabrine, a flavin antagonist, was an exception, and atabrine-inhibited oxidation activities of all these compounds were further inhibited by uncouplers. A model for the electron transport pathways of A. ferrooxidans is proposed to account for these results. In the model these organic substrates reduce ferric iron on the surface of cells to ferrous iron, which is oxidized back to ferric iron through the Fe2+ oxidation pathway, leading to cytochrome oxidase to O2. Some of electrons enter the uphill (energy-requiring) electron transport pathway to reduce NAD+. Uncouplers at low concentrations stimulate Fe2+ oxidation by stimulating cytochrome oxidase by uncoupling. Higher concentrations lower deltap to the level insufficient to overcome the potentially uphill reaction at rusticyanin-cytochrome c4. Inhibition of uphill reactions at complex I and complex III leads to deltap accumulation and inhibition of cytochrome oxidase. Uncouplers remove the inhibition of deltap and stimulate the oxidation. Atabrine inhibition is not released by uncouplers, which implies a possibility of atabrine inhibition at a site other than complex I, but a site somehow involved in the Fe2+ oxidation pathway. PMID:16234867

  6. Dielectric constant enhancement of epoxy thermosets via formation of polyelectrolyte nanophases.

    PubMed

    Cong, Houluo; Li, Jingang; Li, Lei; Zheng, Sixun

    2014-12-18

    Poly(ethylene oxide)-block-poly(sodium p-styrenesulfonate) (PEO-b-PSSNa) diblock copolymer was synthesized and then incorporated into epoxy to obtain the nanostructured epoxy thermosets containing polyelectrolyte nanophases. This PEO-b-PSSNa diblock copolymer was synthesized via the radical polymerization of p-styrenesulfonate mediated with 4-cyano-4-(thiobenzoylthio)valeric ester-terminated poly(ethylene oxide). The formation of polyelectrolyte (i.e., PSSNa) nanophases in epoxy followed a self-assembly mechanism. The precursors of epoxy acted as the selective solvent of the diblock copolymer, and thus, the self-assembled nanostructures were formed. The self-organized nanophases were fixed through the subsequent curing reaction. By means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS), the morphologies of the nanostructured epoxy thermosets containing PSSNa nanophases were investigated. In the glassy state, the epoxy matrixes were significantly reinforced by the spherical PSSNa nanodomains, as evidenced by dynamic mechanical analysis. The measurement of dielectric properties showed that, with the incorporation of PSSNa nanophases, the dielectric constants of the epoxy thermoset were significantly increased. Compared to the control epoxy, the dielectric loss of the nanostructured thermosets still remained at quite a low level, although the values of dielectric loss were slightly increased with inclusion of PSSNa nanophases. PMID:25482332

  7. Sodium Ferric Gluconate Injection

    MedlinePlus

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  8. Relationship between reaction rate constants of organic pollutants and their molecular descriptors during Fenton oxidation and in situ formed ferric-oxyhydroxides.

    PubMed

    Jia, Lijuan; Shen, Zhemin; Su, Pingru

    2016-05-01

    Fenton oxidation is a promising water treatment method to degrade organic pollutants. In this study, 30 different organic compounds were selected and their reaction rate constants (k) were determined for the Fenton oxidation process. Gaussian09 and Material Studio software sets were used to carry out calculations and obtain values of 10 different molecular descriptors for each studied compound. Ferric-oxyhydroxide coagulation experiments were conducted to determine the coagulation percentage. Based upon the adsorption capacity, all of the investigated organic compounds were divided into two groups (Group A and Group B). The percentage adsorption of organic compounds in Group A was less than 15% (wt./wt.) and that in the Group B was higher than 15% (wt./wt.). For Group A, removal of the compounds by oxidation was the dominant process while for Group B, removal by both oxidation and coagulation (as a synergistic process) took place. Results showed that the relationship between the rate constants (k values) and the molecular descriptors of Group A was more pronounced than for Group B compounds. For the oxidation-dominated process, EHOMO and Fukui indices (f(0)x, f(-)x, f(+)x) were the most significant factors. The influence of bond order was more significant for the synergistic process of oxidation and coagulation than for the oxidation-dominated process. The influences of all other molecular descriptors on the synergistic process were weaker than on the oxidation-dominated process. PMID:27155432

  9. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Mancinelli, R. L.; Gehring, A. U.

    1993-01-01

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  10. The nanophase iron mineral(s) in Mars soil.

    PubMed

    Banin, A; Ben-Shlomo, T; Margulies, L; Blake, D F; Mancinelli, R L; Gehring, A U

    1993-11-25

    A series of surface-modified clays containing nanophase (np) iron oxide/oxyhydroxides of extremely small particle sizes, with total iron contents as high as found in Mars soil, were prepared by iron deposition on the clay surface from ferrous chloride solution. Comprehensive studies of the iron mineralogy in these "Mars-soil analogs" were conducted using chemical extractions, solubility analyses, pH and redox, x ray and electron diffractometry, electron microscopic imaging, specific surface area and particle size determinations, differential thermal analyses, magnetic properties characterization, spectral reflectance, and Viking biology simulation experiments. The clay matrix and the procedure used for synthesis produced nanophase iron oxides containing a certain proportion of divalent iron, which slowly converts to more stable, fully oxidized iron minerals. The clay acted as an effective matrix, both chemically and sterically, preventing the major part of the synthesized iron oxides from ripening, i.e., growing and developing larger crystals. The precipitated iron oxides appear as isodiametric or slightly elongated particles in the size range 1-10 nm, having large specific surface area. The noncrystalline nature of the iron compounds precipitated on the surface of the clay was verified by their complete extractability in oxalate. Lepidocrocite (gamma-FeOOH) was detected by selected area electron diffraction. It is formed from a double iron Fe(II)/Fe(III) hydroxy mineral such as "green rust," or ferrosic hydroxide. Magnetic measurements suggested that lepidocrocite converted to the more stable maghemite (gamma-Fe2O3) by mild heat treatment and then to nanophase hematite (alpha-Fe2O3) by extensive heat treatment. After mild heating, the iron-enriched clay became slightly magnetic, to the extent that it adheres to a hand-held magnet, as was observed with Mars soil. The chemical reactivity of the iron-enriched clays strongly resembles, and offers a plausible mechanism

  11. Hardfacing of Bulk Nanophase Coatings

    NASA Astrophysics Data System (ADS)

    Reisgen, Uwe; Balashov, Boris; Stein, Lars; Geffers, Christoph

    2012-01-01

    This paper discusses the production of iron-based nanophase hardfaced coatings by means of common arc welding methods. The key is the exact, close-to-eutectic composition of the newly developed alloys. In combination with a precise control of the dilution of the base metal, this results in an eutectic composition of the coating, which allows the in-situ generation of nanoscale hardphases during solidification. The applied cooling rates are only of secondary importance. The self-organizing nanophase structures within the hardfaced coatings show phase dimensions of approximately 100-300 nm. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. The article further demonstrates a potential application for these types of hardfaced coatings in the field of cutting edges.

  12. Rapid kinetics investigations of peracid oxidation of ferric cytochrome P450cam: nature and possible function of compound ES.

    PubMed

    Spolitak, Tatyana; Dawson, John H; Ballou, David P

    2006-12-01

    Previously, we reported spectroscopic properties of cytochrome P450cam compound I, (ferryl iron plus a porphyrin pi-cation radical (Fe(IV)=O/Por(+))), as well as compound ES (Fe(IV)=O/Tyr()) in reactions of substrate-free ferric enzyme with m-chloroperbenzoic acid [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300-9]. Compound ES arises by intramolecular electron transfer from nearby tyrosines to the porphyrin pi-cation radical of Compound I, and has been characterized by rapid-freeze-quench-Mössbauer/EPR spectroscopy; the tyrosyl radical was assigned to Tyr96 for wild type or to Tyr75 for the Tyr96Phe variant [V. Schünemann, F. Lendzian, C. Jung, J. Contzen, A.L. Barra, S.G. Sligar, A.X. Trautwein, J. Biol. Chem. 279 (2004) 10919-10930]. Here we report rapid-scanning stopped-flow studies of the reactions of peracids with substrate-free ferric Y75F, Y96F, and Y96F/Y75F P450cam variants, showing how these active site changes influence electron transfer from nearby tyrosines and affect formation of intermediates. Curiously, rates of generation of Compounds I and ES for both single mutants were not very different from wild type. Contrasting with the earlier EPR results, the Y96F/Y75F variant was also shown to form an ES-like species, but more slowly. When substrate is not present, or is improperly bound, compound I rapidly converts to compound ES, which can be reduced to form H(2)O and ferric P450, thus avoiding the modification of nearby protein groups or release of reactive oxygen species. PMID:17095096

  13. Heterogeneous catalytic ozonation of biologically pretreated Lurgi coal gasification wastewater using sewage sludge based activated carbon supported manganese and ferric oxides as catalysts.

    PubMed

    Zhuang, Haifeng; Han, Hongjun; Hou, Baolin; Jia, Shengyong; Zhao, Qian

    2014-08-01

    Sewage sludge of biological wastewater treatment plant was converted into sewage sludge based activated carbon (SBAC) with ZnCl₂ as activation agent, which supported manganese and ferric oxides as catalysts (including SBAC) to improve the performance of ozonation of real biologically pretreated Lurgi coal gasification wastewater. The results indicated catalytic ozonation with the prepared catalysts significantly enhanced performance of pollutants removal and the treated wastewater was more biodegradable and less toxic than that in ozonation alone. On the basis of positive effect of higher pH and significant inhibition of radical scavengers in catalytic ozonation, it was deduced that the enhancement of catalytic activity was responsible for generating hydroxyl radicals and the possible reaction pathway was proposed. Moreover, the prepared catalysts showed superior stability and most of toxic and refractory compounds were eliminated at successive catalytic ozonation runs. Thus, the process with economical, efficient and sustainable advantages was beneficial to engineering application. PMID:24907577

  14. Ferric nitrilotriacetate (Fe-NTA)-induced reactive oxidative species protects human hepatic stellate cells from apoptosis by regulating Bcl-2 family proteins and mitochondrial membrane potential

    PubMed Central

    Liu, Mei; Li, Shu-Jie; Xin, Yong-Ning; Ji, Shu-Sheng; Xie, Rui-Jin; Xuan, Shi-Ying

    2015-01-01

    Reactive oxidative species (ROS)-induced apoptosis of human hepatic stellate (HSC) is one of the treatments for liver fibrosis. However, how ROS (reactive oxygen species) affect HSC apoptosis and liver fibrosis is still unknown. In our study, ROS in human HSC cell line LX-2 was induced by ferric nitrilotriacetate (Fe-NTA) and assessed by superoxide dismutase (SOD) activity and methane dicarboxylic aldehyde (MDA) level. We found that in LX2 cells Fe-NTA induced notable ROS, which played a protective role in HSCs cells apoptosis by inhibiting Caspase-3 activation. Fe-NTA-induced ROS increased mRNA and protein level of anti-apoptosis Bcl-2 and decreased mRNA protein level of pro-apoptosis gene Bax, As a result, maintaining mitochondrial membrane potential of HSCs. Fe-NTA-induced ROS play a protective role in human HSCs by regulating Bcl-2 family proteins and mitochondrial membrane potential. PMID:26770403

  15. Arsenic removal by ferric chloride

    SciTech Connect

    Hering, J.G.; Chen, P.Y.; Wilkie, J.A.; Elimelech, M.; Liang, S.

    1996-04-01

    Bench-scale studies were conducted in model freshwater systems to investigate how various parameters affected arsenic removal during coagulation with ferric chloride and arsenic adsorption onto preformed hydrous ferric oxide. Parameters included arsenic oxidation state and initial concentration, coagulant dosage or adsorbent concentration, pH, and the presence of co-occurring inorganic solutes. Comparison of coagulation and adsorption experiments and of experimental results with predictions based on surface complexation modeling demonstrated that adsorption is an important (though not the sole) mechanism governing arsenic removal during coagulation. Under comparable conditions, better removal was observed with arsenic(V) [As(V)] than with arsenic(III) [As(III)] in both coagulation and adsorption experiments. Below neutral pH values, As(III) removal-adsorption was significantly decreased in the presence of sulfate, whereas only a slight decrease in As(V) removal-adsorption was observed. At high pH, removal-adsorption of As(V) was increased in the presence of calcium. Removal of As(V) during coagulation with ferric chloride is both more efficient and less sensitive than that of As(III) to variations in source water composition.

  16. Synthesis and characterization of nanophase zirconia : reverse micelle method and neutron scattering study.

    SciTech Connect

    Li, X.

    1998-11-23

    Zirconia is an important transition-metal oxide for catalytic applications. It has been widely used in automotive exhaust treatment, methanol synthesis, isomerization, alkylation, etc. [1]. Nanophase materials have unique physiochemical properties such as quantum size effects, high surface area, uniform morphology, narrow size distribution, and improvement of sintering rates[2]. Microemulsion method provides the means for controlling the microenvironment under which specific chemical reactions may occur in favoring the formation of homogeneous, nanometer-size particles. In this paper, we report the synthesis of nanophase zirconia and the characterization of the microemulsions as well as the powders by small- and wide-angle neutron scattering techniques.

  17. Ferric sulfates on Mars

    NASA Technical Reports Server (NTRS)

    Burns, Roger G.

    1987-01-01

    Evidence is presented for the possible existence of ferric sulfato complexes and hydroxo ferric sulfate minerals in the permafrost of Mars. A sequential combination of ten unique conditions during the cooling history of Mars is suggested which is believed to have generated an environment within Martian permafrost that has stabilized Fe(3+)-SO4(2-)-bearing species. It is argued that minerals belonging to the jarosite and copiapite groups could be present in Martian regolith analyzed in the Viking XRF measurements at Chryse and Utopia, and that maghemite suspected to be coating the Viking magnet arrays is a hydrolysate of dissolved ferric sulfato complexes from exposed Martian permafrost.

  18. Iron-Oxidizing Bacteria Are Associated with Ferric Hydroxide Precipitates (Fe-Plaque) on the Roots of Wetland Plants

    PubMed Central

    Emerson, David; Weiss, Johanna V.; Megonigal, J. Patrick

    1999-01-01

    The presence of Fe-oxidizing bacteria in the rhizosphere of four different species of wetland plants was investigated in a diverse wetland environment that had Fe(II) concentrations ranging from tens to hundreds of micromoles per liter and a pH range of 3.5 to 6.8. Enrichments for neutrophilic, putatively lithotrophic Fe-oxidizing bacteria were successful on roots from all four species; acidophilic Fe-oxidizing bacteria were enriched only on roots from plants whose root systems were exposed to soil solutions with a pH of <4. In Sagittaria australis there was a positive correlation (P < 0.01) between cell numbers and the total amount of Fe present; the same correlation was not found for Leersia oryzoides. These results present the first evidence for culturable Fe-oxidizing bacteria associated with Fe-plaque in the rhizosphere. PMID:10347074

  19. Nanophase materials assembled from clusters

    SciTech Connect

    Siegel, R.W.

    1992-02-01

    The preparation of metal and ceramic atom clusters by means of the gas-condensation method, followed by their in situ collection and consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials. These nanophase materials, with typical average grain sizes of 5 to 50 nm and, hence, a large fraction of their atoms in interfaces, exhibit properties that are often considerably improved relative to those of conventional materials. Furthermore, their synthesis and processing characteristics should enable the design of new materials with unique properties. Some examples are ductile ceramics that can be formed and sintered to full density at low temperatures without the need for binding or sintering aids, and metals with dramatically increased strength. The synthesis of these materials is briefly described along with what is presently known of their structure and properties. Their future impact on materials science and technology is also considered.

  20. Ferric Carboxymaltose Injection

    MedlinePlus

    ... on dialysis. Ferric carboxymaltose injection is in a class of medications called iron replacement products. It works ... rapid, weak pulse; chest pain; or loss of consciousness. If you experience a severe reaction, your doctor ...

  1. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms.

    PubMed

    Sisó-Terraza, Patricia; Rios, Juan J; Abadía, Javier; Abadía, Anunciación; Álvarez-Fernández, Ana

    2016-01-01

    Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms. PMID:26351005

  2. Protein-mediated adhesion of the dissimilatory Fe(III)-reducing bacterium Shewanella alga BrY to hydrous ferric oxide

    SciTech Connect

    Caccavo, F. Jr.

    1999-11-01

    The rate and extent of bacterial Fe(III) mineral reduction are governed by molecular-scale interactions between the bacterial cell surface and the mineral surface. These interactions are poorly understood. This study examined the role of surface proteins in the adhesion of Shewanella alga BrY to hydrous ferric oxide (HFO). Enzymatic degradation of cell surface polysaccharides had no effect on cell adhesion to HFO. The proteolytic enzymes Streptomyces griseus protease and chymotrypsin inhibited the adhesion of S. alga BrY cells to HFO through catalytic degradation of surface proteins. Trypsin inhibited S. alga BrY adhesion solely through surface-coating effects. Protease and chymotrypsin also mediated desorption of adhered S. alga BrY cells from HFO while trypsin did not mediate cell desorption. Protease removed a single peptide band that represented a protein with an apparent molecular mass of 50 kDa. Chymotrypsin removed two peptide bands that represented proteins with apparent molecular masses of 60 and 31 kDa. These proteins represent putative HGO adhesion molecules. A. alga BrY adhesion was inhibited by up to 46% when cells were cultured at sub-MICs of chloramphenicol, suggesting that protein synthesis is necessary for adhesion. Proteins extracted from the surface of S. alga BrY cells inhibited adhesion to HFO by up to 41%. A number of these proteins bound specifically to HFO, suggesting that a complex system of surface proteins mediates S. alga BrY adhesion to HFO.

  3. Labeling of the pathogenic bacterium Staphylococcus aureus with gold or ferric oxide-core nanoparticles highlights new capabilities for investigation of host-pathogen interactions.

    PubMed

    Depke, Maren; Surmann, Kristin; Hildebrandt, Petra; Jehmlich, Nico; Michalik, Stephan; Stanca, Sarmiza E; Fritzsche, Wolfgang; Völker, Uwe; Schmidt, Frank

    2014-02-01

    Throughout the world, infections caused by bacteria such as Staphylococcus aureus are a major cause of morbidity and mortality. In order to gain some understanding of the complicated physiological link between host and pathogen, modern techniques such as confocal microscopy and sophisticated OMICs technologies are suitable. However, labeling of pathogens such as S. aureus with green fluorescent protein, for example, or the generation of a reliable antibody, which are prerequisites for the application of reproducible isolation techniques, does not always succeed. Here, we present a universal approach for monitoring pathogen traffic after internalization into host cells by fluorescence microscopy and for isolation of bacteria from host-pathogen interaction assays using gold or ferric oxide-core, poly(vinyl alcohol) coated, and fluorescence-labeled nanoparticles (NP). The incubation of S. aureus HG001 with those NP had only minor effects on the bacterial growth in vitro. Quantitative proteome analysis after 24 h of NP incubation revealed that presence of NP provoked only marginal changes in the proteome pattern. The method presented enabled us to investigate the behavior of S. aureus HG001 during infection of S9 human epithelial cells by means of fluorescence microscopy and proteomics using magnetic separation or cell sorting. PMID:24347542

  4. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging.

    PubMed

    Liu, Mengli; Xu, Yuanhong; Niu, Fushuang; Gooding, J Justin; Liu, Jingquan

    2016-04-25

    Carbon quantum dots (CQDs) are attracting tremendous interest owing to their low toxicity, water dispersibility, biocompatibility, optical properties and wide applicability. Herein, CQDs with an average diameter of (4.0 ± 0.2) nm and high crystallinity were produced simply from the electrochemical oxidation of a graphite electrode in alkaline alcohols. The as-formed CQDs dispersion was colourless but the dispersion gradually changed to bright yellow when stored in ambient conditions. Based on UV-Vis absorption, fluorescence spectroscopy, X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM), this colour change appeared to be due to oxygenation of surface species over time. Furthermore, the CQDs were used in specific and sensitive detection of ferric ion (Fe(3+)) with broad linear ranges of 10-200 μM with a low limit of detection of 1.8 μM (S/N = 3). The application of the CQDs for Fe(3+) detection in tap water was demonstrated and the possible mechanism was also discussed. Finally, based on their good characteristics of low cytotoxicity and excellent biocompatibility, the CQDs were successfully applied to cell imaging. PMID:26878217

  5. Hydrogen adsorption on two catalysts for the ortho- to parahydrogen conversion: Cr-doped silica and ferric oxide gel.

    PubMed

    Hartl, Monika; Gillis, Robert Chad; Daemen, Luke; Olds, Daniel P; Page, Katherine; Carlson, Stefan; Cheng, Yongqiang; Hügle, Thomas; Iverson, Erik B; Ramirez-Cuesta, A J; Lee, Yongjoong; Muhrer, Günter

    2016-06-29

    Molecular hydrogen exists in two spin-rotation coupled states: parahydrogen and orthohydrogen. Due to the variation of energy with rotational level, the occupation of ortho- and parahydrogen states is temperature dependent, with parahydrogen being the dominant species at low temperatures. The equilibrium at 20 K (99.8% parahydrogen) can be reached by natural conversion only after a lengthy process. With the use of a suitable catalyst, this process can be shortened significantly. Two types of commercial catalysts currently being used for ortho- to parahydrogen conversion are: iron(iii) oxide (Fe2O3, IONEX®), and chromium(ii) oxide doped silica catalyst (CrO·SiO2, OXISORB®). We investigate the interaction of ortho- and parahydrogen with the surfaces of these ortho-para conversion catalysts using neutron vibrational spectroscopy. The catalytic surfaces have been characterized using X-ray absorption fine structure (XAFS) and X-ray/neutron pair distribution function measurements. PMID:27149564

  6. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    2003-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi-component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma-sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), electron energy-loss spectroscopy (EELS) and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia- yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging from 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  7. Defect Clustering and Nano-Phase Structure Characterization of Multi-Component Rare Earth Oxide Doped Zirconia-Yttria Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Chen, Yuan L.; Miller, Robert A.

    1990-01-01

    Advanced oxide thermal barrier coatings have been developed by incorporating multi- component rare earth oxide dopants into zirconia-yttria to effectively promote the creation of the thermodynamically stable, immobile oxide defect clusters and/or nano-scale phases within the coating systems. The presence of these nano-sized defect clusters has found to significantly reduce the coating intrinsic thermal conductivity, improve sintering resistance, and maintain long-term high temperature stability. In this paper, the defect clusters and nano-structured phases, which were created by the addition of multi-component rare earth dopants to the plasma- sprayed and electron-beam physical vapor deposited thermal barrier coatings, were characterized by high-resolution transmission electron microscopy (TEM). The defect cluster size, distribution, crystallographic and compositional information were investigated using high-resolution TEM lattice imaging, selected area diffraction (SAD), and energy dispersive spectroscopy (EDS) analysis techniques. The results showed that substantial defect clusters were formed in the advanced multi-component rare earth oxide doped zirconia-yttria systems. The size of the oxide defect clusters and the cluster dopant segregation was typically ranging fiom 5 to 50 nm. These multi-component dopant induced defect clusters are an important factor for the coating long-term high temperature stability and excellent performance.

  8. Selective mineralization of microbes in Fe-rich precipitates (jarosite, hydrous ferric oxides) from acid hot springs in the Waiotapu geothermal area, North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Jones, Brian; Renaut, Robin W.

    2007-01-01

    A group of small springs that are informally called "Orange Spring", located near Hakereteke Stream in the northern part of the Waiotapu geothermal area, feed hot (˜ 80 °C), acidic (pH: 2.1 - 2.4), As-rich sulfate waters into a discharge channel that is up to 25 cm deep. Submerged reddish-brown precipitates on the channel floor are formed largely of noncrystalline As-rich hydrous ferric oxide (HFO: mainly goethite), poorly crystalline lepidocrocite, and crystalline jarosite. Well-preserved coccoid and rod-shaped microbes are found in the As-rich HFO, but not in the lepidocrocite or jarosite. The jarosite was probably precipitated when the water had a low pH (< 3) and high SO 4 content, whereas the goethite and lepidocrocite were probably precipitated when the water had a slightly higher pH (> 4) and lower SO 4 content. The fluctuations in the pH and SO 4 content, which led to precipitation of the different mineral phases, may reflect mixing of the spring water with stream water that flowed through the channel when Hakereteke Stream was in flood stage. The goethite probably formed when coccoid and rod-shaped bacteria ( Acidithiobacillus ferrooxidans?) mediated rapid oxidization of the Fe 2+ to Fe 3+ that was then immediately coprecipitated with the As. Such rapid precipitation promoted mineralization of the microbes. The lack of mineralized microbes and the lower As in the lepidocrocite and jarosite may reflect precipitation rates that were slower than the decay rates of the microbes, or ecological factors that limited their growth.

  9. Combined Hydrous Ferric Oxide and Quaternary Ammonium Surfactant Tailoring of Granular Activated Carbon for Concurrent Arsenate and Perchlorate Removal

    SciTech Connect

    Jang, M.; Cannon, F; Parette, R; Yoon, S; Chen, W

    2009-01-01

    Activated carbon was tailored with both iron and quaternary ammonium surfactants so as to concurrently remove both arsenate and perchlorate from groundwater. The iron (hydr)oxide preferentially removed the arsenate oxyanion but not perchlorate; while the quaternary ammonium preferentially removed the perchlorate oxyanion, but not the arsenate. The co-sorption of two anionic oxyanions via distinct mechanisms has yielded intriguing phenomena. Rapid small-scale column tests (RSSCTs) with these dually prepared media employed synthetic waters that were concurrently spiked with arsenate and perchlorate; and these trial results showed that the quaternary ammonium surfactants enhanced arsenate removal bed life by 25-50% when compared to activated carbon media that had been preloaded merely with iron (hydr)oxide; and the surfactant also enhanced the diffusion rate of arsenate per the Donnan effect. The authors also employed natural groundwater from Rutland, MA which contained 60 microg/L As and traces of silica, and sulfate; and the authors spiked this with 40 microg/L perchlorate. When processing this water, activated carbon that had been tailored with iron and cationic surfactant could treat 12,500 bed volumes before 10 microg/L arsenic breakthrough, and 4500 bed volumes before 6 microg/L perchlorate breakthrough. Although the quaternary ammonium surfactants exhibited only a slight capacity for removing arsenate, these surfactants did facilitate a more favorably positively charged avenue for the arsenate to diffuse through the media to the iron sorption site (i.e. via the Donnan effect).

  10. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.

    2014-12-01

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3ṡnH2O where n = 6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM).

  11. Preparation of manganese(II), chromium(III) and ferric(III) oxides nanoparticles in situ metal citraconate complexes frameworks.

    PubMed

    Refat, Moamen S

    2014-12-10

    The new reactions of some divalent and trivalent transition metal ions (Mn(II), Cr(III), and Fe(III)) with citraconic acid has been studied. The obtained results indicate the formation of citraconic acid compounds with molar ratio of metal to citraconic acid of 2:2 or 2:3 with general formulas Mn2(C5H4O4)2 or M2(C5H4O4)3⋅nH2O where n=6 for Cr, and Fe(III). The thermal decomposition of the crystalline solid complexes was investigated. The IR spectra of citraconate suggested that the carboxylic groups are bidentatically bridging and chelating. In the course of decomposition the complexes are dehydrated and then decompose either directly to oxides in only one step or with intermediate formation of oxocarbonates. This proposal dealing the preparation of MnO2, Fe2O3 and Cr2O3 nanoparticles. The crystalline structure of oxide products were checked by X-ray powder diffraction (XRD), and the morphology of particles by scanning electron microscopy (SEM). PMID:24952090

  12. Effect of La{sub 2}O{sub 3}-treatment on textural and solid-solid interactions in ferric/cobaltic oxides system

    SciTech Connect

    Fagal, Gehan A.; Badawy, Abdelrahman A.; Hassan, Neven A.; El-Shobaky, Gamil A.

    2012-10-15

    Pure and La{sub 2}O{sub 3}-containing (0.75-3.0 mol%) Fe{sub 2}O{sub 3}/Co{sub 3}O{sub 4} solids were prepared by thermal treatment of their carbonates at 500-700 Degree-Sign C. The produced solids were characterized using XRD, HRTEM, EDX and nitrogen adsorption at -196 Degree-Sign C. The results revealed that pure solids calcined at 600 and 700 Degree-Sign C consisted of nanosized CoFe{sub 2}O{sub 4} phase, while pure mixed solids calcined at 500 Degree-Sign C consisted of trace amount of CoFe{sub 2}O{sub 4} and unreacted Fe{sub 2}O{sub 3}, Co{sub 3}O{sub 4} phases. The presence of 0.75 mol% La{sub 2}O{sub 3} enhanced solid-solid interaction between Fe{sub 2}O{sub 3} and Co{sub 3}O{sub 4} at 500 Degree-Sign C yielding CoFe{sub 2}O{sub 4}. The ferrite phase existed also in all mixed oxides upon treated with La{sub 2}O{sub 3} besides LaCoO{sub 3} phase. LaCoO{sub 3} existed as a major phase in all mixed oxides treated with 3 mol% La{sub 2}O{sub 3}. La{sub 2}O{sub 3}-treatment modified the crystallite size of all phases present to an extent dependent on calcination temperature and amount of La{sub 2}O{sub 3} content. This treatment decreased effectively the S{sub BET} of all mixed solids. - Graphical Abstract: TEM photographs of pure mixed oxides calcined at 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Cobalt ferrite exhibit chemical stability, low electric loss and high coercivity. Black-Right-Pointing-Pointer Cobalt ferrite is used in microwave devices, computer memories and magnetic storage. Black-Right-Pointing-Pointer Solid-solid interactions in ferric/cobaltic oxides system were investigated. Black-Right-Pointing-Pointer La{sub 2}O{sub 3}-treatment modified surface compositions of the system investigated. Black-Right-Pointing-Pointer All phases present in various solids existed as nanosized solids.

  13. Do grain boundaries in nanophase metals slide?

    SciTech Connect

    Bringa, E M; Leveugle, E; Caro, A

    2006-10-27

    Nanophase metallic materials show a maximum in strength as grain size decreases to the nano scale, indicating a break down of the Hall-Petch relation. Grain boundary sliding, as a possible accommodation mechanisms, is often the picture that explain computer simulations results and real experiments. In a recent paper, Bringa et al. Science 309, 1838 (2005), we report on the observation of an ultra-hard behavior in nanophase Cu under shock loading, explained in terms of a reduction of grain boundary sliding under the influence of the shock pressure. In this work we perform a detailed study of the effects of hydrostatic pressure on nanophase Cu plasticity and find that it can be understood in terms of pressure dependent grain boundary sliding controlled by a Mohr-Coulomb law.

  14. Synthesis and properties of nanophase materials

    SciTech Connect

    Siegel, R.W.

    1993-03-01

    Nanophase materials, with their grain sizes or phase dimensions in the nanometer size regime, are now being produced by a wide variety of synthesis and processing methods. The interest in these new ultrafine-grained materials results primarily from the special nature of their various physical, chemical, and mechanical properties and the possibilities to control these properties during the synthesis and subsequent processing procedures. Since it is now becoming increasingly apparent that their properties can be engineered effectively during synthesis and processing, and that they can also be produced in quantity, nanophase materials should have considerable potential for technological development in a variety of applications. Some of the recent research on nanophase materials related to their synthesis and properties is briefly reviewed and the future potential of these new materials is considered.

  15. Ferric Tourmaline from Mexico.

    PubMed

    Mason, B; Donnay, G; Hardie, L A

    1964-04-01

    Dark brown crystals, up to 10 mm long, occur in rhyolite at Mexquitic, San Luis Potosi, Mexico. They are short prismatic, showing {1120}, {3030}, {1011}, {0221}, with c/a 0.4521, measured with a goniometer, and distinct {1120} cleavage. With an unusual combination of cell dimensions, high density, high refractive indices, and extreme birefringence, this tourmaline falls outside the known elbaite-schorl and schorl-dravite series. A chemical analysis, recalculated on the basis of cell volume and density, gives close to the theoretical 150 atoms per cell, whether the iron is ferrous or ferric, but the physical properties indicate a ferric tourmaline. PMID:17729799

  16. Nanophase change for data storage applications.

    PubMed

    Shi, L P; Chong, T C

    2007-01-01

    Phase change materials are widely used for date storage. The most widespread and important applications are rewritable optical disc and Phase Change Random Access Memory (PCRAM), which utilizes the light and electric induced phase change respectively. For decades, miniaturization has been the major driving force to increase the density. Now the working unit area of the current data storage media is in the order of nano-scale. On the nano-scale, extreme dimensional and nano-structural constraints and the large proportion of interfaces will cause the deviation of the phase change behavior from that of bulk. Hence an in-depth understanding of nanophase change and the related issues has become more and more important. Nanophase change can be defined as: phase change at the scale within nano range of 100 nm, which is size-dependent, interface-dominated and surrounding materials related. Nanophase change can be classified into two groups, thin film related and structure related. Film thickness and clapping materials are key factors for thin film type, while structure shape, size and surrounding materials are critical parameters for structure type. In this paper, the recent development of nanophase change is reviewed, including crystallization of small element at nano size, thickness dependence of crystallization, effect of clapping layer on the phase change of phase change thin film and so on. The applications of nanophase change technology on data storage is introduced, including optical recording such as super lattice like optical disc, initialization free disc, near field, super-RENS, dual layer, multi level, probe storage, and PCRAM including, superlattice-like structure, side edge structure, and line type structure. Future key research issues of nanophase change are also discussed. PMID:17455476

  17. Formation, reactivity, and aging of ferric oxide particles formed from Fe(II) and Fe(III) sources: Implications for iron bioavailability in the marine environment

    NASA Astrophysics Data System (ADS)

    Bligh, Mark W.; Waite, T. David

    2011-12-01

    Freshly formed amorphous ferric oxides (AFO) in the water column are potentially highly reactive, but with reactivity declining rapidly with age, and have the capacity to partake in reactions with dissolved species and to be a significant source of bioavailable iron. However, the controls on reactivity in aggregated oxides are not well understood. Additionally, the mechanism by which early rapid aging occurs is not clear. Aging is typically considered in terms of changes in crystallinity as the structure of an iron oxide becomes more stable and ordered with time thus leading to declining reactivity. However, there has been recognition of the role that aggregation can play in determining reactivity, although it has received limited attention. Here, we have formed AFO in seawater in the laboratory from either an Fe(II) or Fe(III) source to produce either AFO(II) or AFO(III). The changes in reactivity of these two oxides following formation was measured using both ligand-promoted dissolution (LPD) and reductive dissolution (RD). The structure of the two oxides was examined using light scattering and X-ray adsorption techniques. The dissolution rate of AFO(III) was greater than that of AFO(II), as measured by both dissolution techniques, and could be attributed to both the less ordered molecular structure and smaller primary particle size of AFO(III). From EXAFS analysis shortly (90 min) following formation, AFO(II) and AFO(III) were shown to have the same structure as aged lepidocrocite and ferrihydrite respectively. Both oxides displayed a rapid decrease in dissolution rate over the first hours following formation in a pattern that was very similar when normalised. The early establishment and little subsequent change of crystal structure for both oxides undermined the hypothesis that increasing crystallinity was responsible for early rapid aging. Also, an aging model describing this proposed process could only be fitted to the data with kinetic parameters that were

  18. Adhesion of Pseudomonas fluorescens onto nanophase materials

    NASA Astrophysics Data System (ADS)

    Webster, Thomas J.; Tong, Zonghua; Liu, Jin; Banks, M. Katherine

    2005-07-01

    Nanobiotechnology is a growing area of research, primarily due to the potentially numerous applications of new synthetic nanomaterials in engineering/science. Although various definitions have been given for the word 'nanomaterials' by many different experts, the commonly accepted one refers to nanomaterials as those materials which possess grains, particles, fibres, or other constituent components that have one dimension specifically less than 100 nm. In biological applications, most of the research to date has focused on the interactions between mammalian cells and synthetic nanophase surfaces for the creation of better tissue engineering materials. Although mammalian cells have shown a definite positive response to nanophase materials, information on bacterial interactions with nanophase materials remains elusive. For this reason, this study was designed to assess the adhesion of Pseudomonas fluorescens on nanophase compared to conventional grain size alumina substrates. Results provide the first evidence of increased adhesion of Pseudomonas fluorescens on alumina with nanometre compared to conventional grain sizes. To understand more about the process, polymer (specifically, poly-lactic-co-glycolic acid or PLGA) casts were made of the conventional and nanostructured alumina surfaces. Results showed similar increased Pseudomonas fluorescens capture on PLGA casts of nanostructured compared to conventional alumina as on the alumina itself. For these reasons, a key material property shown to enhance bacterial adhesion was elucidated in this study for both polymers and ceramics: nanostructured surface features.

  19. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ferric chloride or ferric citrate. (b) The ingredient meets the specifications of the Food Chemicals... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate,...

  20. Transcriptional and Proteomic Analysis of a Ferric Uptake Regulator (Fur) Mutant of Shewanella oneidensis: Possible Involvement of Fur in Energy Metabolism, Transcriptional Regulation, and Oxidative Stress

    PubMed Central

    Thompson, Dorothea K.; Beliaev, Alexander S.; Giometti, Carol S.; Tollaksen, Sandra L.; Khare, Tripti; Lies, Douglas P.; Nealson, Kenneth H.; Lim, Hanjo; Yates III, John; Brandt, Craig C.; Tiedje, James M.; Zhou, Jizhong

    2002-01-01

    The iron-directed, coordinate regulation of genes depends on the fur (ferric uptake regulator) gene product, which acts as an iron-responsive, transcriptional repressor protein. To investigate the biological function of a fur homolog in the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1, a fur knockout strain (FUR1) was generated by suicide plasmid integration into this gene and characterized using phenotype assays, DNA microarrays containing 691 arrayed genes, and two-dimensional polyacrylamide gel electrophoresis. Physiological studies indicated that FUR1 was similar to the wild-type strain when they were compared for anaerobic growth and reduction of various electron acceptors. Transcription profiling, however, revealed that genes with predicted functions in electron transport, energy metabolism, transcriptional regulation, and oxidative stress protection were either repressed (ccoNQ, etrA, cytochrome b and c maturation-encoding genes, qor, yiaY, sodB, rpoH, phoB, and chvI) or induced (yggW, pdhC, prpC, aceE, fdhD, and ppc) in the fur mutant. Disruption of fur also resulted in derepression of genes (hxuC, alcC, fhuA, hemR, irgA, and ompW) putatively involved in iron uptake. This agreed with the finding that the fur mutant produced threefold-higher levels of siderophore than the wild-type strain under conditions of sufficient iron. Analysis of a subset of the FUR1 proteome (i.e., primarily soluble cytoplasmic and periplasmic proteins) indicated that 11 major protein species reproducibly showed significant (P < 0.05) differences in abundance relative to the wild type. Protein identification using mass spectrometry indicated that the expression of two of these proteins (SodB and AlcC) correlated with the microarray data. These results suggest a possible regulatory role of S. oneidensis MR-1 Fur in energy metabolism that extends the traditional model of Fur as a negative regulator of iron acquisition systems. PMID:11823232

  1. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode

    NASA Astrophysics Data System (ADS)

    Cao, Chunmei; Li, Xingang; Zha, Yuqing; Zhang, Jing; Hu, Tiandou; Meng, Ming

    2016-03-01

    Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen species. Based upon the catalytic performance and multiple characterization results, two reaction pathways for soot oxidation are identified, namely, the direct oxidation by the activated oxygen species via oxygen vacancies and the NOx-aided soot oxidation.Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen

  2. Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode.

    PubMed

    Cao, Chunmei; Li, Xingang; Zha, Yuqing; Zhang, Jing; Hu, Tiandou; Meng, Ming

    2016-03-21

    Crossed Fe2O3 nanosheets supported cobalt oxide nanoparticles on three-dimensionally macroporous nickel foam substrate (xCo/Fe-NF) was designed and successfully prepared through a facile hydrothermal and impregnation route. These catalysts showed high catalytic soot combustion activities under self-capture contact mode. The three-dimensional macroporous structures of Ni foam and the crossed Fe2O3 nanosheets constituted macroporous voids can greatly increase the contact efficiency between soot particulates and catalysts. The interaction between Co and Fe facilitated the activation of the Fe-O bond and increased the amounts of active oxygen species, thus improving the redox property of the catalysts. The 0.6Co/Fe-NF catalyst exhibited the highest turnover frequency (TOF) for soot combustion, which is in good accordance with the largest amount of active oxygen species. Based upon the catalytic performance and multiple characterization results, two reaction pathways for soot oxidation are identified, namely, the direct oxidation by the activated oxygen species via oxygen vacancies and the NOx-aided soot oxidation. PMID:26509240

  3. Nanophase materials assembled from atomic clusters

    SciTech Connect

    Siegel, R.W.

    1989-09-01

    The preparation of atomic clusters of metals and ceramics by means of the gas-condensation method, followed by their in situ consolidation under high-vacuum conditions, has recently led to the synthesis of a new class of ultrafine-grained materials for which their physics is intimately coupled with their application. These nanophase materials, with 2 to 20 nm grain sizes, appear to have properties that are often rather different from conventional materials, and also processing characteristics that are greatly improved. The nanophase synthesis method described here should enable the design of materials heretofore unavailable, with improved or unique properties, based upon an understanding of the physics of these new materials. 23 refs., 8 figs.

  4. Synthesis, properties, and applications of nanophase materials

    SciTech Connect

    Siegel, R.W. |

    1995-04-01

    Work on the synthesis, properties, and applications of nanophase materials has developed rapidly during the past decade. A wide variety of methods now exist for their production, including several plasma-based processes. The possibilities for engineering new materials with unique or improved properties for a number of applications is now evident from the extant research results. A brief review is presented here along with some examples of useful application areas and some thoughts for the future of this field.

  5. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  6. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... reaction of sodium phosphate with ferric chloride or ferric citrate. (b) The ingredient meets the... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate...

  7. Functionally Graded Nanophase Beryllium/Carbon Composites

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2003-01-01

    Beryllium, beryllium alloys, beryllium carbide, and carbon are the ingredients of a class of nanophase Be/Be2C/C composite materials that can be formulated and functionally graded to suit a variety of applications. In a typical case, such a composite consists of a first layer of either pure beryllium or a beryllium alloy, a second layer of B2C, and a third layer of nanophase sintered carbon derived from fullerenes and nanotubes. The three layers are interconnected through interpenetrating spongelike structures. These Be/Be2C/C composite materials are similar to Co/WC/diamond functionally graded composite materials, except that (1) W and Co are replaced by Be and alloys thereof and (2) diamond is replaced by sintered carbon derived from fullerenes and nanotubes. (Optionally, one could form a Be/Be2C/diamond composite.) Because Be is lighter than W and Co, the present Be/Be2C/C composites weigh less than do the corresponding Co/WC/diamond composites. The nanophase carbon is almost as hard as diamond. WC/Co is the toughest material. It is widely used for drilling, digging, and machining. However, the fact that W is a heavy element (that is, has high atomic mass and mass density) makes W unattractive for applications in which weight is a severe disadvantage. Be is the lightest tough element, but its toughness is less than that of WC/Co alloy. Be strengthened by nanophase carbon is much tougher than pure or alloy Be. The nanophase carbon has an unsurpassed strength-to-weight ratio. The Be/Be2C/C composite materials are especially attractive for terrestrial and aerospace applications in which there are requirements for light weight along with the high strength and toughness of the denser Co/WC/diamond materials. These materials could be incorporated into diverse components, including cutting tools, bearings, rocket nozzles, and shields. Moreover, because Be and C are effective as neutron moderators, Be/Be2C/C composites could be attractive for some nuclear applications.

  8. Reduction of Ferric Leghemoglobin in Soybean Root Nodules 1

    PubMed Central

    Lee, Keuk-Ki; Klucas, Robert V.

    1984-01-01

    Reduction of ferric leghemoglobin to ferrous leghemoglobin in soybean nodules (Glycine max [L.] Merr. cv Woodworth) was studied using a spectrophotometer equipped with an in-cell space diffuse reflectance accessory. Nodule slices prepared and scanned under nitrogen gas showed a ferrous leghemoglobin absorption spectrum. Nodule slices equilibrated with 100% O2 or air exhibited two absorption bands characteristic of oxygenated leghemoglobin. The addition of CO shifted those bands to CO leghemoglobin absorption bands. Potassium ferricyanide was not effective in oxidizing ferrous to ferric leghemoglobin in nodule slices. However, ferric leghemoglobin was formed by treating the nodule slices with hydroxylamine, and this was confirmed by complexing the ferric leghemoglobin to acetate, fluoride, or nicotinic acid. The diminution of ferric leghemoglobin was monitored as a function of time, and in the presence of nicotinic acid, the conversion of ferric to ferrous leghemoglobin was monitored by the appearance of ferrous leghemoglobin nicotinate complex as a function of time. Ferric leghemoglobin reduction was also confirmed by direct transmission spectrophotometry. The evidence presented here suggests that ferrileghemoglobin reduction occurs in nodule slices. PMID:16663546

  9. Development of Surface Complexation Models of Cr(VI) Adsorption on Soils, Sediments and Model Mixtures of Kaolinite, Montmorillonite, γ-Alumina, Hydrous Manganese and Ferric Oxides and Goethite

    SciTech Connect

    Koretsky, Carla

    2013-11-29

    Hexavalent chromium is a highly toxic contaminant that has been introduced into aquifers and shallow sediments and soils via many anthropogenic activities. Hexavalent chromium contamination is a problem or potential problem in the shallow subsurface at several DOE sites, including Hanford, Idaho National Laboratory, Los Alamos National Laboratory and the Oak Ridge Reservation (DOE, 2008). To accurately quantify the fate and transport of hexavalent chromium at DOE and other contaminated sites, robust geochemical models, capable of correctly predicting changes in chromium chemical form resulting from chemical reactions occurring in subsurface environments are needed. One important chemical reaction that may greatly impact the bioavailability and mobility of hexavalent chromium in the subsurface is chemical binding to the surfaces of particulates, termed adsorption or surface complexation. Quantitative thermodynamic surface complexation models have been derived that can correctly calculate hexavalent chromium adsorption on well-characterized materials over ranges in subsurface conditions, such pH and salinity. However, models have not yet been developed for hexavalent chromium adsorption on many important constituents of natural soils and sediments, such as clay minerals. Furthermore, most of the existing thermodynamic models have been developed for relatively simple, single solid systems and have rarely been tested for the complex mixtures of solids present in real sediments and soils. In this study, the adsorption of hexavalent chromium was measured as a function of pH (3-10), salinity (0.001 to 0.1 M NaNO3), and partial pressure of carbon dioxide(0-5%) on a suite of naturally-occurring solids including goethite (FeOOH), hydrous manganese oxide (MnOOH), hydrous ferric oxide (Fe(OH)3), γ-alumina (Al2O3), kaolinite (Al2Si2O5(OH)4), and montmorillonite (Na3(Al, Mg)2Si4O10(OH)2-nH2O). The results show that all of these materials can bind substantial quantities of

  10. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  11. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food... Specific Substances Affirmed as GRAS § 184.1297 Ferric chloride. (a) Ferric chloride (iron (III) chloride... hydrogen chloride. The pure material occurs as hydroscopic, hexagonal, dark crystals. Ferric...

  12. Is superplasticity in the future of nanophase materials

    SciTech Connect

    Siegel, R.W.

    1990-07-01

    The ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO{sub 2}, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed. 34 refs., 6 figs.

  13. Detecting Nanophase Weathering Products with CheMin: Reference Intensity Ratios of Allophane, Aluminosilicate Gel, and Ferrihydrite

    NASA Technical Reports Server (NTRS)

    Rampe, E. B.; Bish, D. L.; Chipera, S. J.; Morris, R. V.; Achilles, C. N.; Ming, D W.; Blake, D. F.; Anderson, R. C.; Bristow, T. F.; Crisp, A.; DesMarais, D. J.; Downs, R. T.; Farmer, J. D.; Morookian, J. M.; Morrison, S. M.; Sarrazin, P.; Spanovich, N.; Stolper, E. M.; Treiman, A. H.; Vaniman, D. T.; Yen, A. S.

    2013-01-01

    X-ray diffraction (XRD) data collected of the Rocknest samples by the CheMin instrument on Mars Science Laboratory suggest the presence of poorly crystalline or amorphous materials [1], such as nanophase weathering products or volcanic and impact glasses. The identification of the type(s) of X-ray amorphous material at Rocknest is important because it can elucidate past aqueous weathering processes. The presence of volcanic and impact glasses would indicate that little chemical weathering has occurred because glass is highly susceptible to aqueous alteration. The presence of nanophase weathering products, such as allophane, nanophase iron-oxides, and/or palagonite, would indicate incipient chemical weathering. Furthermore, the types of weathering products present could help constrain pH conditions and identify which primary phases altered to form the weathering products. Quantitative analysis of phases from CheMin data is achieved through Reference Intensity Ratios (RIRs) and Rietveld refinement. The RIR of a mineral (or mineraloid) that relates the scattering power of that mineral (typically the most intense diffraction line) to the scattering power of a separate mineral standard such as corundum [2]. RIRs can be calculated from XRD patterns measured in the laboratory by mixing a mineral with a standard in known abundances and comparing diffraction line intensities of the mineral to the standard. X-ray amorphous phases (e.g., nanophase weathering products) have broad scattering signatures rather than sharp diffraction lines. Thus, RIRs of X-ray amorphous materials are calculated by comparing the area under one of these broad scattering signals with the area under a diffraction line in the standard. Here, we measured XRD patterns of nanophase weathering products (allophane, aluminosilicate gel, and ferrihydrite) mixed with a mineral standard (beryl) in the CheMinIV laboratory instrument and calculated their RIRs to help constrain the abundances of these phases in

  14. Coordination modes of tyrosinate-ligated catalase-type heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states.

    PubMed

    Bandara, D M Indika; Sono, Masanori; Bruce, Grant S; Brash, Alan R; Dawson, John H

    2011-12-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (<20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg(+)-N(ω)-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O(2) states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg(+)-N(ω)-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC. PMID:22104301

  15. Coordination modes of tyrosinate-ligated heme enzymes: magnetic circular dichroism studies of Plexaura homomalla allene oxide synthase, Mycobacterium avium ssp. paratuberculosis protein-2744c, and bovine liver catalase in their ferric and ferrous states

    PubMed Central

    Bandara, D. M. Indika; Sono, Masanori; Bruce, Grant S.; Brash, Alan R.; Dawson, John H.

    2012-01-01

    Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (< 20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is an organic peroxide-dependent peroxidase. To shed light on the functional differences among these three proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme proteins in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric His93Tyr Mb, which may be attributed to the presence of an Arg+-Nω-H … O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN−, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O2 states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O−) is the heme axial ligand trans to the bound ligands in these complexes. The Arg+-Nω-H to −O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC. PMID:22104301

  16. Reflectance spectroscopy of ferric sulfate-bearing montmorillonites as Mars soil analog materials

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.; Edwards, J. O.; Mancinelli, R. L.; Froschl, H.

    1995-01-01

    Spectroscopic analyses have shown that smectites enhanced in the laboratory with additional ferric species exhibit important similarities to those of the soils on Mars. Ferrihydrite in these chemically treated smectites has features in the visible to near-infrared region that resemble the energies and band strengths of features in reflectance spectra observed for several bright regions on Mars. New samples have been prepared with sulfate as well, because S was found by Viking to be a major component in the surface material on Mars. A suite of ferrihydrite-bearing and ferric sulfate-bearing montmorillonites, prepared with variable Fe3+ and S concentrations and variable pH conditions, has been analyzed using reflectance spectroscopy in the visible and infrared regions, Mossbauer spectroscopy at room temperature and 4 K, differential thermal analysis, and X-ray diffraction. These analyses support the formation of ferrihydrite of variable crystallinity in the ferrihydrite-bearing montmorillonites and a combination of schwertmannite and ferrihydrite in the ferric sulfate-bearing montmorillonites. Small quantities of poorly crystalline or nanophase forms of other ferric materials may also be present in these samples. The chemical formation conditions of the ferrihydrite-bearing and ferric sulfate-bearing montmorillonites influence the character of the low temperature Mossbauer sextets and the visible reflectance spectra. An absorption minimum is observed at 0.88-0.89 micrometers in spectra of the ferric sulfate-bearing samples, and at 0.89-0.92 micrometers in spectra of the ferrihydrate-bearing montmorillonites. Mossbauer spectra of the ferric sulfate-bearing montmorillonites indicate variable concentrations of ferrihydrite and schwertmannite in the interlaminar spaces and along grain surfaces. Dehydration under reduced atmospheric pressure conditions induces a greater effect on the adsorbed and interlayer water in ferrihydrite-bearing montmorillonite than on the water

  17. Superhard nanophase materials for rock drilling applications

    SciTech Connect

    Sadangi, R.K.; Voronov, O.A.; Tompa, G.S.; Kear, B.H.

    1997-12-31

    Diamond Materials Incorporated is developing new class of superhard materials for rock drilling applications. In this paper, we will describe two types of superhard materials, (a) binderless polycrystalline diamond compacts (BPCD), and (b) functionally graded triphasic nanocomposite materials (FGTNC). BPCDs are true polycrystalline diamond ceramic with < 0.5 wt% binders and have demonstrated to maintain their wear properties in a granite-log test even after 700{degrees}C thermal treatment. FGTNCs are functionally-graded triphasic superhard material, comprising a nanophase WC/Co core and a diamond-enriched surface, that combine high strength and toughness with superior wear resistance, making FGTNC an attractive material for use as roller cone stud inserts.

  18. Transparent monolithic metal ion containing nanophase aerogels

    SciTech Connect

    Risen, W. M., Jr.; Hu, X.; Ji, S.; Littrell, K.

    1999-12-01

    The formation of monolithic and transparent transition metal containing aerogels has been achieved through cooperative interactions of high molecular weight functionalized carbohydrates and silica precursors, which strongly influence the kinetics of gelation. After initial gelation, subsequent modification of the ligating character of the system, coordination of the group VIII metal ions, and supercritical extraction afford the aerogels. The structures at the nanophase level have been probed by photon and electron transmission and neutron scattering techniques to help elucidate the basis for structural integrity together with the small entity sizes that permit transparency in the visible range. They also help with understanding the chemical reactivities of the metal-containing sites in these very high surface area materials. These results are discussed in connection with new reaction studies.

  19. DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  20. ESTCP DEMONSTRATION OF A BIOAVAILABLE FERRIC IRON TEST KIT

    EPA Science Inventory

    Bioavailable ferric iron (BAFeIII) is used by iron-reducing bacteria as an electron acceptor during the oxidation of various organic contaminants such as vinyl chloride and benzene. Quantification of BAFeIII is important with respect to characterizing candidate natural attenuati...

  1. Hydrogen Storage in Nano-Phase Diamond at High Temperature and Its Release

    SciTech Connect

    Tushar K Ghosh

    2008-10-13

    The objectives of this proposed research were: 91) Separation and storage of hydrogen on nanophase diamonds. It is expected that the produced hydrogen, which will be in a mixture, can be directed to a nanophase diamond system directly, which will not only store the hydrogen, but also separate it from the gas mixture, and (2) release of the stored hydrogen from the nanophase diamond.

  2. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  3. 21 CFR 184.1301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white...

  4. The power of using continuous-wave and pulsed electron paramagnetic resonance methods for the structure analysis of ferric forms and nitric oxide-ligated ferrous forms of globins.

    PubMed

    Van Doorslaer, Sabine; Desmet, Filip

    2008-01-01

    For several decades now, electron paramagnetic resonance (EPR) has been a valuable spectroscopic tool for the characterization of globin proteins. In the early years, the majority of EPR studies were performed using standard continuous-wave EPR techniques at conventional microwave frequencies. In the last years, the field of EPR has known tremendous technological developments, including the introduction of advanced pulsed EPR and high-frequency EPR techniques. After a short overview of the basics of EPR and recent advances in the field, we will illustrate how these different EPR methods can provide information about the dynamics and geometric and electronic structures of heme proteins. Although the main focus of this chapter lies on the EPR analysis of nitric oxide-ligated ferrous heme proteins and ferric heme systems, we also briefly outline the possibility of site-directed spin labeling of heme proteins. The last section highlights the future potential and challenges in using this magnetic resonance technique in globin research. PMID:18433634

  5. 21 CFR 73.1299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... color additive ferric ferrocyanide is a ferric hexacyanoferrate pigment characterized by the structual... ferrocyanide. (2) Color additive mixtures for drug use made with ferric ferrocyanide may contain only those diluents listed in this subpart as safe and suitable for use in color additive mixtures for coloring...

  6. The Center for Nanophase Materials Sciences

    NASA Astrophysics Data System (ADS)

    Lowndes, Douglas

    2005-03-01

    The Center for Nanophase Materials Sciences (CNMS) located at Oak Ridge National Laboratory (ORNL) will be the first DOE Nanoscale Science Research Center to begin operation, with construction to be completed in April 2005 and initial operations in October 2005. The CNMS' scientific program has been developed through workshops with the national community, with the goal of creating a highly collaborative research environment to accelerate discovery and drive technological advances. Research at the CNMS is organized under seven Scientific Themes selected to address challenges to understanding and to exploit particular ORNL strengths (see http://cnms.ornl.govhttp://cnms.ornl.gov). These include extensive synthesis and characterization capabilities for soft, hard, nanostructured, magnetic and catalytic materials and their composites; neutron scattering at the Spallation Neutron Source and High Flux Isotope Reactor; computational nanoscience in the CNMS' Nanomaterials Theory Institute and utilizing facilities and expertise of the Center for Computational Sciences and the new Leadership Scientific Computing Facility at ORNL; a new CNMS Nanofabrication Research Laboratory; and a suite of unique and state-of-the-art instruments to be made reliably available to the national community for imaging, manipulation, and properties measurements on nanoscale materials in controlled environments. The new research facilities will be described together with the planned operation of the user research program, the latter illustrated by the current ``jump start'' user program that utilizes existing ORNL/CNMS facilities.

  7. Superhard nanophase cutter materials for rock drilling applications

    SciTech Connect

    Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

    2000-06-23

    The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

  8. Adverse Reactions of Ferric Carboxymaltose

    PubMed Central

    Patil, Navin; Shenoy, Smita; Bairy, K L; Sarma, Yashdeep

    2014-01-01

    The author reports a 55-year-old female diagnosed of chronic kidney disease grade-5 with associated co-morbidities like type 2 diabetes mellitus, diabetic retinopathy and hypothyroidism was admitted for arteriovenous fistula construction. She was started on ferric carboxymaltose for the treatment of anaemia. She was given a test dose before administering the drug intravenously and she did not develop any reaction. The drug ferric carboxymaltose was then administered over a period of one hour. About half an hour after drug administration, the patient developed breathlessness and myalgia. After half hour of the above episode of breathlessness and myalgia she also developed vomiting (one episode). Patient was managed with oxygen therapy, IV fluids and other drugs like corticosteroids, phenaramine maleate and nalbuphine which controlled the above symptoms. PMID:25478369

  9. Adverse reactions of ferric carboxymaltose.

    PubMed

    Thanusubramanian, Harish; Patil, Navin; Shenoy, Smita; Bairy, K L; Sarma, Yashdeep

    2014-10-01

    The author reports a 55-year-old female diagnosed of chronic kidney disease grade-5 with associated co-morbidities like type 2 diabetes mellitus, diabetic retinopathy and hypothyroidism was admitted for arteriovenous fistula construction. She was started on ferric carboxymaltose for the treatment of anaemia. She was given a test dose before administering the drug intravenously and she did not develop any reaction. The drug ferric carboxymaltose was then administered over a period of one hour. About half an hour after drug administration, the patient developed breathlessness and myalgia. After half hour of the above episode of breathlessness and myalgia she also developed vomiting (one episode). Patient was managed with oxygen therapy, IV fluids and other drugs like corticosteroids, phenaramine maleate and nalbuphine which controlled the above symptoms. PMID:25478369

  10. Hydrogen Reduction of Ferric Ions for Use in Copper Electrowinning

    SciTech Connect

    Karl S. Noah; Debby F. Bruhn; John E. Wey; Robert S. Cherry

    2005-01-01

    The conventional copper electrowinning process uses the water hydrolysis reaction as the anodic source of electrons. However this reaction generates acid mist and requires large quantities of energy. In order to improve energy efficiency and avoid acid mist, an alternative anodic reaction of ferrous ion oxidation has been proposed. This reaction does not involve evolution of acid mist and can be carried out at a lower cell voltage than the conventional process. However, because ferrous ions are converted to ferric ions at the anode in this process, there is a need for reduction of ferric ions to ferrous ions to continue this process. The most promising method for this reduction is the use of hydrogen gas since the resulting byproduct acid can be used elsewhere in the process and, unlike other reductants, hydrogen does not introduce other species that need subsequent removal. Because the hydrogen reduction technology has undergone only preliminary lab scale testing, additional research is needed to evaluate its commercial potential. Two issues for this research are the potentially low mass transfer rate of hydrogen into the electrolyte stream because of its low solubility in water, and whether other gaseous reductants less expensive than hydrogen, such as natural gas or syngas, might work. In this study various reductants were investigated to carry out the reduction of ferric ions to ferrous ions using a simulated electrolyte solution recycled through a trickle bed reactor packed with catalyst. The gases tested as reductants were hydrogen, methane, carbon monoxide, and a 50/50 mixture of H2 and CO. Nitrogen was also tested as an inert control. These gases were tested because they are constituents in either natural gas or syngas. The catalysts tested were palladium and platinum. Two gas flow rates and five electrolyte flow rates were tested. Pure hydrogen was an effective reductant of ferric ion. The rates were similar with both palladium and platinum. The ferric

  11. The role of hydrous ferric oxide precipitation in the fractionation of arsenic, gallium, and indium during the neutralization of acidic hot spring water by river water in the Tama River watershed, Japan

    NASA Astrophysics Data System (ADS)

    Ogawa, Yasumasa; Ishiyama, Daizo; Shikazono, Naotatsu; Iwane, Kenta; Kajiwara, Masahiro; Tsuchiya, Noriyoshi

    2012-06-01

    The Obuki spring is the largest and most acidic of the Tamagawa hot springs (Akita Prefecture, northern Japan), and it discharges ca. 9000 L/min of chloride-rich acidic water (pH 1.2) that contains high concentrations of both As and rare metals such as Ga and In. This paper aims to quantify seasonal variations in the mobility of these elements in the Shibukuro and Tama rivers, which are fed by the thermal waters of the Obuki spring, caused by sorption onto hydrous ferric oxide (HFO). Seasonal observations revealed the following relationships with respect to As removal by HFO: (a) the oxidation of Fe2+ is predominantly controlled by both pH and water temperature, and progresses more quickly in less acidic and warmer conditions; (b) HFO formation was predominantly controlled by pH; and (c) the removal of dissolved arsenate is directly related to the amount of HFO present. Consequently, the oxidation to Fe3+ was slower during periods of cold and lower pH, and the amount of HFO was too small to remove the dissolved arsenate effectively. Consequently, considerable amounts of dissolved arsenate and Fe2+ remained in river water. In contrast, when HFO production from Fe3+ increased, and dissolved arsenate was removed during warmer and less acidic periods, only small amounts of dissolved arsenite and Fe2+ remained in the river water. The geochemical behavior of Ga and In was essentially controlled by pH; however, when HFO production was limited by a pH of less than 3.5, Ga behavior was controlled mainly by the amount of HFO. Gallium tended to be sorbed under more acidic conditions than was In. Due to differences in sorption behavior, Ga, As, and In were fractionated during sedimentation. In the upstream reaches, arsenate and dissolved Ga sorbed onto HFO, and were widely distributed across the watershed. Conversely, dissolved In was removed by HFO downstream. As a result, In is relatively concentrated on the downstream lakebed, unlike As and Ga, and In-rich mineral deposits

  12. Method of treating inflammatory diseases using a radiolabeled ferric hydroxide calloid

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1992-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  13. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5301 Ferric phosphate....

  14. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5304 Ferric pyrophosphate....

  15. Ferric sulfate montmorillonites as Mars soil analogs

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.; Pieters, C. M.; Burns, R. G.

    1993-01-01

    Spectroscopic analyses have shown that Fe(3+)-doped smectites prepared in the laboratory exhibit important similarities to the soils on Mars. Ferrihydrite in these smectites has features in the visible to near-infrared region that resemble the energies and band-strengths of features in reflectance spectra observed for several bright regions on Mars. Ferric - sulfate - montmorillonite samples have been prepared more recently because they are a good compositional match with the surface material on Mars as measured by Viking. Reflectance spectra of montmorillonite doped with ferric sulfate in the interlayer regions include a strong 3 micron band that persists under dry conditions. This is in contrast to spectra of similarly prepared ferric-doped montmorillonites, which exhibit a relatively weaker 3 micron band under comparable dry environmental conditions. Presented here are reflectance spectra of a suite of ferric-sulfate exchanged montmorillonites prepared with variable ferric sulfate concentrations and variable pH conditions.

  16. Hydrolysis of ferric chloride in solution

    SciTech Connect

    Lussiez, G.; Beckstead, L.

    1996-11-01

    The Detox{trademark} process uses concentrated ferric chloride and small amounts of catalysts to oxidize organic compounds. It is under consideration for oxidizing transuranic organic wastes. Although the solution is reused extensively, at some point it will reach the acceptable limit of radioactivity or maximum solubility of the radioisotopes. This solution could be cemented, but the volume would be increased substantially because of the poor compatibility of chlorides and cement. A process has been developed that recovers the chloride ions as HCl and either minimizes the volume of radioactive waste or permits recycling of the radioactive chlorides. The process involves a two-step hydrolysis at atmospheric pressure, or preferably under a slight vacuum, and relatively low temperature, about 200{degrees}C. During the first step of the process, hydrolysis occurs according to the reaction below: FeCl{sub 3 liquid} + H{sub 2}O {r_arrow} FeOCl{sub solid} + 2 HCl{sub gas} During the second step, the hot, solid, iron oxychloride is sprayed with water or placed in contact with steam, and hydrolysis proceeds to the iron oxide according to the following reaction: 2 FeOCl{sub solid} + H{sub 2}O {r_arrow} Fe{sub 2}O{sub 3 solid} + 2 HCl{sub gas}. The iron oxide, which contains radioisotopes, can then be disposed of by cementation or encapsulation. Alternately, these chlorides can be washed off of the solids and can then either be recycled or disposed of in some other way.

  17. Platinum nanophase electro catalysts and composite electrodes for hydrogen production

    NASA Astrophysics Data System (ADS)

    Petrik, L. F.; Godongwana, Z. G.; Iwuoha, E. I.

    Nanophase Pt electro catalysts were prepared by impregnating a Pt salt containing solution upon a high surface area hexagonal mesoporous silica (HMS) matrix, which was then carbonized to varying degree by chemical vapour deposition of liquid petroleum gas (LPG). Thereafter the HMS Si matrix could be removed by chemical etching with NaOH to immediately form a Pt containing carbon analogue or ordered mesoporous carbon (OMC) with a porous structure similar to the parent HMS. Nanoparticles of Pt electro catalysts were thus successfully stabilized without agglomeration on both HMS and upon the porous HMS carbon analogue or OMC, which was graphitic in nature. The catalysts were electro active for the hydrogen evolution reaction and their activity compared favourable with an industry standard. Such nanophase Pt electro catalysts could be incorporated successfully in a composite electrode by sequential deposition, upon a suitable substrate and the catalysts in electrodes so formed proved to be stable and active under high-applied potential in high electrolyte environment for hydrogen production by electrolysis of water. This route to preparing a nanophase Pt OMC catalyst may be applicable to prepare active electro catalysts for polymer electrolyte fuel cells and solid polymer electrolyte electrolyzers.

  18. Nanophase Nickel-Zirconium Alloys for Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Whitacre, jay; Valdez, Thomas

    2008-01-01

    Nanophase nickel-zirconium alloys have been investigated for use as electrically conductive coatings and catalyst supports in fuel cells. Heretofore, noble metals have been used because they resist corrosion in the harsh, acidic fuel cell interior environments. However, the high cost of noble metals has prompted a search for less-costly substitutes. Nickel-zirconium alloys belong to a class of base metal alloys formed from transition elements of widely different d-electron configurations. These alloys generally exhibit unique physical, chemical, and metallurgical properties that can include corrosion resistance. Inasmuch as corrosion is accelerated by free-energy differences between bulk material and grain boundaries, it was conjectured that amorphous (glassy) and nanophase forms of these alloys could offer the desired corrosion resistance. For experiments to test the conjecture, thin alloy films containing various proportions of nickel and zirconium were deposited by magnetron and radiofrequency co-sputtering of nickel and zirconium. The results of x-ray diffraction studies of the deposited films suggested that the films had a nanophase and nearly amorphous character.

  19. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal.

    PubMed

    Yang, Xin; Xu, Guoren; Yu, Huarong; Zhang, Zhao

    2016-07-01

    Ferric activation was novelly used to produce sludge-based adsorbent (SBA) from biological sludge through pyrolysis, and the adsorbents were applied to remove tetracycline from aqueous solution. The pyrolysis temperature and mass ratio (activator/dried sludge) greatly influenced the surface area and pore characteristics of SBA. Ferric activation could promote the porous structure development of adsorbents, and the optimum preparation conditions were pyrolysis temperature 750°C and mass ratio (activator/dried sludge) 0.5. In batch experiments, ferric-activated SBA showed a higher adsorption capacity for tetracycline than non-activated SBA, because the enhanced mesoporous structure favored the diffusion of tetracycline into the pores, the iron oxides and oxygen-containing functional groups in the adsorbents captured tetracycline by surface complexation. The results indicate that ferric activation is an effective approach for preparing adsorbents from biological sludge to remove tetracycline, providing a potential option for waste resource recovery. PMID:27038265

  20. An investigation of carbonaceous materials reducing ferric ions in aqueous solution

    NASA Astrophysics Data System (ADS)

    Cooke, A. V.; Chilton, J. P.; Fray, D. J.

    1988-10-01

    By substituting the ferrous to ferric oxidation for anodic oxygen evolution in an electrowinning cell, it is possible to reduce the cell voltage by about 1 V. However, it is then necessary to reduce the ferric back to ferrous and, depending on the circumstances, acid needs to be cogenerated. Various possible reductants are discussed, and experiments are described on the use of lignite and other carbonaceous materials to reduce the ferric ion. It was found that lignite was able to reduce the ferric ion, in situ in the electrowinning cell, but that the rate of reduction was compatible only with a maximum current density of about 40 Am-2. The efficiency was increased by periodically interrupting the current flow.

  1. New nanophase iron-based catalysts for hydrocracking applications

    SciTech Connect

    Matson, D.W.; Linehan, J.C.; Darab, J.G.; Camaioni, D.M.; Autrey, S.T.; Lui, E.

    1994-11-01

    Development of highly efficient iron-based materials for processes involving carbon-carbon bond cleavage, including petroleum hydrocracking and coal liquefaction, offers the potential for decreasing catalyst costs as well as reducing the need for expensive catalyst recovery and recycling steps. Carbon-carbon bond cleavage catalysts produced in situ at reaction conditions from nanocrystalline hydrated iron oxides, show high activity and selectivity in model compound studies. Two highly active catalyst precursors, ferric oxyhydroxysulfate (OHS) and 6-line ferrihydrite, can be produced by a flow-through hydrothermal powder synthesis method, the Rapid Thermal Decomposition of precursors in Solution (RTDS) process. Model compound studies indicate that both catalyst precursors are active at a 400 C reaction temperature, but that there are significant differences in their catalytic characteristics. The activity of 6-line ferrihydrite is highly dependent on the particle (aggregate) size whereas the activity of the OHS is essentially independent of particle size. These differences are attributed to variations in the crystallite aggregation and particle surface characteristics of the two catalyst precursor materials. Catalytic activity is retained to lower reaction temperatures in tests using OHS than in similar tests using 6-line ferrihydrite.

  2. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  3. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for its intended use. (c) In...

  4. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  5. 21 CFR 184.1298 - Ferric citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Reg. No. 2338-05-8) is prepared from reaction of citric acid with ferric hydroxide. It is a compound of indefinite ratio of citric acid and iron. (b) The ingredient must be of a purity suitable for...

  6. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  7. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  8. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  9. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  10. 21 CFR 73.2299 - Ferric ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2299 Ferric ferrocyanide. (a) Identity and... coloring externally applied cosmetics, including cosmetics applied to the area of the eye, in...

  11. Ferric Iron Reduction by Acidophilic Heterotrophic Bacteria

    PubMed Central

    Johnson, D. Barrie; McGinness, Stephen

    1991-01-01

    Fifty mesophilic and five moderately thermophilic strains of acidophilic heterotrophic bacteria were tested for the ability to reduce ferric iron in liquid and solid media under aerobic conditions; about 40% of the mesophiles (but none of the moderate thermophiles) displayed at least some capacity to reduce iron. Both rates and extents of ferric iron reduction were highly strain dependent. No acidophilic heterotroph reduced nitrate or sulfate, and (limited) reduction of manganese(IV) was noted in only one strain (Acidiphilium facilis), an acidophile which did not reduce iron. Insoluble forms of ferric iron, both amorphous and crystalline, were reduced, as well as soluble iron. There was evidence that, in at least some acidophilic heterotrophs, iron reduction was enzymically mediated and that ferric iron could act as a terminal electron acceptor. In anaerobically incubated cultures, bacterial biomass increased with increasing concentrations of ferric but not ferrous iron. Mixed cultures of Thiobacillus ferrooxidans or Leptospirillum ferrooxidans and an acidophilic heterotroph (SJH) produced sequences of iron cycling in ferrous iron-glucose media. PMID:16348395

  12. Exposure characteristics of ferric oxide nanoparticles released during activities for manufacturing ferric oxide nanomaterials.

    PubMed

    Xing, Mingluan; Zhang, Yuanbao; Zou, Hua; Quan, Changjian; Chang, Bing; Tang, Shichuan; Zhang, Meibian

    2015-02-01

    The exposure characteristics of Fe2O3 nanoparticles (NPs) released in a factory were investigated, as exposure data on this type of NP is absent. The nature of the particles was identified in terms of their concentrations [i.e. number concentration (NC(20-1000 nm)), mass concentration (MC(100-1000 nm)), surface area concentration (SAC(10-1000 nm))], size distribution, morphology and elemental composition. The relationships between different exposure metrics were determined through analyses of exposure ranking (ER), concentration ratios (CR), correlation coefficients and shapes of the particle concentration curves. Work activities such as powder screening, material feeding and packaging generated higher levels of NPs as compared to those of background particles (p < 0.01). The airborne Fe2O3 NPs exhibited a unimodal size distribution and a spindle-like morphology and consisted predominantly of the elements O and Fe. Periodic and activity-related characteristics were noticed in the temporal variations in NC(20-1000 nm) and SAC(10-1000 nm). The modal size of the Fe2O3 NPs remained relatively constant (ranging from 10 to 15 nm) during the working periods. The ER, CR values and the shapes of NC(20-1000 nm) and SAC(10-1000 nm) curves were similar; however, these were significantly different from those for MC(100-1000 nm). There was a high correlation between NC(20-1000 nm) and SAC(10-1000 nm), and relatively lower correlations between the two and MC(100-1000 nm). These findings suggest that the work activities during the manufacturing processes generated high levels of primary Fe2O3 NPs. The particle concentrations exhibited periodicity and were activity dependent. The number and SACs were found to be much more relevant metrics for characterizing NPs than was the mass concentration. PMID:25703513

  13. Nickel hydroxide and other nanophase cathode materials for rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Reisner, David E.; Salkind, Alvin J.; Strutt, Peter R.; Xiao, T. Danny

    The staff of US Nanocorp, Inc. are developing unique nanostructured materials for a wide range of applications in the areas of energy storage (batteries and ultracapacitors) and energy conversion (fuel cells and thermoelectric) devices. Many of the preparations of these materials exploit a wet synthesis process (patent pending) that is scaleable to large volume manufacturing and anticipated to be low in cost. Specifically, both the β-form of nickel hydroxide and the hollandite form of manganese dioxide have been synthesized. The hexagonal Ni(OH) 2 is anticipated to significantly boost energy densities in nickel-alkaline batteries, including nickel/cadmium, nickel/metal hydride and nickel/zinc. The nanophase MnO 2 microstructure exhibits an unusual tunnelled tubular geometry within a 'bird's nest' superstructure, and is expected to be of interest as an intercalation cathode material in lithium-ion systems as well as a catalyst for fuel cells. Characterization of these materials has been by the techniques of high resolution SEM and TEM, as well as XRD. Both Hg porosimetry and BET surface measurements for conventional and spherical nickel hydroxides are summarized. Pore distribution and electrochemical activity for the nanophase materials will be examined in the future.

  14. NMR study of cluster-assembled nanophase copper

    SciTech Connect

    Suits, B.H.; Meng, M. . Dept. of Physics); Siegel, R.W.; Liao, Y.X. )

    1992-12-01

    [sup 63]Cu and [sup 65]Cu NMR spectra from cluster-assembled nanophase copper with an average grain size between 5 and 10mn show a broadened peak, at the normal Knight-shifted frequency for copper meta which arises from only the central 1/2 to -1/2 transition. A very broad background is observed on either side of that peak. Some samples exhibit a second broad peak at a position normally associated with non-metallic copper. Pulsed NMR measurements of the central peak show that virtually all the copper signals are significantly broadened and have a spin-spin relaxation time longer than larger grained copper samples. Line shape measurements, using spin echoes, as a function of delay between rf excitation and measurement show there are a number of copper sites with longer relaxation times which have a significantly larger broadening. Those sites are tentatively identified as being at or near a grain boundary or free surface. A small orientation effect is observed indicating an anisotropy within the samples. An isochronal anneal of one sample showed significant, but not complete, line narrowing after an anneal at 450C consistent with other nanophase metals which show grain growth above 40--50% of the melting temperature.

  15. NMR study of cluster-assembled nanophase copper

    SciTech Connect

    Suits, B.H.; Meng, M.; Siegel, R.W.; Liao, Y.X.

    1992-12-01

    {sup 63}Cu and {sup 65}Cu NMR spectra from cluster-assembled nanophase copper with an average grain size between 5 and 10mn show a broadened peak, at the normal Knight-shifted frequency for copper meta which arises from only the central 1/2 to -1/2 transition. A very broad background is observed on either side of that peak. Some samples exhibit a second broad peak at a position normally associated with non-metallic copper. Pulsed NMR measurements of the central peak show that virtually all the copper signals are significantly broadened and have a spin-spin relaxation time longer than larger grained copper samples. Line shape measurements, using spin echoes, as a function of delay between rf excitation and measurement show there are a number of copper sites with longer relaxation times which have a significantly larger broadening. Those sites are tentatively identified as being at or near a grain boundary or free surface. A small orientation effect is observed indicating an anisotropy within the samples. An isochronal anneal of one sample showed significant, but not complete, line narrowing after an anneal at 450C consistent with other nanophase metals which show grain growth above 40--50% of the melting temperature.

  16. Wetting of nanophases: Nanobubbles, nanodroplets and micropancakes on hydrophobic surfaces.

    PubMed

    An, Hongjie; Liu, Guangming; Craig, Vincent S J

    2015-08-01

    The observation by Atomic Force Microscopy of a range of nanophases on hydrophobic surfaces poses some challenging questions, not only related to the stability of these objects but also regarding their wetting properties. Spherical capped nanobubbles are observed to exhibit contact angles that far exceed the macroscopic contact angle measured for the same materials, whereas nanodroplets exhibit contact angles that are much the same as the macroscopic contact angle. Micropancakes are reported to consist of gas, in which case their wetting properties are mysterious. They should only be stable when the van der Waals forces act to thicken the film whereas for a gas, the van der Waals forces will always act to thin the film. Here we examine the available evidence and contribute some additional experiments in order to review our understanding of the wetting properties of these nanophases. We demonstrate that if in fact micropancakes consist of a contaminant their wetting properties can be explained, though the very high contact angles of nanobubbles remain unexplained. PMID:25128452

  17. Ferric chloride graphite intercalation compounds prepared from graphite fluoride

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh

    1994-01-01

    The reaction between graphite fluoride and ferric chloride was observed in the temperature range of 300 to 400 C. The graphite fluorides used for this reaction have an sp3 electronic structure and are electrical insulators. They can be made by fluorinating either carbon fibers or powder having various degrees of graphitization. Reaction is fast and spontaneous and can occur in the presence of air. The ferric chloride does not have to be predried. The products have an sp2 electronic structure and are electrical conductors. They contain first stage FeCl3 intercalated graphite. Some of the products contain FeCl2*2H2O, others contain FeF3 in concentrations that depend on the intercalation condition. The graphite intercalated compounds (GIC) deintercalated slowly in air at room temperature, but deintercalated quickly and completely at 370 C. Deintercalation is accompanied by the disappearing of iron halides and the formation of rust (hematite) distributed unevenly on the fiber surface. When heated to 400 C in pure N2 (99.99 vol %), this new GIC deintercalates without losing its molecular structure. However, when the compounds are heated to 800 C in quartz tube, they lost most of its halogen atoms and formed iron oxides (other than hematite), distributed evenly in or on the fiber. This iron-oxide-covered fiber may be useful in making carbon-fiber/ceramic-matrix composites with strong bonding at the fiber-ceramic interface.

  18. In vivo NMR study of yeast fermentative metabolism in the presence of ferric irons.

    PubMed

    Ricci, Maso; Martini, Silvia; Bonechi, Claudia; Braconi, Daniela; Santucci, Annalisa; Rossi, Claudio

    2011-03-01

    Mathematical modelling analysis of experimental data, obtained with in vivo NMR spectroscopy and 13C-labelled substrates, allowed us to describe how the fermentative metabolism in Saccharomyces cerevisiae, taken as eukaryotic cell model, is influenced by stress factors. Experiments on cellular cultures subject to increasing concentrations of ferric ions were conducted in order to study the effect of oxidative stress on the dynamics of the fermentative process. The developed mathematical model was able to simulate the cellular activity, the metabolic yield and the main metabolic fluxes occurring during fermentation and to describe how these are modulated by the presence of ferric ions. PMID:21451251

  19. Iron metabolism in aerobes: managing ferric iron hydrolysis and ferrous iron autoxidation

    PubMed Central

    Kosman, Daniel J.

    2012-01-01

    Aerobes and anaerobes alike express a plethora of essential iron enzymes; in the resting state, the iron atom(s) in these proteins are in the ferrous state. For aerobes, ferric iron is the predominant environmental valence form which, given ferric iron’s aqueous chemistry, occurs as ‘rust’, insoluble, bio-inert polymeric ferric oxide that results from the hydrolysis of [Fe(H2O)6]3+. Mobilizing this iron requires bio-ferrireduction which in turn requires managing the rapid autoxidation of the resulting FeII which occurs at pH > 6. This review examines the aqueous redox chemistry of iron and the mechanisms evolved in aerobes to suppress the ‘rusting out’ of FeIII and the ROS-generating autoxidation of FeII so as to make this metal ion available as the most ubiquitous prosthetic group in metallobiology. PMID:23264695

  20. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric chloride. 184.1297 Section 184.1297 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  1. 21 CFR 184.1297 - Ferric chloride.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric chloride. 184.1297 Section 184.1297 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS §...

  2. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  3. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  4. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  5. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  6. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  7. 21 CFR 582.5304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric pyrophosphate. 582.5304 Section 582.5304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  8. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  9. 21 CFR 582.5301 - Ferric phosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or...

  10. 21 CFR 184.1304 - Ferric pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... meets the specifications of the Food Chemicals Codex, 3d Ed. (1981), p. 120, which is incorporated by... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric pyrophosphate. 184.1304 Section 184.1304 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED)...

  11. Biological regeneration of ferric (Fe3+) solution during desulphurisation of gaseous streams: effect of nutrients and support material.

    PubMed

    Mulopo, Jean; Schaefer, L

    2015-01-01

    This paper evaluates the biological regeneration of ferric Fe3+ solution during desulphurisation of gaseous streams. Hydrogen sulphide (H2S) is absorbed into aqueous ferric sulphate solution and oxidised to elemental sulphur, while ferric ions Fe3+ are reduced to ferrous ions Fe2+. During the industrial regeneration of Fe3+, nutrients and trace minerals usually provided in a laboratory setup are not present and this depletion of nutrients may have a negative impact on the bacteria responsible for ferrous iron oxidation and may probably affect the oxidation rate. In this study, the effect of nutrients and trace minerals on ferrous iron oxidation have been investigated and the results showed that the presence of nutrients and trace minerals affects the efficiency of bacterial Fe2+oxidation. The scanning electron microscopy analysis of the geotextile support material was also conducted and the results showed that the iron precipitate deposits appear to play a direct role on the bacterial biofilm formation. PMID:26038932

  12. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  13. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  14. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  15. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  16. 40 CFR 415.380 - Applicability; description of the ferric chloride production subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferric chloride production subcategory. 415.380 Section 415.380 Protection of Environment ENVIRONMENTAL... SOURCE CATEGORY Ferric Chloride Production Subcategory § 415.380 Applicability; description of the ferric... ferric chloride from pickle liquor....

  17. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Ferric ammonium citrate. 73.1025 Section 73.1025 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The color additive ferric ammonium...

  18. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Dietary Supplements 1 § 582.5306 Ferric sodium pyrophosphate. (a) Product. Ferric sodium pyrophosphate....

  19. High Strain Rate Response of Sandwich Composites with Nanophased Cores

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Uddin, Mohammed F.; Rangari, Vijaya K.; Saha, Mrinal C.; Zainuddin, Shaik; Jeelani, Shaik

    2005-05-01

    Polyurethane foam materials have been used as core materials in a sandwich construction with S2-Glass/SC-15 facings. The foam material has been manufactured from liquid polymer precursors of polyurethane. The precursors are made of two components; part-A (diphenylmethane diisocyanate) and part-B (polyol). In one set of experiments, part-A was mixed with part-B to manufacture the foam. In another set, TiO2 nanoparticles have been dispersed in part-A through ultrasonic cavitation technique. The loading of nanoparticles was 3% by weight of the total polymer precursor. The TiO2 nanoparticles were spherical in shape, and were about 29 nm in diameter. Sonic cavitation was carried out with a vibrasound liquid processor at 20 kHz frequency with a power intensity of about 100 kW/m2. The two categories of foams manufactured in this manner were termed as neat and nanophased. Sandwich composites were then fabricated using these two categories of core materials using a co-injection resin transfer molding (CIRTM) technique. Test samples extracted from the panel were subjected to quasi-static as well as high strain rate loadings. Rate of loading varied from 0.002 s-1 to around 1300 s-1. It has been observed that infusion of nanoparticles had a direct correlation with the cell geometry. The cell dimensions increased by about 46% with particle infusion suggesting that nanoparticles might have worked as catalysts during the foaming process. Correspondingly, enhancement in thermal properties was also noticed especially in the TGA experiments. There was also a significant improvement in mechanical properties due to nanoparticle infusion. Average increase in sandwich strength and energy absorption with nanophased cores was between 40 60% over their neat counterparts. Details of manufacturing and analyses of thermal and mechanical tests are presented in this paper.

  20. Bioaccumulation of cadmium bound to ferric hydroxide and particulate organic matter by the bivalve M. meretrix.

    PubMed

    Wu, Xing; Jia, Yongfeng; Zhu, Huijie

    2012-06-01

    Ferric hydroxide and particulate organic matter are important pools of trace metals in sediments and control their accumulation by benthic animals. We investigated bioaccumulation of cadmium in bivalve Meretrix meretrix by using a simplified system of laboratory synthesized iron oxides and commercially obtained humic acids to represent the inorganic and organic matrix found in nature. The results showed that bioaccumulation characteristics were distinctly different for these two substrates. Bioaccumulation from ferric hydroxide was not observed at 70 and 140 mg/kg, while the clams started to absorb Cd at 140 mg/kg from organic matter and the bioaccumulation rate was faster than that from ferric hydroxide. Within 28 d, accumulation of Cd from organic matter appeared to reach a steady state after rising to a certain level, while absorption from ferric hydroxide appeared to follow a linear profile. The findings have implications about the assimilation of trace metals from sediments by benthic animals. PMID:22445921

  1. Ferric chloride leach-electrolysis process for production of lead

    SciTech Connect

    Sandberg, R.G.; Wong, M.M.

    1980-01-01

    The U.S. Department of the Interior, Bureau of Mines, under a cost-sharing, cooperative research agreement with lead producers, is studying a process to eliminate sulfur oxide generation and to minimize lead emission in the production of lead. The new process consists of leaching lead sulfide concentrate with a ferric chloride-sodium chloride solution to produce lead chloride, and fused-salt electrolysis of lead chloride to produce lead metal and chlorine. The chlorine is used to regenerate ferric chloride in the leach solution. The study is being conducted in a process investigation unit which treats 750 lb of concentrate a day. This paper discusses the results of operation of the process investigation unit, data on lead monitoring, and the precautions employed to control lead levels in the workplace atmosphere. The monitoring data for the initial phase of the investigation show lead levels well within OSHA permissible exposure limits. Continued development is necessary before the process can be considered for implementation.

  2. Modeling ferrous ferric iron chemistry with application to martian surface geochemistry

    NASA Astrophysics Data System (ADS)

    Marion, Giles M.; Kargel, Jeffrey S.; Catling, David C.

    2008-01-01

    The Mars Global Surveyor, Mars Exploration Rover, and Mars Express missions have stimulated considerable thinking about the surficial geochemical evolution of Mars. Among the major recent mission findings are the presence of jarosite (a ferric sulfate salt), which requires formation from an acid-sulfate brine, and the occurrence of hematite and goethite on Mars. Recent ferric iron models have largely focused on 25 °C, which is a major limitation for models exploring the geochemical history of cold bodies such as Mars. Until recently, our work on low-temperature iron-bearing brines involved ferrous but not ferric iron, also obviously a limitation. The objectives of this work were to (1) add ferric iron chemistry to an existing ferrous iron model (FREZCHEM), (2) extend this ferrous/ferric iron geochemical model to lower temperatures (<0 °C), and (3) use the reformulated model to explore ferrous/ferric iron chemistries on Mars. The FREZCHEM model is an equilibrium chemical thermodynamic model parameterized for concentrated electrolyte solutions using the Pitzer approach for the temperature range from <-70 to 25 °C and the pressure range from 1 to 1000 bars. Ferric chloride and sulfate mineral parameterizations were based, in part, on experimental data. Ferric oxide/hydroxide mineral parameterizations were based exclusively on Gibbs free energy and enthalpy data. New iron parameterizations added 23 new ferrous/ferric minerals to the model for this Na-K-Mg-Ca-Fe(II)-Fe(III)-H-Cl-SO 4-NO 3-OH-HCO 3-CO 3-CO 2-O 2-CH 4-H 2O system. The model was used to develop paragenetic sequences for Rio Tinto waters on Earth and a hypothetical Martian brine derived from acid weathering of basaltic minerals. In general, model simulations were in agreement with field evidence on Earth and Mars in predicting precipitation of stable iron minerals such as jarosites, goethite, and hematite. In addition, paragenetic simulations for Mars suggest that other iron minerals such as

  3. Arsenic removal from acidic solutions with biogenic ferric precipitates.

    PubMed

    Ahoranta, Sarita H; Kokko, Marika E; Papirio, Stefano; Özkaya, Bestamin; Puhakka, Jaakko A

    2016-04-01

    Treatment of acidic solution containing 5g/L of Fe(II) and 10mg/L of As(III) was studied in a system consisting of a biological fluidized-bed reactor (FBR) for iron oxidation, and a gravity settler for iron precipitation and separation of the ferric precipitates. At pH 3.0 and FBR retention time of 5.7h, 96-98% of the added Fe(II) precipitated (99.1% of which was jarosite). The highest iron oxidation and precipitation rates were 1070 and 28mg/L/h, respectively, and were achieved at pH 3.0. Subsequently, the effect of pH on arsenic removal through sorption and/or co-precipitation was examined by gradually decreasing solution pH from 3.0 to 1.6 (feed pH). At pH 3.0, 2.4 and 1.6, the highest arsenic removal efficiencies obtained were 99.5%, 80.1% and 7.1%, respectively. As the system had ferric precipitates in excess, decreased arsenic removal was likely due to reduced co-precipitation at pH<2.4. As(III) was partially oxidized to As(V) in the system. In shake flask experiments, As(V) sorbed onto jarosite better than As(III). Moreover, the sorption capacity of biogenic jarosite was significantly higher than that of synthetic jarosite. The developed bioprocess simultaneously and efficiently removes iron and arsenic from acidic solutions, indicating potential for mining wastewater treatment. PMID:26705889

  4. Understanding Arsenate Reaction Kinetics with Ferric Hydroxides

    PubMed Central

    Farrell, James; Chaudhary, Binod K.

    2015-01-01

    Understanding arsenic reactions with ferric hydroxides is important in understanding arsenic transport in the environment and in designing systems for removing arsenic from potable water. Many experimental studies have shown that the kinetics of arsenic adsorption on ferric hydroxides is biphasic, where a fraction of the arsenic adsorption occurs on a time scale of seconds while full equilibrium may require weeks to attain. This research employed density functional theory modeling in order to understand the mechanisms contributing to biphasic arsenic adsorption kinetics. The reaction energies and activation barriers for three modes of arsenate adsorption to ferric hydroxides were calculated. Gibbs free energies of reaction depended on the net charge of the complexes, which is a function of the system pH value. Physical adsorption of arsenate to ferric hydroxide proceeded with no activation barrier, with Gibbs free energies of reaction ranging from −21 to −58 kJ/mol. The highest Gibbs free energies of reaction for physical adsorption resulted from negative charge assisted hydrogen bonding between H atoms on the ferric hydroxide and O atoms in arsenate. The conversion of physically adsorbed arsenate into monodentate surface complexes had Gibbs free energies of activation ranging from 62 to 73 kJ/mol, and Gibbs free energies of reaction ranging from −23 to −38 kJ/mol. The conversion of monodentate surface complexes to bidentate, binuclear complexes had Gibbs free energies of activation ranging from 79 to 112 kJ/mol, and Gibbs free energies of reaction ranging from −11 to −55 kJ/mol. For release of arsenate from uncharged bidentate complexes, energies of activation as high as 167 kJ/mol were encountered. Increasingly negative charges on the complexes lowered the activation barriers for desorption of arsenate, and in complexes with −2 charges, the highest activation barrier was 65 kJ/mol. This study shows that the slow kinetics associated with arsenic

  5. Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo.

    PubMed

    Webster, Thomas J; Ejiofor, Jeremiah U

    2004-08-01

    Previous studies have demonstrated increased functions of osteoblasts (bone-forming cells) on nanophase compared to conventional ceramics (specifically, alumina, titania, and hydroxyapatite), polymers (such as poly lactic-glycolic acid and polyurethane), carbon nanofibers/nanotubes, and composites thereof. Nanophase materials are unique materials that simulate dimensions of constituent components of bone since they possess particle or grain sizes less than 100 nm. However, to date, interactions of osteoblasts on nanophase compared to conventional metals remain to be elucidated. For this reason, the objective of the present in vitro study was to synthesize, characterize, and evaluate osteoblast adhesion on nanophase metals (specifically, Ti, Ti6Al4V, and CoCrMo alloys). Such metals in conventional form are widely used in orthopedic applications. Results of this study provided the first evidence of increased osteoblast adhesion on nanophase compared to conventional metals. Interestingly, osteoblast adhesion occurred preferentially at surface particle boundaries for both nanophase and conventional metals. Since more particle boundaries are present on the surface of nanophase compared to conventional metals, this may be an explanation for the measured increased osteoblast adhesion. Lastly, material characterization studies revealed that nanometal surfaces possessed similar chemistry and only altered in degree of nanometer surface roughness when compared to their respective conventional counterparts. Because osteoblast adhesion is a necessary prerequisite for subsequent functions (such as deposition of calcium-containing mineral), the present study suggests that nanophase metals should be further considered for orthopedic implant applications. PMID:15120519

  6. The Formation of High-Coercivity, Oriented, Nanophase Cobalt Precipitates in Al

    SciTech Connect

    Honda, S.; Modine, F.A.; Haynes, T.E.; Meldrum, A.; Budai, J.D.; SOng, K.J.; Thompson, J.R.; Boatner, L.A.

    1999-11-29

    Ion-implantation and thermal-processing methods have been used to form nanophase magnetic precipitates of metallic cobalt that are embedded in the near-surface region of single crystals of Al{sub 2}O{sub 3}. The Co precipitates are isolated, single-crystal particles that are crystallographically oriented with respect to the host Al{sub 2}O{sub 3} lattice. Embedded nanophase Co precipitates were formed by the implantation of Co+ at an energy of 140 keV and a dose of 8 x l0{sup 16} ions/cm{sup 2} followed by annealing in a reducing atmosphere. The implanted/annealed Co depth profile, particle size distributions and shapes, and the orientational relationship between the nanophase precipitates and the host crystal lattice were determined using RBS/channeling, transmission electron microscopy, and x-ray diffraction.

  7. Ferric iron budget of Kaapvaal cratonic mantle peridotite

    NASA Astrophysics Data System (ADS)

    Woodland, A.

    2012-04-01

    Oxidation fugacity plays an important role in many geochemical processes, such as partial melting and melt-rock interaction. How mantle peridotite responds during such processes is dependent on the amount of Fe2O3 present, since it occurs in much smaller quantities than Fe2+ and affects buffering capacity. This is particularly the case since redox reactions have been directly implicated in the rejuvenation and eventual breakup of cratons (e.g. Foley 2008, 2011). In addition, oxygen fugacity also influences the incorporation of OH in nominally anhydrous minerals, which can affect the mechanical integrity of cratonic blocks (Peslier et al. 2010). These issues are important for understanding the evolution of the upper mantle beneath the Kaapvaal craton. Canil and coworkers (1994, 1996) reported bulk ferric iron contents for 11 peridotites (10 garnet-bearing and 1 spinel-bearing) from the Kaapvaal. The purpose of this study is to build on their pioneering work to better assess the ferric iron budget of Kaapvaal cratonic mantle and to improve our understanding of how ferric iron is distributed within the peridotitic assemblage. Our data set includes more than 30 additional samples, predominantly garnet peridoites, from 7 localities in South Africa and Lesotho. Bulk Fe2O3 contents were determined by combining measured Fe3+ contents of individual minerals (by Mössbauer spectroscopy) with their respective modal proportion in each sample. Fe3+ contents of garnet and clinopyroxene reported in Woodland & Koch (2003), Lazarov et al. (2009) and Woodland (2009) were combined with new data for orthopyroxene (opx) and modal mineralogy to make this assessment. Opx has Fe3+/Fetot of 0.04-0.1 and Fe3+ contents are comparable between Opx and coexisting Cpx. Calculated whole rock Fe2O3 contents range from 0.02 to 0.29 wt % with contents systematically decreasing with increasing degrees of depletion (as indicated by increasing MgO and decreasing Al2O3 content). For a given MgO content

  8. Rapid assay for microbially reducible ferric iron in aquatic sediments.

    PubMed

    Lovley, D R; Phillips, E J

    1987-07-01

    The availability of ferric iron for microbial reduction as directly determined by the activity of iron-reducing organisms was compared with its availability as determined by a newly developed chemical assay for microbially reducible iron. The chemical assay was based on the reduction of poorly crystalline ferric iron by hydroxylamine under acidic conditions. There was a strong correlation between the extent to which hydroxylamine could reduce various synthetic ferric iron forms and the susceptibility of the iron to microbial reduction in an enrichment culture of iron-reducing organisms. When sediments that contained hydroxylamine-reducible ferric iron were incubated under anaerobic conditions, ferrous iron accumulated as the concentration of hydroxylamine-reducible ferric iron declined over time. Ferrous iron production stopped as soon as the hydroxylamine-reducible ferric iron was depleted. In anaerobic incubations of reduced sediments that did not contain hydroxylamine-reducible ferric iron, there was no microbial iron reduction, even though the sediments contained high concentrations of oxalate-extractable ferric iron. A correspondence between the presence of hydroxylamine-reducible ferric iron and the extent of ferric iron reduction in anaerobic incubations was observed in sediments from an aquifer and in fresh- and brackish-water sediments from the Potomac River estuary. The assay is a significant improvement over previously described procedures for the determination of hydroxylamine-reducible ferric iron because it provides a correction for the high concentrations of solid ferrous iron which may also be extracted from sediments with acid. This is a rapid, simple technique to determine whether ferric iron is available for microbial reduction. PMID:16347384

  9. Structural, morphological, magnetic and dielectric characterization of nano-phased antimony doped manganese zinc ferrites

    NASA Astrophysics Data System (ADS)

    Sridhar, Ch. S. L. N.; Lakshmi, Ch. S.; Govindraj, G.; Bangarraju, S.; Satyanarayana, L.; Potukuchi, D. M.

    2016-05-01

    Nano-phased doped Mn-Zn ferrites, viz., Mn0.5-x/2Zn0.5-x/2SbXFe2O4 for x=0 to 0.3 (in steps of 0.05) prepared by hydrothermal method are characterized by X-ray diffraction, Infrared and scanning electron microscopy. XRD and SEM infer the growth of nano-crystalline cubic and hematite (α-Fe2O3) phase structures. IR reveals the ferrite phase abundance and metal ion replacement with dopant. Decreasing trend of lattice constant with dopant reflects the preferential replacement of Fe3+ions by Sb5+ion. Doping is found to cause for the decrease (i.e., 46-14 nm) of grain size. An overall trend of decreasing saturation magnetization is observed with doping. Low magnetization is attributed to the diamagnetic nature of dopant, abundance of hematite (α-Fe2O3) phase, non-stoichiometry and low temperature (800 °C) sintering conditions. Increasing Yafet-Kittel angle reflects surface spin canting to pronounce lower Ms. Lower coercivity is observed for x≤0.1, while a large Hc results for higher concentrations. High ac resistivity (~106 ohm-cm) and low dielectric loss factor (tan δ~10-2-10-3) are witnessed. Resistivity is explained on the base of a transformation in the Metal Cation-to-Oxide anion bond configuration and blockade of conductivity path. Retarded hopping (between adjacent B-sites) of carriers across the grain boundaries is addressed. Relatively higher resistivity and low dielectric loss in Sbdoped Mn-Zn ferrite systems pronounce their utility in high frequency applications.

  10. Arsenic sequestration by ferric iron plaque on cattail roots.

    PubMed

    Blute, Nicole Keon; Brabander, Daniel J; Hemond, Harold F; Sutton, Stephen R; Newville, Matthew G; Rivers, Mark L

    2004-11-15

    Typha latifolia (cattail) sequesters arsenic within predominantlyferric iron root coatings, thus decreasing mobility of this toxic element in wetland sediments. Element-specific XRF microtomographic imaging illustrated a high spatial correlation between iron and arsenic in root plaques, with little arsenic in the interior of the roots. XANES analyses demonstrated that the plaque was predominantly ferric iron and contained approximately 20% As(III) and 80% As(V), which is significant because the two oxidation states form species that differ in toxicity and mobility. For the first time, spatial distribution maps of As oxidation states were developed, indicating that As(III) and As(V) are both fairly heterogeneous throughoutthe plaque. Chemical extractions showed that As was strongly adsorbed in the plaque rather than coprecipitated. Iron and arsenic concentrations ranged from 0.03 to 0.8 g Fe g(-1) wet plaque and 30 to 1200 microg As g(-1) wet plaque, consistent with a mechanism of As adsorption onto Fe(III) oxyhydroxide plaque. Because this mechanism decreases the concentrations of both As(III) and As(V) in groundwater, we propose that disruption of vegetation could increase the concentrations of mobile arsenic. PMID:15573609

  11. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  12. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  13. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride solution. A containment system (cargo tank...

  14. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  15. 46 CFR 151.50-75 - Ferric chloride solution.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ferric chloride solution. 151.50-75 Section 151.50-75 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-75 Ferric chloride...

  16. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients and/or Dietary Supplements 1 § 582.5306 Ferric...

  17. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  18. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  19. 21 CFR 73.1025 - Ferric ammonium citrate.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1025 Ferric ammonium citrate. (a) Identity. The... green forms, are deliquescent in air, and are reducible by light. (b) Specifications. Ferric ammonium... from certification. Certification of this color additive is not necessary for the protection of...

  20. Energy transduction by anaerobic ferric iron respiration in Thiobacillus ferrooxidans

    SciTech Connect

    Pronk, J.T.; Liem, K.; Bos, P.; Kuenen, J.G. )

    1991-07-01

    Formate-grown cells of the obligately chemolithoautotrophic acidophile Thiobacillus ferrooxidans were capable of formate- and elemental sulfur-dependent reduction of ferric iron under anaerovic conditions. Under aerobic conditions, both oxygen and ferric iron could be simultaneously used as electron acceptors. To investigate whether anaerobic ferric iron respiration by T. ferrooxidans is an energy-transducing process, uptake of amino acids was studied. Glycine uptake by starved cells did not occur in the absence of an electron donor, neither under aerobic conditions nor under anaerobic conditions. Uptake of glycine could be driven by formate- and ferrous iron-dependent oxygen uptake. Under anaerobic conditions, ferric iron respiration with the electron donors formate and elemental sulfur could energize glycine uptake. Glycine uptake was inhibited by the uncoupler 2,4-dinitrophenol. The results indicate that anaerobic ferric iron respiration can contribute to the energy budget of T. ferrooxidans.

  1. Carbonated ferric green rust as a new material for efficient phosphate removal.

    PubMed

    Barthélémy, K; Naille, S; Despas, C; Ruby, C; Mallet, M

    2012-10-15

    Phosphate uptake from aqueous solutions by a recently discovered ferric oxyhydroxide is investigated. Carbonated ferric green rust {GR(CO(3)(2-))*} is prepared by varying two synthesis parameters, which are (1) the aging period after the ferrous-ferric green rust {GR(CO(3)(2-))} synthesis step and (2) the rate of the hydrogen peroxide addition to oxidize GR(CO(3)(2-)) into GR(CO(3)(2-))*. These two parameters permit the control of the size, morphology and cristallinity of the synthesized particles. As prepared GR* samples are then evaluated, in batch experiments, as possible low-cost efficient phosphate removal materials. Firstly, kinetic experiments reveal that a fast sorption step initially occurs and equilibrium is reached at ~500 min. The adsorption kinetics data at pH=7 can be adequately fitted to a pseudo-second order model. Secondly, the Freundlich model provides the best correlation and effectively describes phosphate sorption isotherms for all GR(CO(3)(2-))* samples synthesized. Finally, the phosphate adsorption capacity decreases when pH increases. The highest adsorption capacity is 64.8 mg g(-1) at pH=4 and corresponds to the GR(CO(3)(2-))* sample displaying the smallest and least crystallized particles thus reflecting the importance of the synthesis conditions. Overall, all sorption capacities are higher than the main iron oxide minerals, making GR(CO(3)(2-))* a potentially attractive phosphate adsorbent. PMID:22818797

  2. Nanophase hydroxyapatite coatings for dental and orthopedic applications

    NASA Astrophysics Data System (ADS)

    Sato, Michiko

    In order to improve dental and orthopedic implant performance, the objective of this study was to synthesize nanocrystalline hydroxyapatite (HA) powders to coat metals (specifically, titanium and tantalum). Precipitated HA powders were either sintered in order to produce UltraCaP HA (or microcrystalline size HA) or were treated hydrothermally to produce nanocrystalline HA. Some of the UltraCaP and nanocrystalline HA powders were doped with yttrium (Y) since previous in vitro studies demonstrated that Y-doped HA in bulk improved osteoblast (or bone-forming cell) function over undoped HA. The nanocrystalline HA powders were also mixed with nanophase titania powders because previous studies demonstrated that titania/HA composite coatings increased coating adhesive strength and HA nucleation. These powders were then deposited onto titanium by a novel room-temperature process, called IonTiteT(TM). The results demonstrated that the chemical properties and crystallite size of the original HA powders were maintained in the coatings. More importantly, in vitro studies showed increased osteoblast (bone-forming cell) adhesion on the single phase nanocrystalline HA and nano-titania/HA coatings compared to traditionally used plasma-sprayed HA coatings and uncoated metals. Results further demonstrated greater amounts of calcium deposition by osteoblasts cultured on nanocrystalline HA coatings compared to UltraCaP coatings and conventionally used plasma-sprayed HA coatings. To elucidate mechanisms that influenced osteoblast functions on the HA coatings, the amount of proteins (fibronectin and vitronectin) onto the HA powders and the adsorbed fibronectin conformation were investigated. Exposure of cell integrin binding domains (in fibronectin III10 segments) was greater in fibronectin adsorbed onto 1.2 mole% Y-doped UltraCaP HA coatings compared to nanocrystalline HA coatings tested. However, 1.2 mole% Y-doped UltraCaP HA coatings did not increase mineralization by osteoblasts

  3. Nanophase Carbonates on Mars: Implications for Carbonate Formation and Habitability

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Lauer, H. Vern; Ming, Douglas W.; Niles, Paul B.; Morris, Richard V.; Rampe, Elizabeth B.; Sutter, Brad

    2014-01-01

    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered in small amounts in martian dust [1], in outcrops of very limited extent [2, 3], in soils in the Northern Plains (the landing site of the 2007 Phoenix Mars Scout Mission) [4] and may have recently been detected in aeolian material and drilled and powdered sedimentary rock in Gale Crater (the Mars Science Laboratory [MSL] landing site) [5]. Thermal analysis of martian soils by instruments on Phoenix and MSL has demonstrated a release of CO2 at temperatures as low as 250-300 degC, much lower than the traditional decomposition temperatures of calcium or magnesium carbonates. Thermal decomposition temperature can depend on a number of factors such as instrument pressure and ramp rate, and sample particle size [6]. However, if the CO2 released at low temperatures is from carbonates, small particle size is the only effect that could have such a large impact on decomposition temperature, implying the presence of extremely fine-grained (i.e., "nanophase" or clay-sized) carbonates. We hypothesize that this lower temperature release is the signature of small particle-sized (clay-sized) carbonates formed by the weathering of primary minerals in dust or soils through interactions with atmospheric water and carbon dioxide and that this process may persist under current martian conditions. Preliminary work has shown that clay-sized carbonate grains can decompose at much lower temperatures than previously thought. The first work took carbonate, decomposed it to CaO, then flowed CO2 over these samples held at temperatures >100 degC to reform carbonates. Thermal analysis confirmed that carbonates were indeed formed and transmission electron microsopy was used to determine crystal sized were on the order of 10 nm. The next step used minerals such as diopside and wollastonite that were sealed in a glass tube with a CO2 and H2O source. After

  4. Ferric carboxymaltose: a review of its use in iron deficiency.

    PubMed

    Keating, Gillian M

    2015-01-01

    Ferric carboxymaltose (Ferinject(®), Injectafer(®)) is an intravenous iron preparation approved in numerous countries for the treatment of iron deficiency. A single high dose of ferric carboxymaltose (up to 750 mg of iron in the US and 1,000 mg of iron in the EU) can be infused in a short time frame (15 min). Consequently, fewer doses of ferric carboxymaltose may be needed to replenish iron stores compared with some other intravenous iron preparations (e.g. iron sucrose). Ferric carboxymaltose improved self-reported patient global assessment, New York Heart Association functional class and exercise capacity in patients with chronic heart failure and iron deficiency in two randomized, placebo-controlled trials (FAIR-HF and CONFIRM-HF). In other randomized controlled trials, ferric carboxymaltose replenished iron stores and corrected anaemia in various populations with iron-deficiency anaemia, including patients with chronic kidney disease, inflammatory bowel disease or heavy uterine bleeding, postpartum iron-deficiency anaemia and perioperative anaemia. Intravenous ferric carboxymaltose was generally well tolerated, with a low risk of hypersensitivity reactions. It was generally better tolerated than oral ferrous sulfate, mainly reflecting a lower incidence of gastrointestinal adverse effects. The most common laboratory abnormality seen in ferric carboxymaltose recipients was transient, asymptomatic hypophosphataemia. The higher acquisition cost of ferric carboxymaltose appeared to be offset by lower costs for other items, with the potential for cost savings. In conclusion, ferric carboxymaltose is an important option for the treatment of iron deficiency. PMID:25428711

  5. Ferric chloride based downstream process for microalgae based biodiesel production.

    PubMed

    Seo, Yeong Hwan; Sung, Mina; Kim, Bohwa; Oh, You-Kwan; Kim, Dong Yeon; Han, Jong-In

    2015-04-01

    In this study, ferric chloride (FeCl3) was used to integrate downstream processes (harvesting, lipid extraction, and esterification). At concentration of 200 mg/L and at pH 3, FeCl3 exhibited an expected degree of coagulation and an increase in cell density of ten times (170 mg/10 mL). An iron-mediated oxidation reaction, Fenton-like reaction, was used to extract lipid from the harvested biomass, and efficiency of 80% was obtained with 0.5% H2O2 at 90 °C. The iron compound was also employed in the esterification step, and converted free fatty acids to fatty acid methyl esters under acidic conditions; thus, the fatal problem of saponification during esterification with alkaline catalysts was avoided, and esterification efficiency over 90% was obtained. This study clearly showed that FeCl3 in the harvesting process is beneficial in all downstream steps and have a potential to greatly reduce the production cost of microalgae-originated biodiesel. PMID:25647024

  6. The crystal chemistry of ferric oxyhydroxyapatite.

    PubMed

    Low, H R; Phonthammachai, N; Maignan, A; Stewart, G A; Bastow, T J; Ma, L L; White, T J

    2008-12-15

    Ferric hydroxyapatites (Fe-HAp) and oxyapatites (Fe-OAp) of nominal composition [Ca(10-x)Fe(x)(3+)][(PO(4))(6)][(OH)(2-x)O(x)] (0 < or = x < or = 0.5) were synthesized from a coprecipitated precursor calcined under flowing nitrogen. The solid solubility of iron was temperature-dependent, varying from x = 0.5 after firing at 600 degrees C to x approximately 0.2 at 1000 degrees C, beyond which Fe-OAp was progressively replaced by tricalcium phosphate (Fe-TCP). Crystal size (13-116 nm) was controlled by iron content and calcination temperature. Ferric iron replaces calcium by two altervalent mechanisms in which carbonate and oxygen are incorporated as counterions. At low iron loadings, carbonate predominantly displaces hydroxyl in the apatite channels (Ca(2+) + OH(-) --> Fe(3+) + CO(3)(2-)), while at higher loadings, "interstitial" oxygen is tenanted in the framework (2Ca(2+) + (vac) --> 2Fe(3+) + O(2+)). Although Fe(3+) is smaller than Ca(2+), the unit cell dilates as iron enters apatite, providing evidence of oxygen injection that converts PO(4) tetrahedra to PO(5) trigonal bipyramids, leading to the crystal chemical formula [Ca(10-x)Fe(x)][(PO(4))(6-x/2)(PO(5))(x/2)][(OH)(2-y)O(2y)] (x < or = 0.5). A discontinuity in unit cell expansion at x approximately 0.2 combined with a substantial reduction of the carbonate FTIR fingerprint shows that oxygen infusion, rather than tunnel hydroxyl displacement, is dominant beyond this loading. This behavior is in contrast to ferrous-fluorapatite where Ca(2+) --> Fe(2+) aliovalent replacement does not require oxygen penetration and the cell volume contracts with iron loading. All of the materials were paramagnetic, but at low iron concentrations, a transition arising from crystallographic modification or a change in spin ordering is observed at 90 K. The excipient behavior of Fe-OAp was superior to that of HAp and may be linked to the crystalline component or mediated by a ubiquitous nondiffracting amorphous phase. Fe-HAp and Fe

  7. Potential Role for Extracellular Glutathione-Dependent Ferric Reductase in Utilization of Environmental and Host Ferric Compounds by Histoplasma capsulatum

    PubMed Central

    Timmerman, Michelle M.; Woods, Jon P.

    2001-01-01

    The mammalian host specifically limits iron during Histoplasma capsulatum infection, and fungal acquisition of iron is essential for productive infection. H. capsulatum expresses several iron acquisition mechanisms under iron-limited conditions in vitro. These components include hydroxamate siderophores, extracellular glutathione-dependent ferric reductase enzyme, extracellular nonproteinaceous ferric reductant(s), and cell surface ferric reducing agent(s). We examined the relationship between these mechanisms and a potential role for the extracellular ferric reductase in utilization of environmental and host ferric compounds through the production of free, soluble Fe(II). Siderophores and ferric reducing agents were coproduced under conditions of iron limitation. The H. capsulatum siderophore dimerum acid and the structurally similar basidiomycete siderophore rhodotorulic acid acted as substrates for the ferric reductase, and rhodotorulic acid removed Fe(III) bound by transferrin. The mammalian Fe(III)-binding compounds hemin and transferrin served both as substrates for the ferric reductase and as iron sources for yeast-phase growth at neutral pH. In the case of transferrin, there was a correlation between the level of iron saturation and efficacy for both of these functions. Our data are not consistent with an entirely pH-dependent mechanism of iron acquisition from transferrin, as has been suggested to occur in the macrophage phagolysosome. The foreign siderophore ferrioxamine B also acted as a substrate for the ferric reductase, while the foreign siderophore ferrichrome did not. Both ferrioxamine and ferrichrome served as iron sources for yeast- and mold-phase growth, the latter presumably by some other acquisition mechanism(s). PMID:11705947

  8. Immobilization of arsenite and ferric iron by Acidithiobacillus ferrooxidans and its relevance to acid mine drainage.

    PubMed

    Duquesne, K; Lebrun, S; Casiot, C; Bruneel, O; Personné, J-C; Leblanc, M; Elbaz-Poulichet, F; Morin, G; Bonnefoy, V

    2003-10-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  9. Enhanced photochemical decomposition of environmentally persistent perfluorooctanoate by coexisting ferric ion and oxalate.

    PubMed

    Wang, Yuan; Zhang, Pengyi

    2016-05-01

    Perfluorooctanoic acid (PFOA), an environmentally persistent pollutant, was found to be quickly decomposed under 254 nm UV irradiation in the presence of ferric ion and oxalic acid. To understand the PFOA decomposition mechanism by this process, the effects of reaction atmosphere and concentrations of ferric ions and oxalic acids on PFOA decomposition were investigated, as well as decomposition intermediates. PFOA mainly decomposes via two pathways: (i) photochemical oxidation via Fe(III)-PFOA complexes and (ii) one-electron reduction caused by carboxylate anion radical (CO2 (•-)), which was generated by photolysis of ferrioxalate complexes. Under excess oxalic acid, PFOA decomposition was accelerated, and its corresponding half-life was shortened from 114 to 34 min as ferric concentration increased from 7 to 80 μM. Besides fluoride ions, six shorter chain perfluorinated carboxylic acids (PFCAs) bearing C2-C7 were identified as main intermediates. The presence of O2 promoted the redox recycling of Fe(3+)/Fe(2+) and thus avoided the exhaustion of the Fe(III). PMID:26846242

  10. Immobilization of Arsenite and Ferric Iron by Acidithiobacillus ferrooxidans and Its Relevance to Acid Mine Drainage

    PubMed Central

    Duquesne, K.; Lebrun, S.; Casiot, C.; Bruneel, O.; Personné, J.-C.; Leblanc, M.; Elbaz-Poulichet, F.; Morin, G.; Bonnefoy, V.

    2003-01-01

    Weathering of the As-rich pyrite-rich tailings of the abandoned mining site of Carnoulès (southeastern France) results in the formation of acid waters heavily loaded with arsenic. Dissolved arsenic present in the seepage waters precipitates within a few meters from the bottom of the tailing dam in the presence of microorganisms. An Acidithiobacillus ferrooxidans strain, referred to as CC1, was isolated from the effluents. This strain was able to remove arsenic from a defined synthetic medium only when grown on ferrous iron. This A. ferrooxidans strain did not oxidize arsenite to arsenate directly or indirectly. Strain CC1 precipitated arsenic unexpectedly as arsenite but not arsenate, with ferric iron produced by its energy metabolism. Furthermore, arsenite was almost not found adsorbed on jarosite but associated with a poorly ordered schwertmannite. Arsenate is known to efficiently precipitate with ferric iron and sulfate in the form of more or less ordered schwertmannite, depending on the sulfur-to-arsenic ratio. Our data demonstrate that the coprecipitation of arsenite with schwertmannite also appears as a potential mechanism of arsenite removal in heavily contaminated acid waters. The removal of arsenite by coprecipitation with ferric iron appears to be a common property of the A. ferrooxidans species, as such a feature was observed with one private and three collection strains, one of which was the type strain. PMID:14532077

  11. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-Surface Martian Materials?

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Niles, Paul B.; Ming, Douglas W.; Sutter, Brad; Eigenbrode, Jen

    2015-01-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of approx. 0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2 is released below 400C, much lower than traditional carbonate decomposition temperatures which can be as low as 400C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of approx. 550C for CO2, which is about 200C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be greater than 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  12. Nanophase Carbonates on Mars: Does Evolved Gas Analysis of Nanophase Carbonates Reveal a Large Organic Carbon Budget in Near-surface Martian Materials?

    NASA Astrophysics Data System (ADS)

    Archer, P. D., Jr.; Ming, D. W.; Sutter, B.; Niles, P. B.; Eigenbrode, J. L.

    2015-12-01

    Evolved Gas Analysis (EGA), which involves heating a sample and monitoring the gases released, has been performed on Mars by the Viking gas chromatography/mass spectrometry instruments, the Thermal and Evolved Gas Analyzer (TEGA) on the Phoenix lander, and the Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory. All of these instruments detected CO2 released during sample analysis at abundances of ~0.1 to 5 wt% assuming a carbonate source. The source of the CO2 can be constrained by evaluating the temperature of the gas release, a capability of both the TEGA and SAM instruments. The samples analyzed by SAM show that the majority of the CO2is released below 400 °C, much lower than traditional carbonate decomposition temperatures which can be as low as 400 °C for some siderites, with magnesites and calcites decomposing at even higher temperatures. In addition to mineralogy, decomposition temperature can depend on particle size (among other factors). If carbonates formed on Mars under low temperature and relative humidity conditions, the resulting small particle size (nanophase) carbonates could have low decomposition temperatures. We have found that calcite can be synthesized by exposing CaO to water vapor and CO2 and that the resulting mineral has an EGA peak of ~550 °C for CO2, which is about 200 °C lower than for other calcites. Work is ongoing to produce Fe and Mg-bearing carbonates using the same process. Current results suggest that nanophase calcium carbonates cannot explain the CO2 released from martian samples. If the decomposition temperatures of Mg and Fe-bearing nanophase carbonates are not significantly lower than 400 °C, other candidate sources include oxalates and carboxylated organic molecules. If present, the abundance of organic carbon in these samples could be > 0.1 wt % (1000s of ppm), a signficant departure from the paradigm of the organic-poor Mars based on Viking results.

  13. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  14. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  15. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  16. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  17. 21 CFR 73.2298 - Ferric ammonium ferrocyanide.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2298 Ferric ammonium ferrocyanide. (a... ferrocyanide is safe for use in coloring externally applied cosmetics, including cosmetics applied to the...

  18. Hydrocarbon microseepage detection based on normalized ferric and ferrous indices of Landsat imagery

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Xie, H.; Liu, D.; Zhang, Y.

    2006-05-01

    Ferric index (TM 3/1) (Fe3), ferrous index (TM 5/4) (Fe2), and clay and/or carbonate index (TM 5/7) have been successfully applied in mapping hydrothermal-alteration minerals, soil types, organics abundance, and mine waste. However, the ferric/ferrous indices do not work well when they are applied to detect relative oxidation/reduction area in hydrocarbon microseepage regions where the total iron and iron ion types are different in background rocks or soils. For example, there is relative high ferrous in organic-rich sediments and basic igneous rock, such as in coal-bearing beds. Clearly, the high ferrous concentration is not resulted from exotic reduction. Usually, under a homogeneous exotic reduced condition, the higher the total iron in rock or soil, the more the transferred ferrous iron produced. In order to remove the effects of total iron difference in rocks and soils on hydrocarbon microseepage detection, a new method, referred to as normalized ferric and ferrous index, is developed in this study, i.e. the normalized ferric index (NFe3) = Fe3 / (Fe3 + Fe2) and the normalized ferrous index (NFe2) = Fe2 / (Fe3 + Fe2). The NFe3 and NFe2 are successfully applied and tested in two sites for hydrocarbon microseepage detection in oil/gas-bearing Ordos Basin and Eren Basin, China. The NFe3 and NFe2 index images can preserve not only the major information of the ratio 3/1 and 5/4 images, but also remove the effects of total iron in background. Comparing to the mineral composite image (TM 3/1, 5/4, and 5/7 in RGB), the normalized indices color composite image (NFe3, NFe2, and TM5/7 in RGB) shows hydrocarbon microseepage areas clearly in green color. In addition, the composite images of normalized index also remove the vegetation effect to some degree in the test sites.

  19. Nanophase Magnetite and Pyrrhotite in ALH84001 Martian Meteorite: Evidence for an Abiotic Origin

    NASA Technical Reports Server (NTRS)

    Golden, D. C.; Lauer, H. V., Jr. III; Ming, D. W.; Morris, R. V.

    2006-01-01

    The nanophase magnetite crystals in the black rims of pancake-shaped carbonate globules of the Martian meteorite ALH84001 have been studied extensively because of the claim by McKay et al.that they are biogenic in origin. A subpopulation of these magnetite crystals are reported to conform to a unique elongated shape called "truncated hexa-octahedral" or "THO" by Thomas-Keprta et al. They claim these THO magnetite crystals can only be produced by living bacteria thus forming a biomarker in the meteorite. In contrast, thermal decomposition of Fe-rich carbonate has been suggested as an alternate hypothesis for the elongated magnetite formation in ALH84001 carbonates. The experimental and observational evidence for the inorganic formation of nanophase magnetite and pyrrhotite in ALH84001 by decomposition of Fe-rich carbonate in the presence of pyrite are provided.

  20. Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation

    PubMed Central

    2012-01-01

    We successfully synthesized two different structures, silica nanospheres and porous polymer membranes, via nanophase separation, based on a sol–gel process. Silica sol, which was in situ polymerized from tetraorthosilicate, was used as a precursor. Subsequently, it was mixed with a polymer that was used as a matrix component. It was observed that nanophase separation occurred after the mixing of polymer with silica sol and subsequent evaporation of solvents, resulting in organizing various structures, from random network silica structures to silica spheres. In particular, silica nanospheres were produced by manipulating the mixing ratio of polymer to silica sol. The size of silica beads was gradually changed from micro- to nanoscale, depending on the polymer content. At the same time, porous polymer membranes were generated by removing the silica component with hydrofluoric acid. Furthermore, porous carbon membranes were produced using carbon source polymer through the carbonization process. PMID:22873570

  1. Coupled ferric oxides and sulfates on the Martian surface.

    PubMed

    Bibring, J-P; Arvidson, R E; Gendrin, A; Gondet, B; Langevin, Y; Le Mouelic, S; Mangold, N; Morris, R V; Mustard, J F; Poulet, F; Quantin, C; Sotin, C

    2007-08-31

    The Mars Exploration Rover (MER), Opportunity, showed that layered sulfate deposits in Meridiani Planum formed during a period of rising acidic ground water. Crystalline hematite spherules formed in the deposits as a consequence of aqueous alteration and were concentrated on the surface as a lag deposit as wind eroded the softer sulfate rocks. On the basis of Mars Express Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité (OMEGA) orbital data, we demonstrate that crystalline hematite deposits are associated with layered sulfates in other areas on Mars, implying that Meridiani-like ground water systems were indeed widespread and representative of an extensive acid sulfate aqueous system. PMID:17673623

  2. Hydrogen and Ferric Iron in Mars Materials

    NASA Technical Reports Server (NTRS)

    Dyar, Melinda D.

    2004-01-01

    Knowledge of oxygen and hydrogen fugacity is of paramount importance in constraining phase equilibria and crystallization processes of melts, as well as understanding the partitioning of elements between the cope and silicate portions of terrestrial planets. H and Fe(3+) must both be analyzed in order to reconstruct hydrogen and oxygen fugacities on Mars. To date, SIMS data have elucidated D/H and H contents of hydrous phases in SNC meteorites, but until now anhydrous martian minerals have not been systematically examined for trace hydrogen. Ferric iron has been quantified using XANES in many martian phases, but integrated studies of both Fe(3+) and H on the same spots are really needed to address the H budget. Finally, the effects of shock on both Fe(3+) and H in hydrous and anhydrous phases must be quantified. Thus, the overall goal of this research was to understand the oxygen and hydrogen fugacities under which martian samples crystallized. In this research one-year project, we approached this problem by 1) characterizing Fe(3+) and H contents of SNC meteorites using both bulk (Mossbauer spectroscopy and uranium extraction, respectively) and microscale (synchrotron micro-XANES and SIMS) methods; 2) relating Fe(3+) and H contents of martian minerals to their oxygen and hydrogen fugacities through analysis of experimentally equilibrated phases (for pyroxene) and through study of volcanic rocks in which the oxygen and hydrogen fugacities can be independently constrained (for feldspar); and 3) studying the effects of shock processes on Fe(3+) and H contents of the phases of interest. Results have been used to assess quantitatively the distribution of H and Fe(3+) among phases in the martian interior, which will better constrain the geodynamic processes of the interior, as well as the overall hydrogen and water budgets on Mars. There were no inventions funded by this research.

  3. Characterization of micro- and nanophase separation of dentin bonding agents by stereoscopy and atomic force microscopy.

    PubMed

    Toledano, Manuel; Yamauti, Monica; Osorio, Estrella; Monticelli, Francesca; Osorio, Raquel

    2012-04-01

    The aim was to study the effect of solvents on the phase separation of four commercial dental adhesives. Four materials were tested: Clearfil™ SE Bond (CSE), Clearfil Protect Bond (CPB), Clearfil S3 Bond (CS3), and One-Up Bond F Plus (OUB). Distilled water or ethanol was used as a solvent (30 vol%) for microphase separation studies, by stereoscopy. For nanophase images, the mixtures were formulated with two different solvent concentrations (2.5 versus 5 vol%) and observed by atomic force microscopy. Images were analyzed by using MacBiophotonics ImageJ to measure the area of bright domains. Macrophase separations, identified as a loss of clarity, were only observed after mixing the adhesives with water. Nanophase separations were detected with all adhesive combinations. The area of bright domains ranged from 132 to 1,145 nm² for CSE, from 15 to 285 nm² for CPB, from 149 to 380 nm² for CS3, and from 26 to 157 nm² for OUB. In water-resins mixtures, CPB was the most homogeneous and OUB showed the most heterogeneous phase formation. In ethanol-resin mixtures, CSE attained the most homogeneous structure and OUB showed the most heterogeneous phase. Addition of 5 vol% ethanol to resins decreased the nanophase separation when compared with the control materials. PMID:22300801

  4. Arsenate precipitation using ferric iron in acidic conditions

    SciTech Connect

    Cadena, F.; Kirk, T.L.

    1995-12-31

    Arsenates (i.e., As(V)) can be removed from aqueous solution by precipitation with ferric iron (i.e., Fe(III)). The chemistry of arsenic acid describes the main properties of arsenates. This triprotic acid resembles the phosphoric acid system. For example, free arsenate ions (i.e., AsO{sub 4}{sup 3-}), like free phosphates, are present in significant concentration at pH values above pK{sub a,3}. On the other hand, the concentration of free ferric iron in solution, Fe{sup 3+}, is limited by ferric hydroxide precipitation and hydroxy complexation under neutral or basic conditions. Fe{sup 3+} is the predominant iron form only under very acidic conditions. Therefore, the absence of either ferric ions or arsenate ligands prevents ferric arsenate (FeAsO{sub 4}) precipitation in extreme pH conditions. Precipitation studies using ferric chloride show that the formation of ferric arsenate in water containing 0.667 mM/L (50 mg/L as As) is favored in the pH range between 3 and 4. Ferric iron dose required to remove arsenic from solution increases with pH in the range of 3 to 10. Sludge production also increases with increasing pH conditions. Optimum ferric iron doses at pH 3 and 4 are 4.8 and 10.0 mM/L, respectively, where the arsenate is removed from solution by 98.72 and 99.68 percent. Corresponding iron requirement to arsenate ratios at these two pH conditions are 7.2 and 15.0. Adverse effects on arsenic removal are observed at pH = 3, where the concentration of applied ferric iron exceeds the optimal dose. This effect is probably due to charge reversal on the surface of the precipitates. Overdosing above the optimal iron concentration at pH = 4 does not reduce treatment efficiency significantly. Presence of sodium chloride in solution at a concentration of 171 mM/L (10,000 mg/L as NaCl) does not impair system performance. However, sodium sulfate at a concentration of 104 mM/L (10,000 mg/L) affects adversely treatment performance.

  5. Effect of Fe-chelating complexes on a novel M2FC performance with ferric chloride and ferricyanide catholytes.

    PubMed

    Chung, Kyungmi; Lee, Ilgyu; Han, Jong-In

    2012-01-01

    As an effort to better utilize the microbial fuel cell (MFC) technology, we previously proposed an innovative MFC system named M2FC consisting of ferric-based MFC part and ferrous-based fuel cell (FC) part. In this reactor, ferric ion, the catholyte in the MFC part, was efficiently regenerated by the FC part with the generation of additional electricity. When both units were operated separately, the ferric-based MFC part produced approximately 1360 mW m(-2) of power density with FeCl(3) as catholyte and Fe-citrate as anolyte. The ferrous-based FC part with FeCl(3) as catholyte and Fe-EDTA as anolyte displayed the highest power density (1500 mW m(-2)), while that with ferricyanide as catholyte and Fe-noligand as anolyte had the lowest power density (380 mW m(-2)). The types of catholytes and chelating complexes as anolyte were found to play important roles in the reduction of ferric ions and oxidation of ferrous ion. Linear sweep voltammetry results supported that the cathode electrolytes were electrically active and these agreed well with the M2FC reactor performance. These results clearly showed that ligands played critical role in the efficiency and rate for recycling iron ion and thus the M2FC performance. PMID:22018860

  6. The reevaluation of the ferric thiocyanate assay for lipid hydroperoxides with special considerations of the mechanistic aspects of the response.

    PubMed

    Mihaljević, B; Katusin-Razem, B; Razem, D

    1996-01-01

    The mechanistic aspects of the spectrophotometric method of analysis of lipid hydroperoxides (LOOH) based on the oxidation of ferrous to ferric ion and subsequent complexation of the latter by thiocyanate are considered. The method of analysis, as revised by us, was carried out in the same solvent that had been used for the extraction of lipids from the sample, a deoxygenated chloroform:methanol or a dichloromethane:methanol (2:1, v/v) mixture, and used a single solution containing both reagents, Fe2+ and SCN-, for developing the response. In that solvent, total lipids up to 5 mg/ml did not interfere, and linear increase of the absorbance of ferric thiocyanate complex was obtained up to 2 x 10(-5) M LOOH. Molar absorptivity of the ferric thiocyanate complex expressed per mol of LOOH was determined as 58,440 M-1 cm-1, based on the average of four ferric ions produced by each LOOH molecule. The estimated lowest detectable limit was about 170 pmol LOOH/ml of analyzed solution, which corresponded to about 50 mumol LOOH/kg lipid in complex natural mixtures. In addition to good sensitivity, and in contrast to some other more popular spectrophotometric assays for LOOH, the method is responsive also to hydroperoxides of mono- and di-unsaturated fatty acids. The method, thus, provides an easy, rapid, sensitive, and complete measure of hydroperoxidation of lipids. PMID:8791093

  7. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  8. Use of ferric sulfate: acid media for the desulfurization of model compounds of coal. [Dibenzothiophene, diphenyl sulfide, di-n-butyl sulfide

    SciTech Connect

    Clary, L.R.; Vermeulen, T.; Lynn, S.

    1980-12-01

    The objective of this work has been to investigate the ability of ferric sulfate-acid leach systems to oxidize the sulfur in model compounds of coal. Ferric iron-acid leach systems have been shown to be quite effective at removal of inorganic sulfur in coal. In this study, the oxidative effect of ferric iron in acid-leach systems was studied using dibenzothiophene, diphenyl sulfide, and di-n-butyl sulfide as models of organic sulfur groups in coal. Nitrogen and oxygen, as well as various transition metal catalysts and oxidants, were utilized in this investigation. Dibenzothiophene was found to be quite refractory to oxidation, except in the case where metavanadate was added, where it appears that 40% oxidation to sulfone could have occurred per hour at 150/sup 0/C and mild oxygen pressure. Diphenyl sulfide was selectively oxidized to sulfoxide and sulfone in an iron and oxygen system. Approximately 15% conversion to sulfone occurred per hour under these conditions. Some of the di-n-butyl sulfide was cracked to 1-butene and 1-butanethiol under similar conditions. Zinc chloride and ferric iron were used at 200/sup 0/C in an attempt to desulfonate dibenzothiophene sulfone, diphenyl sulfone, and di-n-butyl sulfone. Di-n-butyl sulfone was completely desulfurized on one hour and fragmented to oxidized parafins, while dibenzothiophene sulfone and diphenyl sulfone were unaffected. These results suggest that an iron-acid leach process could only selectively oxidize aryl sulfides under mild conditions, representing only 20% of the organic sulfur in coal (8% of the total sulfur). Removal through desulfonation once selective sulfur oxidation had occurred was only demonstrated for alkyl sulfones, with severe oxidation of the fragmented paraffins also occurring in one hour.

  9. Sono synthesis and characterization of nanophase molybdenum-based materials for catalytic hydrodesulfurization.

    SciTech Connect

    Mahajan, D.; Marshall, C. L.; Castagnola, N.; Hanson, J. C.; BNL

    2004-02-10

    Unsupported nano-phase MoS{sub 2}, CoS, and CoS-MoS{sub 2} (Mo/Co mole ratio {approx}6/1) materials were prepared in hexadecane by sonolysis of the corresponding metal carbonyls at {approx}50 {sup o}C in high (>90%) yields as measured by the evolved carbon monoxide. Direct sonolysis of commercial micron-sized MoS{sub 2} in hexadecane did not result in nano-sizing. The TEM images showed that the synthesized MoS{sub 2} were aggregates of {approx}20 nm mean particle diameter, CoS was {approx}50 nm and the mixed-metal CoS-MoS{sub 2} could be viewed as a composite in which smaller MoS{sub 2} particles resided on the larger crystallites of CoS. The broad XRD peaks were consistent with nano-structured MoS{sub 2} and the sharp peaks were consistent with a more crystalline CoS-MoS{sub 2} species. The sharp peaks did not fit any single CoS pattern suggesting multiple phases. The XRD data showed that sonolysis did not alter the morphology of the micron-sized commercial MoS{sub 2} sample. In the HDS comparative activity study of dibenzothiophene, the synthesized nano-phase MoS{sub 2} exhibited more than an order of magnitude higher activity than its commercial micron-sized counterpart and the addition of Co further enhanced the activity. The HDS activity mirrored the temperature programmed reduction data. Interestingly, the nano-phase materials were less active for hydrogenation of 1-octene during the HDS study.

  10. Up-Conversion Properties of Er3+:PbF2-CONTAINING Nanophase Glass-Ceramics

    NASA Astrophysics Data System (ADS)

    Skoptsov, N. A.; Loiko, P. A.; Yumashev, K. V.; Rachkovskaya, G. E.; Zakharevich, G. B.

    2013-05-01

    Transparent Er3+:PbF2-containing nanophase glass-ceramics was synthesized by means of heat-treatment of as-cast erbium-doped oxyfluoride glass. Optical absorption of glass and glass-ceramics was investigated in details. Temporal characteristics of luminescence associated with 4I13/2→4I15/2 transition were studied under diode-pumping that results in the determination of decay times. Intense red and green up-conversion emission was obtained with glass-ceramic samples.

  11. Determination of arsenic(III) and arsenic(V) in ferric chloride-hydrochloric acid leaching media by ion chromatography

    SciTech Connect

    Tan, L.K.; Dutrizac, J.E.

    1985-05-01

    An analytical method has been developed to determine arsenic(V) in ferric chloride-hydrochloric acid leaching media using ion chromatography with conductivity detection. Oxidation of As(III) by aqua regia allows arsenic(III) to be determined by difference. The method involves a preseparation of trace quantities of arsenic from the relatively large concentrations of ferric chloride and hydrochloric acid prior to the ion chromatography measurement. Iron(III) is separated by passing through a hydrogen-form cation exchange column, and arsenic(III) and arsenic(V) are then eluted with water. The effect of the concentration of acid in this separation is discussed. The effluent collected from the cation exchange column is evaporated to remove the hydrochloric acid. The accuracy and precision of the method were determined from the analysis of various synthetic solutions and are discussed; an accuracy of +/-4% was obtained even at arsenic(V) concentrations as low as 10 ppm. The extent of oxidation of arsenic(III) in acidic ferric chloride solution and the reduction of arsenic(V) in acidic ferrous chloride solution were measured. The results obtained by ion chromatography are compared to the values realized using colorimetry after the preseparation step. 13 references, 3 figures, 4 tables.

  12. The Bacillus subtilis EfeUOB transporter is essential for high-affinity acquisition of ferrous and ferric iron.

    PubMed

    Miethke, Marcus; Monteferrante, Carmine G; Marahiel, Mohamed A; van Dijl, Jan Maarten

    2013-10-01

    Efficient uptake of iron is of critical importance for growth and viability of microbial cells. Nevertheless, several mechanisms for iron uptake are not yet clearly defined. Here we report that the widely conserved transporter EfeUOB employs an unprecedented dual-mode mechanism for acquisition of ferrous (Fe[II]) and ferric (Fe[III]) iron in the bacterium Bacillus subtilis. We show that the binding protein EfeO and the permease EfeU form a minimal complex for ferric iron uptake. The third component EfeB is a hemoprotein that oxidizes ferrous iron to ferric iron for uptake by EfeUO. Accordingly, EfeB promotes growth under microaerobic conditions where ferrous iron is more abundant. Notably, EfeB also fulfills a vital role in cell envelope stress protection by eliminating reactive oxygen species that accumulate in the presence of ferrous iron. In conclusion, the EfeUOB system contributes to the high-affinity uptake of iron that is available in two different oxidation states. PMID:23764491

  13. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  14. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  15. 21 CFR 582.5306 - Ferric sodium pyrophosphate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Ferric sodium pyrophosphate. 582.5306 Section 582.5306 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients...

  16. Ligand Induced Spin Crossover in Penta-Coordinated Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.; Iyer, R. M.

    1981-09-01

    On addition of lewis bases to Fe(dtc)2X, ligand exchange takes place through a SN2 mechanism, with a parallel spin crossover in the ferric ion. The two species (S = 3/2 and S = 5/2) formed are in dynamic chemical equilibrium, and a slow decomposition is then initiated.

  17. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  18. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS...

  19. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed as GRAS...

  20. 21 CFR 184.1296 - Ferric ammonium citrate.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ferric ammonium citrate. 184.1296 Section 184.1296 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) DIRECT FOOD SUBSTANCES AFFIRMED AS GENERALLY RECOGNIZED AS SAFE Listing of Specific Substances Affirmed...

  1. The nanophase iron mineral(s) in Mars soil

    NASA Technical Reports Server (NTRS)

    Banin, A.; Ben-Shlomo, T.; Margulies, L.; Blake, D. F.; Gehring, A. U.

    1992-01-01

    Iron-enriched smectites have been suggested as important mineral compounds of the Martian soil. They were shown to comply with the chemical analysis of the Martian soil, to simulate many of the findings of the Viking Labeled Release Experiments on Mars, to have spectral reflectance in the VIS-NIR strongly resembling the bright regions on Mars. The analogy with Mars soil is based, in a number of aspects, on the nature and behavior of the iron oxides and oxyhydroxides deposited on the surface of the clay particles. A summary of the properties of these iron phases and some recent findings are presented. Their potential relevance to Mars surface processes is discussed.

  2. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  3. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  4. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  5. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  6. 40 CFR 180.1191 - Ferric phosphate; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Ferric phosphate; exemption from the... Exemptions From Tolerances § 180.1191 Ferric phosphate; exemption from the requirement of a tolerance. An..., ferric phosphate (FePO4, CAS No. 11045-86-0) in or on all food commodities....

  7. Reducing bacteria and macrophage density on nanophase hydroxyapatite coated onto titanium surfaces without releasing pharmaceutical agents

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Garima; Yazici, Hilal; Webster, Thomas J.

    2015-04-01

    Reducing bacterial density on titanium implant surfaces has been a major concern because of the increasing number of nosocomial infections. Controlling the inflammatory response post implantation has also been an important issue for medical devices due to the detrimental effects of chronic inflammation on device performance. It has recently been demonstrated that manipulating medical device surface properties including chemistry, roughness and wettability can control both infection and inflammation. Here, we synthesized nanophase (that is, materials with one dimension in the nanoscale) hydroxyapatite coatings on titanium to reduce bacterial adhesion and inflammatory responses (as measured by macrophage functions) and compared such results to bare titanium and plasma sprayed hydroxyapatite titanium coated surfaces used clinically today. This approach is a pharmaceutical-free approach to inhibit infection and inflammation due to the detrimental side effects of any drug released in the body. Here, nanophase hydroxyapatite was synthesized in sizes ranging from 110-170 nm and was subsequently coated onto titanium samples using electrophoretic deposition. Results indicated that smaller nanoscale hydroxyapatite features on titanium surfaces alone decreased bacterial attachment in the presence of gram negative (P. aeruginosa), gram positive (S. aureus) and ampicillin resistant gram-negative (E. coli) bacteria as well as were able to control inflammatory responses; properties which should lead to their further investigation for improved medical applications.

  8. Heavy metal phosphate nanophases in silica: influence of radiolysis probed via f-electron state properties

    SciTech Connect

    Beitz, James V. . E-mail: beitz@anl.gov; Williams, C.W.; Hong, K.-S.; Liu, G.K.

    2005-02-15

    We have assessed the feasibility of carrying out time- and wavelength-resolved laser-induced fluorescence measurements of radiation damage in glassy silica. The consequences of alpha decay of Es-253 in LaPO{sub 4} nanophases embedded in silica were probed based on excitation of 5f states of Cm{sup 3+}, Bk{sup 3+}, and Es{sup 3+} ions. The recorded emission spectra and luminescence decays showed that alpha decay of Es-253 ejected Bk-249 decay daughter ions into the surrounding silica and created radiation damage within the LaPO{sub 4} nanophases. This conclusion is consistent with predictions of an ion transport code commonly used to model ion implantation. Luminescence from the {sup 6}D{sub 7/2} state of Cm{sup 3+}was used as an internal standard. Ion-ion energy transfer dominated the dynamics of the observed emitting 5f states and strongly influenced the intensity of observed spectra. In appropriate sample materials, laser-induced fluorescence provides a powerful method for fundamental investigation of alpha-induced radiation damage in silica.

  9. Laboratory Simulation of Space Weathering: ESR Measurements of Nanophase Metallic Iron in Laser-irradiated Olivine and Pyroxene Samples

    NASA Technical Reports Server (NTRS)

    Kurahashi, E.; Yamanaka, C.; Nakamura, K.; Sasaki, S.

    2003-01-01

    S-type asteroids are believed to be parent bodies of ordinary chondrites. Although both S-type asteroids and ordinary chondrites contain the same mineral assemblage, mainly olivine and pyroxene, the reflectance spectra of the asteroids exhibit more overall depletion (darkening) and reddening, and more weakening of absorption bands relative to the meteorites. This spectral mismatch is explained by space weathering process, where high-velocity dust particle impacts should change the optical properties of the uppermost regolith surface of asteroids. In order to simulate the space weathering, we irradiated nanosecond pulse laser beam onto pellet samples of olivine (8.97wt% FeO) and pyroxene (enstatite: 9.88wt% FeO, hypersthene: 16.70wt%). We got spectral changes in our samples similar to that by space weathering on asteroids and confirmed nanophase alpha-metallic iron particles, which were theoretically predicted, not only on olivine but also on pyroxene samples by Transmission Electron Microscopy (TEM). Nanophase metallic iron particles were widely scattered throughout the amorphous rims developed along the olivine grains, whereas they were embedded in aggregates of amorphous in enstatite samples. Recently, we also measured laser-irradiated samples by ESR (Electron Spin Resonance). Strong ESR signals, characteristic to nanophase iron particles, are observed on irradiated olivine samples. In this paper, we report the quantities of nanophase metallic iron particles in pyroxene samples by ESR observations in addition to olivine samples.

  10. Kinetics of the ferrous/ferric electrode reaction in the absence of chloride catalysis

    SciTech Connect

    Hung, N.C.; Nagy, Z.

    1987-09-01

    The kinetics of the ferrous ferric redox electrode reaction has been investigated by many workers as a simple, uncomplicated charge transfer reaction which seems ideal for testing experimental techniques and charge transfer theories. However, it has only recently been understood that very small traces of chloride can have a considerable effect on the reaction rate. The relation between the chloride content of the solution and the rate constant of the ferrous/ferric reaction on a gold electrode in perchloric acid solutions is confirmed in this work. The chloride effect free apparent standard rate constant is found to be 2.2 x 10/sup -5/ cm s/sup -1/, which is two to three orders of magnitude smaller than the rate constants normally reported for this reaction if the chloride content of the solution is not scrupulously controlled. Measurements were carried out by using two different in situ methods for cleaning the working electrode surface rather than employing extensive solution purification. In the first method the measuring electrode was potentiostated at sufficiently negative potentials to desorb the chloride from the surface followed by a potential step to the equilibrium potential and a pulse measurement of the kinetics. In the second method chloride ions were removed from the surface before and during the kinetic measurement by continuous oxidation of chromous ions added in small concentration to the test solution. Good agreement was found among the rate constants determined by these methods and a reported rate constant determined in ultraclean solution.

  11. Formation of Metallic Nanophases in Polymeric Matrices for Space Applications

    NASA Technical Reports Server (NTRS)

    Orwoll, Robert A.; Thompson, David W.

    1999-01-01

    There are a select number of polyimides which are soluble in organic media. Incorporation of hexafluoroisopropylidene groups is a route to achieving solubility. Such fluorinated polyimides have desirable properties for processing and electronic purposes; however, they often have linear coefficients of thermal expansion (CTE) which are well above those for metals and inorganic oxides or ceramics with which they might be bonded. We have developed a synthesis of composite inorganic-polyimide films using diaquotris(2,4-pentane-dionato)lanthanam(III) as the inorganic precursor and two soluble polyimides formed from 2,2-bis(3,4- dicarboxyphenyl)hexafluoro-propane (6FDA) and 1,3-bis(3-aminophenoxy)benzene (APB) or 2,2-bis[4-(4-aminophenoxy)phenyllhexafluoropropane (4-BDAF). A primary goal of our work was to control the linear CTE in these fluorinated polymer composites without adversely affecting mechanical or other thermal properties.

  12. Ferric saponite and serpentine in the nakhlite martian meteorites

    NASA Astrophysics Data System (ADS)

    Hicks, L. J.; Bridges, J. C.; Gurman, S. J.

    2014-07-01

    Transmission electron microscopy and Fe-K X-ray absorption spectroscopy have been used to determine structure and ferric content of the secondary phase mineral assemblages in the nakhlite martian meteorites, NWA 998, Lafayette, Nakhla, GV, Y 000593, Y 000749, MIL 03346, NWA 817, and NWA 5790. The secondary phases are a rapidly cooled, metastable assemblage that has preserved Mg# and Ca fractionation related to distance from the fluid source, for most of the nakhlites, though one, NWA 5790, appears not to have experienced a fluid pathway. All nine nakhlite samples have also been analysed with scanning electron microscopy, electron probe micro analysis, Bright Field high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction. By measuring the energy position of the Fe-K XANES 1s → 3d pre-edge transition centroid we calculate the ferric content of the minerals within the nakhlite meteorites. The crystalline phyllosilicates and amorphous silicate of the hydrothermal deposits filling the olivine fractures are found to have variable Fe3+/ΣFe values ranging from 0.4 to 0.9. In Lafayette, the central silicate gel parts of the veins are more ferric than the phyllosilicates around it, showing that the fluid became increasingly oxidised. The mesostasis of Lafayette and NWA 817 also have phyllosilicate, which have a higher ferric content than the olivine fracture deposits, with Fe3+/ΣFe values of up to 1.0. Further study, via TEM analyses, reveal the Lafayette and NWA 817 olivine phyllosilicates to have 2:1 T-O-T lattice structure with a the d001-spacing of 0.96 nm, whereas the Lafayette mesostasis phyllosilicates have 1:1 T-O structure with d001-spacings of 0.7 nm. Based on our analyses, the phyllosilicate found within the Lafayette olivine fractures is trioctahedral ferric saponite (Ca0.2K0.1)∑0.3(Mg2.6Fe2+1.3Fe3+1.7Mn0.1)∑5.7[(Si6.7AlIV0.9Fe3+0.4)∑8.0O20](OH)4·nH2O, and that found in the mesostasis fractures is an Fe

  13. Impact of Iron-Reducing Bacteria on Metals and Radionuclides Adsorbed to Humic-Coated Iron(III) Oxides

    SciTech Connect

    Burgos, W. D.

    2005-02-01

    This is the final report for Grant No. DEFGO2-98ER62691 submitted to the DOE NABR Program. This research has focused on (1) the role of natural organic matter (NOM), quinines, and complexants in enhancing the biological reduction of solid-phase crystalline ferric oxides, (2) the effect of heavy metals (specifically zinc) and NOM on ferric oxide bioreduction, (3) the sorption of Me(II) [Cu(II), Fe(II), Mn(II) and Zn(II)] to ferric oxides and subsequent Me(II)-promoted phase transformations of the ferric oxides, and (4) the development of reaction-based biogeochemical models to numerically simulate our experimental results.

  14. Mechanism of Bacterial Pyrite Oxidation

    PubMed Central

    Silverman, Melvin P.

    1967-01-01

    The oxidation by Ferrobacillus ferrooxidans of untreated pyrite (FeS2) as well as HCl-pretreated pyrite (from which most of the acid-soluble iron species were removed) was studied manometrically. Oxygen uptake was linear during bacterial oxidation of untreated pyrite, whereas with HCl-pretreated pyrite both a decrease in oxygen uptake at 2 hr and nonlinear oxygen consumption were observed. Ferric sulfate added to HCl-pretreated pyrite restored approximately two-thirds of the decrease in total bacterial oxygen uptake and caused oxygen uptake to revert to nearly linear kinetics. Ferric sulfate also oxidized pyrite in the absence of bacteria and O2; recovery of ferric and ferrous ions was in excellent agreement with the reaction Fe2(SO4)3 + FeS2 = 3FeSO4 + 2S, but the elemental sulfur produced was negligible. Neither H2S nor S2O32− was a product of the reaction. It is probable that two mechanisms of bacterial pyrite oxidation operate concurrently: the direct contact mechanism which requires physical contact between bacteria and pyrite particles for biological pyrite oxidation, and the indirect contact mechanism according to which the bacteria oxidize ferrous ions to the ferric state, thereby regenerating the ferric ions required for chemical oxidation of pyrite. PMID:6051342

  15. Paracoccidioides spp. ferrous and ferric iron assimilation pathways

    PubMed Central

    Bailão, Elisa Flávia L. C.; Lima, Patrícia de Sousa; Silva-Bailão, Mirelle G.; Bailão, Alexandre M.; Fernandes, Gabriel da Rocha; Kosman, Daniel J.; Soares, Célia Maria de Almeida

    2015-01-01

    Iron is an essential micronutrient for almost all organisms, including fungi. Usually, fungi can uptake iron through receptor-mediated internalization of a siderophore or heme, and/or reductive iron assimilation (RIA). Traditionally, the RIA pathway consists of ferric reductases (Fres), ferroxidase (Fet3) and a high-affinity iron permease (Ftr1). Paracoccidioides spp. genomes do not present an Ftr1 homolog. However, this fungus expresses zinc regulated transporter homologs (Zrts), members of the ZIP family of membrane transporters that are able in some organisms to transport zinc and iron. A 2,3,5-triphenyltetrazolium chloride (TTC)-overlay assay indicates that both Pb01 and Pb18 express a ferric reductase activity; however, 59Fe uptake assays indicate that only in Pb18 is this activity coupled to a reductase-dependent iron uptake pathway. In addition, Zrts are up-regulated in iron deprivation, as indicated by RNAseq and qRT-PCR using Pb01 transcripts. RNAseq strategy also demonstrated that transcripts related to siderophore uptake and biosynthesis are up-regulated in iron-deprived condition. The data suggest that the fungus could use both a non-classical RIA, comprising ferric reductases and Fe/Zn permeases (Zrts), and siderophore uptake pathways under iron-limited conditions. The study of iron metabolism reveals novel surface molecules that could function as accessible targets for drugs to block iron uptake and, consequently, inhibit pathogen's proliferation. PMID:26441843

  16. Ferric chloride-induced murine carotid arterial injury: A model of redox pathology☆

    PubMed Central

    Li, Wei; McIntyre, Thomas M.; Silverstein, Roy L.

    2013-01-01

    Ferric chloride (FeCl3) induced vascular injury is a widely used model of occlusive thrombosis that reports platelet activation in the context of an aseptic closed vascular system. This model is based on redox-induced endothelial cell injury, which is simple and sensitive to both anticoagulant and anti-platelets drugs. The time required for platelet aggregation to occlude blood flow gives a quantitative measure of vascular damage that is pathologically relevant to thrombotic disease. We have refined the traditional FeCl3-induced carotid artery model making the data highly reproducible with lower variation. This paper will describe our artifices and report the role of varying the oxidative damage by varying FeCl3 concentrations and exposure. To explore a maximum difference between experimental groups, adjustment of the selected FeCl3 dose and exposure duration may be necessary. PMID:25101237

  17. The secondary coordination sphere controlled reactivity of a ferric-superoxo heme: unexpected conversion to a ferric hydroperoxo intermediate by reaction with a high-spin ferrous heme.

    PubMed

    Nagaraju, Perumandla; Ohta, Takehiro; Liu, Jin-Gang; Ogura, Takashi; Naruta, Yoshinori

    2016-06-01

    A bio-inspired heme complex involving both a proton donor and an axial imidazole ligand reduces the activation energy for the formation of a ferric hydroperoxo intermediate. A high-spin ferrous heme is shown to be capable of reducing its superoxy species to generate a ferric hydroperoxo intermediate for the first time. PMID:27105471

  18. Experimental Evidence of the Origin of Nanophase Separation in Low Hole-Doped Colossal Magnetoresistant Manganites.

    PubMed

    Cortés-Gil, Raquel; Ruiz-González, M Luisa; González-Merchante, Daniel; Alonso, José M; Hernando, Antonio; Trasobares, Susana; Vallet-Regí, María; Rojo, Juan M; González-Calbet, José M

    2016-01-13

    While being key to understanding their intriguing physical properties, the origin of nanophase separation in manganites and other strongly correlated materials is still unclear. Here, experimental evidence is offered for the origin of the controverted phase separation mechanism in the representative La1-xCaxMnO3 system. For low hole densities, direct evidence of Mn(4+) holes localization around Ca(2+) ions is experimentally provided by means of aberration-corrected scanning transmission electron microscopy combined with electron energy loss spectroscopy. These localized holes give rise to the segregated nanoclusters, within which double exchange hopping between Mn(3+) and Mn(4+) remains restricted, accounting for the insulating character of perovskites with low hole density. This localization is explained in terms of a simple model in which Mn(4+) holes are bound to substitutional divalent Ca(2+) ions. PMID:26683223

  19. Ultraviolet and white photon avalanche upconversion in Ho{sup 3+}-doped nanophase glass ceramics

    SciTech Connect

    Lahoz, F.; Martin, I.R.; Calvilla-Quintero, J.M.

    2005-01-31

    Ho{sup 3+}-doped fluoride nanophase glass ceramics have been synthesized from silica-based oxyfluoride glass. An intense white emission light is observed by the naked eye under near infrared excitation at 750 nm. This visible upconversion is due to three strong emission bands in the primary color components, red, green, and blue. Besides, ultraviolet signals are also recorded upon the same excitation wavelength. The excitation mechanism of both the ultraviolet and the visible emissions is a photon avalanche process with a relatively low pump power threshold at about 20 mW. The total upconverted emission intensity has been estimated to increase by about a factor of 20 in the glass ceramic compared to the precursor glass, in which an avalanche type mechanism is not generated.

  20. The Optical Properties of Nanophase Iron: Investigation of a Space Weathering Analog

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Pieters, C. M.; Keller, L. P.

    2003-01-01

    It is known that space weathering, in particular the nanophase iron (npFe(sup 0)) created via vapor and/or sputter deposition, has distinct and predictable effects on the optical properties of lunar soils. In addition to the attenuation of absorption bands, weathering introduces a characteristic continuum which is controlled by the amount of npFe(sup 0) present. The shape of this continuum may also be controlled by the size of the npFe(sup 0) grains. It is thought that small npFe(sup 0) grains result in reddening, while larger grains only darken the material. To investigate this phenomenon we have created a lunar weathering analog by impregnating silica gel powders with npFe(sup 0) following the methods presented.

  1. Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids

    NASA Astrophysics Data System (ADS)

    Griffin, Philip J.; Wang, Yangyang; Holt, Adam P.; Sokolov, Alexei P.

    2016-04-01

    We report measurements of the ionic conductivity, shear viscosity, and structural dynamics in a homologous series of quaternary ammonium ionic liquids (ILs) and a prototypical imidazolium-based IL over a wide range of temperatures down to the glass transition. We find that the ionic conductivity of these materials generally decreases, while the shear viscosity correspondingly increases, with increasing volume fraction of aliphatic side groups. Upon crossing an aliphatic volume fraction of ˜0.40, we observe a sharp, order-of-magnitude decrease in ionic conductivity and enhancement of viscosity, which coincides with the presence of long-lived, nanometer-sized alkyl aggregates. These strong changes in dynamics are not mirrored in the ionicity of these ILs, which decreases nearly linearly with aliphatic volume fraction. Our results demonstrate that nanophase segregation in neat ILs strongly reduces ionic conductivity primarily due to an aggregation-induced suppression of dynamics.

  2. Organic Matter Mineralization with Reduction of Ferric Iron in Anaerobic Sediments

    PubMed Central

    Lovley, Derek R.; Phillips, Elizabeth J. P.

    1986-01-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition. PMID:16347032

  3. Organic matter mineralization with reduction of ferric iron in anaerobic sediments

    SciTech Connect

    Lovley, D.R.; Phillips, E.J.P.

    1986-04-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can out compete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.

  4. Organic matter mineralization with reduction of ferric iron in anaerobic sediments.

    PubMed

    Lovley, D R; Phillips, E J

    1986-04-01

    The potential for ferric iron reduction with fermentable substrates, fermentation products, and complex organic matter as electron donors was investigated with sediments from freshwater and brackish water sites in the Potomac River Estuary. In enrichments with glucose and hematite, iron reduction was a minor pathway for electron flow, and fermentation products accumulated. The substitution of amorphous ferric oxyhydroxide for hematite in glucose enrichments increased iron reduction 50-fold because the fermentation products could also be metabolized with concomitant iron reduction. Acetate, hydrogen, propionate, butyrate, ethanol, methanol, and trimethylamine stimulated the reduction of amorphous ferric oxyhydroxide in enrichments inoculated with sediments but not in uninoculated or heat-killed controls. The addition of ferric iron inhibited methane production in sediments. The degree of inhibition of methane production by various forms of ferric iron was related to the effectiveness of these ferric compounds as electron acceptors for the metabolism of acetate. The addition of acetate or hydrogen relieved the inhibition of methane production by ferric iron. The decrease of electron equivalents proceeding to methane in sediments supplemented with amorphous ferric oxyhydroxides was compensated for by a corresponding increase of electron equivalents in ferrous iron. These results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter. Thus, when amorphous ferric oxyhydroxides are available in anaerobic sediments, the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition. PMID:16347032

  5. Ferric citrate controls phosphorus and delivers iron in patients on dialysis.

    PubMed

    Lewis, Julia B; Sika, Mohammed; Koury, Mark J; Chuang, Peale; Schulman, Gerald; Smith, Mark T; Whittier, Frederick C; Linfert, Douglas R; Galphin, Claude M; Athreya, Balaji P; Nossuli, A Kaldun Kaldun; Chang, Ingrid J; Blumenthal, Samuel S; Manley, John; Zeig, Steven; Kant, Kotagal S; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P

    2015-02-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of -2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  6. Ferric Citrate Controls Phosphorus and Delivers Iron in Patients on Dialysis

    PubMed Central

    Sika, Mohammed; Koury, Mark J.; Chuang, Peale; Schulman, Gerald; Smith, Mark T.; Whittier, Frederick C.; Linfert, Douglas R.; Galphin, Claude M.; Athreya, Balaji P.; Nossuli, A. Kaldun Kaldun; Chang, Ingrid J.; Blumenthal, Samuel S.; Manley, John; Zeig, Steven; Kant, Kotagal S.; Olivero, Juan Jose; Greene, Tom; Dwyer, Jamie P.

    2015-01-01

    Patients on dialysis require phosphorus binders to prevent hyperphosphatemia and are iron deficient. We studied ferric citrate as a phosphorus binder and iron source. In this sequential, randomized trial, 441 subjects on dialysis were randomized to ferric citrate or active control in a 52-week active control period followed by a 4-week placebo control period, in which subjects on ferric citrate who completed the active control period were rerandomized to ferric citrate or placebo. The primary analysis compared the mean change in phosphorus between ferric citrate and placebo during the placebo control period. A sequential gatekeeping strategy controlled study-wise type 1 error for serum ferritin, transferrin saturation, and intravenous iron and erythropoietin-stimulating agent usage as prespecified secondary outcomes in the active control period. Ferric citrate controlled phosphorus compared with placebo, with a mean treatment difference of −2.2±0.2 mg/dl (mean±SEM) (P<0.001). Active control period phosphorus was similar between ferric citrate and active control, with comparable safety profiles. Subjects on ferric citrate achieved higher mean iron parameters (ferritin=899±488 ng/ml [mean±SD]; transferrin saturation=39%±17%) versus subjects on active control (ferritin=628±367 ng/ml [mean±SD]; transferrin saturation=30%±12%; P<0.001 for both). Subjects on ferric citrate received less intravenous elemental iron (median=12.95 mg/wk ferric citrate; 26.88 mg/wk active control; P<0.001) and less erythropoietin-stimulating agent (median epoetin-equivalent units per week: 5306 units/wk ferric citrate; 6951 units/wk active control; P=0.04). Hemoglobin levels were statistically higher on ferric citrate. Thus, ferric citrate is an efficacious and safe phosphate binder that increases iron stores and reduces intravenous iron and erythropoietin-stimulating agent use while maintaining hemoglobin. PMID:25060056

  7. Preliminary oxidation in histochemical staining methods for cholesterol.

    PubMed

    Adams, C W; High, O B

    1980-08-01

    The need for preliminary oxidation with histochemical methods for cholesterol was investigated on silica-coated sheets and in tissue sections. The techniques used were the Schultz reaction, perchloric acid-naphthoquinone (PAN), Lewis & Lobban's ferric alum-sulphuric acid reagent and Okamoto's iodine-sulphuric acid. The oxidants assessed were ferric chloride, ferric alum, potassium permanganate, ammonium sulphamate and ultraviolet light. The best combinations amongst those tested in order of reactivity were FeCl3-PAN, ferric alum-Schultz, Lewis-Lobban (no additional oxidant), iodine-sulphuric acid (no additional oxidant). Authentic preparations of cholesterol oxidation products were stained with these methods, but the nature of the oxidized product in the preliminary stage could not be determined. PMID:6157826

  8. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films.

    PubMed

    Zhang, Huairuo; Reaney, Ian M; Marincel, Daniel M; Trolier-McKinstry, Susan; Ramasse, Quentin M; MacLaren, Ian; Findlay, Scott D; Fraleigh, Robert D; Ross, Ian M; Hu, Shunbo; Ren, Wei; Rainforth, W Mark

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)(3+) Fe(3+)O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  9. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    PubMed Central

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-01-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community. PMID:26272264

  10. Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films

    NASA Astrophysics Data System (ADS)

    Zhang, Huairuo; Reaney, Ian M.; Marincel, Daniel M.; Trolier-McKinstry, Susan; Ramasse, Quentin M.; MacLaren, Ian; Findlay, Scott D.; Fraleigh, Robert D.; Ross, Ian M.; Hu, Shunbo; Ren, Wei; Mark Rainforth, W.

    2015-08-01

    Researchers have demonstrated that BiFeO3 exhibits ferroelectric hysteresis but none have shown a strong ferromagnetic response in either bulk or thin film without significant structural or compositional modification. When remanent magnetisations are observed in BiFeO3 based thin films, iron oxide second phases are often detected. Using aberration-corrected scanning transmission electron microscopy, atomic resolution electron energy loss spectrum-mapping and quantitative energy dispersive X-ray spectroscopy analysis, we reveal the existence of a new Fe2O3-rich perovskite nanophase, with an approximate formula (Fe0.6Bi0.25Nd0.15)3+ Fe3+O3, formed within epitaxial Ti and Nd doped BiFeO3 perovskite films grown by pulsed laser deposition. The incorporation of Nd and Bi ions on the A-site and coherent growth with the matrix stabilise the Fe2O3-rich perovskite phase and preliminary density functional theory calculations suggest that it should have a ferrimagnetic response. Perovskite-structured Fe2O3 has been reported previously but never conclusively proven when fabricated at high-pressure high-temperature. This work suggests the incorporation of large A-site species may help stabilise perovskite-structured Fe2O3. This finding is therefore significant not only to the thin film but also to the high-pressure community.

  11. Reaction mechanism for the ferric chloride leaching of sphalerite

    NASA Astrophysics Data System (ADS)

    Warren, G. W.; Henein, H.; Jin, Zuo-Mei

    1985-12-01

    Reaction mechanisms for the ferric chloride leaching of sphalerite are proposed based on data obtained in leaching and dual cell experiments presented in this work and in a previous study. The results from the leaching experiments show that at low concentrations the rate is proportional to [Fe3+]T 0.5 and [Cl-]T 0.43 but at higher concentrations the reaction order with respect to both [Fe3+]T and [Cl-]T decreases. Using dual cell experiments which allow the half cell reactions to be separated, increased rates are observed when NaCl is added to the anolyte and to the catholyte. The increase in rate is attributed to a direct, anodic electrochemical reaction of Cl- with the mineral. When NaCl is added only to the catholyte, a decrease in the rate is observed due to a decrease in the E 0 of the cathode which is attributed to the formation of ferric-chloro complexes. Several possible electrochemical mechanisms and mathematical models based on the Butler-Volmer relation are delineated, and of these, one model is selected which accounts for the experimentally observed changes in reaction order for both Fe3+ and Cl-. This analysis incorporates a charge transfer process for each ion and an adsorption step for ferric and chloride ions. The inhibiting effect of Fe2+ noted by previous investigators is also accounted for through a similar model which includes back reaction kinetics for Fe2+. The proposed models successfully provide a theoretical basis for describing the role of Cl-, Fe3+, and Fe2+ as well as their interrelationship in zinc sulfide leaching reactions. Possible applications of these results to chloride leaching systems involving other sulfides or complex sulfides are considered.

  12. Development of Leptospirillum ferriphilum dominated consortium for ferric iron regeneration and metal bioleaching under extreme stresses.

    PubMed

    Patel, Bhargav C; Tipre, Devayani R; Dave, Shailesh R

    2012-08-01

    Activated iron oxidizing consortium SR-BH-L enriched from Rajpardi lignite mine soil sample gave iron oxidation rate 1954 mg/L/h. Developed novel polystress resistant consortium oxidized ferrous iron under 11cP viscosity, 7.47 M ionic strength, 2.3 pH and g/L of 0.50 cadmium, 3.75 copper, 0.20 lead, 92.00 zinc, 6.4 sodium, 5.5 chloride, 154 sulphate and 393.8 TDS. The developed consortium showed 78.0% and 70.0% copper and zinc extraction from polymetallic bulk concentrate in monophasic bioleaching process. The bioregenerated ferric by the consortium in leachate showed 80.81% and 54.0% copper and zinc leaching in only 30 and 90 min. The DGGE analysis indicated the presence of 11 OTUs in the consortium. 16S rRNA gene sequence (JN797729) of the dominant band on DGGE shared >99% similarity with Leptospirillum ferriphilum. RE digestion analysis of the total 16S rRNA gene also illustrated the dominance of L. ferriphilum in the consortium. PMID:22717567

  13. Ferric carboxymaltose-mediated attenuation of Doxorubicin-induced cardiotoxicity in an iron deficiency rat model.

    PubMed

    Toblli, Jorge Eduardo; Rivas, Carlos; Cao, Gabriel; Giani, Jorge Fernando; Funk, Felix; Mizzen, Lee; Dominici, Fernando Pablo

    2014-01-01

    Since anthracycline-induced cardiotoxicity (AIC), a complication of anthracycline-based chemotherapies, is thought to involve iron, concerns exist about using iron for anaemia treatment in anthracycline-receiving cancer patients. This study evaluated how intravenous ferric carboxymaltose (FCM) modulates the influence of iron deficiency anaemia (IDA) and doxorubicin (3-5 mg per kg body weight [BW]) on oxidative/nitrosative stress, inflammation, and cardiorenal function in spontaneously hypertensive stroke-prone (SHR-SP) rats. FCM was given as repeated small or single total dose (15 mg iron per kg BW), either concurrent with or three days after doxorubicin. IDA (after dietary iron restriction) induced cardiac and renal oxidative stress (markers included malondialdehyde, catalase, Cu,Zn-superoxide dismutase, and glutathione peroxidase), nitrosative stress (inducible nitric oxide synthase and nitrotyrosine), inflammation (tumour necrosis factor-alpha and interleukin-6), and functional/morphological abnormalities (left ventricle end-diastolic and end-systolic diameter, fractional shortening, density of cardiomyocytes and capillaries, caveolin-1 expression, creatinine clearance, and urine neutrophil gelatinase-associated lipocalin) that were aggravated by doxorubicin. Notably, iron treatment with FCM did not exacerbate but attenuated the cardiorenal effects of IDA and doxorubicin independent of the iron dosing regimen. The results of this model suggest that intravenous FCM can be used concomitantly with an anthracycline-based chemotherapy without increasing signs of AIC. PMID:24876963

  14. Corynebactin and a Serine Trilactone Based Analogue-Chirality and Molecular Modeling of ferric Complexes

    SciTech Connect

    Bluhm, Martin E.; Hay, Benjamin P.; Kim, Sangoo S.; Dertz, Emily A.; Raymond, Kenneth N.

    2002-09-14

    The chirality of ferric siderophore complexes is a determinant for their cellular recognition and transport. Corynebactin (first isolated from a Gram-positive bacterium) contains L-threonine, unlike the closely related enterobactin, which contains L-serine. Also unlike enterobactin, ferric corynebactin is preferentially L at the iron center. Experimental (circular dichroism spectra and synthesis of a corynebactin/enterobactin hybrid) and theoretical (MM3 and density functional theory calculations) results explain ferric corynebactin's properties.

  15. U-EXTRACTION--IMPROVEMENTS IN ELIMINATION OF Mo BY USE OF FERRIC ION

    DOEpatents

    Clark, H.M.; Duffey, D.

    1958-06-10

    An improved solvent extraction process is described whereby U may be extracted by a water immiscible organic solvent from an aqueous solution of uranyl nitrate. It has been found that Mo in the presence of phosphate ions appears to form a complex with the phosphate which extracts along with the U. This extraction of Mo may be suppressed by providing ferric ion in the solution prior to the extraction step. The ferric ion is preferably provided in the form of ferric nitrate.

  16. Reaction of ferric heme proteins with nitrite and sulfite

    SciTech Connect

    Young, L.J.; Siegel, L.M.

    1988-04-19

    Optical and EPR spectroscopy of ferric heme proteins of the porphyrin, oxyporphyrin, and isobacteriochlorin classes has indicated that nitrite reacts with these proteins at the heme iron. Sulfite has been conclusively proven to react only with proteins containing the isobacteriochlorin macrocycle. Quantitative EPR spectroscopy of these nitrite and sulfite adducts showed that most contained a substantial quantity of undetectable heme. It is suggested that protein-induced autoreduction of nitrite (but not sulfite) and a strained and/or uniaxial g-tensor are the principal ways by which the silent state is produced.

  17. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents

    NASA Astrophysics Data System (ADS)

    Mao, Lin; Shen, Li; Niu, Jialin; Zhang, Jian; Ding, Wenjiang; Wu, Yu; Fan, Rong; Yuan, Guangyin

    2013-09-01

    Biodegradable metal alloys emerge as a new class of biomaterials for tissue engineering and medical devices such as cardiovascular stents. Deploying biodegradable materials to fabricate stents not only obviates a second surgical intervention for implant removal but also circumvents the long-term foreign body effect of permanent implants. However, these materials for stents suffer from an un-controlled degradation rate, acute toxic responses, and rapid structural failure presumably due to a non-uniform, fast corrosion process. Here we report that highly uniform, nanophasic degradation is achieved in a new Mg alloy with unique interstitial alloying composition as the nominal formula Mg-2.5Nd-0.2Zn-0.4Zr (wt%, hereafter, denoted as JDBM). This material exhibits highly homogeneous nanophasic biodegradation patterns as compared to other biodegradable metal alloy materials. Consequently it has significantly reduced degradation rate determined by electrochemical characterization. The in vitro cytotoxicity test using human vascular endothelial cells indicates excellent biocompatibility and potentially minimal toxic effect on arterial vessel walls. Finally, we fabricated a cardiovascular stent using JDBM and performed in vivo long-term assessment via implantation of this stent in an animal model. The results confirmed the reduced degradation rate in vivo, excellent tissue compatibility and long-term structural and mechanical durability. Thus, this new Mg-alloy with highly uniform nanophasic biodegradation represents a major breakthrough in the field and a promising material for manufacturing the next generation biodegradable vascular stents.

  18. [Performance and Mechanism of Ferric Tannate in the Removal of Inorganic Nitrogen from Wastewater].

    PubMed

    Zhang, Rui-na; Li, Lin; Liu, Jun-xin

    2015-11-01

    A novel adsorbent material-ferric tannate was synthesized, and performances and mechanisms of NH4(+) -N, NO2(-) -N and NO3(-) -N were investigated via batch adsorption experiments. The results indicated that ferric tannate exhibited preferential adsorption for NH4(+) -N and NO2(-) -N. When the mass ratios of ferric tannate to NH4(+) -N and ferric tannate to NO2(-) -N were both 200, the removal efficiencies were both higher than 95%. The adsorption behaviors were analyzed with adsorption kinetic models, Langmuir and Freundlich isotherm adsorption models, and Weber-Morris equation. The results implied that NH4(+) -N and NO2(-) -N were adsorbed on the surface of ferric tannate in the forms of monolayer and multilayer, respectively. The pseudo-second order kinetic model was more suitable to describe the adsorption processes, and the external particle diffusion and surface adsorption played the key roles in the adsorption process. NH: -N could be combined with negative oxygen ions which distributed on the external surface of ferric tannate by the electrostatic interaction, whereas NO2(-) -N could be combined with ferric ions in ferric tannate by the electrostatic interaction and coordination. The present study provided scientific evidence for the application of ferric tannate as a potential adsorbent in the future. PMID:26911001

  19. Prevention of Acid Mine Drainage Through Complexation of Ferric Iron by Soluble Microbial Growth Products

    NASA Astrophysics Data System (ADS)

    Pandey, S.; Yacob, T. W.; Silverstein, J.; Rajaram, H.; Minchow, K.; Basta, J.

    2011-12-01

    Acid mine drainage (AMD) is a widespread environmental problem with deleterious impacts on water quality in streams and watersheds. AMD is generated largely by the oxidation of metal sulfides (i.e. pyrite) by ferric iron. This abiotic reaction is catalyzed by conversion of ferrous to ferric iron by iron and sulfur oxidizing microorganisms. Biostimulation is currently being investigated as an attempt to inhibit the oxidation of pyrite and growth of iron oxidizing bacteria through addition of organic carbon. This may stimulate growth of indigenous communities of acidophilic heterotrophic bacteria to compete for oxygen. The goal of this research is to investigate a secondary mechanism associated with carbon addition: complexation of free Fe(III) by soluble microbial growth products (SMPs) produced by microorganisms growing in waste rock. Exploratory research at the laboratory scale examined the effect of soluble microbial products (SMPs) on the kinetics of oxidation of pure pyrite during shaker flask experiments. The results confirmed a decrease in the rate of pyrite oxidation that was dependent upon the concentration of SMPs in solution. We are using these data to verify results from a pyrite oxidation model that accounts for SMPs. This reactor model involves differential-algebraic equations incorporating total component mass balances and mass action laws for equilibrium reactions. Species concentrations determined in each time step are applied to abiotic pyrite oxidation rate expressions from the literature to determine the evolution of total component concentrations. The model was embedded in a parameter estimation algorithm to determine the reactive surface area of pyrite in an abiotic control experiment, yielding an optimized value of 0.0037 m2. The optimized model exhibited similar behavior to the experiment for this case; the root mean squared of residuals for Fe(III) was calculated to be 7.58 x 10-4 M, which is several orders of magnitude less than the actual

  20. Synthesis and characterization of akaganeite-like ferric oxyhydroxides

    SciTech Connect

    Linehan, J.C.; Darab, J.G.; Matson, D.W.; Chen, X.; Amonette, J.E.

    1997-08-01

    Iron-based powders have been used as catalytic and stoichiometric reactants in a variety of organic reactions and are receiving additional attention as ion exchange materials or once-through adsorbents for clean-up of toxic or radioactive waste streams. Recent efforts have been directed toward the design of iron-based products, in particular iron sulfides, capable of performing as hydrocracking catalysts for coal liquefaction and heavy crude or resid cracking. Here the authors present structural studies of new materials having akaganeite-like structures and of their use as hydrocracking catalyst precursors. Akaganeite, {beta}-FeOOH, a natural ferric oxyhydroxide mineral, has a structure containing tunnel-like cavities in which chloride ions reside. Analogs of akaganeite in which carbonate or sulfate groups replace the chloride ions have also been synthesized. Both akaganeite and its substituted analogs are known to be precursors for active hydrocracking catalysts. The authors present powder X-ray diffraction (XRD) and X-ray absorption fine-structure spectroscopy (XAFS) data confirming the synthesis of new ferric oxyhydroxides having structures similar to akaganeite, but contain molybdate and tungstate oxy-anions. They also present a new hydrothermal method to prepare this family of materials.

  1. Ion flotation and solvent extraction of ferric thiocyanate complexes

    SciTech Connect

    Jurkiewicz, K.

    1987-12-01

    The influence of thiocyanate and accompanying mineral acids concentration on the effectiveness of Fe(III) ion flotation, Fe(III) precipitation in cetyltrimethylammonium ferric-thiocyanate form (as sublate), and Fe(III) extraction using ethyl acetate was studied. The effectiveness of these processes improves with the extent of Fe(III) complexation by thiocyanates. In the presence of acids, flotation and precipitation are increased as follows: HClO/sub 4/ < HCl < HNO/sub 3/ < H/sub 2/SO/sub 4/. The position of H/sub 3/PO/sub 4/ in this series changes with changing thiocyanate concentration. Extraction effectiveness is increased in the series: H/sub 3/PO/sub 4/ < H/sub 2/SO/sub 4/ < HNO/sub 3/, HClO/sub 4/, HCl. The following points are discussed: (a) the influence of acid anions competing with thiocyanate anions in Fe(III) complexation; (b) the influence of the competition between acid anions and complex ferric-thiocyanate anions in sublate formation; (c) the influence of hydrogen ion concentration increase in thiocyanate medium on the results of Fe(III) flotation, precipitation, and extraction; and (d) the influence of anion affinity for a collector on the solution surface properties and on Fe(III) flotation.

  2. The leaching of galena in ferric sulfate media

    NASA Astrophysics Data System (ADS)

    Dutrizac, J. E.; Chen, T. T.

    1995-04-01

    The leaching of galena (PbS) in ferric sulfate media was investigated over the temperature range 55 °C to 95 °C and for various Fe(SO4)1.5, H2SO4, FeSO4, and MgSO4 concentrations. Relatively slow kinetics were consistently observed; in most instances, the 1-2/3α-(1-α)2/3 vs time relationship, indicative of a diffusion-controlled reaction, was closely obeyed. The diffusion-controlled kinetics were attributed to the formation of a tenacious layer of PbSO4 and S0 on the surface of the galena. The generation and morphology of the reaction products were systematically determined by scanning electron microscopy, and complex growth mechanisms were illustrated. The leaching rate increased rapidly with increasing temperature, and the apparent activation energy is 61.2 kJ/mol. The rate increases as the 0.5 power of the ferric ion concentration but is nearly independent of the concentration of the FeSO4 reaction product. The rate is insensitive to H2SO4 concentrations <0.1 M but increases at higher acid levels. The presence of neutral sulfates, such as MgSO4, decreases the leaching rate to a modest extent.

  3. The dissolution of galena in ferric chloride media

    NASA Astrophysics Data System (ADS)

    Dutrizac, J. E.

    1986-01-01

    The dissolution of galena (PbS) in ferric chloride-hydrochloric acid media has been investigated over the temperature range 28 to 95 °C and for alkali chloride concentrations from 0 to 4.0 M. Rapid parabolic kinetics were observed under all conditions, together with predominantly (>95 pet) elemental sulfur formation. The leaching rate decreased slightly with increasing FeCl3 concentrations in the range 0.1 to 2.0 M, and was essentially independent of the concentration of the FeCl2 reaction product. The rate was relatively insensitive to HCl concentrations <3.0 M, but increased systematically with increasing concentrations of alkali or alkaline earth chlorides. Most significantly, the leaching rate decreased sharply and linearly with increasing initial concentrations of PbCl2 in the ferric chloride leaching media containing either 0.0 or 3.0 M NaCl. Although the apparent activation energy was in the range 40 to 45 kJ/mol (˜10 kcal/mol), this value was reduced to 16 kJ/mol (3.5 kcal/mol) when the influence of the solubility of lead chloride on the reaction rate was taken into consideration. The experimental results are consistent with rate control by the outward diffusion of the PbCl2 reaction product through the solution trapped in pores in the constantly thickening elemental sulfur layer formed on the surface of the galena.

  4. Particulate and THM precursor removal with ferric chloride

    SciTech Connect

    Childress, A.E.; Vrijenhoek, E.M.; Elimelech, M.; Tanaka, T.S.; Beuhler, M.D.

    1999-11-01

    Pilot-scale experiments were performed to investigate the effectiveness of enhanced coagulation in removing particles and trihalomethane (THM) precursors from two surface source waters: California State Project water and Colorado River water. The removal of suspended particles and natural organic matter at various ferric chloride doses and coagulation pHs was assessed through source water and filter effluent measurements of turbidity, particle count. UV{sub 254}, TOC, and THM formation potential. Overall, it was found that optimal removal of particles and THM precursors by enhanced coagulation with ferric chloride is obtained at high coagulant doses and low pH conditions. Generally, turbidity removal is more efficient and head loss is more moderate at ambient pH compared with pH 5.5. Additionally, filter effluent particle counts were found to be consistent with residual turbidity data. The removal of THM precursors by enhanced coagulation is significantly enhanced at pH 5.5 compared with ambient pH. The reduction in THM formation potential is consistent with the trends observed for the THM precursor removal data. Furthermore, specific UV absorbance was used to estimate the proportion of humic substances in the raw waters. Enhanced coagulation was found to be less effective for the source water with the lower specific UV absorbance.

  5. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia

    PubMed Central

    Friedrisch, João Ricardo; Cançado, Rodolfo Delfini

    2015-01-01

    Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15 mg/kg; maximum of 1000 mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403

  6. Intravenous ferric carboxymaltose for the treatment of iron deficiency anemia.

    PubMed

    Friedrisch, João Ricardo; Cançado, Rodolfo Delfini

    2015-01-01

    Nutritional iron deficiency anemia is the most common deficiency disorder, affecting more than two billion people worldwide. Oral iron supplementation is usually the first choice for the treatment of iron deficiency anemia, but in many conditions, oral iron is less than ideal mainly because of gastrointestinal adverse events and the long course needed to treat the disease and replenish body iron stores. Intravenous iron compounds consist of an iron oxyhydroxide core, which is surrounded by a carbohydrate shell made of polymers such as dextran, sucrose or gluconate. The first iron product for intravenous use was the high molecular weight iron dextran. However, dextran-containing intravenous iron preparations are associated with an elevated risk of anaphylactic reactions, which made physicians reluctant to use intravenous iron for the treatment of iron deficiency anemia over many years. Intravenous ferric carboxymaltose is a stable complex with the advantage of being non-dextran-containing and a very low immunogenic potential and therefore not predisposed to anaphylactic reactions. Its properties permit the administration of large doses (15mg/kg; maximum of 1000mg/infusion) in a single and rapid session (15-minute infusion) without the requirement of a test dose. The purpose of this review is to discuss some pertinent issues in relation to the history, pharmacology, administration, efficacy, and safety profile of ferric carboxymaltose in the treatment of patients with iron deficiency anemia. PMID:26670403

  7. Formation of Nanophase Iron in Lunar Soil Simulant for Use in ISRU Studies

    NASA Technical Reports Server (NTRS)

    Liu, Yang; Taylor, Lawrence A.; Hill, Eddy; Day, James D. M.

    2005-01-01

    For the prospective return of humans to the Moon and the extensive amount of premonitory studies necessary, large quantities of lunar soil simulants are required, for a myriad of purposes from construction/engineering purposes all the way to medical testing of its effects from ingestion by humans. And there is only a limited and precious quantity of lunar soil available on Earth (i.e., Apollo soils) - therefore, the immediate need for lunar soil simulants. Since the Apollo era, there have been several simulants; of these JSC-1 (Johnson Space Center) and MLS-1 (Minnesota Lunar Simulant) have been the most widely used. JSC-1 was produced from glassy volcanic tuff in order to approximate lunar soil geotechnical properties; whereas, MLS-1 approximates the chemistry of Apollo 11 high-Ti soil, 10084. Stocks of both simulants are depleted, but JSC-1 has recently gone back into production. The lunar soil simulant workshop, held at Marshall Space Flight Center in January 2005, identified the need to make new simulants for the special properties of lunar soil, such as nanophase iron (np-Fe(sup 0). Hill et al. (2005, this volume) showed the important role of microscale Fe(sup 0) in microwave processing of the lunar soil simulants JSC-1 and MLS-1. Lunar soil is formed by space weathering of lunar rocks (e.g., micrometeorite impact, cosmic particle bombardment). Glass generated during micrometeorite impact cements rock and mineral fragments together to form aggregates called agglutinates, and also produces vapor that is deposited and coats soil grains. Taylor et al. (2001) showed that the relative amount of impact glass in lunar soil increases with decreasing grain size and is the most abundant component in lunar dust (less than 20 micrometer fraction). Notably, the magnetic susceptibility of lunar soil also increases with the decreasing grain size, as a function of the amount of nanophase-sized Fe(sup 0) in impact-melt generated glass. Keller et al. (1997, 1999) also

  8. Acupuncture inhibits ferric iron deposition and ferritin-heavy chain reduction in an MPTP-induced parkinsonism model.

    PubMed

    Choi, Yeong-Gon; Park, Jae-Hyun; Lim, Sabina

    2009-01-30

    This study investigated the effect of acupuncture on iron-related oxidative damage in a mouse model designed as a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism model. To generate the chronic parkinsonism model, mice were intraperitoneally injected with MPTP (20mg/kg, one daily injection) for 30 days and acupuncture was performed at acupoints LR3 (Taichong) and GB34 (Yanglingquan) at 48h intervals. Acupuncture inhibited decreases in the immunoreactivities of tyrosine hydroxylase (TH) and dopamine transporter (DAT) that occurred as a result of MPTP neurotoxicity. The presence of ferric iron (Fe(3+)), but not ferrous iron (Fe(2+)), was strongly increased in the substantia nigra (SN) as a result of chronic loading of MPTP, whereas the ferritin-heavy chain (F-H) was significantly decreased. However, acupuncture treatment inhibited the increase in ferric iron and the decrease in the F-H that was induced by MPTP. Additionally, treatment with MPTP and acupuncture caused no changes in the presence of ferrous iron and ferritin-light chain (F-L) as a result of the treatments. The mRNA of F-H was also not affected. These results suggest that acupuncture may inhibit iron-related oxidative damage and may prevent the deleterious alteration of iron metabolism in the MPTP model. PMID:19056464

  9. Subsurface injection of dissolved ferric chloride to form a chemical barrier: Laboratory investigations

    SciTech Connect

    Morrison, S.J.; Spangler, R.R.; Morris, S.A.

    1996-01-01

    A chemical barrier is a permeable zone of reactive materials emplaced in the subsurface to remove ground-water contaminants while allowing clean ground water to pass through. Because dissolved ferric chloride hydrolyzes to amorphous ferric oxyhydroxide when it contacts calcite (CaCO{sub 3}), it may be viable to emplace a zone of amorphous ferric oxyhydroxide (an absorbent for U, Mo, and other inorganic contaminants) into calcite-bearing geologic units by injecting ferric chloride through wells. For a chemical barrier to be successful, it must remain permeable and must be immobile. This investigation monitored chemical compositions, hydraulic conductivity, and iron mobility in laboratory columns and in a two-dimensional tank to determine the viability of injecting ferric chloride to form an amorphous ferric oxyhydroxide chemical barrier. The authors introduced a ferric chloride solution (1,345 mg/1[0.024 m] Fe) to calcite-bearing alluvial gravel to form a chemical barrier of amorphous ferric oxyhydroxide, followed by solutions contaminated with U and Mo. The simulated chemical barriers decreased U and Mo concentrations to less than 0.05 mg/l (2.1 {times} 10{sup {minus}7} m) and 0.01 (1.0 {times} 10{sup {minus}7} m), respectively; however, the breakthrough front is spread out with concentrations increasing to more than regulatory guideline values sooner than predicted. The hydraulic conductivity of calcite-bearing alluvial gravel decreased substantially during ferric chloride introduction because of the formation of carbon dioxide but increased to within factors of 1 to 5 of the original value as synthetic ground water flowed through the system. Amorphous ferric oxyhydroxide that formed in these experiments remained immobile at flow rates exceeding those typical of ground water. These laboratory results, in conjunction with site-specific characterization data, can be used to design chemical barriers emplaced by injection of ferric chloride.

  10. The Self-Assembled Nanophase Particle (SNAP) Process: A Nanoscience Approach to Coatings

    SciTech Connect

    Donley, Michael S.; Mantz, Robert A.; Khramov, A. N.; Balbyshev, Vsevolod; Kasten, Linda S.; Gaspar, Dan J.

    2003-09-15

    In the corrosion protection of aluminum-skinned aircraft, surface pretreatment and cleaning are critical steps in protecting aerospace alloys from corrosion. Our recent discovery of a revolutionary new method of forming functionalized silica nanoparticles in situ in an aqueous-based sol-gel process, and then crosslinking the nanoparticles to form a thin film, is an excellent example of a nanoscience approach to coatings. This coating method is called the self-assembled nanophase particle (SNAP) process. The SNAP coating process consists of three stages: (1) sol-gel processing; (2) SNAP solution mixing; (3) SNAP coating application and cure. Here, we report on key parameters in the ''sol-gel processing'' and the ''coating application and cure'' stages in the GPTMS/TMOS system. The SNAP process is discussed from the formation of the nanosized macromolecules to the coating application and curing process. The ''sol-gel processing'' stage involves hydrolysis and condensation reactions and is controlled by the solution pH and water content. Here, the molar ratio of water to hydrolysable silane is a key factor. SNAP solutions have been investigated by NMR, IR, light scattering, and GPC to identify molecular condensation structures formed as a function of aging time in the solution. In moderate pH and highwater content solutions, hydrolysis occurs rapidly and condensation kinetic conditions are optimized to generate nanophase siloxane macromolecules. In the ''SNAP solution mixing'' stage, crosslinking agents and additives are added to the solution, which is then applied to a substrate by dip-coating to form the SNAP coating. The chemical structure and morphology of the films have been characterized using X-ray diffraction (XRD), time-of-flight secondary ion mass spectrometry (TOF-SIMS) and atomic force microscopy (AFM). SNAP films are amorphous but exhibit nanostructured assembly of siloxane oligomers at a separation of about 1.8 nm as well as molecular level ordering of O

  11. Magnetic Susceptibility Analyses of Nanophase Iron Particle Diameters and Volumes Produced through Laser Irradiation.

    NASA Astrophysics Data System (ADS)

    Markley, M. M.; Kletetschka, G.

    2015-12-01

    Micrometeorite impacts greatly modify surfaces exposed to the space environment. This interaction vaporizes the surficial material and allows for the re-precipitation of minerals and iron. Characterizing the recondensed iron or nanophase metallic iron (npFe0) improves our interpretations in remote sensing of planetary surfaces. We irradiated olivine samples with energies simulating micrometeorite impact energies from around the inner Solar System. They revealed npFe0 as single domain (SD) and superparamagnetic (SPM) iron grains varying in size. Spectrally they changed the spectral reflectance of silicate minerals and contribute to "space weathering": (1) darkens the overall reflectance, (2) steepens (or reddens) the spectral slope, and (3) decreases the contrast in the silicate 1 µm band. Using frequency dependent magnetic susceptibility (MS), we revealed patterns of npFe0 sizes. Fresh samples contained some nanophase magnetic sources due to decreasing magnetic susceptibility, when changing frequency from 4 kHz to 16 kHz. Using the fresh olivine as a standard, the lunar analog displayed increased MS at the lower 4 kHz indicating that more iron was transformed into magnetic sources. At 16 kHz, the MS decreased due to SPM particles that were being formed with sizes <10 nm. With the Mercury analog, at higher 16 kHz frequencies the MS increased rather than decreased. We can infer that the excess energy from our laser converted the amount of smaller <10 nm SPM particles by growth into an increasing volume of >10 nm particles. With the asteroid analog, we found a lower MS at 16 kHz, but nothing less MS than the Lunar analog. The 4 kHz MS was similar to the fresh olivine. At the lowest irradiation energy for the asteroid sample we have evidence that we are producing npFe0 particles. Our data compares well with traditional methods of forming npFe0, such as thermal processing of olivine, suggesting that with laser irradiation there is a linear increase of nanoparticles

  12. Ferric and cobaltous hydroacid complexes for forward osmosis (FO) processes.

    PubMed

    Ge, Qingchun; Fu, Fengjiang; Chung, Tai-Shung

    2014-07-01

    Cupric and ferric hydroacid complexes have proven their advantages as draw solutes in forward osmosis in terms of high water fluxes, negligible reverse solute fluxes and easy recovery (Ge and Chung, 2013. Hydroacid complexes: A new class of draw solutes to promote forward osmosis (FO) processes. Chemical Communications 49, 8471-8473.). In this study, cobaltous hydroacid complexes were explored as draw solutes and compared with the ferric hydroacid complex to study the factors influencing their FO performance. The solutions of the cobaltous complexes produce high osmotic pressures due to the presence of abundant hydrophilic groups. These solutes are able to dissociate and form a multi-charged anion and Na(+) cations in water. In addition, these complexes have expanded structures which lead to negligible reverse solute fluxes and provide relatively easy approaches in regeneration. These characteristics make the newly synthesized cobaltous complexes appropriate as draw solutes. The FO performance of the cobaltous and ferric-citric acid (Fe-CA) complexes were evaluated respectively through cellulose acetate membranes, thin-film composite membranes fabricated on polyethersulfone supports (referred as TFC-PES), and polybenzimidazole and PES dual-layer (referred as PBI/PES) hollow fiber membranes. Under the conditions of DI water as the feed and facing the support layer of TFC-PES FO membranes (PRO mode), draw solutions at 2.0 M produced relatively high water fluxes of 39-48 LMH (L m(-2) hr(-1)) with negligible reverse solute fluxes. A water flux of 17.4 LMH was achieved when model seawater of 3.5 wt.% NaCl replaced DI water as the feed and 2.0 M Fe-CA as the draw solution under the same conditions. The performance of these hydroacid complexes surpasses those of the synthetic draw solutes developed in recent years. This observation, along with the relatively easy regeneration, makes these complexes very promising as a novel class of draw solutes. PMID:24768702

  13. Functional analysis of the ferric uptake requlator gene, fur, in Xanthomonas vesicatoria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the f...

  14. Possible Association of Ferrous Phosphates and Ferric Sulfates in S-rich Soil on Mars

    NASA Astrophysics Data System (ADS)

    Mao, J.; Schroeder, C.; Haderlein, S.

    2012-12-01

    NASA Mars Exploration Rover (MER) Spirit explored Gusev Crater to look for signs of ancient aqueous activity, assess past environmental conditions and suitability for life. Spirit excavated light-toned, S-rich soils at several locations. These are likely of hydrothermal, possibly fumarolic origin. At a location dubbed Paso Robles the light-toned soil was also rich in P - a signature from surrounding rock. While S is mainly bound in ferric hydrated sulfates [1], the mineralogy of P is ill-constrained [2]. P is a key element for life and its mineralogy constrains its availability. Ferrous phases observed in Paso Robles Mössbauer spectra may represent olivine and pyroxene from surrounding basaltic soil [1] or ferrous phosphate minerals [3]. Phosphate is well-known to complex and stabilize Fe 2+ against oxidation to Fe 3+ . Schröder et al. [3] proposed a formation pathway of ferrous phosphate/ferric sulfate associations: sulfuric acid reacts with basalt containing apatite, forming CaSO4 and phosphoric acid. The phosphoric and/or excess sulfuric acid reacts with olivine, forming Fe2+-phosphate and sulfate. The phosphate is less soluble and precipitates. Ferrous sulfate remains in solution and is oxidized as pH increases. To verify this pathway, we dissolved Fe2+-chloride and Na-phosphate salts in sulfuric acid inside an anoxic glovebox. The solution was titrated to pH 6 by adding NaOH when a first precipitate formed, which was ferrous phosphate according to Mössbauer spectroscopy (MB). At that point the solution was removed from the glovebox and allowed to evaporate in the presence of atmospheric oxygen, leading to the oxidation of Fe2+. The evaporation rate was controlled by keeping the suspensions at different temperatures; pH was monitored during the evaporation process. The final precipitates were analyzed by MB and X-Ray Fluorescence (XRF), comparable to MER MB and Alpha Particle X-ray Spectrometer instrument datasets, and complementary techniques such as X

  15. Deposition rates of oxidized iron on Mars

    NASA Technical Reports Server (NTRS)

    Burns, R. G.

    1993-01-01

    The reddened oxidized surface of Mars is indicative of temporal interactions between the Martian atmosphere and its surface. During the evolution of the Martian regolith, primary ferromagnesian silicate and sulfide minerals in basaltic rocks apparently have been oxidized to secondary ferric-bearing assemblages. To evaluate how and when such oxidized deposits were formed on Mars, information about the mechanisms and rates of chemical weathering of Fe(2+)-bearing minerals has been determined. In this paper, mechanisms and rates of deposition of ferric oxide phases on the Martian surface are discussed.

  16. The stability of oxyamphiboles: Existence of Ferric-bearing minerals under the reducing conditions on the surface of Venus

    NASA Technical Reports Server (NTRS)

    Straub, Darcy W.; Burns, Roger G.

    1993-01-01

    An enigma of Venusian mineralogy is the suggestion that Fe(3+)-bearing minerals exist under the reducing conditions of the Venusian atmosphere. Analysis of the spectrophotometric data from the Venera 13 and 14 missions, combined with the laboratory reflectance spectral measurements of oxidized basalts at elevated temperatures, led to the suggestion that metastable hematite might exist on Venus. Heating experiments at 475 C when f(sub O2) approximately 10(exp -24) demonstrated that the hematite to magnetite conversion is rapid indicating metastable hematite is not present on Venus. In addition to hematite, several other ferric oxide and silicate minerals have been proposed to occur on Venus, including laihunite or ferrifayalite, Fe(3+)-bearing tephroite, oxyamphiboles, and oxybiotites. Heating experiments performed on these Fe(3+)-bearing minerals under temperature-f(sub O2) conditions existing on Venus suggest that only oxyamphiboles and oxybiotites may be stable on the surface of Venus.

  17. Fe{sup II} induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology

    SciTech Connect

    Usman, M.; Abdelmoula, M.; Hanna, K.; and others

    2012-10-15

    The Moessbauer spectroscopy was used to monitor the mineralogical transformations of ferrihydrite (F), lepidocrocite (L) and goethite (G) into magnetite as a function of aging time. Ferric oxyhydroxides were reacted with soluble Fe{sup II} and OH{sup -} in stoichiometric amounts to form magnetite at an initial pH of {approx}9.7. Observed transformation extent into magnetite followed the order: F>L>G with almost 30% of untransformed G after 1 month. The departure from stoichiometry, {delta}, of magnetite (Fe{sub 3-{delta}}O{sub 4}) generated from F ({delta}{approx}0.04) and L ({delta}{approx}0.05) was relatively low as compared to that in magnetite from G ({delta}{approx}0.08). The analysis by transmission electron microscopy and BET revealed that generated magnetite was also different in terms of morphology, particle size and surface area depending on the nature of initial ferric oxyhydroxide. This method of preparation is a possible way to form nano-sized magnetite. - Graphical abstract: Moessbauer spectrum of the early stage of magnetite formation formed from the interaction of adsorbed Fe{sup II} species with goethite. Highlights: Black-Right-Pointing-Pointer Ferric oxides were reacted with hydroxylated Fe{sup II} to form magnetite. Black-Right-Pointing-Pointer Magnetite formation was quantified as a function of aging time. Black-Right-Pointing-Pointer Complete transformation of ferrihydrite and lepidocrocite was achieved. Black-Right-Pointing-Pointer Almost 70% of initial goethite was transformed. Black-Right-Pointing-Pointer Resulting magnetites have differences in stoichiometry and morphological properties.

  18. Nanophase iron production through laser irradiation and magnetic detection of space weathering analogs

    NASA Astrophysics Data System (ADS)

    Markley, Matthew; Kletetschka, Gunther

    2016-04-01

    Airless bodies are constantly exposed to space weathering. The Moon and other similar S-type asteroids physically change through comminution, melting, and agglutinate formation, while spectrally they are darkening, steepening (or reddening) the spectral slope toward longer wavelengths, and reducing silicate mineral absorption bands. In these S-type bodies the production of submicroscopic metallic iron, or nanophase iron (SMFe, npFe0) is a major contributor in these spectral changes. We made a qualitative estimate of both quantity and size distribution of produced metallic iron by space weathered analog, olivine irradiated by laser. Through SEM observation we confirmed that nanoparticles of metallic iron formed in the nm range. Spectroscopic and magnetic susceptibility (MS) through temperature analyses reveal an increasing trend of npFe0 formation, darkening, reddening, and shallowing of the 1 μm olivine absorption band. Olivine that produced the larger end of the size range of npFe0 produced similar effects, except for increased reddening. The magnetic data suggests that with laser irradiation there is both a linear increase of nanoparticles and a logarithmic increase in spectral change with SW time.

  19. Structure and Growth of Quasi One-Dimensional YSi2 Nanophases on Si(100)

    PubMed Central

    Iancu, V.; Kent, P.R.C.; Hus, S.; Hu, H.; Zeng, C.G.; Weitering, H.H.

    2013-01-01

    Quasi one-dimensional YSi2 nanostructures are formed via self-assembly on the Si(100) surface. These epitaxial nanowires are metastable and their formation strongly depends on the growth parameters. Here, we explore the various stages of yttrium silicide formation over a range of metal coverages and growth temperatures, and establish a rudimentary phase diagram for these novel and often coexisting nanophases. In addition to previously identified stoichiometric wires, we identify several new nanowire systems. These nanowires exhibit a variety of surface reconstructions, which sometimes coexist on a single wire. From a comparison of scanning tunneling microcopy images, tunneling spectra, and first-principles density functional theory calculations, we determine that these surface reconstructions arise from local orderings of yttrium vacancies. Nanowires often agglomerate into nanowire bundles, the thinnest of which are formed by single wire pairs. The calculations show that such bundles are energetically favored compared to well-separated single wires. Thicker bundles are formed at slightly higher temperature. They extend over several microns, forming a robust network of conducting wires that could possibly be employed in nanodevice applications. PMID:23221350

  20. Niobium Uptake and Release by Bacterial Ferric Ion Binding Protein

    PubMed Central

    Shi, Yanbo; Harvey, Ian; Campopiano, Dominic; Sadler, Peter J.

    2010-01-01

    Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed. PMID:20445753

  1. Selective adsorption of phosphoproteins on gel-immobilized ferric chelate

    SciTech Connect

    Muszynska, G.; Andersson, L.; Porath, J.

    1986-11-04

    Ferric ions are very strongly adsorbed to iminodiacetic acid substituted agarose. This firmly immobilized complex acts as a selective immobilized metal affinity adsorbent for phosphoproteins. Chromatography based on this principle is illustrated by the adsorption-desorption behavior of egg yolk phosvitin before and after dephosphorylation as well as by the change in the chromatographic pattern before and after enzymic phosphorylation of selected histones. The strength of binding is dependent on the phosphate content. The difference is binding before and after phosphorylation of a single amino acid residue is demonstrated. Affinity elution can be accomplished by inclusion in the buffer of (1) phosphoserine or (2) a displacing metal ion such as Mg/sup 2 +/.

  2. Synchrotron Characterization of Hydrogen and Ferric Iron in Martian Meteorites

    NASA Technical Reports Server (NTRS)

    Dyar, Melinda D.

    2003-01-01

    The hydrogen budget of the Martian interior is distributed among several phases: melts, hydrous minerals, and nominally anhydrous minerals like olivine, pyroxene, and garnet. All these phases are vulnerable to loss of hydrogen during shock, excavation and transport via the mechanism of dehydrogenation, in which the charge on the H protons is left behind as polarons on Fe atoms. Thus, both H and F(3x) must be analyzed in order to reconstruct hydrogen and oxygen fugacities on Mars. To date, SIMS data have elucidated D/H and H contents of hydrous phases in SNC meteorites, but anhydrous martian minerals have not been systematically examined for trace hydrogen. Ferric iron has been quantified using XANES in many marital phases, but integrated studies of both Fe(3x) and H on the same spots are really needed to address the H budget. Here, we measure and profile H and Fe(3x) abundances in and across individual grains of glass and silicates in Martian meteorites. We use the new technology of synchrotron microFI'lR spectroscopy to measure the hydrogen contents of hydrous and nominally anhydrous minerals in martian meteorites on 30-100 microns thick, doubly polished thin sections on spots down to 3 x 3 microns. Synchrotron microXANES was used to analyze Fe(3x) on the same scale, and complementary SIMS D/H data will be collected where possible, though at a slightly larger scale. Development of this combination of techniques is critical because future sample return missions will generate only microscopic samples for study. Results have been used to quantitatively assess the distribution of hydrogen and ferric iron among phases in the martian interior, which will better constrain the geodynamic processes of the interior, as well as the overall hydrogen and water budgets on Mars.

  3. Application of granular ferric hydroxides for removal elevated concentrations of arsenic from mine waters

    NASA Astrophysics Data System (ADS)

    Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk

    2015-04-01

    Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular

  4. [Stabilization of Cadmium Contaminated Soils by Ferric Ion Modified Attapulgite (Fe/ATP)--Characterizations and Stabilization Mechanism].

    PubMed

    Rong, Yang; Li, Rong-bo; Zhou, Yong-li; Chen, Jing; Wang, Lin-ling; Lu, Xiao-hua

    2015-08-01

    Ferric ion modified attapulgite (Fe/ATP) was prepared by impregnation and its structure and morphology were characterized. The toxicity characteristic leaching procedure (TCLP) was used to evaluate the effect of Cadmium( Cd) stabilization in soil with the addition of attapulgite (ATP) and Fe/ATP. The stabilization mechanism of Cd was further elucidated by comparing the morphologies and structure of ATP and Fe/ATP before and after Cd adsorption. Fe/ATP exhibited much better adsorption capacity than ATP, suggesting different adsorption mechanisms occurred between ATP and Fe/ATP. The leaching concentrations of Cd in soil decreased by 45% and 91% respectively, with the addition of wt. 20% ATP and Fe/ATP. The former was attributed to the interaction between Cd2 and --OH groups by chemical binding to form inner-sphere complexes in ATP and the attachment between Cd2+ and the defect sites in ATP framework. Whereas Cd stabilization with Fe/ATP was resulted from the fact that the active centers (--OH bonds or O- sites) on ATP could react with Fe3+ giving Fe--O--Cd-- bridges, which helped stabilize Cd in surface soil. What'more, the ferric oxides and metal hydroxides on the surface of ATP could interact with Cd, probably by the formation of cadmium ferrite. In conclusion, Fe/ATP, which can be easily prepared, holds promise as a potential low-cost and environmental friendly stabilizing agent for remediation of soil contaminated with heavy metals. PMID:26592037

  5. Iron Amendment and Fenton Oxidation of MTBE-Spent Granular Activated Carbon

    EPA Science Inventory

    Fenton-driven regeneration of Methyl tert-butyl ether (MTBE)-spent granular activated carbon (GAC) involves Fe amendment to the GAC to catalyze H2O2 reactions and to enhance the rate of MTBE oxidation and GAC regeneration. Four forms of iron (ferric sulfate, ferric chloride, fer...

  6. A method for preparing ferric activated carbon composites adsorbents to remove arsenic from drinking water.

    PubMed

    Zhang, Qiao Li; Lin, Y C; Chen, X; Gao, Nai Yun

    2007-09-30

    Iron oxide/activated carbon (FeO/AC) composite adsorbent material, which was used to modify the coal-based activated carbon (AC) 12 x 40, was prepared by the special ferric oxide microcrystal in this study. This composite can be used as the adsorbent to remove arsenic from drinking water, and Langmuir isotherm adsorption equation well describes the experimental adsorption isotherms. Then, the arsenic desorption can subsequently be separated from the medium by using a 1% aqueous NaOH solution. The apparent characters and physical chemistry performances of FeO/AC composite were investigated by X-ray diffraction (XRD), nitrogen adsorption, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Batch and column adsorption experiments were carried out to investigate and compare the arsenic removal capability of the prepared FeO/AC composite material and virgin activated carbon. It can be concluded that: (1) the main phase present in this composite are magnetite (Fe(3)O(4)), maghemite (gamma-Fe(2)O(3)), hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeO(OH)); (2) the presence of iron oxides did not significantly affect the surface area or the pore structure of the activated carbon; (3) the comparisons between the adsorption isotherms of arsenic from aqueous solution onto the composite and virgin activated carbon showed that the FeO/AC composite behave an excellent capacity of adsorption arsenic than the virgin activated carbon; (4) column adsorption experiments with FeO/AC composite adsorbent showed that the arsenic could be removed to below 0.01 mg/L within 1250 mL empty bed volume when influent concentration was 0.5mg/L. PMID:17434260

  7. Aggregation in complex triacylglycerol oils: coarse-grained models, nanophase separation, and predicted x-ray intensities

    NASA Astrophysics Data System (ADS)

    Quinn, Bonnie; Peyronel, Fernanda; Gordon, Tyler; Marangoni, Alejandro; Hanna, Charles B.; Pink, David A.

    2014-11-01

    Triacylglycerols (TAGs) are biologically important molecules which form crystalline nanoplatelets (CNPs) and, ultimately, fat crystal networks in edible oils. Characterizing the self-assembled hierarchies of these networks is important to understanding their functionality and oil binding capacity. We have modelled CNPs in multicomponent oils and studied their aggregation. The oil comprises (a) a liquid componentt, and (b) components which phase separately on a nano-scale (nano-phase separation) to coat the surfaces of the CNPs impenetrably, either isotropically or anisotropically, with either liquid-like coatings or crystallites, forming a coating of thickness Δ. We modelled three cases: (i) liquid-liquid nano-phase separation, (ii) solid-liquid nano-phase separation, with CNPs coated isotropically, and (iii) CNPs coated anisotropically. The models were applied to mixes of tristearin and triolein with fully hydrogenated canola oil, shea butter with high oleic sunflower oil, and cotton seed oil. We performed Monte Carlo simulations, computed structure functions and concluded: (1) three regimes arose: (a) thin coating regime, Δ \\lt 0.0701 u (b) transition regime, 0.0701 u≤slant Δ ≤slant 0.0916 u and (c) thick coating regime, Δ \\gt 0.0916 u . (arbitrary units, u) (2) The thin coating regime exhibits 1D TAGwoods, which aggregate, via DLCA/RLCA, into fractal structures which are uniformly distributed in space. (3) In the thick coating regime, for an isotropic coating, TAGwoods are not formed and coated CNPs will not aggregate but will be uniformly distributed in space. For anisotropic coating, TAGwoods can be formed and might form 1D strings but will not form DLCA/RLCA clusters. (4) The regimes are, approximately: thin coating, 0\\lt Δ \\lt 7.0 \\text{nm} transition regime, 7.0\\ltΔ \\lt 9.2 \\text{nm} and thick coating, Δ \\gt 9.2 \\text{nm} (5) The minimum minority TAG concentration required to undergo nano-phase separation is, approximately, 0.29% (thin

  8. Formation of ferric iron crusts in Quaternary sediments of Lake Baikal, Russia, and implications for paleoclimate

    USGS Publications Warehouse

    Deike, R.G.; Granina, L.; Callender, E.; McGee, J.J.

    1997-01-01

    Phosphate-bearing, ferric iron and siliceous crusts ranging in age from Recent to approximately 65,000 yr B.P. are observed in sediments of Lake Baikal. In younger sediments the crusts are at the base of a spectrum of secondary iron and manganese oxides that accumulate near the sediment/water interface in the zone of positive oxidation potential beneath an oxygenated water column. In areas where the average Quaternary sedimentation rates have been slow (e.g. 0.026 mm/yr), the crusts are more common, and span a wider range of ages. No crusts have been found where the Quaternary sedimentation mode has been deltaic and rapid (0.15 mm/yr). Independent core correlation based on magnetic properties of the sediment suggests that crusts can be correlated over most of Academician Ridge, an area that is particularly sensitive to climatic events affecting the concentration of suspended sediment. These crusts may be indicative of periods of low suspended sediment concentration, which occur during sustained transitions from glacial periods of high detrital input, to interglacial periods of high diatom sedimentation. The crusts are dominated by iron-rich and siliceous amorphous mineral phases, with an FeO:SiO2 by weight of 3:1. Regardless of age or location in the lake the Fe phase always includes Ca, P and Mn. Extensive microprobe data for these four elements recast as normalized elemental weight percent reveal linear trends of Ca:P and Fe:P. With increasing P, Ca also increases such that the two elements maintain a linear relationship passing very close to the origin and with a mean molar Ca:P=0.3 (too low for well-characterized apatite). Conversely, with increasing P, Fe decreases (mean molar Fe:P=3.4). There is no correlation between Mn and P. Molar Fe:P ratios for vivianite (an Fe(II) phosphate mineral observed in sediments closely below some crusts) are clustered around a stoichiometric composition. The covariant increase in Ca:P and the corresponding decrease in Fe:P may

  9. Mössbauer and infrared spectroscopy as a diagnostic tool for the characterization of ferric tannates

    NASA Astrophysics Data System (ADS)

    Jaén, Juan A.; Navarro, César

    2009-07-01

    Fourier transform infrared spectroscopy and Mössbauer spectroscopy are use for the characterization and qualitative analysis of hydrolysable and condensed tannates. The two classes of tannates may be differentiated from the characteristic IR pattern. Mössbauer proof that a mixture of mono- and bis-type ferric tannate complexes, and an iron(II)-tannin complex are obtained from the interaction of hydrolysable tannins (tannic acid and chestnut tannin) and condensed tannins (mimosa and quebracho) with a ferric nitrate solution. At pH 7, a partially hydrolyzed ferric tannate complex was also obtained.

  10. Near the Ferric Pseudobrookite Composition (Fe2TiO5).

    PubMed

    Seitz, Guillaume; Penin, Nicolas; Decoux, Léa; Wattiaux, Alain; Duttine, Mathieu; Gaudon, Manuel

    2016-03-01

    Because of a very low thermodynamic stability, obtaining a pure monophasic compound of ferric pseudobrookite is quite difficult to achieve. Indeed, the low reticular energy of this phase leads easily to its decomposition and the occurrence of the secondary phases: hematite (Fe2O3) and/or rutile (TiO2). Samples with global composition Fe2-xTi1+xO5 (x = 0, 0.05, and 0.10) have been synthesized by the Pechini route and, thereafter, thermally treated at different temperatures. The concentrations of Fe2O3 and TiO2 secondary phases were accurately determined and correlated with the target compositions and the synthesis parameters, especially the thermal treatment temperature. As revealed by Mössbauer spectroscopy, all iron ions are at the III+ oxidation state. Thus, the formation of hematite or rutile as a secondary phase may be related to the occurrence of cationic vacancies within the pseudobrookite structure, with the amount of vacancies depending on the annealing temperature. In light of the presented results, it appears unreasonable to propose a "fixed" binary phase diagram for such a complex system. Furthermore, the occurrence of cationic vacancies induces a coloration change (darkening), preventing any industrial use of this reddish-brown pseudobrookite as a ceramic pigment. PMID:26866894

  11. Multidomain Human Peroxidasin 1 Is a Highly Glycosylated and Stable Homotrimeric High Spin Ferric Peroxidase*

    PubMed Central

    Soudi, Monika; Paumann-Page, Martina; Delporte, Cedric; Pirker, Katharina F.; Bellei, Marzia; Edenhofer, Eva; Stadlmayr, Gerhard; Battistuzzi, Gianantonio; Boudjeltia, Karim Zouaoui; Furtmüller, Paul G.; Van Antwerpen, Pierre; Obinger, Christian

    2015-01-01

    Human peroxidasin 1 (hsPxd01) is a multidomain heme peroxidase that uses bromide as a cofactor for the formation of sulfilimine cross-links. The latter confers critical structural reinforcement to collagen IV scaffolds. Here, hsPxd01 and various truncated variants lacking nonenzymatic domains were recombinantly expressed in HEK cell lines. The N-glycosylation site occupancy and disulfide pattern, the oligomeric structure, and unfolding pathway are reported. The homotrimeric iron protein contains a covalently bound ferric high spin heme per subunit with a standard reduction potential of the Fe(III)/Fe(II) couple of −233 ± 5 mV at pH 7.0. Despite sequence homology at the active site and biophysical properties similar to human peroxidases, the catalytic efficiency of bromide oxidation (kcat/KMapp) of full-length hsPxd01 is rather low but increased upon truncation. This is discussed with respect to its structure and proposed biosynthetic function in collagen IV cross-linking. PMID:25713063

  12. Factors influencing the mechanism of surfactant catalyzed reaction of vitamin C-ferric chloride hexahydrate system

    NASA Astrophysics Data System (ADS)

    Farrukh, Muhammad Akhyar; Kauser, Robina; Adnan, Rohana

    2013-09-01

    The kinetics of vitamin C by ferric chloride hexahydrate has been investigated in the aqueous ethanol solution of basic surfactant viz. octadecylamine (ODA) under pseudo-first order conditions. The critical micelle concentration (CMC) of surfactant was determined by surface tension measurement. The effect of pH (2.5-4.5) and temperature (15-35°C) in the presence and absence of surfactant were investigated. Activation parameters, Δ E a, Δ H #, Δ S #, Δ G ≠, for the reaction were calculated by using Arrhenius and Eyring plot. Surface excess concentration (Γmax), minimum area per surfactant molecule ( A min), average area occupied by each molecule of surfactant ( a), surface pressure at the CMC (Πmax), Gibb's energy of micellization (Δ G M°), Gibb's energy of adsorption (Δ G ad°), were calculated. It was found that the reaction in the presence of surfactant showed faster oxidation rate than the aqueous ethanol solution. Reaction mechanism has been deduced in the presence and absence of surfactant.

  13. Amelioration of ferric nitrilotriacetate-induced hepatotoxicity in Wistar rats by diallylsulfide.

    PubMed

    Ansar, S; Iqbal, M

    2016-03-01

    Garlic contains diallylsulfide (DAS) and other structurally related compounds that are widely believed to be active agents in preventing cancer. This study shows the effect of DAS (a phenolic antioxidant used in foods, cosmetics, and pharmaceutical products) on ferric nitrilotriacetate (Fe-NTA)-induced hepatotoxicity in rats. Male albino rats of Wistar strain weighing 125-150 g were given a single dose of Fe-NTA (9 mg kg(-1) body weight, intraperitoneally) after 1 week of treatment with 100 and 200 mg kg(-1) DAS in corn oil respectively administered through the gavage. Fe-NTA administration led to 2.5-fold increase in the values of both alanine transaminase and aspartate aminotransferase, respectively, and 3.2-fold increase in the activity of lactate dehydrogenase, microsomal lipid peroxidation to approximately 2.0-fold compared to saline-treated control. The activities of glutathione (GSH) and other antioxidant enzymes decreased to a range of 2.2-2.5-fold. These changes were reversed significantly (p < 0.001) in animals receiving a pretreatment of DAS. DAS protected against hepatic lipid peroxidation, hydrogen peroxide generation, preserved GSH levels, and GSH metabolizing enzymes to 60-80% as compared to Fe-NTA alone-treated group. Present data suggest that DAS can ameliorate the toxic effects of Fe-NTA and suppress oxidant-induced tissue injury and hepatotoxicity in rats. PMID:25904316

  14. Biogenic catalysis of soil formation on Mars?

    NASA Technical Reports Server (NTRS)

    Bishop, J. L.

    1998-01-01

    The high iron abundance and the weak ferric iron spectral features of martian surface material are consistent with nanophase (nm-sized) iron oxide minerals as a major source of iron in the bright region soil on Mars. Nanophase iron oxide minerals, such as ferrihydrite and schwertmannite, and nanophase forms of hematite and goethite are formed by both biotic and abiotic processes on Earth. The presence of these minerals on Mars does not indicate biological activity on Mars, but it does raise the possibility. This work includes speculation regarding the possibility of biogenic soils on Mars based on previous observations and analyses. A remote sensing goal of upcoming missions should be to determine if nanophase iron oxide minerals, clay silicates and carbonates are present in the martian surface material. These minerals are important indicators for exobiology and their presence on Mars would invoke a need for further investigation and sample return from these sites.

  15. How the Ferric Iron Proportion in Basalts Changes Towards the Iceland Plume

    NASA Astrophysics Data System (ADS)

    Shorttle, O.; Moussallam, Y.; Hartley, M. E.; Edmonds, M.; Maclennan, J.; Murton, B. J.

    2014-12-01

    Planetary differentiation has been driven by the Earth's giant convective system, which has been redistributing heat, volatile elements and myriad other chemical species for 4.5 billion years. A key exchange in this transport process is between the mantle and the atmosphere through the volcanic degassing of sulfur, carbon and hydrogen from silicate melts forming in the deep Earth. The speciation and mobility of volatile elements during silicate melting is modulated by the oceanic mantle's oxygen fugacity (fO2), which away from subduction zones has long been considered uniform. However, a recent study has challenged this paradigm with new measurements of ferric iron proportions (Fe3+/Fe) in glasses from mid-ocean ridge basalts (Cottrell & Kelley, 2013). These new results suggest mantle domains containing material recycled from the Earth's surface are more reducing than ambient mantle and contain high concentrations of carbon. The pervasive mantle heterogeneity well documented in other geochemical indices may therefore be systematically associated with changes in oxidation state In this study we have produced a dataset of combined XANES, volatile element (C, S, F, Cl, H, B) and boron isotope analyses of 65 basalts from the Mid-Atlantic Ridge south of Iceland. These samples form a transect from 1000 km south of the Iceland plume to within 300 km of the plume centre, crossing into the zone experiencing the greatest geophysical and geochemical influence from the plume. Accordingly there are major changes in the isotopic and trace element composition of the basalts in this sample set, driven by both an increase in the proportion of recycled oceanic crustal components towards Iceland and a shift to a plume driven flow field. This suite of basalts therefore form an excellent test of the global correlations observed by Cottrell & Kelley (2013), where ferric iron contents anti-correlated with isotopic enrichment, with a high resolution regional dataset. By combining major

  16. Ferric Leghemoglobin in Plant-Attached Leguminous Nodules.

    PubMed Central

    Lee, Kk.; Shearman, L. L.; Erickson, B. K.; Klucas, R. V.

    1995-01-01

    Leghemoglobin (Lb) is essential for nitrogen fixation by intact leguminous nodules. To determine whether ferric Lb (Lb3+) was detectable in nodules under normal or stressed conditions, we monitored the status of Lb in intact nodules attached to sweet clover (Melilotus officinalis) and soybean (Glycine max [L.] Merr.) roots exposed to various conditions. The effects of N2 and O2 streams and elevated nicotinate levels on root-attached nodules were tested to determine whether the spectrophotometric technique was showing the predicted responses of Lb. The soybean and sweet clover nodules' Lb spectra indicated predominantly ferrous Lb and LbO2 in young (34 d) plants. As the nodule aged beyond 45 d, it was possible to induce Lb3+ with a 100% O2 stream (15 min). At 65 d without inducement, the nodule Lb status indicated the presence of some Lb3+ along with ferrous Lb and oxyferrous Lb. Nicotinate and fluoride were used as ligands to identify Lb3+. Computer-calculated difference spectra were used to demonstrate the changes in Lb spectra under different conditions. Some conditions that increased absorbance in the 626 nm region (indicating Lb3+ accumulation) were root-fed ascorbate and dehydroascorbate, plant exposure to darkness, and nodule water immersion. PMID:12228593

  17. Localized corrosion of candidate container materials in ferric chloride solutions

    SciTech Connect

    Roy, A.K.; Fleming, D.L.; Lum, B.Y.

    1999-07-01

    Localized corrosion behavior of candidate inner- and outer-container materials of current nuclear waste package design was evaluated in aqueous solutions of various concentrations of ferric chloride (FeCl{sub 3}) at 30 C, 60 C and 90 C using the electrochemical cyclic potentiodynamic polarization (CPP) technique. Materials tested include A 516 carbon steel (UNS K01800), and high-performance UNS N08825, UNS N06985, UNS N06030, UNS N06455, UNS N06625, UNS N06022, and UNS R53400. A 516 steel suffered from severe general and localized attack including pitting and crevice corrosion. High-nickel UNS N08825 and N06985 also became susceptible to severe pitting and crevice corrosion. The extent of localized attack was less pronounced in UNS N06030 and N06455. UNS N06625 experienced severe surface degradation including general corrosion crevice corrosion and intergranular attack. In contrast, only slight crevice corrosion tendency was observed with nickel-base UNS N06022 in solutions containing higher concentrations of FeCl{sub 3} at 60 C and 90 C. UNS R53400 was immune to localized attack in all tested environments. The test solutions showed a significant amount of precipitated particles, especially at higher temperatures.

  18. Localized corrosion of candidate container materials in ferric chloride solutions

    SciTech Connect

    Fleming, D L; Lum, B Y; Roy, A K

    1998-10-01

    Localized corrosion behavior of candidate inner and outer container materials of currently-designed nuclear waste package was evaluated in aqueous solutions of various concentrations of ferric chloride (FeCl{sub 3}) at 30 C, 60 C and 90 C using the electrochemical cyclic potentiodynamic polarization (CPP) technique. Materials tested include A 5 16 carbon steel and high-performance alloys 825, G-3, G-30, C-4, 625. C-22, and Ti Gr-12. A 516 steel suffered from severe general and localized attack including pitting and crevice corrosion. High-nickel alloys 825 and G-3 also became susceptible to severe pitting and crevice corrosion. The extent of localized attack was less pronounced in alloys G-30 and C-4. Alloy 625 experienced severe surface degradation including general corrosion, crevice corrosion and intergranular attack. In contrast, only a slight crevice corrosion tendency was observed with nickel-base alloy C-22 in solutions containing higher concentrations of FeCl{sub 3} at 60 C and 90 C. Ti Gr-12 was immune to localized attack in all tested environments. The test solutions showed significant amount of precipitated particles during and after testing especially at higher temperatures.

  19. Exfoliation of Hexagonal Boron Nitride via Ferric Chloride Intercalation

    NASA Technical Reports Server (NTRS)

    Hung, Ching-cheh; Hurst, Janet; Santiago, Diana; Rogers, Richard B.

    2014-01-01

    Sodium fluoride (NaF) was used as an activation agent to successfully intercalate ferric chloride (FeCl3) into hexagonal boron nitride (hBN). This reaction caused the hBN mass to increase by approx.100 percent, the lattice parameter c to decrease from 6.6585 to between 6.6565 and 6.6569 ?, the x-ray diffraction (XRD) (002) peak to widen from 0.01deg to 0.05deg of the full width half maximum value, the Fourier transform infrared (FTIR) spectrum's broad band (1277/cm peak) to change shape, and new FTIR bands to emerge at 3700 to 2700 and 1600/cm. This indicates hBN's structural and chemical properties are significantly changed. The intercalated product was hygroscopic and interacted with moisture in the air to cause further structural and chemical changes (from XRD and FTIR). During a 24-h hold at room temperature in air with 100 percent relative humidity, the mass increased another 141 percent. The intercalated product, hydrated or not, can be heated to 750 C in air to cause exfoliation. Exfoliation becomes significant after two intercalation-air heating cycles, when 20-nm nanosheets are commonly found. Structural and chemical changes indicated by XRD and FTIR data were nearly reversed after the product was placed in hydrochloric acid (HCl), resulting in purified, exfoliated, thin hBN products.

  20. Ferric Phosphate Hydroxide Microstructures Affect Their Magnetic Properties

    PubMed Central

    Zhao, Junhong; Zhang, Youjuan; Run, Zhen; Li, Pengwei; Guo, Qifei; Pang, Huan

    2015-01-01

    Uniformly sized and shape-controlled nanoparticles are important due to their applications in catalysis, electrochemistry, ion exchange, molecular adsorption, and electronics. Several ferric phosphate hydroxide (Fe4(OH)3(PO4)3) microstructures were successfully prepared under hydrothermal conditions. Using controlled variations in the reaction conditions, such as reaction time, temperature, and amount of hexadecyltrimethylammonium bromide (CTAB), the crystals can be grown as almost perfect hyperbranched microcrystals at 180 °C (without CTAB) or relatively monodisperse particles at 220 °C (with CTAB). The large hyperbranched structure of Fe4(OH)3(PO4)3 with a size of ∼19 μm forms with the “fractal growth rule” and shows many branches. More importantly, the magnetic properties of these materials are directly correlated to their size and micro/nanostructure morphology. Interestingly, the blocking temperature (TB) shows a dependence on size and shape, and a smaller size resulted in a lower TB. These crystals are good examples that prove that physical and chemical properties of nano/microstructured materials are related to their structures, and the precise control of the morphology of such functional materials could allow for the control of their performance. PMID:26246988

  1. Iron fortification of flour with a complex ferric orthophosphate

    SciTech Connect

    Hallberg, L.; Rossander-Hulthen, L.; Gramatkovski, E.

    1989-07-01

    The unexpectedly low bioavailability in humans of elemental iron powder prompted us to search for other Fe compounds suitable for Fe fortification of flour that fulfill the two requirements of insolubility in water (due to high water content of flour) and good bioavailability in humans. Systematic studies of compatibility, solubility, and bioavailability led to this study of a microcrystalline complex ferric orthophosphate (CFOP), Fe/sub 3/H/sub 8/(NH/sub 4/)-(PO/sub 4/)6.6H/sub 2/O, a well-defined compound. This compound was labeled with /sup 59/Fe, and the native Fe in meals was labeled with /sup 55/FeCl3. The ratio of absorbed /sup 59/Fe to absorbed /sup 55/Fe is a direct measure of the fraction of CFOP that joins the nonheme Fe pool and that is made potentially available for absorption. The relative bioavailability of CFOP varied from 30% to 60% when labeled wheat rolls were served with different meals. The CFOP meets practical requirements of an Fe fortificant for flour well, with regard to both compatibility and bioavailability in humans.

  2. Total X-ray scattering, EXAFS, and Mössbauer spectroscopy analyses of amorphous ferric arsenate and amorphous ferric phosphate

    NASA Astrophysics Data System (ADS)

    Mikutta, Christian; Schröder, Christian; Marc Michel, F.

    2014-09-01

    Amorphous ferric arsenate (AFA, FeAsO4·xH2O) is an important As precipitate in a range of oxic As-rich environments, especially acidic sulfide-bearing mine wastes. Its structure has been proposed to consist of small polymers of single corner-sharing FeO6 octahedra (rFe-Fe ∼3.6 Å) to which arsenate is attached as a monodentate binuclear 2C complex (‘chain model’). Here, we analyzed the structure of AFA and analogously prepared amorphous ferric phosphates (AFP, FePO4·xH2O) by a combination of high-energy total X-ray scattering, Fe K-edge X-ray absorption spectroscopy, and 57Fe Mössbauer spectroscopy. Pair distribution function (PDF) analysis of total X-ray scattering data revealed that the coherently scattering domain size of AFA and AFP is about 8 Å. The PDFs of AFA lacked Fe-Fe pair correlations at r ∼3.6 Å indicative of single corner-sharing FeO6 octahedra, which strongly supports a local scorodite (FeAsO4·2H2O) structure. Likewise, the PDFs and Fe K-edge extended X-ray absorption fine structure data of AFP were consistent with a local strengite (FePO4·2H2O) structure of isolated FeO6 octahedra being corner-linked to PO4 tetrahedra (rFe-P = 3.25(1) Å). Mössbauer spectroscopy analyses of AFA and AFP indicated a strong superparamagnetism. While AFA only showed a weak onset of magnetic hyperfine splitting at 5 K, magnetic ordering of AFP was completely absent at this temperature. Mössbauer spectroscopy may thus offer a convenient way to identify and quantify AFA and AFP in mineral mixtures containing poorly crystalline Fe(III)-oxyhydroxides. In summary, our results imply a close structural relationship between AFA and AFP and suggest that these amorphous materials serve as templates for the formation of scorodite and strengite (phosphosiderite) in strongly acidic low-temperature environments.

  3. Chromium doped nano-phase separated yttria-alumina-silica glass based optical fiber preform: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Dutta, Debjit; Dhar, Anirban; Das, Shyamal; Bysakh, Sandip; Kir'yanov, Alexandar; Paul, Mukul Chandra

    2015-06-01

    Transition metal (TM) doping in silica core optical fiber is one of the research area which has been studied for long time and Chromium (Cr) doping specially attracts a lot of research interest due to their broad emission band covering U, C and L band with many potential application such as saturable absorber or broadband amplifier etc. This paper present fabrication of Cr doped nano-phase separated silica fiber within yttria-alumina-silica core glass through conventional Modified Chemical Vapor Deposition (MCVD) process coupled with solution doping technique along with different material and optical characterization. For the first time scanning electron microscope (SEM) / energy dispersive X-ray (EDX) analysis of porous soot sample and final preform has been utilized to investigate incorporation mechanism of Crions with special emphasis on Cr-species evaporation at different stages of fabrication. We also report that optimized annealing condition of our fabricated preform exhibited enhanced fluorescence emission and a broad band within 550- 800 nm wavelength region under pumping at 532 nm wavelength due to nano-phase restructuration.

  4. Modeling the early stages of self-assembly in nanophase materials. II. Role of symmetry and dimensionality

    NASA Astrophysics Data System (ADS)

    Kozak, John J.; Nicolis, G.

    2011-02-01

    We study the early stages of self-assembly of elementary building blocks of nanophase materials, considering explicitly their structure and the symmetry and the dimensionality of the reaction space. Previous work [Kozak et al., J. Chem. Phys. 134, 154701 (2007)] focused on characterizing self-assembly on small square-planar templates. Here we consider larger lattices of square-planar symmetry having N = 255 sites, and both hexagonal and triangular lattices of N = 256 sites. Furthermore, to assess the consequences of a depletion zone above a basal layer (λ = 1), we study self-assembly on an augmented diffusion space defined by λ = 2 and λ = 5 stacked layers having the same characteristics as the basal plane. The effective decrease in the efficiency of self-assembly of individual nanophase units when the diffusion space is expanded, by increasing the template size and/or by enlarging the depletion zone, is then quantified. The results obtained reinforce our earlier conclusion that the most significant factor influencing the kinetics of formation of a final self-assembled unit is the number of reaction pathways from one or more precursor states. We draw attention to the relevance of these results to zeolite synthesis and reactions within pillared clays.

  5. Nanophase cobalt, nickel and zinc ferrites: synchrotron XAS study on the crystallite size dependence of metal distribution.

    PubMed

    Nordhei, Camilla; Ramstad, Astrid Lund; Nicholson, David G

    2008-02-21

    Nanophase cobalt, nickel and zinc ferrites, in which the crystallites are in the size range 4-25 nm, were synthesised by coprecipitation and subsequent annealing. X-Ray absorption spectroscopy using synchrotron radiation (supported by X-ray powder diffraction) was used to study the effects of particle size on the distributions of the metal atoms over the tetrahedral and octahedral sites of the spinel structure. Deviations from the bulk structure were found which are attributed to the significant influence of the surface on very small particles. Like the bulk material, nickel ferrite is an inverse spinel in the nanoregime, although the population of metals on the octahedral sites increases with decreasing particle size. Cobalt ferrite and zinc ferrite take the inverse and normal forms of the spinel structure respectively, but within the nanoregime both systems show similar trends in being partially inverted. Further, in zinc ferrite, unlike the normal bulk structure, the nanophase system involves mixed coordinations of zinc(ii) and iron(iii) consistent with increasing partial inversion with size. PMID:18259645

  6. Ferric-Pyoverdine Recognition by Fpv Outer Membrane Proteins of Pseudomonas protegens Pf-5

    PubMed Central

    Hartney, Sierra L.; Mazurier, Sylvie; Girard, Maëva K.; Mehnaz, Samina; Davis, Edward W.; Gross, Harald; Lemanceau, Philippe

    2013-01-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  7. Ferric-pyoverdine recognition by Fpv outer membrane proteins of Pseudomonas protegens Pf-5.

    PubMed

    Hartney, Sierra L; Mazurier, Sylvie; Girard, Maëva K; Mehnaz, Samina; Davis, Edward W; Gross, Harald; Lemanceau, Philippe; Loper, Joyce E

    2013-02-01

    The soil bacterium Pseudomonas protegens Pf-5 (previously called P. fluorescens Pf-5) produces two siderophores, enantio-pyochelin and a compound in the large and diverse pyoverdine family. Using high-resolution mass spectroscopy, we determined the structure of the pyoverdine produced by Pf-5. In addition to producing its own siderophores, Pf-5 also utilizes ferric complexes of some pyoverdines produced by other strains of Pseudomonas spp. as sources of iron. Previously, phylogenetic analysis of the 45 TonB-dependent outer membrane proteins in Pf-5 indicated that six are in a well-supported clade with ferric-pyoverdine receptors (Fpvs) from other Pseudomonas spp. We used a combination of phylogenetics, bioinformatics, mutagenesis, pyoverdine structural determinations, and cross-feeding bioassays to assign specific ferric-pyoverdine substrates to each of the six Fpvs of Pf-5. We identified at least one ferric-pyoverdine that was taken up by each of the six Fpvs of Pf-5. Functional redundancy of the Pf-5 Fpvs was also apparent, with some ferric-pyoverdines taken up by all mutants with a single Fpv deletion but not by a mutant having deletions in two of the Fpv-encoding genes. Finally, we demonstrated that phylogenetically related Fpvs take up ferric complexes of structurally related pyoverdines, thereby establishing structure-function relationships that can be employed in the future to predict the pyoverdine substrates of Fpvs in other Pseudomonas spp. PMID:23222724

  8. Effect of liposome-albumin coatings on ferric ion retention and release from chitosan beads.

    PubMed

    Chandy, T; Sharma, C P

    1996-01-01

    Ferric chloride was embedded in a chitosan matrix to develop a prolonged-release form. The in vitro release profiles of ferric ions from chitosan beads were monitored in 0.1 M Tris-HCl buffer, pH 7.4, using a UV spectrophotometer. The amount of drug release was much higher initially, followed by a constant slow release profile for a prolonged period. The initial burst release was substantially modified with liposome and albumin coatings. From scanning electron microscope studies, it appears that the ferric ions diffuse out slowly to the dissolution medium through the micropores of the chitosan matrix. Further, the liposome forms a phospholipid membrane layer in the pores of chitosan beads and encapsulates the ferric ions within their vesicles and controls the release profile. The chitosan beads loaded with ferric ions substantially inhibited the polyurethane-associated calcification, in an in vitro model system. The released ferric ions, appeared to alter the protein-surface binding and improved the biocompatibility of the matrix. The results propose the possibility of modifying the polymer matrix to obtain a desired controlled release of the drug for a prolonged period. PMID:8962949

  9. Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans

    SciTech Connect

    Sugio, T.; Katagiri, T.; Moriyama, M.; Zhen, Y.L.; Inagaki, K.; Tano, T.

    1988-01-01

    A new type of sulfite oxidase which utilizes ferric ion (Fe/sup 3 +/) as an electron acceptor was found in iron-grown Thiobacillus ferrooxidans. It was localized in the plasma membrane of the bacterium and had a pH optimum at 6.0. Under aerobic conditions, 1 mol of sulfite was oxidized by the enzyme to produce 1 mol of sulfate. Under anaerobic conditions in the presence of Fe/sup 3 +/, sulfite was oxidized by the enzyme as rapidly as it was under aerobic conditions. In the presence of o-phenanthroline or a chelator for Fe/sup 2 +/, the production of Fe/sup 2 +/ was observed during sulfite oxidation by this enzyme under not only anaerobic conditions but also aerobic conditions. No Fe/sup 2 +/ production was observed in the absence of o-phenanthroline, suggesting that the Fe/sup 2 +/ produced was rapidly reoxidized by molecular oxygen. Neither cytochrome c nor ferricyanide, both of which are electron acceptors for other sulfite oxidases, served as an electron acceptor for the sulfite oxidase of T. ferrooxidans. The enzyme was strongly inhibited by chelating agents for Fe/sup 3 +/. The physiological role of sulfite oxidase in sulfur oxidation of T. ferrooxidans is discussed.

  10. Thermally altered palagonitic tephra - A spectral and process analog to the soil and dust of Mars

    NASA Astrophysics Data System (ADS)

    Bell, J. F.; Morris, R. V.; Adams, J. B.

    1993-02-01

    Six palagonitic soil samples (PH-1 through PH-6) which were collected at 30-cm intervals from a lava slab on Mauna Kea, Hawaii, are studied. The samples present an alteration sequence caused by heating during emplacement of molten lava over a preexisting tephra cone. Techniques employed include visible and near-IUR spectroscopy, Moessbauer spectroscopy, and magnetic analysis. The four samples closest to the slab (PH-1 through PH-4) were strongly altered in response to heating during its emplacement; their iron oxide mineralogy is dominated by nanophase ferric oxide. The sample adjacent to the slab (PH-1) has a factor of 3 less H2O and contains crystalline hematite and magnetite in addition to nanophase ferric oxide. It is argued that localized thermal alteration events may provide a volumetrically important mechanism for the palagonitization of basaltic glass and the production of crystalline ferric oxides on Mars.

  11. Thermally altered palagonitic tephra - A spectral and process analog to the soil and dust of Mars

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Morris, Richard V.; Adams, John B.

    1993-01-01

    Six palagonitic soil samples (PH-1 through PH-6) which were collected at 30-cm intervals from a lava slab on Mauna Kea, Hawaii, are studied. The samples present an alteration sequence caused by heating during emplacement of molten lava over a preexisting tephra cone. Techniques employed include visible and near-IUR spectroscopy, Moessbauer spectroscopy, and magnetic analysis. The four samples closest to the slab (PH-1 through PH-4) were strongly altered in response to heating during its emplacement; their iron oxide mineralogy is dominated by nanophase ferric oxide. The sample adjacent to the slab (PH-1) has a factor of 3 less H2O and contains crystalline hematite and magnetite in addition to nanophase ferric oxide. It is argued that localized thermal alteration events may provide a volumetrically important mechanism for the palagonitization of basaltic glass and the production of crystalline ferric oxides on Mars.

  12. Impedance spectroscopy and mechanical response of porous nanophase hydroxyapatite-barium titanate composite.

    PubMed

    Dubey, Ashutosh Kumar; Kakimoto, Ken-ichi

    2016-06-01

    The present study aims to develop the porous nanophase hydroxyapatite (HA)-barium titanate (BT) composite with reasonable mechanical and electrical properties as an electrically-active prosthetic orthopedic implant alternate. The porous samples (densification ~40-70%) with varying amounts of BT (0, 25, 35 and 100 vol.%) in HA were synthesized using optimal spark plasma sintering conditions, which revealed the thermochemical stability between both the phases. The reasonably good combination of functional properties such as compressive [(236.00 ± 44.90)MPa] and flexural [(56.18 ± 5.82) MPa] strengths, AC conductivity [7.62 × 10(-9)(ohm-cm)(-1) at 10 kHz] and relative permittivity [15.20 at 10 kHz] have been achieved with nanostructured HA-25 vol.% BT composite as far as significant sample porosity (~30%) is concerned. Detailed impedance spectroscopic analysis was performed to reveal the electrical microstructure of developed porous samples. The resistance and capacitance values (at 500 °C) of grain (RG, CG) and grain boundary (RGB, CGB) for the porous HA-25 vol.% BT composite are (1.3 × 10(7) ohm, 3.1 × 10(-11)F) and (1.6 × 10(7) ohm, 5.9 × 10(-10)F), respectively. Almost similar value of activation energy (~1-1.5 eV) for grain and grain boundary has been observed for all the samples. The mechanism of conduction is found to be same for porous monolithic HA as well as composite samples. Relaxation spectroscopic analyses suggest that both the localized as well as long range charge carrier translocations are responsible for conduction in these samples. The degree of polarization of porous samples has been assessed by measuring thermally stimulated depolarization current of the poled samples. The depolarization current is observed to depend on the heating rate. The maximum current density, measured for HA-25 vol.% BT sample at a heating rate of 1 °C/min is 2.7 nA/cm(2). Formation of oxygen vacancies due to the reduced atmosphere sintering contribute to the space

  13. Concentration of MS2 phage in river water by a combined ferric colloid adsorption and foam separation-based method, with MS2 phage leaching from ferric colloid.

    PubMed

    Suzuki, Yoshihiro; Kobayashi, Takumi; Nishiyama, Masateru; Kono, Tomoya

    2016-08-01

    The concentration of MS2 phage as a model RNA virus in river water using a combined ferric colloid adsorption and foam separation-based method was examined. The MS2 phage concentrations were determined by the plaque-forming unit (PFU) method and reverse transcription quantitative PCR (RT-qPCR) analysis. When ferric colloid adsorption was performed prior to foam separation, MS2 phage was effectively removed from river water and concentrated in the generated foam within 7 min. The removal efficiency was >99% at the optimum iron and casein concentrations of 5 mg-Fe/L and 10 mg/L, respectively. Furthermore, based on the analysis of the collected ferric colloid dissolved using deferoxamine, the MS2 concentration in the colloid-dissolved solution was 190-fold higher than that found in raw water according to RT-qPCR analysis. This is a novel method for concentrating RNA viruses to facilitate their detection in river water using coagulation and foam separation combined with chelate dissolution of ferric flocs. PMID:26868517

  14. Cyanide binding to ferrous and ferric microperoxidase-11.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Santucci, Roberto; Coletta, Massimo

    2016-07-01

    Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c (cytc). MP11 is characterized by a covalently linked solvent-exposed heme group, the heme-Fe atom being axially coordinated by a histidyl residue. Here, the reactions of ferrous and ferric MP11 (MP11-Fe(II) and MP11-Fe(III), respectively) with cyanide have been investigated from the kinetic and thermodynamic viewpoints, at pH 7.0 and 20.0 °C. Values of the second-order rate constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 4.5 M(-1) s(-1) and 8.9 × 10(3) M(-1) s(-1), respectively. Values of the first-order rate constant for cyanide dissociation from ligated MP11-Fe(II) and MP11-Fe(III) are 1.8 × 10(-1) s(-1) and 1.5 × 10(-3) s(-1), respectively. Values of the dissociation equilibrium constant for cyanide binding to MP11-Fe(II) and MP11-Fe(III) are 3.7 × 10(-2) and 1.7 × 10(-7) M, respectively, matching very well with those calculated from kinetic parameters so that no intermediate species seem to be involved in the ligand-binding process. The pH-dependence of cyanide binding to MP11-Fe(III) indicates that CN(-) is the only binding species. Present results have been analyzed in parallel with those of several heme-proteins, suggesting that (1) the ligand accessibility to the metal center and cyanide ionization may modulate the formation of heme-Fe-cyanide complexes, and (2) the general polarity of the heme pocket and/or hydrogen bonding of the heme-bound ligand may affect cyanide exit from the protein matrix. Microperoxidase-11 (MP11) is an undecapeptide derived from horse heart cytochrome c. Penta-coordinated MP11 displays a very high reactivity towards cyanide, whereas the reactivity of hexa-coordinated horse heart cytochrome c is very low. PMID:27229515

  15. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and

  16. Bacterially-mediated precipitation of ferric iron during the leaching of basaltic rocks

    NASA Astrophysics Data System (ADS)

    Schnittker, K.; Navarrete, J. U.; Cappelle, I. J.; Borrok, D. M.

    2011-12-01

    The bacterially-mediated oxidation of ferrous [Fe(II)] iron in environments where its oxidation is otherwise unfavorable (i.e., acidic and/or anaerobic conditions) results in the formation of ferric iron [Fe(III)] precipitates. The mineralogy and morphologies of these precipitates are dictated by solution biochemistry. In this study, we evaluated Fe(III) precipitates that formed during aerobic bioleaching experiments with Acidithiobacillus ferrooxidans and ilmenite (FeTiO3) and Lunar or Martian basaltic stimulant rocks. Growth media was supplied to support the bacteria; however, all the Fe(II) for chemical energy was supplied by the mineral or rock. During the experiments, the bacteria actively oxidized Fe(II) to Fe(III), resulting in the formation of white and yellow-colored precipitates. In our initial experiments with both ilmentite and basalt, High-Resolution Scanning Electron Microscopic (HRSEM) analysis indicated that the precipitates where small (diameters were less than 5μm and mostly nanometer-scaled), white, and exhibited a platy texture. Networks of mineralized bacterial biofilm were also abundant. In these cases the white precipitates coated the bacteria, forming rod-shaped minerals 5-10μm long by about 1μm in diameter. Many of the rod-shaped minerals formed elongated chains. Energy Dispersive Spectra (EDS) analysis showed that the precipitates were largely composed of Fe and phosphorous (P) with an atomic Fe:P ratio of ˜1. Limited sulfur (S) was also identified as part of the agglomerated precipitates with an atomic Fe:S ratio that ranged from 5 to 10. Phosphorous and S were introduced into the system in considerable amounts as part of the growth media. Additional experiments were performed where we altered the growth media to lower the amount of available P by an order of magnitude. In this case, the experimental behavior remained the same, but the precipitates were more yellow or orange in color relative to those in the experiments using the

  17. Hydrogen sulfide attenuates ferric chloride-induced arterial thrombosis in rats.

    PubMed

    Qin, Yi-Ren; You, Shou-Jiang; Zhang, Yan; Li, Qian; Wang, Xian-Hui; Wang, Fen; Hu, Li-Fang; Liu, Chun-Feng

    2016-06-01

    Hydrogen sulfide (H2S) is a novel gaseous transmitter, regulating a multitude of biological processes in the cardiovascular and other systems. However, it remains unclear whether it exerts any effect on arterial thrombosis. In this study, we examined the effect of H2S on ferric chloride (FeCl3)-induced thrombosis in the rat common carotid artery (CCA). The results revealed a decrease of the H2S-producing enzyme cystathionine γ-lyase (CSE) expression and H2S production that persisted until 48 h after FeCl3 application. Intriguingly, administration with NaHS at appropriate regimen reduced the thrombus formation and enhanced the blood flow, accompanied with the alleviation of CSE and CD31 downregulation, and endothelial cell apoptosis in the rat CCA following FeCl3 application. Moreover, the antithrombotic effect of H2S was also observed in Rose Bengal photochemical model in which the development of thrombosis is contributed by oxidative injury to the endothelium. The in vitro study demonstrated that the mRNA and protein expression of CSE, as well as H2S production, was decreased in hydrogen peroxide (H2O2)-treated endothelial cells. Exogenous supplement of NaHS and CSE overexpression consistently alleviated the increase of cleaved caspase-3 and endothelial cell damage caused by H2O2. Taken together, our findings suggest that endogenous H2S generation in the endothelium may be impaired during arterial thrombosis and that modulation of H2S, either exogenous supplement or boost of endogenous production, may become a potential venue for arterial thrombosis therapy. PMID:26982248

  18. Thermoresponse improvement of poly(N-isopropylacrylamide) hydrogels via formation of poly(sodium p-styrenesulfonate) nanophases.

    PubMed

    Li, Jingang; Cong, Houluo; Li, Lei; Zheng, Sixun

    2014-08-27

    The block copolymer networks composed of poly(N-isopropylacrylamide) (PNIPAM) and poly(sodium p-styrenesulfonate) were synthesized via sequential reversible addition-fragmentation chain transfer (RAFT) polymerization with α,ω-didithiobenzoate-terminated poly(sodium p-styrenesulfonate) (PSSNa) as the macromolecular chain transfer agent. It was found that the block copolymer networks were microphase-separated as evidenced by means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). In the block copolymer networks, spherical or cylindrical PSSNa microdomains were finely dispersed into continuous PNIPAM matrixes. In comparison with unmodified PNIPAM hydrogel, the nanostructured hydrogels displayed improved thermoresponsive properties. In addition, the swelling ratios of the PSSNa-modified PNIPAM hydrogels were significantly higher than that of plain PNIPAM hydrogel. The improvement of thermoresponse was attributable to the formation of the PSSNa nanophases, which promoted the transportation of water molecules in the cross-linked networks. PMID:25036696

  19. Evaluation of ferric and ferrous iron therapies in women with iron deficiency anaemia.

    PubMed

    Berber, Ilhami; Diri, Halit; Erkurt, Mehmet Ali; Aydogdu, Ismet; Kaya, Emin; Kuku, Irfan

    2014-01-01

    Introduction. Different ferric and ferrous iron preparations can be used as oral iron supplements. Our aim was to compare the effects of oral ferric and ferrous iron therapies in women with iron deficiency anaemia. Methods. The present study included 104 women diagnosed with iron deficiency anaemia after evaluation. In the evaluations performed to detect the aetiology underlying the iron deficiency anaemia, it was found and treated. After the detection of the iron deficiency anaemia aetiology and treatment of the underlying aetiology, the ferric group consisted of 30 patients treated with oral ferric protein succinylate tablets (2 × 40 mg elemental iron/day), and the second group consisted of 34 patients treated with oral ferrous glycine sulphate tablets (2 × 40 mg elemental iron/day) for three months. In all patients, the following laboratory evaluations were performed before beginning treatment and after treatment. Results. The mean haemoglobin and haematocrit increases were 0.95 g/dL and 2.62% in the ferric group, while they were 2.25 g/dL and 5.91% in the ferrous group, respectively. A significant difference was found between the groups regarding the increase in haemoglobin and haematocrit values (P < 0.05). Conclusion. Data are submitted on the good tolerability, higher efficacy, and lower cost of the ferrous preparation used in our study. PMID:25006339

  20. Treatment of Iron Deficiency With Intravenous Ferric Carboxymaltose in General Practice: A Retrospective Database Study

    PubMed Central

    Kuster, Martina; Meli, Damian N.

    2015-01-01

    Background Iron deficiency is a frequent problem in general practice. Oral supplementation may in some cases not be well tolerated or not be efficient. Intravenous ferric carboxymaltose may be an alternative for iron supplementation in general practice. The aim of the present study was to analyze the indications for and the efficacy of intravenous ferric carboxymaltose in a primary care center. Methods We retropectively analyzed electronic data from 173 patients given intravenous ferric carboxymaltose between 2011 and 2013 in primary care center with 18 GPs in Bern, Switzerland. Results Of all patients, 34% were treated intravenously due to an inappropriate increase in ferritin levels after oral therapy, 24% had side effects from oral treatment, 10% were treated intravenously due to the patients explicit wish, and in 39% of all cases, no obvious reason of intravenous instead of oral treatment could be found. Intravenous ferric carboxymaltose led to a significant increase in hemoglobin and serum ferritin levels. Side effects of intravenous treatment were found in 2% of all cases. Conclusion We conclude that treatment with intravenous ferric carboxymaltose is an efficient alternative for patients with iron deficiency in general practice, when oral products are not well tolarated or effective. As treatment with iron carboxymaltose is more expensive and potentially dangerous due to side effects, the indication should be placed with (more) care. PMID:25368700

  1. Quantifying the VNIR Effects of Nanophase Iron Generated through the Space Weathering of Silicates: Reconciling Modeled Data with Laboratory Observations

    NASA Astrophysics Data System (ADS)

    Legett, C., IV; Glotch, T. D.; Lucey, P. G.

    2015-12-01

    Space weathering is a diverse set of processes that occur on the surfaces of airless bodies due to exposure to the space environment. One of the effects of space weathering is the generation of nanophase iron particles in glassy rims on mineral grains due to sputtering of iron-bearing minerals. These particles have a size-dependent effect on visible and near infrared (VNIR) reflectance spectra with smaller diameter particles (< 50 nm) causing both reddening and darkening of the spectra with respect to unweathered material (Britt-Pieters particle behavior), while larger particles (> 300 nm) darken without reddening. Between these two sizes, a gradual shift between these two behaviors occurs. In this work, we present results from the Multiple Sphere T-Matrix (MSTM) scattering model in combination with Hapke theory to explore the particle size and iron content parameter spaces with respect to VNIR (700-1700 nm) spectral slope. Previous work has shown that the MSTM-Hapke hybrid model offers improvements over Mie-Hapke models. Virtual particles are constructed out of an arbitrary number of spheres, and each sphere is assigned a refractive index and extinction coefficient for each wavelength of interest. The model then directly solves Maxwell's Equations at every wave-particle interface to predict the scattering, extinction and absorption efficiencies. These are then put into a simplified Hapke bidirectional reflectance model that yields a predicted reflectance. Preliminary results show an area of maximum slopes for iron particle diameters < 80 nm and iron concentrations of ~1-10wt% in an amorphous silica matrix. Further model runs are planned to better refine the extent of this region. Companion laboratory work using mixtures of powdered aerogel and nanophase iron particles provides a point of comparison to modeling efforts. The effects on reflectance and emissivity values due to particle size in a nearly ideal scatterer (aerogel) are also observed with comparisons to

  2. Microbial acquisition of iron from ferric iron bearing minerals

    SciTech Connect

    Hersman, L.E.; Sposito, G.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Iron is a universal requirement for all life forms. Although the fourth most abundant element in the geosphere, iron is virtually insoluble at physiological pH in oxidizing environments, existing mainly as very insoluble oxides and hydroxides. Currently it is not understood how iron is solubilized and made available for biological use. This research project addressed this topic by conducting a series of experiments that utilized techniques from both soil microbiology and mineral surface geochemistry. Microbiological analysis consisted of the examination of metabolic and physiological responses to mineral iron supplements. At the same time mineral surfaces were examined for structural changes brought about by microbially mediated dissolution. The results of these experiments demonstrated that (1) bacterial siderophores were able to promote the dissolution of iron oxides, (2) that strict aerobic microorganisms may use anaerobic processes to promote iron oxide dissolution, and (3) that it is possible to image the surface of iron oxides undergoing microbial dissolution.

  3. Juvenile ferric iron prevents microbiota dysbiosis and colitis in adult rodents

    PubMed Central

    Ettreiki, Chourouk; Gadonna-Widehem, Pascale; Mangin, Irène; Coëffier, Moïse; Delayre-Orthez, Carine; Anton, Pauline M

    2012-01-01

    AIM: To assess whether juvenile chronic ferric iron ingestion limit colitis and dysbiosis at adulthood in rats and mice. METHODS: Two sets of experiments were designed. In the first set, recently weaned mice were either orally administered ferrous (Fe2+) iron salt or ferric (Fe3+) microencapsulated iron for 6 wk. The last week of experiments trinitrobenzene sulfonic acid (TNBS) colitis was induced. In the second set, juvenile rats received the microencapsulated ferric iron for 6 wk and were also submitted to TNBS colitis during the last week of experiments. In both sets of experiments, animals were sacrificed 7 d after TNBS instillation. Severity of the inflammation was assessed by scoring macroscopic lesions and quantifying colonic myeloperoxidase (MPO) activity. Alteration of the microflora profile was estimated using quantitative polymerase chain reaction (qPCR) by measuring the evolution of total caecal microflora, Bacteroidetes, Firmicutes and enterobacteria. RESULTS: Neither ferrous nor ferric iron daily exposures at the juvenile period result in any effect in control animals at adulthood although ferrous iron repeated administration in infancy limited weight gain. Ferrous iron was unable to limit the experimental colitis (1.71 ± 0.27 MPO U/mg protein vs 2.47 ± 0.22 MPO U/mg protein in colitic mice). In contrast, ferric iron significantly prevented the increase of MPO activity (1.64 ± 0.14 MPO U/mg protein) in TNBS-induced colitis. Moreover, this positive effect was observed at both the doses of ferric iron used (75 and 150 mg/kg per day po - 6 wk). In the study we also compared, in both rats and mice, the consequences of chronic repeated low level exposure to ferric iron (75 mg/kg per day po - 6 wk) on TNBS-induced colitis and its related dysbiosis. We confirmed that ferric iron limited the TNBS-induced increase of MPO activity in both the rodent species. Furthermore, we assessed the ferric iron incidence on TNBS-induced intestinal microbiota dysbiosis

  4. Effect of Temperature on Nanophase-segregation and Transport in Polysulfone-Based Anion Exchange Membrane Fuel Cell: Molecular Dynamics Simulation Approach

    NASA Astrophysics Data System (ADS)

    Ko, Kwan; Han, Kyung; Choi, Ji; Chang, Ying; Bae, Chulsung; Jang, Seung; Georgia Tech Team; RPI Team

    2013-03-01

    The effect of temperature on hydrated polysulfone-based anion exchange membrane is studied using molecular dynamics. Various temperature conditions such as 313K, 353 K and 393K with two different water contents (10 wt % and 20 wt %) are simulated. From the viewpoint of structure-property relationship, we scrutinize the change in the nanophase-segregated structure of membrane and transport of anionic charge carrier (hydroxide) as a function of temperature. Since it is well known that the anion transport is less than the proton transport, we attempt to pursue a fundamental understanding of the difference between anion transport and proton transport. For this purpose, we simulate the polysulfone-based proton exchange membrane that has the same molecular structure and molecular weight. By analyzing the pair-correlation of charge carriers, we observe the correlation among hydroxides is much stronger than that among hydroniums. The extent of nanophase-segregation is also analyzed using structure factor profile.

  5. Investigations of Ferric Heme Cyanide Photodissociation in Myoglobin and Horseradish Peroxidase

    PubMed Central

    Zeng, Weiqiao; Sun, Yuhan; Benabbas, Abdelkrim; Champion, Paul M.

    2013-01-01

    The photodissociation of cyanide from ferric myoglobin (MbCN) and horseradish peroxidase (HRPCN) has been definitively observed. This has implications for the interpretation of ultrafast IR (Helbing et al. Biophys. J. 2004, 87, 1881–1891) and optical (Gruia et al. Biophys. J. 2008, 94, 2252–2268) studies that had previously suggested the Fe-CN bond was photostable in MbCN. The photolysis of ferric MbCN takes place with a quantum yield of ~75% and the resonance Raman spectrum of the photoproduct observed in steady-state experiments as a function of laser power and sample spinning rate is identical to that of ferric Mb (metMb). The data are quantitatively analyzed using a simple model where cyanide is photodissociated and, although geminate rebinding with a rate kBA ≈ (3.6 ps)−1 is the dominant process, some CN− exits from the distal heme pocket and is replaced by water. Using independently determined values for the CN− association rate, we find that the CN− escape rate from the ferric myoglobin pocket to the solution at 293 K is kout ≈ 1–2 × 107 s−1. This value is very similar to, but slightly larger than, the histidine gated escape rate of CO from Mb (1.1×107 s−1) under the same conditions. The analysis leads to an escape probability kout/(kout+kBA) ~ 10−4, which is unobservable in most time domain kinetic measurements. However, the photolysis is surprisingly easy to detect in Mb using cw resonance Raman measurements. This is due to the anomalously slow CN− bimolecular association rate (170 M−1s−1), which arises from the need for water to exchange at the ferric heme binding site of Mb. In contrast, ferric HRP does not have a heme bound water molecule and its CN− bimolecular association rate is larger by ~103 making the CN− photolysis more difficult to observe. PMID:23472676

  6. Colour and stability assessment of blue ferric anthocyanin chelates in liquid pectin-stabilised model systems.

    PubMed

    Buchweitz, M; Brauch, J; Carle, R; Kammerer, D R

    2013-06-01

    The formation of blue coloured ferric anthocyanin chelates and their colour stability during storage and thermal treatment were monitored in a pH range relevant to food (3.6-5.0). Liquid model systems were composed of different types of Citrus pectins, juices (J) and the respective phenolic extracts (E) from elderberry (EB), black currant (BC), red cabbage (RC) and purple carrot (PC) in the presence of ferric ions. For EB, BC and PC, pure blue colours devoid of a violet tint were exclusively observed for the phenolic extracts and at pH values ≥ 4.5 in model systems containing high methoxylated and amidated pectins, respectively. Colour and its stability strongly depended on the amount of ferric ions and the plant source; however, colour decay could generally be described as a pseudo-first-order kinetics. Despite optimal colour hues for RC-E and RC-J, storage and heat stabilities were poor. Highest colour intensities and best stabilities were observed for model systems containing PC-E at a molar anthocyanin:ferric ion ratio of 1:2. Ascorbic and lactic acids interfered with ferric ions, thus significantly affecting blue colour evolution and stability. Colour loss strongly depended on heat exposure with activation energies ranging between 60.5 and 78.4 kJ/mol. The comprehensive evaluation of the interrelationship of pigment source, pH conditions and pectin type on chelate formation and stability demonstrated that ferric anthocyanin chelates are promising natural blue food colourants. PMID:23411339

  7. Nitrosative Stress and Apoptosis by Intravenous Ferumoxytol, Iron Isomaltoside 1000, Iron Dextran, Iron Sucrose, and Ferric Carboxymaltose in a Nonclinical Model.

    PubMed

    Toblli, J E; Cao, G; Giani, J F; Dominici, F P; Angerosa, M

    2015-07-01

    Iron is involved in the formation as well as in the scavenging of reactive oxygen and nitrogen species. Thus, iron can induce as well as inhibit both oxidative and nitrosative stress. It also has a key role in reactive oxygen and nitrogen species-mediated apoptosis. We assessed the differences in tyrosine nitration and caspase 3 expression in the liver, heart, and kidneys of rats treated weekly with intravenous ferumoxytol, iron isomaltoside 1000, iron dextran, iron sucrose and ferric carboxymaltose (40 mg iron/kg body weight) for 5 weeks. Nitrotyrosine was quantified in tissue homogenates by Western blotting and the distribution of nitrotyrosine and caspase 3 was assessed in tissue sections by immunohistochemistry. Ferric carboxymaltose and iron sucrose administration did not result in detectable levels of nitrotyrosine or significant levels of caspase 3 vs. control in any of the tissue studied. Nitrotyrosine and caspase 3 levels were significantly (p<0.01) increased in all assessed organs of animals treated with iron dextran and iron isomaltoside 1000, as well as in the liver and kidneys of ferumoxytol-treated animals compared to isotonic saline solution (control). Nitrotyrosine and caspase 3 levels were shown to correlate positively with the amount of Prussian blue-detectable iron(III) deposits in iron dextran- and iron isomaltoside 1000-treated rats but not in ferumoxytol-treated rats, suggesting that iron dextran, iron isomaltoside 1000 and ferumoxytol induce nitrosative (and oxidative) stress as well as apoptosis via different mechanism(s). PMID:25050519

  8. Experimental Spinel Standards for Ferric Iron (Fe3+) Determination During Peridotite Partial Melting

    NASA Astrophysics Data System (ADS)

    Wenz, M. D.; Sorbadere, F.; Rosenthal, A.; Frost, D. J.; McCammon, C. A.

    2014-12-01

    The presence of ferric iron (Fe3+) in the mantle plays a significant role in the oxygen fugacity (fO2) of the Earth's interior. This has a wide range of implications for Earth related processes ranging from the composition of the atmosphere to magmatic phase relations during melting and crystallization processes [1]. A major source of Earth's mantle magmas is spinel peridotite. Despite its low abundance, spinel (Fe3+/ƩFe = 15-34%, [2]) is the main contributor of Fe3+to the melt upon partial melting. Analyses of Fe3+ on small areas of spinel and melt are required to study the Fe3+ behavior during partial melting of spinel peridotite. Fe K-edge X-ray Absorption Near Edge Structure (XANES) combines both high precision and small beam size, but requires standards with a wide range of Fe3+ content to obtain good calibration. Glasses with varying Fe3+ content are easily synthesized [3, 4]. Spinel, however, presents a challenge for experimental standards due to the low diffusion of Cr and Al preventing compositional homogeneity. Natural spinel standards are often used, but only cover a narrow Fe3+ range. Thus, there is a need for better experimental spinel standards over a wider range of fO2. Our study involves making experimental mantle spinels with variable Fe3+ content. We used a sol-gel auto-combustion method to synthesize our starting material [5]. FMQ-2, FMQ+0, and air fO2 conditions were established using a gas mixing furnace. Piston cylinder experiments were performed at 1.5GPa, and 1310 -1370°C to obtain solid material for XANES. To maintain distinct oxidizing conditions, three capsules were used: graphite for reduced, Re for intermediate and AuPd for oxidized conditions. The spinels were analyzed by Mössbauer spectroscopy. Fe3+/ƩFe ranged from 0.3 to 0.6. These values are consistent with the Fe edge position obtained using XANES analyses, between 7130 and 7132 eV, respectively. Our spinels are thus suitable standards for Fe3+ measurements in peridotite

  9. Effects of phosphate and silicate on the transformation of hydroxycarbonate green rust to ferric oxyhydroxides

    NASA Astrophysics Data System (ADS)

    Feng, Xionghan; Wang, Xiaoming; Zhu, Mengqiang; Koopal, Luuk K.; Xu, Huanhuan; Wang, Yan; Liu, Fan

    2015-12-01

    Hydroxycarbonate green rust (GR1(CO32-)) was prepared by oxidation of aerated aqueous suspensions of Fe(II) hydroxide, and the presence of light promoted the transformation of GR1(CO32-) by dissolved O2 at pH 7.8 and 25 °C. Further transformation of GR1(CO32-) in the light was conducted in the presence of orthophosphate (P) or silicate (Si) anions, followed by solution analysis and solid product characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared spectroscopy (FTIR). Results show that both P and Si anions significantly affect the transformation of GR1(CO32-) through adsorption on the intermediate products. The time required for complete GR1(CO32-) transformation and the phases, crystallinity and morphology of the transformation products all depend on the Fe/anion molar ratio. When compared to the control, the transformation can be promoted by low Si concentrations but retarded by P. With decreasing Fe/P ratio, the products change from acicular goethite (absence of P) to tabular lepidocrocite (Fe/P: 120-48) and to mixed phases of platelets of ferric GR1(CO32-) (EX-GR1) and minor ferrihydrite (Fe/P: 24-3). In terms of Si, the products are goethites when the Fe/Si ratio of 48-12, and with increasing ratio, the goethite crystallinity and particle size decrease and the morphology changes from acicular (absence of Si) to plate-like or isodimensional particles. The goethite morphology at low Fe/Si ratios is comparable to natural goethite samples commonly found in soils. At Fe/Si = 3, the products are EX-GR1 platelets with minor ferrihydrite coexisting. The likely pathway of the oxidative GR1(CO32-) transformation in the control system and in the presence of low concentrations of Si (Fe/Si ⩾ 12) is GR1(CO32-) → amorphous γ-FeOOH-like phase → α-FeOOH via a dissolution-oxidation-precipitation mechanism. In addition, Fe(II) released during dissolution of GR1(CO32-) is adsorbed on the products and the

  10. Natural media with negative index of refraction: Perspectives of complex transition metal oxides (Review Article)

    NASA Astrophysics Data System (ADS)

    Fertman, E. L.; Beznosov, A. B.

    2011-07-01

    The capabilities of perovskite-like compounds with the effect of colossal magnetoresistance (CMR) and some other complex oxides to have a negative index of refraction (NIR) are considered. Physical properties of these compounds are also analyzed from the standpoint of designing tunable metamaterials on their base. Of particular interest are temperature and magnetic field driven first-order transformations in oxides with perovskite structure and in spinels. These transformations give rise to nanophase separated states, using which the properties of negative refraction can be affected. The magnetic-field controlled metamaterials with CMR oxides as a boundary NIR media for a photonic crystal are discussed.

  11. Chemical, physical, and sensory characteristics of mozzarella cheese fortified using protein-chelated iron or ferric chloride.

    PubMed

    Rice, W H; McMahon, D J

    1998-02-01

    Mozzarella cheese containing 25 and 50 mg of iron/kg of cheese was manufactured from milk that had been fortified with casein-chelated iron, whey protein-chelated iron, or FeCl3. Chemical, physical, and sensory characteristics were compared with those of a control cheese. Physical properties were assessed by testing melting, apparent viscosity, and browning of heated cheese. Cheeses were evaluated by trained panelists for the presence of metallic flavors, oxidized flavors, and other undesirable flavors. Addition of 25 mg iron/kg of cheese had no effects on the physical properties of Mozzarella cheese. Apparent viscosity of cheese fortified with 50 mg of iron/kg of cheese tended to be slightly higher than the control cheese, although this difference was not statistically significant at all storage times. Cook color was not affected by iron fortification. No increase in chemical oxidation (measured using thiobarbituric acid assay) was observed between the control and iron-fortified cheeses. Slight but statistically significant increases in metallic flavors, oxidized flavors, and off-flavors in the iron-fortified cheese were observed by the trained sensory panel, but the flavor defects were of very low intensity. For metallic flavors, oxidized flavors, and off-flavors, the control cheese scored 1.5, 1.5, and 1.3, respectively; the iron-fortified cheese scored 2.1, 2.0, and 1.6 based on a nine-point scale (where 1 = not perceptible to 3 = slightly perceptible). Sensory scores for iron-fortified cheese made using casein-chelated iron or whey protein-chelated iron was not significantly different from those of cheese made using ferric chloride. When used on pizza, consumer panels rated the iron-fortified cheeses as comparable with the control cheese. PMID:9532487

  12. Ferric reductase activity and PsFRO1 sequence variation in pisum sps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological studies in pea (Pisum sativum) suggest that the reduction of iron (Fe) is the rate-limiting physiological process in Fe acquisition by dicotyledonous plants. Previous molecular work suggests that ferric reductase activity is regulated at both the transcriptional and post-translational ...

  13. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behavior of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the FE3/Fe2+ couple in a Nernstian nanner. ew method for determining dissolved fer...

  14. ANALYSIS OF FERRIC AND FERROUS IONS IN SOIL EXTRACTS BY ION CHROMATOGRAPHY

    EPA Science Inventory

    A method using ion chromatography (IC) for the analysis of ferrous (Fe 2+) and ferric (Fe 3+) ions in soil extracts has been developed. This method uses an ion exchange column with detection at 520 nm after post-column derivatization. Selectivity is achieved by using an anionic...

  15. ELECTRODE MEASUREMENT OF REDOX POTENTIAL IN ANAEROBIC FERRIC/FERROUS CHLORIDE SYSTEMS

    EPA Science Inventory

    The behaviour of two inert redox electrodes (Pt and wax-impregnated graphite) was investigated in anaerobic ferrous and ferric chloride solutions in order to establish if these electrodes respond to the Fe3+/Fe2+ couple in a Nernstian manner. A new method fo...

  16. TRANSFORMATION AND MOBILIZATION OF ARSENIC ADSORBED ON GRANULAR FERRIC HYDROXIDE UNDER BIO-REDUCTIVE CONDITIONS

    EPA Science Inventory

    Biotic and abiotic reduction of arsenic (V) and iron (III) influences the partioning of arsenic (As) between the solid and aqueous phases in soils, sediments and wastes. In this study, laboratory experiments on arsenic adsorbed on granular ferric hydroxide (GFH) was performed to ...

  17. Martian weathering/alteration scenarios from spectral studies of ferric and ferrous minerals

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Adams, John B.; Morris, Richard V.

    1992-01-01

    We review the major aspects of our current knowledge of martian ferric and ferrous mineralogy based on the available ground-based telescopic and spacecraft data. What we know and what we don't know are used to constrain various weathering/alteration models and to identify key future measurements and techniques that can distinguish between these models.

  18. 40 CFR 180.1302 - Sodium Ferric Ethylenediaminetetraacetate (EDTA); exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Ethylenediaminetetraacetate (EDTA); exemption from the requirement of a tolerance. 180.1302 Section 180.1302 Protection of... Ethylenediaminetetraacetate (EDTA); exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance is established for residues of sodium ferric EDTA in or on all food commodities when applied as...

  19. Mineralogy at Gusev Crater from the Mossbauer spectrometer on the Spirit Rover

    NASA Technical Reports Server (NTRS)

    Morris, R. V.; Klingelhofer, G.; Bernhardt, B.; Schroder, C.; Rodionov, D. S.; De Souza, P. A. Jr; Yen, A.; Gellert, R.; Evlanov, E. N.; Foh, J.; Kankeleit, E.; Gutlich, P.; Ming, D. W.; Renz, F.; Wdowiak, T.; Squyres, S. W.; Arvidson, R. E.

    2004-01-01

    Mossbauer spectra measured on Mars by the Spirit rover during the primary mission are characterized by two ferrous iron doublets (olivine and probably pyroxene) and a ferric iron doublet (tentatively associated to nanophase ferric iron oxide). Two sextets resulting from nonstoichiometric magnetite are also present, except for a coating on the rock Mazatzal, where a hematite-like sextet is present. Greater proportions of ferric-bearing phases are associated with undisturbed soils and rock surfaces as compared to fresh rock surfaces exposed by grinding. The ubiquitous presence of olivine in soil suggests that physical rather than chemical weathering processes currently dominate at Gusev crater.

  20. Mineralogy at Gusev Crater from the Mössbauer spectrometer on the Spirit Rover.

    PubMed

    Morris, R V; Klingelhöfer, G; Bernhardt, B; Schröder, C; Rodionov, D S; De Souza, P A; Yen, A; Gellert, R; Evlanov, E N; Foh, J; Kankeleit, E; Gütlich, P; Ming, D W; Renz, F; Wdowiak, T; Squyres, S W; Arvidson, R E

    2004-08-01

    Mössbauer spectra measured on Mars by the Spirit rover during the primary mission are characterized by two ferrous iron doublets (olivine and probably pyroxene) and a ferric iron doublet (tentatively associated to nanophase ferric iron oxide). Two sextets resulting from nonstoichiometric magnetite are also present, except for a coating on the rock Mazatzal, where a hematite-like sextet is present. Greater proportions of ferric-bearing phases are associated with undisturbed soils and rock surfaces as compared to fresh rock surfaces exposed by grinding. The ubiquitous presence of olivine in soil suggests that physical rather than chemical weathering processes currently dominate at Gusev crater. PMID:15297666

  1. Use of ferric thiocyanate derivatization for quantification of polysorbate 80 in high concentration protein formulations.

    PubMed

    Savjani, Nimesh; Babcock, Eugene; Khor, Hui Koon; Raghani, Anil

    2014-12-01

    Quantitation of polysorbate 80 in high protein formulation using solid-phase extraction (SPE) followed by derivatization with cobalt thiocyanate and UV measurement of the complex at 620 nm resulted in lower recovery of polysorbate 80. Dilution of protein samples with water improved the recovery of polysorbate, however, it compromised the sensitivity of the method when cobalt thiocyanate was used for derivatization. The presented work discusses an evaluation of alternative approaches for increasing the sensitivity of the quantitation method for polysorbate using ferric thiocyanate and molybdenum thiocyanate. Ferric thiocyanate complex of polysorbate 80 exhibited the highest sensitivity among the metals thiocyanate evaluated in the current work. The improvement in the sensitivity through derivatization with ferric thiocyanate allowed 10-fold dilution of a 140 mg mL(-1) protein sample without affecting the recovery or compromising the sensitivity of polysorbate 80 quantitation, indicating that this methodology could be used as an alternate approach for the quantitation of polysorbate 80 in high concentration protein formulations. Stability of ferric thiocynate and cobalt thiocyanate complex was also studied. When these complexes were allowed to equilibrate for 1h between an organic layer containing polysorbate/thiocynate complex and an aqueous layer containing un-reacted metal thiocyanate, it resulted in the most reproducible UV absorbance measurements. The SPE method for quantification of polysorbate 80 using ferric thiocyanate for derivatization provided accuracy (% spike recovery) within 107%, reproducibility (%relative standard deviation) less than 11.7%. The method is linear from 0.0001 to 0.008% polysorbate 80 concentrations in the formulations with protein formulations as high as 140 mg mL(-1). PMID:25159444

  2. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+.

    PubMed

    Huyer, M; Page, W J

    1989-07-01

    Ferric reductase activity was examined in Azotobacter vinelandii and was found to be located in the cytoplasm. The specific activities of soluble cell extracts were not affected by the iron concentration of the growth medium; however, activity was inhibited by the presence of Zn2+ during cell growth and also by the addition of Zn2+ to the enzyme assays. Intracellular Fe2+ levels were lower and siderophore production was increased in Zn2+-grown cells. The ferric reductase was active under aerobic conditions, had an optimal pH of approximately 7.5, and required flavin mononucleotide and Mg2+ for maximum activity. The enzyme utilized NADH to reduce iron supplied as a variety of iron chelates, including the ferrisiderophores of A. vinelandii. The enzyme was purified by conventional protein purification techniques, and the final preparation consisted of two major proteins with molecular weights of 44,600 and 69,000. The apparent Km values of the ferric reductase for Fe3+ (supplied as ferric citrate) and NADH were 10 and 15.8 microM, respectively, and the data for the enzyme reaction were consistent with Ping Pong Bi Bi kinetics. The approximate Ki values resulting from inhibition of the enzyme by Zn2+, which was a hyperbolic (partial) mixed-type inhibitor, were 25 microM with respect to iron and 1.7 microM with respect to NADH. These results suggested that ferric reductase activity may have a regulatory role in the processes of iron assimilation in A. vinelandii. PMID:2525550

  3. Induction of the Root Cell Plasma Membrane Ferric Reductase (An Exclusive Role for Fe and Cu).

    PubMed Central

    Cohen, C. K.; Norvell, W. A.; Kochian, L. V.

    1997-01-01

    Induction of ferric reductase activity in dicots and nongrass monocots is a well-recognized response to Fe deficiency. Recent evidence has shown that Cu deficiency also induces plasma membrane Fe reduction. In this study we investigated whether other nutrient deficiencies could also induce ferric reductase activity in roots of pea (Pisum sativum L. cv Sparkle) seedlings. Of the nutrient deficiencies tested (K, Mg, Ca, Mn, Zn, Fe, and Cu), only Cu and Fe deficiencies elicited a response. Cu deficiency induced an activity intermediate between Fe-deficient and control plant activities. To ascertain whether the same reductase is induced by Fe and Cu deficiency, concentration- and pH-dependent kinetics of root ferric reduction were compared in plants grown under control, -Fe, and -Cu conditions. Additionally, rhizosphere acidification, another process induced by Fe deficiency, was quantified in pea seedlings grown under the three regimes. Control, Fe-deficient, and Cu-deficient plants exhibited no major differences in pH optima or Km for the kinetics of ferric reduction. However, the Vmax for ferric reduction was dramatically influenced by plant nutrient status, increasing 16- to 38-fold under Fe deficiency and 1.5- to 4-fold under Cu deficiency, compared with that of control plants. These results are consistent with a model in which varying amounts of the same enzyme are deployed on the plasma membrane in response to plant Fe or Cu status. Rhizosphere acidification rates in the Cu-deficient plants were similarly intermediate between those of the control and Fe-deficient plants. These results suggest that Cu deficiency induces the same responses induced by Fe deficiency in peas. PMID:12223760

  4. Safe administration of iron sucrose in a patient with a previous hypersensitivity reaction to ferric gluconate.

    PubMed

    Sane, Radhika; Baribeault, David; Rosenberg, Carol L

    2007-04-01

    A 67-year-old woman with iron deficiency anemia required parenteral iron therapy and was treated with intravenous ferric gluconate. She tolerated the first dose, but after the second dose, she developed a tingling feeling all over her body, along with swelling in her hands and feet, and a rash with hives over most of her body. It was thought that she had likely experienced a hypersensitivity reaction to ferric gluconate. The decision was made to continue therapy; however, two modifications were made. The patient was given dexamethasone, diphenhydramine, and ibuprofen 1 hour before administering the third dose, and the infusion time was prolonged by 1 hour. Approximately 45 minutes after the infusion was completed, the patient developed hives on her arms and legs. At the patient's next clinic visit, it was decided that continuation of parenteral iron repletion was necessary, and the decision was made to attempt a challenge with iron sucrose. The patient was given dexamethasone 8 mg to be taken the night before and the morning of treatment. She successfully completed the iron repletion therapy with iron sucrose. Three parenteral iron products are available in the United States: iron dextran, sodium ferric gluconate complex, and iron sucrose. Iron dextran, the oldest of these products, carries the highest risk for hypersensitivity reactions. Available data suggest that either iron sucrose or ferric gluconate can be safely administered to patients with known hypersensitivity to iron dextran. Our patient's experience implies that it may be possible to safely administer iron sucrose to a patient with hypersensitivity to ferric gluconate. This finding has clinical implications and warrants confirmation in a larger population. PMID:17381390

  5. Methane-induced Activation Mechanism of Fused Ferric Oxide-Alumina Catalysts during Methane Decomposition.

    PubMed

    Reddy Enakonda, Linga; Zhou, Lu; Saih, Youssef; Ould-Chikh, Samy; Lopatin, Sergei; Gary, Daniel; Del-Gallo, Pascal; Basset, Jean-Marie

    2016-08-01

    Activation of Fe2 O3 -Al2 O3 with CH4 (instead of H2 ) is a meaningful method to achieve catalytic methane decomposition (CMD). This reaction of CMD is more economic and simple against commercial methane steam reforming (MSR) as it produces COx -free H2 . In this study, for the first time, structure changes of the catalyst were screened during CH4 reduction with time on stream. The aim was to optimize the pretreatment conditions through understanding the activation mechanism. Based on results from various characterization techniques, reduction of Fe2 O3 by CH4 proceeds in three steps: Fe2 O3 →Fe3 O4 →FeO→Fe0. Once Fe0 is formed, it decomposes CH4 with formation of Fe3 C, which is the crucial initiation step in the CMD process to initiate formation of multiwall carbon nanotubes. PMID:27345621

  6. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure.

    PubMed

    Wang, Yun; Wang, Bing; Zhu, Mo-Tao; Li, Ming; Wang, Hua-Jian; Wang, Meng; Ouyang, Hong; Chai, Zhi-Fang; Feng, Wei-Yue; Zhao, Yu-Liang

    2011-08-10

    Microglia as the resident macrophage-like cells in the central nervous system (CNS) play a pivotal role in the innate immune responses of CNS. Understanding the reactions of microglia cells to nanoparticle exposure is important in the exploration of neurobiology of nanoparticles. Here we provide a systemic mapping of microglia and the corresponding pathological changes in olfactory-transport related brain areas of mice with Fe(2)O(3)-nanoparticle intranasal treatment. We showed that intranasal exposure of Fe(2)O(3) nanoparticle could lead to pathological alteration in olfactory bulb, hippocampus and striatum, and caused microglial proliferation, activation and recruitment in these areas, especially in olfactory bulb. Further experiments with BV2 microglial cells showed the exposure to Fe(2)O(3) nanoparticles could induce cells proliferation, phagocytosis and generation of ROS and NO, but did not cause significant release of inflammatory factors, including IL-1β, IL-6 and TNF-α. Our results indicate that microglial activation may act as an alarm and defense system in the processes of the exogenous nanoparticles invading and storage in brain. PMID:21596115

  7. Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations

    NASA Astrophysics Data System (ADS)

    Yavuz, Cafer Tayyar

    This work describes the first size dependent magnetic separation in nanoscale. Magnetite (Fe3O4) nanocrystals of high quality and uniform size were synthesized with monodispersity below 10%. Magnetite nanocrystals of 4 nm to 33 nm (average diameter) were produced. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals is reported for the first time. The cost of a kg of lab purity magnetite nanocrystals was shown to be 2600. A green synthesis that utilizes rust and edible oils was developed. The cost of a kg was brought down to 22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied to enable the known silica related biotechnologies. Magnetite-silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite-silica nanoshells to produce triple multishells. Anti-microbial activity of multishells is anticipated.

  8. Chemical evolution. XL - Clay-mediated oxidation of diaminomaleonitrile

    NASA Technical Reports Server (NTRS)

    Ferris, J. P.; Hagan, W. J., Jr.; Alwis, K. W.; Mccrea, J.

    1982-01-01

    The inhibition of the oligomerization of HCN by montmorillonite clays is shown to be caused by oxidation of diaminomaleonitrile (DAMN) by ferric ion in the clay lattice, with ferrous ion and oxalic acid the reaction products. It is demonstrated that diiminosuccinonitrile is the initial reaction product and is rapidly hydrolized to oxalic acid and HCN. The same oxidative transformations are effected by ferric ion bound to Dowex 50, ferric ion in solution, and Ni(NH3)6(2+). The rate of reaction of DAMN indicates no catalytic role for the clay in the oxidation of DAMN, and little reaction of the latter was observed with montmorillonite in which the bulk of the iron was in the divalent state. The possible significance of these redox reactions to chemical evolution is discussed.

  9. Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway.

    PubMed

    Spolitak, Tatyana; Dawson, John H; Ballou, David P

    2005-05-27

    Reactions of substrate-free ferric cytochrome P450cam with peracids to generate Fe=O intermediates have previously been investigated with contradictory results. Using stopped-flow spectrophotometry, the reaction with m-chloroperoxybenzoic acid demonstrated an Fe(IV)=O + porphyrin pi-cation radical (Cpd I) (Egawa, T., Shimada, H., and Ishimura, Y. (1994) Biochem. Biophys. Res. Commun. 201, 1464-1469). By contrast, with peracetic acid, Fe(IV)=O plus a tyrosyl radical were observed by freeze-quench Mossbauer and EPR spectroscopy (Schunemann, V., Jung, C., Trautwein, A. X., Mandon, D., and Weiss, R. (2000) FEBS Lett. 479, 149-154). Our detailed kinetic studies have resolved these contradictory results. At pH >7, a significant fraction of Cpd I is formed transiently, whereas at low pH only a species with a Soret band at 406 nm, presumably Fe(IV)=O + tyrosyl radical, is observed. Evidence for formation of an acylperoxo complex en route to Cpd I was obtained. Because of rapid heme destruction, steps subsequent to formation of the highly oxidized forms could not be fully characterized. Heme destruction was avoided by including peroxidase substrates (e.g. guaiacol), which were oxidized to characteristic peroxidase products as the Fe(III)-P450 was regenerated. Addition of ascorbate to either of the high valent species also reforms the Fe(III) state with only a small loss of heme absorbance. These results indicate that typical peroxidase chemistry occurs with P450cam and offer an explanation for the contrasting results reported earlier. The delineation of improved conditions (pH, temperature, choice of peracid) for generating highly oxidized species with P450cam should be valuable for their further characterization. PMID:15781454

  10. The oxidizing power of illinois coal. I. The reaction with titanous chloride

    USGS Publications Warehouse

    Yoke, G.R.; Harman, C. Alex

    1941-01-01

    Illinois coals which have been exposed to air or oxygen show a small but definite ability to oxidize titanous chloride. This oxidizing power is gained very rapidly when freshly ground coal is exposed to air. Neither the magnitude nor the rapid increase of this oxidizing power can be accounted for entirely by the presence or the formation of soluble ferric compounds in the coal.

  11. Thermal and Evolved Gas Analysis of "Nanophase" Carbonates: Implications for Thermal and Evolved Gas Analysis on Mars Missions

    NASA Technical Reports Server (NTRS)

    Lauer, Howard V., Jr.; Archer, P. D., Jr.; Sutter, B.; Niles, P. B.; Ming, Douglas W.

    2012-01-01

    Data collected by the Mars Phoenix Lander's Thermal and Evolved Gas Analyzer (TEGA) suggested the presence of calcium-rich carbonates as indicated by a high temperature CO2 release while a low temperature (approx.400-680 C) CO2 release suggested possible Mg- and/or Fe-carbonates [1,2]. Interpretations of the data collected by Mars remote instruments is done by comparing the mission data to a database on the thermal properties of well-characterized Martian analog materials collected under reduced and Earth ambient pressures [3,4]. We are proposing that "nano-phase" carbonates may also be contributing to the low temperature CO2 release. The objectives of this paper is to (1) characterize the thermal and evolved gas proper-ties of carbonates of varying particle size, (2) evaluate the CO2 releases from CO2 treated CaO samples and (3) examine the secondary CO2 release from reheated calcite of varying particle size.

  12. Nanophase Changes in Nickel Doped Titania Composites by Thermal Treatment and Photocatalytic Destruction of NO(x).

    PubMed

    Jeon, Ki-Yong; Kim, Wha-Jung; Lee, Chang-Joon; Gopalan, Anantha-Iyengar; Lee, Kwang-Pill

    2015-09-01

    This study investigated the influence of Ni doping and thermal treatment (600, 800 degrees and 1000 degrees C) on the physiochemical properties of a commercially available low cost KA100 TiO2. Ni containing KA100 samples were prepared with different loading of Ni (3%, 6% and 9% wt to KA100) and subjected to heat treatement at 600 degrees, 800 degrees and 1000 degrees C. The as-prepared samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Diffuse reflection UV-Visible spectroscopy and Raman spectroscopy and nitrogen-adsorption-desorption measurements to observe the nanophase changes in the particle characteristics following Ni modification and thermal treatment. The results show that the Ni atom entered the TiO2 lattice structure upon heat treatment at 800 degrees C and 1000 degrees C influencing the anatase-rutile phase transformation. The TiO2 powders after heat treatment had a bimodal pore-size distribution as the temperature of the heat treatment increased. In addition, the anatase crystallite size and average pore sizes increased. Photodegradation of NO(x) was investigated using the Ni doped KA100 as a photocatalyst. Modification of KA100 with nickel and heat treatment up to 1000 degrees C enhanced the photocatalysis for the degradation of NO(x). Typically, KA100 modified with 6% Ni and heat treated to 1000 degrees C exhibited excellent NO(x) removal activity. PMID:26716321

  13. Primary Ferric Iron-Bearing Rhönite in Plutonic Igneous Angrite NWA 4590: Implications for Redox Conditions on the Angrite Parent Body

    NASA Astrophysics Data System (ADS)

    Kuehner, S. M.; Irving, A. J.

    2007-12-01

    Northwest Africa 4590 is a heterogeneous olivine gabbro with cumulate texture composed of Al-Ti-rich clinopyroxene, pure anorthite, Ca-rich olivine, kirschsteinite and ulvöspinel, with accessory troilite, merrillite, Ca silicophosphate, kamacite and glasses [1]. Rhönite now has been identified in this specimen (for the first time in any angrite) as (1) a large (0.65 mm long), blocky, anhedral grain adjacent to anorthite, kirschsteinite and troilite, (2) ca. 15 micron grains along grain boundaries of the major phases (in one case in contact with clinopyroxene and metal), and (3) ca. 30 micron grains within melt inclusions and veins composed of kirschsteinite, olivine, anorthite, troilite, hercynite and glass. The rhönite is nearly opaque in transmitted light, with a deep cinnamon-red color on thin grain edges. The average composition of the largest grain is (in wt.%): SiO2 23.6, TiO2 9.9, Al2O3 16.3, Cr2O3 0.1, FeOt 33.6, MnO 0.14, MgO 3.5, CaO 13.1. Stoichiometry (14 cations, 20 oxygen atoms) requires about 12% of the total iron to be in the ferric state, resulting in the nominal formula: (Ca2.01Mn0.02)(Fe2+3.55Fe3+0.45Mg0.75Al0.12Cr0.15)Ti0.9 5(Si3.37Al2.63)O20 In the co-existing ulvöspinel about 18% of the iron must be ferric to achieve charge balance; likewise, Fe-Ti spinel coexisting with metal in Angra dos Reis contains ferric iron [2]. In contrast, the spinel (Cr-pleonaste) in metal-rich angrite NWA 2999 is stoichiometric without any apparent ferric iron. The coexistence of ferric iron- bearing silicate and oxide phases with Fe metal implies that the oxygen fugacity during crystallization of NWA 4590 was somewhat more oxidizing than that of the IW buffer. Compositions of primary (pre-exsolution) olivine and kirschsteinite in NWA 4590 record a minimum magmatic temperature of 910-950°C, based on the solvus of [3]. Previous experimental studies [4] also imply that other metal-bearing plutonic (AdoR, LEW 86010) and quench-textured (LEW 87051) angrites

  14. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    PubMed

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  15. Functional Analysis of the Ferric Uptake Regulator Gene fur in Xanthomonas vesicatoria

    PubMed Central

    Liu, Huiqin; Dong, Chunling; Zhao, Tingchang; Han, Jucai; Wang, Tieling; Wen, Xiangzhen; Huang, Qi

    2016-01-01

    Iron is essential for the growth and survival of many organisms. Intracellular iron homeostasis must be maintained for cell survival and protection against iron toxicity. The ferric uptake regulator protein (Fur) regulates the high-affinity ferric uptake system in many bacteria. To investigate the function of the fur gene in Xanthomonas vesicatoria (Xv), we generated a fur mutant strain, fur-m, by site-directed mutagenesis. Whereas siderophore production increased in the Xv fur mutant, extracellular polysaccharide production, biofilm formation, swimming ability and quorum sensing signals were all significantly decreased. The fur mutant also had significantly reduced virulence in tomato leaves. The above-mentioned phenotypes significantly recovered when the Xv fur mutation allele was complemented with a wild-type fur gene. Thus, Fur either negatively or positively regulates multiple important physiological functions in Xv. PMID:26910324

  16. Method of inhibiting crosslinking of aqueous xanthan gums in the presence of ferric acid ions

    SciTech Connect

    Crowe, C.W.

    1982-03-02

    The cross linking of aqueous xanthan gums in the presence of ferric ions is inhibited or prevented by adding a soluble alkanoic and/or alkenoic acid having at least 4 carbon atoms and bearing at least 2 hydroxyl groups per molecule, and/or a soluble salt of ..gamma..-lactone. This combination of ingredients forms gelled acid compositions which are useful in acidizing treatments of wells. The gelled acid compositions are viscous fluids which have increased stability against shear and thermal degradation and other properties which result in retarded reaction rates and reduced fluid leak-off during acidizing treatments of subterranean formations surrounding well bores. The aqueous gelled acids have the further advantage of inhibiting or preventing the formation of insoluble compounds, such as ferric hydroxide, during such acidizing treatments. 13 claims.

  17. Using Crystal Structure Groups to Understand Mössbauer parameters of Ferric Sulfates

    NASA Astrophysics Data System (ADS)

    Knutson, J.; Dyar, M. D.; Sklute, E. C.; Lane, M. D.; Bishop, J. L.

    2008-12-01

    A Mössbauer doublet assigned to ferric sulfate (Fe3D2) was identified in Paso Robles, Mars, spectra by Morris et al. (2006), who noted that its parameters are not diagnostic of any specific mineral because a number of different sulfates with varying parageneses might be responsible for this doublet. Work by Lane et al. (2008) used a multi-instrument approach based on Fe3+ sulfate spectra acquired with VNIR and midinfrared reflectance, mid-infrared emission and Mössbauer spectrometers to narrow down the possible ferric sulfate phases present at Paso Robles to ferricopiapite possibly mixed with other ferric sulfates such as butlerite, parabutlerite, fibroferrite, or metahomanite. Thus, we explore here the crystal-chemical rationale behind these interpretations of the Mössbauer results, using similarities and difference among mineral structures to explore which phases might have similar coordination polyhedra around the Fe atoms in sulfates. Work by Hawthorne et al. (2000) organizes the sulfate minerals into groups with analogous crystal structures. Mössbauer doublets assigned to ferric sulfates ubiquitously have isomer shifts (IS) of 0.40-53 mm/s so that IS is non-diagnostic. However, quadrupole splitting of doublets in these mineral groups has a wide range (0-1.4 mm/s) and the variation can be systematically correlated with different structure types. Members of the hydration series Fe2(SO4)3 · n H2O, which includes quenstedtite, coquimbite, paracoquimbite, kornelite, and lausenite have Mössbauer spectra that closely resemble singlets because of their near-zero QS. These minerals share structures involving finite clusters of sulfate tetrahedral and Fe octahedral or chains of depolymerized clusters, and all mineral species with these structures share similar Mössbauer parameters. At the other extreme, ferric sulfates with structures based on infinite sheets (hydrotalcite, alunite, jarosite), tend to have large electric field gradients at the nucleus of the Fe3

  18. Microscale speciation of arsenic and iron in ferric-based sorbents subjected to simulated landfill conditions.

    PubMed

    Root, Robert A; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon

    2013-11-19

    During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the toxicity characteristic leaching procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 days, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially coprecipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75-81% of As(V) was reduced to As(III), and 53-68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multienergy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide coprecipitate formation. PMID:24102155

  19. Repeat radiation synovectomy with dysprosium 165-ferric hydroxide macroaggregates in rheumatoid knees unresponsive to initial injection

    SciTech Connect

    Vella, M.; Zuckerman, J.D.; Shortkroff, S.; Venkatesan, P.; Sledge, C.B.

    1988-06-01

    Because of failure to fully respond to an initial intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates, 17 patients with seropositive rheumatoid arthritis underwent repeat radiation synovectomy using this agent. Of the 13 patients who were evaluated 1 year later, 54% (7 knees) had good results, 31% (4 knees) had fair results, and 15% (2 knees) had poor results. The initial lack of significant benefit from radiation synovectomy did not appear to preclude a favorable response to a second injection.

  20. Purification of two muscle enzymes by chromatography on immobilized ferric ions.

    PubMed

    Chaga, G; Andersson, L; Ersson, B; Porath, J

    1989-08-01

    Two enzymes, glycogen phosphorylase and lactate dehydrogenase, were purified simultaneously in a single step. Ferric ions immobilized on a chelating gel were used as the adsorbent. Adsorption and desorption steps were accomplished by changes in buffer composition. The recoveries were better than 80% and the capacities were about 5 mg of protein per milliliter of adsorbent. The procedure worked well both on a small and on a preparative scale. The homogeneity of the purified enzymes was checked by FPLC. PMID:2775499

  1. A novel electrochemical process for the recovery and recycling of ferric chloride from precipitation sludge.

    PubMed

    Mejia Likosova, E; Keller, J; Poussade, Y; Freguia, S

    2014-03-15

    During wastewater treatment and drinking water production, significant amounts of ferric sludge (comprising ferric oxy-hydroxides and FePO4) are generated that require disposal. This practice has a major impact on the overall treatment cost as a result of both chemical addition and the disposal of the generated chemical sludge. Iron sulfide (FeS) precipitation via sulfide addition to ferric phosphate (FePO4) sludge has been proven as an effective process for phosphate recovery. In turn, iron and sulfide could potentially be recovered from the FeS sludge, and recycled back to the process. In this work, a novel process was investigated at lab scale for the recovery of soluble iron and sulfide from FeS sludge. Soluble iron is regenerated electrochemically at a graphite anode, while sulfide is recovered at the cathode of the same electrochemical cell. Up to 60 ± 18% soluble Fe and 46 ± 11% sulfide were recovered on graphite granules for up-stream reuse. Peak current densities of 9.5 ± 4.2 A m(-2) and minimum power requirements of 2.4 ± 0.5 kWh kg Fe(-1) were reached with real full strength FeS suspensions. Multiple consecutive runs of the electrochemical process were performed, leading to the successful demonstration of an integrated process, comprising FeS formation/separation and ferric/sulfide electrochemical regeneration. PMID:24397913

  2. Microscale speciation of arsenic and iron in ferric-based sorbents subjected to simulated landfill conditions

    PubMed Central

    Root, Robert A.; Fathordoobadi, Sahar; Alday, Fernando; Ela, Wendell; Chorover, Jon

    2013-01-01

    During treatment for potable use, water utilities generate arsenic-bearing ferric wastes that are subsequently dispatched to landfills. The biogeochemical weathering of these residuals in mature landfills affects the potential mobilization of sorbed arsenic species via desorption from solids subjected to phase transformations driven by abundant organic matter and bacterial activity. Such processes are not simulated with the Toxicity Characteristic Leaching Procedure (TCLP) currently used to characterize hazard. To examine the effect of sulfate on As retention in landfill leachate, columns of As(V) loaded amorphous ferric hydroxide were reacted biotically at two leachate sulfate concentrations (0.064 mM and 2.1 mM). After 300 d, ferric sorbents were reductively dissolved. Arsenic released to porewaters was partially co-precipitated in mixed-valent secondary iron phases whose speciation was dependent on sulfate concentration. As and Fe XAS showed that, in the low sulfate column, 75–81% of As(V) was reduced to As(III), and 53–68% of the Fe(III) sorbent was transformed, dominantly to siderite and green rust. In the high sulfate column, Fe(III) solids were reduced principally to FeS(am), whereas As(V) was reduced to a polymeric sulfide with local atomic structure of realgar. Multi-energy micro-X-ray fluorescence (ME-μXRF) imaging at Fe and As K-edges showed that As formed surface complexes with ferrihydrite > siderite > green rust in the low sulfate column; while discrete realgar-like phases formed in the high sulfate systems. Results indicate that landfill sulfur chemistry exerts strong control over the potential mobilization of As from ferric sorbent residuals by controlling secondary As and Fe sulfide co-precipitate formation. PMID:24102155

  3. Process for the synthesis of nanophase dispersion-strengthened aluminum alloy

    DOEpatents

    Barbour, John C.; Knapp, James Arthur; Follstaedt, David Martin; Myers, Samuel Maxwell

    1998-12-15

    A process for fabricating dispersion-strengthened ceramic-metal composites is claimed. The process comprises in-situ interaction and chemical reaction of a metal in gaseous form with a ceramic producer in plasma form. Such composites can be fabricated with macroscopic dimensions. Special emphasis is placed on fabrication of dispersion-strengthened aluminum oxide-aluminum composites, which can exhibit flow stresses more characteristic of high strength steel.

  4. Characterization of a water-in-oil microemulsion containing a concentrated ammonium ferric sulfate aqueous phase

    SciTech Connect

    Darab, J.G.; Pfund, D.M.; Fulton, J.L.; Linehan, J.C. ); Capel, M. ); Ma, Y. )

    1994-01-01

    A water-in-oil (w/o) microemulsion containing high concentrations of ammonium ferric sulfate in solution was characterized by SAXS, EXAFS, electrical conductivity, and viscosity measurements and by its phase behavior. The nanometer-sized aqueous droplets are microemulsified by sodium bis(2-ethylhexyl) sulfosuccinate (AOT) in an isooctane continuous phase. Addition of small amounts of sodium dodecyl sulfate (SDS) as a cosurfactant greatly aids in the solubilization of the inorganic electrolyte-laden aqueous phase. For this five-component system there is a large region of the composition phase space that exists as a clear, stable w/o microemulsion. A portion of this w/o microemulsion phase space can be characterized as spherically shaped aqueous nanometer-sized droplets. A simple relationship between the total surfactant concentration and the amount of water on the droplet size was established. This relationship has the same form as the well-known relationship for the ternary system, AOT/water/isooctane. True thermodynamic equilibrium was not established in this microemulsion study because the reaction times for the various ferric oxyhydroxide species are prohibitively long. As a result, pseudoequilibria for this ammonium ferric sulfate microemulsion are reported. 31 refs., 7 figs., 1 tab.

  5. Potential of Alginate Encapsulated Ferric Saccharate Microemulsions to Ameliorate Iron Deficiency in Mice.

    PubMed

    Mukhija, Kimmi; Singhal, Kirti; Angmo, Stanzin; Yadav, Kamalendra; Yadav, Hariom; Sandhir, Rajat; Singhal, Nitin Kumar

    2016-07-01

    Iron deficiency is one of the most prominent mineral deficiencies around the world, which especially affects large population of women and children. Development of new technologies to combat iron deficiency is on high demand. Therefore, we developed alginate microcapsule with encapsulated iron that had better oral iron bioavailability. Microcapsules containing iron with varying ratios of sodium alginate ferric(III)-saccharide were prepared using emulsification method. In vitro studies with Caco-2 cells suggested that newly synthesized microemulsions had better iron bioavailability as compared to commercially available iron dextran formulations. Ferrozine in vitro assay showed that alginate-encapsulated ferric galactose microemulsion (AFGM) had highest iron bioavailability in comparison to other four ferric saccharate microemulsions, namely AFGlM, AFMM, AFSM, and AFFM synthesized in our laboratory. Mice studies also suggested that AFGM showed higher iron absorption as indicated by increased serum iron, hemoglobin, and other hematopoietic measures with almost no toxicity at tested doses. Development of iron-loaded microemulsions leads to higher bioavailability of iron and can provide alternative strategies to treat iron deficiency. PMID:26637994

  6. Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater.

    PubMed

    Zhou, Yunan; Xing, Xin-Hui; Liu, Zehua; Cui, Liwen; Yu, Anfeng; Feng, Quan; Yang, Haijun

    2008-05-01

    Phosphorus removal from wastewater is of great importance. In the present study, ferric chloride was selected as the coagulant, and tannic acid (TA), a natural polymer, as the coagulant aid to develop an effective coagulation process with the emphasis of phosphorus recovery from different types of wastewater. The results showed that TA can accelerate the settling speed by forming flocs with large size, reduce the residual Fe(III) to eliminate the yellow color caused by Fe(III), and slightly increase the phosphorus removal efficiency. The precipitate formed by TA-aided coagulation showed the advantage of releasing phosphorus faster than ferric phosphate, indicating the possibility of phosphorus recovery from wastewater as slow release fertilizer. To further understand the structural characteristics of the precipitate, analytical techniques such as Raman spectroscopy, X-ray photoelectron spectroscopy and matrix-assisted laser desorption ionization-time of flight mass spectrometry were employed. The analytical results indicated that TA-Fe-P complex was formed during the coagulation/flocculation processes. Solid phase in the precipitate consisted of TA-Fe-P complex, Fe-TA complex and/or ferric hydroxyphosphate. PMID:18395769

  7. Corrosion characteristics of ferric and austenitic stainless steels for dental magnetic attachment.

    PubMed

    Endo, K; Suzuki, M; Ohno, H

    2000-03-01

    The corrosion behaviors of four ferric stainless steels and two austenitic stainless steels were examined in a simulated physiological environment (0.9% NaCl solution) to obtain basic data for evaluating the appropriate composition of stainless steels for dental magnetic attachments. The corrosion resistance was evaluated by electrochemical techniques and the analysis of released metal ions by atomic absorption spectrophotometry. The surface of the stainless steels was analyzed by X-ray photoelectron spectroscopy (XPS). The breakdown potential of ferric stainless steels increased and the total amount of released metal ions decreased linearly with increases in the sum of the Cr and Mo contents. The corrosion rate of the ferric stainless steels increased 2 to 6 times when they were galvanically coupled with noble metal alloys but decreased when coupled with commercially pure Ti. For austenitic stainless steels, the breakdown potential of high N-bearing stainless steel was approximately 500 mV higher than that of SUS316L, which is currently used as a component in dental magnetic attachments. The enriched nitrogen at the alloy/passive film interface may be effective in improving the localized corrosion resistance. PMID:11219089

  8. Orthophosphate removal from a synthetic wastewater using lime, alum, and ferric chloride

    SciTech Connect

    Sisk, L.; Benefield, L.; Reed, B.

    1987-01-01

    Lime, alum, and ferric chloride were evaluated using a series of jar tests to determine their effectiveness in orthophosphate precipitation from synthetic wastewaters. Calcium phosphate precipitation was most efficient at pH 11.0 and a total carbonate to phosphorus, C/sub T/:P, molar ratio of 15.0. For these conditions, a residual total orthophosphate concentration of 0.12 mg/L-P was observed. The Mg:P molar ratio had little effect on orthophosphate removal from the synthetic wastewater. When alum was used, the minimum residual total orthophosphate concentration observed was 0.21 mg/L-P for an Al:P molar ratio of 3.0 and a pH of 6.0 when pH was adjusted before and during alum addition. When ferric chloride was used, it was found that an Fe:P molar ratio of 3.0 and a pH of 6.0 resulted in the lowest residual total orthophosphate concentration. This value was 0.19 mg/L-P when pH was adjusted before and during iron addition. A multiple regression analysis produced mathematical relationships which can be used to predict residual soluble and residual total orthophosphate concentration for lime, alum, and ferric chloride treatment.

  9. Evolution of the Ferric Reductase Domain (FRD) Superfamily: Modularity, Functional Diversification, and Signature Motifs

    PubMed Central

    Zhang, Xuezhi; Krause, Karl-Heinz; Xenarios, Ioannis; Soldati, Thierry; Boeckmann, Brigitte

    2013-01-01

    A heme-containing transmembrane ferric reductase domain (FRD) is found in bacterial and eukaryotic protein families, including ferric reductases (FRE), and NADPH oxidases (NOX). The aim of this study was to understand the phylogeny of the FRD superfamily. Bacteria contain FRD proteins consisting only of the ferric reductase domain, such as YedZ and short bFRE proteins. Full length FRE and NOX enzymes are mostly found in eukaryotic cells and all possess a dehydrogenase domain, allowing them to catalyze electron transfer from cytosolic NADPH to extracellular metal ions (FRE) or oxygen (NOX). Metazoa possess YedZ-related STEAP proteins, possibly derived from bacteria through horizontal gene transfer. Phylogenetic analyses suggests that FRE enzymes appeared early in evolution, followed by a transition towards EF-hand containing NOX enzymes (NOX5- and DUOX-like). An ancestral gene of the NOX(1-4) family probably lost the EF-hands and new regulatory mechanisms of increasing complexity evolved in this clade. Two signature motifs were identified: NOX enzymes are distinguished from FRE enzymes through a four amino acid motif spanning from transmembrane domain 3 (TM3) to TM4, and YedZ/STEAP proteins are identified by the replacement of the first canonical heme-spanning histidine by a highly conserved arginine. The FRD superfamily most likely originated in bacteria. PMID:23505460

  10. Anticooperative ligand binding properties of recombinant ferric Vitreoscilla homodimeric hemoglobin: a thermodynamic, kinetic and X-ray crystallographic study.

    PubMed

    Bolognesi, M; Boffi, A; Coletta, M; Mozzarelli, A; Pesce, A; Tarricone, C; Ascenzi, P

    1999-08-20

    Thermodynamics and kinetics for cyanide, azide, thiocyanate and imidazole binding to recombinant ferric Vitreoscilla sp. homodimeric hemoglobin (Vitreoscilla Hb) have been determined at pH 6.4 and 7.0, and 20.0 degrees C, in solution and in the crystalline state. Moreover, the three-dimensional structures of the diligated thiocyanate and imidazole derivatives of recombinant ferric Vitreoscilla Hb have been determined by X-ray crystallography at 1.8 A (Rfactor=19.9%) and 2.1 A (Rfactor=23.8%) resolution, respectively. Ferric Vitreoscilla Hb displays an anticooperative ligand binding behaviour in solution. This very unusual feature can only be accounted for by assuming ligand-linked conformational changes in the monoligated species, which lead to the observed 300-fold decrease in the affinity of cyanide, azide, thiocyanate and imidazole for the monoligated ferric Vitreoscilla Hb with respect to that of the fully unligated homodimer. In the crystalline state, thermodynamics for azide and imidazole binding to ferric Vitreoscilla Hb may be described as a simple process with an overall ligand affinity for the homodimer corresponding to that for diligation in solution. These data suggest that the ligand-free homodimer, observed in the crystalline state, is constrained in a low affinity conformation whose ligand binding properties closely resemble those of the monoligated species in solution. From the kinetic viewpoint, anticooperativity is reflected by the 300-fold decrease of the second-order rate constant for cyanide and imidazole binding to the monoligated ferric Vitreoscilla Hb with respect to that for ligand association to the ligand-free homodimer in solution. On the other hand, values of the first-order rate constant for cyanide and imidazole dissociation from the diligated and monoligated derivatives of ferric Vitreoscilla Hb in solution are closely similar. As a whole, ligand binding and structural properties of ferric Vitreoscilla Hb appear to be unique among

  11. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.

    PubMed

    Li, Xiaozheng; Mercado, Roel; Kernan, Timothy; West, Alan C; Banta, Scott

    2014-10-01

    Acidithiobacillus ferrooxidans is an acidophilic chemolithoautotroph that is important in biomining and other biotechnological operations. The cells are able to oxidize inorganic iron, but the insolubility and product inhibition by Fe(3+) complicates characterization of these cultures. Here we explore the growth kinetics of A. ferrooxidans in iron-based medium in a pH range from 1.6 to 2.2. It was found that as the pH was increased from 1.6 to 2.0, the maintenance coefficient decreased while both the growth kinetics and maximum cell yield increased in the precipitate-free, low Fe(2+) concentration medium. In higher iron media a similar trend was observed at low pH, but the formation of precipitates at higher pH (2.0) hampered cell growth and lowered the specific growth rate and maximum cell yield. In order to eliminate ferric precipitates, chelating agents were introduced into the medium. Citric acid was found to be relatively non-toxic and did not appear to interfere with iron oxidation at a maximum concentration of 70 mM. Inclusion of citric acid prevented precipitation and A. ferrooxidans growth parameters resumed their trends as a function of pH. The addition of citrate also decreased the apparent substrate saturation constant (KS ) indicating a reduction in the competitive inhibition of growth by ferric ions. These results indicate that continuous cultures of A. ferrooxidans in the presence of citrate at elevated pH will enable enhanced cell yields and productivities. This will be critical as these cells are used in the development of new biotechnological applications such as electrofuel production. PMID:24771134

  12. Determination of iron-ligand bond lengths in ferric and ferrous horse heart cytochrome c using multiple-scattering analyses of XAFS data

    SciTech Connect

    Cheng, M.C.; Rich, A.M.; Armstrong, R.S.; Ellis, P.J.; Lay, P.A.

    1999-12-13

    Cytochrome c (cyt c) is a small heme protein (MW 12 384) that functions as a biological electron-transfer agent. It consists of a single polypeptide chain and a prosthetic heme group and provides a pathway for the transfer of electrons from cyt c reductase to cyt c oxidase in the mitochondrial respiratory chain (oxidative phosphorylation). The protein participates in oxidation-reduction reactions with the heme iron alternating between the oxidized (ferric, Fe{sup III}) state and the reduced (ferrous, Fe{sup II}) state. X-ray absorption fine structure (XAFS) data were obtained from frozen aqueous solutions (10 K) of horse heart ferri- and ferrocyt c. Models of the structure about the Fe center were refined to optimize the fit between the observed XAFS in the range 0 {le} k {le} 16.3 {angstrom}{sup {minus}1} and the XAFS calculated using both single-scattering (SS) and multiple-scattering (MS) calculations. The bond lengths obtained are more accurate and precise than those determined previously for cyt c from various species using X-ray crystallography. The Fe-N bond lengths are 1.98--1.99 {angstrom} for both oxidation states of cyt c. The Fe-S bond of derricyt c (2.33 {angstrom}) is significantly longer than that of ferrocyt c (2.29 {angstrom}). The small changes in the bond lengths are consistent with the small reorganizational energy required for the fast electron-transfer reaction of cyt c.

  13. Direct observation of the low-spin Fe(III)-NO(radical) intermediate state during rebinding of NO to photodeligated ferric cytochrome c.

    PubMed

    Park, Jaeheung; Lee, Taegon; Lim, Manho

    2013-10-10

    Nitrosylated ferric heme is autoreduced readily to the more stable Fe(II)-NO adduct, but it is stabilized in NO-carrier heme proteins where maintaining the Fe(III) oxidation state is crucial for efficient NO delivery. Density functional theory calculations by Lehnert and co-workers have shown that a NO-bound ferric model heme has a low-spin (LS) Fe(III)-NO(radical) state that might be critical for efficient NO transport by NO-carrier heme proteins. Recently, the elusive LS Fe(III)-NO(radical) state was observed as an electronic intermediate state during geminate rebinding (GR) of NO to ferric myoglobin (Mb(III)). Cytochrome c (Cytc), a ubiquitous heme protein, is useful for generalizing the presence of the LS Fe(III)-NO(radical) state. Photoexcitation dynamics of NO-bound ferric Cytc (Cytc(III)NO) was probed after excitation of Cytc(III)NO in D2O solution at 294 K with a 575 nm pulse using femtosecond vibrational spectroscopy. The time-resolved spectra displayed several weak absorption bands in the 1900-1800 cm(-1) range and a dominant bleach at 1917 cm(-1), the position of the absorption at equilibrium. Two absorptions, with 37 cm(-1) isotope shift of (15)NO, shifted toward higher energy and narrowed with an average time constant of 8 ps, indicating that they arose from thermally and/or vibrationally excited NO in the ground electronic state of Cytc(III)NO. Three absorption bands, showing 33 cm(-1) isotope shift of (15)NO and peaked at 1865, 1836, and 1807 cm(-1), were assigned to the deligated NO residing in the interior of the protein, to the rebound Cytc(III)NO in the LS Fe(III)-NO(radical) state, and to the vibrationally excited NO of Cytc(III)NO in the LS Fe(III)-NO(radical) state, respectively. The quantum yield for NO deligation of Cytc(III)NO by a 575 nm photon was 0.8 ± 0.1. Most of the deligated NO showed non-exponential GR, and the GR kinetics was described by exp(-(t/7 ps)(0.7)). Every rebound Cytc(III)NO formed the LS Fe(III)-NO(radical) state that

  14. Ferric Iron Precipitation in the Nagahama Bay, Satsuma Iwo-Jima Island, Kagoshima

    NASA Astrophysics Data System (ADS)

    Nagata, T.; Kiyokawa, S.; Ikehara, M.; Oguri, K.; Goto, S.; Ito, T.; Yamaguchi, K. E.; Ueshiba, T.

    2010-12-01

    Satsuma-Iwojima island is active volcanic island and 6 x 3 km in size, located 38km south of Kyushu island, Japan. The reddish brown water along the coast of the Iwo-dake volcano at the center of the island formed by neutralization through mixing of shallow hydrothermal fluid and seawater. The reddish brown water contains reddish ferrihydrite (Fe3+) that is derived from oxidation of Fe2+ from acidic hot spring (Shikaura and Tazaki, 2001). In the Nagahama Bay with its opening to the south, red-colored Fe-rich water is affected by tidal current, but sedimentation of the ferric hydroxide is confirmed to occur in the ocean bottom (Ninomiya and Kiyokawa, 2009). Here we focus other lines of evidence from long term observations and meteorological records as important factor to form thick iron rich sediments. Meteorological and stationary observations: We used weather record in the Satsuma Iwo-jima and cross-checked with stationary observations, which enabled us to observe color changes of the surface of Nagahama Bay. It was made clear that north wind condition in the Nagahama Bay resulted in changes of the color of its surface, from red to green, by intrusion of ocean water coming from outside. Long term temperature monitoring: The temperature of seawater in the Nagahama Bay fluctuated synchronically with the air temperature. But that of hot spring water rather remained constant regardless of the seasonal change. We observed that seawater temperature in the Nagahama Bay is low at high tide and high at low tide, and the rage of temperature change is maximum at the spring tide and minimum at the neap tide. In other words, the amount of discharge of hot spring and that of seawater inflow vary inversely. Core sample: In the Nagahama Bay, iron rich sediments that is more than 1 m thick were identified. The core sample shows lithology as following; upper part, 10-20cm thick, formed loose Fe-rich deposit, lower portion formed alteration of weakly consolidated Fe-rich orange

  15. Surfactant templating effects on the encapsulation of iron oxide nanoparticles within silica microspheres.

    PubMed

    Zheng, Tonghua; Pang, Jiebin; Tan, Grace; He, Jibao; McPherson, Gary L; Lu, Yunfeng; John, Vijay T; Zhan, Jingjing

    2007-04-24

    Hollow silica microspheres encapsulating ferromagnetic iron oxide nanoparticles were synthesized by a surfactant-aided aerosol process and subsequent treatment. The cationic surfactant cetyltrimethyl ammonium bromide (CTAB) played an essential role in directing the structure of the composite. Translation from mesoporous silica particles to hollow particles was a consequence of increased loading of ferric species in the precursor solution and the competitive partitioning of CTAB between silicate and ferric colloids. The hypothesis was that CTAB preferentially adsorbed onto more positively charged ferric colloids under acidic conditions. At a critical Fe/Si ratio, most of the CTAB was adsorbed onto ferric colloids and coagulated the colloids to form larger clusters. During the aerosol process, a silica shell was first formed due to the preferred silicate condensation on the gas-liquid interface of the aerosol droplet. Subsequent drying concentrated the ferric clusters inside the silica shell and resulted in a silica shell/ferric core particle. Thermal treatment of the core shell particle led to encapsulation of a single iron oxide nanoparticle inside each silica hollow microsphere. PMID:17397201

  16. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-03-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg-1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents.

  17. Super adsorption capability from amorphousization of metal oxide nanoparticles for dye removal

    PubMed Central

    Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W.

    2015-01-01

    Transitional metal oxide nanoparticles as advanced environment and energy materials require very well absorption performance to apply in practice. Although most metal oxides are based on crystalline, high activities can also be achieved with amorphous phases. Here, we reported the adsorption behavior and mechanism of methyl blue (MB) on the amorphous transitional metal oxide (Fe, Co and Ni oxides) nanoparticles, and we demonstrated that the amorphousization of transitional metal oxide (Fe, Co and Ni oxides) nanoparticles driven by a novel process involving laser irradiation in liquid can create a super adsorption capability for MB, and the maximum adsorption capacity of the fabricated NiO amorphous nanostructure reaches up to 10584.6 mgg−1, the largest value reported to date for all MB adsorbents. The proof-of-principle investigation of NiO amorphous nanophase demonstrated the broad applicability of this methodology for obtaining new super dyes adsorbents. PMID:25761448

  18. Ferric Citrate

    PubMed Central

    Cada, Dennis J.; Cong, Jasen; Baker, Danial E.

    2015-01-01

    Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, call The Formulary at 800-322-4349. The February 2015 monograph topics are netupitant/palonosetron, naltrxone SR/bupropion SR, nintedanib, pirfenidone, and ivabradine. The Safety MUE is on netupitant/palonosetron. PMID:25717210

  19. Ferric citrate.

    PubMed

    Cada, Dennis J; Cong, Jasen; Baker, Danial E

    2015-02-01

    Each month, subscribers to The Formulary Monograph Service receive 5 to 6 well-documented monographs on drugs that are newly released or are in late phase 3 trials. The monographs are targeted to Pharmacy & Therapeutics Committees. Subscribers also receive monthly 1-page summary monographs on agents that are useful for agendas and pharmacy/nursing in-services. A comprehensive target drug utilization evaluation/medication use evaluation (DUE/MUE) is also provided each month. With a subscription, the monographs are sent in print and are also available on-line. Monographs can be customized to meet the needs of a facility. A drug class review is now published monthly with The Formulary Monograph Service. Through the cooperation of The Formulary, Hospital Pharmacy publishes selected reviews in this column. For more information about The Formulary Monograph Service, call The Formulary at 800-322-4349. The February 2015 monograph topics are netupitant/palonosetron, naltrxone SR/bupropion SR, nintedanib, pirfenidone, and ivabradine. The Safety MUE is on netupitant/palonosetron. PMID:25717210

  20. Understanding Regeneration of Arsenate-Loaded Ferric Hydroxide-Based Adsorbents

    PubMed Central

    Chaudhary, Binod Kumar; Farrell, James

    2015-01-01

    Abstract Adsorbents comprising ferric hydroxide loaded on a variety of support materials are commonly used to remove arsenic from potable water. Although several studies have investigated the effects of support properties on arsenic adsorption, there have been no investigations of their effects on adsorbent regeneration. Furthermore, the effect of regenerant solution composition and the kinetics of regeneration have not been investigated. This research investigated the effects of adsorbent and regenerant solution properties on the kinetics and efficiency of regeneration of arsenate-loaded ferric hydroxide-based adsorbents. Solutions containing only 0.10–5.0 M NaOH or 0.10–1.0 M NaCl, as well as solutions containing both compounds, were used as regenerants. On all media, >99% of arsenate was adsorbed through complexation with ferric hydroxide. Arsenate recovery was controlled by both equilibrium and kinetic limitations. Adsorbents containing support material with weak base anion-exchange functionality or no anion-exchange functionality could be regenerated with NaOH solutions alone. Regeneration of media containing strong base anion (SBA)-exchange functionality was greatly enhanced by addition of 0.10 M NaCl to the NaOH regenerant solutions. Adsorbed silica had a significant effect on NaOH regeneration of media containing type I SBA-exchange functionality, but on other media, adsorbed silica had little impact on regeneration. On all media, 5–25% of arsenate was resistant to desorption in 1.0 M NaOH solutions. However, the use of 2.5–5.0 M NaOH solutions significantly reduced the desorption-resistant fraction. PMID:25873779

  1. Ferric ammonium citrate decomposition--a taxonomic tool for gram-negative bacteria.

    PubMed

    Szentmihályi, A; Lányi, B

    1986-01-01

    The iron uptake test of Szabó and Vandra has been modified and used for the differentiation of Gram-negative bacteria. Nutrient agar containing 20 g per litre of ferric ammonium citrate was distributed into narrow tubes and solidified so as to form butts and slants. Considering the localization of the rusty-brown coloration produced after seeding and incubation, 2367 strains were classified into four groups. (1) Unchanged medium: Escherichia coli, Shigella spp., Yersinia spp., Hafnia alvei and Morganella morganii 100% each, Klebsiella spp., 50%, Enterobacter cloacae 37%, Proteus vulgaris 59%, Acinetobacter spp. 42%, Pseudomonas fluorescens 19%, some other bacteria 2-12%. (2) Rusty-brown slant, unchanged butt: Salmonella subgenera II, III and IV 98%, Citrobacter freundii 65%, E. cloacae 55%, P. vulgaris 41%, Proteus mirabilis 98%, Providencia rettgeri 100%, urease-negative Providencia 96%, Acinetobacter spp. 58%, Pseudomonas aeruginosa 100%, P. fluorescens 81%, UFP (unclassified fluorescent pseudomonads) 100%, other Pseudomonas spp. 55%. (3) Unchanged slant, brown butt: S. typhi 88%, Salmonella subgenus I 3%, Klebsiella spp. 31%, some other bacteria 2-3%. (4) Rusty-brown slant, brown butt: Salmonella subgenus I 75%, C. freundii 20%, Klebsiella spp. 12%, some other bacteria 1-5%. Colour reactions in ferric ammonium citrate agar are associated with the accumulation of ferric hydroxide: bacteria giving positive reactions on the slant took up as an average, 63 times more iron than those with negative test. The localization of colour reaction correlated partly with aerobic and anaerobic citrate utilization or decomposition in Simmons' minimal and in Kauffmann's peptone water medium. PMID:3529797

  2. Ferric ion as a scavenging agent in a solvent extraction process

    DOEpatents

    Bruns, Lester E.; Martin, Earl C.

    1976-01-01

    Ferric ions are added into the aqueous feed of a plutonium scrap recovery process that employs a tributyl phosphate extractant. Radiolytic degradation products of tributyl phosphate such as dibutyl phosphate form a solid precipitate with iron and are removed from the extraction stages via the waste stream. Consequently, the solvent extraction characteristics are improved, particularly in respect to minimizing the formation of nonstrippable plutonium complexes in the stripping stages. The method is expected to be also applicable to the partitioning of plutonium and uranium in a scrap recovery process.

  3. Solute-Solvent Interactions and High Spin ⇌ Low Spin Transitions in Ferric Dithiocarbamates

    NASA Astrophysics Data System (ADS)

    Ganguli, P.

    1985-01-01

    The HS ⇌ LS transition in ferric dithiocarbamates in a number of solvents has been investigated using NMR and is interpreted in terms of preferential solvation or second co-ordination sphere reorganisation effects. These studies clearly demonstrate that neglect of pseudo contact shifts can lead to erroneous conclusions about the spin delocalisation mechanisms. The spin derealization in these systems is by direct σ-delocalization along the alkyl chain. The As values of 2T2 and 6A1 states have the same sign.

  4. Point defects in (Mg,Fe)O at high pressures: where does hydrogen dominate over ferric iron?

    NASA Astrophysics Data System (ADS)

    Otsuka, K.; Karato, S.

    2007-12-01

    The point defects play an important role in transport processes of minerals including diffusion, electrical conduction and plastic deformation. Point defects caused by ferric iron and/or hydrogen (proton) are dominant defects in most of the iron-bearing minerals including olivine and (Mg,Fe)O. In many upper-mantle minerals such as olivine, the concentration of ferric iron is much smaller than that of hydrogen, and therefore the small amount of hydrogen changes their transport properties dramatically. However, the situation is very different for lower- mantle minerals such as (Mg,Fe)O. In this presentation, we will review the available experimental data on point defects in (Mg,Fe)O and discuss the relative importance of ferric iron and hydrogen at high pressures based on atomic models. The existing low-pressure data indicate that the maximum solubility of ferric iron in (Mg,Fe)O is on the order of 0.1 (atomic fraction in the total iron), which is much higher than that of hydrogen. However, experimental studies by Bolfan-Casanova et al (2002, 2006) indicate that the solubility of ferric iron decreases while that of hydrogen increases with pressure. This suggests that the dominant impurity to generate point defects in (Mg,Fe)O may change from ferric iron to hydrogen at high pressure. Therefore it is important to quantify the pressure dependence of the solubility of ferric iron and hydrogen. We have explored two models of ferric iron- related defects and found that the existing experimental data suggest that ferric iron may occur at two lattice sites: the tetrahedral site as interstitial atoms as well as the octahedral site. The pressure dependence of the solubility of hydrogen in (Mg,Fe)O are also estimated based on the experimental data and defect models. The cross-over of defect solubility likely occurs in the lower mantle, but the exact depth is poorly constrained because of large uncertainties in the hydrogen solubility and the mechanisms of hydrogen dissolution

  5. The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase.

    PubMed Central

    Roman, D G; Dancis, A; Anderson, G J; Klausner, R D

    1993-01-01

    We have identified a cell surface ferric reductase activity in the fission yeast Schizosaccharomyces pombe. A mutant strain deficient in this activity was also deficient in ferric iron uptake, while ferrous iron uptake was not impaired. Therefore, reduction is a required step in cellular ferric iron acquisition. We have cloned frp1+, the wild-type allele of the mutant gene. frp1+ mRNA levels were repressed by iron addition to the growth medium. Fusion of 138 nucleotides of frp1+ promoter sequences to a reporter gene, the bacterial chloramphenicol acetyltransferase gene, conferred iron-dependent regulation upon the latter when introduced into S. pombe. The predicted amino acid sequence of the frp1+ gene exhibits hydrophobic regions compatible with transmembrane domains. It shows similarity to the Saccharomyces cerevisiae FRE1 gene product and the gp91-phox protein, a component of the human NADPH phagocyte oxidoreductase that is deficient in X-linked chronic granulomatous disease. Images PMID:8321236

  6. Iron Photoreduction and Oxidation in an Acidic Mountain Stream

    NASA Astrophysics Data System (ADS)

    McKnight, D. M.; Kimball, B. A.; Bencala, K. E.

    1988-04-01

    In a small mountain stream in Colorado that receives acidic mine drainage, photoreduction of ferric iron results in a well-defined increase in dissolved ferrous iron during the day. To quantify this process, an instream injection of a conservative tracer was used to measure discharge at the time that each sample was collected. Daytime production of ferrous iron by photoreduction was almost four times as great as nighttime oxidation of ferrous iron. The photoreduction process probably involves dissolved or colloidal ferric iron species and limited interaction with organic species because concentrations of organic carbon are low in this stream.

  7. Evaluation of polyaluminium ferric chloride (PAFC) as a composite coagulant for water and wastewater treatment.

    PubMed

    Gao, B; Yue, Q; Miao, J

    2003-01-01

    Coal gangue is a kind of waste from coal mine processing. Polyaluminium ferric chloride (PAFC), a new type of inorganic composite coagulant, was prepared by using the waste from the Mineral Bureau of Yanzhou, China, hydrochloric acid and calcium carbonate as raw materials. The relationship between the stability of ferric ion and the ionic strength of solution was investigated. The zeta potential of PAFC hydrolysis products of PAFC and the coagulation performances under different pH value were discussed. The turbidity removal properties of PAFC, polyaluminium (PAC) and polyferric sulfate (PFS) were compared, and the color removal effect of PAFC for the wastewater containing suspended dyes was also tested. In addition, the coagulation performance of PAFC for actual wastewaters from petrochemical plant, iron and steel plant, and coal mining processing was evaluated. The experimental results suggest that PAFC took a maximum value of zeta potential at about pH 5.8 on the positive side. Compared with PAC, PAFC gives better turbidity removal performance in the range of pH from 7.0 to 8.4. PAFC gives good color removal performance on suspension dyes. PAFC also gives good wastewater purifying results for the actual wastewater. Therefore, PAFC is a high-effect and stable water treatment agent. PMID:12578184

  8. Synovectomy of the rheumatoid knee using intra-articular injection of dysprosium-165-ferric hydroxide macroaggregates

    SciTech Connect

    Sledge, C.B.; Zuckerman, J.D.; Shortkroff, S.; Zalutsky, M.R.; Venkatesan, P.; Snyder, M.A.; Barrett, W.P.

    1987-09-01

    One hundred and eleven patients who had seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with intra-articular injection of 270 millicuries of dysprosium-165 bound to ferric hydroxide macroaggregates. A two-year follow-up was available for fifty-nine of the treated knees. Thirty-nine had a good result; nine, a fair result; and eleven, a poor result. Of the twenty-five knees that had Stage-I radiographic changes, nineteen had a good result. Of the thirty-four knees that had Stage-II radiographic changes, twenty showed a good result. Systemic spread of the radioactivity from the injected joint was minimum. The mean whole-body dose was calculated to be 0.3 rad and that to the liver twenty-four hours after injection, 3.2 rads. The results indicated that dysprosium-165-ferric hydroxide macroaggregate is an effective agent for performing radiation synovectomy, particularly in knees that have Stage-I radiographic changes. Because of the minimum rate of systemic spread of the dysprosium-165, it offers a definite advantage over agents that previously have been used.

  9. Treatment of rheumatoid synovitis of the knee with intraarticular injection of dysprosium 165-ferric hydroxide macroaggregates

    SciTech Connect

    Sledge, C.B.; Zuckerman, J.D.; Zalutsky, M.R.; Atcher, R.W.; Shortkroff, S.; Lionberger, D.R.; Rose, H.A.; Hurson, B.J.; Lankenner, P.A. Jr.; Anderson, R.J.

    1986-02-01

    One hundred eight knees of 93 patients with seropositive rheumatoid arthritis and persistent synovitis of the knee were treated with an intraarticular injection of 270 mCi of dysprosium 165 bound to ferric hydroxide macroaggregate. Leakage of radioactivity from the injected joint was minimal. Mean leakage to the venous blood 3 hours after injection was 0.11% of the injected dose; this corresponds to a mean whole body dose of 0.2 rads. Mean leakage to the liver 24 hours after injection was 0.64% of the injected dose; this corresponds to a mean liver dose of 3.2 rads. In 7 additional patients examined, there was negligible or near negligible activity found in the draining inguinal lymph nodes. One-year followup was possible for 74 knees (63 patients). Sixty-one percent of the knees had good results, 23% had fair results, and 16% had poor results. There was a direct correlation between the radiographic stage and response to treatment. In knees with stage I radiographic changes, 72% showed good results; 93% showed improvement. In knees with stage II changes, 59% showed good results; 81% showed improvement. These preliminary results indicate that dysprosium 165-ferric hydroxide macroaggregate is an effective agent for radiation synovectomy. The low leakage rates observed offer a definite advantage over agents previously used.

  10. The precipitation of hematite from ferric chloride media at atmospheric pressure

    SciTech Connect

    Dutrizac, J.E.; Riveros, P.A.

    1999-12-01

    The precipitation of hematite from ferric chloride media at temperatures {lt}100 C and at ambient pressure was studied as part of a program to recover a marketable iron product from metallurgical processing streams or effluents. Hematite (Fe{sub 2}O{sub 3}) can be formed in preference to ferric oxyhydroxides (e.g., {beta}-FeO{micro}OH) at temperatures as low as 60 C by controlling the precipitation conditions, especially seeding. The hematite product typically contains {gt}66 pct Fe and {lt}1 pct Cl, and its composition does not change appreciably on repeated recycling. The amount of product formed increases significantly with increasing FeCl{sub 3} concentrations to {approximately}0.2 M FeCl{sub 3}, but nearly constant product yields are obtained thereafter; the precipitates consist only of hematite, provided that an adequate amount of seed is present. The contamination with Zn, Ca, and Na is {lt}0.1 pct, even for high concentrations of dissolved ZnCl{sub 2}, CaCl{sub 2}, or NaCl. The extent of the precipitation reaction depends principally on the temperature and the free-acid concentration; accordingly, the controlled addition of a base allows the nearly complete elimination of the iron from metallurgical processing streams or effluents, as readily filterable Fe{sub 2}O{sub 3}.

  11. Geobacter bremensis sp. nov. and Geobacter pelophilus sp. nov., two dissimilatory ferric-iron-reducing bacteria.

    PubMed

    Straub, K L; Buchholz-Cleven, B E

    2001-09-01

    Two strictly anaerobic, dissimilatory ferric-iron-reducing bacteria, strains Dfr1T and Dfr2T, were isolated from freshwater mud samples with ferrihydrite as electron acceptor. Both strains also grew by reducing Mn(IV), S0 and fumarate. Electron donors used by strains Dfr1T and Dfr2T for growth with ferric iron as electron acceptor included hydrogen, formate, acetate, pyruvate, succinate, fumarate and ethanol. An affiliation with the family Geobacteraceae was revealed by comparative analysis of 165 rRNA gene sequences. Strains Dfr1T and Dfr2T shared 92.5% sequence identity and their closest known relative was Geobacter sulfurreducens, with approximately 93% sequence identity. Cultures and colonies of strains Dfr1T and Dfr2T were intensely red in colour, due to the presence of c-type cytochromes. On the basis of physiological and phylogenetic data, strain Dfr1T (= DSM 12179T = OCM 796T) is described as Geobacter bremensis sp. nov. and strain Dfr2T (= DSM 12255T = OCM 797T) as Geobacter pelophilus sp. nov. PMID:11594612

  12. [Mechanism of groundwater As(V) removal with ferric flocculation and direct filtration].

    PubMed

    Kang, Ying; Duan, Jin-Ming; Jing, Chuan-Yong

    2015-02-01

    The As removal process and mechanism from groundwater using ferric flocculation-direct filtration system was investigated using batch, field pilot tests, extended X-ray absorption fine structure ( EXAFS) spectroscopy, and charge-distribution multisite complexation (CD-MUSIC) model. The results showed that arsenate [As(V)] was the dominant As species in the groundwater with a concentration of 40 μg x L(-1). The treatment system could supply 64 984 L As-safe drinking water (< 10 μg L(-1)) using Fe 1.5 mg x L(-1). Toxicity characteristic leaching procedure (TCLP) demonstrated that the leachate As was 3.4 μg x L(-1), much lower than the EPA regulatory concentration (5 mg x L(-1)). EXAFS and CD-MUSIC model indicated that As(V) was adsorbed onto ferric hydroxide via bidentate binuclear complexes in the pH range of 3 to 9.5, while formation of precipitate with Ca or Mg dominated the As removal at pH > 9.5. PMID:26031078

  13. Ferric Citrate Hydrate as a Phosphate Binder and Risk of Aluminum Toxicity

    PubMed Central

    Gupta, Ajay

    2014-01-01

    Ferric citrate hydrate was recently approved in Japan as an oral phosphate binder to be taken with food for the control of hyperphosphatemia in patients with chronic kidney disease (CKD). The daily therapeutic dose is about 3 to 6 g, which comprises about 2 to 4 g of citrate. Oral citrate solubilizes aluminum that is present in food and drinking water, and opens the tight junctions in the intestinal epithelium, thereby increasing aluminum absorption and urinary excretion. In healthy animals drinking tap water, oral citrate administration increased aluminum absorption and, over a 4-week period, increased aluminum deposition in brain and bone by about 2- and 20-fold, respectively. Renal excretion of aluminum is impaired in patients with chronic kidney disease, thereby increasing the risk of toxicity. Based on human and animal studies it can be surmised that patients with CKD who are treated with ferric citrate hydrate to control hyperphosphatemia are likely to experience enhanced absorption of aluminum from food and drinking water, thereby increasing the risk of aluminum overload and toxicity. PMID:25341358

  14. Iron sucrose and ferric carboxymaltose: no correlation between physicochemical stability and biological activity.

    PubMed

    Praschberger, Monika; Haider, Kathrin; Cornelius, Carolin; Schitegg, Markus; Sturm, Brigitte; Goldenberg, Hans; Scheiber-Mojdehkar, Barbara

    2015-02-01

    Intravenous iron preparations, like iron sucrose (IS) and ferric carboxymaltose (FCM) differ in their physicochemical stability. Thus differences in storage and utilization can be expected and were investigated in a non-clinical study in liver parenchyma HepG2-cells and THP-1 macrophages as models for toxicological and pharmacological target cells. HepG2-cells incorporated significant amounts of IS, elevated the labile iron pool (LIP) and ferritin and stimulated iron release. HepG2-cells had lower basal cellular iron and ferritin content than THP-1 macrophages, which showed only marginal accumulation of IS and FCM. However, FCM increased the LIP up to twofold and significantly elevated ferritin within 24 h in HepG2-cells. IS and FCM were non-toxic for HepG2-cells and THP-1 macrophages were more sensitive to FCM compared to IS at all concentrations tested. In a cell-free environment redox-active iron was higher with IS than FCM. Biostability testing via assessment of direct transfer to serum transferrin did not reflect the chemical stability of the complexes (i.e., FCM > IS). Effect of vitamin C on mobilisation to transferrin was an increase with IS and interestingly a decrease with FCM. In conclusion, FCM has low bioavailability for liver parenchyma cells, therefore liver iron deposition is unlikely. Ascorbic acid reduces transferrin-chelatable iron from ferric carboxymaltose, thus effects on hepcidin expression should be investigated in clinical studies. PMID:25326244

  15. Combining Ferric Salt and Cactus Mucilage for Arsenic Removal from Water.

    PubMed

    Fox, Dawn I; Stebbins, Daniela M; Alcantar, Norma A

    2016-03-01

    New methods to remediate arsenic-contaminated water continue to be studied, particularly to fill the need for accessible methods that can significantly impact developing communities. A combination of cactus mucilage and ferric (Fe(III)) salt was investigated as a flocculation-coagulation system to remove arsenic (As) from water. As(V) solutions, ferric nitrate, and mucilage suspensions were mixed and left to stand for various periods of time. Visual and SEM observations confirmed the flocculation action of the mucilage as visible flocs formed and settled to the bottom of the tubes within 3 min. The colloidal suspensions without mucilage were stable for up to 1 week. Sample aliquots were tested for dissolved and total arsenic by ICP-MS and HGAFS. Mucilage treatment improved As removal (over Fe(III)-only treatment); the system removed 75-96% As in 30 min. At neutral pH, removal was dependent on Fe(III) and mucilage concentration and the age of the Fe(III) solution. The process is fast, achieving maximum removal in 30 min, with the majority of As removed in 10-15 min. Standard jar tests with 1000 μg/L As(III) showed that arsenic removal and settling rates were pH-dependent; As removal was between 52% (high pH) and 66% (low pH). PMID:26824141

  16. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae.

    PubMed Central

    Georgatsou, E; Alexandraki, D

    1994-01-01

    Iron uptake in Saccharomyces cerevisiae involves at least two steps: reduction of ferric to ferrous ions extracellularly and transport of the reduced ions through the plasma membrane. We have cloned and molecularly characterized FRE2, a gene which is shown to account, together with FRE1, for the total membrane-associated ferric reductase activity of the cell. Although not similar at the nucleotide level, the two genes encode proteins with significantly similar primary structures and very similar hydrophobicity profiles. The FRE1 and FRE2 proteins are functionally related, having comparable properties as ferric reductases. FRE2 expression, like FRE1 expression, is induced by iron deprivation, and at least part of this control takes place at the transcriptional level, since 156 nucleotides upstream of the initiator AUG conferred iron-dependent regulation when fused to a heterologous gene. However, the two gene products have distinct temporal regulation of their activities during cell growth. Images PMID:8164662

  17. Dissociation of a ferric maltol complex and its subsequent metabolism during absorption across the small intestine of the rat.

    PubMed Central

    Barrand, M. A.; Callingham, B. A.; Dobbin, P.; Hider, R. C.

    1991-01-01

    1. The fate and disposition of [59Fe]-ferric [3H]-maltol after intravenous administration were investigated in anaesthetized rats. Immediate dissociation of ferric iron from maltol took place in the circulation even with high doses of ferric maltol (containing 1 mg elemental iron). In plasma samples withdrawn within 1 min of injection and subjected to gel filtration, 59Fe eluted with the high molecular weight proteins whilst the tritium was associated with low molecular weight material. 2. The rates of elimination of 59Fe and of tritium from the plasma and their ultimate fate were very different. The half life for 59Fe in the plasma was around 70 min and 59Fe appeared mainly in the bone marrow and liver. There was an initial rapid exit of tritium from the plasma with a half life of around 12 min. This was followed either by a plateau or by a rise in tritium levels, involving entry of maltol metabolites into the circulation. These metabolites could be recovered in the urine. 3. Entry of 59Fe and of tritium into the blood plasma after intraduodenal administration of [59Fe]-ferric [3H]-maltol was also very different. At low doses of ferric maltol (containing 100 micrograms elemental iron), the tritium appeared in the plasma in highest amounts within seconds and then decreased whilst there was a slow rise in 59Fe levels. At higher doses of ferric maltol (containing 7 mg elemental iron), levels of 59Fe in the plasma were highest at 5 min and then fell whereas tritium levels rose steadily. Mucosal processing of 59Fe prevented further entry of iron at high dose into the circulation.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1364845

  18. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid, and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.; Kleinmann, R.L.P.; Erickson, P.M.

    1984-07-01

    Thiobacillus ferrooxidans promote indirect oxidation of pyrite through the catalysis of the oxidation of ferrous iron to ferric iron, which is an effective oxidant of pyrite. These bacteria also may catalyze direct oxidation of pyrite by oxygen. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous iron to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage microorganisms. In this study, benzoic acid, sorbic acid, and sodium lauryl sulfate at low concentrations (5 to 10 mg/liter) each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of Thiobacillus ferrooxidans. The rate of chemical oxidation of ferrous iron in low-pH, sterile batch reactors was not substantially affected at the tested concentrations (5 to 50 mg/liter) of any of the compounds.

  19. Molecular, Antigenic, and Functional Characteristics of Ferric Enterobactin Receptor CfrA in Campylobacter jejuni ▿

    PubMed Central

    Zeng, Ximin; Xu, Fuzhou; Lin, Jun

    2009-01-01

    The ferric enterobactin receptor CfrA not only is responsible for high-affinity iron acquisition in Campylobacter jejuni but also is essential for C. jejuni colonization in animal intestines. In this study, we determined the feasibility of targeting the iron-regulated outer membrane protein CfrA for immune protection against Campylobacter colonization. Alignment of complete CfrA sequences from 15 Campylobacter isolates showed that the levels of amino acid identity for CfrA range from 89% to 98%. Immunoblotting analysis using CfrA-specific antibodies demonstrated that CfrA was dramatically induced under iron-restricted conditions and was widespread and produced in 32 Campylobacter primary strains from various sources and from geographically diverse areas. The immunoblotting survey results were highly correlated with the results of an enterobactin growth promotion assay and a PCR analysis using cfrA-specific primers. Inactivation of the cfrA gene also impaired norepinephrine-mediated growth promotion, suggesting that CfrA is required for C. jejuni to sense intestinal stress hormones during colonization. Complementation of the cfrA mutant with a wild-type cfrA allele in trans fully restored the production and function of CfrA. A growth assay using purified anti-CfrA immunoglobulin G demonstrated that specific CfrA antibodies could block the function of CfrA, which diminished ferric enterobactin-mediated growth promotion under iron-restricted conditions. The inhibitory effect of CfrA antibodies was dose dependent. Immunoblotting analysis also indicated that CfrA was expressed and immunogenic in chickens experimentally infected with C. jejuni. Amino acid substitution mutagenesis demonstrated that R327, a basic amino acid that is highly conserved in CfrA, plays a critical role in ferric enterobactin acquisition in C. jejuni. Together, these findings strongly suggest that CfrA is a promising vaccine candidate for preventing and controlling Campylobacter infection in

  20. Inhibition of Clostridium perfringens by heated combinations of nitrite, sulfur, and ferrous or ferric ions.

    PubMed Central

    Asan, T; Solberg, M

    1976-01-01

    Heating mixtures of sodium nitrite, cysteine, and either ferrous sulfate or ferric chloride at 121 C for 20 min at pH 6.5 or 6.3 produced a potent inhibitor of Clostridium perfringens vegetative cells and spores when added to previously heat-sterilized fluid thioglycolate medium. When the mixtures containing FeSO4 at pH 5.2 or FeCl3 at pH 2.7 were heated, the inhibitory effect was not produced. These responses seem to eliminate the possibility that cysteine nitrosothiol is the agent responsible for the heated-nitrite inhibition known as the Perigo effect. The variable pH responses also cast doubt upon the role of the black Roussin salt as the agent of the Perigo effect. PMID:8004

  1. Adsorptive bubble separation of zinc and cadmium cations in presence of ferric and aluminum hydroxides.

    PubMed

    Jurkiewicz, Kazimierz

    2005-06-15

    The adsorptive bubble separation of zinc and cadmium cations from solution in the presence of ferric and aluminum hydroxides was carried out by means of Tween 80 (nonionic surfactant), and sodium laurate and stearate (anionic surfactants). The mechanism of metal removal is different depending on the nature of the surfactant used. The removal of zinc cations by adsorbing colloid flotation is higher than that of cadmium cations. It increases with increases in the amount of hydroxide precipitate and the concentration of Tween 80. The removal of zinc cations by ion flotation is lower than that of cadmium cations. It does not change with increases in the hydroxide amount. It increases, however, with increased sodium laurate or stearate concentration. Both separation methods turned out to be helpful for studying both the solution's structure and the interactions at the solution-solid interface. PMID:15897071

  2. Kinetics of the complexation of ferric iron with 8-hydroxyquinoline and KELEX 100

    SciTech Connect

    Ki, K.Y; Lemert, R.M.; Chang, H.K.

    1987-01-01

    The complexation reactions of ferric iron with 8-Hydroxyquinoline and KELEX-100 in both aqueous and methanol solutions were studied by using a stopped-flow spectrophotometer. In the aqueous solutions, the observed rate law was found to be first-order with respect to both iron(III) and oxine and inverse-first-order with respect to the hydrogen ion. While in the methanol solution, the rate law was first-order with respect to iron(III) and KELEX-100. Reaction pathes with the formation of the first complex, FeAS , from either FeT or Fe(OH)S were proposed to explain the observed rate law. The activation energies were found to be 5.5 kcal/g-mole and 15 kcal/g-mole for the aqueous and methanol solutions, respectively.

  3. Authigenic vivianite in Potomac River sediments: control by ferric oxy-hydroxides.

    USGS Publications Warehouse

    Hearn, P.P.; Parkhurst, D.L.; Callender, E.

    1983-01-01

    Sand-size aggregates of vivianite crystals occur in the uppermost sediments of the Potomac River estuary immediately downstream from the outfall of a sewage treatment plant at the southernmost boundary of the District of Columbia, USA. They are most abundant in a small area of coarse sand (dredge spoil) which contrasts with the adjacent, much finer sediments. The sewage outfall supplies both reducing conditions and abundant phosphate. Analyses and calculations indicate that the pore waters in all the adjacent sediments are supersaturated with respect to vivianite. Its concentration in the coarse sand is attributed to the absence there of amorphous ferric oxyhydroxides, which are present in the finer sediments and preferentially absorb the phosphate ion. -H.R.B.

  4. Treatment of antigen-induced arthritis in rabbits with dysprosium-165-ferric hydroxide macroaggregates

    SciTech Connect

    Zuckerman, J.D.; Sledge, C.B.; Shortkroff, S.; Venkatesan, P.

    1989-01-01

    Dysprosium-165-ferric hydroxide macroaggregates (/sup 165/Dy-FHMA) was used as an agent of radiation synovectomy in an antigen-induced arthritis model in New Zealand white rabbits. Animals were killed up to 6 months after treatment. /sup 165/Dy-FHMA was found to have a potent but temporary antiinflammatory effect on synovium for up to 3 months after treatment. Treated knees also showed significant preservation of articular cartilage architecture and proteoglycan content compared with untreated controls, but only during the first 3 months after treatment. In animals killed 3 and 6 months after treatment there were only minimal differences between the treated and untreated knees, indicating that the antiinflammatory effects on synovial tissue and articular cartilage preservation were not sustained.

  5. Arsenic sorption onto titanium dioxide, granular ferric hydroxide and activated alumina: batch and dynamic studies.

    PubMed

    Lescano, Maia R; Passalía, Claudio; Zalazar, Cristina S; Brandi, Rodolfo J

    2015-01-01

    The aim of this work was to evaluate and compare the efficiencies of three different adsorbents for arsenic (As) removal from water: titanium dioxide (TiO2), granular ferric hydroxide (GFH) and activated alumina (AA). Equilibrium experiments for dissolved arsenite and arsenate were carried out through batch tests. Freundlich and Langmuir isotherm models were adopted and their parameters were estimated by non-linear regressions. In addition, dynamic experiments were performed in mini fixed bed columns and breakthrough curves were obtained for each combination of sorbate/adsorbent. Experimental results obtained by column assays were compared with predictions of well-known breakthrough models (Bohart-Adams and Clark). Results indicate that As(V) is more easily adsorbed than As(III) for AA and GFH, while TiO2 has a similar behavior for both species. The titanium-based material is the most efficient adsorbent to carry out the process, followed by the GFH. PMID:25723069

  6. Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil.

    PubMed

    Gan, Suyin; Ng, Hoon Kiat; Ooi, Chun Weng; Motala, Nafisa Osman; Ismail, Mohd Anas Farhan

    2010-10-01

    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq). PMID:20435468

  7. Degradation of ferric chelate of ethylenediaminetetraacetic acid by bacterium isolated from deep-sea stalked barnacle.

    PubMed

    Imada, Chiaki; Harada, Yohei; Kobayashi, Takeshi; Hamada-Sato, Naoko; Watanabe, Etsuo

    2005-01-01

    Twenty strains of marine bacteria that degrade ferric chelate of ethylenediaminetetraacetic acid (Fe-EDTA) were isolated from among 117 strains collected from a marine environment. Among them strain 02-N-2, which was isolated from stalked barnacle collected from the deep sea in the Indian Ocean, had the highest Fe-EDTA degradation ability and was selected for further study. The strain showed high Fe-EDTA degradation ability at different seawater concentrations. In addition, the intact cells of this strain had the ability to degrade such metal-EDTAs as Ca, Cu, and Mg. The strain was an aerobic, gram-variable, rod-shaped organism. The results of various taxonomic studies revealed that the strain had significant similarity to Bacillus jeotgali JCM 10885(T), which was isolated from a Korean traditional fermented seafood, Jeotgal. PMID:15747087

  8. Concerted loop motion triggers induced fit of FepA to ferric enterobactin

    PubMed Central

    Smallwood, Chuck R.; Jordan, Lorne; Trinh, Vy; Schuerch, Daniel W.; Gala, Amparo; Hanson, Mathew; Shipelskiy, Yan; Majumdar, Aritri; Newton, Salete M.C.

    2014-01-01

    Spectroscopic analyses of fluorophore-labeled Escherichia coli FepA described dynamic actions of its surface loops during binding and transport of ferric enterobactin (FeEnt). When FeEnt bound to fluoresceinated FepA, in living cells or outer membrane fragments, quenching of fluorophore emissions reflected conformational motion of the external vestibular loops. We reacted Cys sulfhydryls in seven surface loops (L2, L3, L4, L5, L7 L8, and L11) with fluorophore maleimides. The target residues had different accessibilities, and the labeled loops themselves showed variable extents of quenching and rates of motion during ligand binding. The vestibular loops closed around FeEnt in about a second, in the order L3 > L11 > L7 > L2 > L5 > L8 > L4. This sequence suggested that the loops bind the metal complex like the fingers of two hands closing on an object, by individually adsorbing to the iron chelate. Fluorescence from L3 followed a biphasic exponential decay as FeEnt bound, but fluorescence from all the other loops followed single exponential decay processes. After binding, the restoration of fluorescence intensity (from any of the labeled loops) mirrored cellular uptake that depleted FeEnt from solution. Fluorescence microscopic images also showed FeEnt transport, and demonstrated that ferric siderophore uptake uniformly occurs throughout outer membrane, including at the poles of the cells, despite the fact that TonB, its inner membrane transport partner, was not detectable at the poles. PMID:24981231

  9. Proton coupling in the ligand-binding reaction of ferric cytochrome P-450 from Pseudomonas putida

    SciTech Connect

    Totani, K.; Iizuka, T.; Shimada, H.; Makino, R.; Ishimura, Y.

    1983-04-01

    Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed.

  10. Ferric carboxymaltose: A revolution in the treatment of postpartum anemia in Indian women

    PubMed Central

    Rathod, Setu; Samal, Sunil K; Mahapatra, Purna C; Samal, Sunita

    2015-01-01

    Objectives: The objective of the present study is to compare the safety and efficacy of ferric carboxymaltose (FCM), intravenous (IV) iron sucrose and oral iron in the treatment of post = partum anemia (PPA). Materials and Methods: A total of 366 women admitted to SCB Medical College, Cuttack between September 2010 and August 2012 suffering from PPA hemoglobin (Hb) <10 g/dL were randomly assigned to receive either oral iron or IV FCM or iron sucrose. FCM, IV iron sucrose, and oral iron were given as per the protocol. Changes in hemoglobin (Hb) and serum ferritin levels at 2 and 6 weeks after treatment were measured and analyzed using ANOVA. Adverse effects to drug administration were also recorded. Results: A statistically significant increase in Hb and serum ferritin level were observed in all three groups, but the increase in FCM group was significantly higher (P < 0.0001) than conventional iron sucrose and oral iron group. The mean increase in Hb after 2 weeks was 0.8, 2.4, and 3.2 g/dL and 2.1, 3.4, and 4.4 g/dL at 6 weeks in oral iron, iron sucrose and FCM groups, respectively. The mean increase in serum ferritin levels after 2 weeks was 2.5, 193.1, and 307.1 and 14.2, 64, and 106.7 ng/mL after 6 weeks in oral iron, iron sucrose and FCM groups, respectively. Adverse drug reactions were significantly less (P < 0.001) in FCM group when compared with other two groups. Conclusion: Ferric carboxymaltose elevates Hb level and restores iron stores faster than IV iron sucrose and oral iron, without any severe adverse reactions. There was better overall satisfaction reported by the patients who received FCM treatment. PMID:25664264

  11. Application of ferric sludge to immobilize leachable mercury in soils and concrete.

    PubMed

    Zhuang, J Ming; Walsh, T; Lam, T; Boulter, D

    2003-11-01

    A Hg-contaminated site in B.C. Province, Canada was caused by the previous operation of Hg-cell in chlor-alkali process for over 25 years. The soils and groundwater at the site are highly contaminated with mercury. An analysis of groundwater at the site has shown that most of the mercury is bonded with humic and fulvic acids (HFA) in colloidal form. The Hg-HFA colloids can be completely removed from the groundwater with ferric chloride treatment under optimized process conditions to form ferric sludge (FS), which is rendered non-leachable by standard TCLP (Toxicity Characteristic Leaching Procedure) test. The effluent discharged from a clarifier has achieved mercury levels of < 0.5 microkg l(-1). The studies of mercury adsorption characteristics of FS show it has low mercury leachability by TCLP, and great mercury adsorption capability. This feature is the basis for the application of FS to immobilization of leachable Hg-contaminants in solid wastes. Full-scale stabilization tests of Hg-contaminated soil have been carried out, and the time-based stability of the treated soil has been monitored by TCLP over a period of 60 days. All the results have shown a small variation in TCLP mercury levels within a range of 10-40 microg l(-1). Based on these results and with the approval of the B.C. Ministry of the Environment, 1850 tons of Hg-contaminated soils and 260 tons of Hg-contaminated concrete fines have been treated, stabilized with FS, and disposed in a non-hazardous waste disposal site. PMID:14733397

  12. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein.

    PubMed

    Atilgan, Canan; Atilgan, Ali Rana

    2009-10-01

    We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the "conformational selection" model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the

  13. Comparative Evaluation of Aluminum Sulfate and Ferric Sulfate-Induced Coagulations as Pretreatment of Microfiltration for Treatment of Surface Water

    PubMed Central

    Song, Yali; Dong, Bingzhi; Gao, Naiyun; Deng, Yang

    2015-01-01

    Two coagulants, aluminum sulfate and ferric chloride, were tested to reduce natural organic matter (NOM) as a pretreatment prior to polyvinylidene fluoride (PVDF) microfiltration (MF) membranes for potable water treatment. The results showed that the two coagulants exhibited different treatment performance in NOM removal. Molecular weight (MW) distributions of NOM in the tested surface raw water were concentrated at 3–5 kDa and approximately 0.2 kDa. Regardless of the coagulant species and dosages, the removal of 0.2 kDa NOM molecules was limited. In contrast, NOM at 3–5 kDa were readily removed with increasing coagulant dosages. In particular, aluminum sulfate favorably removed NOM near 5 kDa, whereas ferric chloride tended to reduce 3 kDa organic substances. Although aluminum sulfate and ferric chloride could improve the flux of the ensuing MF treatment, the optimal coagulant dosages to achieve effective pretreatment were different: 2–30 mg/L for aluminum sulfate and >15 mg/L for ferric chloride. The scanning electron microscope (SEM) image of the membrane-filtered coagulated raw water showed that coagulation efficiency dramatically affected membrane flux and that good coagulation properties can reduce membrane fouling. PMID:26075726

  14. Studying Equilibrium in the Chemical Reaction between Ferric and Iodide Ions in Solution Using a Simple and Inexpensive Approach

    ERIC Educational Resources Information Center

    Nikolaychuk, Pavel Anatolyevich; Kuvaeva, Alyona Olegovna

    2016-01-01

    A laboratory experiment on the study of the chemical equilibrium based on the reaction between ferric and iodide ions in solution with the formation of ferrous ions, free iodine, and triiodide ions is developed. The total concentration of iodide and triiodide ions in the reaction mixture during the reaction is determined by the argentometric…

  15. Viewing the Valence Electronic Structure of Ferric and Ferrous Hexacyanide in Solution from the Fe and Cyanide Perspectives.

    PubMed

    Kunnus, Kristjan; Zhang, Wenkai; Delcey, Mickaël G; Pinjari, Rahul V; Miedema, Piter S; Schreck, Simon; Quevedo, Wilson; Schröder, Henning; Föhlisch, Alexander; Gaffney, Kelly J; Lundberg, Marcus; Odelius, Michael; Wernet, Philippe

    2016-07-28

    The valence-excited states of ferric and ferrous hexacyanide ions in aqueous solution were mapped by resonant inelastic X-ray scattering (RIXS) at the Fe L2,3 and N K edges. Probing of both the central Fe and the ligand N atoms enabled identification of the metal- and ligand-centered excited states, as well as ligand-to-metal and metal-to-ligand charge-transfer excited states. Ab initio calculations utilizing the RASPT2 method were used to simulate the Fe L2,3-edge RIXS spectra and enabled quantification of the covalencies of both occupied and empty orbitals of π and σ symmetry. We found that π back-donation in the ferric complex is smaller than that in the ferrous complex. This is evidenced by the relative amounts of Fe 3d character in the nominally 2π CN(-) molecular orbital of 7% and 9% in ferric and ferrous hexacyanide, respectively. Utilizing the direct sensitivity of Fe L3-edge RIXS to the Fe 3d character in the occupied molecular orbitals, we also found that the donation interactions are dominated by σ bonding. The latter was found to be stronger in the ferric complex, with an Fe 3d contribution to the nominally 5σ CN(-) molecular orbitals of 29% compared to 20% in the ferrous complex. These results are consistent with the notion that a higher charge at the central metal atom increases donation and decreases back-donation. PMID:27380541

  16. Managing hyperphosphatemia in patients with chronic kidney disease on dialysis with ferric citrate: latest evidence and clinical usefulness

    PubMed Central

    Fadem, Stephen Z.; Kant, Kotagal S.; Bhatt, Udayan; Sika, Mohammed; Lewis, Julia B.; Negoi, Dana

    2015-01-01

    Ferric citrate is a novel phosphate binder that allows the simultaneous treatment of hyperphosphatemia and iron deficiency in patients being treated for end-stage renal disease with hemodialysis (HD). Multiple clinical trials in HD patients have uniformly and consistently demonstrated the efficacy of the drug in controlling hyperphosphatemia with a good safety profile, leading the US Food and Drug Administration in 2014 to approve its use for that indication. A concurrent beneficial effect, while using ferric citrate as a phosphate binder, is its salutary effect in HD patients with iron deficiency being treated with an erythropoietin-stimulating agent (ESA) in restoring iron that becomes available for reversing chronic kidney disease (CKD)-related anemia. Ferric citrate has also been shown in several studies to diminish the need for intravenous iron treatment and to reduce the requirement for ESA. Ferric citrate is thus a preferred phosphate binder that helps resolve CKD-related mineral bone disease and iron-deficiency anemia. PMID:26336594

  17. Managing hyperphosphatemia in patients with chronic kidney disease on dialysis with ferric citrate: latest evidence and clinical usefulness.

    PubMed

    Yagil, Yoram; Fadem, Stephen Z; Kant, Kotagal S; Bhatt, Udayan; Sika, Mohammed; Lewis, Julia B; Negoi, Dana

    2015-09-01

    Ferric citrate is a novel phosphate binder that allows the simultaneous treatment of hyperphosphatemia and iron deficiency in patients being treated for end-stage renal disease with hemodialysis (HD). Multiple clinical trials in HD patients have uniformly and consistently demonstrated the efficacy of the drug in controlling hyperphosphatemia with a good safety profile, leading the US Food and Drug Administration in 2014 to approve its use for that indication. A concurrent beneficial effect, while using ferric citrate as a phosphate binder, is its salutary effect in HD patients with iron deficiency being treated with an erythropoietin-stimulating agent (ESA) in restoring iron that becomes available for reversing chronic kidney disease (CKD)-related anemia. Ferric citrate has also been shown in several studies to diminish the need for intravenous iron treatment and to reduce the requirement for ESA. Ferric citrate is thus a preferred phosphate binder that helps resolve CKD-related mineral bone disease and iron-deficiency anemia. PMID:26336594

  18. Shallow-water hydrothermal system and sedimentation of the ferric deposit in the Nagahama-bay, Satsuma Iwo-jima Island

    NASA Astrophysics Data System (ADS)

    Ninomiya, T.; Kiyokawa, S.; Koge, S.; Oguri, K.; Yamaguchi, K. E.; Ito, T.; Ikehara, M.

    2008-12-01

    Satsuma Iwo-jima Island, located 40km south of Kyushu, Japan, has characteristic hydrothermal activities surrounding its active volcano Iwo-dake. Along the shoreline, hydrothermal fluids discharge and they cause discoloration of the seawater. At Nagahama-bay, iron ion in carbonated spring is oxidized to iron hydroxide precipitate by mixing with the sea water and the water takes on red color(Kamada, 1964). To understand the relationships among the ferric deposits, hydrothermal ventings, and the sea tide in the bay, we conducted the following studies; (a) naked eye observation at seafloor by SCUBA diving and the measurements of temperature and sediment distributions, (b) time-series in situ observation of the sesafloor by OGURI-View system (an automatic underwater digital camera system; Oguri et al., 2006), (c) time-series observation of color changes in the surface water by automatic acquisition system modified from OGURI-View, (d) geochemical analysis of the sea water collected in spring and fall 2007 and summer 2008, (e) coring to find the components in the sediment, and (f) six months-long sediment trap to estimate total mass flux in the bay. On the seafloor, numerous hot vents were found in the eastern part of the bay at 4m in depth. Soft sediment was also formed around the vents up to 1.5m thick. Temperature of the surface sediment ranged from 30 to 55 degree Celsius; the highest temperature was observed near those vents. The time-series images taken by OGURI-View system showed that turbidness of the bottom of the sea water changed daily. The turbidity data in the bay indicated that their daily changes occurred by tidal currents and sometimes by unusual mixing induced by strong typhoon. The sediment of 83cm core sample consisted of clay-sized reddish ferric oxides, quartz, volcanic ashes, rock fragments, and very fine to fine sand. From the sediment trap experiment, total mass accumulation rate was estimated to 0.12-0.18g/cm2/day. This high rate may be one

  19. Ferrous iron oxidation by Thiobacillus ferrooxidans: inhibition with benzoic acid, sorbic acid and sodium lauryl sulfate

    SciTech Connect

    Onysko, S.J.

    1984-07-01

    Acid mine drainage is formed by the weathering or oxidation of pyritic material exposed during coal mining. The rate of pyritic material oxidation can be greatly accelerated by certain acidophilic bacteria such as Thiobacillus ferrooxidans which catalyse the oxidation of ferrous to ferric iron. A number of organic compounds, under laboratory conditions, can apparently inhibit both the oxidation of ferrous to ferric iron by T. ferrooxidans and the weathering of pyritic material by mixed cultures of acid mine drainage micro-organisms. Sodium lauryl sulphate (SLS), an anionic surfactant has proved effective in this respect. Benzoic acid, sorbic acid and SLS at low concentrations, each effectively inhibited bacterial oxidation of ferrous iron in batch cultures of T. ferrooxidans. The rate of chemical oxidation of ferrous iron in low pH, sterile, batch reactors was not substantially affected at the tested concentrations of any of the compounds.

  20. Catalytic performance and deactivation of precipitated iron catalyst for selective oxidation of hydrogen sulfide to elemental sulfur in the waste gas streams from coal gasification

    SciTech Connect

    Mashapa, T.N.; Rademan, J.D.; van Vuuren, M.J.J.

    2007-09-15

    The selective oxidation of hydrogen sulfide to elemental sulfur, using a commercial, precipitated silica promoted ferric oxide based catalyst, was investigated in laboratory and pilot-plant reactors. Low levels of hydrogen sulfide (1-3 vol%) can be readily removed, but a continuous slow decrease in catalyst activity was apparent. X-ray photoelectron spectroscopy showed that the loss of activity was due to the formation of ferrous sulfate, which is known to be less active than the ferric oxide. In addition, studies using a model feed showed that the propene and HCN impurities in the plant feed stocks also act as potent catalyst poisons.

  1. The Phosphate Binder Ferric Citrate and Mineral Metabolism and Inflammatory Markers in Maintenance Dialysis Patients: Results From Prespecified Analyses of a Randomized Clinical Trial

    PubMed Central

    Van Buren, Peter N.; Lewis, Julia B.; Dwyer, Jamie P.; Greene, Tom; Middleton, John; Sika, Mohammed; Umanath, Kausik; Abraham, Josephine D.; Arfeen, Shahabul S.; Bowline, Isai G.; Chernin, Gil; Fadem, Stephen Z.; Goral, Simin; Koury, Mark; Sinsakul, Marvin V.; Weiner, Daniel E.

    2016-01-01

    Background Phosphate binders are the cornerstone of hyperphosphatemia management in dialysis patients. Ferric citrate is an iron-based oral phosphate binder that effectively lowers serum phosphorus levels. Study Design 52-week, open-label, phase 3, randomized, controlled trial for safety-profile assessment. Setting & Participants Maintenance dialysis patients with serum phosphorus levels ≥6.0 mg/dL after washout of prior phosphate binders. Intervention 2:1 randomization to ferric citrate or active control (sevelamer carbonate and/or calcium acetate). Outcomes Changes in mineral bone disease, protein-energy wasting/inflammation, and occurrence of adverse events after 1 year. Measurements Serum calcium, intact parathyroid hormone, phosphorus, aluminum, white blood cell count, percentage of lymphocytes, serum urea nitrogen, and bicarbonate. Results There were 292 participants randomly assigned to ferric citrate, and 149, to active control. Groups were well matched. For mean changes from baseline, phosphorus levels decreased similarly in the ferric citrate and active control groups (−2.04 ± 1.99 [SD] vs −2.18 ± 2.25 mg/dL, respectively; P = 0.9); serum calcium levels increased similarly in the ferric citrate and active control groups (0.22 ± 0.90 vs 0.31 ± 0.95 mg/dL; P = 0.2). Hypercalcemia occurred in 4 participants receiving calcium acetate. Parathyroid hormone levels decreased similarly in the ferric citrate and active control groups (−167.1 ± 399.8 vs −152.7 ± 392.1 pg/mL; P = 0.8). Serum albumin, bicarbonate, serum urea nitrogen, white blood cell count and percentage of lymphocytes, and aluminum values were similar between ferric citrate and active control. Total and low-density lipoprotein cholesterol levels were lower in participants receiving sevelamer than those receiving ferric citrate and calcium acetate. Fewer participants randomly assigned to ferric citrate had serious adverse events compared with active control. Limitations Open

  2. Comparative stability of the bioresorbable ferric crosslinked hyaluronic acid adhesion prevention solutions.

    PubMed

    Luu, Hoan-My Do; Chen, Angela; Isayeva, Irada S

    2013-08-01

    The Intergel® ferric crosslinked hyaluronate (FeHA) adhesion prevention solution (APS) (FDA) is associated with serious post-operative complications (Henley, http://www.lawyersandsettlements.com/features/gynecare-intergel/intergel-timeline.html, 2007; FDA, 2003; Roman et al., Fertil Steril 2005, 83 Suppl 1:1113-1118; Tang et al., Ann Surg 2006;243(4):449-455; Wiseman, Fertil Steril 2006;86(3):771; Wiseman, Fertil Steril 2006;85(4):e7). This prompted us to examine the in situ stability of crosslinked HA materials to hyaluronidase lyase degradation. Variables such as ferric ionic crosslink density, HA concentration, gel geometry, and molecular weight (MW) of HA polymer were studied. Various formulations of the crosslinked "in house" [Isayeva et al., J Biomed Mater Res: Part B - Appl Biomater 2010, 95B (1):9-18] FeHA (0.5%, w/v; 30, 50, 90% crosslinked), the Intergel® FeHA (0.5%, w/v; 90%), and the non-crosslinked HA (0.05-0.5%, w/v) were degraded at a fixed activity of hyaluronidase lyase from Streptomyces hyalurolyticus (Hyase) at 37°C over time according to the method [Payan et al., J Chrom B: Biomed Sci Appl 1991;566(1):9-18]. Under our conditions, the data show that the crosslink density affects degradation the most, followed by HA concentration and then gel geometry. We found that MW has no effect. Our results are one possible explanation of the observations that the Intergel® FeHA APS (0.5%, w/v; 90%) material persisted an order of magnitude longer than expected [t1/2 = 500 hrs vs. t1/2 = 50 hrs (FDA; Johns et al., Fertil Steril 1997;68(1):37-42)]. These data also demonstrate the sensitivity of the in vitro hyaluronidase assay to predict the in situ stability of crosslinked HA medical products as previously reported [Sall et al., Polym Degrad Stabil 2007;92(5):915-919]. PMID:23559362

  3. Ferric Iron-Bearing Sediments as a Mineral Trap for Geologic CO2 Sequestration: Iron Reduction Using SO2 or H2S Waste Gas

    NASA Astrophysics Data System (ADS)

    Palandri, J. L.; Kharaka, Y. K.

    2002-12-01

    Disposal of anthropogenic carbon dioxide (CO2) into deep aquifers is a potential means of reducing the amount of greenhouse gases released to the atmosphere. In geologic sequestration, CO2 may be stored in: 1) structural traps such as depleted petroleum or gas reservoirs, primarily as supercritical fluid (hydrodynamic trapping); 2) formation water as a dissolved constituent (solution trapping); or 3) carbonate minerals (mineral trapping). Most studies of in situ mineral trapping discuss the use of glauconitic or plagioclase-bearing sediments, to trap CO2 in siderite or calcite. Glauconitic beds, which contain the desired ferrous iron, are generally of limited thickness and geographical occurrence. However, ferric iron-bearing sediments, including redbeds, have the advantages of widespread geographic distribution, and generally greater thickness, and higher porosity and permeability. Iron must be in its ferrous oxidation state in order for it to precipitate in carbonate minerals. Ferric iron in sediments requires a reductant to be reduced to ferrous, and the reductant may be organic matter, sulfur dioxide (SO2), or hydrogen sulfide (H2S). Equilibrium and kinetically controlled geochemical simulations at 105°C, with SO2 or H2S, which may be a component of the injected, CO2-dominated waste gas, show that iron in minerals can be made to reside almost entirely in siderite, and simultaneously, that sulfur can be made to exist predominantly as dissolved sulfate. For quartz arenite containing 1.0 wt. % Fe2O3, approximately 5.0 g. of CO2 is sequestered per kg. of rock. The appropriate CO2-dominated gas compositions contain approximately 20.0 wt. % SO2, or 5.0 wt. % H2S. If there is an insufficient amount of sulfur-bearing gas relative to CO2, then some of the iron is not reduced, and some of the CO2 is not sequestered. If there is a slight excess of sulfur-bearing gas, then complete iron reduction is ensured, and a small amount of the iron precipitates as pyrite or other

  4. Spectral study of the interaction between 2-pyridinecarbaldehyde-p-phenyldihydrazone and ferric iron and its analytical application

    NASA Astrophysics Data System (ADS)

    Zhou, Quanying; Liu, Weizhou; Chang, Lin; Chen, Fang

    2012-06-01

    The synthesis and spectral characterization of a schiff base, 2-pyridinecarbaldehyde-p-phenylenedihydrazone (short for 2PC-PPH), were described. It was found that ferric ion (Fe3+) could selectively quench the fluorescence of 2PC-PPH, whereas many other metal ions, such as Mn2+, Zn2+, Cu2+, K+, Al3+, Ca2+, Ni2+, Co2+, Cr3+ and Fe2+, could not quench its fluorescence. Based on this, a sensitive method for ferric ion selective detection was established. Under the optimum conditions, the decreasing fluorescence intensity of 2PC-PPH is proportional to the concentration of Fe3+ within the range of 6.0 × 10-7-1.0 × 10-5 mol L-1. The detection limit (3σ) for Fe3+ determination is 3.6 × 10-7 mol L-1. The proposed method was successfully applied to determine iron in tea and milk powder.

  5. The Enzyme-mimic Activity of Ferric Nano-Core Residing in Ferritin and Its Biosensing Applications

    SciTech Connect

    Tang, Zhiwen; Wu, Hong J.; Zhang, Youyu; Li, Zhaohui; Lin, Yuehe

    2011-11-15

    Ferritins are nano-scale globular protein cages encapsulating a ferric core. They widely exist in animals, plants, and microbes, playing indispensable roles in iron homeostasis. Interestingly, our study clearly demonstrates that ferritin has an enzyme-mimic activity derived from its ferric nano-core, but not the protein cage. Further study revealed that the mimic-enzyme activity of ferritin is more thermally stable and pH-tolerant compared with horseradish peroxidase. Considering the abundance of ferritin in numerous organisms, this finding may indicate a new role of ferritin in antioxidant and detoxification metabolisms. In addition, as a natural protein-caged nanoparticle with an enzyme-mimic activity, ferritin is readily conjugated with biomolecules to construct nano-biosensors, thus holds promising potential for facile and biocompatible labeling for sensitive and robust bioassays in biomedical applications.

  6. Ultrafast Heme Dynamics of Ferric Cytochrome c in Different Environments: Electronic, Vibrational, and Conformational Relaxation.

    PubMed

    Karunakaran, Venugopal

    2015-12-21

    The excited-state dynamics of ferric cytochrome c (Cyt c), an important electron-transfer heme protein, in acidic to alkaline medium and in its unfolded form are investigated by using femtosecond pump-probe spectroscopy, exciting the heme and Tryptophan (Trp) to understand the electronic, vibrational, and conformational relaxation of the heme. At 390 nm excitation, the electronic relaxation of heme is found to be ≈150 fs at different pH values, increasing to 480 fs in the unfolded form. Multistep vibrational relaxation dynamics of the heme, including fast and slow processes, are observed at pH 7. However, in the unfolded form and at pH 2 and 11, fast phases of vibrational relaxation dominate, revealing the energy dissipation occurring through the covalent bond interaction between the heme and the nearest amino acids. A significant shortening of the excited-state lifetime of Trp is observed at various pH values at 280 nm excitation due to resonance energy transfer to the heme. The longer time constant (25 ps) observed in the unfolded form is attributed to a complete global conformational relaxation of Cyt c. PMID:26416435

  7. Metal-responsive promoter DNA compaction by the ferric uptake regulator.

    PubMed

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  8. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach

    PubMed Central

    Ciciliano, Jordan C.; Sakurai, Yumiko; Myers, David R.; Fay, Meredith E.; Hechler, Beatrice; Meeks, Shannon; Li, Renhao; Dixon, J. Brandon; Lyon, L. Andrew; Gachet, Christian

    2015-01-01

    The mechanism of action of the widely used in vivo ferric chloride (FeCl3) thrombosis model remains poorly understood; although endothelial cell denudation is historically cited, a recent study refutes this and implicates a role for erythrocytes. Given the complexity of the in vivo environment, an in vitro reductionist approach is required to systematically isolate and analyze the biochemical, mass transfer, and biological phenomena that govern the system. To this end, we designed an “endothelial-ized” microfluidic device to introduce controlled FeCl3 concentrations to the molecular and cellular components of blood and vasculature. FeCl3 induces aggregation of all plasma proteins and blood cells, independent of endothelial cells, by colloidal chemistry principles: initial aggregation is due to binding of negatively charged blood components to positively charged iron, independent of biological receptor/ligand interactions. Full occlusion of the microchannel proceeds by conventional pathways, and can be attenuated by antithrombotic agents and loss-of-function proteins (as in IL4-R/Iba mice). As elevated FeCl3 concentrations overcome protective effects, the overlap between charge-based aggregation and clotting is a function of mass transfer. Our physiologically relevant in vitro system allows us to discern the multifaceted mechanism of FeCl3-induced thrombosis, thereby reconciling literature findings and cautioning researchers in using the FeCl3 model. PMID:25931587

  9. Resolving the multifaceted mechanisms of the ferric chloride thrombosis model using an interdisciplinary microfluidic approach.

    PubMed

    Ciciliano, Jordan C; Sakurai, Yumiko; Myers, David R; Fay, Meredith E; Hechler, Beatrice; Meeks, Shannon; Li, Renhao; Dixon, J Brandon; Lyon, L Andrew; Gachet, Christian; Lam, Wilbur A

    2015-08-01

    The mechanism of action of the widely used in vivo ferric chloride (FeCl3) thrombosis model remains poorly understood; although endothelial cell denudation is historically cited, a recent study refutes this and implicates a role for erythrocytes. Given the complexity of the in vivo environment, an in vitro reductionist approach is required to systematically isolate and analyze the biochemical, mass transfer, and biological phenomena that govern the system. To this end, we designed an "endothelial-ized" microfluidic device to introduce controlled FeCl3 concentrations to the molecular and cellular components of blood and vasculature. FeCl3 induces aggregation of all plasma proteins and blood cells, independent of endothelial cells, by colloidal chemistry principles: initial aggregation is due to binding of negatively charged blood components to positively charged iron, independent of biological receptor/ligand interactions. Full occlusion of the microchannel proceeds by conventional pathways, and can be attenuated by antithrombotic agents and loss-of-function proteins (as in IL4-R/Iba mice). As elevated FeCl3 concentrations overcome protective effects, the overlap between charge-based aggregation and clotting is a function of mass transfer. Our physiologically relevant in vitro system allows us to discern the multifaceted mechanism of FeCl3-induced thrombosis, thereby reconciling literature findings and cautioning researchers in using the FeCl3 model. PMID:25931587

  10. Ferric Chloride-induced Thrombosis Mouse Model on Carotid Artery and Mesentery Vessel.

    PubMed

    Bonnard, Thomas; Hagemeyer, Christoph E

    2015-01-01

    Severe thrombosis and its ischemic consequences such as myocardial infarction, pulmonary embolism and stroke are major worldwide health issues. The ferric chloride injury is now a well-established technique to rapidly and accurately induce the formation of thrombi in exposed veins or artery of small and large diameter. This model has played a key role in the study of the pathophysiology of thrombosis, in the discovery and validation of novel antithrombotic drugs and in the understanding of the mechanism of action of these new agents. Here, the implementation of this technique on a mesenteric vessel and carotid artery in mice is presented. The method describes how to label circulating leukocytes and platelets with a fluorescent dye and to observe, by intravital microscopy on the exposed mesentery, their accumulation at the injured vessel wall which leads to the formation of a thrombus. On the carotid artery, the occlusion caused by the clot formation is measured by monitoring the blood flow with a Doppler probe. PMID:26167713

  11. Passive immunization by recombinant ferric enterobactin protein (FepA) from Escherichia coli O157

    PubMed Central

    Larrie-Bagha, Seyed Mehdi; Rasooli, Iraj; Mousavi-Gargari, Seyed Latif; Rasooli, Zohreh; Nazarian, Shahram

    2013-01-01

    Background and Objectives Enterohemorrhagic Escherichia coli (EHEC) O157:H7 has been recognized as a major food borne pathogen responsible for frequent hemorrhagic colitis and hemolytic uremic syndrome in humans. Cattle are important reservoirs of E. coli O157:H7, in which the organism colonizes the intestinal tract and is shed in the feces. Objective Vaccination of cattle has significant potential as a pre-harvest intervention strategy for E. coli O157:H7. The aim of this study was to evaluate active and passive immunization against E. coli O157:H7 using a recombinant protein. Materials and Methods The recombinant FepA protein induced by IPTG was purified by nickel affinity chromatography. Antibody titre was determined by ELISA in FepA immunized rabbits sera. Sera collected from vaccinated animals were used for bacterial challenge in passive immunization studies. Results The results demonstrate that passive immunization with serum raised against FepA protects rabbits from subsequent infection. Conclusion Significant recognition by the antibody of ferric enterobactin binding protein may lead to its application in the restriction of Enterobacteriaceae propagation. PMID:23825727

  12. A ferric-cyanide-bridged one-dimensional dirhodium complex with (18-crown-6)potassium cations.

    PubMed

    Kim, Y; Kim, S J; Nam, W

    2001-03-01

    The crystal structure of the title compound, catena-poly[bis[aqua(18-crown-6)potassium] diaqua(18-crown-6)potassium [[tetra-mu-benzoato-2:3 kappa(8)O:O'-mu-cyano-1:2 kappa(2)C:N-tetracyano-1 kappa C-irondirhodium(Rh-Rh)]-mu-cyano-1 kappa C:3' kappa N] octahydrate], [K(18-crown-6)(H(2)O)](2)[K(18-crown-6)(H(2)O)(2)][FeRh(2)(C(7)H(5)O(2))(4)(CN)(6)] x 8H(2)O, where (18-crown-6) is 1,4,7,10,13,16-hexaoxacyclooctadecane (C(12)H(24)O(6)), has been determined. Ferric cyanides connect the dirhodium units to form a one-dimensional chain compound. [K(18-crown-6-ether)(H(2)O)(2)] cations (with inversion symmetry) and [K(18-crown-6-ether)(H(2)O)] cations (in general positions) are located between the chains. PMID:11250572

  13. Energy distributions at the high-spin ferric sites in myoglobin crystals.

    PubMed Central

    Fiamingo, F G; Brill, A S; Hampton, D A; Thorkildsen, R

    1989-01-01

    The orientation and temperature dependence (4.2-2.5 K) of electron paramagnetic resonance (EPR) power saturation and spin-lattice relaxation rate, and the orientation dependence of signal linewidth, were measured in single crystals of the aquo complex of ferric sperm whale skeletal muscle myoglobin. The spin-packet linewidth was found to be temperature independent and to vary by a factor of seven within the heme plane. An analysis is presented which enables one to arrive at (a) hyperfine component line-widths and, from the in-plane angular variation of the latter, at (b) the widths of distributions in energy differences between low-lying electronic levels and (c) the angular spread in the in-plane principal g-directions. The values of the energy level distributions in crystals obtained from the measurements and analysis reported here are compared with those obtained by a different method for the same protein complex in frozen solution. The spread in the rhombic energy splitting is significantly greater in solution than in the crystal. PMID:2539208

  14. Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator

    NASA Astrophysics Data System (ADS)

    Deng, Zengqin; Wang, Qing; Liu, Zhao; Zhang, Manfeng; Machado, Ana Carolina Dantas; Chiu, Tsu-Pei; Feng, Chong; Zhang, Qi; Yu, Lin; Qi, Lei; Zheng, Jiangge; Wang, Xu; Huo, Xinmei; Qi, Xiaoxuan; Li, Xiaorong; Wu, Wei; Rohs, Remo; Li, Ying; Chen, Zhongzhou

    2015-07-01

    Ferric uptake regulator (Fur) plays a key role in the iron homeostasis of prokaryotes, such as bacterial pathogens, but the molecular mechanisms and structural basis of Fur-DNA binding remain incompletely understood. Here, we report high-resolution structures of Magnetospirillum gryphiswaldense MSR-1 Fur in four different states: apo-Fur, holo-Fur, the Fur-feoAB1 operator complex and the Fur-Pseudomonas aeruginosa Fur box complex. Apo-Fur is a transition metal ion-independent dimer whose binding induces profound conformational changes and confers DNA-binding ability. Structural characterization, mutagenesis, biochemistry and in vivo data reveal that Fur recognizes DNA by using a combination of base readout through direct contacts in the major groove and shape readout through recognition of the minor-groove electrostatic potential by lysine. The resulting conformational plasticity enables Fur binding to diverse substrates. Our results provide insights into metal ion activation and substrate recognition by Fur that suggest pathways to engineer magnetotactic bacteria and antipathogenic drugs.

  15. Metal-responsive promoter DNA compaction by the ferric uptake regulator

    PubMed Central

    Roncarati, Davide; Pelliciari, Simone; Doniselli, Nicola; Maggi, Stefano; Vannini, Andrea; Valzania, Luca; Mazzei, Luca; Zambelli, Barbara; Rivetti, Claudio; Danielli, Alberto

    2016-01-01

    Short-range DNA looping has been proposed to affect promoter activity in many bacterial species and operator configurations, but only few examples have been experimentally investigated in molecular detail. Here we present evidence for a metal-responsive DNA condensation mechanism controlled by the Helicobacter pylori ferric uptake regulator (Fur), an orthologue of the widespread Fur family of prokaryotic metal-dependent regulators. H. pylori Fur represses the transcription of the essential arsRS acid acclimation operon through iron-responsive oligomerization and DNA compaction, encasing the arsR transcriptional start site in a repressive macromolecular complex. A second metal-dependent regulator NikR functions as nickel-dependent anti-repressor at this promoter, antagonizing the binding of Fur to the operator elements responsible for the DNA condensation. The results allow unifying H. pylori metal ion homeostasis and acid acclimation in a mechanistically coherent model, and demonstrate, for the first time, the existence of a selective metal-responsive DNA compaction mechanism controlling bacterial transcriptional regulation. PMID:27558202

  16. Leaching of Arsenic from Granular Ferric Hydroxide Residuals under Mature Landfill Conditions

    PubMed Central

    Ghosh, Amlan; Mukiibi, Muhammed; Sáez, A. Eduardo; Ela, Wendell P.

    2008-01-01

    Most arsenic bearing solid residuals (ABSR) from water treatment will be disposed in non-hazardous landfills. The lack of an appropriate leaching test to predict arsenic mobilization from ABSR creates a need to evaluate the magnitude and mechanisms of arsenic release under landfill conditions. This work studies the leaching of arsenic and iron from a common ABSR, granular ferric hydroxide, in a laboratory-scale column that simulates the biological and physicochemical conditions of a mature, mixed solid waste landfill. The column operated for approximately 900 days and the mode of transport as well as chemical speciation of iron and arsenic changed with column age. Both iron and arsenic were readily mobilized under the anaerobic, reducing conditions. During the early stages of operation, most arsenic and iron leaching (80% and 65%, respectively) was associated with suspended particulate matter and iron was lost proportionately faster than arsenic. In later stages, while the rate of iron leaching declined, the arsenic leaching rate increased greater than 7-fold. The final phase was characterized by dissolved species leaching. Future work on the development of standard batch leaching tests should take into account the dominant mobilization mechanisms identified in this work: solid associated transport, reductive sorbent dissolution, and microbially mediated arsenic reduction. PMID:17051802

  17. Glutathione-dependent extracellular ferric reductase activities in dimorphic zoopathogenic fungi

    PubMed Central

    Zarnowski, Robert; Woods, Jon P.

    2009-01-01

    In this study, extracellular glutathione-dependent ferric reductase (GSH-FeR) activities in different dimorphic zoopathogenic fungal species were characterized. Supernatants from Blastomyces dermatitidis, Histoplasma capsulatum, Paracoccidioides brasiliensis and Sporothrix schenckii strains grown in their yeast form were able to reduce iron enzymically with glutathione as a cofactor. Some variations in the level of reduction were noted amongst the strains. This activity was stable in acidic, neutral and slightly alkaline environments and was inhibited when trivalent aluminium and gallium ions were present. Using zymography, single bands of GSH-FeRs with apparent molecular masses varying from 430 to 460 kDa were identified in all strains. The same molecular mass range was determined by size exclusion chromatography. These data demonstrate that dimorphic zoopathogenic fungi produce and secrete a family of similar GSH-FeRs that may be involved in the acquisition and utilization of iron. Siderophore production by these and other fungi has sometimes been considered to provide a full explanation of iron acquisition in these organisms. Our work reveals an additional common mechanism that may be biologically and pathogenically important. Furthermore, while some characteristics of these enzymes such as extracellular location, cofactor utilization and large size are not individually unique, when considered together and shared across a range of fungi, they represent an important novel physiological feature. PMID:16000713

  18. Ferric ion-assisted in situ synthesis of silver nanoplates on polydopamine-coated silk.

    PubMed

    Xiao, Jing; Zhang, Huihui; Mao, Cuiping; Wang, Ying; Wang, Ling; Lu, Zhisong

    2016-10-01

    In the present study, a ferric ion (Fe(3+))-assisted in situ synthesis approach was developed to grow silver (Ag) nanoplates on the polydopamine (PDA)-coated silk without the use of additional reductants. The essential role of Fe(3+) in the formation of Ag nanoplates is revealed by comparing the morphologies of Ag nanostructures prepared on the silk-coated PDA film with/without Fe(3+) doping. Scanning electron micrographs show that high-density Ag nanoplates could be synthesized in the reaction system containing 50μg/mL FeCl3 and 50mM AgNO3. The size of the Ag nanoplate could be tuned by adjusting the reaction duration. Based on the data, a mechanism involving the Fe(3+)-selected growth of Ag atoms along the certain crystal faces was proposed to explain the fabrication process. Transmission electron microscopy and X-ray diffractometry indicate that the Ag nanoplates possess good crystalline structures. Raman spectra demonstrate that the nanoplates could strongly enhance the Raman scattering of the PDA molecules. The Ag nanoplate-coated silk could be utilized as a flexible substrate for the development of surface-enhanced Raman scattering biosensors. PMID:27390855

  19. Antioxidant property of volatile oils determined by the ferric reducing ability.

    PubMed

    Lado, Cristina; Then, Mária; Varga, Ilona; Szoke, Eva; Szentmihályi, Klára

    2004-01-01

    Some current oils and their main components were studied to determine their antioxidant values. This was done by using the modified method of ferric reducing ability of plasma. It has been established that volatile oils of medicinal plants have on average a reducing capacity of 3.5-220 mmol/kg oil. The reducing capacities of the main constituents of volatile oils are 0.165-65.5 mmol/kg in concentrated oils. The highest reducing capacity was showd for phellandrene (65.438 +/- 0.166 mmol/kg) and anethole (50.087 +/- 0.160 mmol/kg) while the lowest values were obtained for menthol (0.165 +/- 0.023 mmol/kg) and menthone (0.168 +/- 0.010 mmol/kg). It has been stated that the antioxidant values of the main constituents are lower than those of volatile oils. The reducing capacity of the main constituents of medicinal plant drugs at different concentrations was also determined. PMID:18998400

  20. Overproduction in Escherichia coli and Characterization of a Soybean Ferric Leghemoglobin Reductase.

    PubMed Central

    Ji, L.; Becana, M.; Sarath, G.; Shearman, L.; Klucas, R. V.

    1994-01-01

    We previously cloned and sequenced a cDNA encoding soybean ferric leghemoglobin reductase (FLbR), an enzyme postulated to play an important role in maintaining leghemoglobin in a functional ferrous state in nitrogen-fixing root nodules. This cDNA was sub-cloned into an expression plasmid, pTrcHis C, and overexpressed in Escherichia coli. The recombinant FLbR protein, which was purified by two steps of column chromatography, was catalytically active and fully functional. The recombinant FLbR cross-reacted with antisera raised against native FLbR purified from soybean root nodules. The recombinant FLbR, the native FLbR purified from soybean (Glycine max L.) root nodules, and dihydrolipoamide dehydrogenases from pig heart and yeast had similar but not identical ultraviolet-visible absorption and fluorescence spectra, cofactor binding, and kinetic properties. FLbR shared common structural features in the active site and prosthetic group binding sites with other pyridine nucleotide-disulfide oxidoreductases such as dihydrolipoamide dehydrogenases, but displayed different microenvironments for the prosthetic groups. PMID:12232320