Sample records for nanoporous pillar array

  1. Morphology dependent field emission characteristics of ZnS/silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Wang, Ling Li; Zhao, Cheng Zhou; Kang, Li Ping; Liu, De Wei; Zhao, Hui Chun; Hao, Shan Peng; Zhang, Yuan Kai; Chen, Zhen Ping; Li, Xin Jian

    2016-10-01

    Through depositing zinc sulphide (ZnS) nanoparticals on silicon nanoporous pillar array (Si-NPA) and crater-shaped silicon nanoporous pillar array (c-Si-NPA) by chemical bath deposition (CBD) method, ZnS/Si-NPA and c-ZnS/Si-NPA were prepared and the field emission (FE) properties of them were investigated. The turn-on electric fields of were 3.8 V/mm for ZnS/Si-NPA and 5.0 V/mm for c-ZnS/Si-NPA, respectively. The lower turn-on electric fields of ZnS/Si-NPA than that of c-ZnS/Si-NPA were attributed to the different electric distribution of the field emitters causing by the different surface morphology of the two samples, which was further demonstrated via the simulated results by finite element modeling. The FN curves for the ZnS/Si-NPA showed two-slope behavior. All the results indicate that the morphology play an important role in the FE properties and designing an appropriate top morphology for the emitter is a very efficient way to improve the FE performance.

  2. Characterization of electronic structures from CdS/Si nanoheterostructure array based on silicon nanoporous pillar array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yong, E-mail: liyong@pdsu.edu.cn; Song, Xiao Yan; Song, Yue Li

    2016-02-15

    Highlights: • CdS/Si nanoheterostructure array has been fabricated through a CBD method. • The electronic properties have been investigated by the I–V and C–V techniques. • The onset voltages, characteristic frequency and built-in potential are investigated. • The electronic structures can be tuned through the annealing treatments. - Abstract: The electronic properties of heterostructures are very important to its applications in the field of optoelectronic devices. Understanding and control of electronic properties are very necessary. CdS/Si nanoheterostructure array have been fabricated through growing CdS nanocrystals on the silicon nanoporous pillar array using a chemical bath deposition method. The electronic propertiesmore » of CdS nanoheterostructure array have been investigated by the current–voltage, complex impedance spectroscopy and capacitance–voltage techniques. The onset voltages, characteristic frequency and built-in potential are gradually increased with increasing the annealing temperature. It is indicated that the electronic structures of CdS/Si nanoheterostructure array can be tuned through the annealing treatments.« less

  3. Nanoscale pillar arrays for separations

    DOE PAGES

    Kirchner, Teresa; Strickhouser, Rachel; Hatab, Nahla; ...

    2015-04-01

    The work presented herein evaluates silicon nano-pillar arrays for use in planar chromatography. Electron beam lithography and metal thermal dewetting protocols were used to create nano-thin layer chromatography platforms. With these fabrication methods we are able to reduce the size of the characteristic features in a separation medium below that used in ultra-thin layer chromatography; i.e. pillar heights are 1-2μm and pillar diameters are typically in the 200- 400nm range. In addition to the intrinsic nanoscale aspects of the systems, it is shown they can be further functionalized with nanoporous layers and traditional stationary phases for chromatography; hence exhibit broad-rangingmore » lab-on-a-chip and point-of-care potential. Because of an inherent high permeability and very small effective mass transfer distance between pillars, chromatographic efficiency can be very high but is enhanced herein by stacking during development and focusing while drying, yielding plate heights in the nm range separated band volumes. Practical separations of fluorescent dyes, fluorescently derivatized amines, and anti-tumor drugs are illustrated.« less

  4. Manufacture of high aspect ratio micro-pillar wall shear stress sensor arrays

    NASA Astrophysics Data System (ADS)

    Gnanamanickam, Ebenezer P.; Sullivan, John P.

    2012-12-01

    In the field of experimental fluid mechanics the measurement of unsteady, distributed wall shear stress has proved historically challenging. Recently, sensors based on an array of flexible micro-pillars have shown promise in carrying out such measurements. Similar sensors find use in other applications such as cellular mechanics. This work presents a manufacturing technique that can manufacture micro-pillar arrays of high aspect ratio. An electric discharge machine (EDM) is used to manufacture a micro-drilling tool. This micro-drilling tool is used to form holes in a wax sheet which acts as the mold for the micro-pillar array. Silicone rubber is cast in these molds to yield a micro-pillar array. Using this technique, micro-pillar arrays with a maximum aspect ratio of about 10 have been manufactured. Manufacturing issues encountered, steps to alleviate them and the potential of the process to manufacture similar micro-pillar arrays in a time-efficient manner are also discussed.

  5. Retention in porous layer pillar array planar separation platforms

    DOE PAGES

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.; ...

    2016-08-11

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  6. Retention in porous layer pillar array planar separation platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lincoln, Danielle R.; Lavrik, Nickolay V.; Kravchenko, Ivan I.

    Here, this work presents the retention capabilities and surface area enhancement of highly ordered, high-aspect-ratio, open-platform, two-dimensional (2D) pillar arrays when coated with a thin layer of porous silicon oxide (PSO). Photolithographically prepared pillar arrays were coated with 50–250 nm of PSO via plasma-enhanced chemical vapor deposition and then functionalized with either octadecyltrichlorosilane or n-butyldimethylchlorosilane. Theoretical calculations indicate that a 50 nm layer of PSO increases the surface area of a pillar nearly 120-fold. Retention capabilities were tested by observing capillary-action-driven development under various conditions, as well as by running one-dimensional separations on varying thicknesses of PSO. Increasing the thicknessmore » of PSO on an array clearly resulted in greater retention of the analyte(s) in question in both experiments. In culmination, a two-dimensional separation of fluorescently derivatized amines was performed to further demonstrate the capabilities of these fabricated platforms.« less

  7. Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency.

    PubMed

    Jeong, Chanyoung; Choi, Chang-Hwan

    2012-02-01

    Conventional electrochemical anodizing processes of metals such as aluminum typically produce planar and homogeneous nanopore structures. If hydrophobically treated, such 2D planar and interconnected pore structures typically result in lower contact angle and larger contact angle hysteresis than 3D disconnected pillar structures and, hence, exhibit inferior superhydrophobic efficiency. In this study, we demonstrate for the first time that the anodizing parameters can be engineered to design novel pillar-on-pore (POP) hybrid nanostructures directly in a simple one-step fabrication process so that superior surface superhydrophobicity can also be realized effectively from the electrochemical anodization process. On the basis of the characteristic of forming a self-ordered porous morphology in a hexagonal array, the modulation of anodizing voltage and duration enabled the formulation of the hybrid-type nanostructures having controlled pillar morphology on top of a porous layer in both mild and hard anodization modes. The hybrid nanostructures of the anodized metal oxide layer initially enhanced the surface hydrophilicity significantly (i.e., superhydrophilic). However, after a hydrophobic monolayer coating, such hybrid nanostructures then showed superior superhydrophobic nonwetting properties not attainable by the plain nanoporous surfaces produced by conventional anodization conditions. The well-regulated anodization process suggests that electrochemical anodizing can expand its usefulness and efficacy to render various metallic substrates with great superhydrophilicity or -hydrophobicity by directly realizing pillar-like structures on top of a self-ordered nanoporous array through a simple one-step fabrication procedure.

  8. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  9. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates.

    PubMed

    Wallace, Ryan A; Charlton, Jennifer J; Kirchner, Teresa B; Lavrik, Nickolay V; Datskos, Panos G; Sepaniak, Michael J

    2014-12-02

    The ability to detect a few molecules present in a large sample is of great interest for the detection of trace components in both medicinal and environmental samples. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. The following work involves superhydrophobic surfaces that have as a framework deterministic or stochastic silicon pillar arrays formed by lithographic or metal dewetting protocols, respectively. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added to the functionalized pillar array system via soaking. Native pillars and pillars with hydrophobic modification are used. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A ≥ 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 × 10(-12) M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up uses in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.

  10. Nanopore arrays in a silicon membrane for parallel single-molecule detection: DNA translocation

    NASA Astrophysics Data System (ADS)

    Zhang, Miao; Schmidt, Torsten; Jemt, Anders; Sahlén, Pelin; Sychugov, Ilya; Lundeberg, Joakim; Linnros, Jan

    2015-08-01

    Optical nanopore sensing offers great potential in single-molecule detection, genotyping, or DNA sequencing for high-throughput applications. However, one of the bottle-necks for fluorophore-based biomolecule sensing is the lack of an optically optimized membrane with a large array of nanopores, which has large pore-to-pore distance, small variation in pore size and low background photoluminescence (PL). Here, we demonstrate parallel detection of single-fluorophore-labeled DNA strands (450 bps) translocating through an array of silicon nanopores that fulfills the above-mentioned requirements for optical sensing. The nanopore array was fabricated using electron beam lithography and anisotropic etching followed by electrochemical etching resulting in pore diameters down to ∼7 nm. The DNA translocation measurements were performed in a conventional wide-field microscope tailored for effective background PL control. The individual nanopore diameter was found to have a substantial effect on the translocation velocity, where smaller openings slow the translocation enough for the event to be clearly detectable in the fluorescence. Our results demonstrate that a uniform silicon nanopore array combined with wide-field optical detection is a promising alternative with which to realize massively-parallel single-molecule detection.

  11. Rapid implantation of dissolving microneedles on an electrospun pillar array.

    PubMed

    Yang, Huisuk; Kim, Soyoung; Huh, Inyoung; Kim, Suyong; Lahiji, Shayan F; Kim, Miroo; Jung, Hyungil

    2015-09-01

    Dissolving microneedles (DMNs), designed to release drugs and dissolve after skin insertion, have been spotlighted as a novel transdermal delivery system due to their advantages such as minimal pain and tissue damage, ability to self-administer, and no associated hazardous residues. The drug delivery efficacy of DMNs, however, is limited by incomplete insertion and the extended period required for DMN dissolution. Here, we introduce a novel DMN delivery system, DMN on an electrospun pillar array (DEPA), which can rapidly implant DMNs into skin. DMNs were fabricated on a pillar array covered by a fibrous sheet produced by electrospinning PLGA solution (14%, w/v). DMNs were implanted into the skin by manual application (press and vibration for 10 s) by tearing of the fibers hung on the 300-μm pillars. Separation of DMNs from the fibrous sheet was dependent on both pillar height and the properties of the fibrous sheet. After evaluation of the implantation and dissolution of DMNs with diffusion of red dye by taking cross-sectional images of porcine skin, the hypoglycemic effect of insulin loaded DEPA was examined using a healthy mouse model. This DMN array overcomes critical issues associated with the low penetration efficiency of flat patch-based DMNs, and will allow realization of patient convenience with the desired drug efficacy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE PAGES

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.; ...

    2014-11-04

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  13. Superhydrophobic Analyte Concentration Utilizing Colloid-Pillar Array SERS Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallace, Ryan A.; Charlton, Jennifer J.; Kirchner, Teresa B.

    In order to detect a few molecules present in a large sample it is important to know the trace components in the medicinal and environmental sample. Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in real samples requires properly designed delivery and detection systems. Moreover, the following work involves superhydrophobic surfaces that includes silicon pillar arrays formed by lithographic and dewetting protocols. In order to generate the necessary plasmonic substrate for SERS detection, simple and flow stable Ag colloid was added tomore » the functionalized pillar array system via soaking. The pillars are used native and with hydrophobic modification. The pillars provide a means to concentrate analyte via superhydrophobic droplet evaporation effects. A 100-fold concentration of analyte was estimated, with a limit of detection of 2.9 10-12 M for mitoxantrone dihydrochloride. Additionally, analytes were delivered to the surface via a multiplex approach in order to demonstrate an ability to control droplet size and placement for scaled-up applications in real world applications. Finally, a concentration process involving transport and sequestration based on surface treatment selective wicking is demonstrated.« less

  14. Fiber-coupled pillar array as a highly pure and stable single-photon source

    NASA Astrophysics Data System (ADS)

    Odashima, S.; Sasakura, H.; Nakajima, H.; Kumano, H.

    2017-12-01

    A highly pure and stable single-photon source is prepared that comprises a well-designed pillar array, in which each pillar contains only a few InAs quantum dots. A nano-pillar in this array is in direct contact with a fiber end surface and cooled in a liquid-He bath. Auto-correlation measurements show that this source provides an average g(2)(0) value of 0.0174 in the measured excitation-power range. This photon source and fiber coupling are quite rigid against external disturbances such as cooling-heating cycles and vibration, with long-term stability.

  15. A nanoporous alumina microelectrode array for functional cell-chip coupling.

    PubMed

    Wesche, Manuel; Hüske, Martin; Yakushenko, Alexey; Brüggemann, Dorothea; Mayer, Dirk; Offenhäusser, Andreas; Wolfrum, Bernhard

    2012-12-14

    The design of electrode interfaces has a strong impact on cell-based bioelectronic applications. We present a new type of microelectrode array chip featuring a nanoporous alumina interface. The chip is fabricated in a combination of top-down and bottom-up processes using state-of-the-art clean room technology and self-assembled generation of nanopores by aluminum anodization. The electrode characteristics are investigated in phosphate buffered saline as well as under cell culture conditions. We show that the modified microelectrodes exhibit decreased impedance compared to planar microelectrodes, which is caused by a nanostructuring effect of the underlying gold during anodization. The stability and biocompatibility of the device are demonstrated by measuring action potentials from cardiomyocyte-like cells growing on top of the chip. Cross sections of the cell-surface interface reveal that the cell membrane seals the nanoporous alumina layer without bending into the sub-50 nm apertures. The nanoporous microelectrode array device may be used as a platform for combining extracellular recording of cell activity with stimulating topographical cues.

  16. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication

    NASA Astrophysics Data System (ADS)

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-01

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  17. Nanopore arrays in a silicon membrane for parallel single-molecule detection: fabrication.

    PubMed

    Schmidt, Torsten; Zhang, Miao; Sychugov, Ilya; Roxhed, Niclas; Linnros, Jan

    2015-08-07

    Solid state nanopores enable translocation and detection of single bio-molecules such as DNA in buffer solutions. Here, sub-10 nm nanopore arrays in silicon membranes were fabricated by using electron-beam lithography to define etch pits and by using a subsequent electrochemical etching step. This approach effectively decouples positioning of the pores and the control of their size, where the pore size essentially results from the anodizing current and time in the etching cell. Nanopores with diameters as small as 7 nm, fully penetrating 300 nm thick membranes, were obtained. The presented fabrication scheme to form large arrays of nanopores is attractive for parallel bio-molecule sensing and DNA sequencing using optical techniques. In particular the signal-to-noise ratio is improved compared to other alternatives such as nitride membranes suffering from a high-luminescence background.

  18. Multistep hierarchical self-assembly of chiral nanopore arrays

    PubMed Central

    Kim, Hanim; Lee, Sunhee; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Lee, Sang Bok; Yoon, Dong Ki

    2014-01-01

    A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements. PMID:25246585

  19. Fully integrated micro-separator with soft-magnetic micro-pillar arrays for filtrating lymphocytes.

    PubMed

    Dong, Tao; Su, Qianhua; Yang, Zhaochu; Karlsen, Frank; Jakobsen, Henrik; Egeland, Eirik Bentzen; Hjelseth, Snorre

    2010-01-01

    A fully integrated micro-separator with soft-magnetic micro-pillar arrays has been developed, which merely employs one independent Lab-On-Chip to realize the lymphocytes isolation from the human whole blood. The simulation, fabrication and experiment are executed to realize this novel microseparator. The simulation results show that, the soft-magnetic micro-pillars array can amplify and redistribute the electromagnetic field generated by the microcoils. The tests certify desirable separation efficiency can be realized using this new separator at low current. No extra cooling system is required for such a micro-separator. This micro-separator can also be used to separate other target cells or particles with the same principle.

  20. Nanoporous Monolithic Microsphere Arrays Have Anti-Adhesive Properties Independent of Humidity

    PubMed Central

    Eichler-Volf, Anna; Xue, Longjian; Kovalev, Alexander; Gorb, Elena V.; Gorb, Stanislav N.; Steinhart, Martin

    2016-01-01

    Bioinspired artificial surfaces with tailored adhesive properties have attracted significant interest. While fibrillar adhesive pads mimicking gecko feet are optimized for strong reversible adhesion, monolithic microsphere arrays mimicking the slippery zone of the pitchers of carnivorous plants of the genus Nepenthes show anti-adhesive properties even against tacky counterpart surfaces. In contrast to the influence of topography, the influence of relative humidity (RH) on adhesion has been widely neglected. Some previous works deal with the influence of RH on the adhesive performance of fibrillar adhesive pads. Commonly, humidity-induced softening of the fibrils enhances adhesion. However, little is known on the influence of RH on solid anti-adhesive surfaces. We prepared polymeric nanoporous monolithic microsphere arrays (NMMAs) with microsphere diameters of a few 10 µm to test their anti-adhesive properties at RHs of 2% and 90%. Despite the presence of continuous nanopore systems through which the inner nanopore walls were accessible to humid air, the topography-induced anti-adhesive properties of NMMAs on tacky counterpart surfaces were retained even at RH = 90%. This RH-independent robustness of the anti-adhesive properties of NMMAs significantly contrasts the adhesion enhancement by humidity-induced softening on nanoporous fibrillar adhesive pads made of the same material. PMID:28773497

  1. Shear Adhesion of Tapered Nanopillar Arrays.

    PubMed

    Cho, Younghyun; Minsky, Helen K; Jiang, Yijie; Yin, Kaiyang; Turner, Kevin T; Yang, Shu

    2018-04-04

    Tapered nanopillars with various cross sections, including cone-shaped, stepwise, and pencil-like structures (300 nm in diameter at the base of the pillars and 1.1 μm in height), are prepared from epoxy resin templated by nanoporous anodic aluminum oxide (AAO) membranes. The effect of pillar geometry on the shear adhesion behavior of these nanopillar arrays is investigated via sliding experiments in a nanoindentation system. In a previous study of arrays with the same geometry, it was shown that cone-shaped nanopillars exhibit the highest adhesion under normal loading while stepwise and pencil-like nanopillars exhibit lower normal adhesion strength due to significant deformation of the pillars that occurs with increasing indentation depth. Contrary to the previous studies, here, we show that pencil-like nanopillars exhibit the highest shear adhesion strength at all indentation depths among three types of nanopillar arrays and that the shear adhesion increases with greater indentation depth due to the higher bending stiffness and closer packing of the pencil-like nanopillar array. Finite element simulations are used to elucidate the deformation of the pillars during the sliding experiments and agree with the nanoindentation-based sliding measurements. The experiments and finite element simulations together demonstrate that the shape of the nanopillars plays a key role in shear adhesion and that the mechanism is quite different from that of adhesion under normal loading.

  2. Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes

    NASA Astrophysics Data System (ADS)

    Verschueren, Daniel V.; Yang, Wayne; Dekker, Cees

    2018-04-01

    We report a simple and scalable technique for the fabrication of nanopore arrays on freestanding SiN and graphene membranes based on electron-beam lithography and reactive ion etching. By controlling the dose of the single-shot electron-beam exposure, circular nanopores of any size down to 16 nm in diameter can be fabricated in both materials at high accuracy and precision. We demonstrate the sensing capabilities of these nanopores by translocating dsDNA through pores fabricated using this method, and find signal-to-noise characteristics on par with transmission-electron-microscope-drilled nanopores. This versatile lithography-based approach allows for the high-throughput manufacturing of nanopores and can in principle be used on any substrate, in particular membranes made out of transferable two-dimensional materials.

  3. InP nanopore arrays for photoelectrochemical hydrogen generation.

    PubMed

    Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong

    2016-02-19

    We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.

  4. Tailoring uniform gold nanoparticle arrays and nanoporous films for next-generation optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Farid, Sidra; Kuljic, Rade; Poduri, Shripriya; Dutta, Mitra; Darling, Seth B.

    2018-06-01

    High-density arrays of gold nanodots and nanoholes on indium tin oxide (ITO)-coated glass surfaces are fabricated using a nanoporous template fabricated by the self-assembly of diblock copolymers of poly (styrene-block-methyl methacrylate) (PS-b-PMMA) structures. By balancing the interfacial interactions between the polymer blocks and the substrate using random copolymer, cylindrical block copolymer microdomains oriented perpendicular to the plane of the substrate have been obtained. Nanoporous PS films are created by selectively etching PMMA cylinders, a straightforward route to form highly ordered nanoscale porous films. Deposition of gold on the template followed by lift off and sonication leaves a highly dense array of gold nanodots. These materials can serve as templates for the vapor-liquid-solid (VLS) growth of semiconductor nanorod arrays for next generation hybrid optoelectronic applications.

  5. Cell motility regulation on a stepped micro pillar array device (SMPAD) with a discrete stiffness gradient.

    PubMed

    Lee, Sujin; Hong, Juhee; Lee, Junghoon

    2016-02-28

    Our tissues consist of individual cells that respond to the elasticity of their environment, which varies between and within tissues. To better understand mechanically driven cell migration, it is necessary to manipulate the stiffness gradient across a substrate. Here, we have demonstrated a new variant of the microfabricated polymeric pillar array platform that can decouple the stiffness gradient from the ECM protein area. This goal is achieved via a "stepped" micro pillar array device (SMPAD) in which the contact area with the cell was kept constant while the diameter of the pillar bodies was altered to attain the proper mechanical stiffness. Using double-step SU-8 mold fabrication, the diameter of the top of every pillar was kept uniform, whereas that of the bottom was changed, to achieve the desired substrate rigidity. Fibronectin was immobilized on the pillar tops, providing a focal adhesion site for cells. C2C12, HeLa and NIH3T3 cells were cultured on the SMPAD, and the motion of the cells was observed by time-lapse microscopy. Using this simple platform, which produces a purely physical stimulus, we observed that various types of cell behavior are affected by the mechanical stimulus of the environment. We also demonstrated directed cell migration guided by a discrete rigidity gradient by varying stiffness. Interestingly, cell velocity was highest at the highest stiffness. Our approach enables the regulation of the mechanical properties of the polymeric pillar array device and eliminates the effects of the size of the contact area. This technique is a unique tool for studying cellular motion and behavior relative to various stiffness gradients in the environment.

  6. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  7. Biomechanical Characterization of Cardiomyocyte Using PDMS Pillar with Microgrooves

    PubMed Central

    Oyunbaatar, Nomin-Erdene; Lee, Deok-Hyu; Patil, Swati J.; Kim, Eung-Sam; Lee, Dong-Weon

    2016-01-01

    This paper describes the surface-patterned polydimethylsiloxane (PDMS) pillar arrays for enhancing cell alignment and contraction force in cardiomyocytes. The PDMS micropillar (μpillar) arrays with microgrooves (μgrooves) were fabricated using a unique micro-mold made using SU-8 double layer processes. The spring constant of the μpillar arrays was experimentally confirmed using atomic force microscopy (AFM). After culturing cardiac cells on the two different types of μpillar arrays, with and without grooves on the top of μpillar, the characteristics of the cardiomyocytes were analyzed using a custom-made image analysis system. The alignment of the cardiomyocytes on the μgrooves of the μpillars was clearly observed using a DAPI staining process. The mechanical force generated by the contraction force of the cardiomyocytes was derived from the displacement of the μpillar arrays. The contraction force of the cardiomyocytes aligned on the μgrooves was 20% higher than that of the μpillar arrays without μgrooves. The experimental results prove that applied geometrical stimulus is an effective method for aligning and improving the contraction force of cardiomyocytes. PMID:27517924

  8. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  9. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    PubMed Central

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-01-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars. PMID:27353231

  10. Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation.

    PubMed

    Buchholz, K; Tinazli, A; Kleefen, A; Dorfner, D; Pedone, D; Rant, U; Tampé, R; Abstreiter, G; Tornow, M

    2008-11-05

    We present the fabrication and characterization of nanopore microcavities for the investigation of transport processes in suspended lipid membranes. The cavities are situated below the surface of silicon-on-insulator (SOI) substrates. Single cavities and large area arrays were prepared using high resolution electron-beam lithography in combination with reactive ion etching (RIE) and wet chemical sacrificial underetching. The locally separated compartments have a circular shape and allow the enclosure of picoliter volume aqueous solutions. They are sealed at their top by a 250 nm thin Si membrane featuring pores with diameters from 2 µm down to 220 nm. The Si surface exhibits excellent smoothness and homogeneity as verified by AFM analysis. As biophysical test system we deposited lipid membranes by vesicle fusion, and demonstrated their fluid-like properties by fluorescence recovery after photobleaching. As clearly indicated by AFM measurements in aqueous buffer solution, intact lipid membranes successfully spanned the pores. The nanopore cavity arrays have potential applications in diagnostics and pharmaceutical research on transmembrane proteins.

  11. Stress reduction for pillar filled structures

    DOEpatents

    Nikolic, Rebecca J.; Conway, Adam; Shao, Qinghui; Voss, Lars; Cheung, Chin Li; Dar, Mushtaq A.

    2015-09-01

    According to one embodiment, an apparatus for detecting neutrons includes an array of pillars, wherein each of the pillars comprises a rounded cross sectional shape where the cross section is taken perpendicular to a longitudinal axis of the respective pillar, a cavity region between each of the pillars, and a neutron sensitive material located in each cavity region.

  12. Device properties of nanopore PN junction Si for photovoltaic application

    NASA Astrophysics Data System (ADS)

    Jin, Hyunjong; Chang, Te Wei; Liu, Logan Gang

    2011-09-01

    Improvement of energy conversion efficiency of solar cells has led to innovative approaches, in particular the introduction of nanopillar photovoltaics [1]. Previous work on nanopillar Si photovoltaic has shown broadband reduction in optical reflection and enhancement of absorption [2]. Radial or axial PN junctions [3, 4] have been of high interest for improved photovoltaic devices. However, with the PN junction incorporated as part of the pillar, the discreteness of individual pillar requires additional conductive layer that would electrically short the top of each pillar for efficient carrier extraction. The fragile structure of the surface pillars would also require a protection layer for possible mechanical scratch to prevent pillars from breaking. Any additional layer that is applied, either for electrical contact or for mechanical properties may introduce additional recombination sites and also reduce the actual light absorption by the photovoltaic material. In this paper, nanopore Si photovoltaics that not only provides the advantages but also addresses the challenges of nanopillers is demonstrated. PN junction substrate of 250 nm thick N-type polycrystalline Si on P-type Si wafer is prepared. The nanopore structure is formed by using anodized aluminum oxide (AAO) as an etching mask against deep reactive ionic etching (DRIE). The device consists of semi-ordered pores of ~70 nm diameter.

  13. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays.

    PubMed

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm(-2), which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  14. In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays

    NASA Astrophysics Data System (ADS)

    Kim, Yong Hee; Kim, Gook Hwa; Kim, Ah Young; Han, Young Hwan; Chung, Myung-Ae; Jung, Sang-Don

    2015-12-01

    Objective. Nanoporous gold (Au) structures can reduce the impedance and enhance the charge injection capability of multi-electrode arrays (MEAs) used for interfacing neuronal networks. Even though there are various nanoporous Au preparation techniques, fabrication of MEA based on low-cost electro-codeposition of Ag:Au has not been performed. In this work, we have modified a Au MEA via the electro-codeposition of Ag:Au alloy, followed by the chemical etching of Ag, and report on the in vitro extracellular recording and stimulation performance of the nanoporous Au-modified MEA. Approach. Ag:Au alloy was electro-codeposited on a bilayer lift-off resist sputter-deposition passivated Au MEA followed by chemical etching of Ag to form a porous Au structure. Main results. The porous Au structure was analyzed by scanning electron microscopy and tunneling electron microscopy and found to have an interconnected nanoporous Au structure. The impedance value of the nanoporous Au-modified MEA is 15.4 ± 0.55 kΩ at 1 kHz, accompanied by the base noise V rms of 2.4 ± 0.3 μV. The charge injection limit of the nanoporous Au-modified electrode estimated from voltage transient measurement is approximately 1 mC cm-2, which is comparable to roughened platinum and carbon nanotube electrodes. The charge injection capability of the nanoporous Au-modified MEA was confirmed by observing stimulus-induced spikes at above 0.2 V. The nanoporous Au-modified MEA showed mechanical durability upon ultrasonic treatment for up to an hour. Significance. Electro-codeposition of Ag:Au alloy combined with chemical etching Ag is a low-cost process for fabricating nanoporous Au-modified MEA suitable for establishing the stimulus-response relationship of cultured neuronal networks.

  15. Vertical pillar-superlattice array and graphene hybrid light emitting diodes.

    PubMed

    Lee, Jung Min; Choung, Jae Woong; Yi, Jaeseok; Lee, Dong Hyun; Samal, Monica; Yi, Dong Kee; Lee, Chul-Ho; Yi, Gyu-Chul; Paik, Ungyu; Rogers, John A; Park, Won Il

    2010-08-11

    We report a type of device that combines vertical arrays of one-dimensional (1D) pillar-superlattice (PSL) structures with 2D graphene sheets to yield a class of light emitting diode (LED) with interesting mechanical, optical, and electrical characteristics. In this application, graphene sheets coated with very thin metal layers exhibit good mechanical and electrical properties and an ability to mount, in a freely suspended configuration, on the PSL arrays as a top window electrode. Optical characterization demonstrates that graphene exhibits excellent optical transparency even after deposition of the thin metal films. Thermal annealing of the graphene/metal (Gr/M) contact to the GaAs decreases the contact resistance, to provide enhanced carrier injection. The resulting PSL-Gr/M LEDs exhibit bright light emission over large areas. The result suggests the utility of graphene-based materials as electrodes in devices with unusual, nonplanar 3D architectures.

  16. Crosstalk Reduction for High-Frequency Linear-Array Ultrasound Transducers Using 1–3 Piezocomposites With Pseudo-Random Pillars

    PubMed Central

    Yang, Hao-Chung; Cannata, Jonathan; Williams, Jay; Shung, K. Kirk

    2013-01-01

    The goal of this research was to develop a novel diced 1–3 piezocomposite geometry to reduce pulse–echo ring down and acoustic crosstalk between high-frequency ultrasonic array elements. Two PZT-5H-based 1–3 composites (10 and 15 MHz) of different pillar geometries [square (SQ), 45° triangle (TR), and pseudo-random (PR)] were fabricated and then made into single-element ultrasound transducers. The measured pulse–echo waveforms and their envelopes indicate that the PR composites had the shortest −20-dB pulse length and highest sensitivity among the composites evaluated. Using these composites, 15-MHz array subapertures with a 0.95λ pitch were fabricated to assess the acoustic crosstalk between array elements. The combined electrical and acoustical crosstalk between the nearest array elements of the PR array sub-apertures (−31.8 dB at 15 MHz) was 6.5 and 2.2 dB lower than those of the SQ and the TR array subapertures, respectively. These results demonstrate that the 1–3 piezocomposite with the pseudo-random pillars may be a better choice for fabricating enhanced high-frequency linear-array ultrasound transducers; especially when mechanical dicing is used. PMID:23143580

  17. Unique Three-Dimensional InP Nanopore Arrays for Improved Photoelectrochemical Hydrogen Production.

    PubMed

    Li, Qiang; Zheng, Maojun; Ma, Liguo; Zhong, Miao; Zhu, Changqing; Zhang, Bin; Wang, Faze; Song, Jingnan; Ma, Li; Shen, Wenzhong

    2016-08-31

    Ordered three-dimensional (3D) nanostructure arrays hold promise for high-performance energy harvesting and storage devices. Here, we report the fabrication of InP nanopore arrays (NPs) in unique 3D architectures with excellent light trapping characteristic and large surface areas for use as highly active photoelectrodes in photoelectrochemical (PEC) hydrogen evolution devices. The ordered 3D NPs were scalably synthesized by a facile two-step etching process of (1) anodic etching of InP in neutral 3 M NaCl electrolytes to realize nanoporous structures and (2) wet chemical etching in HCl/H3PO4 (volume ratio of 1:3) solutions for removing the remaining top irregular layer. Importantly, we demonstrated that the use of neutral electrolyte of NaCl instead of other solutions, such as HCl, in anodic etching of InP can significantly passivate the surface states of 3D NPs. As a result, the maximum photoconversion efficiency obtained with ∼15.7 μm thick 3D NPs was 0.95%, which was 7.3 and 1.4 times higher than that of planar and 2D NPs. Electrochemical impedance spectroscopy and photoluminescence analyses further clarified that the improved PEC performance was attributed to the enhanced charge transfer across 3D NPs/electrolyte interfaces, the improved charge separation at 3D NPs/electrolyte junction, and the increased PEC active surface areas with our unique 3D NP arrays.

  18. Periodically structured Si pillars for high-performing heterojunction photodetectors

    NASA Astrophysics Data System (ADS)

    Melvin David Kumar, M.; Yun, Ju-Hyung; Kim, Joondong

    2015-03-01

    A periodical array of silicon (Si) micro pillar structures was fabricated on Si substrates using PR etching process. Indium tin oxide (ITO) layer of 80 nm thickness was deposited over patterned Si substrates so as to make ITO/n-Si heterojunction devices. The influences of width and period of pillars on the optical and electrical properties of prepared devices were investigated. The surface morphology of the Si substrates revealed the uniform array of pillar structures. The 5/10 (width/period) Si pillar pattern reduced the optical reflectance to 6.5% from 17% which is of 5/7 pillar pattern. The current rectifying ratio was found higher for the device in which the pillars are situated in optimum periods. At both visible (600 nm) and near infrared (900 nm) range of wavelengths, the 5/7 and 5/10 pillar patterned device exhibited the better photoresponses which are suitable for making advanced photodetectors. This highly transmittance and photoresponsive pillar patterned Si substrates with an ITO layer would be a promising device for various photoelectric applications.

  19. Real-time single-molecule electronic DNA sequencing by synthesis using polymer-tagged nucleotides on a nanopore array

    PubMed Central

    Fuller, Carl W.; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Bibillo, Arek; Stranges, P. Benjamin; Dorwart, Michael; Tao, Chuanjuan; Li, Zengmin; Guo, Wenjing; Shi, Shundi; Korenblum, Daniel; Trans, Andrew; Aguirre, Anne; Liu, Edward; Harada, Eric T.; Pollard, James; Bhat, Ashwini; Cech, Cynthia; Yang, Alexander; Arnold, Cleoma; Palla, Mirkó; Hovis, Jennifer; Chen, Roger; Morozova, Irina; Kalachikov, Sergey; Russo, James J.; Kasianowicz, John J.; Davis, Randy; Roever, Stefan; Church, George M.; Ju, Jingyue

    2016-01-01

    DNA sequencing by synthesis (SBS) offers a robust platform to decipher nucleic acid sequences. Recently, we reported a single-molecule nanopore-based SBS strategy that accurately distinguishes four bases by electronically detecting and differentiating four different polymer tags attached to the 5′-phosphate of the nucleotides during their incorporation into a growing DNA strand catalyzed by DNA polymerase. Further developing this approach, we report here the use of nucleotides tagged at the terminal phosphate with oligonucleotide-based polymers to perform nanopore SBS on an α-hemolysin nanopore array platform. We designed and synthesized several polymer-tagged nucleotides using tags that produce different electrical current blockade levels and verified they are active substrates for DNA polymerase. A highly processive DNA polymerase was conjugated to the nanopore, and the conjugates were complexed with primer/template DNA and inserted into lipid bilayers over individually addressable electrodes of the nanopore chip. When an incoming complementary-tagged nucleotide forms a tight ternary complex with the primer/template and polymerase, the tag enters the pore, and the current blockade level is measured. The levels displayed by the four nucleotides tagged with four different polymers captured in the nanopore in such ternary complexes were clearly distinguishable and sequence-specific, enabling continuous sequence determination during the polymerase reaction. Thus, real-time single-molecule electronic DNA sequencing data with single-base resolution were obtained. The use of these polymer-tagged nucleotides, combined with polymerase tethering to nanopores and multiplexed nanopore sensors, should lead to new high-throughput sequencing methods. PMID:27091962

  20. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  1. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  2. Wetting state and maximum spreading factor of microdroplets impacting on superhydrophobic textured surfaces with anisotropic arrays of pillars

    NASA Astrophysics Data System (ADS)

    Kwon, Dae Hee; Huh, Hyung Kyu; Lee, Sang Joon

    2013-07-01

    The dynamic behaviors of microdroplets that impact on textured surfaces with various patterns of microscale pillars are experimentally investigated in this study. A piezoelectric inkjet is used to generate the microdroplets that have a diameter of less than 46 μm and a controlled Weber number. The impact and spreading dynamics of an individual droplet are captured by using a high-speed imaging system. The anisotropic and directional wettability and the wetting states on the textured surfaces with anisotropically arranged pillars are revealed for the first time in this study. The impalement transition from the Cassie-Baxter state to the partially impaled state is evaluated by balancing the wetting pressure P wet and the capillary pressure P C even on the anisotropic textured surfaces. The maximum spreading factor is measured and compared with the theoretical prediction to elucidate the wettability of the textured surfaces. For a given Weber number, the maximum spreading factor decreases as the texture area fraction of the textured surface decreases. In addition, the maximum spreading factors along the direction of longer inter-pillar spacing always have smaller values than those along the direction of shorter inter-pillar spacing when a droplet impacts on the anisotropic arrays of pillars.

  3. Direct formation of nano-pillar arrays by phase separation of polymer blend for the enhanced out-coupling of organic light emitting diodes with low pixel blurring.

    PubMed

    Lee, Cholho; Han, Kyung-Hoon; Kim, Kwon-Hyeon; Kim, Jang-Joo

    2016-03-21

    We have demonstrated a simple and efficient method to fabricate OLEDs with enhanced out-coupling efficiencies and with low pixel blurring by inserting nano-pillar arrays prepared through the lateral phase separation of two immiscible polymers in a blend film. By selecting a proper solvent for the polymer and controlling the composition of the polymer blend, the nano-pillar arrays were formed directly after spin-coating of the polymer blend and selective removal of one phase, needing no complicated processes such as nano-imprint lithography. Pattern size and distribution were easily controlled by changing the composition and thickness of the polymer blend film. Phosphorescent OLEDs using the internal light extraction layer containing the nano-pillar arrays showed a 30% enhancement of the power efficiency, no spectral variation with the viewing angle, and only a small increment in pixel blurring. With these advantages, this newly developed method can be adopted for the commercial fabrication process of OLEDs for lighting and display applications.

  4. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark; Schotter, Joerg; Thurn-Albrecht, Thomas; Russell, Thomas P.

    2007-03-13

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  5. Nanocylinder arrays

    DOEpatents

    Tuominen, Mark [Shutesbury, MA; Schotter, Joerg [Bielefeld, DE; Thurn-Albrecht, Thomas [Freiburg, DE; Russell, Thomas P [Amherst, MA

    2009-08-11

    Pathways to rapid and reliable fabrication of nanocylinder arrays are provided. Simple methods are described for the production of well-ordered arrays of nanopores, nanowires, and other materials. This is accomplished by orienting copolymer films and removing a component from the film to produce nanopores, that in turn, can be filled with materials to produce the arrays. The resulting arrays can be used to produce nanoscale media, devices, and systems.

  6. Design and characterization of a nanopore-coupled polymerase for single-molecule DNA sequencing by synthesis on an electrode array

    PubMed Central

    Stranges, P. Benjamin; Palla, Mirkó; Kalachikov, Sergey; Nivala, Jeff; Dorwart, Michael; Trans, Andrew; Kumar, Shiv; Porel, Mintu; Chien, Minchen; Tao, Chuanjuan; Morozova, Irina; Li, Zengmin; Shi, Shundi; Aberra, Aman; Arnold, Cleoma; Yang, Alexander; Aguirre, Anne; Harada, Eric T.; Korenblum, Daniel; Pollard, James; Bhat, Ashwini; Gremyachinskiy, Dmitriy; Bibillo, Arek; Chen, Roger; Davis, Randy; Russo, James J.; Fuller, Carl W.; Roever, Stefan; Ju, Jingyue; Church, George M.

    2016-01-01

    Scalable, high-throughput DNA sequencing is a prerequisite for precision medicine and biomedical research. Recently, we presented a nanopore-based sequencing-by-synthesis (Nanopore-SBS) approach, which used a set of nucleotides with polymer tags that allow discrimination of the nucleotides in a biological nanopore. Here, we designed and covalently coupled a DNA polymerase to an α-hemolysin (αHL) heptamer using the SpyCatcher/SpyTag conjugation approach. These porin–polymerase conjugates were inserted into lipid bilayers on a complementary metal oxide semiconductor (CMOS)-based electrode array for high-throughput electrical recording of DNA synthesis. The designed nanopore construct successfully detected the capture of tagged nucleotides complementary to a DNA base on a provided template. We measured over 200 tagged-nucleotide signals for each of the four bases and developed a classification method to uniquely distinguish them from each other and background signals. The probability of falsely identifying a background event as a true capture event was less than 1.2%. In the presence of all four tagged nucleotides, we observed sequential additions in real time during polymerase-catalyzed DNA synthesis. Single-polymerase coupling to a nanopore, in combination with the Nanopore-SBS approach, can provide the foundation for a low-cost, single-molecule, electronic DNA-sequencing platform. PMID:27729524

  7. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  8. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  9. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-08-06

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces.

  10. Amine-pillared Nanosheet Adsorbents for CO2 Capture Applications

    NASA Astrophysics Data System (ADS)

    Jiang, Hui

    Amine-functionalized solid adsorbents have gained attention within the last decade for their application in carbon dioxide capture, due to their many advantages such as low energy cost for regeneration, tunable structure, elimination of corrosion problems, and additional advantages. However, one of the challenges facing this technology is to accomplish both high CO 2 capture capacity along with high CO2 diffusion rates concurrently. Current amine-based solid sorbents such as porous materials similar to SBA-15 have large pores diffusion entering molecules; however, the pores become clogged upon amine inclusion. To meet this challenge, our group's solution involves the creation of a new type of material which we are calling-amino-pillared nanosheet (APN) adsorbents which are generated from layered nanosheet precursors. These materials are being proposed because of their unique lamellar structure which exhibits ability to be modified by organic or inorganic pillars through consecutive swelling and pillaring steps to form large mesoporous interlayer spaces. After the expansion of the layer space through swelling and pillaring, the large pore space can be functionalized with amine groups. This selective functionalization is possible by the choice of amine group introduced. Our choice, large amine molecules, do not access the micropore within each layer; however, either physically or chemically immobilized onto the surface of the mesoporous interlayer space between each layer. The final goal of the research is to investigate the ability to prepare APN adsorbents from a model nanoporous layered materials including nanosheets precursor material MCM-22(P) and nanoporous layered silicate material AMH-3. MCM-22(P) contains 2-dimensional porous channels, 6 membered rings (MB) openings perpendicular to the layers and 10 MB channels in the plane of the layers. However, the transport limiting openings (6 MB) to the layers is smaller than CO2 gas molecules. In contrast, AMH-3 has

  11. Flexible piezoelectric nanogenerators based on a transferred ZnO nanorod/Si micro-pillar array

    NASA Astrophysics Data System (ADS)

    Baek, Seong-Ho; Park, Il-Kyu

    2017-03-01

    Flexible piezoelectric nanogenerators (PNGs) based on a composite of ZnO nanorods (NRs) and an array of Si micro-pillars (MPs) are demonstrated by a transfer process. The flexible composite structure was fabricated by hydrothermal growth of ZnO NRs on an electrochemically etched Si MP array with various lengths followed by mechanically delaminating the Si MP arrays from the Si substrate after embedding them in a polydimethylsiloxane matrix. Because the Si MP arrays act as a supporter to connect the ZnO NRs electrically and mechanically, verified by capacitance measurement, the output voltage from the flexible PNGs increased systematically with the increased density ZnO NRs depending on the length of the Si MPs. The flexible PNGs showed 3.2 times higher output voltage with a small change in current with increasing Si MP length from 5 to 20 μm. The enhancement of the output voltage is due to the increased number of series-connected ZnO NRs and the beneficial effect of a ZnO NR/Si MP heterojunction on reducing free charge screening effects. The flexible PNGs can be attached on fingers as a wearable electrical power source or motion sensor.

  12. Microdevice arrays of high aspect ratio poly(dimethylsiloxane) pillars for the investigation of multicellular tumour spheroid mechanical properties.

    PubMed

    Aoun, Laurène; Weiss, Pierre; Laborde, Adrian; Ducommun, Bernard; Lobjois, Valérie; Vieu, Christophe

    2014-07-07

    We report the design, fabrication and evaluation of an array of microdevices composed of high aspect ratio PDMS pillars, dedicated to the study of tumour spheroid mechanical properties. The principle of the microdevice is to confine a spheroid within a circle of micropillars acting as peripheral flexible force sensors. We present a technological process for fabricating high aspect ratio micropillars (300 μm high) with tunable feature dimensions (diameter and spacing) enabling production of flexible PDMS pillars with a height comparable to spheroid sizes. This represents an upscale of 10 along the vertical direction in comparison to more conventional PDMS pillar force sensors devoted to single cell studies, while maintaining their force sensitivity in the same order of magnitude. We present a method for keeping these very high aspect ratio PDMS pillars stable and straight in liquid solution. We demonstrate that microfabricated devices are biocompatible and adapted to long-term spheroid growth. Finally, we show that the spheroid interaction with the micropillars' surface is dependent on PDMS cellular adhesiveness. Time-lapse recordings of growth-induced micropillars' bending coupled with a software program to automatically detect and analyse micropillar displacements are presented. The use of these microdevices as force microsensors opens new prospects in the fields of tissue mechanics and pharmacological drug screening.

  13. Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons

    NASA Astrophysics Data System (ADS)

    Flores, Thomas; Lei, Xin; Huang, Tiffany; Lorach, Henri; Dalal, Roopa; Galambos, Ludwig; Kamins, Theodore; Mathieson, Keith; Palanker, Daniel

    2018-06-01

    Objective. High-resolution prosthetic vision requires dense stimulating arrays with small electrodes. However, such miniaturization reduces electrode capacitance and penetration of electric field into tissue. We evaluate potential solutions to these problems with subretinal implants based on utilization of pillar electrodes. Approach. To study integration of three-dimensional (3D) implants with retinal tissue, we fabricated arrays with varying pillar diameter, pitch, and height, and implanted beneath the degenerate retina in rats (Royal College of Surgeons, RCS). Tissue integration was evaluated six weeks post-op using histology and whole-mount confocal fluorescence imaging. The electric field generated by various electrode configurations was calculated in COMSOL, and stimulation thresholds assessed using a model of network-mediated retinal response. Main results. Retinal tissue migrated into the space between pillars with no visible gliosis in 90% of implanted arrays. Pillars with 10 μm height reached the middle of the inner nuclear layer (INL), while 22 μm pillars reached the upper portion of the INL. Electroplated pillars with dome-shaped caps increase the active electrode surface area. Selective deposition of sputtered iridium oxide onto the cap ensures localization of the current injection to the pillar top, obviating the need to insulate the pillar sidewall. According to computational model, pillars having a cathodic return electrode above the INL and active anodic ring electrode at the surface of the implant would enable six times lower stimulation threshold, compared to planar arrays with circumferential return, but suffer from greater cross-talk between the neighboring pixels. Significance. 3D electrodes in subretinal prostheses help reduce electrode-tissue separation and decrease stimulation thresholds to enable smaller pixels, and thereby improve visual acuity of prosthetic vision.

  14. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    PubMed

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  15. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    PubMed Central

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M.

    2017-01-01

    In this work, we present the electrochemical deposition of manganese dioxide (MnO2) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications. PMID:28555017

  16. Pillar cuvettes: capillary-filled, microliter quartz cuvettes with microscale path lengths for optical spectroscopy.

    PubMed

    Holzner, Gregor; Kriel, Frederik Hermanus; Priest, Craig

    2015-05-05

    The goal of most analytical techniques is to reduce the lower limit of detection; however, it is sometimes necessary to do the opposite. High sample concentrations or samples with high molar absorptivity (e.g., dyes and metal complexes) often require multiple dilution steps or laborious sample preparation prior to spectroscopic analysis. Here, we demonstrate dilution-free, one-step UV-vis spectroscopic analysis of high concentrations of platinum(IV) hexachloride in a micropillar array, that is, "pillar cuvette". The cuvette is spontaneously filled by wicking of the liquid sample into the micropillar array. The pillar height (thus, the film thickness) defines the optical path length, which was reduced to between 10 and 20 μm in this study (3 orders of magnitude smaller than in a typical cuvette). Only one small droplet (∼2 μL) of sample is required, and the dispensed volume need not be precise or even known to the analyst for accurate spectroscopy measurements. For opaque pillars, we show that absorbance is linearly related to platinum concentration (the Beer-Lambert Law). For fully transparent or semitransparent pillars, the measured absorbance was successfully corrected for the fractional surface coverage of the pillars and the transmittance of the pillars and reference. Thus, both opaque and transparent pillars can be applied to absorbance spectroscopy of high absorptivity, microliter samples. It is also shown here that the pillar array has a useful secondary function as an integrated (in-cuvette) filter for particulates. For pillar cuvette measurements of platinum solutions spiked with 6 μm diameter polystyrene spheres, filtered and unfiltered samples gave identical spectra.

  17. Atomic layer deposition of nanoporous biomaterials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.more » Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.« less

  18. Controlled growth of ordered nanopore arrays in GaN.

    PubMed

    Wildeson, Isaac H; Ewoldt, David A; Colby, Robert; Stach, Eric A; Sands, Timothy D

    2011-02-09

    High-quality, ordered nanopores in semiconductors are attractive for numerous biological, electrical, and optical applications. Here, GaN nanorods with continuous pores running axially through their centers were grown by organometallic vapor phase epitaxy. The porous nanorods nucleate on an underlying (0001)-oriented GaN film through openings in a SiN(x) template that are milled by a focused ion beam, allowing direct placement of porous nanorods. Nanopores with diameters ranging from 20-155 nm were synthesized with crystalline sidewalls.

  19. Method of fabricating a scalable nanoporous membrane filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tringe, Joseph W; Balhorn, Rodney L; Zaidi, Saleem

    A method of fabricating a nanoporous membrane filter having a uniform array of nanopores etch-formed in a thin film structure (e.g. (100)-oriented single crystal silicon) having a predetermined thickness, by (a) using interferometric lithography to create an etch pattern comprising a plurality array of unit patterns having a predetermined width/diameter, (b) using the etch pattern to etch frustum-shaped cavities or pits in the thin film structure such that the dimension of the frustum floors of the cavities are substantially equal to a desired pore size based on the predetermined thickness of the thin film structure and the predetermined width/diameter ofmore » the unit patterns, and (c) removing the frustum floors at a boundary plane of the thin film structure to expose, open, and thereby create the nanopores substantially having the desired pore size.« less

  20. Transparent Nanopore Cavity Arrays Enable Highly Parallelized Optical Studies of Single Membrane Proteins on Chip.

    PubMed

    Diederichs, Tim; Nguyen, Quoc Hung; Urban, Michael; Tampé, Robert; Tornow, Marc

    2018-06-13

    Membrane proteins involved in transport processes are key targets for pharmaceutical research and industry. Despite continuous improvements and new developments in the field of electrical readouts for the analysis of transport kinetics, a well-suited methodology for high-throughput characterization of single transporters with nonionic substrates and slow turnover rates is still lacking. Here, we report on a novel architecture of silicon chips with embedded nanopore microcavities, based on a silicon-on-insulator technology for high-throughput optical readouts. Arrays containing more than 14 000 inverted-pyramidal cavities of 50 femtoliter volumes and 80 nm circular pore openings were constructed via high-resolution electron-beam lithography in combination with reactive ion etching and anisotropic wet etching. These cavities feature both, an optically transparent bottom and top cap. Atomic force microscopy analysis reveals an overall extremely smooth chip surface, particularly in the vicinity of the nanopores, which exhibits well-defined edges. Our unprecedented transparent chip design provides parallel and independent fluorescent readout of both cavities and buffer reservoir for unbiased single-transporter recordings. Spreading of large unilamellar vesicles with efficiencies up to 96% created nanopore-supported lipid bilayers, which are stable for more than 1 day. A high lipid mobility in the supported membrane was determined by fluorescent recovery after photobleaching. Flux kinetics of α-hemolysin were characterized at single-pore resolution with a rate constant of 0.96 ± 0.06 × 10 -3 s -1 . Here, we deliver an ideal chip platform for pharmaceutical research, which features high parallelism and throughput, synergistically combined with single-transporter resolution.

  1. Cell density-dependent differential proliferation of neural stem cells on omnidirectional nanopore-arrayed surface.

    PubMed

    Cha, Kyoung Je; Kong, Sun-Young; Lee, Ji Soo; Kim, Hyung Woo; Shin, Jae-Yeon; La, Moonwoo; Han, Byung Woo; Kim, Dong Sung; Kim, Hyun-Jung

    2017-10-12

    Recently, the importance of surface nanotopography in the determination of stem cell fate and behavior has been revealed. In the current study, we generated polystyrene cell-culture dishes with an omnidirectional nanopore arrayed surface (ONAS) (diameter: 200 nm, depth: 500 nm, center-to-center distance: 500 nm) and investigated the effects of nanotopography on rat neural stem cells (NSCs). NSCs cultured on ONAS proliferated better than those on the flat surface when cell density was low and showed less spontaneous differentiation during proliferation in the presence of mitogens. Interestingly, NSCs cultured on ONAS at clonal density demonstrated a propensity to generate neurospheres, whereas those on the flat surface migrated out, proliferated as individuals, and spread out to attach to the surface. However, the differential patterns of proliferation were cell density-dependent since the distinct phenomena were lost when cell density was increased. ONAS modulated cytoskeletal reorganization and inhibited formation of focal adhesion, which is generally observed in NSCs grown on flat surfaces. ONAS appeared to reinforce NSC-NSC interaction, restricted individual cell migration and prohibited NSC attachment to the nanopore surface. These data demonstrate that ONAS maintains NSCs as undifferentiated while retaining multipotency and is a better topography for culturing low density NSCs.

  2. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer

    NASA Astrophysics Data System (ADS)

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, Nosoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-01

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer

  3. Expanding the functionality and applications of nanopore sensors

    NASA Astrophysics Data System (ADS)

    Venta, Kimberly E.

    Nanopore sensors have developed into powerful tools for single-molecule studies since their inception two decades ago. Nanopore sensors function as nanoscale Coulter counters, by monitoring ionic current modulations as particles pass through a nanopore. While nanopore sensors can be used to study any nanoscale particle, their most notable application is as a low cost, fast alternative to current DNA sequencing technologies. In recent years, signifcant progress has been made toward the goal of nanopore-based DNA sequencing, which requires an ambitious combination of a low-noise and high-bandwidth nanopore measurement system and spatial resolution. In this dissertation, nanopore sensors in thin membranes are developed to improve dimensional resolution, and these membranes are used in parallel with a high-bandwidth amplfier. Using this nanopore sensor system, the signals of three DNA homopolymers are differentiated for the first time in solid-state nanopores. The nanopore noise is also reduced through the addition of a layer of SU8, a spin-on polymer, to the supporting chip structure. By increasing the temporal and spatial resolution of nanopore sensors, studies of shorter molecules are now possible. Nanopore sensors are beginning to be used for the study and characterization of nanoparticles. Nanoparticles have found many uses from biomedical imaging to next-generation solar cells. However, further insights into the formation and characterization of nanoparticles would aid in developing improved synthesis methods leading to more effective and customizable nanoparticles. This dissertation presents two methods of employing nanopore sensors to benet nanoparticle characterization and fabrication. Nanopores were used to study the formation of individual nanoparticles and serve as nanoparticle growth templates that could be exploited to create custom nanoparticle arrays. Additionally, nanopore sensors were used to characterize the surface charge density of anisotropic

  4. Optical characterization of nanoporous AAO sensor substrate

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  5. Phosphorene-directed self-assembly of asymmetric PS-b-PMMA block copolymer for perpendicularly-oriented sub-10 nm PS nanopore arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Ziming; Zheng, Lu; Khurram, Muhammad; Yan, Qingfeng

    2017-10-01

    Few-layer black phosphorus, also known as phosphorene, is a new two-dimensional material which is of enormous interest for applications, mainly in electronics and optoelectronics. Herein, we for the first time employ phosphorene for directing the self-assembly of asymmetric polystyrene-block-polymethylmethacrylate (PS-b-PMMA) block copolymer (BCP) thin film to form the perpendicular orientation of sub-10 nm PS nanopore arrays in a hexagonal fashion normal to the interface. We experimentally demonstrate that none of the PS and PMMA blocks exhibit preferential affinity to the phosphorene-modified surface. Furthermore, the perpendicularly-oriented PS nanostructures almost stay unchanged with the variation of number of layers of few-layer phosphorene nanoflakes between 15-30 layers. Differing from the neutral polymer brushes which are widely used for chemical modification of the silicon substrate, phosphorene provides a novel physical way to control the interfacial interactions between the asymmetric PS-b-PMMA BCP thin film and the silicon substrate. Based on our results, it is possible to build a new scheme for producing sub-10 nm PS nanopore arrays oriented perpendicularly to the few-layer phosphorene nanoflakes. Furthermore, the nanostructural microdomains could serve as a promising nanolithography template for surface patterning of phosphorene nanoflakes.

  6. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor.

    PubMed

    Itoi, Hiroyuki; Nishihara, Hirotomo; Kogure, Taichi; Kyotani, Takashi

    2011-02-09

    Zeolite-templated carbon is a promising candidate as an electrode material for constructing an electric double layer capacitor with both high-power and high-energy densities, due to its three-dimensionally arrayed and mutually connected 1.2-nm nanopores. This carbon exhibits both very high gravimetric (140-190 F g(-1)) and volumetric (75-83 F cm(-3)) capacitances in an organic electrolyte solution. Moreover, such a high capacitance can be well retained even at a very high current up to 20 A g(-1). This extraordinary high performance is attributed to the unique pore structure.

  7. Boosting infrared energy transfer in 3D nanoporous gold antennas.

    PubMed

    Garoli, D; Calandrini, E; Bozzola, A; Ortolani, M; Cattarin, S; Barison, S; Toma, A; De Angelis, F

    2017-01-05

    The applications of plasmonics to energy transfer from free-space radiation to molecules are currently limited to the visible region of the electromagnetic spectrum due to the intrinsic optical properties of bulk noble metals that support strong electromagnetic field confinement only close to their plasma frequency in the visible/ultraviolet range. In this work, we show that nanoporous gold can be exploited as a plasmonic material for the mid-infrared region to obtain strong electromagnetic field confinement, co-localized with target molecules into the nanopores and resonant with their vibrational frequency. The effective optical response of the nanoporous metal enables the penetration of optical fields deep into the nanopores, where molecules can be loaded thus achieving a more efficient light-matter coupling if compared to bulk gold. In order to realize plasmonic resonators made of nanoporous gold, we develop a nanofabrication method based on polymeric templates for metal deposition and we obtain antenna arrays resonating at mid-infrared wavelengths selected by design. We then coat the antennas with a thin (3 nm) silica layer acting as the target dielectric layer for optical energy transfer. We study the strength of the light-matter coupling at the vibrational absorption frequency of silica at 1240 cm -1 through the analysis of the experimental Fano lineshape that is benchmarked against identical structures made of bulk gold. The boost in the optical energy transfer from free-space mid-infrared radiation to molecular vibrations in nanoporous 3D nanoantenna arrays can open new application routes for plasmon-enhanced physical-chemical reactions.

  8. Solving the critical thermal bowing in 3C-SiC/Si(111) by a tilting Si pillar architecture

    NASA Astrophysics Data System (ADS)

    Albani, Marco; Marzegalli, Anna; Bergamaschini, Roberto; Mauceri, Marco; Crippa, Danilo; La Via, Francesco; von Känel, Hans; Miglio, Leo

    2018-05-01

    The exceptionally large thermal strain in few-micrometers-thick 3C-SiC films on Si(111), causing severe wafer bending and cracking, is demonstrated to be elastically quenched by substrate patterning in finite arrays of Si micro-pillars, sufficiently large in aspect ratio to allow for lateral pillar tilting, both by simulations and by preliminary experiments. In suspended SiC patches, the mechanical problem is addressed by finite element method: both the strain relaxation and the wafer curvature are calculated at different pillar height, array size, and film thickness. Patches as large as required by power electronic devices (500-1000 μm in size) show a remarkable residual strain in the central area, unless the pillar aspect ratio is made sufficiently large to allow peripheral pillars to accommodate the full film retraction. A sublinear relationship between the pillar aspect ratio and the patch size, guaranteeing a minimal curvature radius, as required for wafer processing and micro-crack prevention, is shown to be valid for any heteroepitaxial system.

  9. A tunable sub-100 nm silicon nanopore array with an AAO membrane mask: reducing unwanted surface etching by introducing a PMMA interlayer.

    PubMed

    Lim, Namsoo; Pak, Yusin; Kim, Jin Tae; Hwang, Youngkyu; Lee, Ryeri; Kumaresan, Yogeenth; Myoung, NoSoung; Ko, Heung Cho; Jung, Gun Young

    2015-08-28

    Highly ordered silicon (Si) nanopores with a tunable sub-100 nm diameter were fabricated by a CF4 plasma etching process using an anodic aluminum oxide (AAO) membrane as an etching mask. To enhance the conformal contact of the AAO membrane mask to the underlying Si substrate, poly(methyl methacrylate) (PMMA) was spin-coated on top of the Si substrate prior to the transfer of the AAO membrane. The AAO membrane mask was fabricated by two-step anodization and subsequent removal of the aluminum support and the barrier layer, which was then transferred to the PMMA-coated Si substrate. Contact printing was performed on the sample with a pressure of 50 psi and a temperature of 120 °C to make a conformal contact of the AAO membrane mask to the Si substrate. The CF4 plasma etching was conducted to transfer nanopores onto the Si substrate through the PMMA interlayer. The introduced PMMA interlayer prevented unwanted surface etching of the Si substrate by eliminating the etching ions and radicals bouncing at the gap between the mask and the substrate, resulting in a smooth Si nanopore array.

  10. Measurement of locally resonant band gaps in a surface phononic crystal with inverted conical pillars

    NASA Astrophysics Data System (ADS)

    Hsu, Jin-Chen; Lin, Fan-Shun

    2018-07-01

    In this paper, we numerically and experimentally study locally resonant (LR) band gaps for surface acoustic waves (SAWs) in a honeycomb array of inverted conical pillars grown on the surface of a 128°YX lithium-niobate substrate. We show that the inverted conical pillars can be used to generate lower LR band gaps below the sound cone. This lowering effect is caused by the increase in the effective pillar mass without increasing the effective stiffness. We employ the finite-element method to calculate the LR band gaps and wideband slanted-finger interdigital transducers to measure the transmission of SAWs. Numerical results show that SAWs are prohibited from propagating through the structure in the lowered LR band gaps. Obvious LR band-gap lowering is observed in the experimental result of a surface phononic crystal with a honeycomb array of inverted conical pillars. The results enable enhanced control over the phononic metamaterial and surface structures, which may have applications in low-frequency waveguiding, acoustic isolation, acoustic absorbers, and acoustic filters.

  11. Effect of the out-of-plane stress on the properties of epitaxial SrTiO3 films with nano-pillar array on Si-substrate

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Xie, Qiyun; Liu, Zhiguo; Wu, Dongmei

    2015-08-01

    A nonlinear thermodynamic formalism has been proposed to calculate the physical properties of the epitaxial SrTiO3 films containing vertical nano-pillar array on Si-substrate. The out-of-plane stress induced by the mismatch between film and nano-pillars provides an effective way to tune the physical properties of ferroelectric SrTiO3 films. Tensile out-of-plane stress raises the phase transition temperature and increases the out-of-plane polarization, but decreases the out-of-plane dielectric constant below Curie temperature, pyroelectric coefficient, and piezoelectric coefficient. These results showed that by properly controlling the out-of-plane stress, the out-of-plane stress induced paraelectric-ferroelectric phase transformation will appear near room temperature. Excellent dielectric, pyroelectric, piezoelectric properties of these SrTiO3 films similar to PZT and other lead-based ferroelectrics can be expected.

  12. Enhanced light output from the nano-patterned InP semiconductor substrate through the nanoporous alumina mask.

    PubMed

    Jung, Mi; Kim, Jae Hun; Lee, Seok; Jang, Byung Jin; Lee, Woo Young; Oh, Yoo-Mi; Park, Sun-Woo; Woo, Deokha

    2012-07-01

    A significant enhancement in the light output from nano-patterned InP substrate covered with a nanoporous alumina mask was observed. A uniform nanohole array on an InP semiconductor substrate was fabricated by inductively coupled plasma reactive ion etching (ICP-RIE), using the nanoporous alumina mask as a shadow mask. The light output property of the semiconductor substrate was investigated via photoluminescence (PL) intensity measurement. The InP substrate with a nanohole array showed a more enhanced PL intensity compared with the raw InP substrate without a nanohole structure. After ICP-RIE etching, the light output from the nanoporous InP substrate covered with a nanoporous alumina mask showed fourfold enhanced PL intensity compared with the raw InP substrate. These results can be used as a prospective method for increasing the light output efficiency of optoelectronic devices.

  13. Subwavelength micropillar array terahertz lasers.

    PubMed

    Krall, Michael; Brandstetter, Martin; Deutsch, Christoph; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Unterrainer, Karl

    2014-01-13

    We report on micropillar-based terahertz lasers with active pillars that are much smaller than the emission wavelength. These micropillar array lasers correspond to scaled-down band-edge photonic crystal lasers forming an active photonic metamaterial. In contrast to photonic crystal lasers which use significantly larger pillar structures, lasing emission is not observed close to high-symmetry points in the photonic band diagram, but in the effective medium regime. We measure stimulated emission at 4 THz for micropillar array lasers with pillar diameters of 5 µm. Our results not only demonstrate the integration of active subwavelength optics in a terahertz laser, but are also an important step towards the realization of nanowire-based terahertz lasers.

  14. Fabrication of Self-Ordered Nanoporous Alumina with 69-115 nm Interpore Distances in Sulfuric/Oxalic Acid Mixtures by Hard Anodization

    NASA Astrophysics Data System (ADS)

    Almasi Kashi, Mohammad; Ramazani, Abdolali; Mayamai, Yashar; Noormohammadi, Mohammad

    2010-01-01

    Well-ordered nanoporous arrays have been obtained using hard anodization of aluminium in oxalic/sulfuric mixture. Various ordered nanoporous alumina films with pore intervals from 69 to 115 nm were fabricated on aluminum by high current anodization approach with various sulfuric concentrations in the oxalic/sulfuric mixture electrolyte under 36-60 V. The sulfuric acid concentration was changed from 0.06 to 0.2 M. Different configurations of the current-time curve are seen to influence the self-ordering of the nanohole arrays. A current density-time curve with exponential oscillating decay configuration is seen to damage the self-ordered array of the nanopores while those with exponential decay under certain conditions cause ordered nanopore arrays. For each electrolyte mixture, the interpore distance was dependent upon the anodization voltages with proportionality constants of almost 2 nm V-1. The porosity of the samples (about 3.5%) follows the porosity rule of HA. Final anodization and increasing voltage rate (rin) as a function of sulfuric acid concentration are the main sources to influence the self-ordering of the samples.

  15. Single Molecule Sensing by Nanopores and Nanopore Devices

    PubMed Central

    Gu, Li-Qun; Shim, Ji Wook

    2010-01-01

    Molecular-scale pore structures, called nanopores, can be assembled by protein ion channels through genetic engineering or be artificially fabricated on solid substrates using fashion nanotechnology. When target molecules interact with the functionalized lumen of a nanopore, they characteristically block the ion pathway. The resulting conductance changes allow for identification of single molecules and quantification of target species in the mixture. In this review, we first overview nanopore-based sensory techniques that have been created for the detection of myriad biomedical targets, from metal ions, drug compounds, and cellular second messengers to proteins and DNA. Then we introduce our recent discoveries in nanopore single molecule detection: (1) using the protein nanopore to study folding/unfolding of the G-quadruplex aptamer; (2) creating a portable and durable biochip that is integrated with a single-protein pore sensor (this chip is compared with recently developed protein pore sensors based on stabilized bilayers on glass nanopore membranes and droplet interface bilayer); and (3) creating a glass nanopore-terminated probe for single-molecule DNA detection, chiral enantiomer discrimination, and identification of the bioterrorist agent ricin with an aptamer-encoded nanopore. PMID:20174694

  16. Detecting a single molecule using a micropore-nanopore hybrid chip

    PubMed Central

    2013-01-01

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing. PMID:24261484

  17. Detecting a single molecule using a micropore-nanopore hybrid chip.

    PubMed

    Liu, Lei; Zhu, Lizhong; Ni, Zhonghua; Chen, Yunfei

    2013-11-21

    Nanopore-based DNA sequencing and biomolecule sensing have attracted more and more attention. In this work, novel sensing devices were built on the basis of the chips containing nanopore arrays in polycarbonate (PC) membranes and micropores in Si3N4 films. Using the integrated chips, the transmembrane ionic current induced by biomolecule's translocation was recorded and analyzed, which suggested that the detected current did not change linearly as commonly expected with increasing biomolecule concentration. On the other hand, detailed translocation information (such as translocation gesture) was also extracted from the discrete current blockages in basic current curves. These results indicated that the nanofluidic device based on the chips integrated by micropores and nanopores possessed comparative potentials in biomolecule sensing.

  18. Towards the Ultimate Membranes: Two-dimensional Nanoporous Materials and Films.

    PubMed

    Agrawal, Kumar Varoon

    2018-05-30

    The energy-efficient separation of molecules has been a popular topic in chemistry and chemical engineering as a consequence of the large energy-footprint of separation processes in the chemical industry. The Laboratory of Advanced Separations (LAS) at EPFL, led by Prof. Kumar Varoon Agrawal, is focused to develop next-generation, high-performance membranes that can improve the energy efficiency of hydrogen purification, carbon capture, hydrocarbon and water purification. For this, LAS is seeking to develop the ultimate nanoporous membranes, those with a thickness of 1 nm and possessing an array of size-selective nanopores. In this article, the research activities at LAS, especially in the bottom-up and top-down synthesis of chemically and thermally stable, nanoporous two-dimensional materials and membranes are discussed.

  19. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes

    DOE PAGES

    Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.

    2015-03-25

    Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high

  20. Self-induced redox cycling coupled luminescence on nanopore recessed disk-multiscale bipolar electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Chaoxiong; Zaino III, Lawrence P.; Bohn, Paul W.

    Self-induced redox cycling at nanopore ring-disk electrodes is coupled, through a bipolar electrode, to a remote fluorigenic reporter reaction. We present a new configuration for coupling fluorescence microscopy and voltammetry using self-induced redox cycling for ultrasensitive electrochemical measurements. An array of nanopores, each supporting a recessed disk electrode separated by 100 nm in depth from a planar multiscale bipolar top electrode, was fabricated using multilayer deposition, nanosphere lithography, and reactive-ion etching. Self-induced redox cycling was induced on the disk electrode producing ~30× current amplification, which was independently confirmed by measuring induced electrogenerated chemiluminescence from Ru(bpy) 3 2/3+/tri-n-propylamine on the floatingmore » bipolar electrode. In this design, redox cycling occurs between the recessed disk and the top planar portion of a macroscopic thin film bipolar electrode in each nanopore. Electron transfer also occurs on a remote (mm-distance) portion of the planar bipolar electrode to maintain electroneutrality. This couples the electrochemical reactions of the target redox pair in the nanopore array with a reporter, such as a potential-switchable fluorescent indicator, in the cell at the distal end of the bipolar electrode. Oxidation or reduction of reversible analytes on the disk electrodes were accompanied by reduction or oxidation, respectively, on the nanopore portion of the bipolar electrode and then monitored by the accompanying oxidation of dihydroresorufin or reduction of resorufin at the remote end of the bipolar electrode, respectively. In both cases, changes in fluorescence intensity were triggered by the reaction of the target couple on the disk electrode, while recovery was largely governed by diffusion of the fluorescent indicator. Reduction of 1 nM of Ru(NH 3) 6 3+ on the nanoelectrode array was detected by monitoring the fluorescence intensity of resorufin, demonstrating high

  1. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices

    DOE PAGES

    King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.

    2009-01-02

    This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less

  2. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots

    NASA Astrophysics Data System (ADS)

    Yoo, Hana; Park, Soojin

    2010-06-01

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.

  3. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.

    PubMed

    Yoo, Hana; Park, Soojin

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.

  4. A general melt-injection-decomposition route to oriented metal oxide nanowire arrays

    NASA Astrophysics Data System (ADS)

    Han, Dongqiang; Zhang, Xinwei; Hua, Zhenghe; Yang, Shaoguang

    2016-12-01

    In this manuscript, a general melt-injection-decomposition (MID) route has been proposed and realized for the fabrication of oriented metal oxide nanowire arrays. Nitrate was used as the starting materials, which was injected into the nanopores of the anodic aluminum oxide (AAO) membrane through the capillarity action in its liquid state. At higher temperature, the nitrate decomposed into corresponding metal oxide within the nanopores of the AAO membrane. Oriented metal oxide nanowire arrays were formed within the AAO membrane as a result of the confinement of the nanopores. Four kinds of metal oxide (CuO, Mn2O3, Co3O4 and Cr2O3) nanowire arrays are presented here as examples fabricated by this newly developed process. X-ray diffraction, scanning electron microscopy and transmission electron microscopy studies showed clear evidence of the formations of the oriented metal oxide nanowire arrays. Formation mechanism of the metal oxide nanowire arrays is discussed based on the Thermogravimetry and Differential Thermal Analysis measurement results.

  5. Integrated strain array for cellular mechanobiology studies

    NASA Astrophysics Data System (ADS)

    Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.

    2011-05-01

    We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.

  6. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    PubMed

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  7. Length scale selects directionality of droplets on vibrating pillar ratchet

    DOE PAGES

    Agapov, Rebecca L.; Boreyko, Jonathan B.; Briggs, Dayrl P.; ...

    2014-09-22

    Directional control of droplet motion at room temperature is of interest for applications such as microfluidic devices, self-cleaning coatings, and directional adhesives. Here, arrays of tilted pillars ranging in height from the nanoscale to the microscale are used as structural ratchets to directionally transport water at room temperature. Water droplets deposited on vibrating chips with a nanostructured ratchet move preferentially in the direction of the feature tilt while the opposite directionality is observed in the case of microstructured ratchets. This remarkable switch in directionality is consistent with changes in the contact angle hysteresis. To glean further insights into the lengthmore » scale dependent asymmetric contact angle hysteresis, the contact lines formed by a nonvolatile room temperature ionic liquid placed onto the tilted pillar arrays were visualized and analyzed in situ in a scanning electron microscope. As a result, the ability to tune droplet directionality by merely changing the length scale of surface features all etched at the same tilt angle would be a versatile tool for manipulating multiphase flows and for selecting droplet directionality in other lap-on-chip applications.« less

  8. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  9. Planarized arrays of aligned, untangled multiwall carbon nanotubes with Ohmic back contacts

    DOE PAGES

    Rochford, C.; Limmer, S. J.; Howell, S. W.; ...

    2014-11-26

    Vertically aligned, untangled planarized arrays of multiwall carbon nanotubes (MWNTs) with Ohmic back contacts were grown in nanopore templates on arbitrary substrates. The templates were prepared by sputter depositing Nd-doped Al films onto W-coated substrates, followed by anodization to form an aluminum oxide nanopore array. The W underlayer helps eliminate the aluminum oxide barrier that typically occurs at the nanopore bottoms by instead forming a thin WO 3 layer. The WO 3 can be selectively etched to enable electrodeposition of Co catalysts with control over the Co site density. This led to control of the site density of MWNTs grownmore » by thermal chemical vapor deposition, with the W also serving as a back electrical contact. As a result, Ohmic contact to MWNTs was confirmed, even following ultrasonic cutting of the entire array to a uniform height.« less

  10. All Pillars Point to Eta

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Eta Carinae Starforming RegionSimulated Infrared View of Comet Tempel 1 (artist's concept)

    These false-color image taken by NASA's Spitzer Space Telescope shows the 'South Pillar' region of the star-forming region called the Carina Nebula. Like cracking open a watermelon and finding its seeds, the infrared telescope 'busted open' this murky cloud to reveal star embryos (yellow or white) tucked inside finger-like pillars of thick dust (pink). Hot gases are green and foreground stars are blue. Not all of the newfound star embryos can be easily spotted.

    Though the nebula's most famous and massive star, Eta Carinae, is too bright to be observed by infrared telescopes, the downward-streaming rays hint at its presence above the picture frame. Ultraviolet radiation and stellar winds from Eta Carinae and its siblings have shredded the cloud to pieces, leaving a mess of tendrils and pillars. This shredding process triggered the birth of the new stars uncovered by Spitzer.

    The inset visible-light picture (figure 2) of the Carina Nebula shows quite a different view. Dust pillars are fewer and appear dark because the dust is soaking up visible light. Spitzer's infrared detectors cut through this dust, allowing it to see the heat from warm, embedded star embryos, as well as deeper, more buried pillars. The visible-light picture is from the National Optical Astronomy Observatory.

    Eta Carina is a behemoth of a star, with more than 100 times the mass of our Sun. It is so massive that it can barely hold itself together. Over the years, it has brightened and faded as material has shot away from its surface. Some astronomers think Eta Carinae might die in a supernova blast within our lifetime.

    Eta Carina's home, the Carina Nebula, is located in the southern portion of our Milky Way galaxy, 10,000 light-years from Earth. This colossal cloud of gas and dust

  11. Improved Analysis of Nanopore Sequence Data and Scanning Nanopore Techniques

    NASA Astrophysics Data System (ADS)

    Szalay, Tamas

    The field of nanopore research has been driven by the need to inexpensively and rapidly sequence DNA. In order to help realize this goal, this thesis describes the PoreSeq algorithm that identifies and corrects errors in real-world nanopore sequencing data and improves the accuracy of de novo genome assembly with increasing coverage depth. The approach relies on modeling the possible sources of uncertainty that occur as DNA advances through the nanopore and then using this model to find the sequence that best explains multiple reads of the same region of DNA. PoreSeq increases nanopore sequencing read accuracy of M13 bacteriophage DNA from 85% to 99% at 100X coverage. We also use the algorithm to assemble E. coli with 30X coverage and the lambda genome at a range of coverages from 3X to 50X. Additionally, we classify sequence variants at an order of magnitude lower coverage than is possible with existing methods. This thesis also reports preliminary progress towards controlling the motion of DNA using two nanopores instead of one. The speed at which the DNA travels through the nanopore needs to be carefully controlled to facilitate the detection of individual bases. A second nanopore in close proximity to the first could be used to slow or stop the motion of the DNA in order to enable a more accurate readout. The fabrication process for a new pyramidal nanopore geometry was developed in order to facilitate the positioning of the nanopores. This thesis demonstrates that two of them can be placed close enough to interact with a single molecule of DNA, which is a prerequisite for being able to use the driving force of the pores to exert fine control over the motion of the DNA. Another strategy for reading the DNA is to trap it completely with one pore and to move the second nanopore instead. To that end, this thesis also shows that a single strand of immobilized DNA can be captured in a scanning nanopore and examined for a full hour, with data from many scans at many

  12. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation

    NASA Astrophysics Data System (ADS)

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-03-01

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels. Electronic supplementary information (ESI) available: The XPS spectrum of the as-prepared Janus arrays after the MHA modification; the SEM images of the PFS-MHA Janus Si pillar arrays fabricated through oblique evaporation of gold along the short axis of the elliptical pillars; images of the cross-shaped MF channel and Rhodamine aqueous solution injecting in a cross-shaped MF

  13. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    PubMed

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  14. Single-molecule nanopore enzymology

    PubMed Central

    Wloka, Carsten; Maglia, Giovanni

    2017-01-01

    Biological nanopores are a class of membrane proteins that open nanoscale water-conduits in biological membranes. When they are reconstituted in artificial membranes and a bias voltage is applied across the membrane, the ionic current passing through individual nanopores can be used to monitor chemical reactions, to recognize individual molecules and, of most interest, to sequence DNA. More recently, proteins and enzymes have started being analysed with nanopores. Monitoring enzymatic reactions with nanopores, i.e. nanopore enzymology, has the unique advantage that it allows long-timescale observations of native proteins at the single-molecule level. Here we describe the approaches and challenges in nanopore enzymology. PMID:28630164

  15. Bubble Transport through Micropillar Arrays

    NASA Astrophysics Data System (ADS)

    Lee, Kenneth; Savas, Omer

    2012-11-01

    In current energy research, artificial photosynthetic devices are being designed to split water and harvest hydrogen gas using energy from the sun. In one such design, hydrogen gas bubbles evolve on the catalytic surfaces of arrayed micropillars. If these bubbles are not promptly removed from the surface, they can adversely affect gas evolution rates, water flow rates, sunlight capture, and heat management of the system. Therefore, an efficient method of collecting the evolved gas bubbles is crucial. Preliminary flow visualization has been conducted of bubbles advecting through dense arrays of pillars. Bubbles moving through square and hexagonal arrays are tracked, and the results are qualitatively described. Initial attempts to correlate bubble motion with relevant lengthscales and forces are also presented. These observations suggest how bubble transport within such pillar arrays can be managed, as well as guide subsequent experiments that investigate bubble evolution and collection. This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993.

  16. Bottom-up synthesis of multifunctional nanoporous graphene

    NASA Astrophysics Data System (ADS)

    Moreno, César; Vilas-Varela, Manuel; Kretz, Bernhard; Garcia-Lekue, Aran; Costache, Marius V.; Paradinas, Markos; Panighel, Mirko; Ceballos, Gustavo; Valenzuela, Sergio O.; Peña, Diego; Mugarza, Aitor

    2018-04-01

    Nanosize pores can turn semimetallic graphene into a semiconductor and, from being impermeable, into the most efficient molecular-sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the 1-nanometer range. The size, density, morphology, and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our electronic characterization further reveals a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ∼1 electron volt coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species.

  17. Thermal resistance of etched-pillar vertical-cavity surface-emitting laser diodes

    NASA Astrophysics Data System (ADS)

    Wipiejewski, Torsten; Peters, Matthew G.; Young, D. Bruce; Thibeault, Brian; Fish, Gregory A.; Coldren, Larry A.

    1996-03-01

    We discuss our measurements on thermal impedance and thermal crosstalk of etched-pillar vertical-cavity lasers and laser arrays. The average thermal conductivity of AlAs-GaAs Bragg reflectors is estimated to be 0.28 W/(cmK) and 0.35W/(cmK) for the transverse and lateral direction, respectively. Lasers with a Au-plated heat spreading layer exhibit a 50% lower thermal impedance compared to standard etched-pillar devices resulting in a significant increase of maximum output power. For an unmounted laser of 64 micrometer diameter we obtain an improvement in output power from 20 mW to 42 mW. The experimental results are compared with a simple analytical model showing the importance of heat sinking for maximizing the output power of vertical-cavity lasers.

  18. Capacitance reduction for pillar structured devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Qinghui; Conway, Adam; Nikolic, Rebecca J.

    2017-05-09

    In one embodiment, an apparatus includes: a first layer including a n+ dopant or p+ dopant; an intrinsic layer formed above the first layer, the intrinsic layer including a planar portion and pillars extending above the planar portion, cavity regions being defined between the pillars; and a second layer deposited on a periphery of the pillars thereby forming coated pillars, the second layer being substantially absent on the planar portion of the intrinsic layer between the coated pillars. The second layer includes an n+ dopant when the first layer includes a p+ dopant. The second layer includes a p+ dopantmore » when the first layer includes an n+ dopant. The apparatus includes a neutron sensitive material deposited between the coated pillars and above the planar portion of the intrinsic layer. In additional embodiments, an upper portion of each of the pillars includes a same type of dopant as the second layer.« less

  19. Micropatterning of a nanoporous alumina membrane with poly(ethylene glycol) hydrogel to create cellular micropatterns on nanotopographic substrates.

    PubMed

    Lee, Hyun Jong; Kim, Dae Nyun; Park, Saemi; Lee, Yeol; Koh, Won-Gun

    2011-03-01

    In this paper, we describe a simple method for fabricating micropatterned nanoporous substrates that are capable of controlling the spatial positioning of mammalian cells. Micropatterned substrates were prepared by fabricating poly(ethylene glycol) (PEG) hydrogel microstructures on alumina membranes with 200 nm nanopores using photolithography. Because hydrogel precursor solution could infiltrate and become crosslinked within the nanopores, the resultant hydrogel micropatterns were firmly anchored on the substrate without the use of adhesion-promoting monolayers, thereby allow tailoring of the surface properties of unpatterned nanoporous areas. For mammalian cell patterning, arrays of microwells of different dimensions were fabricated. These microwells were composed of hydrophilic PEG hydrogel walls surrounding nanoporous bottoms that were modified with cell-adhesive Arg-Gly-Asp (RGD) peptides. Because the PEG hydrogel was non-adhesive towards proteins and cells, cells adhered selectively and remained viable within the RGD-modified nanoporous regions, thereby creating cellular micropatterns. Although the morphology of cell clusters and the number of cells inside one microwell were dependent on the lateral dimension of the microwells, adhered cells that were in direct contact with nanopores were able to penetrate into the nanopores by small extensions (filopodia) for all the different sizes of microwells evaluated. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  1. Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes.

    PubMed

    Hu, Chengguo; Bai, Xiaoyun; Wang, Yingkai; Jin, Wei; Zhang, Xuan; Hu, Shengshui

    2012-04-17

    A simple approach to the mass production of nanoporous gold electrode arrays on cellulose membranes for electrochemical sensing of oxygen using ionic liquid (IL) electrolytes was established. The approach, combining the inkjet printing of gold nanoparticle (GNP) patterns with the self-catalytic growth of these patterns into conducting layers, can fabricate hundreds of self-designed gold arrays on cellulose membranes within several hours using an inexpensive inkjet printer. The resulting paper-based gold electrode arrays (PGEAs) had several unique properties as thin-film sensor platforms, including good conductivity, excellent flexibility, high integration, and low cost. The porous nature of PGEAs also allowed the addition of electrolytes from the back cellulose membrane side and controllably produced large three-phase electrolyte/electrode/gas interfaces at the front electrode side. A novel paper-based solid-state electrochemical oxygen (O(2)) sensor was therefore developed using an IL electrolyte, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF(6)). The sensor looked like a piece of paper but possessed high sensitivity for O(2) in a linear range from 0.054 to 0.177 v/v %, along with a low detection limit of 0.0075% and a short response time of less than 10 s, foreseeing its promising applications in developing cost-effective and environment-friendly paper-based electrochemical gas sensors.

  2. Peering Inside the Pillars of Creation

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2018-06-01

    On 1 April 1995, Hubble captured one of its most well-known images: a stunning photo of towering features known as the Pillars of Creation, located in the Eagle Nebula just 7,000 light-years away. A new study explores how these iconic columns are influenced by the magnetic fields within them.Pillars from ShocksAn illustrative figure of the BISTRO magnetic-field vectors observed in the Pillars of Creation, overlaid on a Hubble composite of the pillars. [Pattle et al. 2018]In the Hubble image, we see the result of young, hot stars that have driven a photoionization shock into the cloud around them, forming complex structures in the dense gas at the shock interfaces. These structures in this case, dense columns of neutral gas and dust are then bombarded with hot radiation from the young stars, giving the structures a misty, ethereal look as they photoevaporate.Though we have a rough picture, the specifics of how the Pillars of Creation were formed and how they evolve in this harsh radiation environment arent yet fully understood. In particular, the role of magnetic fields in shaping and sustaining these pillars is poorly constrained, both observationally and theoretically.To address this problem, a team of scientists led by Kate Pattle (University of Central Lancashire, UK and National Tsing Hua University, Taiwan), has now made the first direct observations of the magnetic-field morphology within the Pillars of Creation.The authors proposed formation scenario: a) an ionization front approaches an overdensity in the molecular gas, b) the front is slowed at the overdensity, causing the magnetic field lines to bend, c) the compressed magnetic field supports the pillar against radial collapse, but cant support against longitudinal erosion. [Adapted from Pattle et al. 2018]Observing FieldsPattle and collaborators imaged the pillars as a part of the B-Fields in Star-Forming Region Observations (BISTRO) project, which uses a camera and polarimeter mounted on the James Clerk

  3. Nanoporous thermosetting polymers.

    PubMed

    Raman, Vijay I; Palmese, Giuseppe R

    2005-02-15

    Potential applications of nanoporous thermosetting polymers include polyelectrolytes in fuel cells, separation membranes, adsorption media, and sensors. Design of nanoporous polymers for such applications entails controlling permeability by tailoring pore size, structure, and interface chemistry. Nanoporous thermosetting polymers are often synthesized via free radical mechanisms using solvents that phase separate during polymerization. In this work, a novel technique for the synthesis of nanoporous thermosets is presented that is based on the reactive encapsulation of an inert solvent using step-growth cross-linking polymerization without micro/macroscopic phase separation. The criteria for selecting such a monomer-polymer-solvent system are discussed based on FTIR analysis, observed micro/macroscopic phase separation, and thermodynamics of swelling. Investigation of resulting network pore structures by scanning electron microscopy (SEM) and small-angle X-ray scattering following extraction and supercritical drying using carbon dioxide showed that nanoporous polymeric materials with pore sizes ranging from 1 to 50 nm can be synthesized by varying the solvent content. The differences in the porous morphology of these materials compared to more common free radically polymerized analogues that exhibit phase separation were evident from SEM imaging. Furthermore, it was demonstrated that the chemical activity of the nanoporous materials obtained by our method could be tailored by grafting appropriate functional groups at the pore interface.

  4. Fast fabrication of long TiO2 nanotube array with high photoelectrochemical property on flexible stainless steel.

    PubMed

    Tao, Jie; Wu, Tao; Gao, Peng

    2012-03-01

    Oriented highly ordered long TiO2 nanotube array films with nanopore structure and high photoelectrochemical property were fabricated on flexible stainless steel substrate (50 microm) by anodization treatment of titanium thin films in a short time. The samples were characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and photoelectrochemical methods, respectively. The results showed that Ti films deposited at the condition of 0.7 Pa Ar pressure and 96 W sputtering power at room temperature was uniform and dense with good homogeneity and high crystallinity. The voltage and the anodization time both played significant roles in the formation of TiO2 nanopore-nanotube array film. The optimal voltage was 60 V and the anodization time is less than 30 min by anodizing Ti films in ethylene glycerol containing 0.5% (w) NH4F and 3% (w) H2O. The growth rate of TiO2 nanotube array was as high as 340 nm/min. Moreover, the photocurrent-potential curves, photocurrent response curves and electrochemical impedance spectra results indicated that the TiO2 nanotube array film with the nanoporous structure exhibited a better photo-response ability and photoelectrochemical performance than the ordinary TiO2 nanotube array film. The reason is that the nanoporous structure on the surface of the nanotube array can separate the photo electron-hole pairs more efficiently and completely than the tubular structure.

  5. Field Trial of Distributed Acoustic Sensing in an Active Room-and-Pillar Mine

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Zeng, X.; Lord, N. E.; Fratta, D.; Coleman, T.; Maclaughlin, M.

    2017-12-01

    A Distributed Acoustic Sensing (DAS) field trial was conducted in July 2017 on the floor of the first level of the Lafarge-Conco limestone mine in N. Aurora Illinois. The room-and-pillar mine occupies a wedge-shaped footprint that is approximately 1500 m long by 500 m wide at the midpoint. The mine consists of four levels down to a depth of about 80 m. Pillars are approximately 20-meters on a side and in height. DAS cable was deployed in a shallow groove cut with a pavement saw. The groove was approximately 300-meters long and in the overall shape of an irregular rectangle as it followed a pathway around three pillars in each direction. The groove was 1.25-cm wide and between 2.5 and 7.5-cm deep. Three strands of fiber-optic cable were placed in the groove, positioned one above the other and separated by different materials. The bottom cable was covered with cement to a depth of 1.25-cm and allowed to dry for several days. The middle strand was covered with fines and the top strand was without cover. The DAS array consisted of the three co-located strands connected in series. It recorded signals from daily mine blasts on the afternoons of July 27 and 28. The blast locations were along the mine perimeter at a distance of about 1 km from the array. In addition to the distant blast source, a series of near-array tests were made with a weight-drop source located at surveyed points along the cable and within the array. Average mine-scale velocities were obtained from travel times from blast locations to different DAS channels. Local seismic velocities were obtained from first arrivals of the weight-drop source and from moveout of traces with time. The DAS response and travel times were noted as a function of cable direction. The field test showed that DAS can be used to monitor ground motion within an active mine. The research project is funded by a contract to Montana Tech from the National Institute for Occupational Safety and Health, Office of Mine Safety and Health

  6. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties

    NASA Astrophysics Data System (ADS)

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  7. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    PubMed

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-06

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  8. Study on Locally Confined Deposition of Si Nanocrystals in High-Aspect-Ratio Si Nano-Pillar Arrays for Nano-Electronic and Nano-Photonic Applications II

    DTIC Science & Technology

    2010-12-03

    photoluminescence characteristics of equivalent-size controlled silicon quantum dots by employing a nano-porous aluminum oxide membrane as the template for growing...synthesis of Si quantum dots (Si-QDs) embedded in low-temperature (500oC) annealed Si-rich SiOx nano-rod deposited in nano-porous anodic aluminum oxide ...characteristics of the equivalent-size controlled Si-QDs by employing the nano-porous AAO membrane as the template for growing Si-rich SiOx nano-rods

  9. Microfluidic multiplexing of solid-state nanopores

    NASA Astrophysics Data System (ADS)

    Jain, Tarun; Rasera, Benjamin C.; Guerrero, Ricardo Jose S.; Lim, Jong-Min; Karnik, Rohit

    2017-12-01

    Although solid-state nanopores enable electronic analysis of many clinically and biologically relevant molecular structures, there are few existing device architectures that enable high-throughput measurement of solid-state nanopores. Herein, we report a method for microfluidic integration of multiple solid-state nanopores at a high density of one nanopore per (35 µm2). By configuring microfluidic devices with microfluidic valves, the nanopores can be rinsed from a single fluid input while retaining compatibility for multichannel electrical measurements. The microfluidic valves serve the dual purpose of fluidic switching and electric switching, enabling serial multiplexing of the eight nanopores with a single pair of electrodes. Furthermore, the device architecture exhibits low noise and is compatible with electroporation-based in situ nanopore fabrication, providing a scalable platform for automated electronic measurement of a large number of integrated solid-state nanopores.

  10. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore.

  11. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian [Wheat Ridge, CO; Nguyen, Vinh [Wheat Ridge, CO

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  12. First Observations of the Magnetic Field inside the Pillars of Creation: Results from the BISTRO Survey

    NASA Astrophysics Data System (ADS)

    Pattle, Kate; Ward-Thompson, Derek; Hasegawa, Tetsuo; Bastien, Pierre; Kwon, Woojin; Lai, Shih-Ping; Qiu, Keping; Furuya, Ray; Berry, David; JCMT BISTRO Survey Team

    2018-06-01

    We present the first high-resolution, submillimeter-wavelength polarimetric observations of—and thus direct observations of the magnetic field morphology within—the dense gas of the Pillars of Creation in M16. These 850 μm observations, taken as part of the B-Fields in Star-forming Region Observations Survey (BISTRO) using the POL-2 polarimeter on the Submillimeter Common-User Bolometer Array 2 (SCUBA-2) camera on the James Clerk Maxwell Telescope (JCMT), show that the magnetic field runs along the length of the Pillars, perpendicular to and decoupled from the field in the surrounding photoionized cloud. Using the Chandrasekhar–Fermi method we estimate a plane-of-sky magnetic field strength of 170–320 μG in the Pillars, consistent with their having been formed through the compression of gas with initially weak magnetization. The observed magnetic field strength and morphology suggests that the magnetic field may be slowing the Pillars’ evolution into cometary globules. We thus hypothesize that the evolution and lifetime of the Pillars may be strongly influenced by the strength of the coupling of their magnetic field to that of their parent photoionized cloud—i.e., that the Pillars’ longevity results from magnetic support.

  13. Hydrodynamic chromatography of polystyrene microparticles in micropillar array columns.

    PubMed

    Op de Beeck, Jeff; De Malsche, Wim; Vangelooven, Joris; Gardeniers, Han; Desmet, Gert

    2010-09-24

    We report on the possibility to perform HDC in micropillar array columns and the potential advantages of such a system. The HDC performance of a pillar array column with pillar diameter = 5 microm and an interpillar distance of 2.5 microm has been characterized using both a low MW tracer (FITC) and differently sized polystyrene bead samples (100, 200 and 500 nm). The reduced plate height curves that were obtained for the different investigated markers all overlapped very well, and attained a minimum value of about h(min)=0.3 (reduction based on the pillar diameter), corresponding to 1.6 microm in absolute value and giving good prospects for high efficiency separations. The obtained reduced retention time values were in fair agreement with that predicted by the Di Marzio and Guttman model for a flow between flat plates, using the minimal interpillar distance as characteristic interplate distance. Copyright 2010 Elsevier B.V. All rights reserved.

  14. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Homer, Margie (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Vasquez, Richard (Inventor); Yun, Minhee (Inventor); Myung, Nosang (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  15. Nanofluidic Device with Embedded Nanopore

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  16. Physicochemical of pillared clays prepared by several metal oxides

    NASA Astrophysics Data System (ADS)

    Rinaldi, Nino; Kristiani, Anis

    2017-03-01

    Natural clays could be modified by the pillarization method, called as Pillared Clays (PILCs). PILCs have been known as porous materials that can be used for many applications, one of the fields is catalysis. PILCs as two dimensional materials are interesting because their structures and textural properties can be controlled by using a metal oxide as the pillar. Different metal oxide used as the pillar causes different properties results of pillared clays. Usually, natural smectite clays/bentonites are used as a raw material. Therefore, a series of bentonite pillared by metal oxides was prepared through pillarization method. Variation of metals pillared into bentonite are aluminium, chromium, zirconium, and ferro. The physicochemical properties of catalysts were characterized by using X-ray Diffraction (XRD), Thermo Gravimetric Analysis (TGA), Brunauer-Emmett-Teller (BET) and Barret-Joyner-Halenda (BJH) analysis, and Fourier transform infrared spectroscopy (FTIR) measurement. Noteworthy characterization results showed that different metals pillared into bentonite affected physical and chemical properties, i.e. basal spacing, surface area, pore size distribution, thermal stability and acidity.

  17. Noise Properties of Rectifying Nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, M R; Sa, N; Davenport, M

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, includingmore » intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.« less

  18. Noise Properties of Rectifying Nanopore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wallmore » dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.« less

  19. A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method

    PubMed Central

    Kim, Kwang-Su; Baek, Woon-Hyuk; Kim, Jung-Min; Yoon, Tae-Sik; Lee, Hyun Ho; Kang, Chi Jung; Kim, Yong-Sang

    2010-01-01

    Toluene gas was successfully measured at room temperature using a device microfabricated by a nanoimprinting method. A highly uniform nanoporous thin film was produced with a dense array of titania (TiO2) pores with a diameter of 70∼80 nm using this method. This thin film had a Pd/TiO2 nanoporous/SiO2/Si MIS layered structure with Pd-TiO2 as the catalytic sensing layer. The nanoimprinting method was useful in expanding the TiO2 surface area by about 30%, as confirmed using AFM and SEM imaging. The measured toluene concentrations ranged from 50 ppm to 200 ppm. The toluene was easily detected by changing the Pd/TiO2 interface work function, resulting in a change in the I–V characteristics. PMID:22315567

  20. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  1. Nanoporous frameworks exhibiting multiple stimuli responsiveness

    NASA Astrophysics Data System (ADS)

    Kundu, Pintu K.; Olsen, Gregory L.; Kiss, Vladimir; Klajn, Rafal

    2014-04-01

    Nanoporous frameworks are polymeric materials built from rigid molecules, which give rise to their nanoporous structures with applications in gas sorption and storage, catalysis and others. Conceptually new applications could emerge, should these beneficial properties be manipulated by external stimuli in a reversible manner. One approach to render nanoporous frameworks responsive to external signals would be to immobilize molecular switches within their nanopores. Although the majority of molecular switches require conformational freedom to isomerize, and switching in the solid state is prohibited, the nanopores may provide enough room for the switches to efficiently isomerize. Here we describe two families of nanoporous materials incorporating the spiropyran molecular switch. These materials exhibit a variety of interesting properties, including reversible photochromism and acidochromism under solvent-free conditions, light-controlled capture and release of metal ions, as well reversible chromism induced by solvation/desolvation.

  2. Transport of Proteins through Nanopores

    NASA Astrophysics Data System (ADS)

    Luan, Binquan

    In biological cells, a malfunctioned protein (such as misfolded or damaged) is degraded by a protease in which an unfoldase actively drags the protein into a nanopore-like structure and then a peptidase cuts the linearized protein into small fragments (i.e. a recycling process). Mimicking this biological process, many experimental studies have focused on the transport of proteins through a biological protein pore or a synthetic solid-state nanopore. Potentially, the nanopore-based sensors can provide a platform for interrogating proteins that might be disease-related or be targeted by a new drug molecule. The single-profile of a protein chain inside an extremely small nanopore might even permit the sequencing of the protein. Here, through all-atom molecular dynamics simulations, I will show various types of protein transport through a nanopore and reveal the nanoscale mechanics/energetics that plays an important role governing the protein transport.

  3. Droplet swimmers in complex geometries: Autochemotaxis and trapping at pillars.

    NASA Astrophysics Data System (ADS)

    Maass, Corinna; Jin, Chenyu; Krueger, Carsten; Vajdi Hokmabad, Babak

    Autochemotaxis is a key feature of communication between microorganisms, via their emission of a slowly diffusing chemoattractant or repellent. We present a well-controlled, tunable artificial model to study autochemotaxis in complex geometries, using microfluidic assays of self-propelling liquid crystal droplets in an aqueous surfactant solution. Droplets gain propulsion energy by micellar solubilisation, with filled micelles acting as a chemical repellent by diffusive phoretic gradient forces. We can tune the key parameters swimmer size, velocity and persistence length. If a swimming droplet approaches a wall, it will provide a boundary to both the hydrodynamic flow field and the spread of phoretic gradients, determining the interaction between swimmer and wall. Pillar arrays of variable sizes and shapes provide a convex wall interacting with the swimmer and in the case of attachment bending its trajectory and forcing it to revert to its own trail. We observe different behavior based on the interplay of wall curvature and negative auto-chemotaxis, i. e., no attachment for highly curved interfaces, stable trapping at large pillars, and a narrow transition region where negative autochemotaxis makes the swimmers detach after a single orbit. Work funded by the DFG SPP 1726 ''Microswimmers''.

  4. A nanoporous gold membrane for sensing applications

    PubMed Central

    Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy

    2016-01-01

    Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809

  5. Three Philosophical Pillars That Support Collaborative Learning.

    ERIC Educational Resources Information Center

    Maltese, Ralph

    1991-01-01

    Discusses three philosophical pillars that support collaborative learning: "spaces of appearance," active engagement, and ownership. Describes classroom experiences with collaborative learning supported by these pillars. (PRA)

  6. Building membrane nanopores

    NASA Astrophysics Data System (ADS)

    Howorka, Stefan

    2017-07-01

    Membrane nanopores--hollow nanoscale barrels that puncture biological or synthetic membranes--have become powerful tools in chemical- and biosensing, and have achieved notable success in portable DNA sequencing. The pores can be self-assembled from a variety of materials, including proteins, peptides, synthetic organic compounds and, more recently, DNA. But which building material is best for which application, and what is the relationship between pore structure and function? In this Review, I critically compare the characteristics of the different building materials, and explore the influence of the building material on pore structure, dynamics and function. I also discuss the future challenges of developing nanopore technology, and consider what the next-generation of nanopore structures could be and where further practical applications might emerge.

  7. Anisotropic Janus Si nanopillar arrays as a microfluidic one-way valve for gas-liquid separation.

    PubMed

    Wang, Tieqiang; Chen, Hongxu; Liu, Kun; Li, Yang; Xue, Peihong; Yu, Ye; Wang, Shuli; Zhang, Junhu; Kumacheva, Eugenia; Yang, Bai

    2014-04-07

    In this paper, we demonstrate a facile strategy for the fabrication of a one-way valve for microfluidic (MF) systems. The micro-valve was fabricated by embedding arrays of Janus Si elliptical pillars (Si-EPAs) with anisotropic wettability into a MF channel fabricated in poly(dimethylsiloxane) (PDMS). Two sides of the Janus pillar are functionalized with molecules with distinct surface energies. The ability of the Janus pillar array to act as a valve was proved by investigating the flow behaviour of water in a T-shaped microchannel at different flow rates and pressures. In addition, the one-way valve was used to achieve gas-liquid separation. We believe that the Janus Si-EPAs modified by specific surface functionalization provide a new strategy to control the flow and motion of fluids in MF channels.

  8. Nanoporous impedemetric biosensor for detection of trace atrazine from water samples.

    PubMed

    Pichetsurnthorn, Pie; Vattipalli, Krishna; Prasad, Shalini

    2012-02-15

    Trace contamination of ground water sources has been a problem ever since the introduction of high-soil-mobility pesticides, one such example is atrazine. In this paper we present a novel nanoporous portable bio-sensing device that can identify trace contamination of atrazine through a label-free assay. We have designed a pesticide sensor comprising of a nanoporous alumina membrane integrated with printed circuit board platform. Nanoporous alumina in the biosensor device generates a high density array of nanoscale confined spaces. By leveraging the size based immobilization of atrazine small molecules we have designed electrochemical impedance spectroscopy based biosensor to detect trace amounts of atrazine. We have calibrated the sensor using phosphate buffered saline and demonstrated trace detection from river and bottled drinking water samples. The limit of detection in all the three cases was in the femtogram/mL (fg/mL) (parts-per-trillion) regime with a dynamic range of detection spanning from 10 fg/mL to 1 ng/mL (0.01 ppt to 1 ppm). The selectivity of the device was tested using a competing pesticide; malathion and selectivity in detection was observed in the fg/mL regime in all the three cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Single-Crystalline InGaAs/InP Dense Micro-Pillar Forest on Poly-Silicon Substrates for Low-Cost High-Efficiency Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Hasnain, Constance

    2015-05-04

    explore ways to achieve high open-circuit voltages which will lead to high efficiency micropillar-based solar cells. We will start on single pillar devices and the findings in these studies should pave the way for devices based on forests/ arrays of pillars. By the end of the second year we aim to demonstrate a single pillar device with an open-circuit voltage of 0.7 V, as well as a pillar-forest based device with 8% conversion efficiency. By the end of year 3 these numbers should be improved to 0.9 V open-circuit voltage for single pillar devices and >15% efficiency for forest/array-based devices. We will aim to realize a device with 20% efficiency by the end of the project period.« less

  10. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture: Part 1 Design and feasibility.

    PubMed

    Rajta, Istvan; Huszánk, Robert; Szabó, Atilla T T; Nagy, Gyula U L; Szilasi, Szabolcs; Fürjes, Peter; Holczer, Eszter; Fekete, Zoltan; Járvás, Gabor; Szigeti, Marton; Hajba, Laszlo; Bodnár, Judit; Guttman, Andras

    2016-02-01

    Design, fabrication, integration, and feasibility test results of a novel microfluidic cell capture device is presented, exploiting the advantages of proton beam writing to make lithographic irradiations under multiple target tilting angles and UV lithography to easily reproduce large area structures. A cell capture device is demonstrated with a unique doubly tilted micropillar array design for cell manipulation in microfluidic applications. Tilting the pillars increased their functional surface, therefore, enhanced fluidic interaction when special bioaffinity coating was used, and improved fluid dynamic behavior regarding cell culture injection. The proposed microstructures were capable to support adequate distribution of body fluids, such as blood, spinal fluid, etc., between the inlet and outlet of the microfluidic sample reservoirs, offering advanced cell capture capability on the functionalized surfaces. The hydrodynamic characteristics of the microfluidic systems were tested with yeast cells (similar size as red blood cells) for efficient capture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pillared Graphene: A New 3-D Innovative Network Nanostructure Augments Hydrogen Storage

    NASA Astrophysics Data System (ADS)

    Georgios, Dimitrakakis K.; Emmanuel, Tylianakis; George, Froudakis E.

    2009-08-01

    Nowadays, people have turned into finding an alternative power source for everyday applications. One of the most promising energy fuels is hydrogen. It can be used as an energy carrier at small portable devices (e.g. laptops and/or cell phones) up to larger, like cars. Hydrogen is considered as the perfect fuel. It can be burnt in combustion engines and the only by-product is water. For hydrogen-powered vehicles a big liming factor is the gas tank and is the reason for not using widely hydrogen in automobile applications. According to United States' Department of Energy (D.O.E.) the target for reversible hydrogen storage in mobile applications is 6% wt. and 45 gr. H2/L and these should be met by 2010. After their synthesis Carbon Nanotubes (CNTs) were considered as ideal candidates for hydrogen storage especially after some initially incorrect but invitingly results. As it was proven later, pristine carbon nanotubes cannot achieve D.O.E.'s targets in ambient conditions of pressure and temperature. Therefore, a way to increase their hydrogen storage capacity should be found. An attempt was done by doping CNTs with alkali metal atoms. Although the results were promising, even that increment was not enough. Consequently, new architectures were suggested as materials that could potentially enhance hydrogen storage. In this work a novel three dimensional (3-D) nanoporous carbon structure called Pillared Graphene (Figure 1) is proposed for augmented hydrogen storage in ambient conditions. Pillared Graphene consists of parallel graphene sheets and CNTs that act like pillars and support the graphene sheets. The entire structure (Figure 1) can be resembled like a building in its early stages of construction, where the floors are represented by graphene sheets and the pillars are the CNTs. As shown in Figure 1, CNTs do not penetrate the structure from top to bottom. Instead, they alternately go up and down, so that on the same plane do not exist two neighboring CNTs with the

  12. A colorimetric sensor array for identification of toxic gases below permissible exposure limits†

    PubMed Central

    Feng, Liang; Musto, Christopher J.; Kemling, Jonathan W.; Lim, Sung H.; Suslick, Kenneth S.

    2010-01-01

    A colorimetric sensor array has been developed for the rapid and sensitive detection of 20 toxic industrial chemicals (TICs) at their PELs (permissible exposure limits). The color changes in an array of chemically responsive nanoporous pigments provide facile identification of the TICs with an error rate below 0.7%. PMID:20221484

  13. Understanding improved osteoblast behavior on select nanoporous anodic alumina

    PubMed Central

    Ni, Siyu; Li, Changyan; Ni, Shirong; Chen, Ting; Webster, Thomas J

    2014-01-01

    The aim of this study was to prepare different sized porous anodic alumina (PAA) and examine preosteoblast (MC3T3-E1) attachment and proliferation on such nanoporous surfaces. In this study, PAA with tunable pore sizes (25 nm, 50 nm, and 75 nm) were fabricated by a two-step anodizing procedure in oxalic acid. The surface morphology and elemental composition of PAA were characterized by field emission scanning electron microscopy and X-ray photoelectron spectroscopy analysis. The nanopore arrays on all of the PAA samples were highly regular. X-ray photoelectron spectroscopy analysis suggested that the chemistry of PAA and flat aluminum surfaces were similar. However, contact angles were significantly greater on all of the PAA compared to flat aluminum substrates, which consequently altered protein adsorption profiles. The attachment and proliferation of preosteoblasts were determined for up to 7 days in culture using field emission scanning electron microscopy and a Cell Counting Kit-8. Results showed that nanoporous surfaces did not enhance initial preosteoblast attachment, whereas preosteoblast proliferation dramatically increased when the PAA pore size was either 50 nm or 75 nm compared to all other samples (P<0.05). Thus, this study showed that one can alter surface energy of aluminum by modifying surface nano-roughness alone (and not changing chemistry) through an anodization process to improve osteoblast density, and, thus, should be further studied as a bioactive interface for orthopedic applications. PMID:25045263

  14. Metachronal wave of artificial cilia array actuated by applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi

    2016-06-01

    In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.

  15. In situ heavy ion irradiation studies of nanopore shrinkage and enhanced radiation tolerance of nanoporous Au

    DOE PAGES

    Li, Jin; Fan, Cuncai; Ding, Jie; ...

    2017-01-03

    High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less

  16. Ferromagnetic resonance in low interacting permalloy nanowire arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raposo, V.; Zazo, M.; Flores, A. G.

    2016-04-14

    Dipolar interactions on magnetic nanowire arrays have been investigated by various techniques. One of the most powerful techniques is the ferromagnetic resonance spectroscopy, because the resonance field depends directly on the anisotropy field strength and its frequency dependence. In order to evaluate the influence of magnetostatic dipolar interactions among ferromagnetic nanowire arrays, several densely packed hexagonal arrays of NiFe nanowires have been prepared by electrochemical deposition filling self-ordered nanopores of alumina membranes with different pore sizes but keeping the same interpore distance. Nanowires’ diameter was changed from 90 to 160 nm, while the lattice parameter was fixed to 300 nm, which wasmore » achieved by carefully reducing the pore diameter by means of Atomic Layer Deposition of conformal Al{sub 2}O{sub 3} layers on the nanoporous alumina templates. Field and frequency dependence of ferromagnetic resonance have been studied in order to obtain the dispersion diagram which gives information about anisotropy, damping factor, and gyromagnetic ratio. The relationship between resonance frequency and magnetic field can be explained by the roles played by the shape anisotropy and dipolar interactions among the ferromagnetic nanowires.« less

  17. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  18. Graphene nanopore devices for DNA sensing.

    PubMed

    Merchant, Chris A; Drndić, Marija

    2012-01-01

    We describe here a method for detecting the translocation of individual DNA molecules through nanopores created in graphene membranes. The devices consist of 1-5-nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, and the reduced electrical resistance, we observe larger blocked currents than for traditional solid-state nanopores. We also show how ionic current noise levels can be reduced with the atomic-layer deposition of a few nanometers of titanium dioxide over the graphene surface. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor, and its use opens the door to a new future class of nanopore devices in which electronic sensing and control is performed directly at the pore.

  19. Ion transport in a pH-regulated nanopore.

    PubMed

    Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2013-08-06

    Fundamental understanding of ion transport phenomena in nanopores is crucial for designing the next-generation nanofluidic devices. Due to surface reactions of dissociable functional groups on the nanopore wall, the surface charge density highly depends upon the proton concentration on the nanopore wall, which in turn affects the electrokinetic transport of ions, fluid, and particles within the nanopore. Electrokinetic ion transport in a pH-regulated nanopore, taking into account both multiple ionic species and charge regulation on the nanopore wall, is theoretically investigated for the first time. The model is verified by the experimental data of nanopore conductance available in the literature. The results demonstrate that the spatial distribution of the surface charge density at the nanopore wall and the resulting ion transport phenomena, such as ion concentration polarization (ICP), ion selectivity, and conductance, are significantly affected by the background solution properties, such as the pH and salt concentration.

  20. Deformation-driven diffusion and plastic flow in amorphous granular pillars.

    PubMed

    Li, Wenbin; Rieser, Jennifer M; Liu, Andrea J; Durian, Douglas J; Li, Ju

    2015-06-01

    We report a combined experimental and simulation study of deformation-induced diffusion in compacted quasi-two-dimensional amorphous granular pillars, in which thermal fluctuations play a negligible role. The pillars, consisting of bidisperse cylindrical acetal plastic particles standing upright on a substrate, are deformed uniaxially and quasistatically by a rigid bar moving at a constant speed. The plastic flow and particle rearrangements in the pillars are characterized by computing the best-fit affine transformation strain and nonaffine displacement associated with each particle between two stages of deformation. The nonaffine displacement exhibits exponential crossover from ballistic to diffusive behavior with respect to the cumulative deviatoric strain, indicating that in athermal granular packings, the cumulative deviatoric strain plays the role of time in thermal systems and drives effective particle diffusion. We further study the size-dependent deformation of the granular pillars by simulation, and find that different-sized pillars follow self-similar shape evolution during deformation. In addition, the yield stress of the pillars increases linearly with pillar size. Formation of transient shear lines in the pillars during deformation becomes more evident as pillar size increases. The width of these elementary shear bands is about twice the diameter of a particle, and does not vary with pillar size.

  1. 30 CFR 75.386 - Final mining of pillars.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Final mining of pillars. 75.386 Section 75.386... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.386 Final mining of pillars. When only one mine opening is available due to final mining of pillars, no more than 20 miners at a time shall...

  2. Polymer-modified opal nanopores.

    PubMed

    Schepelina, Olga; Zharov, Ilya

    2006-12-05

    The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.

  3. WS2 nanopores for molecule analysis

    NASA Astrophysics Data System (ADS)

    Danda, Gopinath; Masih Das, Paul; Chou, Yung-Chien; Mlack, Jerome; Naylor, Carl; Perea-Lopez, Nestor; Lin, Zhong; Fulton, Laura Beth; Terrones, Mauricio; Johnson, A. T. Charlie; Drndic, Marija

    Atomically thin 2D materials like graphene and transition metal dichalcogenides (TMDs) are interesting as membranes in solid state nanopore sensors for DNA analysis as they may facilitate single base resolution sequencing. These materials also exhibit unique optical and electronic properties which may be exploited to enhance the functionality of nanopore sensors. Here, we report WS2 nanopores, fabricated using a focused TEM beam. We also report their controlled laser-induced expansion in ionic solution. This study demonstrates the possibility of dynamic control of nanopore characteristics optically. NIH Grant R21HG007856, NSF EFRI-1542707.

  4. Optofluidic devices with integrated solid-state nanopores

    PubMed Central

    Hawkins, Aaron R.; Schmidt, Holger

    2016-01-01

    This review (with 90 refs.) covers the state of the art in optofluidic devices with integrated solid-state nanopores for use in detection and sensing. Following an introduction into principles of optofluidics and solid-state nanopore technology, we discuss features of solid-state nanopore based assays using optofluidics. This includes the incorporation of solid-state nanopores into optofluidic platforms based on liquid-core anti-resonant reflecting optical waveguides (ARROWs), methods for their fabrication, aspects of single particle detection and particle manipulation. We then describe the new functionalities provided by solid-state nanopores integrated into optofluidic chips, in particular acting as smart gates for correlated electro-optical detection and discrimination of nanoparticles. This enables the identification of viruses and λ-DNA, particle trajectory simulations, enhancing sensitivity by tuning the shape of nanopores. The review concludes with a summary and an outlook. PMID:27046940

  5. Controlled formation of closed-edge nanopores in graphene

    NASA Astrophysics Data System (ADS)

    He, Kuang; Robertson, Alex W.; Gong, Chuncheng; Allen, Christopher S.; Xu, Qiang; Zandbergen, Henny; Grossman, Jeffrey C.; Kirkland, Angus I.; Warner, Jamie H.

    2015-07-01

    Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport.Dangling bonds at the edge of a nanopore in monolayer graphene make it susceptible to back-filling at low temperatures from atmospheric hydrocarbons, leading to potential instability for nanopore applications, such as DNA sequencing. We show that closed edge nanopores in bilayer graphene are robust to back-filling under atmospheric conditions for days. A controlled method for closed edge nanopore formation starting from monolayer graphene is reported using an in situ heating holder and electron beam irradiation within an aberration-corrected transmission electron microscopy. Tailoring of closed-edge nanopore sizes is demonstrated from 1.4-7.4 nm. These results should provide mechanisms for improving the stability of nanopores in graphene for a wide range of applications involving mass transport. Electronic supplementary information (ESI) available: Low magnification images, image processing techniques employed, modelling and simulation of closed edge nanoribbon, comprehensive AC-TEM dataset, and supporting analysis. See DOI: 10.1039/c5nr02277k

  6. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  7. Band gap in tubular pillar phononic crystal plate.

    PubMed

    Shu, Fengfeng; Liu, Yongshun; Wu, Junfeng; Wu, Yihui

    2016-09-01

    In this paper, a phononic crystal (PC) plate with tubular pillars is presented and investigated. The band structures and mode displacement profiles are calculated by using finite element method. The result shows that a complete band gap opens when the ratio of the pillar height to the plate thickness is about 1.6. However, for classic cylinder pillar structures, a band gap opens when the ratio is equal or greater than 3. A tubular pillar design with a void room in it enhances acoustic multiple scattering and gives rise to the opening of the band gap. In order to verify it, a PC structure with double tubular pillars different in size (one within the other) is introduced and a more than 2times band gap enlargement is observed. Furthermore, the coupling between the resonant mode and the plate mode around the band gap is characterized, as well as the effect of the geometrical parameters on the band gap. The behavior of such structure could be utilized to design a pillar PC with stronger structural stability and to enlarge band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Ultra-Thin Solid-State Nanopores: Fabrication and Applications

    NASA Astrophysics Data System (ADS)

    Kuan, Aaron Tzeyang

    Solid-state nanopores are a nanofluidic platform with unique advantages for single-molecule analysis and filtration applications. However, significant improvements in device performance and scalable fabrication methods are needed to make nanopore devices competitive with existing technologies. This dissertation investigates the potential advantages of ultra-thin nanopores in which the thickness of the membrane is significantly smaller than the nanopore diameter. Novel, scalable fabrication methods were first developed and then utilized to examine device performance for water filtration and single molecule sensing applications. Fabrication of nanometer-thin pores in silicon nitride membranes was achieved using a feedback-controlled ion beam method in which ion sputtering is arrested upon detection of the first few ions that drill through the membrane. Performing fabrication at liquid nitrogen temperatures prevents surface atom rearrangements that have previously complicated similar processes. A novel cross-sectional imaging method was also developed to allow careful examination of the full nanopore geometry. Atomically-thin graphene nanopores were fabricated via an electrical pulse method in which sub-microsecond electrical pulses applied across a graphene membrane in electrolyte solution are used to create a defect in the membrane and controllably enlarge it into a nanopore. This method dramatically increases the accuracy and reliability of graphene nanopore production, allowing consistent production of single nanopores down to subnanometer sizes. In filtration applications in which nanopores are used to selectively restrict the passage of dissolved contaminants, ultra-thin nanopores minimize the flow resistance, increasing throughput and energy-efficiency. The ability of graphene nanopores to separate different ions was characterized via ionic conductance and reversal potential measurements. Graphene nanopores were observed to conduct cations preferentially over

  9. 30 CFR 75.207 - Pillar recovery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... be left in place. (b) Before mining is started in a pillar split or lift— (1) At least two rows of... leading into the split or lift. (c) Before mining is started on a final stump— (1) At least 2 rows of... shall be installed between the lift to be started and the area where pillars have been extracted. These...

  10. 30 CFR 75.207 - Pillar recovery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... be left in place. (b) Before mining is started in a pillar split or lift— (1) At least two rows of... leading into the split or lift. (c) Before mining is started on a final stump— (1) At least 2 rows of... shall be installed between the lift to be started and the area where pillars have been extracted. These...

  11. Recent Advances in Nanoporous Membranes for Water Purification

    PubMed Central

    Wang, Zhuqing; Colombi Ciacchi, Lucio

    2018-01-01

    Nanoporous materials exhibit wide applications in the fields of electrocatalysis, nanodevice fabrication, energy, and environmental science, as well as analytical science. In this review, we present a summary of recent studies on nanoporous membranes for water purification application. The types and fabrication strategies of various nanoporous membranes are first introduced, and then the fabricated nanoporous membranes for removing various water pollutants, such as salt, metallic ions, anions, nanoparticles, organic chemicals, and biological substrates, are demonstrated and discussed. This work will be valuable for readers to understand the design and fabrication of various nanoporous membranes, and their potential purification mechanisms towards different water pollutants. In addition, it will be helpful for developing new nanoporous materials for quick, economic, and high-performance water purification. PMID:29370128

  12. Nanopores formed by DNA origami: a review.

    PubMed

    Bell, Nicholas A W; Keyser, Ulrich F

    2014-10-01

    Nanopores have emerged over the past two decades to become an important technique in single molecule experimental physics and biomolecule sensing. Recently DNA nanotechnology, in particular DNA origami, has been used for the formation of nanopores in insulating materials. DNA origami is a very attractive technique for the formation of nanopores since it enables the construction of 3D shapes with precise control over geometry and surface functionality. DNA origami has been applied to nanopore research by forming hybrid architectures with solid state nanopores and by direct insertion into lipid bilayers. This review discusses recent experimental work in this area and provides an outlook for future avenues and challenges. Copyright © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Solid-State Nanopore.

    PubMed

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-20

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  14. Solid-State Nanopore

    NASA Astrophysics Data System (ADS)

    Yuan, Zhishan; Wang, Chengyong; Yi, Xin; Ni, Zhonghua; Chen, Yunfei; Li, Tie

    2018-02-01

    Solid-state nanopore has captured the attention of many researchers due to its characteristic of nanoscale. Now, different fabrication methods have been reported, which can be summarized into two broad categories: "top-down" etching technology and "bottom-up" shrinkage technology. Ion track etching method, mask etching method chemical solution etching method, and high-energy particle etching and shrinkage method are exhibited in this report. Besides, we also discussed applications of solid-state nanopore fabrication technology in DNA sequencing, protein detection, and energy conversion.

  15. Fabricatable nanopore sensors with an atomic thickness

    NASA Astrophysics Data System (ADS)

    Luan, Binquan; Bai, Jingwei; Stolovitzky, Gustavo

    2013-10-01

    When analyzing biological molecules (such as DNA and proteins) transported through a nanopore sensor, the pore length limits both the sensitivity and the spatial resolution. Atomically thin as a graphene nanopore is, it is difficult to make graphene pores and the scalable-fabrication of those pores has not yet been possible. We theoretically studied a type of atomically thin nanopores that are formed by intersection of two perpendicular nano-slits. Based on theoretical analyses, we demonstrate that slit nanopores behave similarly to graphene pores and can be manufactured at a wafer scale.

  16. Thermal conductivity model for nanoporous thin films

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  17. Single Nanopore Investigations with Ion Conductance Microscopy

    PubMed Central

    Chen, Chiao-Chen; Zhou, Yi; Baker, Lane A.

    2011-01-01

    A three-electrode scanning ion conductance microscope (SICM) was used to investigate the local current-voltage properties of a single nanopore. In this experimental configuration, the response measured is a function of changes in the resistances involved in the pathways of ion migration. Single nanopore membranes utilized in this study were prepared with an epoxy painting procedure to isolate a single nanopore from a track-etch multi-pore membrane. Current-voltage responses measured with the SICM probe in the vicinity of a single nanopore were investigated in detail and agreed well with equivalent circuit models proposed in this study. With this modified SICM, the current-voltage responses characterized for the case of a single cylindrical pore and a single conical pore exhibit distinct conductance properties that originate from the geometry of nanopores. PMID:21923184

  18. Superconducting nanowire networks formed on nanoporous membrane substrates

    NASA Astrophysics Data System (ADS)

    Luo, Qiong

    Introducing a regular array of holes into superconducting thin films has been actively pursued to stabilize and pin the vortex lattice against external driving forces, enabling higher current capabilities. If the width of the sections between neighboring holes is comparable to the superconducting coherence length, the circulation of the Cooper pairs in around the holes in the presence of a magnetic field can also produce the Little-Parks effect, i.e. periodic oscillation of the critical temperature. These two mechanisms, commensurate vortex pinning enhancement by the hole-array and the critical temperature oscillations of a wire network due to Little-Parks effect can induce similar experimental observations such as magnetoresistance oscillation and enhancement of the critical current at specific magnetic fields. This dissertation work investigates the effect of a hole-array on the properties of superconducting films deposited onto nanoporous substrates. Experiments on anisotropies of the critical temperature for niobium films on anodic aluminum oxide membrane substrates containing a regular hole-array reveal that the critical temperature exhibits two strong anisotropic effects: Little-Parks oscillations whose period varies with field direction superimposed on a smooth background arising from one dimensional confinement by the finite lateral space between neighboring holes. The two components of the anisotropy are intrinsically linked and appear in concert. That is, the hole-array changes the dimensionality of a two-dimensional (2D) film to a network of 1D nanowire network. Network of superconducting nanowires with transverse dimensions as small as few nanometers were achieved by coating molybdenum germanium (MoGe) layer onto commercially available filtration membranes which have extremely dense nanopores. The magnetoresistance, magnetic field dependence of the critical temperature and the anisotropies of the synthesized MoGe nanowire networks can be consistently

  19. Nanopore sequencing in microgravity

    PubMed Central

    McIntyre, Alexa B R; Rizzardi, Lindsay; Yu, Angela M; Alexander, Noah; Rosen, Gail L; Botkin, Douglas J; Stahl, Sarah E; John, Kristen K; Castro-Wallace, Sarah L; McGrath, Ken; Burton, Aaron S; Feinberg, Andrew P; Mason, Christopher E

    2016-01-01

    Rapid DNA sequencing and analysis has been a long-sought goal in remote research and point-of-care medicine. In microgravity, DNA sequencing can facilitate novel astrobiological research and close monitoring of crew health, but spaceflight places stringent restrictions on the mass and volume of instruments, crew operation time, and instrument functionality. The recent emergence of portable, nanopore-based tools with streamlined sample preparation protocols finally enables DNA sequencing on missions in microgravity. As a first step toward sequencing in space and aboard the International Space Station (ISS), we tested the Oxford Nanopore Technologies MinION during a parabolic flight to understand the effects of variable gravity on the instrument and data. In a successful proof-of-principle experiment, we found that the instrument generated DNA reads over the course of the flight, including the first ever sequenced in microgravity, and additional reads measured after the flight concluded its parabolas. Here we detail modifications to the sample-loading procedures to facilitate nanopore sequencing aboard the ISS and in other microgravity environments. We also evaluate existing analysis methods and outline two new approaches, the first based on a wave-fingerprint method and the second on entropy signal mapping. Computationally light analysis methods offer the potential for in situ species identification, but are limited by the error profiles (stays, skips, and mismatches) of older nanopore data. Higher accuracies attainable with modified sample processing methods and the latest version of flow cells will further enable the use of nanopore sequencers for diagnostics and research in space. PMID:28725742

  20. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties

    PubMed Central

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-01-01

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA. PMID:27023546

  1. Fabrication of ZnO Nanowires Arrays by Anodization and High-Vacuum Die Casting Technique, and Their Piezoelectric Properties.

    PubMed

    Kuo, Chin-Guo; Chang, Ho; Wang, Jian-Hao

    2016-03-24

    In this investigation, anodic aluminum oxide (AAO) with arrayed and regularly arranged nanopores is used as a template in the high-vacuum die casting of molten zinc metal (Zn) into the nanopores. The proposed technique yields arrayed Zn nanowires with an aspect ratio of over 600. After annealing, arrayed zinc oxide (ZnO) nanowires are obtained. Varying the anodizing time yields AAO templates with thicknesses of approximately 50 μm, 60 μm, and 70 μm that can be used in the fabrication of nanowires of three lengths with high aspect ratios. Experimental results reveal that a longer nanowire generates a greater measured piezoelectric current. The ZnO nanowires that are fabricated using an alumina template are anodized for 7 h and produce higher piezoelectric current of up to 69 pA.

  2. Highly active thermally stable nanoporous gold catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, Juergen; Wittstock, Arne; Biener, Monika M.

    In one embodiment, a system includes a nanoporous gold structure and a plurality of oxide particles deposited on the nanoporous gold structure; the oxide particles are characterized by a crystalline phase. In another embodiment, a method includes depositing oxide nanoparticles on a nanoporous gold support to form an active structure and functionalizing the deposited oxide nanoparticles.

  3. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  4. Signal and Noise in FET-Nanopore Devices.

    PubMed

    Parkin, William M; Drndić, Marija

    2018-02-23

    The combination of a nanopore with a local field-effect transistor (FET-nanopore), like a nanoribbon, nanotube, or nanowire, in order to sense single molecules translocating through the pore is promising for DNA sequencing at megahertz bandwidths. Previously, it was experimentally determined that the detection mechanism was due to local potential fluctuations that arise when an analyte enters a nanopore and constricts ion flow through it, rather than the theoretically proposed mechanism of direct charge coupling between the DNA and nanowire. However, there has been little discussion on the experimentally observed detection mechanism and its relation to the operation of real devices. We model the intrinsic signal and noise in such an FET-nanopore device and compare the results to the ionic current signal. The physical dimensions of DNA molecules limit the change in gate voltage on the FET to below 40 mV. We discuss the low-frequency flicker noise (<10 kHz), medium-frequency thermal noise (<100 kHz), and high-frequency capacitive noise (>100 kHz) in FET-nanopore devices. At bandwidths dominated by thermal noise, the signal-to-noise ratio in FET-nanopore devices is lower than in the ionic current signal. At high frequencies, where noise due to parasitic capacitances in the amplifier and chip is the dominant source of noise in ionic current measurements, high-transconductance FET-nanopore devices can outperform ionic current measurements.

  5. Fabrication method to create high-aspect ratio pillars for photonic coupling of board level interconnects

    NASA Astrophysics Data System (ADS)

    Debaes, C.; Van Erps, J.; Karppinen, M.; Hiltunen, J.; Suyal, H.; Last, A.; Lee, M. G.; Karioja, P.; Taghizadeh, M.; Mohr, J.; Thienpont, H.; Glebov, A. L.

    2008-04-01

    An important challenge that remains to date in board level optical interconnects is the coupling between the optical waveguides on printed wiring boards and the packaged optoelectronics chips, which are preferably surface mountable on the boards. One possible solution is the use of Ball Grid Array (BGA) packages. This approach offers a reliable attachment despite the large CTE mismatch between the organic FR4 board and the semiconductor materials. Collimation via micro-lenses is here typically deployed to couple the light vertically from the waveguide substrate to the optoelectronics while allowing for a small misalignment between board and package. In this work, we explore the fabrication issues of an alternative approach in which the vertical photonic connection between board and package is governed by a micro-optical pillar which is attached both to the board substrate and to the optoelectronic chips. Such an approach allows for high density connections and small, high-speed detector footprints while maintaining an acceptable tolerance between board and package. The pillar should exhibit some flexibility and thus a high-aspect ratio is preferred. This work presents and compares different fabrication methods and applies different materials for such high-aspect ratio pillars. The different fabrication methods are: photolithography, direct laser writing and deep proton writing. The selection of optical materials that was investigated is: SU8, Ormocers, PU and a multifunctional acrylate polymer. The resulting optical pillars have diameters ranging from 20um up to 80um, with total heights ranging between 30um and 100um (symbol for micron). The aspect-ratio of the fabricated structures ranges from 1.5 to 5.

  6. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  7. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  8. Applications of Nanoporous Materials in Agriculture

    USDA-ARS?s Scientific Manuscript database

    Nanoporous materials possess organized pore distributions and increased surface areas. Advances in the systematic design of nanoporous materials enable incorporation of functionality for better sensitivity in detection methods, increased capacity of sorbents, and improved selectivity and yield in ca...

  9. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.

    PubMed

    Shi, Xin; Verschueren, Daniel; Pud, Sergii; Dekker, Cees

    2018-05-01

    Plasmonic nanopores combine the advantages of nanopore sensing and surface plasmon resonances by introducing confined electromagnetic fields to a solid-state nanopore. Ultrasmall nanogaps between metallic nanoantennas can generate the extremely enhanced localized electromagnetic fields necessary for single-molecule optical sensing and manipulation. Challenges in fabrication, however, hamper the integration of such nanogaps into nanopores. Here, a top-down approach for integrating a plasmonic antenna with an ultrasmall nanogap into a solid-state nanopore is reported. Employing a two-step e-beam lithography process, the reproducible fabrication of nanogaps down to a sub-1 nm scale is demonstrated. Subsequently, nanopores are drilled through the 20 nm SiN membrane at the center of the nanogap using focused-electron-beam sculpting with a transmission electron microscope, at the expense of a slight gap expansion for the smallest gaps. Using this approach, sub-3 nm nanogaps can be readily fabricated on solid-state nanopores. The functionality of these plasmonic nanopores for single-molecule detection is shown by performing DNA translocations. These integrated devices can generate intense electromagnetic fields at the entrance of the nanopore and can be expected to find applications in nanopore-based single-molecule trapping and optical sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  11. Reaching the Ionic Current Detection Limit in Silicon-Based Nanopores

    NASA Astrophysics Data System (ADS)

    Puster, Matthew; Rodriguez-Manzo, Julio Alejandro; Nicolai, Adrien; Meunier, Vincent; Drndic, Marija

    2015-03-01

    Solid-state nanopores act as single-molecule sensors whereby passage of an individual molecule in aqueous electrolyte through a nanopore is registered as a change in ionic conductance (ΔG). Future nanopore applications such as DNA sequencing at high bandwidth require high ΔG for optimal signal-to-noise ratio. Reducing the nanopore diameter and thickness increase ΔG. Molecule size limits the diameter, thus efforts concentrate on minimizing the thickness by thinning oxide/nitride films or using 2D materials. Weighted by electrolyte conductivity the highest ΔG reported to date for DNA translocations were obtained with nanopores made in oxide/nitride films. We present a controlled electron irradiation technique to thin such films to the limit of their stability, producing nanopores tailored to molecule size in amorphous Si with thicknesses less than 2 nm. We compare ΔG values with results found in the literature for DNA translocation through these nanopores, where access resistance becomes comparable to the resistance through the nanopore itself.

  12. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  13. Pessimistic Determination of Mechanical Conditions and Micro/macroeconomic Evaluation of Mine Pillar Replacement

    NASA Astrophysics Data System (ADS)

    Chen, Qingfa; Zhao, Fuyu

    2017-12-01

    Numerous pillars are left after mining of underground mineral resources using the open stope method or after the first step of the partial filling method. The mineral recovery rate can, however, be improved by replacement recovery of pillars. In the present study, the relationships among the pillar type, minimum pillar width, and micro/macroeconomic factors were investigated from two perspectives, namely mechanical stability and micro/macroeconomic benefit. Based on the mechanical stability formulas for ore and artificial pillars, the minimum width for a specific pillar type was determined using a pessimistic criterion. The microeconomic benefit c of setting an ore pillar, the microeconomic benefit w of artificial pillar replacement, and the economic net present value (ENPV) of the replacement process were calculated. The values of c and w were compared with respect to ENPV, based on which the appropriate pillar type and economical benefit were determined.

  14. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  15. Functionalized nanoporous silicas for the immobilization of penicillin acylase

    NASA Astrophysics Data System (ADS)

    Maria Chong, A. S.; Zhao, X. S.

    2004-10-01

    Nanoporous silica materials with uniform pore size and ordered structure have drawn growing interest of researchers since 1990s. A large-pore nanoporous material, SBA-15, was functionalized with organosilanes by co-condensation method in the presence of nonionic triblock copolymer P123 as a template under acidic conditions. The functionalization was demonstrated by using five organosilanes, namely 3-aminopropyltriethoxysilane (APTES), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltriethoxysilane (VTES), and 4-(triethoxysilyl)butyronitrile (TSBN), which modified the surface properties of the silica materials, enabling the materials to be a promising support for immobilization of biological molecules. The functionalized SBA-15 materials exhibited long-range ordering of two-dimensional hexagonal pore arrays of size ranging from 66 to 90 Å as demonstrated by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and physical adsorption techniques. A variety of organosilane density in the range of 0.5-2.6 mmol/g was achieved as revealed by elemental analysis and solid-state nuclear magnetic resonance (NMR) techniques. The functionalized materials displayed improved properties for immobilization of penicillin acylase (PA) in comparison with pure-silica SBA-15. Such improvement is believed to be due to the enhanced surface hydrophobicity and electrostatic interactions of the functional groups with the enzyme.

  16. Tailored nanoporous coatings fabricated on conformable polymer substrates.

    PubMed

    Poxson, David J; Mont, Frank W; Cho, Jaehee; Schubert, E Fred; Siegel, Richard W

    2012-11-01

    Nanoporous coatings have become the subject of intense investigation, in part because they have been shown to have unique and tailorable physical properties that can depart greatly from their dense or macroscopic counterparts. Nanoporous coatings are frequently fabricated utilizing oblique-angle or glancing-angle physical vapor-phase deposition techniques. However, a significant limitation for such coatings exists; they are almost always deposited on smooth and rigid planar substrates, such as silicon and glass. This limitation greatly constrains the applicability, tailorability, functionality and even the economic viability, of such nanoporous coatings. Here, we report our findings on nanoporous/polymer composite systems (NPCS) fabricated by utilizing oblique-angle electron-beam methodology. These unique composite systems exhibit several favorable characteristics, namely, (i) fine-tuned control over coating nanoporosity and thickness, (ii) excellent adhesion between the nanoporous coating and polymer substrate, (iii) the ability to withstand significant and repeated bending, and (iv) the ability to be molded conformably on two and three-dimensional surfaces while closely retaining the composite system's designed nanoporous film structure and, hence, properties.

  17. Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs.

    PubMed

    Wheate, Nial J; Dickson, Kristie-Ann; Kim, Ryung Rae; Nematollahi, Alireza; Macquart, René B; Kayser, Veysel; Yu, Guocan; Church, W Bret; Marsh, Deborah J

    2016-12-01

    Pillar[n]arenes are a new family of nanocapsules that have shown application in a number of areas, but because of their poor water solubility their biomedical applications are limited. Recently, a method of synthesizing water-soluble pillar[n]arenes was developed. In this study, carboxylated pillar[n]arenes (WP[n], n = 6 or 7) have been examined for their ability to form host-guest complexes with compounds relevant to drug delivery and biodiagnostic applications. Both pillar[n]arenes form host-guest complexes with memantine, chlorhexidine hydrochloride, and proflavine by 1 H nuclear magnetic resonance and modeling. Binding is stabilized by hydrophobic effects within the cavities, and hydrogen bonding and electrostatic interactions at the portals. Encapsulation within WP[6] results in the complete and efficient quenching of proflavine fluorescence, giving rise to "on" and "off" states that have potential in biodiagnostics. The toxicity of the pillar[n]arenes was examined using in vitro growth assays with the OVCAR-3 and HEK293 cell lines. The pillar[n]arenes are relatively nontoxic to cells except at high doses and after prolonged continuous exposure. Overall, the results show that there could be a potentially large range of medical applications for carboxylated pillar[n]arene nanocapsules. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Polyelectrolyte layer-by-layer deposition in cylindrical nanopores.

    PubMed

    Lazzara, Thomas D; Lau, K H Aaron; Abou-Kandil, Ahmed I; Caminade, Anne-Marie; Majoral, Jean-Pierre; Knoll, Wolfgang

    2010-07-27

    Layer-by-layer (LbL) deposition of polyelectrolytes within nanopores in terms of the pore size and the ionic strength was experimentally studied. Anodic aluminum oxide (AAO) membranes, which have aligned, cylindrical, nonintersecting pores, were used as a model nanoporous system. Furthermore, the AAO membranes were also employed as planar optical waveguides to enable in situ monitoring of the LbL process within the nanopores by optical waveguide spectroscopy (OWS). Structurally well-defined N,N-disubstituted hydrazine phosphorus-containing dendrimers of the fourth generation, with peripherally charged groups and diameters of approximately 7 nm, were used as the model polyelectrolytes. The pore diameter of the AAO was varied between 30-116 nm and the ionic strength was varied over 3 orders of magnitude. The dependence of the deposited layer thickness on ionic strength within the nanopores is found to be significantly stronger than LbL deposition on a planar surface. Furthermore, deposition within the nanopores can become inhibited even if the pore diameter is much larger than the diameter of the G4-polyelectrolyte, or if the screening length is insignificant relative to the dendrimer diameter at high ionic strengths. Our results will aid in the template preparation of polyelectrolyte multilayer nanotubes, and our experimental approach may be useful for investigating theories regarding the partitioning of nano-objects within nanopores where electrostatic interactions are dominant. Furthermore, we show that the enhanced ionic strength dependence of polyelectrolyte transport within the nanopores can be used to selectively deposit a LbL multilayer atop a nanoporous substrate.

  19. Nanopore-based fourth-generation DNA sequencing technology.

    PubMed

    Feng, Yanxiao; Zhang, Yuechuan; Ying, Cuifeng; Wang, Deqiang; Du, Chunlei

    2015-02-01

    Nanopore-based sequencers, as the fourth-generation DNA sequencing technology, have the potential to quickly and reliably sequence the entire human genome for less than $1000, and possibly for even less than $100. The single-molecule techniques used by this technology allow us to further study the interaction between DNA and protein, as well as between protein and protein. Nanopore analysis opens a new door to molecular biology investigation at the single-molecule scale. In this article, we have reviewed academic achievements in nanopore technology from the past as well as the latest advances, including both biological and solid-state nanopores, and discussed their recent and potential applications. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  20. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  1. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  2. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  3. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  4. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  5. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  6. 33 CFR 80.1140 - Pillar Point Harbor, CA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Pillar Point Harbor, CA. 80.1140 Section 80.1140 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Pacific Coast § 80.1140 Pillar Point Harbor, CA. A line drawn from...

  7. Controlling Ionic Transport for Device Design in Synthetic Nanopores

    NASA Astrophysics Data System (ADS)

    Kalman, Eric Boyd

    Polymer nanopores present a number of behaviors not seen in microscale systems, such as ion current rectification, ionic selectivity, size exclusion and potential dependent ion concentrations in and near the pore. The existence of these effects stems from the small size of nanopores with respect to the characteristic length scales of surface interactions at the interface between the nanopore surface and the solution within it. The large surface-to-volume ratio due to the nanoscale geometry of a nanopore, as well as similarity in scale between geometry and interaction demands the solution interact with the nanopore walls. As surfaces in solution almost always carry residual charge, these surface forces are primarily the electrostatic interactions between the charge groups on the pore surface and the ions in solution. These interactions may be used by the experimentalist to control ionic transport through synthetic nanopores, and use them as a template for the construction of devices. In this research, we present our work on creating a number of ionic analogs to seminal electronic devices, specifically diodes, and transistors, by controlling ionic transport through the electrostatic interactions between a single synthetic nanopore and ions. Control is achieved by "doping" the effective charge carrier concentration in specific regions of the nanopore through manipulation of the pore's surface charge. This manipulation occurs through two mechanisms: chemical modification of the surface charge and electrostatic manipulation of the local internal nanopore potential using a gate electrode. Additionally, the innate selectivity of the charged nanopores walls allows for the separation of charges in solution. This well-known effect, which spawns measureable quantities, the streaming potential and current, has been used to create nanoscale water desalination membranes. We attempt to create a device using membranes with large nanopore densities for the desalination of water

  8. Cohesive detachment of an elastic pillar from a dissimilar substrate

    NASA Astrophysics Data System (ADS)

    Fleck, N. A.; Khaderi, S. N.; McMeeking, R. M.; Arzt, E.

    The adhesion of micron-scale surfaces due to intermolecular interactions is a subject of intense interest spanning electronics, biomechanics and the application of soft materials to engineering devices. The degree of adhesion is sensitive to the diameter of micro-pillars in addition to the degree of elastic mismatch between pillar and substrate. Adhesion-strength-controlled detachment of an elastic circular cylinder from a dissimilar substrate is predicted using a Dugdale-type of analysis, with a cohesive zone of uniform tensile strength emanating from the interface corner. Detachment initiates when the opening of the cohesive zone attains a critical value, giving way to crack formation. When the cohesive zone size at crack initiation is small compared to the pillar diameter, the initiation of detachment can be expressed in terms of a critical value Hc of the corner stress intensity. The estimated pull-off force is somewhat sensitive to the choice of stick/slip boundary condition used on the cohesive zone, especially when the substrate material is much stiffer than the pillar material. The analysis can be used to predict the sensitivity of detachment force to the size of pillar and to the degree of elastic mismatch between pillar and substrate.

  9. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals.

    PubMed

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-21

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.

  10. Evaporation-driven clustering of microscale pillars and lamellae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Tae-Hong; Kim, Jungchul; Kim, Ho-Young, E-mail: hyk@snu.ac.kr

    As a liquid film covering an array of micro- or nanoscale pillars or lamellae evaporates, its meniscus pulls the elastic patterns together because of capillary effects, leading to clustering of the slender microstructures. While this elastocapillary coalescence may imply various useful applications, it is detrimental to a semiconductor manufacturing process called the spin drying, where a liquid film rinses patterned wafers until drying. To understand the transient mechanism underlying such self-organization during and after liquid evaporation, we visualize the clustering dynamics of polymer micropatterns. Our visualization experiments reveal that the patterns clumped during liquid evaporation can be re-separated when completelymore » dried in some cases. This restoration behavior is explained by considering adhesion energy of the patterns as well as capillary forces, which leads to a regime map to predict whether permanent stiction would occur. This work does not only extend our understanding of micropattern stiction, but also suggests a novel path to control and prevent pattern clustering.« less

  11. 3-D simulation of nanopore structure for DNA sequencing.

    PubMed

    Park, Jun-Mo; Pak, Y Eugene; Chun, Honggu; Lee, Jong-Ho

    2012-07-01

    In this paper, we propose a method for simulating nanopore structure by using conventional 3-D simulation tool to mimic the I-V behavior of the nanopore structure. In the simulation, we use lightly doped silicon for ionic solution where some parameters like electron affinity and dielectric constant are fitted to consider the ionic solution. By using this method, we can simulate the I-V behavior of nanopore structure depending on the location and the size of the sphere shaped silicon oxide which is considered to be an indicator of a DNA base. In addition, we simulate an Ionic Field Effect Transistor (IFET) which has basically the nanopore structure, and show that the simulated curves follow sufficiently the I-V behavior of the measurement data. Therefore, we think it is reasonable to apply parameter modeling mentioned above to simulate nanopore structure. The key idea is to modify electron affinity of silicon which is used to mimic the KCl solution to avoid band bending and depletion inside the nanopore. We could efficiently utilize conventional 3-D simulation tool to simulate the I-V behavior of nanopore structures.

  12. Characterization of Nanoporous Materials with Atom Probe Tomography.

    PubMed

    Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten

    2015-06-01

    A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.

  13. Pillars of Creation Revealed in 3-D

    NASA Image and Video Library

    2015-05-01

    This video clip shows a visualisation of the three-dimensional structure of the Pillars of Creation within the star formation region Messier 16 (also called the Eagle Nebula). It is based on new observations of the object using the MUSE instrument on ESO’s Very Large Telescope in Chile. The pillars actually consist of several distinct pieces on either side of the star cluster NGC 6611. Credit: ESO/M. Kornmesser Read more: www.nasa.gov/image-feature/goddard/pillars-of-creation-re... NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  14. Aluminium - Cobalt-Pillared Clay for Dye Filtration Membrane

    NASA Astrophysics Data System (ADS)

    Darmawan, A.; Widiarsih

    2018-04-01

    The manufacture of membrane support from cobalt aluminium pillared clay has been conducted. This research was conducted by mixing a clay suspension with pillared solution prepared from the mixture of Co(NO3)2.6H2O and AlCl3.6H2O. The molar ratio between Al and Co was 75:25 and the ratio of [OH-]/[metal] was 2. The clay suspension was stirred for 24 hours at room temperature, filtered and dried. The dried clay was then calcined at 200°C, 300°C and 400°C with a ramp rate of 2°C/min. Aluminium-cobalt-pillared clay was then characterized by XRD and GSA and moulded become a membrane support for subsequent tests on dye filtration. The XRD analysis showed that basal spacing (d 001) value of aluminium cobalt was 19.49 Å, which was higher than the natural clay of 15.08Å however, the basal spacing decreased with increasing calcination temperature. The result of the GSA analysis showed that the pore diameter of the aluminium cobalt pillared clay membrane was almost the same as that of natural clay that were 34.5Å and 34.2Å, respectively. Nevertheless, the pillared clay has a more uniform pore size distribution. The results of methylene blue filtration measurements demonstrated that the membrane filter support could well which shown by a clear filtrate at all concentrations tested. The value of rejection and flux decreased with the increasing concentration of methylene blue. The values of dye rejection and water flux reached 99.89% and 5. 80 x 10-6 kg min-1, respectively but they decreased with increasing concentration of methylene blue. The results of this study indicates that the aluminium-pillared clay cobalt could be used as membrane materials especially for ultrafiltration.

  15. Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis.

    PubMed

    Cao, Chan; Long, Yi-Tao

    2018-02-20

    Nanopore sensing is developing into a powerful single-molecule approach to investigate the features of biomolecules that are not accessible by studying ensemble systems. When a target molecule is transported through a nanopore, the ions occupying the pore are excluded, resulting in an electrical signal from the intermittent ionic blockade event. By statistical analysis of the amplitudes, duration, frequencies, and shapes of the blockade events, many properties of the target molecule can be obtained in real time at the single-molecule level, including its size, conformation, structure, charge, geometry, and interactions with other molecules. With the development of the use of α-hemolysin to characterize individual polynucleotides, nanopore technology has attracted a wide range of research interest in the fields of biology, physics, chemistry, and nanoscience. As a powerful single-molecule analytical method, nanopore technology has been applied for the detection of various biomolecules, including oligonucleotides, peptides, oligosaccharides, organic molecules, and disease-related proteins. In this Account, we highlight recent developments of biological nanopores in DNA-based sensing and in studying the conformational structures of DNA and RNA. Furthermore, we introduce the application of biological nanopores to investigate the conformations of peptides affected by charge, length, and dipole moment and to study disease-related proteins' structures and aggregation transitions influenced by an inhibitor, a promoter, or an applied voltage. To improve the sensing ability of biological nanopores and further extend their application to a wider range of molecular sensing, we focus on exploring novel biological nanopores, such as aerolysin and Stable Protein 1. Aerolysin exhibits an especially high sensitivity for the detection of single oligonucleotides both in current separation and duration. Finally, to facilitate the use of nanopore measurements and statistical analysis

  16. Nanopore thin film enabled optical platform for drug loading and release.

    PubMed

    Song, Chao; Che, Xiangchen; Que, Long

    2017-08-07

    In this paper, a drug loading and release device fabricated using nanopore thin film and layer-by-layer (LbL) nanoassembly is reported. The nanopore thin film is a layer of anodic aluminum oxide (AAO), consisting of honeycomb-shape nanopores. Using the LbL nanoassembly process, the drug, using gentamicin sulfate (GS) as the model, can be loaded into the nanopores and the stacked layers on the nanopore thin film surface. The drug release from the device is achieved by immersing it into flowing DI water. Both the loading and release processes can be monitored optically. The effect of the nanopore size/volume on drug loading and release has also been evaluated. Further, the neuron cells have been cultured and can grow normally on the nanopore thin film, verifying its bio-compatibility. The successful fabrication of nanopore thin film device on silicon membrane render it as a potential implantable controlled drug release device.

  17. SiGe nano-heteroepitaxy on Si and SiGe nano-pillars.

    PubMed

    Mastari, M; Charles, M; Bogumilowicz, Y; Thai, Q M; Pimenta-Barros, P; Argoud, M; Papon, A M; Gergaud, P; Landru, D; Kim, Y; Hartmann, J M

    2018-07-06

    In this paper, SiGe nano-heteroepitaxy on Si and SiGe nano-pillars was investigated in a 300 mm industrial reduced pressure-chemical vapour deposition tool. An integration scheme based on diblock copolymer patterning was used to fabricate nanometre-sized templates for the epitaxy of Si and SiGe nano-pillars. Results showed highly selective and uniform processes for the epitaxial growth of Si and SiGe nano-pillars. 200 nm thick SiGe layers were grown on Si and SiGe nano-pillars and characterised by atomic force microscopy, x-ray diffraction and transmission electron microscopy. Smooth SiGe surfaces and full strain relaxation were obtained in the 650 °C-700 °C range for 2D SiGe layers grown either on Si or SiGe nano-pillars.

  18. Graphene Nanopores for Protein Sequencing.

    PubMed

    Wilson, James; Sloman, Leila; He, Zhiren; Aksimentiev, Aleksei

    2016-07-19

    An inexpensive, reliable method for protein sequencing is essential to unraveling the biological mechanisms governing cellular behavior and disease. Current protein sequencing methods suffer from limitations associated with the size of proteins that can be sequenced, the time, and the cost of the sequencing procedures. Here, we report the results of all-atom molecular dynamics simulations that investigated the feasibility of using graphene nanopores for protein sequencing. We focus our study on the biologically significant phenylalanine-glycine repeat peptides (FG-nups)-parts of the nuclear pore transport machinery. Surprisingly, we found FG-nups to behave similarly to single stranded DNA: the peptides adhere to graphene and exhibit step-wise translocation when subject to a transmembrane bias or a hydrostatic pressure gradient. Reducing the peptide's charge density or increasing the peptide's hydrophobicity was found to decrease the translocation speed. Yet, unidirectional and stepwise translocation driven by a transmembrane bias was observed even when the ratio of charged to hydrophobic amino acids was as low as 1:8. The nanopore transport of the peptides was found to produce stepwise modulations of the nanopore ionic current correlated with the type of amino acids present in the nanopore, suggesting that protein sequencing by measuring ionic current blockades may be possible.

  19. A Protein Nanopore-Based Approach for Bacteria Sensing

    NASA Astrophysics Data System (ADS)

    Apetrei, Aurelia; Ciuca, Andrei; Lee, Jong-kook; Seo, Chang Ho; Park, Yoonkyung; Luchian, Tudor

    2016-11-01

    We present herein a first proof of concept demonstrating the potential of a protein nanopore-based technique for real-time detection of selected Gram-negative bacteria ( Pseudomonas aeruginosa or Escherichia coli) at a concentration of 1.2 × 108 cfu/mL. The anionic charge on the bacterial outer membrane promotes the electrophoretically driven migration of bacteria towards a single α-hemolysin nanopore isolated in a lipid bilayer, clamped at a negative electric potential, and followed by capture at the nanopore's mouth, which we found to be described according to the classical Kramers' theory. By using a specific antimicrobial peptide as a putative molecular biorecognition element for the bacteria used herein, we suggest that the detection system can combine the natural sensitivity of the nanopore-based sensing techniques with selective biological recognition, in aqueous samples, and highlight the feasibility of the nanopore-based platform to provide portable, sensitive analysis and monitoring of bacterial pathogens.

  20. Nanopore Electrochemistry: A Nexus for Molecular Control of Electron Transfer Reactions

    PubMed Central

    2018-01-01

    Pore-based structures occur widely in living organisms. Ion channels embedded in cell membranes, for example, provide pathways, where electron and proton transfer are coupled to the exchange of vital molecules. Learning from mother nature, a recent surge in activity has focused on artificial nanopore architectures to effect electrochemical transformations not accessible in larger structures. Here, we highlight these exciting advances. Starting with a brief overview of nanopore electrodes, including the early history and development of nanopore sensing based on nanopore-confined electrochemistry, we address the core concepts and special characteristics of nanopores in electron transfer. We describe nanopore-based electrochemical sensing and processing, discuss performance limits and challenges, and conclude with an outlook for next-generation nanopore electrode sensing platforms and the opportunities they present. PMID:29392173

  1. Stress Changes and Deformation Monitoring of Longwall Coal Pillars Located in Weak Ground

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhang, Zhenyu; Kuang, Tiejun; Liu, Jinrong

    2016-08-01

    Coal pillar stability is strongly influenced by the site-specific geological and geotechnical conditions. Many geological structures such as faults, joints, or rock intrusions can be detrimental to mining operations. In order to evaluate the performance of coal pillars under weak roof degraded by igneous rock intrusion, stress and deformation monitoring was conducted in the affected tailgate areas of Nos. 8208 and 8210 longwalls in Tashan coal mine, Shanxi Province, China. The measurements in the 8208 longwall tailgate showed that the mining-induced stresses in 38-m-wide coal chain pillars under the overburden depth of 300-500 m started to increase at about 100 m ahead of the 8208 longwall working face and reached its peak level at approximately 50 m ahead of the longwall face. The peak stress of 9.16 MPa occurred at the depth of 8-9 m into the pillar from the tailgate side wall. In comparison, disturbance of the headgate block pillar area was negligible, indicating the difference of abutment pressure distribution between the tailgate and headgate sites where the adjacent unmined longwall block carried most of the overburden load. However, when the longwall face passed the headgate monitoring site by 360-379 m, the pillar stress increased to a peak value of 21.4 MPa at the pillar depth of 13 m from the gob side mainly due to stress redistribution in the chain pillar. In contrast to the headgate, at the tailgate side, the adjacent goaf was the dominant triggering factor for high stress concentrations in the chain pillar. Convergence measurements in the tailgate during longwall mining further indicated the evolution characteristics of coal pillar deformation, clearly showing that the gateroad deformation is mainly induced by the longwall extraction it serves. When predicting the future pillar loads from the monitored data, two stress peaks appeared across the 38-m-wide tailgate coal pillar, which are separated by the lower stress area within the pillar center. This

  2. Nanopore Kinetic Proofreading of DNA Sequences

    NASA Astrophysics Data System (ADS)

    Ling, Xinsheng Sean

    The concept of DNA sequencing using the time dependence of the nanopore ionic current was proposed in 1996 by Kasianowicz, Brandin, Branton, and Deamer (KBBD). The KBBD concept has generated tremendous amount interests in recent decade. In this talk, I will review the current understanding of the DNA ``translocation'' dynamics and how it can be described by Schrodinger's 1915 paper on first-passage-time distribution function. Schrodinger's distribution function can be used to give a rigorous criterion for achieving nanopore DNA sequencing which turns out to be identical to that of gel electrophoresis used by Sanger in the first-generation Sanger method. A nanopore DNA sequencing technology also requires discrimination of bases with high accuracies. I will describe a solid-state nanopore sandwich structure that can function as a proofreading device capable of discriminating between correct and incorrect hybridization probes with an accuracy rivaling that of high-fidelity DNA polymerases. The latest results from Nanjing will be presented. This work is supported by China 1000-Talent Program at Southeast University, Nanjing, China.

  3. Nanopore fabrication and characterization by helium ion microscopy

    NASA Astrophysics Data System (ADS)

    Emmrich, D.; Beyer, A.; Nadzeyka, A.; Bauerdick, S.; Meyer, J. C.; Kotakoski, J.; Gölzhäuser, A.

    2016-04-01

    The Helium Ion Microscope (HIM) has the capability to image small features with a resolution down to 0.35 nm due to its highly focused gas field ionization source and its small beam-sample interaction volume. In this work, the focused helium ion beam of a HIM is utilized to create nanopores with diameters down to 1.3 nm. It will be demonstrated that nanopores can be milled into silicon nitride, carbon nanomembranes, and graphene with well-defined aspect ratio. To image and characterize the produced nanopores, helium ion microscopy and high resolution scanning transmission electron microscopy were used. The analysis of the nanopores' growth behavior allows inferring on the profile of the helium ion beam.

  4. Synthesis and applications of nanoporous perovskite metal oxides

    PubMed Central

    Huang, Xiubing; Zhao, Guixia

    2018-01-01

    Perovskite-type metal oxides have been widely investigated and applied in various fields in the past several decades due to their extraordinary variability of compositions and structures with targeted physical and chemical properties (e.g., redox behaviour, oxygen mobility, electronic and ionic conductivity). Recently, nanoporous perovskite metal oxides have attracted extensive attention because of their special morphology and properties, as well as superior performance. This minireview aims at summarizing and reviewing the different synthesis methods of nanoporous perovskite metal oxides and their various applications comprehensively. The correlations between the nanoporous structures and the specific performance of perovskite oxides are summarized and highlighted. The future research directions of nanoporous perovskite metal oxides are also prospected. PMID:29862001

  5. Acoustic Eaton lens array and its fluid application

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Sy, Pham-Van; Das, Mukunda P.

    2017-03-01

    A principle of an acoustic Eaton lens array and its application as a removable tsunami wall is proposed theoretically. The lenses are made of expandable rubber pillars or balloons and create a stop-band by rotating the incoming tsunami wave and reduce the pressure by canceling each other. The diameter of each lens is larger than the wavelength of the tsunami near the coast, that is, order of a kilometer. The impedance matching on the border of the lenses results in a little reflection. Before a tsunami, the balloons are buried underground in shallow water near the coast in folded or rounded form. Upon sounding of the tsunami alarm, water and air are pumped into the pillars, which expand and erect the wall above the sea level within a few hours. After the tsunami, the water and air are released from the pillars, which are then buried underground for reuse. Electricity is used to power the entire process. A numerical simulation with a linear tsunami model was carried out.

  6. Streaming current magnetic fields in a charged nanopore.

    PubMed

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W

    2016-11-11

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  7. Streaming current magnetic fields in a charged nanopore

    NASA Astrophysics Data System (ADS)

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-11-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques.

  8. Streaming current magnetic fields in a charged nanopore

    PubMed Central

    Mansouri, Abraham; Taheri, Peyman; Kostiuk, Larry W.

    2016-01-01

    Magnetic fields induced by currents created in pressure driven flows inside a solid-state charged nanopore were modeled by numerically solving a system of steady state continuum partial differential equations, i.e., Poisson, Nernst-Planck, Ampere and Navier-Stokes equations (PNPANS). This analysis was based on non-dimensional transport governing equations that were scaled using Debye length as the characteristic length scale, and applied to a finite length cylindrical nano-channel. The comparison of numerical and analytical studies shows an excellent agreement and verified the magnetic fields density both inside and outside the nanopore. The radially non-uniform currents resulted in highly non-uniform magnetic fields within the nanopore that decay as 1/r outside the nanopore. It is worth noting that for either streaming currents or streaming potential cases, the maximum magnetic field occurred inside the pore in the vicinity of nanopore wall, as opposed to a cylindrical conductor that carries a steady electric current where the maximum magnetic fields occur at the perimeter of conductor. Based on these results, it is suggested and envisaged that non-invasive external magnetic fields readouts generated by streaming/ionic currents may be viewed as secondary electronic signatures of biomolecules to complement and enhance current DNA nanopore sequencing techniques. PMID:27833119

  9. Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates

    NASA Astrophysics Data System (ADS)

    Thurn-Albrecht, T.; Schotter, J.; Kästle, G. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P.

    2000-12-01

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 × 1011 wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  10. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.

    PubMed

    Thurn-Albrecht, T; Schotter, J; Kästle, G A; Emley, N; Shibauchi, T; Krusin-Elbaum, L; Guarini, K; Black, C T; Tuominen, M T; Russell, T P

    2000-12-15

    We show a simple, robust, chemical route to the fabrication of ultrahigh-density arrays of nanopores with high aspect ratios using the equilibrium self-assembled morphology of asymmetric diblock copolymers. The dimensions and lateral density of the array are determined by segmental interactions and the copolymer molecular weight. Through direct current electrodeposition, we fabricated vertical arrays of nanowires with densities in excess of 1.9 x 10(11) wires per square centimeter. We found markedly enhanced coercivities with ferromagnetic cobalt nanowires that point toward a route to ultrahigh-density storage media. The copolymer approach described is practical, parallel, compatible with current lithographic processes, and amenable to multilayered device fabrication.

  11. Tilted pillar array fabrication by the combination of proton beam writing and soft lithography for microfluidic cell capture Part 2: Image sequence analysis based evaluation and biological application.

    PubMed

    Járvás, Gábor; Varga, Tamás; Szigeti, Márton; Hajba, László; Fürjes, Péter; Rajta, István; Guttman, András

    2018-02-01

    As a continuation of our previously published work, this paper presents a detailed evaluation of a microfabricated cell capture device utilizing a doubly tilted micropillar array. The device was fabricated using a novel hybrid technology based on the combination of proton beam writing and conventional lithography techniques. Tilted pillars offer unique flow characteristics and support enhanced fluidic interaction for improved immunoaffinity based cell capture. The performance of the microdevice was evaluated by an image sequence analysis based in-house developed single-cell tracking system. Individual cell tracking allowed in-depth analysis of the cell-chip surface interaction mechanism from hydrodynamic point of view. Simulation results were validated by using the hybrid device and the optimized surface functionalization procedure. Finally, the cell capture capability of this new generation microdevice was demonstrated by efficiently arresting cells from a HT29 cell-line suspension. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. And while the prospect of DNA sequencing continues to be a major driving force, other applications with potentially similar impact begin to emerge, for example the detection of small molecules, proteins, protein/protein and protein/DNA complexes, and RNA to name just a few. It has also become apparent that both classes of nanopore devices have intrinsic advantages and disadvantages; hybrid structures combining the better of the two worlds would be a logical consequence and are beginning to appear in the literature. Many other highly innovative ideas and concepts continue to emerge and the number of nanopore-related publications has increased drastically over recent years. We found that more than 100 research groups worldwide are active in this area; several commercial settings are in the process of translating fundamental research into real-life applications. We therefore felt that now is the right time to showcase these new developments in a special issue: to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities. The title 'New developments in nanopore research—from fundamentals to applications' in some way reflects these ambitions and, even though not everyone invited was able to contribute, we were able to assemble 34 high-quality research papers from all over the world. We would like to acknowledge and thank all the contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the

  13. Normal-incidence quantum cascade detector coupled by nanopore structure

    NASA Astrophysics Data System (ADS)

    Liu, Jianqi; Wang, Fengjiao; Zhai, Shenqiang; Zhang, Jinchuan; Liu, Shuman; Liu, Junqi; Wang, Lijun; Liu, Fengqi; Wang, Zhanguo

    2018-04-01

    A normal-incidence quantum cascade detector coupled by a nanopore array structure (NPS) is demonstrated. The NPS is fabricated on top of an In0.53Ga0.47As contact layer by inductively coupled plasma etching using anodic aluminum oxide as a mask. Because of the nonuniform volume fraction at different areas of the device mesa, the NPS acts as subwavelength random gratings. Normal-incidence light can be scattered into random oblique directions for inter-sub-band transition absorption. With normal incidence, the responsivities of the device reach 24 mA/W at 77 K and 15.7 mA/W at 300 K, which are enhanced 2.23 and 1.96 times, respectively, compared with that of the 45°-edge device.

  14. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.

    PubMed

    Lan, Wen-Jie; Edwards, Martin A; Luo, Long; Perera, Rukshan T; Wu, Xiaojian; Martin, Charles R; White, Henry S

    2016-11-15

    Ion current rectification (ICR) refers to the asymmetric potential-dependent rate of the passage of solution ions through a nanopore, giving rise to electrical current-voltage characteristics that mimic those of a solid-state electrical diode. Since the discovery of ICR in quartz nanopipettes two decades ago, synthetic nanopores and nanochannels of various geometries, fabricated in membranes and on wafers, have been extensively investigated to understand fundamental aspects of ion transport in highly confined geometries. It is now generally accepted that ICR requires an asymmetric electrical double layer within the nanopore, producing an accumulation or depletion of charge-carrying ions at opposite voltage polarities. Our research groups have recently explored how the voltage-dependent ion distributions and ICR within nanopores can induce novel nanoscale flow phenomena that have applications in understanding ionics in porous materials used in energy storage devices, chemical sensing, and low-cost electrical pumping of fluids. In this Account, we review our most recent investigations on this topic, based on experiments using conical nanopores (10-300 nm tip opening) fabricated in thin glass, mica, and polymer membranes. Measurable fluid flow in nanopores can be induced either using external pressure forces, electrically via electroosmotic forces, or by a combination of these two forces. We demonstrate that pressure-driven flow can greatly alter the electrical properties of nanopores and, vice versa, that the nonlinear electrical properties of conical nanopores can impart novel and useful flow phenomena. Electroosmotic flow (EOF), which depends on the magnitude of the ion fluxes within the double layer of the nanopore, is strongly coupled to the accumulation/depletion of ions. Thus, the same underlying cause of ICR also leads to EOF rectification, i.e., unequal flows occurring for the same voltage but opposite polarities. EOF rectification can be used to electrically

  15. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    NASA Astrophysics Data System (ADS)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  16. DNA origami nanopores: developments, challenges and perspectives

    NASA Astrophysics Data System (ADS)

    Hernández-Ainsa, Silvia; Keyser, Ulrich F.

    2014-11-01

    DNA nanotechnology has enabled the construction of DNA origami nanopores; synthetic nanopores that present improved capabilities for the area of single molecule detection. Their extraordinary versatility makes them a new and powerful tool in nanobiotechnology for a wide range of important applications beyond molecular sensing. In this review, we briefly present the recent developments in this emerging field of research. We discuss the current challenges and possible solutions that would enhance the sensing capabilities of DNA origami nanopores. Finally, we anticipate novel avenues for future research and highlight a range of exciting ideas and applications that could be explored in the near future.

  17. Reconsideration of Si pillar thermal oxidation mechanism

    NASA Astrophysics Data System (ADS)

    Kageshima, Hiroyuki; Shiraishi, Kenji; Endoh, Tetsuo

    2018-06-01

    The mechanism of Si pillar thermal oxidation is considered. The Si emission is discussed in the oxidation of three-dimensional structures, which must be fundamentally important to understand the oxidation mechanism. It is confirmed that the Si emission is enhanced in the three-dimensional structures by the geometrical and stress effects. The larger effect is expected for Si spheres rather than for Si pillars. More enhanced Si emission can be expected for the smaller spheres. Then the mechanism of Si missing and the effect of Si emission are also discussed. The oxide viscous flow mechanism is the promising candidate to explain the Si missing, because the oxide viscosity could be reduced by the SiO incorporation and the compressive stress. The geometrical effect induces the viscosity gradient, which is important to induce the Si missing. Interplay of the emitted SiO and the accumulated stress is the key in Si pillar oxidation. Careful approaches are suggested for the oxidation of three-dimensional structures.

  18. Near-Ideal Xylene Selectivity in Adaptive Molecular Pillar[ n]arene Crystals.

    PubMed

    Jie, Kecheng; Liu, Ming; Zhou, Yujuan; Little, Marc A; Pulido, Angeles; Chong, Samantha Y; Stephenson, Andrew; Hughes, Ashlea R; Sakakibara, Fumiyasu; Ogoshi, Tomoki; Blanc, Frédéric; Day, Graeme M; Huang, Feihe; Cooper, Andrew I

    2018-06-06

    The energy-efficient separation of alkylaromatic compounds is a major industrial sustainability challenge. The use of selectively porous extended frameworks, such as zeolites or metal-organic frameworks, is one solution to this problem. Here, we studied a flexible molecular material, perethylated pillar[ n]arene crystals ( n = 5, 6), which can be used to separate C8 alkylaromatic compounds. Pillar[6]arene is shown to separate para-xylene from its structural isomers, meta-xylene and ortho-xylene, with 90% specificity in the solid state. Selectivity is an intrinsic property of the pillar[6]arene host, with the flexible pillar[6]arene cavities adapting during adsorption thus enabling preferential adsorption of para-xylene in the solid state. The flexibility of pillar[6]arene as a solid sorbent is rationalized using molecular conformer searches and crystal structure prediction (CSP) combined with comprehensive characterization by X-ray diffraction and 13 C solid-state NMR spectroscopy. The CSP study, which takes into account the structural variability of pillar[6]arene, breaks new ground in its own right and showcases the feasibility of applying CSP methods to understand and ultimately to predict the behavior of soft, adaptive molecular crystals.

  19. Effect of pH on ion current through conical nanopores

    NASA Astrophysics Data System (ADS)

    Chander, M.; Kumar, R.; Kumar, S.; Kumar, N.

    2018-05-01

    Here, we examined ionic current behavior of conical nanopores at different pH and a fixed ion concentration of potassium halide (KCl). Conical shaped nanopores have been developed by chemical etching technique in polyethylene terephthalate (PET) membrane/foil of thickness 12 micron. For this we employed a self-assembled electrochemical cell having two chambers and the foil was fitted in the centre of cell. The nanopores were produced in the foil using etching and stopping solutions. The experimental results show that ionic current rectification (ICR) occurs through synthesized conical nanopores. Further, ion current increases significantly with increase of voltage from the base side of nanopores to the tip side at fixed pH of electrolyte.

  20. Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.

    PubMed

    Schuster, Jonathan; Bellotti, Enrico

    2013-06-17

    We have investigated crosstalk in HgCdTe photovoltaic pixel arrays employing a photon trapping (PT) structure realized with a periodic array of pillars intended to provide broadband operation. We have found that, compared to non-PT pixel arrays with similar geometry, the array employing the PT structure has a slightly higher optical crosstalk. However, when the total crosstalk is evaluated, the presence of the PT region drastically reduces the total crosstalk; making the use of the PT structure not only useful to obtain broadband operation, but also desirable for reducing crosstalk in small pitch detector arrays.

  1. Superdiffusive gas recovery from nanopores

    NASA Astrophysics Data System (ADS)

    Wu, Haiyi; He, Yadong; Qiao, Rui

    2016-11-01

    Understanding the recovery of gas from reservoirs featuring pervasive nanopores is essential for effective shale gas extraction. Classical theories cannot accurately predict such gas recovery and many experimental observations are not well understood. Here we report molecular simulations of the recovery of gas from single nanopores, explicitly taking into account molecular gas-wall interactions. We show that, in very narrow pores, the strong gas-wall interactions are essential in determining the gas recovery behavior both quantitatively and qualitatively. These interactions cause the total diffusion coefficients of the gas molecules in nanopores to be smaller than those predicted by kinetic theories, hence slowing down the rate of gas recovery. These interactions also lead to significant adsorption of gas molecules on the pore walls. Because of the desorption of these gas molecules during gas recovery, the gas recovery from the nanopore does not exhibit the usual diffusive scaling law (i.e., the accumulative recovery scales as R ˜t1 /2 ) but follows a superdiffusive scaling law R ˜tn (n >0.5 ), which is similar to that observed in some field experiments. For the system studied here, the superdiffusive gas recovery scaling law can be captured well by continuum models in which the gas adsorption and desorption from pore walls are taken into account using the Langmuir model.

  2. Scattering of spermatozoa off cylindrical pillars

    NASA Astrophysics Data System (ADS)

    Bukatin, Anton; Lushi, Enkeleida; Kantsler, Vasily

    2017-11-01

    The motion of micro-swimmers in structured environments, even though crucial in processes such as in vivo and in vitro egg fertilization, is still not completely understood. We combine microfluidic experiments with mathematical modeling of 3D swimming near convex surfaces to quantify the dynamics of individual sperm cells in the proximity of cylindrical pillars. Our results show that the hydrodynamic and contact forces that account for the shape asymmetry and flagellar motion, are crucial in correctly describing the dynamics observed in the experiments. Last, we discuss how the size of the cylindrical obstacles determines whether the swimmers scatter off or get trapped circling the pillar.

  3. Using submarine lava pillars to record mid-ocean ridge eruption dynamics

    USGS Publications Warehouse

    Gregg, Tracy K.P.; Fornari, Daniel J.; Perfit, Michael R.; Ridley, W. Ian; Kurz, Mark D.

    2000-01-01

    Submarine lava pillars are hollow, glass-lined, basaltic cylinders that occur at the axis of the mid-ocean ridge, and within the summit calderas of some seamounts. Typically, pillars are ~1-20 m tall and 0.25-2.0 m in diameter, with subhorizontal to horizontal glassy selvages on their exterior walls. Lava pillars form gradually during a single eruption, and are composed of lava emplaced at the eruption onset as well as the last lava remaining after the lava pond has drained. On the deep sea floor, the surface of a basaltic lava flow quenches to glass within 1 s, thereby preserving information about eruption dynamics, as well as chemical and physical properties of lava within a single eruption. Investigation of different lava pillars collected from a single eruption allows us to distinguish surficial lava-pond or lava-lake geochemical processes from those operating in the magma chamber. Morphologic, major-element, petrographic and helium analyses were performed on portions of three lava pillars formed during the April 1991 eruption near 9°50'N at the axis of the East Pacific Rise. Modeling results indicate that the collected portions of pillars formed in ~2-5 h, suggesting a total eruption duration of ~8-20 h. These values are consistent with observed homogeneity in the glass helium concentrations and helium diffusion rates. Major-element compositions of most pillar glasses are homogeneous and identical to the 1991 flow, but slight chemical variations measured in the outermost portions of some pillars may reflect post-eruptive processes rather than those occurring in subaxial magma bodies. Because lava pillars are common at mid-ocean ridges (MORs), the concepts and techniques we present here may have important application to the study of MOR eruptions, thereby providing a basis for quantitative comparisons of volcanic eruptions in geographically and tectonically diverse settings. More research is needed to thoroughly test the hypotheses presented here. (C) 2000

  4. Optimized 2D array of thin silicon pillars for efficient antireflective coatings in the visible spectrum

    PubMed Central

    Proust, Julien; Fehrembach, Anne-Laure; Bedu, Frédéric; Ozerov, Igor; Bonod, Nicolas

    2016-01-01

    Light reflection occuring at the surface of silicon wafers is drastically diminished by etching square pillars of height 110 nm and width 140 nm separated by a 100 nm gap distance in a square lattice. The design of the nanostructure is optimized to widen the spectral tolerance of the antireflective coatings over the visible spectrum for both fundamental polarizations. Angle and polarized resolved optical measurements report a light reflection remaining under 5% when averaged in the visible spectrum for both polarizations in a wide angular range. Light reflection remains almost insensitive to the light polarization even in oblique incidence. PMID:27109643

  5. Gassmann Theory Applies to Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Gurevich, Boris

    2018-01-01

    Recent progress in extraction of unconventional hydrocarbon resources has ignited the interest in the studies of nanoporous media. Since many thermodynamic and mechanical properties of nanoscale solids and fluids differ from the analogous bulk materials, it is not obvious whether wave propagation in nanoporous media can be described using the same framework as in macroporous media. Here we test the validity of Gassmann equation using two published sets of ultrasonic measurements for a model nanoporous medium, Vycor glass, saturated with two different fluids, argon, and n-hexane. Predictions of the Gassmann theory depend on the bulk and shear moduli of the dry samples, which are known from ultrasonic measurements and the bulk moduli of the solid and fluid constituents. The solid bulk modulus can be estimated from adsorption-induced deformation or from elastic effective medium theory. The fluid modulus can be calculated according to the Tait-Murnaghan equation at the solvation pressure in the pore. Substitution of these parameters into the Gassmann equation provides predictions consistent with measured data. Our findings set up a theoretical framework for investigation of fluid-saturated nanoporous media using ultrasonic elastic wave propagation.

  6. Nanopore fabricated in pyramidal HfO2 film by dielectric breakdown method

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Chen, Qi; Deng, Tao; Liu, Zewen

    2017-10-01

    The dielectric breakdown method provides an innovative solution to fabricate solid-state nanopores on insulating films. A nanopore generation event via this method is considered to be caused by random charged traps (i.e., structural defects) and high electric fields in the membrane. Thus, the position and number of nanopores on planar films prepared by the dielectric breakdown method is hard to control. In this paper, we propose to fabricate nanopores on pyramidal HfO2 films (10-nm and 15-nm-thick) to improve the ability to control the location and number during the fabrication process. Since the electric field intensity gets enhanced at the corners of the pyramid-shaped film, the probability of nanopore occurrence at vertex and edge areas increases. This priority of appearance provides us chance to control the location and number of nanopores by monitoring a sudden irreversible discrete increase in current. The experimental results showed that the probability of nanopore occurrence decreases in an order from the vertex area, the edge area to the side face area. The sizes of nanopores ranging from 30 nm to 10 nm were obtained. Nanopores fabricated on the pyramid-shaped HfO2 film also showed an obvious ion current rectification characteristic, which might improve the nanopore performance as a biomolecule sequencing platform.

  7. Probing the size of proteins with glass nanopores

    NASA Astrophysics Data System (ADS)

    Steinbock, L. J.; Krishnan, S.; Bulushev, R. D.; Borgeaud, S.; Blokesch, M.; Feletti, L.; Radenovic, A.

    2014-11-01

    Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their inexpensive, lithography-free, and rapid manufacturing process.Single molecule studies using nanopores have gained attention due to the ability to sense single molecules in aqueous solution without the need to label them. In this study, short DNA molecules and proteins were detected with glass nanopores, whose sensitivity was enhanced by electron reshaping which decreased the nanopore diameter and created geometries with a reduced sensing length. Further, proteins having molecular weights (MW) ranging from 12 kDa to 480 kDa were detected, which showed that their corresponding current peak amplitude changes according to their MW. In the case of the 12 kDa ComEA protein, its DNA-binding properties to an 800 bp long DNA molecule was investigated. Moreover, the influence of the pH on the charge of the protein was demonstrated by showing a change in the translocation direction. This work emphasizes the wide spectrum of detectable molecules using nanopores from glass nanocapillaries, which stand out because of their

  8. Recent patents of nanopore DNA sequencing technology: progress and challenges.

    PubMed

    Zhou, Jianfeng; Xu, Bingqian

    2010-11-01

    DNA sequencing techniques witnessed fast development in the last decades, primarily driven by the Human Genome Project. Among the proposed new techniques, Nanopore was considered as a suitable candidate for the single DNA sequencing with ultrahigh speed and very low cost. Several fabrication and modification techniques have been developed to produce robust and well-defined nanopore devices. Many efforts have also been done to apply nanopore to analyze the properties of DNA molecules. By comparing with traditional sequencing techniques, nanopore has demonstrated its distinctive superiorities in main practical issues, such as sample preparation, sequencing speed, cost-effective and read-length. Although challenges still remain, recent researches in improving the capabilities of nanopore have shed a light to achieve its ultimate goal: Sequence individual DNA strand at single nucleotide level. This patent review briefly highlights recent developments and technological achievements for DNA analysis and sequencing at single molecule level, focusing on nanopore based methods.

  9. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-07

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  10. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  11. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  12. Formation and photopatterning of nanoporous titania thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Oun-Ho; Cheng, Joy Y.; Kim, Hyun Suk

    2007-06-04

    Photopatternable nanoporous titania thin films were generated from mixtures of an organic diblock copolymer, poly(styrene-b-ethylene oxide) (PS-b-PEO), and an oligomeric titanate (OT) prepared from a chelated titanium isopropoxide. The PS-b-PEO templates well-defined microdomains in thin films of the mixtures, which upon thermal treatment at 450 deg. C, become nanopores in titania. Average pore size and porosity are controlled by the molecular weight and loading level of the PS-b-PEO, respectively. Patterns of nanoporous titania were created by selectively exposing UV light on the mixture films. The UV irradiation destroys the chelating bond and induces the cross-linking reaction of the OT. Subsequentmore » wet development followed by thermal treatment gives patterned nanoporous films of anatase phase titania.« less

  13. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  14. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  15. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  16. Flexible Pillared Graphene-Paper Electrodes for High-Performance Electrochemical Supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan

    2011-12-08

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s -1, the specific capacitance of the pillared GP is 138 F g -1 and 83.2 F g -1 with negligible 3.85% and 4.35% capacitancemore » degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s -1, the specific capacitance can reach 80 F g -1 in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. Finally, the pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage.« less

  17. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  18. Embedded CMOS basecalling for nanopore DNA sequencing.

    PubMed

    Chengjie Wang; Junli Zheng; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim

    2016-08-01

    DNA sequencing based on nanopore sensors is now entering the marketplace. The ability to interface this technology to established CMOS microelectronics promises significant improvements in functionality and miniaturization. Among the key functions to benefit from this interface will be basecalling, the conversion of raw electronic molecular signatures to nucleotide sequence predictions. This paper presents the design and performance potential of custom CMOS base-callers embedded alongside nanopore sensors. A basecalliing architecture implemented in 32-nm technology is discussed with the ability to process the equivalent of 20 human genomes per day in real-time at a power density of 5 W/cm2 assuming a 3-mer nanopore sensor.

  19. Modulation of Molecular Flux Using a Graphene Nanopore Capacitor.

    PubMed

    Shankla, Manish; Aksimentiev, Aleksei

    2017-04-20

    Modulation of ionic current flowing through nanoscale pores is one of the fundamental biological processes. Inspired by nature, nanopores in synthetic solid-state membranes are being developed to enable rapid analysis of biological macromolecules and to serve as elements of nanofludic circuits. Here, we theoretically investigate ion and water transport through a graphene-insulator-graphene membrane containing a single, electrolyte-filled nanopore. By means of all-atom molecular dynamics simulations, we show that the charge state of such a graphene nanopore capacitor can regulate both the selectivity and the magnitude of the nanopore ionic current. At a fixed transmembrane bias, the ionic current can be switched from being carried by an equal mixture of cations and anions to being carried almost exclusively by either cationic or anionic species, depending on the sign of the charge assigned to both plates of the capacitor. Assigning the plates of the capacitor opposite sign charges can either increase the nanopore current or reduce it substantially, depending on the polarity of the bias driving the transmembrane current. Facilitated by the changes of the nanopore surface charge, such ionic current modulations are found to occur despite the physical dimensions of the nanopore being an order of magnitude larger than the screening length of the electrolyte. The ionic current rectification is accompanied by a pronounced electro-osmotic effect that can transport neutral molecules such as proteins and drugs across the solid-state membrane and thereby serve as an interface between electronic and chemical signals.

  20. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  1. Balancing size exclusion and adsorption of polymers in nanopores

    NASA Astrophysics Data System (ADS)

    Kim, Won; Ryu, Chang Y.

    2006-03-01

    The liquid chromatography at critical condition (LCCC) presents the condition, at which the size exclusion and adsorption of polymer chains are balanced upon interactions with nanoporous substrates. In this study, we investigate how the polymer interactions with nanopores are affected by the solvent quality and nanopore size. Specifically, we measure the retention times of monodisperse polystyrenes in C18-bonded nanoporous silica column as a function of molecular weight, when a mixed solvent of methylene chloride and acetonitrile are used as elutent. C18-bonded silica particles with 70, 100, and 250 A pore size are used as a stationary phase to study how the transition from SEC-like to IC-like retention behavior depends on the condition of temperature and solvent composition. To locate the LCCC at various nanopore sizes, the temperature and solvent composition have been varied from 0 to 60 C and from 51 to 62 v/v% of methylene chloride, respectively.

  2. Integrated nanopore sensing platform with sub-microsecond temporal resolution

    PubMed Central

    Rosenstein, Jacob K; Wanunu, Meni; Merchant, Christopher A; Drndic, Marija; Shepard, Kenneth L

    2012-01-01

    Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores. PMID:22426489

  3. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  4. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  5. Photonic Waveguide Choke Joint with Non-Absorptive Loading

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J. (Inventor); U-Yen, Kongpop (Inventor); Chuss, David T. (Inventor)

    2016-01-01

    A waveguide choke joint includes a first array of pillars positioned on a substrate, each pillar in the first array of pillars having a first size and configured to receive an input plane wave at a first end of the choke joint. The choke joint has a second end configured to transmit the input plane wave away from the choke joint. The choke joint further includes a second array of pillars positioned on the substrate between the first array of pillars and the second end of the choke joint. Each pillar in the second array of pillars has a second size. The choke joint also has a third array of pillars positioned on the substrate between the second array and the second end of the choke joint. Each pillar in the third array of pillars has a third size.

  6. Ten Pillars of a Good Childhood: A Finnish Perspective

    ERIC Educational Resources Information Center

    Pulkkinen, Lea

    2012-01-01

    The organizers of the Decade for Childhood have formulated Ten Pillars of a Good Childhood as basic requirements for an optimal childhood. The pillars can be used to analyze the quality of childhood in homes and nations, and to guide policies and practices related to the experience of childhood. In this article, the author shall illustrate, pillar…

  7. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  8. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  9. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  10. 43 CFR 3931.100 - Boundary pillars and buffer zones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... otherwise specified in writing by the BLM. Boundary and other main pillars may be mined only with the BLM's prior written consent or on the BLM's order. For in-situ operations, a 50-foot buffer zone from the..., mine out and remove all available oil shale in such boundary pillar, both in the lands covered by the...

  11. The Utility of Nanopore Technology for Protein and Peptide Sensing.

    PubMed

    Robertson, Joseph W F; Reiner, Joseph E

    2018-06-28

    Resistive-pulse nanopore sensing enables label-free single-molecule analysis of a wide range of analytes. An increasing number of studies have demonstrated the feasibility and usefulness of nanopore sensing for protein and peptide characterization. Nanopores offer the potential to study a variety of protein-related phenomena that includes unfolding kinetics, differences in unfolding pathways, protein structure stability and free energy profiles of DNA-protein and RNA-protein binding. In addition to providing a tool for fundamental protein characterization, nanopores have also been used as highly selective protein detectors in various solution mixtures and conditions. This review highlights these and other developments in the area of nanopore-based protein and peptide detection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  13. Herschel Sees Through Ghostly Pillars

    NASA Image and Video Library

    2012-01-18

    This image of the Eagle nebula shows the self-emission of the intensely cold nebula gas and dust as never seen before; the nebula intricate tendril nature, with vast cavities forms an almost cave-like surrounding to the famous pillars.

  14. Ordered microporous layered lanthanide 1,3,5-benzenetriphosphonates pillared with cationic organic molecules.

    PubMed

    Araki, Takahiro; Kondo, Atsushi; Maeda, Kazuyuki

    2015-04-13

    Novel isomorphous pillared-layer-type crystalline lanthanide 1,3,5-benzenetriphosphonates were prepared with bpy and dbo as organic pillars (LnBP-bpy and LnBP-dbo; Ln: Ce, Pr, and Nd). Ab initio crystal structure solution using synchrotron X-ray powder diffraction data revealed that the organic pillars do not exist as neutral coordinating ligands but as cationic molecules. Especially the LnBP-dbo phases have ordered interlayer space filled with water molecules between the dbo pillars, and the interlayer water is successfully removed by heating under vacuum with slightly distorted but basically retained pillared layer structures. Microporosity of the materials is confirmed by adsorption of nitrogen, carbon dioxide, and hydrogen gases. Such microporous layered metal phosphonates pillared with cationic molecules should be unprecedented and should offer new strategies to design ordered microporous materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Ion Current Rectification, Limiting and Overlimiting Conductances in Nanopores

    PubMed Central

    van Oeffelen, Liesbeth; Van Roy, Willem; Idrissi, Hosni; Charlier, Daniel; Lagae, Liesbet; Borghs, Gustaaf

    2015-01-01

    Previous reports on Poisson-Nernst-Planck (PNP) simulations of solid-state nanopores have focused on steady state behaviour under simplified boundary conditions. These are Neumann boundary conditions for the voltage at the pore walls, and in some cases also Donnan equilibrium boundary conditions for concentrations and voltages at both entrances of the nanopore. In this paper, we report time-dependent and steady state PNP simulations under less restrictive boundary conditions, including Neumann boundary conditions applied throughout the membrane relatively far away from the nanopore. We simulated ion currents through cylindrical and conical nanopores with several surface charge configurations, studying the spatial and temporal dependence of the currents contributed by each ion species. This revealed that, due to slow co-diffusion of oppositely charged ions, steady state is generally not reached in simulations or in practice. Furthermore, it is shown that ion concentration polarization is responsible for the observed limiting conductances and ion current rectification in nanopores with asymmetric surface charges or shapes. Hence, after more than a decade of collective research attempting to understand the nature of ion current rectification in solid-state nanopores, a relatively intuitive model is retrieved. Moreover, we measured and simulated current-voltage characteristics of rectifying silicon nitride nanopores presenting overlimiting conductances. The similarity between measurement and simulation shows that overlimiting conductances can result from the increased conductance of the electric double-layer at the membrane surface at the depletion side due to voltage-induced polarization charges. The MATLAB source code of the simulation software is available via the website http://micr.vub.ac.be. PMID:25978328

  16. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors.

    PubMed

    Wang, Gongkai; Sun, Xiang; Lu, Fengyuan; Sun, Hongtao; Yu, Mingpeng; Jiang, Weilin; Liu, Changsheng; Lian, Jie

    2012-02-06

    Flexible graphene paper (GP) pillared by carbon black (CB) nanoparticles using a simple vacuum filtration method is developed as a high-performance electrode material for supercapacitors. Through the introduction of CB nanoparticles as spacers, the self-restacking of graphene sheets during the filtration process is mitigated to a great extent. The pillared GP-based supercapacitors exhibit excellent electrochemical performances and cyclic stabilities compared with GP without the addition of CB nanoparticles. At a scan rate of 10 mV s(-1) , the specific capacitance of the pillared GP is 138 F g(-1) and 83.2 F g(-1) with negligible 3.85% and 4.35% capacitance degradation after 2000 cycles in aqueous and organic electrolytes, respectively. At an extremely fast scan rate of 500 mV s (-1) , the specific capacitance can reach 80 F g(-1) in aqueous electrolyte. No binder is needed for assembling the supercapacitor cells and the pillared GP itself may serve as a current collector due to its intrinsic high electrical conductivity. The pillared GP has great potential in the development of promising flexible and ultralight-weight supercapacitors for electrochemical energy storage. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Extending and implementing the Persistent ID pillars

    NASA Astrophysics Data System (ADS)

    Car, Nicholas; Golodoniuc, Pavel; Klump, Jens

    2017-04-01

    The recent double decade anniversary of scholarly persistent identifier use has triggered journal special editions such as "20 Years of Persistent Identifiers". For such a publication, it is apt to consider the longevity of some persistent identifier (PID) mechanisms (Digital Object Identifiers) and the partial disappearance of others (Life Sciences IDs). We have previously postulated a set of "PID Pillars" [1] which are design principles aimed at ensuring PIDs can survive technology and social change and thus persist for the long term that we have drawn from our observations of PIDs at work over many years. The principles: describe how to ensure identifiers' system and organisation independence; codify the delivery of essential PID system functions; mandate a separation of PID functions from data delivery mechanisms; and require generation of policies detailing how change is handled. In this presentation, first we extend on our previous work of introducing the pillars by refining their descriptions, giving specific suggestions for each and presenting some work that addresses them. Second, we propose a baseline data model for persistent identifiers that, if used, would assist the separation of PID metadata and PID system functioning. This would allow PID system function specifics to change over time (e.g. resolver services or even resolution protocols) and yet preserve the PIDs themselves. Third, we detail our existing PID system — the PID Service [2] — that partially implements the pillars and describe both its successes and shortcomings. Finally, we describe our planned next-generation system that will aim to use the baseline data model and fully implement the pillars.

  18. Nanoporous Polymers Based on Liquid Crystals

    PubMed Central

    Mulder, Dirk Jan; Sijbesma, Rint; Schenning, Albert

    2018-01-01

    In the present review, we discuss recent advances in the field of nanoporous networks based on polymerisable liquid crystals. The field has matured in the last decade, yielding polymers having 1D, 2D, and 3D channels with pore sizes on the nanometer scale. Next to the current progress, some of the future challenges are presented, with the integration of nanoporous membranes in functional devices considered as the biggest challenge. PMID:29324669

  19. Nanopore formation in neuroblastoma cells following ultrashort electric pulse exposure

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Wilmink, Gerald J.; Ibey, Bennett L.

    2011-03-01

    Ultrashort or nanosecond electrical pulses (USEP) cause repairable damage to the plasma membranes of cells through formation of nanopores. These nanopores are able to pass small ions such as sodium, calcium, and potassium, but remain impermeable to larger molecules like trypan blue and propidium iodide. What remains uncertain is whether generation of nanopores by ultrashort electrical pulses can inhibit action potentials in excitable cells. In this paper, we explored the sensitivity of excitable cells to USEP using Calcium Green AM 1 ester fluorescence to measure calcium uptake indicative of nanopore formation in the plasma membrane. We determined the threshold for nanopore formation in neuroblastoma cells for three pulse parameters (amplitude, pulse width, and pulse number). Measurement of such thresholds will guide future studies to determine if USEP can inhibit action potentials without causing irreversible membrane damage.

  20. Development of Solid-State Nanopore Technology for Life Detection

    NASA Technical Reports Server (NTRS)

    Bywaters, K. B.; Schmidt, H.; Vercoutere, W.; Deamer, D.; Hawkins, A. R.; Quinn, R. C.; Burton, A. S.; Mckay, C. P.

    2017-01-01

    Biomarkers for life on Earth are an important starting point to guide the search for life elsewhere. However, the search for life beyond Earth should incorporate technologies capable of recognizing an array of potential biomarkers beyond what we see on Earth, in order to minimize the risk of false negatives from life detection missions. With this in mind, charged linear polymers may be a universal signature for life, due to their ability to store information while also inherently reducing the tendency of complex tertiary structure formation that significantly inhibit replication. Thus, these molecules are attractive targets for biosignature detection as potential "self-sustaining chemical signatures." Examples of charged linear polymers, or polyelectrolytes, include deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) as well as synthetic polyelectrolytes that could potentially support life, including threose nucleic acid (TNA) and other xenonucleic acids (XNAs). Nanopore analysis is a novel technology that has been developed for singlemolecule sequencing with exquisite single nucleotide resolution which is also well-suited for analysis of polyelectrolyte molecules. Nanopore analysis has the ability to detect repeating sequences of electrical charges in organic linear polymers, and it is not molecule- specific (i.e. it is not restricted to only DNA or RNA). In this sense, it is a better life detection technique than approaches that are based on specific molecules, such as the polymerase chain reaction (PCR), which requires that the molecule being detected be composed of DNA.

  1. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building.

    PubMed

    Pomerantz, Aaron; Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan

    2018-04-01

    Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research-focused ecotourism.

  2. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building

    PubMed Central

    Peñafiel, Nicolás; Arteaga, Alejandro; Bustamante, Lucas; Pichardo, Frank; Coloma, Luis A; Barrio-Amorós, César L; Salazar-Valenzuela, David; Prost, Stefan

    2018-01-01

    Abstract Background Advancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here, we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack in one of the world's most imperiled biodiversity hotspots, the Ecuadorian Chocó rainforest. We used portable equipment, including the MinION nanopore sequencer (Oxford Nanopore Technologies) and the miniPCR (miniPCR), to perform DNA extraction, polymerase chain reaction amplification, and real-time DNA barcoding of reptile specimens in the field. Findings We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. The flexibility of our mobile laboratory further allowed us to generate sequence information at the Universidad Tecnológica Indoamérica in Quito for rare, endangered, and undescribed species. This includes the recently rediscovered Jambato toad, which was thought to be extinct for 28 years. Sequences generated on the MinION required as few as 30 reads to achieve high accuracy relative to Sanger sequencing, and with further multiplexing of samples, nanopore sequencing can become a cost-effective approach for rapid and portable DNA barcoding. Conclusions Overall, we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas to aid in conservation efforts and be applied to research facilities in developing countries. This opens up possibilities for biodiversity studies by promoting local research capacity building, teaching nonspecialists and students about the environment, tackling wildlife crime, and promoting conservation via research

  3. Ion selection of charge-modified large nanopores in a graphene sheet

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  4. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    DOE PAGES

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; ...

    2015-06-04

    PVDF and P(VDF-TrFE) nano- and micro- structures are widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use ofmore » the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures.« less

  5. Nanowire-nanopore transistor sensor for DNA detection during translocation

    NASA Astrophysics Data System (ADS)

    Xie, Ping; Xiong, Qihua; Fang, Ying; Qing, Quan; Lieber, Charles

    2011-03-01

    Nanopore sequencing, as a promising low cost, high throughput sequencing technique, has been proposed more than a decade ago. Due to the incompatibility between small ionic current signal and fast translocation speed and the technical difficulties on large scale integration of nanopore for direct ionic current sequencing, alternative methods rely on integrated DNA sensors have been proposed, such as using capacitive coupling or tunnelling current etc. But none of them have been experimentally demonstrated yet. Here we show that for the first time an amplified sensor signal has been experimentally recorded from a nanowire-nanopore field effect transistor sensor during DNA translocation. Independent multi-channel recording was also demonstrated for the first time. Our results suggest that the signal is from highly localized potential change caused by DNA translocation in none-balanced buffer condition. Given this method may produce larger signal for smaller nanopores, we hope our experiment can be a starting point for a new generation of nanopore sequencing devices with larger signal, higher bandwidth and large-scale multiplexing capability and finally realize the ultimate goal of low cost high throughput sequencing.

  6. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen [San Leandro, CA; Baumann, Theodore F [Discovery Bay, CA; Shao, Lihua [Karlsruhe, DE; Weissmueller, Joerg [Stutensee, DE

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  7. Silicon deposition in nanopores using a liquid precursor.

    PubMed

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-22

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  8. Silicon deposition in nanopores using a liquid precursor

    NASA Astrophysics Data System (ADS)

    Masuda, Takashi; Tatsuda, Narihito; Yano, Kazuhisa; Shimoda, Tatsuya

    2016-11-01

    Techniques for depositing silicon into nanosized spaces are vital for the further scaling down of next-generation devices in the semiconductor industry. In this study, we filled silicon into 3.5-nm-diameter nanopores with an aspect ratio of 70 by exploiting thermodynamic behaviour based on the van der Waals energy of vaporized cyclopentasilane (CPS). We originally synthesized CPS as a liquid precursor for semiconducting silicon. Here we used CPS as a gas source in thermal chemical vapour deposition under atmospheric pressure because vaporized CPS can fill nanopores spontaneously. Our estimation of the free energy of CPS based on Lifshitz van der Waals theory clarified the filling mechanism, where CPS vapour in the nanopores readily undergoes capillary condensation because of its large molar volume compared to those of other vapours such as water, toluene, silane, and disilane. Consequently, a liquid-specific feature was observed during the deposition process; specifically, condensed CPS penetrated into the nanopores spontaneously via capillary force. The CPS that filled the nanopores was then transformed into solid silicon by thermal decomposition at 400 °C. The developed method is expected to be used as a nanoscale silicon filling technology, which is critical for the fabrication of future quantum scale silicon devices.

  9. Theoretical and experimental studies on ionic currents in nanopore-based biosensors.

    PubMed

    Liu, Lei; Li, Chu; Ma, Jian; Wu, Yingdong; Ni, Zhonghua; Chen, Yunfei

    2014-12-01

    Novel generation of analytical technology based on nanopores has provided possibilities to fabricate nanofluidic devices for low-cost DNA sequencing or rapid biosensing. In this paper, a simplified model was suggested to describe DNA molecule's translocation through a nanopore, and the internal potential, ion concentration, ionic flowing speed and ionic current in nanopores with different sizes were theoretically calculated and discussed on the basis of Poisson-Boltzmann equation, Navier-Stokes equation and Nernst-Planck equation by considering several important parameters, such as the applied voltage, the thickness and the electric potential distributions in nanopores. In this way, the basic ionic currents, the modulated ionic currents and the current drops induced by translocation were obtained, and the size effects of the nanopores were carefully compared and discussed based on the calculated results and experimental data, which indicated that nanopores with a size of 10 nm or so are more advantageous to achieve high quality ionic current signals in DNA sensing.

  10. Computational modeling and analysis of thermoelectric properties of nanoporous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Yu, Y.; Li, G., E-mail: gli@clemson.edu

    2014-03-28

    In this paper, thermoelectric properties of nanoporous silicon are modeled and studied by using a computational approach. The computational approach combines a quantum non-equilibrium Green's function (NEGF) coupled with the Poisson equation for electrical transport analysis, a phonon Boltzmann transport equation (BTE) for phonon thermal transport analysis and the Wiedemann-Franz law for calculating the electronic thermal conductivity. By solving the NEGF/Poisson equations self-consistently using a finite difference method, the electrical conductivity σ and Seebeck coefficient S of the material are numerically computed. The BTE is solved by using a finite volume method to obtain the phonon thermal conductivity k{sub p}more » and the Wiedemann-Franz law is used to obtain the electronic thermal conductivity k{sub e}. The figure of merit of nanoporous silicon is calculated by ZT=S{sup 2}σT/(k{sub p}+k{sub e}). The effects of doping density, porosity, temperature, and nanopore size on thermoelectric properties of nanoporous silicon are investigated. It is confirmed that nanoporous silicon has significantly higher thermoelectric energy conversion efficiency than its nonporous counterpart. Specifically, this study shows that, with a n-type doping density of 10{sup 20} cm{sup –3}, a porosity of 36% and nanopore size of 3 nm × 3 nm, the figure of merit ZT can reach 0.32 at 600 K. The results also show that the degradation of electrical conductivity of nanoporous Si due to the inclusion of nanopores is compensated by the large reduction in the phonon thermal conductivity and increase of absolute value of the Seebeck coefficient, resulting in a significantly improved ZT.« less

  11. Rim-Differentiated C5-Symmetric Tiara-Pillar[5]arenes

    PubMed Central

    2017-01-01

    The synthesis of “rim-differentiated” C5-symmetric pillar[5]arenes, whose two rims are decorated with different chemical functionalities, has remained a challenging task. This is due to the inherent statistical nature of the cyclization of 1,4-disubstituted alkoxybenzenes with different substituents, which leads to four constitutional isomers with only 1/16th being rim-differentiated. Herein, we report a “preoriented” synthetic protocol based on FeCl3-catalyzed cyclization of asymmetrically substituted 2,5-dialkoxybenzyl alcohols. This yields an unprecedented 55% selectivity of the C5-symmetric tiara-like pillar[5]arene isomer among four constitutional isomers. Based on this new method, a series of functionalizable tiara-pillar[5]arene derivatives with C5-symmetry was successfully synthesized, isolated, and fully characterized in the solid state. PMID:29220153

  12. Hubble Goes High Def to Revisit the Iconic 'Pillars of Creation'

    NASA Image and Video Library

    2017-12-08

    This NASA Hubble Space Telescope image, taken in near-infrared light, transforms the pillars into eerie, wispy silhouettes, which are seen against a background of myriad stars. The near-infrared light can penetrate much of the gas and dust, revealing stars behind the nebula as well as hidden away inside the pillars. Some of the gas and dust clouds are so dense that even the near-infrared light cannot penetrate them. New stars embedded in the tops of the pillars, however, are apparent as bright sources that are unseen in the visible image. The ghostly bluish haze around the dense edges of the pillars is material getting heated up by the intense ultraviolet radiation from a cluster of young, massive stars and evaporating away into space. The stellar grouping is above the pillars and cannot be seen in the image. At the top edge of the left-hand pillar, a gaseous fragment has been heated up and is flying away from the structure, underscoring the violent nature of star-forming regions. Astronomers used filters that isolate the light from newly formed stars, which are invisible in the visible-light image. At these wavelengths, astronomers are seeing through the pillars and even through the back wall of the nebula cavity and can see the next generations of stars just as they're starting to emerge from their formative nursery. Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA) Read more: 1.usa.gov/1HGfkqr NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Data supporting attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts.

    PubMed

    Moerke, Caroline; Mueller, Petra; Nebe, Barbara

    2016-06-01

    The provided data contains the phagocytic interaction of human MG-63 osteoblasts with micro-particles 6 µm in size as well as geometric micro-pillared topography with micro-pillar sizes 5 µm of length, width, height and spacing respectively related to the research article entitled "Attempted caveolae-mediated phagocytosis of surface-fixed micro-pillars by human osteoblasts" in the Biomaterials journal. [1] Micro-particle treatment was used as positive control triggering phagocytosis by the osteoblasts. Caveolin-1 (Cav-1) as major structural component of caveolae [2] plays an important role in the phagocytic process of micro-particles and -pillars. Data related to the experiments in [1] with siRNA-mediated knockdown are presented here as well as micro-particle control experiments, tubulin analysis on the micro-pillared topography and initial cell interaction with the micro-pillars.

  14. Nanopores: A journey towards DNA sequencing

    PubMed Central

    Wanunu, Meni

    2013-01-01

    Much more than ever, nucleic acids are recognized as key building blocks in many of life's processes, and the science of studying these molecular wonders at the single-molecule level is thriving. A new method of doing so has been introduced in the mid 1990's. This method is exceedingly simple: a nanoscale pore that spans across an impermeable thin membrane is placed between two chambers that contain an electrolyte, and voltage is applied across the membrane using two electrodes. These conditions lead to a steady stream of ion flow across the pore. Nucleic acid molecules in solution can be driven through the pore, and structural features of the biomolecules are observed as measurable changes in the trans-membrane ion current. In essence, a nanopore is a high-throughput ion microscope and a single-molecule force apparatus. Nanopores are taking center stage as a tool that promises to read a DNA sequence, and this promise has resulted in overwhelming academic, industrial, and national interest. Regardless of the fate of future nanopore applications, in the process of this 16-year-long exploration, many studies have validated the indispensability of nanopores in the toolkit of single-molecule biophysics. This review surveys past and current studies related to nucleic acid biophysics, and will hopefully provoke a discussion of immediate and future prospects for the field. PMID:22658507

  15. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  16. Development of a 3D origami multiplex electrochemical immunodevice using a nanoporous silver-paper electrode and metal ion functionalized nanoporous gold-chitosan.

    PubMed

    Li, Weiping; Li, Long; Li, Meng; Yu, Jinghua; Ge, Shenguang; Yan, Mei; Song, Xianrang

    2013-10-25

    A simple and sensitive 3D microfluidic origami multiplex electrochemical immunodevice was developed for the first time using a novel nanoporous silver modified paper working electrode as a sensor platform and different metal ion functionalized nanoporous gold-chitosan as a tracer.

  17. Colorimetric sensor array for determination and identification of toxic industrial chemicals.

    PubMed

    Feng, Liang; Musto, Christopher J; Kemling, Jonathan W; Lim, Sung H; Zhong, Wenxuan; Suslick, Kenneth S

    2010-11-15

    A low-cost yet highly sensitive colorimetric sensor array for the detection and identification of toxic industrial chemicals (TICs) has been developed. The sensor consists of a disposable array of cross-responsive nanoporous pigments whose colors are changed by diverse chemical interactions with analytes. Clear differentiation among 20 different TICs has been easily achieved at both their IDLH (immediately dangerous to life or health) concentration within 2 min of exposure and PEL (permissible exposure limit) concentration within 5 min of exposure with no errors or misclassifications. Detection limits are generally well below the PEL (in most cases below 5% of PEL) and are typically in the low ppb range. The colorimetric sensor array is not responsive to changes in humidity or temperature over a substantial range. The printed arrays show excellent batch to batch reproducibility and long shelf life (greater than 3 months).

  18. Molecular-based design and emerging applications of nanoporous carbon spheres

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Wickramaratne, Nilantha P.; Qiao, Shi Zhang; Jaroniec, Mietek

    2015-08-01

    Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine -- all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

  19. Molecular-based design and emerging applications of nanoporous carbon spheres.

    PubMed

    Liu, Jian; Wickramaratne, Nilantha P; Qiao, Shi Zhang; Jaroniec, Mietek

    2015-08-01

    Over the past decade, considerable progress has been made in the synthesis and applications of nanoporous carbon spheres ranging in size from nanometres to micrometres. This Review presents the primary techniques for preparing nanoporous carbon spheres and the seminal research that has inspired their development, presented potential applications and uncovered future challenges. First we provide an overview of the synthesis techniques, including the Stöber method and those based on templating, self-assembly, emulsion and hydrothermal carbonization, with special emphasis on the design and functionalization of nanoporous carbon spheres at the molecular level. Next, we cover the key applications of these spheres, including adsorption, catalysis, separation, energy storage and biomedicine — all of which might benefit from the regular geometry, good liquidity, tunable porosity and controllable particle-size distribution offered by nanoporous carbon spheres. Finally, we present the current challenges and opportunities in the development and commercial applications of nanoporous carbon spheres.

  20. Relations between Eastern Four Pillars Theory and Western Measures of Personality Traits

    PubMed Central

    Jung, Seung Ah

    2015-01-01

    Purpose The present study investigated the validity of personality classification using four pillars theory, a tradition in China and northeastern Asia. Materials and Methods Four pillars analyses were performed for 148 adults on the basis of their birth year, month, day, and hour. Participants completed two personality tests, the Korean version of Temperament and Character Inventory-Revised-Short Version (TCI) and the Korean Inventory of Interpersonal Problems; scores were correlated with four pillars classification elements. Mean difference tests (e.g., t-test, ANOVA) were compared with groups classified by four pillars index. Results There were no significant correlations between personality scale scores and total yin/yang number (i.e., the 8 heavenly or earthly stems), and no significant between-groups results for classifications by yin/yang day stem and the five elements. There were significant but weak (r=0.18-0.29) correlations between the five elements and personality scale scores. For the six gods and personality scales, there were significant but weak (r=0.18-0.25) correlations. Features predicted by four pillars theory were most consistent when participants were grouped according to the yin/yang of the day stem and dominance of yin/yang numbers in the eight heavenly or earthly stems. Conclusion Although the major criteria of four pillars theory were not independently correlated with personality scale scores, correlations emerged when participants were grouped according to the composite yin/yang variable. Our results suggest the utility of four pillars theory (beyond fortune telling or astrology) for classifying personality traits and making behavioral predictions. PMID:25837175

  1. Rectification of nanopores in aprotic solvents--transport properties of nanopores with surface dipoles.

    PubMed

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A; Siwy, Zuzanna S

    2015-12-07

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li(+) ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.

  2. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  3. Engineering the internal surfaces of three-dimensional nanoporous catalysts by surfactant-modified dealloying.

    PubMed

    Wang, Zhili; Liu, Pan; Han, Jiuhui; Cheng, Chun; Ning, Shoucong; Hirata, Akihiko; Fujita, Takeshi; Chen, Mingwei

    2017-10-20

    Tuning surface structures by bottom-up synthesis has been demonstrated as an effective strategy to improve the catalytic performances of nanoparticle catalysts. Nevertheless, the surface modification of three-dimensional nanoporous metals, fabricated by a top-down dealloying approach, has not been achieved despite great efforts devoted to improving the catalytic performance of three-dimensional nanoporous catalysts. Here we report a surfactant-modified dealloying method to tailor the surface structure of nanoporous gold for amplified electrocatalysis toward methanol oxidation and oxygen reduction reactions. With the assistance of surfactants, {111} or {100} faceted internal surfaces of nanoporous gold can be realized in a controllable manner by optimizing dealloying conditions. The surface modified nanoporous gold exhibits significantly enhanced electrocatalytic activities in comparison with conventional nanoporous gold. This study paves the way to develop high-performance three-dimensional nanoporous catalysts with a tunable surface structure by top-down dealloying for efficient chemical and electrochemical reactions.

  4. Electrochemical annealing of nanoporous gold by application of cyclic potential sweeps

    PubMed Central

    Sharma, Abeera; Bhattarai, Jay K.; Alla, Allan J.; Demchenko, Alexei V.; Stine, Keith J.

    2015-01-01

    An electrochemical method for annealing the pore sizes of nanoporous gold is reported. The pore sizes of nanoporous gold can be increased by electrochemical cycling with the upper potential limit being just at the onset of gold oxide formation. This study has been performed in electrolyte solutions including potassium chloride, sodium nitrate and sodium perchlorate. Scanning electron microscopy images have been used for ligament and pore size analysis. We examine the modifications of nanoporous gold due to annealing using electrochemical impedance spectroscopy, and cyclic voltammetry and offer a comparison of the surface coverage using the gold oxide stripping method as well as the method in which electrochemically accessible surface area is determined by using a diffusing redox probe. The effect of additives adsorbed on the nanoporous gold surface when subjected to annealing in different electrolytes as well as the subsequent structural changes in nanoporous gold are also reported. The effect of the annealing process on the application of nanoporous gold as a substrate for glucose electro-oxidation is briefly examined. PMID:25649027

  5. Nonfaradaic nanoporous electrochemistry for conductometry at high electrolyte concentration.

    PubMed

    Bae, Je Hyun; Kang, Chung Mu; Choi, Hyoungseon; Kim, Beom Jin; Jang, Woohyuk; Lim, Sung Yul; Kim, Hee Chan; Chung, Taek Dong

    2015-02-17

    Nanoporous electrified surfaces create a unique nonfaradaic electrochemical behavior that is sensitively influenced by pore size, morphology, ionic strength, and electric field modulation. Here, we report the contributions of ion concentration and applied ac frequency to the electrode impedance through an electrical double layer overlap and ion transport along the nanopores. Nanoporous Pt with uniform pore size and geometry (L2-ePt) responded more sensitively to conductivity changes in aqueous solutions than Pt black with poor uniformity despite similar real surface areas and enabled the previously difficult quantitative conductometry measurements at high electrolyte concentrations. The nanopores of L2-ePt were more effective in reducing the electrode impedance and exhibited superior linear responses to not only flat Pt but also Pt black, leading to successful conductometric detection in ion chromatography without ion suppressors and at high ionic strengths.

  6. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J [Naperville, IL; Hryn, John N [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  7. Optimized nanoporous materials.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired bymore » these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.« less

  8. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning.

    PubMed

    Teng, Haotian; Cao, Minh Duc; Hall, Michael B; Duarte, Tania; Wang, Sheng; Coin, Lachlan J M

    2018-05-01

    Sequencing by translocating DNA fragments through an array of nanopores is a rapidly maturing technology that offers faster and cheaper sequencing than other approaches. However, accurately deciphering the DNA sequence from the noisy and complex electrical signal is challenging. Here, we report Chiron, the first deep learning model to achieve end-to-end basecalling and directly translate the raw signal to DNA sequence without the error-prone segmentation step. Trained with only a small set of 4,000 reads, we show that our model provides state-of-the-art basecalling accuracy, even on previously unseen species. Chiron achieves basecalling speeds of more than 2,000 bases per second using desktop computer graphics processing units.

  9. Large Deformation Characteristics and Reinforcement Measures for a Rock Pillar in the Houziyan Underground Powerhouse

    NASA Astrophysics Data System (ADS)

    Xiao, Xin-hong; Xiao, Pei-wei; Dai, Feng; Li, Hai-bo; Zhang, Xue-bin; Zhou, Jia-wen

    2018-02-01

    The underground powerhouse of the Houziyan Hydropower Station is under the conditions of high geo-stress and a low strength/stress ratio, which leads to significant rock deformation and failures, especially for rock pillars due to bidirectional unloading during the excavation process. Damages occurred in thinner rock pillars after excavation due to unloading and stress concentration, which will reduce the surrounding rock integrity and threaten the safety of the underground powerhouse. By using field investigations and multi-source monitoring data, the deformation and failure characteristics of a rock pillar are analyzed from the tempo-spatial distribution features. These results indicate that significant deformation occurred in the rock pillar when the powerhouse was excavated to the fourth layer, and the maximum displacement reached 107.57 mm, which occurred on the main transformer chamber upstream sidewall at an elevation of 1721.20 m. The rock deformation surrounding the rock pillar is closely related to the excavation process and has significant time-related characteristics. To control large deformation of the rock pillar, thru-anchor cables were used to reinforce the rock pillar to ensure the stability of the powerhouse. The rock deformation surrounding the rock pillar decreases gradually and forms a convergent trend after reinforcement measures are installed based on the analysis of the temporal characteristics and the rock pillar deformation rate.

  10. Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays

    PubMed Central

    Choi, Yoon-Young; Yun, Tae Gwang; Qaiser, Nadeem; Paik, Haemin; Roh, Hee Seok; Hong, Jongin; Hong, Seungbum; Han, Seung Min; No, Kwangsoo

    2015-01-01

    PVDF and P(VDF-TrFE) nano- and micro- structures have been widely used due to their potential applications in several fields, including sensors, actuators, vital sign transducers, and energy harvesters. In this study, we developed vertically aligned P(VDF-TrFE) core-shell structures using high modulus polyurethane acrylate (PUA) pillars as the support structure to maintain the structural integrity. In addition, we were able to improve the piezoelectric effect by 1.85 times from 40 ± 2 to 74 ± 2 pm/V when compared to the thin film counterpart, which contributes to the more efficient current generation under a given stress, by making an effective use of the P(VDF-TrFE) thin top layer as well as the side walls. We attribute the enhancement of piezoelectric effects to the contributions from the shell component and the strain confinement effect, which was supported by our modeling results. We envision that these organic-based P(VDF-TrFE) core-shell structures will be used widely as 3D sensors and power generators because they are optimized for current generations by utilizing all surface areas, including the side walls of core-shell structures. PMID:26040539

  11. Simultaneous Size Control of Microcapsule and Its Nanopores Using Polymer Concentration

    NASA Astrophysics Data System (ADS)

    Cha, Jemyung; Jeong, Eun Ho; Takahiro, Arakawa; Kim, Kyung Chun; Shoji, Shuich; Go, Jeung Sang

    2010-03-01

    Polymeric microcapsules with nanopores are produced using the droplet-based self-assembly of a block copolymer in the microfluidic channel. Differently from the conventional wise, the sizes of the microcapsule and its nanopores are controlled by changing the concentration of the block copolymer dissolved in an organic solvent. The increase in the polymer concentration shows the increase in the size of the microcapsule and the decrease of the size and number of the nanopores. Also, to obtain the optimal morphology of the nanopores in the microcapsule, the removal process of a surfactant is newly developed by using a microporous metal mesh.

  12. Solid-state nanopores of controlled geometry fabricated in a transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Qian, Hui; Egerton, Ray F.

    2017-11-01

    Energy-filtered transmission electron microscopy and electron tomography were applied to in situ studies of the formation, shape, and diameter of nanopores formed in a silicon nitride membrane in a transmission electron microscope. The nanopore geometry was observed in three dimensions by electron tomography. Drilling conditions, such as probe current, beam convergence angle, and probe position, affect the formation rate and the geometry of the pores. With a beam convergence semi-angle of α = 22 mrad, a conical shaped nanopore is formed but at α = 45 mrad, double-cone (hourglass-shaped) nanopores were produced. Nanopores with an effective diameter between 10 nm and 1.8 nm were fabricated by controlling the drilling time.

  13. Selective Separation of Metal Ions via Monolayer Nanoporous Graphene with Carboxyl Groups.

    PubMed

    Li, Zhan; Liu, Yanqi; Zhao, Yang; Zhang, Xin; Qian, Lijuan; Tian, Longlong; Bai, Jing; Qi, Wei; Yao, Huijun; Gao, Bin; Liu, Jie; Wu, Wangsuo; Qiu, Hongdeng

    2016-10-18

    Graphene-coated plastic substrates, such as polyethylene terephthalate (PET), are regularly used in flexible electronic devices. Here we demonstrate a new application of the graphene-coated nanoporous PET membrane for the selective separation of metal ions in an ion exchange manner. Irradiation with swift heavy ions is used to perforate graphene and PET substrate. This process could create graphene nanopores with carboxyl groups, thus forming conical holes in the PET after chemical etching to support graphene nanopores. Therefore, a monolayer nanoporous graphene membrane with a PET substrate is constructed successfully to investigate its ionic selective separation. We find that the permeation ratio of ions strongly depends on the temperature and H + concentration in the driving solution. An electric field can increase the permeation ratio of ions through the graphene nanopores, but it inhibits the ion selective separation. Moreover, the structure of the graphene nanopore with carboxyl groups is resolved at the density functional theory level. The results show the asymmetric structure of the nanopore with carboxyl groups, and the analysis indicates that the ionic permeation can be attributed to the ion exchange between metal ions and protons on the two sides of graphene nanopores. These results would be beneficial to the design of membrane separation materials made from graphene with efficient online and offline bulk separation.

  14. Large apparent electric size of solid-state nanopores due to spatially extended surface conduction.

    PubMed

    Lee, Choongyeop; Joly, Laurent; Siria, Alessandro; Biance, Anne-Laure; Fulcrand, Rémy; Bocquet, Lydéric

    2012-08-08

    Ion transport through nanopores drilled in thin membranes is central to numerous applications, including biosensing and ion selective membranes. This paper reports experiments, numerical calculations, and theoretical predictions demonstrating an unexpectedly large ionic conduction in solid-state nanopores, taking its origin in anomalous entrance effects. In contrast to naive expectations based on analogies with electric circuits, the surface conductance inside the nanopore is shown to perturb the three-dimensional electric current streamlines far outside the nanopore in order to meet charge conservation at the pore entrance. This unexpected contribution to the ionic conductance can be interpreted in terms of an apparent electric size of the solid-state nanopore, which is much larger than its geometric counterpart whenever the number of charges carried by the nanopore surface exceeds its bulk counterpart. This apparent electric size, which can reach hundreds of nanometers, can have a major impact on the electrical detection of translocation events through nanopores, as well as for ionic transport in biological nanopores.

  15. Confining metal-halide perovskites in nanoporous thin films

    PubMed Central

    Demchyshyn, Stepan; Roemer, Janina Melanie; Groiß, Heiko; Heilbrunner, Herwig; Ulbricht, Christoph; Apaydin, Dogukan; Böhm, Anton; Rütt, Uta; Bertram, Florian; Hesser, Günter; Scharber, Markus Clark; Sariciftci, Niyazi Serdar; Nickel, Bert; Bauer, Siegfried; Głowacki, Eric Daniel; Kaltenbrunner, Martin

    2017-01-01

    Controlling the size and shape of semiconducting nanocrystals advances nanoelectronics and photonics. Quantum-confined, inexpensive, solution-derived metal halide perovskites offer narrowband, color-pure emitters as integral parts of next-generation displays and optoelectronic devices. We use nanoporous silicon and alumina thin films as templates for the growth of perovskite nanocrystallites directly within device-relevant architectures without the use of colloidal stabilization. We find significantly blue-shifted photoluminescence emission by reducing the pore size; normally infrared-emitting materials become visibly red, and green-emitting materials become cyan and blue. Confining perovskite nanocrystals within porous oxide thin films drastically increases photoluminescence stability because the templates auspiciously serve as encapsulation. We quantify the template-induced size of the perovskite crystals in nanoporous silicon with microfocus high-energy x-ray depth profiling in transmission geometry, verifying the growth of perovskite nanocrystals throughout the entire thickness of the nanoporous films. Low-voltage electroluminescent diodes with narrow, blue-shifted emission fabricated from nanocrystalline perovskites grown in embedded nanoporous alumina thin films substantiate our general concept for next-generation photonic devices. PMID:28798959

  16. Nanoporous PbSe-SiO2 Thermoelectric Composites.

    PubMed

    Wu, Chao-Feng; Wei, Tian-Ran; Sun, Fu-Hua; Li, Jing-Feng

    2017-11-01

    Nanoporous architecture has long been predicted theoretically for its proficiency in suppressing thermal conduction, but less concerned as a practical approach for better thermoelectric materials hitherto probably due to its technical challenges. This article demonstrates a study on nanoporous PbSe-SiO 2 composites fabricated by a facile method of mechanical alloying assisted by subsequent wet-milling and then spark plasma sintering. Owing to the formation of random nanopores and additional interface scattering, the lattice thermal conductivity is limited to a value as low as 0.56 W m -1 K -1 at above 600 K, almost the same low level achieved by introducing nanoscale precipitates. Besides, the room-temperature electrical transport is found to be dominated by the grain-boundary potential barrier scattering, whose effect fades away with increasing temperatures. Consequently, a maximum ZT of 1.15 at 823 K is achieved in the PbSe + 0.7 vol% SiO 2 composition with >20% increase in average ZT , indicating the great potential of nanoporous structuring toward high thermoelectric conversion efficiency.

  17. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120

    PubMed Central

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W.; Perez, Rebeca; Silber, Nadine; Wolk, C. Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N2-fixing heterocysts and CO2-fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N-acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell–cell communication in Nostoc punctiforme. This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2, were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme, because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell–cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD. PMID:28929086

  18. Role of Two Cell Wall Amidases in Septal Junction and Nanopore Formation in the Multicellular Cyanobacterium Anabaena sp. PCC 7120.

    PubMed

    Bornikoel, Jan; Carrión, Alejandro; Fan, Qing; Flores, Enrique; Forchhammer, Karl; Mariscal, Vicente; Mullineaux, Conrad W; Perez, Rebeca; Silber, Nadine; Wolk, C Peter; Maldener, Iris

    2017-01-01

    Filamentous cyanobacteria have developed a strategy to perform incompatible processes in one filament by differentiating specialized cell types, N 2 -fixing heterocysts and CO 2 -fixing, photosynthetic, vegetative cells. These bacteria can be considered true multicellular organisms with cells exchanging metabolites and signaling molecules via septal junctions, involving the SepJ and FraCD proteins. Previously, it was shown that the cell wall lytic N -acetylmuramyl-L-alanine amidase, AmiC2, is essential for cell-cell communication in Nostoc punctiforme . This enzyme perforates the septal peptidoglycan creating an array of nanopores, which may be the framework for septal junction complexes. In Anabaena sp. PCC 7120, two homologs of AmiC2, encoded by amiC1 and amiC2 , were identified and investigated in two different studies. Here, we compare the function of both AmiC proteins by characterizing different Anabaena amiC mutants, which was not possible in N. punctiforme , because there the amiC1 gene could not be inactivated. This study shows the different impact of each protein on nanopore array formation, the process of cell-cell communication, septal protein localization, and heterocyst differentiation. Inactivation of either amidase resulted in significant reduction in nanopore count and in the rate of fluorescent tracer exchange between neighboring cells measured by FRAP analysis. In an amiC1 amiC2 double mutant, filament morphology was affected and heterocyst differentiation was abolished. Furthermore, the inactivation of amiC1 influenced SepJ localization and prevented the filament-fragmentation phenotype that is characteristic of sepJ or fraC fraD mutants. Our findings suggest that both amidases are to some extent redundant in their function, and describe a functional relationship of AmiC1 and septal proteins SepJ and FraCD.

  19. Six Pillars of Organic Chemistry

    ERIC Educational Resources Information Center

    Mullins, Joseph J.

    2008-01-01

    This article describes an approach to teaching organic chemistry, which is to have students build their knowledge of organic chemistry upon a strong foundation of the fundamental concepts of the subject. Specifically, the article focuses upon a core set of concepts that I call "the six pillars of organic chemistry": electronegativity, polar…

  20. Single cigar-shaped nanopores functionalized with amphoteric amino acid chains: experimental and theoretical characterization.

    PubMed

    Ali, Mubarak; Ramirez, Patricio; Nguyen, Hung Quoc; Nasir, Saima; Cervera, Javier; Mafe, Salvador; Ensinger, Wolfgang

    2012-04-24

    We present an experimental and theoretical characterization of single cigar-shaped nanopores with pH-responsive carboxylic acid and lysine chains functionalized on the pore surface. The nanopore characterization includes (i) optical images of the nanostructure obtained by FESEM; (ii) different chemical procedures for the nanopore preparation (etching time and functionalizations; pH and electrolyte concentration of the external solution) allowing externally tunable nanopore responses monitored by the current-voltage (I-V) curves; and (iii) transport simulations obtained with a multilayer nanopore model. We show that a single, approximately symmetric nanopore can be operated as a reconfigurable diode showing different rectifying behaviors by applying chemical and electrical signals. The remarkable characteristics of the new nanopore are the sharp response observed in the I-V curves, the improved tunability (with respect to previous designs of symmetric nanopores) which is achieved because of the direct external access to the nanostructure mouths, and the broad range of rectifying properties. The results concern both fundamental concepts useful for the understanding of transport processes in biological systems (ion channels) and applications relevant for tunable nanopore technology (information processing and drug controlled release).

  1. Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium

    DOE PAGES

    Hopkins, Patrick E.; Norris, Pamela M.; Phinney, Leslie M.; ...

    2008-01-01

    The reduction of nanodevices has given recent attention to nanoporous materials due to their structure and geometry. However, the thermophysical properties of these materials are relatively unknown. In this article, an expression for thermal conductivity of nanoporous structures is derived based on the assumption that the finite size of the ligaments leads to electron-ligament wall scattering. This expression is then used to analyze the thermal conductivity of nanoporous structures in the event of electron-phonon nonequilibrium.

  2. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality.

    PubMed

    Fujita, Takeshi

    2017-01-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  3. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality

    PubMed Central

    Fujita, Takeshi

    2017-01-01

    Abstract Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals. PMID:29057026

  4. Hierarchical nanoporous metals as a path toward the ultimate three-dimensional functionality

    NASA Astrophysics Data System (ADS)

    Fujita, Takeshi

    2017-12-01

    Nanoporous metals prepared via dealloying or selective leaching of solid solution alloys and compounds represent an emerging class of materials. They possess a three-dimensional (3D) structure of randomly interpenetrating ligaments/nanopores with sizes between 5 nm and several tens of micrometers, which can be tuned by varying their preparation conditions (such as dealloying time and temperature) or additional thermal coarsening. As compared to other nanostructured materials, nanoporous metals have many advantages, including their bicontinuous structure, tunable pore sizes, bulk form, good electrical conductivity, and high structural stability. Therefore, nanoporous metals represent ideal 3D materials with versatile functionality, which can be utilized in various fields. In this review, we describe the recent applications of nanoporous metals in molecular detection, catalysis, 3D graphene synthesis, hierarchical pore formation, and additive manufacturing (3D printing) together with our own achievements in these areas. Finally, we discuss possible ways of realizing the ultimate 3D functionality beyond the scope of nanoporous metals.

  5. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  6. Single molecule transistor based nanopore for the detection of nicotine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ray, S. J., E-mail: ray.sjr@gmail.com

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realisedmore » from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.« less

  7. Stretching and Controlled Motion of Single-Stranded DNA in Locally-Heated Solid-State Nanopores

    PubMed Central

    Belkin, Maxim; Maffeo, Christopher; Wells, David B.

    2013-01-01

    Practical applications of solid-state nanopores for DNA detection and sequencing require the electrophoretic motion of DNA through the nanopores to be precisely controlled. Controlling the motion of single-stranded DNA presents a particular challenge, in part because of the multitude of conformations that a DNA strand can adopt in a nanopore. Through continuum, coarse-grained and atomistic modeling, we demonstrate that local heating of the nanopore volume can be used to alter the electrophoretic mobility and conformation of single-stranded DNA. In the nanopore systems considered, the temperature near the nanopore is modulated via a nanometer-size heater element that can be radiatively switched on and off. The local enhancement of temperature produces considerable stretching of the DNA fragment confined within the nanopore. Such stretching is reversible, so that the conformation of DNA can be toggled between compact (local heating is off) and extended (local heating is on) states. The effective thermophoretic force acting on single-stranded DNA in the vicinity of the nanopore is found to be sufficiently large (4–8 pN) to affect such changes in the DNA conformation. The local heating of the nanopore volume is observed to promote single-file translocation of DNA strands at transmembrane biases as low as 10 mV, which opens new avenues for using solid-state nanopores for detection and sequencing of DNA. PMID:23876013

  8. Theory for polymer analysis using nanopore-based single-molecule mass spectrometry

    PubMed Central

    Reiner, Joseph E.; Kasianowicz, John J.; Nablo, Brian J.; Robertson, Joseph W. F.

    2010-01-01

    Nanometer-scale pores have demonstrated potential for the electrical detection, quantification, and characterization of molecules for biomedical applications and the chemical analysis of polymers. Despite extensive research in the nanopore sensing field, there is a paucity of theoretical models that incorporate the interactions between chemicals (i.e., solute, solvent, analyte, and nanopore). Here, we develop a model that simultaneously describes both the current blockade depth and residence times caused by individual poly(ethylene glycol) (PEG) molecules in a single α-hemolysin ion channel. Modeling polymer-cation binding leads to a description of two significant effects: a reduction in the mobile cation concentration inside the pore and an increase in the affinity between the polymer and the pore. The model was used to estimate the free energy of formation for K+-PEG inside the nanopore (≈-49.7 meV) and the free energy of PEG partitioning into the nanopore (≈0.76 meV per ethylene glycol monomer). The results suggest that rational, physical models for the analysis of analyte-nanopore interactions will develop the full potential of nanopore-based sensing for chemical and biological applications. PMID:20566890

  9. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  10. Nanoporous Ni with High Surface Area for Potential Hydrogen Storage Application.

    PubMed

    Zhou, Xiaocao; Zhao, Haibo; Fu, Zhibing; Qu, Jing; Zhong, Minglong; Yang, Xi; Yi, Yong; Wang, Chaoyang

    2018-06-01

    Nanoporous metals with considerable specific surface areas and hierarchical pore structures exhibit promising applications in the field of hydrogen storage, electrocatalysis, and fuel cells. In this manuscript, a facile method is demonstrated for fabricating nanoporous Ni with a high surface area by using SiO₂ aerogel as a template, i.e., electroless plating of Ni into an SiO₂ aerogel template followed by removal of the template at moderate conditions. The effects of the prepared conditions, including the electroless plating time, temperature of the structure, and the magnetism of nanoporous Ni are investigated in detail. The resultant optimum nanoporous Ni with a special 3D flower-like structure exhibited a high specific surface area of about 120.5 m²/g. The special nanoporous Ni exhibited a promising prospect in the field of hydrogen storage, with a hydrogen capacity of 0.45 wt % on 4.5 MPa at room temperature.

  11. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications

    PubMed Central

    Ferré-Borrull, Josep; Pallarès, Josep; Macías, Gerard; Marsal, Lluis F.

    2014-01-01

    Modifying the diameter of the pores in nanoporous anodic alumina opens new possibilities in the application of this material. In this work, we review the different nanoengineering methods by classifying them into two kinds: in situ and ex situ. Ex situ methods imply the interruption of the anodization process and the addition of intermediate steps, while in situ methods aim at realizing the in-depth pore modulation by continuous changes in the anodization conditions. Ex situ methods permit a greater versatility in the pore geometry, while in situ methods are simpler and adequate for repeated cycles. As an example of ex situ methods, we analyze the effect of changing drastically one of the anodization parameters (anodization voltage, electrolyte composition or concentration). We also introduce in situ methods to obtain distributed Bragg reflectors or rugate filters in nanoporous anodic alumina with cyclic anodization voltage or current. This nanopore engineering permits us to propose new applications in the field of biosensing: using the unique reflectance or photoluminescence properties of the material to obtain photonic barcodes, applying a gold-coated double-layer nanoporous alumina to design a self-referencing protein sensor or giving a proof-of-concept of the refractive index sensing capabilities of nanoporous rugate filters. PMID:28788127

  12. Thermoelectric studies of nanoporous thin films with adjusted pore-edge charges

    NASA Astrophysics Data System (ADS)

    Hao, Qing; Zhao, Hongbo; Xu, Dongchao

    2017-03-01

    In recent years, nanoporous thin films have been widely studied for thermoelectric applications. High thermoelectric performance is reported for nanoporous Si films, which is attributed to the dramatically reduced lattice thermal conductivity and bulk-like electrical properties. Porous materials can also be used in gas sensing applications by engineering the surface-trapped charges on pore edges. In this work, an analytical model is developed to explore the relationship between the thermoelectric properties and pore-edge charges in a periodic two-dimensional nanoporous material. The presented model can be widely used to analyze the measured electrical properties of general nanoporous thin films and two-dimensional materials.

  13. An overview on the characterization and mechanical behavior of nanoporous Gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hodge, A M; Hayes, J R; Caro, J A

    2005-09-13

    In this paper we present what we believe are the most pressing issues in understanding the mechanical behavior of nanoporous foams. We have postulated that a gold foam presents the best candidate for a systematic study of nanoporous foams since it can be synthesized with a wide range of ligaments sizes and densities. We have also conducted preliminary tests that demonstrate (a) Au foams have a fracture behavior dictated by the ligament size, and (b) nanoporous Au is a high yield strength material. Thus, we have demonstrated the potential in developing nanoporous foams as a new class of high yieldmore » strength/low density materials.« less

  14. Six Pillars of Dynamic Schools

    ERIC Educational Resources Information Center

    Edwards, Steven W.; Chapman, Paul E.

    2009-01-01

    "Six Pillars of Dynamic Schools" uncovers an often overlooked truth--effective change is the product of hard work and dedication. There is no silver bullet; no matter how many programs, software packages, or new initiatives a district uses, the magic won't just "happen." Dynamic schools result from consistent and redundant focus on the fundamental…

  15. Magnetic-optical bifunctional CoPt3/Co multilayered nanowire arrays

    NASA Astrophysics Data System (ADS)

    Su, Yi-Kun; Yan, Zhi-Long; Wu, Xi-Ming; Liu, Huan; Ren, Xiao; Yang, Hai-Tao

    2015-10-01

    CoPt3/Co multilayered nanowire (NW) arrays are synthesized by pulsed electrodeposition into nanoporous anodic aluminum oxide (AAO) templates. The electrochemistry deposition parameters are determined by cyclic voltammetry to realize the well control of the ratio of Co to Pt and the length of every segment. The x-ray diffraction (XRD) patterns show that both Co and CoPt3 NWs exhibit face-centered cubic (fcc) structures. In the UV-visible absorption spectra, CoPt3/Co NW arrays show a red-shift with respect to pure CoPt3NWs. Compared with the pure Co nanowire arrays, the CoPt3/Co multilayered nanowire arrays show a weak shape anisotropy and well-modulated magnetic properties. CoPt3/Co multilayered nanowires are highly encouraging that new families of bimetallic nanosystems may be developed to meet the needs of nanomaterials in emerging multifunctional nanotechnologies. Project supported by the National Natural Science Foundation of China (Grant Nos. 51472165, 51471185, and 11274370).

  16. Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells.

    PubMed

    Jung, Ae Ryang; Kim, Richard Y; Kim, Hyung Woo; Shrestha, Kshitiz Raj; Jeon, Seung Hwan; Cha, Kyoung Je; Park, Yong Hyun; Kim, Dong Sung; Lee, Ji Youl

    2015-07-01

    Human adipose-derived stem cells (hADSCs) can differentiate into various cell types depending on chemical and topographical cues. One topographical cue recently noted to be successful in inducing differentiation is the nanoengineered polystyrene surface containing nanopore array-patterned substrate (NP substrate), which is designed to mimic the nanoscale topographical features of the extracellular matrix. In this study, efficacies of NP and flat substrates in inducing neural differentiation of hADSCs were examined by comparing their substrate-cell adhesion rates, filopodia growth, nuclei elongation, and expression of neural-specific markers. The polystyrene nano Petri dishes containing NP substrates were fabricated by a nano injection molding process using a nickel electroformed nano-mold insert (Diameter: 200 nm. Depth of pore: 500 nm. Center-to-center distance: 500 nm). Cytoskeleton and filopodia structures were observed by scanning electron microscopy and F-actin staining, while cell adhesion was tested by vinculin staining after 24 and 48 h of seeding. Expression of neural specific markers was examined by real-time quantitative polymerase chain reaction and immunocytochemistry. Results showed that NP substrates lead to greater substrate-cell adhesion, filopodia growth, nuclei elongation, and expression of neural specific markers compared to flat substrates. These results not only show the advantages of NP substrates, but they also suggest that further study into cell-substrate interactions may yield great benefits for biomaterial engineering.

  17. Cu Pillar Low Temperature Bonding and Interconnection Technology of for 3D RF Microsystem

    NASA Astrophysics Data System (ADS)

    Shi, G. X.; Qian, K. Q.; Huang, M.; Yu, Y. W.; Zhu, J.

    2018-03-01

    In this paper 3D interconnects technologies used Cu pillars are discussed with respect to RF microsystem. While 2.5D Si interposer and 3D packaging seem to rely to cu pillars for the coming years, RF microsystem used the heterogeneous chip such as GaAs integration with Si interposers should be at low temperature. The pillars were constituted by Cu (2 micron) -Ni (2 micron) -Cu (3 micron) -Sn (1 micron) multilayer metal and total height is 8 micron on the front-side of the wafer by using electroplating. The wafer backside Cu pillar is obtained by temporary bonding, thinning and silicon surface etching. The RF interposers are stacked by Cu-Sn eutectic bonding at 260 °C. Analyzed the reliability of different pillar bonding structure.

  18. SEM-induced shrinkage and site-selective modification of single-crystal silicon nanopores

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Wang, Yifan; Deng, Tao; Liu, Zewen

    2017-07-01

    Solid-state nanopores with feature sizes around 5 nm play a critical role in bio-sensing fields, especially in single molecule detection and sequencing of DNA, RNA and proteins. In this paper we present a systematic study on shrinkage and site-selective modification of single-crystal silicon nanopores with a conventional scanning electron microscope (SEM). Square nanopores with measurable sizes as small as 8 nm × 8 nm and rectangle nanopores with feature sizes (the smaller one between length and width) down to 5 nm have been obtained, using the SEM-induced shrinkage technique. The analysis of energy dispersive x-ray spectroscopy and the recovery of the pore size and morphology reveal that the grown material along with the edge of the nanopore is the result of deposition of hydrocarbon compounds, without structural damage during the shrinking process. A simplified model for pore shrinkage has been developed based on observation of the cross-sectional morphology of the shrunk nanopore. The main factors impacting on the task of controllably shrinking the nanopores, such as the accelerating voltage, spot size, scanned area of e-beam, and the initial pore size have been discussed. It is found that single-crystal silicon nanopores shrink linearly with time under localized irradiation by SEM e-beam in all cases, and the pore shrinkage rate is inversely proportional to the initial equivalent diameter of the pore under the same e-beam conditions.

  19. Thylakoid-Deposited Micro-Pillar Electrodes for Enhanced Direct Extraction of Photosynthetic Electrons

    PubMed Central

    Ryu, DongHyun; Kim, Yong Jae; Kim, Seon Il; Hong, Hyeonaug; Ahn, Hyun S.

    2018-01-01

    Photosynthesis converts solar energy to electricity in a highly efficient manner. Since only water is needed as fuel for energy conversion, this highly efficient energy conversion process has been rigorously investigated. In particular, photosynthetic apparatus, such as photosystem II (PSII), photosystem I (PSI), or thylakoids, have been isolated from various plants to construct bio-hybrid anodes. Although PSII or PSI decorated anodes have shown potentials, there still remain challenges, such as poor stability of PSII-based systems or need for electron donors other than water molecules of PSI-based systems. Thylakoid membranes are relatively stable after isolation and they contain all the necessary photosynthetic apparatus including the PSII and PSI. To increase electrical connections between thylakoids and anodes, nanomaterials such as carbon nanotubes, nanowires, nanoparticles, or graphene have been employed. However, since they rely on the secondary electrical connections between thylakoids and anodes; it is desired to achieve larger direct contacts between them. Here, we aimed to develop micro-pillar (MP) array anodes to maximize direct contact with thylakoids. The thylakoid morphology was analyzed and the MP array was designed to maximize direct contact with thylakoids. The performance of MP anodes and a photosynthetic fuel cell based on MP electrodes was demonstrated and analyzed. PMID:29587387

  20. Fabrication of highly oriented nanoporous fibers via airflow bubble-spinning

    NASA Astrophysics Data System (ADS)

    Liu, Fujuan; Li, Shaokai; Fang, Yue; Zheng, Fangfang; Li, Junhua; He, Jihuan

    2017-11-01

    Highly oriented Poly(lactic acid) (PLA) nanofibers with nanoporous structures has been successfully fabricated via airflow bubble-spinning without electrostatic hazard. In this work, the volatile solvent was necessary for preparing the nanoporous fiber, which was attributed to the competition between phase separation and solvent evaporation. The interconnected porous structures were affected by the processing variables of solution concentration, airflow temperature, collecting distance and relative humidity (RH). Besides, the rheological properties of solutions were studied and the highly oriented PLA nanofibers with nanoporous structure were also completely characterized using scanning electron microscope (SEM). This study provided a novel technique that successfully gets rid of the potential safety hazards caused by unexpected static to prepare highly oriented nanoporous fibers, which would demonstrate an impressive prospect for the fields of adsorption and filtration.

  1. Nanoporous cerium oxide thin film for glucose biosensor.

    PubMed

    Saha, Shibu; Arya, Sunil K; Singh, S P; Sreenivas, K; Malhotra, B D; Gupta, Vinay

    2009-03-15

    Nanoporous cerium oxide (CeO(2)) thin film deposited onto platinum (Pt) coated glass plate using pulsed laser deposition (PLD) has been utilized for immobilization of glucose oxidase (GOx). Atomic force microscopy studies reveal the formation of nanoporous surface morphology of CeO(2) thin film. Response studies carried out using differential pulsed voltammetry (DPV) and optical measurements show that the GOx/CeO(2)/Pt bio-electrode shows linearity in the range of 25-300 mg/dl of glucose concentration. The low value of Michaelis-Menten constant (1.01 mM) indicates enhanced enzyme affinity of GOx to glucose. The observed results show promising application of the nanoporous CeO(2) thin film for glucose sensing application without any surface functionalization or mediator.

  2. Deep proton writing of high aspect ratio SU-8 micro-pillars on glass

    NASA Astrophysics Data System (ADS)

    Ebraert, Evert; Rwamucyo, Ben; Thienpont, Hugo; Van Erps, Jürgen

    2016-12-01

    Deep proton writing (DPW) is a fabrication technology developed for the rapid prototyping of polymer micro-structures. We use SU-8, a negative resist, spincoated in a layer up to 720 μm-thick in a single step on borosilicate glass, for irradiation with a collimated 12 MeV energy proton beam. Micro-pillars with a slightly conical profile are irradiated in the SU-8 layer. We determine the optimal proton fluence to be 1.02 × 104 μm-2, with which we are able to repeatably achieve micro-pillars with a top-diameter of 138 ± 1 μm and a bottom-diameter of 151 ± 3 μm. The smallest fabricated pillars have a top-diameter of 57 ± 5 μm. We achieved a root-mean-square sidewall surface roughness between 19 nm and 35 nm for the fabricated micro-pillars, measured over an area of 5 × 63.7 μm. We briefly discuss initial testing of two potential applications of the fabricated micro-pillars. Using ∼100 μm-diameter pillars as waveguides for gigascale integration optical interconnect applications, has shown a 4.7 dB improvement in optical multimode fiber-to-fiber coupling as compared to the case where an air-gap is present between the fibers at the telecom wavelength of 1550 nm. The ∼140 μm-diameter pillars were used for mold fabrication with silicone casting. The resulting mold can be used for hydrogel casting, to obtain hydrogel replicas mimicking human tissue for in vitro bio-chemical applications.

  3. Numerical Approach for Goaf-Side Entry Layout and Yield Pillar Design in Fractured Ground Conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Lishuai; Zhang, Peipeng; Chen, Lianjun; Hao, Zhen; Sainoki, Atsushi; Mitri, Hani S.; Wang, Qingbiao

    2017-11-01

    Entry driven along goaf-side (EDG), which is the development of an entry of the next longwall panel along the goaf-side and the isolation of the entry from the goaf with a small-width yield pillar, has been widely employed in China over the past several decades . The width of such a yield pillar has a crucial effect on EDG layout in terms of the ground control, isolation effect and resource recovery rate. Based on a case study, this paper presents an approach for evaluating, designing and optimizing EDG and yield pillar by considering the results from numerical simulations and field practice. To rigorously analyze the ground stability, the numerical study begins with the simulation of goaf-side stress and ground conditions. Four global models with identical conditions, except for the width of the yield pillar, are built, and the effect of pillar width on ground stability is investigated by comparing aspects of stress distribution, failure propagation, and displacement evolution during the entire service life of the entry. Based on simulation results, the isolation effect of the pillar acquired from field practice is also considered. The suggested optimal yield pillar design is validated using a field test in the same mine. Thus, the presented numerical approach provides references and can be utilized for the evaluation, design and optimization of EDG and yield pillars under similar geological and geotechnical circumstances.

  4. Gate modulation of proton transport in a nanopore.

    PubMed

    Mei, Lanju; Yeh, Li-Hsien; Qian, Shizhi

    2016-03-14

    Proton transport in confined spaces plays a crucial role in many biological processes as well as in modern technological applications, such as fuel cells. To achieve active control of proton conductance, we investigate for the first time the gate modulation of proton transport in a pH-regulated nanopore by a multi-ion model. The model takes into account surface protonation/deprotonation reactions, surface curvature, electroosmotic flow, Stern layer, and electric double layer overlap. The proposed model is validated by good agreement with the existing experimental data on nanopore conductance with and without a gate voltage. The results show that the modulation of proton transport in a nanopore depends on the concentration of the background salt and solution pH. Without background salt, the gated nanopore exhibits an interesting ambipolar conductance behavior when pH is close to the isoelectric point of the dielectric pore material, and the net ionic and proton conductance can be actively regulated with a gate voltage as low as 1 V. The higher the background salt concentration, the lower is the performance of the gate control on the proton transport.

  5. Nanoporous membranes with electrochemically switchable, chemically stabilized ionic selectivity

    NASA Astrophysics Data System (ADS)

    Small, Leo J.; Wheeler, David R.; Spoerke, Erik D.

    2015-10-01

    Nanopore size, shape, and surface charge all play important roles in regulating ionic transport through nanoporous membranes. The ability to control these parameters in situ provides a means to create ion transport systems tunable in real time. Here, we present a new strategy to address this challenge, utilizing three unique electrochemically switchable chemistries to manipulate the terminal functional group and control the resulting surface charge throughout ensembles of gold plated nanopores in ion-tracked polycarbonate membranes 3 cm2 in area. We demonstrate the diazonium mediated surface functionalization with (1) nitrophenyl chemistry, (2) quinone chemistry, and (3) previously unreported trimethyl lock chemistry. Unlike other works, these chemistries are chemically stabilized, eliminating the need for a continuously applied gate voltage to maintain a given state and retain ionic selectivity. The effect of surface functionalization and nanopore geometry on selective ion transport through these functionalized membranes is characterized in aqueous solutions of sodium chloride at pH = 5.7. The nitrophenyl surface allows for ionic selectivity to be irreversibly switched in situ from cation-selective to anion-selective upon reduction to an aminophenyl surface. The quinone-terminated surface enables reversible changes between no ionic selectivity and a slight cationic selectivity. Alternatively, the trimethyl lock allows ionic selectivity to be reversibly switched by up to a factor of 8, approaching ideal selectivity, as a carboxylic acid group is electrochemically revealed or hidden. By varying the pore shape from cylindrical to conical, it is demonstrated that a controllable directionality can be imparted to the ionic selectivity. Combining control of nanopore geometry with stable, switchable chemistries facilitates superior control of molecular transport across the membrane, enabling tunable ion transport systems.Nanopore size, shape, and surface charge all play

  6. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  7. Na⁺ and K⁺ ion selectivity by size-controlled biomimetic graphene nanopores.

    PubMed

    Kang, Yu; Zhang, Zhisen; Shi, Hui; Zhang, Junqiao; Liang, Lijun; Wang, Qi; Ågren, Hans; Tu, Yaoquan

    2014-09-21

    Because biological ionic channels play a key role in cellular transport phenomena, they have attracted extensive research interest for the design of biomimetic nanopores with high permeability and selectivity in a variety of technical applications. Inspired by the structure of K(+) channel proteins, we designed a series of oxygen doped graphene nanopores of different sizes by molecular dynamics simulations to discriminate between K(+) and Na(+) channel transport. The results from free energy calculations indicate that the ion selectivity of such biomimetic graphene nanopores can be simply controlled by the size of the nanopore; compared to K(+), the smaller radius of Na(+) leads to a significantly higher free energy barrier in the nanopore of a certain size. Our results suggest that graphene nanopores with a distance of about 3.9 Å between two neighboring oxygen atoms could constitute a promising candidate to obtain excellent ion selectivity for Na(+) and K(+) ions.

  8. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  9. Detecting the Length of Double-stranded DNA with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Gershow, Marc; Stein, Derek; Qun, Cai; Brandin, Eric; Wang, Hui; Huang, Albert; Branton, Dan; Golovchenko, Jene

    2003-03-01

    We report on the use of nanometer scale diameter, solid-state nanopores as single molecule detectors of double stranded DNA molecules. These solid-state nanopores are fabricated in thin membranes of silicon nitride, by ion beam sculpting 1. They produce discrete electronic signals: current blockages, when an electrically biased nanopore is exposed to DNA molecules in aqueous salt solutions. We demonstrate examples of such electronic signals for 3k base pairs (bp) and 10k bp double stranded DNA molecules, which suggest that these molecules are individually translocating through the nanopore during the detection process. The translocating time for the 10k bp double stranded DNA is about 3 times longer than the 3k bp, demonstrating that a solid-state nanopore device can be used to detect the lengths of double stranded DNA molecules. Similarities and differences with signals obtained from single stranded DNA in a biological nanopores are discussed 2. 1. Li, J., Stein, D., McMullan, C., Branton, D. Aziz, M. J. and Golovchenko, J. Ion Beam Sculpting at nanometer length scales. Nature 412, 166-169 (2001). 2. Meller, A., L. Nivon, E. Brandin, Golovchenko, J. & Branton, D. Proc. Natl. Acad. Sci. USA 97, 1079-1084 (2000).

  10. Fabrication of nanoporous thin-film working electrodes and their biosensing applications.

    PubMed

    Li, Tingjie; Jia, Falong; Fan, Yaxi; Ding, Zhifeng; Yang, Jun

    2013-04-15

    Electrochemical detection for point-of-care diagnostics is of great interest due to its high sensitivity, fast analysis time and ability to operate on a small scale. Herein, we report the fabrication of a nanoporous thin-film electrode and its application in the configuration of a simple and robust enzymatic biosensor. The nanoporous thin-film was formed in a planar gold electrode through an alloying/dealloying process. The nanoporous electrode has an electroactive surface area up to 40 times higher than that of a flat gold electrode of the same size. The nanoporous electrode was used as a substrate to build an enzymatic electrochemical biosensor for the detection of glucose in standard samples and control serum samples. The example glucose biosensor has a linear response up to 30 mM, with a high sensitivity of 0.50 μA mM⁻¹ mm⁻², and excellent anti-interference ability against lactate, uric acid and ascorbic acid. Abundant catalyst and enzyme were stably entrapped in the nanoporous structure, leading to high stability and reproducibility of the biosensor. Development of such nanoporous structure enables the miniaturization of high-performance electrochemical biosensors for point-of-care diagnostics or environmental field testing. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Nanopore extended field-effect transistor for selective single-molecule biosensing.

    PubMed

    Ren, Ren; Zhang, Yanjun; Nadappuram, Binoy Paulose; Akpinar, Bernice; Klenerman, David; Ivanov, Aleksandar P; Edel, Joshua B; Korchev, Yuri

    2017-09-19

    There has been a significant drive to deliver nanotechnological solutions to biosensing, yet there remains an unmet need in the development of biosensors that are affordable, integrated, fast, capable of multiplexed detection, and offer high selectivity for trace analyte detection in biological fluids. Herein, some of these challenges are addressed by designing a new class of nanoscale sensors dubbed nanopore extended field-effect transistor (nexFET) that combine the advantages of nanopore single-molecule sensing, field-effect transistors, and recognition chemistry. We report on a polypyrrole functionalized nexFET, with controllable gate voltage that can be used to switch on/off, and slow down single-molecule DNA transport through a nanopore. This strategy enables higher molecular throughput, enhanced signal-to-noise, and even heightened selectivity via functionalization with an embedded receptor. This is shown for selective sensing of an anti-insulin antibody in the presence of its IgG isotype.Efficient detection of single molecules is vital to many biosensing technologies, which require analytical platforms with high selectivity and sensitivity. Ren et al. combine a nanopore sensor and a field-effect transistor, whereby gate voltage mediates DNA and protein transport through the nanopore.

  12. Highly sensitive detection using microring resonator and nanopores

    NASA Astrophysics Data System (ADS)

    Bougot-Robin, K.; Hoste, J. W.; Le Thomas, N.; Bienstman, P.; Edel, J. B.

    2016-04-01

    One of the most significant challenges facing physical and biological scientists is the accurate detection and identification of single molecules in free-solution environments. The ability to perform such sensitive and selective measurements opens new avenues for a large number of applications in biological, medical and chemical analysis, where small sample volumes and low analyte concentrations are the norm. Access to information at the single or few molecules scale is rendered possible by a fine combination of recent advances in technologies. We propose a novel detection method that combines highly sensitive label-free resonant sensing obtained with high-Q microcavities and position control in nanoscale pores (nanopores). In addition to be label-free and highly sensitive, our technique is immobilization free and does not rely on surface biochemistry to bind probes on a chip. This is a significant advantage, both in term of biology uncertainties and fewer biological preparation steps. Through combination of high-Q photonic structures with translocation through nanopore at the end of a pipette, or through a solid-state membrane, we believe significant advances can be achieved in the field of biosensing. Silicon microrings are highly advantageous in term of sensitivity, multiplexing, and microfabrication and are chosen for this study. In term of nanopores, we both consider nanopore at the end of a nanopipette, with the pore being approach from the pipette with nanoprecise mechanical control. Alternatively, solid state nanopores can be fabricated through a membrane, supporting the ring. Both configuration are discussed in this paper, in term of implementation and sensitivity.

  13. Self-ordered, controlled structure nanoporous membranes using constant current anodization.

    PubMed

    Lee, Kwan; Tang, Yun; Ouyang, Min

    2008-12-01

    We report a constant current (CC) based anodization technique to fabricate and control structure of mechanically stable anodic aluminum oxide (AAO) membranes with a long-range ordered hexagonal nanopore pattern. For the first time we show that interpore distance (Dint) of a self-ordered nanopore feature can be continuously tuned over a broad range with CC anodization and is uniquely defined by the conductivity of sulfuric acid as electrolyte. We further demonstrate that this technique can offer new degrees of freedom for engineering planar nanopore structures by fine tailoring the CC based anodization process. Our results not only facilitate further understanding of self-ordering mechanism of alumina membranes but also provide a fast, simple (without requirement of prepatterning or preoxide layer), and flexible methodology for controlling complex nanoporous structures, thus offering promising practical applications in nanotechnology.

  14. USHPRR FUEL FABRICATION PILLAR: FABRICATION STATUS, PROCESS OPTIMIZATIONS, AND FUTURE PLANS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wight, Jared M.; Joshi, Vineet V.; Lavender, Curt A.

    The Fuel Fabrication (FF) Pillar, a project within the U.S. High Performance Research Reactor Conversion program of the National Nuclear Security Administration’s Office of Material Management and Minimization, is tasked with the scale-up and commercialization of high-density monolithic U-Mo fuel for the conversion of appropriate research reactors to use of low-enriched fuel. The FF Pillar has made significant steps to demonstrate and optimize the baseline co-rolling process using commercial-scale equipment at both the Y-12 National Security Complex (Y-12) and BWX Technologies (BWXT). These demonstrations include the fabrication of the next irradiation experiment, Mini-Plate 1 (MP-1), and casting optimizations at Y-12.more » The FF Pillar uses a detailed process flow diagram to identify potential gaps in processing knowledge or demonstration, which helps direct the strategic research agenda of the FF Pillar. This paper describes the significant progress made toward understanding the fuel characteristics, and models developed to make informed decisions, increase process yield, and decrease lifecycle waste and costs.« less

  15. Compaction of Confining Materials in Pillar Blast Tests

    NASA Astrophysics Data System (ADS)

    Petropoulos, N.; Wimmer, M.; Johansson, D.; Nordlund, E.

    2018-06-01

    Two confined pillar tests were conducted at the Kiirunavaara mine to investigate the degree of compaction of three materials, i.e., 0-32-mm backfilled material, a blend of ore and waste material and caved material. Two blastholes were drilled parallel to each pillar wall, and several measurement holes were drilled in between the blastholes through each pillar. Both the measurement holes and backfilled materials, except the caved material, were instrumented. Two types of measurements were taken: dynamic measurements with accelerometers, and static measurements which considered the location of the instrumentation pre- and post-blast. Dynamic measurements involved the burden movement and the confining material behavior, and static measurements contained the final location of sensors inside and the angle of repose of the confining material. The results showed that the size distribution of the confining material affects its behavior under dynamic loading. The backfilled materials showed an apparent cohesion forming an agglomeration on the surface of the blasted burden. The burden moved as one slab due to simultaneous detonation. A gap was formed between the blasted burden and the new face. This gap was partially filled with burden erosion material which was finer fragmented than the blasted burden material.

  16. Biomimetic novel nanoporous niobium oxide coating for orthopaedic applications

    NASA Astrophysics Data System (ADS)

    Pauline, S. Anne; Rajendran, N.

    2014-01-01

    Niobium oxide was synthesized by sol-gel methodology and a crystalline, nanoporous and adherent coating of Nb2O5 was deposited on 316L SS using the spin coating technique and heat treatment. The synthesis conditions were optimized to obtain a nanoporous morphology. The coating was characterized using attenuated total reflectance-Infrared spectroscopy (ATR-IR), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX), atomic force microscopy (AFM) and transmission electron microscopy (TEM) and the formation of crystalline Nb2O5 coating with nanoporous morphology was confirmed. Mechanical studies confirmed that the coating has excellent adherence to the substrate and the hardness value of the coating was excellent. Contact angle analysis showed increased hydrophilicity for the coated substrate. In vitro bioactivity test confirmed that the Nb2O5 coating with nanoporous morphology facilitated the growth of hydroxyapatite (HAp). This was further confirmed by the solution analysis test where increased uptake of calcium and phosphorous ions from simulated body fluid (SBF) was observed. Electrochemical evaluation of the coating confirmed that the crystalline coating is insulative and protective in nature and offered excellent corrosion protection to 316L SS. Thus, this study confirmed that the nanoporous crystalline Nb2O5 coating conferred bioactivity and enhanced corrosion resistance on 316L SS.

  17. Effect of Graphene with Nanopores on Metal Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hu; Chen, Xianlang; Wang, Lei

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies,more » d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  18. Single-Molecule Sensing with Nanopore Confinement: From Chemical Reactions to Biological Interactions.

    PubMed

    Lin, Yao; Ying, Yi-Lun; Gao, Rui; Long, Yi-Tao

    2018-03-25

    The nanopore can generate an electrochemical confinement for single-molecule sensing that help understand the fundamental chemical principle in nanoscale dimensions. By observing the generated ionic current, individual bond-making and bond-breaking steps, single biomolecule dynamic conformational changes and electron transfer processes that occur within pore can be monitored with high temporal and current resolution. These single-molecule studies in nanopore confinement are revealing information about the fundamental chemical and biological processes that cannot be extracted from ensemble measurements. In this Concept article, we introduce and discuss the electrochemical confinement effects on single-molecule covalent reactions, conformational dynamics of individual molecules and host-guest interactions in protein nanopores. Then, we extend the concept of nanopore confinement effects to confine electrochemical redox reactions in solid-state nanopores for developing new sensing mechanisms. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  20. Modeling the interactions between compliant microcapsules and pillars in microchannels

    NASA Astrophysics Data System (ADS)

    Zhu, Guangdong; Alexeev, Alexander; Kumacheva, Eugenia; Balazs, Anna C.

    2007-07-01

    Using a computational model, we investigate the motion of microcapsules inside a microchannel that encompasses a narrow constriction. The microcapsules are composed of a compliant, elastic shell and an encapsulated fluid; these fluid-filled shells model synthetic polymeric microcapsules or biological cells (e.g., leukocytes). Driven by an imposed flow, the capsules are propelled along the microchannel and through the constricted region, which is formed by two pillars that lie in registry, extending from the top and bottom walls of the channels. The tops of these pillars (facing into the microchannel) are modified to exhibit either a neutral or an attractive interaction with the microcapsules. The pillars (and constriction) model topological features that can be introduced into microfluidic devices or the physical and chemical heterogeneities that are inherently present in biological vessels. To simulate the behavior of this complex system, we employ a hybrid method that integrates the lattice Boltzmann model (LBM) for fluid dynamics and the lattice spring model (LSM) for the micromechanics of elastic solids. Through this LBM/LSM technique, we probe how the capsule's stiffness and interaction with the pillars affect its passage through the chambers. The results yield guidelines for regulating the movement of microcarriers in microfluidic systems and provide insight into the flow properties of biological cells in capillaries.

  1. Supercapacitors based on pillared graphene nanostructures.

    PubMed

    Lin, Jian; Zhong, Jiebin; Bao, Duoduo; Reiber-Kyle, Jennifer; Wang, Wei; Vullev, Valentine; Ozkan, Mihrimah; Ozkan, Cengiz S

    2012-03-01

    We describe the fabrication of highly conductive and large-area three dimensional pillared graphene nanostructure (PGN) films from assembly of vertically aligned CNT pillars on flexible copper foils for applications in electric double layer capacitors (EDLC). The PGN films synthesized via a one-step chemical vapor deposition process on flexible copper foils exhibit high conductivity with sheet resistance as low as 1.6 ohms per square and possessing high mechanical flexibility. Raman spectroscopy indicates the presence of multi walled carbon nanotubes (MWCNT) and their morphology can be controlled by the growth conditions. It was discovered that nitric acid treatment can significantly increase the specific capacitance of the devices. EDLC devices based on PGN electrodes (surface area of 565 m2/g) demonstrate enhanced performance with specific capacitance value as high as 330 F/g extracted from the current density-voltage (CV) measurements and energy density value of 45.8 Wh/kg. The hybrid graphene-CNT nanostructures are attractive for applications including supercapacitors, fuel cells and batteries.

  2. Pillared montmorillonite catalysts for coal liquefaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, R.K.; Olson, E.S.

    1994-12-31

    Pillared clays contain large micropores and have considerable potential for catalytic hydrogenation and cleavage of coal macromolecules. Pillared montmorillonite-supported catalysts were prepared by the intercalation of polynuclear hydroxychromium cations and subsequent impregnation of nickel and molybdenum. Infrared and thermogravimetric studies of pyridine-adsorbed catalysts indicated the presence of both Lewis and Bronsted acid sites. Thus, the catalysts have both acidic properties that can aid in hydrocracking and cleavage of carbon-heteroatom bonds as well as hydrogen-activating bimetallic sites. These catalysts were applied to the hydrodesulfurization and liquefaction of coal-derived intermediates. The reactions of model organosulfur compounds and coal liquids were carried outmore » at 300{degrees}-400{degrees}C for 3 hours in the presence of 1000 psi of molecular hydrogen. Reaction products were analyzed by GC/FT-IR/MS/AED. The catalysts have been found to be very effective in removing sulfur from model compounds as well as liquefaction products.« less

  3. Pillared graphite anodes for reversible sodiation.

    PubMed

    Zhang, Hanyang; Li, Zhifei; Xu, Wei; Chen, Yicong; Ji, Xiulei; Lerner, Michael M

    2018-08-10

    There has been a major effort recently to develop new rechargeable sodium-ion electrodes. In lithium ion batteries, LiC 6 forms from graphite and desolvated Li cations during the first charge. With sodium ions, graphite only shows a significant capacity when Na + intercalates as a solvated complex, resulting in ternary graphite intercalation compounds (GICs). Although this chemistry has been shown to be highly reversible and to support high rates in small test cells, these GICs can require >250% volume expansion and contraction during cycling. Here we demonstrate the first example of GICs that reversibly sodiate/desodiate without any significant volume change. These pillared GICs are obtained by electrochemical reduction of graphite in an ether/amine co-solvent electrolyte. The initial gallery expansion, 0.36 nm, is less than half of that in diglyme-based systems, and shows a similar capacity. Thermal analyses suggest the pillaring phenomenon arises from stronger co-intercalate interactions in the GIC galleries.

  4. Phospholipid arrays on porous polymer coatings generated by micro-contact spotting

    PubMed Central

    de Freitas, Monica; Tröster, Lea-Marie; Jochum, Tobias; Levkin, Pavel A; Hirtz, Michael; Fuchs, Harald

    2017-01-01

    Nanoporous poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate) (HEMA-EDMA) is used as a 3D mesh for spotting lipid arrays. Its porous structure is an ideal matrix for lipid ink to infiltrate, resulting in higher fluorescent signal intensity as compared to similar arrays on strictly 2D substrates like glass. The embedded lipid arrays show high stability against washing steps, while still being accessible for protein and antibody binding. To characterize binding to polymer-embedded lipids we have applied Streptavidin as well as biologically important biotinylated androgen receptor binding onto 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl) (Biotinyl Cap PE) and anti-DNP IgE recognition of 2,4-dinitrophenyl[1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[6-[(2,4-dinitrophenyl)amino]hexanoyl] (DNP)] antigen. This approach adds lipid arrays to the range of HEMA polymer applications and makes this solid substrate a very attractive platform for a variety of bio-applications. PMID:28487815

  5. New Soft Rock Pillar Strength Formula Derived Through Parametric FEA Using a Critical State Plasticity Model

    NASA Astrophysics Data System (ADS)

    Rastiello, Giuseppe; Federico, Francesco; Screpanti, Silvio

    2015-09-01

    Many abandoned room and pillar mines have been excavated not far from the surface of large areas of important European cities. In Rome, these excavations took place at shallow depths (3-15 m below the ground surface) in weak pyroclastic soft rocks. Many of these cavities have collapsed; others appear to be in a stable condition, although an appreciable percentage of their structural components (pillars, roofs, etc.) have shown increasing signs of distress from both the morphological and mechanical points of view. In this study, the stress-strain behaviour of soft rock pillars sustaining systems of cavities under vertical loads was numerically simulated, starting from the in situ initial conditions due to excavation of the cavities. The mechanical behaviour of the constituent material of the pillar was modelled according to the Modified Cam-Clay constitutive law (elasto-plastic with strain hardening). The influence of the pillar geometry (cross-section area, shape, and height) and mechanical parameters of the soft rock on the ultimate compressive strength of the pillar as a whole was parametrically investigated first. Based on the numerical results, an original relationship for pillar strength assessment was developed. Finally, the estimated pillar strengths according to the proposed formula and well-known formulations in the literature were compared.

  6. Characteristics and self-cleaning effect of the transparent super-hydrophobic film having nanofibers array structures

    NASA Astrophysics Data System (ADS)

    Lee, Kyungjun; Lyu, Sungnam; Lee, Sangmin; Kim, Youn Sang; Hwang, Woonbong

    2010-09-01

    Transparent super-hydrophobic films were fabricated using the PDMS method and silane process, based on anodization in phosphoric acid. Contact angle tests were performed to determine the contact angle of each film according to the anodizing time. Transmittance tests also were performed to obtain the transparency of each TPT (trimethylolpropane propoxylate triacrylate) replica film according to the anodizing time. The contact angle was determined by studying the drop shape, and the transmittance was measured using a UV-spectrometer. The contact angle increases with increasing anodizing time, because increasing pillar length can trap more air between the TPT replica film and a drop of water. The transmittance falls with increasing anodizing time because the increasing pillar length causes a scattering effect. This study shows that the pillar length and transparency are inversely proportional. The TPT replica film having nanofibers array structures was better than other films in aspect of self-cleaning by doing quantitative experimentation.

  7. Water desalination with a single-layer MoS2 nanopore

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-10-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ~70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  8. Water desalination with a single-layer MoS2 nanopore.

    PubMed

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R

    2015-10-14

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å(2). Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼ 70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  9. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    DOEpatents

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  10. Enhanced biomimic bactericidal surfaces by coating with positively-charged ZIF nano-dagger arrays.

    PubMed

    Yuan, Yuan; Zhang, Yugen

    2017-10-01

    Cicada wing surfaces are covered with dense patterns of nano-pillar structure that prevent bacterial growth by rupturing adhered microbial cells. To mimic the natural nano-pillar structure, we developed a general and simple method to grow metal organic framework (MOF) nano-dagger arrays on a wide range of surfaces. These nano-daggers possess high bactericidal activity, with log reduction >7 for Escherichia coli and Staphylococcus aureus. It was hypothesized that the positively-charged ZIF-L nano-dagger surfaces enhance bacterial cell adhesion, facilitating selective and efficient bacteria killing by the rigid and sharp nano-dagger tips. This research provides a safe and clean antimicrobial surface technology which does not require external chemicals and will not cause drug resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Investigation of thermal conduction in symmetric and asymmetric nanoporous structures

    NASA Astrophysics Data System (ADS)

    Yu, Ziqi; Ferrer-Argemi, Laia; Lee, Jaeho

    2017-12-01

    Nanoporous structures with a critical dimension comparable to or smaller than the phonon mean free path have demonstrated significant thermal conductivity reductions that are attractive for thermoelectric applications, but the presence of various geometric parameters complicates the understanding of governing mechanisms. Here, we use a ray tracing technique to investigate phonon boundary scattering phenomena in Si nanoporous structures of varying pore shapes, pore alignments, and pore size distributions, and identify mechanisms that are primarily responsible for thermal conductivity reductions. Our simulation results show that the neck size, or the smallest distance between nearest pores, is the key parameter in understanding nanoporous structures of varying pore shapes and the same porosities. When the neck size and the porosity are both identical, asymmetric pore shapes provide a lower thermal conductivity compared with symmetric pore shapes, due to localized heat fluxes. Asymmetric nanoporous structures show possibilities of realizing thermal rectification even with fully diffuse surface boundaries, in which optimal arrangements of triangular pores show a rectification ratio up to 13 when the injection angles are optimally controlled. For symmetric nanoporous structures, hexagonal-lattice pores achieve larger thermal conductivity reductions than square-lattice pores due to the limited line of sight for phonons. We also show that nanoporous structures of alternating pore size distributions from large to small pores yield a lower thermal conductivity compared with those of uniform pore size distributions in the given porosity. These findings advance the understanding of phonon boundary scattering phenomena in complex geometries and enable optimal designs of artificial nanostructures for thermoelectric energy harvesting and solid-state cooling systems.

  12. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  13. Nanopore analysis of polymers in solution.

    NASA Astrophysics Data System (ADS)

    Deamer, David

    2002-03-01

    Nanopores represent a novel approach for investigating macromolecules in solution. Polymers that have been analyzed by this technique include polyethylene glycol (PEG), certain proteins and nucleic acids. The a-hemolysin pore inserted into lipid bilayers provides continuous non-gated ion current through a pore diameter of approximately 1.5 - 2 nm. Nucleic acid molecules can be driven through the pore by imposing a voltage across the supporting membrane. Single stranded, but not double stranded nucleic acids pass through in strict linear sequence from one end of the molecule to the other. While in the pore, the molecule reduces ionic current, and properties of the ionic current blockade such as duration, mean amplitude and modulations of amplitude provide information about structure and composition of the nucleic acid. For a given molecular species, the duration of the blockade is a function of chain length, and the rate of blockades is linearly related to concentration. More recent studies have shown that the a-hemolysin nanopore can discriminate between synthetic DNA molecules differing by a single base pair or even a single nucleotide. These results indicate that a nanopore may have the resolution required for nucleic acid sequencing applications.

  14. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-01

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  15. Ion transport by gating voltage to nanopores produced via metal-assisted chemical etching method.

    PubMed

    Van Toan, Nguyen; Inomata, Naoki; Toda, Masaya; Ono, Takahito

    2018-05-11

    In this work, we report a simple and low-cost way to create nanopores that can be employed for various applications in nanofluidics. Nano sized Ag particles in the range from 1 to 20 nm are formed on a silicon substrate with a de-wetting method. Then the silicon nanopores with an approximate 15 nm average diameter and 200 μm height are successfully produced by the metal-assisted chemical etching method. In addition, electrically driven ion transport in the nanopores is demonstrated for nanofluidic applications. Ion transport through the nanopores is observed and could be controlled by an application of a gating voltage to the nanopores.

  16. Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers.

    PubMed

    Yin, Jun; Yao, Xueping; Liou, Jiun-You; Sun, Wei; Sun, Ya-Sen; Wang, Yong

    2013-11-26

    Membranes with uniform, straight nanopores have important applications in diverse fields, but their application is limited by the lack of efficient producing methods with high controllability. In this work, we reported on an extremely simple and efficient strategy to produce such well-defined membranes. We demonstrated that neutral solvents were capable of annealing amphiphilic block copolymer (BCP) films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) with thicknesses up to 600 nm to the perpendicular orientation within 1 min. Annealing in neutral solvents was also effective to the perpendicular alignment of block copolymers with very high molecular weights, e.g., 362 000 Da. Remarkably, simply by immersing the annealed BCP films in hot ethanol followed by drying in air, the originally dense BCP films were nondestructively converted into porous membranes containing highly ordered, straight nanopores traversing the entire thickness of the membrane (up to 1.1 μm). Grazing incident small-angle X-ray spectroscopy confirmed the hexagonal ordering of the nanopores over large areas. We found that the overflow of P2VP chains from their reservoir P2VP cylinders and the deformation of the PS matrix in the swelling process contributed to the transformation of the solid P2VP cylinders to empty straight pores. The pore diameters can be tuned by either changing the swelling temperatures or depositing thin layers of metal oxides on the preformed membranes via atomic layer deposition with a subnanometer accuracy. To demonstrate the application of the obtained porous membranes, we used them as templates and produced centimeter-scale arrays of aligned nanotubes of metal oxides with finely tunable wall thicknesses.

  17. Nanoporous Gold: Fabrication, Characterization, and Applications

    PubMed Central

    Seker, Erkin; Reed, Michael L.; Begley, Matthew R.

    2009-01-01

    Nanoporous gold (np-Au) has intriguing material properties that offer potential benefits for many applications due to its high specific surface area, well-characterized thiol-gold surface chemistry, high electrical conductivity, and reduced stiffness. The research on np-Au has taken place on various fronts, including advanced microfabrication and characterization techniques to probe unusual nanoscale properties and applications spanning from fuel cells to electrochemical sensors. Here, we provide a review of the recent advances in np-Au research, with special emphasis on microfabrication and characterization techniques. We conclude the paper with a brief outline of challenges to overcome in the study of nanoporous metals.

  18. Ion transport in sub-5-nm graphene nanopores.

    PubMed

    Suk, Myung E; Aluru, N R

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  19. Leakage conduction behavior in electron-beam-cured nanoporous silicate films

    NASA Astrophysics Data System (ADS)

    Liu, Po-Tsun; Tsai, T. M.; Chang, T. C.

    2005-05-01

    This letter explores the application of electron-beam curing on nanoporous silicate films. The electrical conduction mechanism for the nanoporous silicate film cured by electron-beam radiation has been studied with metal-insulator-semiconductor capacitors. Electrical analyses over a varying temperature range from room temperature to 150°C provide evidence for space-charge-limited conduction in the electron-beam-cured thin film, while Schottky-emission-type leaky behavior is seen in the counterpart typically cured by a thermal furnace. A physical model consistent with electrical analyses is also proposed to deduce the origin of conduction behavior in the nanoporous silicate thin film.

  20. Solvothermal synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces.

    PubMed

    Zhang, Yong-Lai; Wang, Jian-Nan; He, Yan; He, Yinyan; Xu, Bin-Bin; Wei, Shu; Xiao, Feng-Shou

    2011-10-18

    Reported here is a facile synthesis of nanoporous polymer chalk for painting superhydrophobic surfaces. Taking this nanoporous polymer as a media, superhydrophobicity is rapidly imparted onto three typical kinds of substrates, including paper, transparent polydimethylsiloxane (PDMS), and finger skin. Quantitative characterization showed that the adhesion between the water droplet and polymer-coated substrates decreased significantly compared to that on the original surface, further indicating the effective wetting mode transformation. The nanoporous polymer coating would open a new door for facile, rapid, safe, and larger scale fabrication of superhydrophobic surfaces on general substrates. © 2011 American Chemical Society

  1. Computational modeling of ion transport through nanopores.

    PubMed

    Modi, Niraj; Winterhalter, Mathias; Kleinekathöfer, Ulrich

    2012-10-21

    Nanoscale pores are ubiquitous in biological systems while artificial nanopores are being fabricated for an increasing number of applications. Biological pores are responsible for the transport of various ions and substrates between the different compartments of biological systems separated by membranes while artificial pores are aimed at emulating such transport properties. As an experimental method, electrophysiology has proven to be an important nano-analytical tool for the study of substrate transport through nanopores utilizing ion current measurements as a probe for the detection. Independent of the pore type, i.e., biological or synthetic, and objective of the study, i.e., to model cellular processes of ion transport or electrophysiological experiments, it has become increasingly important to understand the dynamics of ions in nanoscale confinements. To this end, numerical simulations have established themselves as an indispensable tool to decipher ion transport processes through biological as well as artificial nanopores. This article provides an overview of different theoretical and computational methods to study ion transport in general and to calculate ion conductance in particular. Potential new improvements in the existing methods and their applications are highlighted wherever applicable. Moreover, representative examples are given describing the ion transport through biological and synthetic nanopores as well as the high selectivity of ion channels. Special emphasis is placed on the usage of molecular dynamics simulations which already have demonstrated their potential to unravel ion transport properties at an atomic level.

  2. Nanoporous Au: An experimental study on the porosity of dealloyed AuAg leafs

    NASA Astrophysics Data System (ADS)

    Grillo, R.; Torrisi, V.; Ruffino, F.

    2016-12-01

    We present a study on the fraction of porosity for dealloyed nanoporous Au leafs. Nanoporous Au is attracting great scientific interest due to its peculiar plasmonic properties and the high exposed surface (∼10 m2/g). As examples, it was used in prototypes of chemical and biological devices. However, the maximization of the devices sensitivity is subjected to the maximization of the exposed surface by the nanoporous Au, i. e. maximization of the porosity fraction. So, we report on the analyses of the porosity fraction in nanoporous Au leafs as a function of the fabrication process parameters. We dealloyed 60 μm-thick Au23Ag77 at.% leafs and we show that: a) for dealloying time till to 6 h, only a 450 nm-thick surface layer of the leafs assumes a nanoporous structure with a porosity fraction of 32%. For a dealloying time of 20 h the leafs result fragmented in small black pieces with a porosity fraction increased to 60%. b) After 600 °C-30 minutes annealing of the previous samples, the nanopores disappear due to the Au/residual Ag inter-diffusion. c) After a second dealloying process on the previously annealed samples, the surface nanoporous structure is, again, obtained with the porosity fraction increased to 50%.

  3. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule†

    PubMed Central

    Abelow, Alexis E.; Schepelina, Olga; White, Ryan J.; Vallée-Bélisle, Alexis

    2011-01-01

    We report the preparation of 20 and 65 nm radii glass nanopores whose surface is modified with DNA aptamers controlling the molecular transport through the nanopores in response to small molecule binding. PMID:20865192

  4. Characterization of Noble Gas Ion Beam Fabricated Single Molecule Nanopore Detectors

    NASA Astrophysics Data System (ADS)

    Rollings, Ryan; Ledden, Bradley; Shultz, John; Fologea, Daniel; Li, Jiali; Chervinsky, John; Golovchenko, Jene

    2006-03-01

    Nanopores fabricated with low energy noble gas ion beams in a silicon nitride membrane can be employed as the fundamental element of single biomolecule detection and characterization devices [1,2]. With the help of X-ray Photoelectron Spectroscopy (XPS) and Rutherford Backscattering (RBS), we demonstrate that the electrical noise properties, and hence ultimate sensitivity of nanopore single molecule detectors depends on ion beam species and nanopore annealing conditions. .1. Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169. 2. Li, J., M. Gershow, D. Stein, E. Brandin, and J.A. Golovchenko, DNA Molecules and Configurations in a Solid-state Nanopore Microscope. Nature Materials, 2003. 2: p. 611-615.

  5. Space Geodesy, VLBI, and the Fourth Pillar of Geodesy - Spacetime Curvature

    NASA Astrophysics Data System (ADS)

    Combrinck, Ludwig

    2014-12-01

    Typically geodesy is described as having ``three pillars'': the variations in Earth's shape, gravity field, and rotation. These pillars form the conceptual and observational basis for the celestial and terrestrial reference frames required for Earth and space observations. However, it is no longer adequate to base the conceptual and observational basis on only three pillars. Spacetime curvature as described by the General Theory of Relativity (GTR) is an integral component of all space geodesy techniques and influences all measurements, techniques, and data reduction. Spacetime curvature is therefore the fourth pillar. It is the measurement of the shape of spacetime and its variations. Due to accuracies of Very Long Baseline Interferometry (VLBI) and optical celestial reference frame measurements reaching the tens of micro-arcsecond level in the near future, it is essential to recognize the impact of spacetime seeing on the accuracy objectives of the Global Geodetic Observing System. Spacetime seeing (resulting from spacetime curvature) is analogous to astronomical seeing (resulting from atmospheric conditions), as all of spacetime is affected by microlensing/weak lensing to some extent as a result of mass (normal baryonic and darkmatter) distribution, placing a limit on the realization of the celestial reference frame.

  6. Beyond DSM-5 and IQ Scores: Integrating the Four Pillars to Forensic Evaluations.

    PubMed

    Delgado, Sergio V; Barzman, Drew H

    2017-03-01

    The current adult and child forensic psychiatrist is well trained, familiar, and comfortable with the use of the semi-structured Diagnostic and Statistical Manual of Mental Disorders, 5th Edition, APA 2013 (DSM-5) [In APA, 2003] interview style. The author's assertion is not that this method is invalid or unreliable; rather, that it can be complemented by integrating elements of the defendant's four pillar assessment. Assessing the four pillars expands on the information provided by a semi-structured DSM-5-style interview in psychiatry. The four pillars are the foundation of a person's personality; temperament, cognition (learning abilities or weaknesses), cognitive flexibility (theory of mind) and internal working models of attachment, within the backdrop of the family and of the social and cultural environment in which they have lived. The importance of the study of four pillars is based on the understanding that human behavior and psychopathology as a complex and multifaceted process that includes the level of social-emotional maturity and cognitive abilities (In Delgado et al. Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015). The four pillars are not new concepts, rather they had been studied by separate non-clinical disciplines, and had not been integrated to the clinical practice. As far as we know, it wasn't until Delgado et al. (Contemporary Psychodynamic Psychotherapy for Children and Adolescents: Integrating Intersubjectivity and Neuroscience. Springer, Berlin, 2015) incorporated the four pillars in a user-friendly manner to clinical practice.

  7. Eco-Friendly Magnetic Iron Oxide Pillared Montmorillonite for Advanced Catalytic Degradation of Dichlorophenol

    EPA Science Inventory

    Eco-friendly pillared montmorillonites, in which the pillars consist of iron oxide are expected to have interesting and unusual magnetic properties that are applicable for environmental decontamination. Completely “green” and effective composite was synthesized using mild reactio...

  8. The Sloan-C Pillars: Towards a Balanced Approach to Measuring Organizational Learning

    ERIC Educational Resources Information Center

    Yeo, Kee Meng; Mayadas, A. Frank

    2010-01-01

    The Sloan Pillars have set the standard for university-wide online learning program assessment for more than a dozen years. In this paper, the authors propose the extension of the Pillars to corporate e-learning, offering an alternative to traditional enterprise learning assessments. Claiming that conventional methods stress individual courses or…

  9. Design and construction of porous metal-organic frameworks based on flexible BPH pillars

    NASA Astrophysics Data System (ADS)

    Hao, Xiang-Rong; Yang, Guang-sheng; Shao, Kui-Zhan; Su, Zhong-Min; Yuan, Gang; Wang, Xin-Long

    2013-02-01

    Three metal-organic frameworks (MOFs), [Co2(BPDC)2(4-BPH)·3DMF]n (1), [Cd2(BPDC)2(4-BPH)2·2DMF]n (2) and [Ni2(BDC)2(3-BPH)2 (H2O)·4DMF]n (3) (H2BPDC=biphenyl-4,4'-dicarboxylic acid, H2BDC=terephthalic acid, BPH=bis(pyridinylethylidene)hydrazine and DMF=N,N'-dimethylformamide), have been solvothermally synthesized based on the insertion of heterogeneous BPH pillars. Framework 1 has "single-pillared" MOF-5-like motif with inner cage diameters of up to 18.6 Å. Framework 2 has "double pillared" MOF-5-like motif with cage diameters of 19.2 Å while 3 has "double pillared" 8-connected framework with channel diameters of 11.0 Å. Powder X-ray diffraction (PXRD) shows that 3 is a dynamic porous framework.

  10. Electrochemistry at Edge of Single Graphene Layer in a Nanopore

    PubMed Central

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127

  11. Water desalination with a single-layer MoS2 nanopore

    PubMed Central

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062

  12. Electrochemical Generation of a Hydrogen Bubble at a Recessed Platinum Nanopore Electrode.

    PubMed

    Chen, Qianjin; Luo, Long; White, Henry S

    2015-04-21

    We report the electrochemical generation of a single hydrogen bubble within the cavity of a recessed Pt nanopore electrode. The recessed Pt electrode is a conical pore in glass that contains a micrometer-scale Pt disk (1-10 μm radius) at the nanopore base and a nanometer-scale orifice (10-100 nm radius) that restricts diffusion of electroactive molecules and dissolved gas between the nanopore cavity and bulk solution. The formation of a H2 bubble at the Pt disk electrode in voltammetric experiments results from the reduction of H(+) in a 0.25 M H2SO4 solution; the liquid-to-gas phase transformation is indicated in the voltammetric response by a precipitous decrease in the cathodic current due to rapid bubble nucleation and growth within the nanopore cavity. Finite element simulations of the concentration distribution of dissolved H2 within the nanopore cavity, as a function of the H(+) reduction current, indicate that H2 bubble nucleation at the recessed Pt electrode surface occurs at a critical supersaturation concentration of ∼0.22 M, in agreement with the value previously obtained at (nonrecessed) Pt disk electrodes (∼0.25 M). Because the nanopore orifice limits the diffusion of H2 out of the nanopore cavity, an anodic peak corresponding to the oxidation of gaseous and dissolved H2 trapped in the recessed cavity is readily observed on the reverse voltammetric scan. Integration of the charge associated with the H2 oxidation peak is found to approach that of the H(+) reduction peak at high scan rates, confirming the assignment of the anodic peak to H2 oxidation. Preliminary results for the electrochemical generation of O2 bubbles from water oxidation at a recessed nanopore electrode are consistent with the electrogeneration of H2 bubbles.

  13. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  14. Protein sequencing via nanopore based devices: a nanofluidics perspective

    NASA Astrophysics Data System (ADS)

    Chinappi, Mauro; Cecconi, Fabio

    2018-05-01

    Proteins perform a huge number of central functions in living organisms, thus all the new techniques allowing their precise, fast and accurate characterization at single-molecule level certainly represent a burst in proteomics with important biomedical impact. In this review, we describe the recent progresses in the developing of nanopore based devices for protein sequencing. We start with a critical analysis of the main technical requirements for nanopore protein sequencing, summarizing some ideas and methodologies that have recently appeared in the literature. In the last sections, we focus on the physical modelling of the transport phenomena occurring in nanopore based devices. The multiscale nature of the problem is discussed and, in this respect, some of the main possible computational approaches are illustrated.

  15. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  16. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2013-03-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with embedded pore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a pore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can optically detect successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule. Furthermore, electrical measurements through the nanopore are performed, indicating that DNA sensing is feasible using the nanochannel-nanopore device.

  17. Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays

    NASA Astrophysics Data System (ADS)

    Proenca, M. P.; Sousa, C. T.; Escrig, J.; Ventura, J.; Vazquez, M.; Araujo, J. P.

    2013-03-01

    Ordered hexagonal arrays of Co nanowires (NWs) and nanotubes (NTs), with diameters between 40 and 65 nm, were prepared by potentiostatic electrodeposition into suitably modified nanoporous alumina templates. The geometrical parameters of the NW/NT arrays were tuned by the pore etching process and deposition conditions. The magnetic interactions between NWs/NTs with different diameters were studied using first-order reversal curves (FORCs). From a quantitative analysis of the FORC measurements, we are able to obtain the profiles of the magnetic interactions and the coercive field distributions. In both NW and NT arrays, the magnetic interactions were found to increase with the diameter of the NWs/NTs, exhibiting higher values for NW arrays. A comparative study of the magnetization reversal processes was also performed by analyzing the angular dependence of the coercivity and correlating the experimental data with theoretical calculations based on a simple analytical model. The magnetization in the NW arrays is found to reverse by the nucleation and propagation of a transverse-like domain wall; on the other hand, for the NT arrays a non-monotonic behavior occurs above a diameter of ˜50 nm, revealing a transition between the vortex and transverse reversal modes.

  18. Formation and dissolution of microbubbles on highly-ordered plasmonic nanopillar arrays

    PubMed Central

    Liu, Xiumei; Bao, Lei; Dipalo, Michele; De Angelis, Francesco; Zhang, Xuehua

    2015-01-01

    Bubble formation from plasmonic heating of nanostructures is of great interest in many applications. In this work, we study experimentally the intrinsic effects of the number of three-dimensional plasmonic nanostructures on the dynamics of microbubbles, largely decoupled from the effects of dissolved air. The formation and dissolution of microbubbles is observed on exciting groups of 1, 4, and 9 nanopillars. Our results show that the power threshold for the bubble formation depends on the number density of the nanopillars in highly-ordered arrays. In the degassed water, both the growth rate and the maximal radius of the plasmonic microbubbles increase with an increase of the illuminated pillar number, due to the heat balance between the heat loss across the bubble and the collective heating generated from the nanopillars. Interestingly, our results show that the bubble dissolution is affected by the spatial arrangement of the underlying nanopillars, due to the pinning effect on the bubble boundary. The bubbles on nanopillar arrays dissolve in a jumping mode with step-wise features on the dissolution curves, prior to a smooth dissolution phase for the bubble pinned by a single pillar. The insight from this work may facilitate the design of nanostructures for efficient energy conversion. PMID:26687143

  19. Study on the Characteristics of Gas Molecular Mean Free Path in Nanopores by Molecular Dynamics Simulations

    PubMed Central

    Liu, Qixin; Cai, Zhiyong

    2014-01-01

    This paper presents studies on the characteristics of gas molecular mean free path in nanopores by molecular dynamics simulation. Our study results indicate that the mean free path of all molecules in nanopores depend on both the radius of the nanopore and the gas-solid interaction strength. Besides mean free path of all molecules in the nanopore, this paper highlights the gas molecular mean free path at different positions of the nanopore and the anisotropy of the gas molecular mean free path at nanopores. The molecular mean free path varies with the molecule’s distance from the center of the nanopore. The least value of the mean free path occurs at the wall surface of the nanopore. The present paper found that the gas molecular mean free path is anisotropic when gas is confined in nanopores. The radial gas molecular mean free path is much smaller than the mean free path including all molecular collisions occuring in three directions. Our study results also indicate that when gas is confined in nanopores the gas molecule number density does not affect the gas molecular mean free path in the same way as it does for the gas in unbounded space. These study results may bring new insights into understanding the gas flow’s characteristic at nanoscale. PMID:25046745

  20. Selectively Sized Graphene-Based Nanopores for in Situ Single Molecule Sensing

    PubMed Central

    2015-01-01

    The use of nanopore biosensors is set to be extremely important in developing precise single molecule detectors and providing highly sensitive advanced analysis of biological molecules. The precise tailoring of nanopore size is a significant step toward achieving this, as it would allow for a nanopore to be tuned to a corresponding analyte. The work presented here details a methodology for selectively opening nanopores in real-time. The tunable nanopores on a quartz nanopipette platform are fabricated using the electroetching of a graphene-based membrane constructed from individual graphene nanoflakes (ø ∼30 nm). The device design allows for in situ opening of the graphene membrane, from fully closed to fully opened (ø ∼25 nm), a feature that has yet to be reported in the literature. The translocation of DNA is studied as the pore size is varied, allowing for subfeatures of DNA to be detected with slower DNA translocations at smaller pore sizes, and the ability to observe trends as the pore is opened. This approach opens the door to creating a device that can be target to detect specific analytes. PMID:26204996

  1. Fabrication of biomolecules self-assembled on Au nanodot array for bioelectronic device.

    PubMed

    Lee, Taek; Kumar, Ajay Yagati; Yoo, Si-Youl; Jung, Mi; Min, Junhong; Choi, Jeong-Woo

    2013-09-01

    In the present study, an nano-platform composed of Au nanodot arrays on which biomolecules could be self-assembled was developed and investigated for a stable bioelectronic device platform. Au nanodot pattern was fabricated using a nanoporous alumina template. Two different biomolecules, a cytochrome c and a single strand DNA (ssDNA), were immobilized on the Au nanodot arrays. Cytochorme c and single stranded DNA could be immobilized on the Au nanodot using the chemical linker 11-MUA and thiol-modification by covalent bonding, respectively. The atomic structure of the fabricated nano-platform device was characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The electrical conductivity of biomolecules immobilized on the Au nanodot arrays was confirmed by scanning tunneling spectroscopy (STS). To investigate the activity of biomolecule-immobilized Au-nano dot array, the cyclic voltammetry was carried out. This proposed nano-platform device, which is composed of biomolecules, can be used for the construction of a novel bioelectronic device.

  2. Single-molecule Protein Unfolding in Solid State Nanopores

    PubMed Central

    Talaga, David S.; Li, Jiali

    2009-01-01

    We use single silicon nitride nanopores to study folded, partially folded and unfolded single proteins by measuring their excluded volumes. The DNA-calibrated translocation signals of β-lactoglobulin and histidine-containing phosphocarrier protein match quantitatively with that predicted by a simple sum of the partial volumes of the amino acids in the polypeptide segment inside the pore when translocation stalls due to the primary charge sequence. Our analysis suggests that the majority of the protein molecules were linear or looped during translocation and that the electrical forces present under physiologically relevant potentials can unfold proteins. Our results show that the nanopore translocation signals are sensitive enough to distinguish the folding state of a protein and distinguish between proteins based on the excluded volume of a local segment of the polypeptide chain that transiently stalls in the nanopore due to the primary sequence of charges. PMID:19530678

  3. Advances in nanopore sensing promises to transform healthcare.

    PubMed

    Haque, Farzin; Wang, Shaoying; Wu, Taoxiang; Guo, Peixuan

    2017-08-01

    International Conference on Nanopore Technology (Shenzhen), 30 March-1 April 2017, Shenzhen, China The International Conference on Nanopore Technology (Shenzhen) was held from 30 March to 1 April 2017 in Shenzhen, China. The goal of the meeting was threefold: leverage the unique properties of nanopore technology to promote transformative advances in medicine, encourage cross-disciplinary collaborations in the research community within China and abroad; and discuss critical challenges that need to be addressed to rapidly advance the field. The meeting was chaired by Peixuan Guo, Endowed chair professor and Director of The Center for RNA Nanobiotechnology & Nanomedicine at The Ohio State University, USA and co-chaired by Xian-En Zhang, distinguished professor of the Institute of Biophysics, Chinese Academy of Sciences, China. The conference was attended by more than 300 academic researchers, hospital administrators, government leaders and scientists from many disciplines across the country from both academic institutions and industry.

  4. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores.

    PubMed

    McMullen, Angus; de Haan, Hendrick W; Tang, Jay X; Stein, Derek

    2018-02-16

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  5. Top-down solid-phase fabrication of nanoporous cadmium oxide architectures.

    PubMed

    Yu, Haidong; Wang, Deshen; Han, Ming-Yong

    2007-02-28

    In this article, we have demonstrated one-step solid-phase transformation from high-quality cadmium carbonate microcrystals into highly nanoporous cadmium oxide. The high crystal quality of cadmium carbonate is critical for the successful fabrication of porous nanoarchitectures with predetermined morphology and well-controlled internal structure. This novel strategy has a good potential to prepare nanoporous materials at a large scale by using perfect monolithic carbonate crystals, and it is also useful to synthesize different nanoporous materials on metal-oxide-coated substrates. Meanwhile, this simple thermal transformation of cadmium carbonate into porous structures has further been extended to convert calcium carbonate into such porous structures.

  6. Buckling Causes Nonlinear Dynamics of Filamentous Viruses Driven through Nanopores

    NASA Astrophysics Data System (ADS)

    McMullen, Angus; de Haan, Hendrick W.; Tang, Jay X.; Stein, Derek

    2018-02-01

    Measurements and Langevin dynamics simulations of filamentous viruses driven through solid-state nanopores reveal a superlinear rise in the translocation velocity with driving force. The mobility also scales with the length of the virus in a nontrivial way that depends on the force. These dynamics are consequences of the buckling of the leading portion of a virus as it emerges from the nanopore and is put under compressive stress by the viscous forces it encounters. The leading tip of a buckled virus stalls and this reduces the total viscous drag force. We present a scaling theory that connects the solid mechanics to the nonlinear dynamics of polyelectrolytes translocating nanopores.

  7. Radiation-MHD Simulations of Pillars and Globules in HII Regions

    NASA Astrophysics Data System (ADS)

    Mackey, J.

    2012-07-01

    Implicit and explicit raytracing-photoionisation algorithms have been implemented in the author's radiation-magnetohydrodynamics code. The algorithms are described briefly and their efficiency and parallel scaling are investigated. The implicit algorithm is more efficient for calculations where ionisation fronts have very supersonic velocities, and the explicit algorithm is favoured in the opposite limit because of its better parallel scaling. The implicit method is used to investigate the effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of HII regions. It is shown that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the ‘Pillars of Creation’ in M16. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped, dense, ionised ribbon which partially shields the ionisation front.

  8. Nanoporous array anodic titanium-supported co-polymeric ionic liquids as high performance solid-phase microextraction sorbents for hydrogen bonding compounds.

    PubMed

    Jia, Jing; Liang, Xiaojing; Wang, Licheng; Guo, Yong; Liu, Xia; Jiang, Shengxiang

    2013-12-13

    A nanoporous array anodic titanium-supported co-polymeric ionic liquids (NAAT/PILs) solid-phase microextraction (SPME) fiber was prepared in situ on the titanium wire. NAAT was selected as the substrate, in view of its high surface-to-volume ratio, easy preparation, mechanical stability, and rich titanol groups on its surface which can anchor silica coupling agent containing vinyl and then introduce ionic liquid copolymers as sorbents. In this work, 1-vinyl-3-nonanol imidazolium bromide ([C9OHVIm]Br) and 1,4-di(3-vinylimidazolium) butane dibromide ([(VIM)2C4]2[Br]) were synthesized and used as monomer and crosslinker, respectively. Extraction properties of the NAAT/PILs fiber for polar alcohols and volatile fatty acids (VFAs) in aqueous matrix were examined using gaseous sampling-SPME (GS-SPME) and headspace SPME (HS-SPME) mode, respectively. Combining the superior properties of NAAT substrate and the strong hydrogen bond interaction of PILs to polar compounds, the NAAT/PILs SPME fiber showed much higher adsorption affinity to aliphatic alcohols than bare NAAT and pure PILs fibers. The detection limits (LOD) of established GS-SPME-GC-FID method are in the range of 0.35-17.30ngL(-1) with a linear range from 0.01 to 500ngmL(-1). Also, it showed high extraction performance toward volatile fatty acids (VFAs) compounds from aqueous matrix. Under the optimized SPME conditions, wide linear ranges were obtained with correlation coefficients (R(2)) greater than 0.99 and limits of detection were in the range of 0.85-8.74ngL(-1). Moreover, real-world samples were analyzed and good results were obtained. Copyright © 2013. Published by Elsevier B.V.

  9. Preparing nano-hole arrays by using porous anodic aluminum oxide nano-structural masks for the enhanced emission from InGaN/GaN blue light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoang-Duy; Nguyen, Hieu Pham Trung; Lee, Jae-jin; Mho, Sun-Il

    2012-12-01

    We report on the achievement of the enhanced cathodoluminescence (CL) from InGaN/GaN light-emitting diodes (LEDs) by using roughening surface. Nanoporous anodic aluminum oxide (AAO) mask was utilized to form nano-hole arrays on the surface of InGaN/GaN LEDs. AAO membranes with ordered hexagonal structures were fabricated from aluminum foils by a two-step anodization method. The average pore densities of ˜1.0 × 1010 cm-2 and 3.0 × 1010 cm-2 were fabricated with the constant anodization voltages of 25 and 40 V, respectively. Anodic porous alumina film with a thickness of ˜600 nm has been used as a mask for the induced couple plasma etching process to fabricate nano-hole arrays on the LED surface. Diameter and depth of nano-holes can be controlled by varying the etching duration and/or the diameter of AAO membranes. Due to the reduction of total internal reflection obtained in the patterned samples, we have observed that the cathodoluminescence intensity of LEDs with nanoporous structures is increased up to eight times compared to that of samples without using nanoporous structure.

  10. Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

    PubMed Central

    Chauvin, Adrien; Delacôte, Cyril; Boujtita, Mohammed; Angleraud, Benoit; Ding, Junjun; Choi, Chang-Hwan; Tessier, Pierre-Yves

    2016-01-01

    Summary We report on a novel fabrication approach of metal nanowires with complex surface. Taking advantage of nodular growth triggered by the presence of surface defects created intentionally on the substrate as well as the high tilt angle between the magnetron source axis and the normal to the substrate, metal nanowires containing hillocks emerging out of the surface can be created. The approach is demonstrated for several metals and alloys including gold, copper, silver, gold–copper and gold–silver. We demonstrate that applying an electrochemical dealloying process to the gold–copper alloy nanowire arrays allows for transforming the hillocks into ring-like shaped nanopores. The resulting porous gold nanowires exhibit a very high roughness and high specific surface making of them a promising candidate for the development of SERS-based sensors. PMID:27826510

  11. Alumina plate containing photosystem I reaction center complex oriented inside plate-penetrating silica nanopores.

    PubMed

    Kamidaki, Chihiro; Kondo, Toru; Noji, Tomoyasu; Itoh, Tetsuji; Yamaguchi, Akira; Itoh, Shigeru

    2013-08-22

    The photosynthetic photosystem I reaction center complex (PSI-RC), which has a molecular diameter of 21 nm with 100 pigments, was incorporated into silica nanopores with a 100-nm diameter that penetrates an alumina plate of 60-μm thickness to make up an inorganic-biological hybrid photocell. PSI-RCs, purified from a thermophilic cyanobacterium, were stable inside the nanopores and rapidly photoreduced a mediator dye methyl viologen. The reduced dye was more stable inside nanopores suggesting the decrease of dissolved oxygen. The analysis by a cryogenic electron spin paramagnetic resonance indicated the oriented arrangement of RCs inside the 100-nm nanopores, with their surface parallel to the silica wall and perpendicular to the plane of the alumina plate. PSI RC complex in the semicrystalline orientation inside silica nanopores can be a new type of light energy conversion unit to supply strong reducing power selectively to other molecules inside or outside nanopores.

  12. Fundamental Bounds for Sequence Reconstruction from Nanopore Sequencers.

    PubMed

    Magner, Abram; Duda, Jarosław; Szpankowski, Wojciech; Grama, Ananth

    2016-06-01

    Nanopore sequencers are emerging as promising new platforms for high-throughput sequencing. As with other technologies, sequencer errors pose a major challenge for their effective use. In this paper, we present a novel information theoretic analysis of the impact of insertion-deletion (indel) errors in nanopore sequencers. In particular, we consider the following problems: (i) for given indel error characteristics and rate, what is the probability of accurate reconstruction as a function of sequence length; (ii) using replicated extrusion (the process of passing a DNA strand through the nanopore), what is the number of replicas needed to accurately reconstruct the true sequence with high probability? Our results provide a number of important insights: (i) the probability of accurate reconstruction of a sequence from a single sample in the presence of indel errors tends quickly (i.e., exponentially) to zero as the length of the sequence increases; and (ii) replicated extrusion is an effective technique for accurate reconstruction. We show that for typical distributions of indel errors, the required number of replicas is a slow function (polylogarithmic) of sequence length - implying that through replicated extrusion, we can sequence large reads using nanopore sequencers. Moreover, we show that in certain cases, the required number of replicas can be related to information-theoretic parameters of the indel error distributions.

  13. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  14. Noise in solid-state nanopores

    PubMed Central

    Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C.

    2008-01-01

    We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f ≲ 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter α = (1.1 ± 0.1) × 10−4. In the high-frequency regime (f ≳ 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency. PMID:18184817

  15. Noise in solid-state nanopores.

    PubMed

    Smeets, R M M; Keyser, U F; Dekker, N H; Dekker, C

    2008-01-15

    We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter alpha = (1.1 +/- 0.1) x 10(-4). In the high-frequency regime (f approximately > 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency.

  16. Capture, Unfolding, and Detection of Individual tRNA Molecules Using a Nanopore Device

    PubMed Central

    Smith, Andrew M.; Abu-Shumays, Robin; Akeson, Mark; Bernick, David L.

    2015-01-01

    Transfer RNAs (tRNA) are the most common RNA molecules in cells and have critical roles as both translators of the genetic code and regulators of protein synthesis. As such, numerous methods have focused on studying tRNA abundance and regulation, with the most widely used methods being RNA-seq and microarrays. Though revolutionary to transcriptomics, these assays are limited by an inability to encode tRNA modifications in the requisite cDNA. These modifications are abundant in tRNA and critical to their function. Here, we describe proof-of-concept experiments where individual tRNA molecules are examined as linear strands using a biological nanopore. This method utilizes an enzymatically ligated synthetic DNA adapter to concentrate tRNA at the lipid bilayer of the nanopore device and efficiently denature individual tRNA molecules, as they are pulled through the α-hemolysin (α-HL) nanopore. Additionally, the DNA adapter provides a loading site for ϕ29 DNA polymerase (ϕ29 DNAP), which acts as a brake on the translocating tRNA. This increases the dwell time of adapted tRNA in the nanopore, allowing us to identify the region of the nanopore signal that is produced by the translocating tRNA itself. Using adapter-modified Escherichia coli tRNAfMet and tRNALys, we show that the nanopore signal during controlled translocation is dependent on the identity of the tRNA. This confirms that adapter-modified tRNA can translocate end-to-end through nanopores and provide the foundation for future work in direct sequencing of individual transfer RNA with a nanopore-based device. PMID:26157798

  17. Measurement of DNA translocation dynamics in a solid-state nanopore at 100-ns temporal resolution

    PubMed Central

    Shekar, Siddharth; Niedzwiecki, David J.; Chien, Chen-Chi; Ong, Peijie; Fleischer, Daniel A.; Lin, Jianxun; Rosenstein, Jacob K.; Drndic, Marija; Shepard, Kenneth L.

    2017-01-01

    Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (CNP) amplifier capable of low noise recordings at an unprecedented 10 MHz bandwidth. When integrated with state-of-the-art solid-state nanopores in silicon nitride membranes, we achieve an SNR of greater than 10 for ssDNA translocations at a measurement bandwidth of 5 MHz, which represents the fastest ion current recordings through nanopores reported to date. We observe transient features in ssDNA translocation events that are as short as 200 ns, which are hidden even at bandwidths as high as 1 MHz. These features offer further insights into the translocation kinetics of molecules entering and exiting the pore. This platform highlights the advantages of high-bandwidth translocation measurements made possible by integrating nanopores and custom-designed electronics. PMID:27332998

  18. Basic evaluation of typical nanoporous silica nanoparticles in being drug carrier: Structure, wettability and hemolysis.

    PubMed

    Li, Jing; Guo, Yingyu

    2017-04-01

    Herein, the present work devoted to study the basic capacity of nanoporous silica nanoparticles in being drug carrier that covered structure, wettability and hemolysis so as to provide crucial evaluation. Typical nanoporous silica nanoparticles that consist of nanoporous silica nanoparticles (NSN), amino modified nanoporous silica nanoparticles (amino-NSN), carboxyl modified nanoporous silica nanoparticles (carboxyl-NSN) and hierachical nanoporous silica nanoparticles (hierachical-NSN) were studied. The results showed that their wettability and hemolysis were closely related to structure and surface modification. Basically, wettability became stronger as the amount of OH on the surface of NSN was higher. Both large nanopores and surface modification can reduce the wettability of NSN. Furthermore, NSN series were safe to be used when they circulated into the blood in low concentration, while if high concentration can not be avoided during administration, high porosity or amino modification of NSN were safer to be considered. It is believed that the basic evaluation of NSN can make contribution in providing scientific instruction for designing drug loaded NSN systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Fabrication of 10nm diameter carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  20. Pillar-structured neutron detector based multiplicity system

    NASA Astrophysics Data System (ADS)

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; Kerr, Phil L.; Fabris, Lorenzo; Conway, Adam M.; Nikolic, Rebecca J.

    2018-01-01

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252 neutron source, in which the source mass, system efficiency, and die-away time were determined. This demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.

  1. Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation

    NASA Astrophysics Data System (ADS)

    Schneider, Grégory F.; Xu, Qiang; Hage, Susanne; Luik, Stephanie; Spoor, Johannes N. H.; Malladi, Sairam; Zandbergen, Henny; Dekker, Cees

    2013-10-01

    Graphene nanopores are potential successors to biological and silicon-based nanopores. For sensing applications, it is however crucial to understand and block the strong nonspecific hydrophobic interactions between DNA and graphene. Here we demonstrate a novel scheme to prevent DNA-graphene interactions, based on a tailored self-assembled monolayer. For bare graphene, we encounter a paradox: whereas contaminated graphene nanopores facilitated DNA translocation well, clean crystalline graphene pores very quickly exhibit clogging of the pore. We attribute this to strong interactions between DNA nucleotides and graphene, yielding sticking and irreversible pore closure. We develop a general strategy to noncovalently tailor the hydrophobic surface of graphene by designing a dedicated self-assembled monolayer of pyrene ethylene glycol, which renders the surface hydrophilic. We demonstrate that this prevents DNA to adsorb on graphene and show that single-stranded DNA can now be detected in graphene nanopores with excellent nanopore durability and reproducibility.

  2. Microfluidic Device with Tunable Post Arrays and Integrated Electrodes for Studying Cellular Release

    PubMed Central

    Selimovic, Asmira; Erkal, Jayda L.; Spence, Dana M.; Martin, R. Scott

    2015-01-01

    In this paper, we describe the development of a planar, pillar array device that can be used to image either side of a tunable membrane, as well as sample and detect small molecules in a cell-free region of the microchip. The pores are created by sealing two parallel PDMS microchannels (a cell channel and a collector channel) over a gold pillar array (5 or 10 µm in height), with the device being characterized and optimized for small molecule cross-over while excluding a flowing cell line (here, red blood cells, RBCs). The device was characterized in terms of the flow rate dependence of cross-over of analyte and cell exclusion as well as the ability to perform amperometric detection of catechol and nitric oxide (NO) as they cross-over into the collector channel. Using catechol as the test analyte, the limits of detection (LOD) of the cross-over for the 10 µm and 5 µm pillar array heights were shown to be 50 nM and 106 nM, respectively. Detection of NO was made possible with a glassy carbon detection electrode (housed in the collector channel) modified with Pt-black and Nafion, to enhance sensitivity and selectivity, respectively. Reproducible cross-over of NO as a function of concentration resulted in a linear correlation (r2 = 0.995, 7.6 µM - 190 µM), with an LOD for NO of 230 nM on the glassy carbon-Pt-black-0.05% Nafion electrode. The applicability of the device was demonstrated by measuring the NO released from hypoxic RBCs, with the device allowing the released NO to cross-over into a cell free channel where it was detected in close to real-time. This type of device is an attractive alternative to the use of 3-dimensional devices with polycarbonate membranes, as either side of the membrane can be imaged and facile integration of electrochemical detection is possible. PMID:25105251

  3. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  4. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  5. Brittle-to-ductile transition of lithiated silicon electrodes: Crazing to stable nanopore growth.

    PubMed

    Wang, Haoran; Wang, Xueju; Xia, Shuman; Chew, Huck Beng

    2015-09-14

    Using first principle calculations, we uncover the underlying mechanisms explaining the brittle-to-ductile transition of LixSi electrodes in lithium ion batteries with increasing Li content. We show that plasticity initiates at x = ∼ 0.5 with the formation of a craze-like network of nanopores separated by Si-Si bonds, while subsequent failure is still brittle-like with the breaking of Si-Si bonds. Transition to ductile behavior occurs at x ⩾ 1 due to the increased density of highly stretchable Li-Li bonds, which delays nanopore formation and stabilizes nanopore growth. Collapse of the nanopores during unloading of the LixSi alloys leads to significant strain recovery.

  6. Nanostructured gold microelectrodes for extracellular recording from electrogenic cells.

    PubMed

    Brüggemann, D; Wolfrum, B; Maybeck, V; Mourzina, Y; Jansen, M; Offenhäusser, A

    2011-07-01

    We present a new biocompatible nanostructured microelectrode array for extracellular signal recording from electrogenic cells. Microfabrication techniques were combined with a template-assisted approach using nanoporous aluminum oxide to develop gold nanopillar electrodes. The nanopillars were approximately 300-400 nm high and had a diameter of 60 nm. Thus, they yielded a higher surface area of the electrodes resulting in a decreased impedance compared to planar electrodes. The interaction between the large-scale gold nanopillar arrays and cardiac muscle cells (HL-1) was investigated via focused ion beam milling. In the resulting cross-sections we observed a tight coupling between the HL-1 cells and the gold nanostructures. However, the cell membranes did not bend into the cleft between adjacent nanopillars due to the high pillar density. We performed extracellular potential recordings from HL-1 cells with the nanostructured microelectrode arrays. The maximal amplitudes recorded with the nanopillar electrodes were up to 100% higher than those recorded with planar gold electrodes. Increasing the aspect ratio of the gold nanopillars and changing the geometrical layout can further enhance the signal quality in the future.

  7. Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Li-Li; Zhu, Youlong; Long, Hai

    2017-01-01

    We report the high hydrocarbon storage capacity and adsorption selectivity of two low-density pillar[n]arene-based SOFs. Our study would open new perspectives in the development of pillar[n]arene-based SOFs and study of their great potential in gas-storage and gas-separation applications.

  8. Asymmetric nanopore membranes: Single molecule detection and unique transport properties

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory William

    Biological systems rely on the transport properties of transmembrane channels. Such pores can display selective transport by allowing the passage of certain ions or molecules while rejecting others. Recent advances in nanoscale fabrication have allowed the production of synthetic analogs of such channels. Synthetic nanopores (pores with a limiting dimension of 1--100 nm) can be produced in a variety of materials by several different methods. In the Martin group, we have been exploring the track-etch method to produce asymmetric nanopores in thin films of polymeric or crystalline materials. Asymmetric nanopores are of particular interest due to their ability to serve as ion-current rectifiers. This means that when a membrane that contains such a pore or collection of pores is used to separate identical portions of electrolyte solution, the magnitude of the ionic current will depend not only on the magnitude of the applied potential (as expected) but also the polarity. Ion-current rectification is characterized by an asymmetric current--potential response. Here, the interesting transport properties of asymmetric nanopores (ion-current rectification and the related phenomenon of electroosmotic flow rectification) are explored. The effects of pore shape and pore density on these phenomena are investigated. Membranes that contain a single nanopore can serve as platforms for the single-molecule sensing technique known as resistive pulse sensing. The resistive-pulse sensing method is based on the Coulter principle. Thus, the selectivity of the technique is based largely upon size, making the analysis of mixtures by this method difficult in many cases. Here, the surface of a single nanopore membrane is modified with a molecular recognition agent in an attempt to obtain a more selective resistive-pulse sensor for a specific analyte.

  9. Structurally Engineered Nanoporous Ta2O5-x Selector-Less Memristor for High Uniformity and Low Power Consumption.

    PubMed

    Kwon, Soonbang; Kim, Tae-Wook; Jang, Seonghoon; Lee, Jae-Hwang; Kim, Nam Dong; Ji, Yongsung; Lee, Chul-Ho; Tour, James M; Wang, Gunuk

    2017-10-04

    A memristor architecture based on metal-oxide materials would have great promise in achieving exceptional energy efficiency and higher scalability in next-generation electronic memory systems. Here, we propose a facile method for fabricating selector-less memristor arrays using an engineered nanoporous Ta 2 O 5-x architecture. The device was fabricated in the form of crossbar arrays, and it functions as a switchable rectifier with a self-embedded nonlinear switching behavior and ultralow power consumption (∼2.7 × 10 -6 W), which results in effective suppression of crosstalk interference. In addition, we determined that the essential switching elements, such as the programming power, the sneak current, the nonlinearity value, and the device-to-device uniformity, could be enhanced by in-depth structural engineering of the pores in the Ta 2 O 5-x layer. Our results, on the basis of the structural engineering of metal-oxide materials, could provide an attractive approach for fabricating simple and cost-efficient memristor arrays with acceptable device uniformity and low power consumption without the need for additional addressing selectors.

  10. Nanoporous biomaterials for uremic toxin adsorption in artificial kidney systems: A review.

    PubMed

    Cheah, Wee-Keat; Ishikawa, Kunio; Othman, Radzali; Yeoh, Fei-Yee

    2017-07-01

    Hemodialysis, one of the earliest artificial kidney systems, removes uremic toxins via diffusion through a semipermeable porous membrane into the dialysate fluid. Miniaturization of the present hemodialysis system into a portable and wearable device to maintain continuous removal of uremic toxins would require that the amount of dialysate used within a closed-system is greatly reduced. Diffused uremic toxins within a closed-system dialysate need to be removed to maintain the optimum concentration gradient for continuous uremic toxin removal by the dialyzer. In this dialysate regenerative system, adsorption of uremic toxins by nanoporous biomaterials is essential. Throughout the years of artificial kidney development, activated carbon has been identified as a potential adsorbent for uremic toxins. Adsorption of uremic toxins necessitates nanoporous biomaterials, especially activated carbon. Nanoporous biomaterials are also utilized in hemoperfusion for uremic toxin removal. Further miniaturization of artificial kidney system and improvements on uremic toxin adsorption capacity would require high performance nanoporous biomaterials which possess not only higher surface area, controlled pore size, but also designed architecture or structure and surface functional groups. This article reviews on various nanoporous biomaterials used in current artificial kidney systems and several emerging nanoporous biomaterials. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1232-1240, 2017. © 2016 Wiley Periodicals, Inc.

  11. Boron Nitride Nanoporous Membranes with High Surface Charge by Atomic Layer Deposition.

    PubMed

    Weber, Matthieu; Koonkaew, Boonprakrong; Balme, Sebastien; Utke, Ivo; Picaud, Fabien; Iatsunskyi, Igor; Coy, Emerson; Miele, Philippe; Bechelany, Mikhael

    2017-05-17

    In this work, we report the design and the fine-tuning of boron nitride single nanopore and nanoporous membranes by atomic layer deposition (ALD). First, we developed an ALD process based on the use of BBr 3 and NH 3 as precursors in order to synthesize BN thin films. The deposited films were characterized in terms of thickness, composition, and microstructure. Next, we used the newly developed process to grow BN films on anodic aluminum oxide nanoporous templates, demonstrating the conformality benefit of BN prepared by ALD, and its scalability for the manufacturing of membranes. For the first time, the ALD process was then used to tune the diameter of fabricated single transmembrane nanopores by adjusting the BN thickness and to enable studies of the fundamental aspects of ionic transport on a single nanopore. At pH = 7, we estimated a surface charge density of 0.16 C·m -2 without slip and 0.07 C·m -2 considering a reasonable slip length of 3 nm. Molecular dynamics simulations performed with experimental conditions confirmed the conductivities and the sign of surface charges measured. The high ion transport results obtained and the ability to fine-tune nanoporous membranes by such a scalable method pave the way toward applications such as ionic separation, energy harvesting, and ultrafiltration devices.

  12. Modeling electrochemical deposition inside nanotubes to obtain metal-semiconductor multiscale nanocables or conical nanopores.

    PubMed

    Lebedev, Konstantin; Mafé, Salvador; Stroeve, Pieter

    2005-08-04

    Nanocables with a radial metal-semiconductor heterostructure have recently been prepared by electrochemical deposition inside metal nanotubes. First, a bare nanoporous polycarbonate track-etched membrane is coated uniformly with a metal film by electroless deposition. The film forms a working electrode for further deposition of a semiconductor layer that grows radially inside the nanopore when the deposition rate is slow. We propose a new physical model for the nanocable synthesis and study the effects of the deposited species concentration, potential-dependent reaction rate, and nanopore dimensions on the electrochemical deposition. The problem involves both axial diffusion through the nanopore and radial transport to the nanopore surface, with a surface reaction rate that depends on the axial position and the time. This is so because the radial potential drop across the deposited semiconductor layer changes with the layer thickness through the nanopore. Since axially uniform nanocables are needed for most applications, we consider the relative role of reaction and axial diffusion rates on the deposition process. However, in those cases where partial, empty-core deposition should be desirable (e.g., for producing conical nanopores to be used in single nanoparticle detection), we give conditions where asymmetric geometries can be experimentally realized.

  13. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  14. Identification of Essential Sensitive Regions of the Aerolysin Nanopore for Single Oligonucleotide Analysis.

    PubMed

    Wang, Ya-Qian; Li, Meng-Yin; Qiu, Hu; Cao, Chan; Wang, Ming-Bo; Wu, Xue-Yuan; Huang, Jin; Ying, Yi-Lun; Long, Yi-Tao

    2018-06-11

    The aerolysin nanopore channel is one of the confined spaces for single molecule analysis which displays high spatial and temporal resolution for the discrimination of single nucleotides, identification of DNA base modification, and analyzing the structural transition of DNAs. However, to overcome the challenge of achieving the ultimate goal of the widespread real analytical application, it is urgent to probe the sensing regions of the aerolysin to further improve the sensitivity. In this paper, we explore the sensing regions of the aerolysin nanopore by a series of well-designed mutant nanopore experiments combined with molecular dynamics simulations-based electrostatic analysis. The positively charged lumen-exposed Lys-238, identified as one of the key sensing sites due to the presence of a deep valley in the electrostatic potentials, was replaced by different charged and sized amino acids. The results show that the translocation time of oligonucleotides through the nanopore can be readily modulated by the choice of the target amino acid at the 238 site. In particular, a 7-fold slower translocation at a voltage bias of +120 mV is observed with respect to the wild-type aerolysin, which provides a high resolution for methylated cytosine discrimination. We further determine that both the electrostatic properties and geometrical structure of the aerolysin nanopore are crucial to its sensing ability. These insights open ways for rationally designing the sensing mechanism of the aerolysin nanopore, thus providing a novel paradigm for nanopore sensing.

  15. A novel input-parasitic compensation technique for a nanopore-based CMOS DNA detection sensor

    NASA Astrophysics Data System (ADS)

    Kim, Jungsuk

    2016-12-01

    This paper presents a novel input-parasitic compensation (IPC) technique for a nanopore-based complementary metal-oxide-semiconductor (CMOS) DNA detection sensor. A resistive-feedback transimpedance amplifier is typically adopted as the headstage of a DNA detection sensor to amplify the minute ionic currents generated from a nanopore and convert them to a readable voltage range for digitization. But, parasitic capacitances arising from the headstage input and the nanopore often cause headstage saturation during nanopore sensing, thereby resulting in significant DNA data loss. To compensate for the unwanted saturation, in this work, we propose an area-efficient and automated IPC technique, customized for a low-noise DNA detection sensor, fabricated using a 0.35- μm CMOS process; we demonstrated this prototype in a benchtop test using an α-hemolysin ( α-HL) protein nanopore.

  16. A High-Frequency Linear Ultrasonic Array Utilizing an Interdigitally Bonded 2-2 Piezo-Composite

    PubMed Central

    Cannata, Jonathan M.; Williams, Jay A.; Zhang, Lequan; Hu, Chang-Hong; Shung, K. Kirk

    2011-01-01

    This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2–2 IB composites outperformed 1–3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2–2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and −6-dB band-width was 61%. The measured single-element transmit −6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The −6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter. PMID:21989884

  17. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  18. Carbon nanotube-based coatings to induce flow enhancement in hydrophilic nanopores

    NASA Astrophysics Data System (ADS)

    Wagemann, Enrique; Walther, J. H.; Zambrano, Harvey A.

    2016-11-01

    With the emergence of the field of nanofluidics, the transport of water in hydrophilic nanopores has attracted intensive research due to its many promising applications. Experiments and simulations have found that flow resistance in hydrophilic nanochannels is much higher than those in macrochannels. Indeed, this might be attributed to significant fluid adsorption on the channel walls and to the effect of the increased surface to volume ratio inherent to the nanoconfinement. Therefore, it is desirable to explore strategies for drag reduction in nanopores. Recently, studies have found that carbon nanotubes (CNTs) feature ultrafast water flow rates which result in flow enhancements of 1 to 5 orders of magnitude compared to Hagen-Poiseuille predictions. In the present study, CNT-based coatings are considered to induce water flow enhancement in silica nanopores with different radius. We conduct atomistic simulations of pressurized water flow inside tubular silica nanopores with and without inner coaxial carbon nanotubes. In particular, we compute water density and velocity profiles, flow enhancement and slip lengths to understand the drag reduction capabilities of single- and multi-walled carbon nanotubes implemented as coating material in silica nanopores. We wish to thank partial funding from CRHIAM and FONDECYT project 11130559, computational support from DTU and NLHPC (Chile).

  19. Photochemistry of nanoporous carbons: Perspectives in energy conversion and environmental remediation.

    PubMed

    Gomis-Berenguer, Alicia; Velasco, Leticia F; Velo-Gala, Inmaculada; Ania, Conchi O

    2017-03-15

    The interest in the use of nanoporous carbon materials in applications related to energy conversion and storage, either as catalysts or additives, has grown over recent decades in various disciplines. Since the early studies reporting the benefits of the use of nanoporous carbons as inert supports of semiconductors and as electron acceptors that enhance the splitting of the photogenerated excitons, many researchers have investigated the key role of carbon matrices coupled to all types of photoactive materials. More recently, our group has demonstrated the ability of semiconductor-free nanoporous carbons to convert the absorbed photons into chemical reactions (i.e. oxidation of pollutants, water splitting, reduction of surface groups) opening new opportunities beyond conventional applications in light energy conversion. The aim of this paper is to review the recent progress on the application of nanoporous carbons in photochemistry using varied illumination conditions (UV, simulated solar light) and covering their role as additives to semiconductors as well as their use as photocatalysts in various fields, describing the photochemical quantum yield of nanoporous carbons for different reactions, and discussing the mechanisms postulated for the carbon/light interactions in confined pore spaces. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. OT1_nschneid_1: Pillars of creation: physical origin and connection to star formation

    NASA Astrophysics Data System (ADS)

    Schneider, N.

    2010-07-01

    Herschel SPIRE/PACS photometry observations performed within the HOBYS (Herschel imaging survey of OB Young Stellar objects) key program have revealed a wealth of interesting structures in high-mass star forming regions. The most spectacular of those are 'pillars' and 'globules'. These features -- partly known from Hubble Space telescope or Spitzer images -- are formed due to photoevaporation at the interface between a molecular cloud and an HII region, and are thus intimately linked to high-mass star formation. The process of how these pillars are created, and under which conditions low- or high-mass stars form within them, are not yet clear. Classical approaches (e.g. Rayleigh-Taylor) can not explain pillar formation, so we have embarked upon a dedicated project to fully simulate pillars and globules using the (magneto)-hydrodynamic code HERACLES that comprises gravity and ionization. The model is intended to be coupled with a radiative transfer photon dominated region code (KOSMA-tau). We propose here to make use of the Herschel spectroscopy capacities to map/make single pointings, in a number of atomic and molecular lines, of selected pillars and globules in three different regions (Rosette, Cygnus, M16), spanning a large range in UV intensity and density. We intend to observe the important cooling lines of [CII] at 158 micron and [OI] at 63 and 145 micron with PACS, the [CI] finestructure lines at 370 and 609 micron and the mid-to high-J CO and HCO+ ladder with the SPIRE FTS. Spectrally resolved [CII] mapping with HIFI is also required to derive the velocity information. These observations will be compared to the large existing complementary data set for each source, to study the physics of pillars and will additionally serve as input for the models, to ultimately explain pillar formation and star formation within them.

  1. Nanochannel Device with Embedded Nanopore: a New Approach for Single-Molecule DNA Analysis and Manipulation

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2012-02-01

    Nanopore and nanochannel based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We will discuss our recent progress on device fabrication and characterization. In particular, we demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. In particular, we show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore, suggesting that the embedded pore could be used as a nanoscale window through which to interrogate a nanochannel extended DNA molecule.

  2. The possibility of increasing the efficiency of accessible coal deposits by optimizing dimensions of protective pillars or the scope of exploitation

    NASA Astrophysics Data System (ADS)

    Bańka, Piotr; Badura, Henryk; Wesołowski, Marek

    2017-11-01

    One of the ways to protect objects exposed to the influences of mining exploitation is establishing protective pillars for them. Properly determined pillar provides effective protection of the object for which it was established. Determining correct dimensions of a pillar requires taking into account contradictory requirements. Protection measures against the excessive influences of mining exploitation require designing the largest possible pillars, whereas economic requirements suggest a maximum reduction of the size of resources left in the pillar. This paper presents algorithms and programs developed for determining optimal dimensions of protective pillars for surface objects and shafts. The issue of designing a protective pillar was treated as a nonlinear programming task. The objective function are the resources left in a pillar while nonlinear limitations are the deformation values evoked by the mining exploitation. Resources in the pillar may be weighted e.g. by calorific value or by the inverse of output costs. The possibility of designing pillars of any polygon shape was taken into account. Because of the applied exploitation technologies the rectangular pillar shape should be considered more advantageous than the oval one, though it does not ensure the minimization of resources left in a pillar. In this article there is also presented a different approach to the design of protective pillars, which instead of fixing the pillar boundaries in subsequent seams, the length of longwall panels of the designed mining exploitation is limited in a way that ensures the effective protection of an object while maximizing the extraction ratio of the deposit.

  3. Nanopore sensing of individual transcription factors bound to DNA

    PubMed Central

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-01-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes. PMID:26109509

  4. Nanopore sensing of individual transcription factors bound to DNA

    NASA Astrophysics Data System (ADS)

    Squires, Allison; Atas, Evrim; Meller, Amit

    2015-06-01

    Transcription factor (TF)-DNA interactions are the primary control point in regulation of gene expression. Characterization of these interactions is essential for understanding genetic regulation of biological systems and developing novel therapies to treat cellular malfunctions. Solid-state nanopores are a highly versatile class of single-molecule sensors that can provide rich information about local properties of long charged biopolymers using the current blockage patterns generated during analyte translocation, and provide a novel platform for characterization of TF-DNA interactions. The DNA-binding domain of the TF Early Growth Response Protein 1 (EGR1), a prototypical zinc finger protein known as zif268, is used as a model system for this study. zif268 adopts two distinct bound conformations corresponding to specific and nonspecific binding, according to the local DNA sequence. Here we implement a solid-state nanopore platform for direct, label- and tether-free single-molecule detection of zif268 bound to DNA. We demonstrate detection of single zif268 TFs bound to DNA according to current blockage sublevels and duration of translocation through the nanopore. We further show that the nanopore can detect and discriminate both specific and nonspecific binding conformations of zif268 on DNA via the distinct current blockage patterns corresponding to each of these two known binding modes.

  5. Warming up human body by nanoporous metallized polyethylene textile.

    PubMed

    Cai, Lili; Song, Alex Y; Wu, Peilin; Hsu, Po-Chun; Peng, Yucan; Chen, Jun; Liu, Chong; Catrysse, Peter B; Liu, Yayuan; Yang, Ankun; Zhou, Chenxing; Zhou, Chenyu; Fan, Shanhui; Cui, Yi

    2017-09-19

    Space heating accounts for the largest energy end-use of buildings that imposes significant burden on the society. The energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, we demonstrate a nanophotonic structure textile with tailored infrared (IR) property for passive personal heating using nanoporous metallized polyethylene. By constructing an IR-reflective layer on an IR-transparent layer with embedded nanopores, the nanoporous metallized polyethylene textile achieves a minimal IR emissivity (10.1%) on the outer surface that effectively suppresses heat radiation loss without sacrificing wearing comfort. This enables 7.1 °C decrease of the set-point compared to normal textile, greatly outperforming other radiative heating textiles by more than 3 °C. This large set-point expansion can save more than 35% of building heating energy in a cost-effective way, and ultimately contribute to the relief of global energy and climate issues.Energy wasted for heating the empty space of the entire building can be saved by passively heating the immediate environment around the human body. Here, the authors show a nanophotonic structure textile with tailored infrared property for passive personal heating using nanoporous metallized polyethylene.

  6. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti

    PubMed Central

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  7. Interconnected V2O5 nanoporous network for high-performance supercapacitors.

    PubMed

    Saravanakumar, B; Purushothaman, Kamatchi K; Muralidharan, G

    2012-09-26

    Vanadium pentoxide (V(2)O(5)) has attracted attention for supercapcitor applications because of its extensive multifunctional properties. In the present study, V(2)O(5) nanoporous network was synthesized via simple capping-agent-assisted precipitation technique and it is further annealed at different temperatures. The effect of annealing temperature on the morphology, electrochemical and structural properties, and stability upon oxidation-reduction cycling has been analyzed for supercapacitor application. We achieved highest specific capacitance of 316 F g(-1) for interconnected V(2)O(5) nanoporous network. This interconnected nanoporous network creates facile nanochannels for ion diffusion and facilitates the easy accessibility of ions. Moreover, after six hundred consecutive cycling processes the specific capacitance has changed only by 24%. A simple cost-effective preparation technique of V(2)O(5) nanoporous network with excellent capacitive behavior, energy density, and stability encourages its possible commercial exploitation for the development of high-performance supercapacitors.

  8. Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores.

    PubMed

    Cecchini, Michael P; Wiener, Aeneas; Turek, Vladimir A; Chon, Hyangh; Lee, Sangyeop; Ivanov, Aleksandar P; McComb, David W; Choo, Jaebum; Albrecht, Tim; Maier, Stefan A; Edel, Joshua B

    2013-10-09

    Nanopore sensors embedded within thin dielectric membranes have been gaining significant interest due to their single molecule sensitivity and compatibility of detecting a large range of analytes, from DNA and proteins, to small molecules and particles. Building on this concept we utilize a metallic Au solid-state membrane to translocate and rapidly detect single Au nanoparticles (NPs) functionalized with 589 dye molecules using surface-enhanced resonance Raman spectroscopy (SERRS). We show that, due to the plasmonic coupling between the Au metallic nanopore surface and the NP, signal intensities are enhanced when probing analyte molecules bound to the NP surface. Although not single molecule, this nanopore sensing scheme benefits from the ability of SERRS to provide rich vibrational information on the analyte, improving on current nanopore-based electrical and optical detection techniques. We show that the full vibrational spectrum of the analyte can be detected with ultrahigh spectral sensitivity and a rapid temporal resolution of 880 μs.

  9. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    NASA Astrophysics Data System (ADS)

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108-1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput.

  10. Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping

    PubMed Central

    Freedman, Kevin J.; Otto, Lauren M.; Ivanov, Aleksandar P.; Barik, Avijit; Oh, Sang-Hyun; Edel, Joshua B.

    2016-01-01

    Single-molecule techniques are being developed with the exciting prospect of revolutionizing the healthcare industry by generating vast amounts of genetic and proteomic data. One exceptionally promising route is in the use of nanopore sensors. However, a well-known complexity is that detection and capture is predominantly diffusion limited. This problem is compounded when taking into account the capture volume of a nanopore, typically 108–1010 times smaller than the sample volume. To rectify this disproportionate ratio, we demonstrate a simple, yet powerful, method based on coupling single-molecule dielectrophoretic trapping to nanopore sensing. We show that DNA can be captured from a controllable, but typically much larger, volume and concentrated at the tip of a metallic nanopore. This enables the detection of single molecules at concentrations as low as 5 fM, which is approximately a 103 reduction in the limit of detection compared with existing methods, while still maintaining efficient throughput. PMID:26732171

  11. Composite Pillars with a Tunable Interface for Adhesion to Rough Substrates

    PubMed Central

    2016-01-01

    The benefits of synthetic fibrillar dry adhesives for temporary and reversible attachment to hard objects with smooth surfaces have been successfully demonstrated in previous studies. However, surface roughness induces a dramatic reduction in pull-off stresses and necessarily requires revised design concepts. Toward this aim, we introduce cylindrical two-phase single pillars, which are composed of a mechanically stiff stalk and a soft tip layer. Adhesion to smooth and rough substrates is shown to exceed that of conventional pillar structures. The adhesion characteristics can be tuned by varying the thickness of the soft tip layer, the ratio of the Young’s moduli and the curvature of the interface between the two phases. For rough substrates, adhesion values similar to those obtained on smooth substrates were achieved. Our concept of composite pillars overcomes current practical limitations caused by surface roughness and opens up fields of application where roughness is omnipresent. PMID:27997118

  12. Pillar-structured neutron detector based multiplicity system

    DOE PAGES

    Murphy, John W.; Shao, Qinghui; Voss, Lars F.; ...

    2017-10-04

    This work demonstrates the potential of silicon pillars filled with boron-10 as a sensor technology for a compact and portable neutron multiplicity system. Solid-state, semiconductor based neutron detectors may enable completely new detector form factors, offer an alternate approach to helium-3 based systems, and reduce detector weight and volume requirements. Thirty-two pillar-structured neutron detectors were assembled into a system with an active area of over 20 cm 2 and were used in this work to demonstrate the feasibility of this sensor technology as a potential replacement for helium-3 based gas detectors. Multiplicity measurements were successfully carried out using a californium-252more » neutron source, in which the source mass, system efficiency, and die-away time were determined. As a result, this demonstration shows that these solid-state detectors could allow for a more compact and portable system that could be used for special nuclear material identification in the field.« less

  13. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux

    DOE PAGES

    Shao, Qinghui; Conway, Adam M.; Voss, Lars F.; ...

    2015-08-04

    Silicon pillar structures filled with a neutron converter material ( 10B) are designed to have high thermal neutron detection efficiency with specific dimensions of 50 μm pillar height, 2 μm pillar diameter and 2 μm spacing between adjacent pillars. In this paper, we have demonstrated such a detector has a high neutron-to-gamma discrimination of 10 6 with a high thermal neutron detection efficiency of 39% when exposed to a high gamma-ray field of 10 9 photons/cm 2s.

  14. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  15. Pre-breakdown cavitation nanopores in the dielectric fluid in the inhomogeneous, pulsed electric fields

    NASA Astrophysics Data System (ADS)

    Pekker, Mikhail; Shneider, Mikhail N.

    2015-10-01

    This paper discusses the nanopores emerging and developing in a liquid dielectric under the action of the ponderomotive electrostrictive forces in a nonuniform electric field. It is shown that the gradient of the electric field in the vicinity of the rupture (cavitation nanopore) substantially increases and determines whether the rupture grows or collapses. The cavitation rupture in the liquid (nanopore) tends to stretch along the lines of the original field. The mechanism of the breakdown associated with the generation of secondary ruptures in the vicinity of the poles of the nanopore is proposed. The estimations of the extension time for nanopore in water and oil (polar and nonpolar liquids, respectively) are presented. A new mechanism of nano- and subnanosecond breakdown in the insulating (transformer) oil that can be realized in the vicinity of water microdroplets in nanosecond high-voltage devices is considered.

  16. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance.

    PubMed

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-17

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  17. One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance

    NASA Astrophysics Data System (ADS)

    Pedireddy, Srikanth; Lee, Hiang Kwee; Tjiu, Weng Weei; Phang, In Yee; Tan, Hui Ru; Chua, Shu Quan; Troadec, Cedric; Ling, Xing Yi

    2014-09-01

    Nanoporous gold with networks of interconnected ligaments and highly porous structure holds stimulating technological implications in fuel cell catalysis. Current syntheses of nanoporous gold mainly revolve around de-alloying approaches that are generally limited by stringent and harsh multistep protocols. Here we develop a one-step solution phase synthesis of zero-dimensional hollow nanoporous gold nanoparticles with tunable particle size (150-1,000 nm) and ligament thickness (21-54 nm). With faster mass diffusivity, excellent specific electroactive surface area and large density of highly active surface sites, our zero-dimensional nanoporous gold nanoparticles exhibit ~1.4 times enhanced catalytic activity and improved tolerance towards carbonaceous species, demonstrating their superiority over conventional nanoporous gold sheets. Detailed mechanistic study also reveals the crucial heteroepitaxial growth of gold on the surface of silver chloride templates, implying that our synthetic protocol is generic and may be extended to the synthesis of other nanoporous metals via different templates.

  18. Asymmetric Nanopore Electrode-Based Amplification for Electron Transfer Imaging in Live Cells.

    PubMed

    Ying, Yi-Lun; Hu, Yong-Xu; Gao, Rui; Yu, Ru-Jia; Gu, Zhen; Lee, Luke P; Long, Yi-Tao

    2018-04-25

    Capturing real-time electron transfer, enzyme activity, molecular dynamics, and biochemical messengers in living cells is essential for understanding the signaling pathways and cellular communications. However, there is no generalizable method for characterizing a broad range of redox-active species in a single living cell at the resolution of cellular compartments. Although nanoelectrodes have been applied in the intracellular detection of redox-active species, the fabrication of nanoelectrodes to maximize the signal-to-noise ratio of the probe remains challenging because of the stringent requirements of 3D fabrication. Here, we report an asymmetric nanopore electrode-based amplification mechanism for the real-time monitoring of NADH in a living cell. We used a two-step 3D fabrication process to develop a modified asymmetric nanopore electrode with a diameter down to 90 nm, which allowed for the detection of redox metabolism in living cells. Taking advantage of the asymmetric geometry, the above 90% potential drop at the two terminals of the nanopore electrode converts the faradaic current response into an easily distinguishable bubble-induced transient ionic current pattern. Therefore, the current signal was amplified by at least 3 orders of magnitude, which was dynamically linked to the presence of trace redox-active species. Compared to traditional wire electrodes, this wireless asymmetric nanopore electrode exhibits a high signal-to-noise ratio by increasing the current resolution from nanoamperes to picoamperes. The asymmetric nanopore electrode achieves the highly sensitive and selective probing of NADH concentrations as low as 1 pM. Moreover, it enables the real-time nanopore monitoring of the respiration chain (i.e., NADH) in a living cell and the evaluation of the effects of anticancer drugs in an MCF-7 cell. We believe that this integrated wireless asymmetric nanopore electrode provides promising building blocks for the future imaging of electron

  19. Ion-sculpting of nanopores in amorphous metals, semiconductors, and insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    George, H. Bola; Madi, Charbel S.; Aziz, Michael J.

    2010-06-28

    We report the closure of nanopores to single-digit nanometer dimensions by ion sculpting in a range of amorphous materials including insulators (SiO{sub 2} and SiN), semiconductors (a-Si), and metallic glasses (Pd{sub 80}Si{sub 20})--the building blocks of a single-digit nanometer electronic device. Ion irradiation of nanopores in crystalline materials (Pt and Ag) does not cause nanopore closure. Ion irradiation of c-Si pores below 100 deg. C and above 600 deg. C, straddling the amorphous-crystalline dynamic transition temperature, yields closure at the lower temperature but no mass transport at the higher temperature. Ion beam nanosculpting appears to be restricted to materials thatmore » either are or become amorphous during ion irradiation.« less

  20. Enhanced Azo-Dyes Degradation Performance of Fe-Si-B-P Nanoporous Architecture

    PubMed Central

    Weng, Nan; Wang, Feng; Qin, Fengxiang; Tang, Wanying; Dan, Zhenhua

    2017-01-01

    Nanoporous structures were fabricated from Fe76Si9B10P5 amorphous alloy annealed at 773 K by dealloying in 0.05 M H2SO4 solution, as a result of preferential dissolution of α-Fe grains in form of the micro-coupling cells between α-Fe and cathodic residual phases. Nanoporous Fe-Si-B-P powders exhibit much better degradation performance to methyl orange and direct blue azo dyes compared with gas-atomized Fe76Si9B10P5 amorphous powders and commercial Fe powders. The degradation reaction rate constants of nanoporous powders are almost one order higher than those of the amorphous counterpart powders and Fe powders, accompanying with lower activation energies of 19.5 and 26.8 kJ mol−1 for the degradation reactions of methyl orange and direct blue azo dyes, respectively. The large surface area of the nanoporous structure, and the existence of metalloids as well as residual amorphous phase with high catalytic activity are responsible for the enhanced azo-dyes degradation performance of the nanoporous Fe-Si-B-P powders. PMID:28846622

  1. Ultra-high-aspect-orthogonal and tunable three dimensional polymeric nanochannel stack array for BioMEMS applications

    NASA Astrophysics Data System (ADS)

    Heo, Joonseong; Kwon, Hyukjin J.; Jeon, Hyungkook; Kim, Bumjoo; Kim, Sung Jae; Lim, Geunbae

    2014-07-01

    Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even roll the stack array to form a radial-uniformly distributed nanochannel array. The roll can be cut at discretionary lengths for incorporation with a micro/nanofluidic device. As examples, we demonstrated ion concentration polarization with the device for Ohmic-limiting/overlimiting current-voltage characteristics and preconcentrated charged species. The density of the nanochannel array was lower than conventional nanoporous membranes, such as anodic aluminum oxide membranes (AAO). However, accurate controllability over the nanochannel array dimensions enabled multiplexed one microstructure-on-one nanostructure interfacing for valuable biological/biomedical microelectromechanical system (BioMEMS) platforms, such as nano-electroporation.Nanofabrication technologies have been a strong advocator for new scientific fundamentals that have never been described by traditional theory, and have played a seed role in ground-breaking nano-engineering applications. In this study, we fabricated ultra-high-aspect (~106 with O(100) nm nanochannel opening and O(100) mm length) orthogonal nanochannel array using only polymeric materials. Vertically aligned nanochannel arrays in parallel can be stacked to form a dense nano-structure. Due to the flexibility and stretchability of the material, one can tune the size and shape of the nanochannel using elongation and even

  2. Precise fabrication of a 5 nm graphene nanopore with a helium ion microscope for biomolecule detection

    NASA Astrophysics Data System (ADS)

    Deng, Yunsheng; Huang, Qimeng; Zhao, Yue; Zhou, Daming; Ying, Cuifeng; Wang, Deqiang

    2017-01-01

    We report a scalable method to fabricate high-quality graphene nanopores for biomolecule detection using a helium ion microscope (HIM). HIM milling shows promising capabilities for precisely controlling the size and shape, and may allow for the potential production of nanopores at wafer scale. Nanopores could be fabricated at different sizes ranging from 5 to 30 nm in diameter in few minutes. Compared with the current solid-state nanopore fabrication techniques, e.g. transmission electron microscopy, HIM is fast. Furthermore, we investigated the exposure-time dependence of graphene nanopore formation: the rate of pore expansion did not follow a simple linear relationship with exposure time, but a fast expansion rate at short exposure time and a slow rate at long exposure time. In addition, we performed biomolecule detection with our patterned graphene nanopore. The ionic current signals induced by 20-base single-stranded DNA homopolymers could be used as a basis for homopolymer differentiation. However, the charge interaction of homopolymer chains with graphene nanopores, and the conformations of homopolymer chains need to be further considered to improve the accuracy of discrimination.

  3. Nanoporous metallic surface: Facile fabrication and enhancement of boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Tang, Yong; Tang, Biao; Qing, Jianbo; Li, Qing; Lu, Longsheng

    2012-09-01

    The paper reports a flexible and low-cost approach, hot-dip galvanizing and dealloying, for the fabrication of enhanced nanoporous metallic surfaces. A Cu-Zn alloy layer mainly composed of γ-Cu5Zn8 and β'-CuZn was formed during the hot-dipping process. The multiple oxidation peaks recorded in the anodic liner sweep voltammetry measurements indicate different dezincification preferences of the alloy phases. A nanoporous copper surface with approximately 50-200 nm in pore size was obtained after a free corrosion process. The nanoporous structure improves the surface wettability and shows dramatic reduction of wall superheat compared to that of the plain surface in the pool-boiling experiments.

  4. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA

    PubMed Central

    Gierhart, Brian C.; Howitt, David G.; Chen, Shiahn J.; Zhu, Zhineng; Kotecki, David E.; Smith, Rosemary L.; Collins, Scott D.

    2009-01-01

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device. PMID:19584949

  5. Nanopore with Transverse Nanoelectrodes for Electrical Characterization and Sequencing of DNA.

    PubMed

    Gierhart, Brian C; Howitt, David G; Chen, Shiahn J; Zhu, Zhineng; Kotecki, David E; Smith, Rosemary L; Collins, Scott D

    2008-06-16

    A DNA sequencing device which integrates transverse conducting electrodes for the measurement of electrode currents during DNA translocation through a nanopore has been nanofabricated and characterized. A focused electron beam (FEB) milling technique, capable of creating features on the order of 1 nm in diameter, was used to create the nanopore. The device was characterized electrically using gold nanoparticles as an artificial analyte with both DC and AC measurement methods. Single nanoparticle/electrode interaction events were recorded. A low-noise, high-speed transimpedance current amplifier for the detection of nano to picoampere currents at microsecond time scales was designed, fabricated and tested for future integration with the nanopore device.

  6. Localization Transport in Granular and Nanoporous Carbon Systems.

    NASA Astrophysics Data System (ADS)

    Fung, Alex Weng Pui

    Porous carbon materials have long since been used in industry to make capacitors and adsorption agents because of their high specific surface area. Although their adsorption properties have been extensively studied, we have not seen the same vigor in the investigation of their physical properties, which are important not only for providing complementary characterization methods, but also for understanding the physics which underlies the manufacturing process and motivates intelligent design of these materials. The study of the new physics in these novel nanoporous materials also straddles the scientific forefronts of nanodimensional and disordered systems. In this thesis, we study the structural and electrical properties of two nanoporous carbons, namely activated carbon fibers and carbon aerogels. Specifically, we perform Raman scattering, x-ray diffraction, magnetic susceptibility, electrical transport and magnetotransport experiments. Results from other experiments reported in the literature or communicated to us by our collaborators, such as porosity and surface area measurements by adsorption methods, electron spin resonance, transmission electron microscopy, mechanical properties measurements and so on, are also frequently used in this thesis for additional characterization information. By correlating all the relevant results, we obtain the structure -property relationships in these nanoporous materials. This study shows that the transport properties of these porous materials can be used on one hand for sensitive characterization of complex materials, and on the other hand, for observing interesting and unusual physical phenomena. For example, as-prepared nanoporous carbon systems, exhibit in their low-temperature electrical conductivity a universal temperature dependence which is characteristic of a granular metallic system, despite their morphological differences. By studying further the magnetoresistance in these carbon materials, it is found that the

  7. Effects of magnetic fields on photoionized pillars and globules

    NASA Astrophysics Data System (ADS)

    Mackey, Jonathan; Lim, Andrew J.

    2011-04-01

    The effects of initially uniform magnetic fields on the formation and evolution of dense pillars and cometary globules at the boundaries of H II regions are investigated using 3D radiation-magnetohydrodynamics simulations. It is shown, in agreement with previous work, that a strong initial magnetic field is required to significantly alter the non-magnetized dynamics because the energy input from photoionization is so large that it remains the dominant driver of the dynamics in most situations. Additionally, it is found that for weak and medium field strengths an initially perpendicular field is swept into alignment with the pillar during its dynamical evolution, matching magnetic field observations of the 'Pillars of Creation' in M16 and also some cometary globules. A strong perpendicular magnetic field remains in its initial configuration and also confines the photoevaporation flow into a bar-shaped dense ionized ribbon which partially shields the ionization front and would be readily observable in recombination lines. A simple analytic model is presented to explain the properties of this bright linear structure. These results show that magnetic field strengths in star-forming regions can in principle be significantly constrained by the morphology of structures which form at the borders of H II regions.

  8. Bentonite modification with pillarization method using metal stannum

    NASA Astrophysics Data System (ADS)

    Widjaya, Robert R.; Juwono, Ariadne L.; Rinaldi, Nino

    2017-11-01

    Clay minerals have received considerable attention in the last years because of their environmental compatibility, low cost, high selectivity, and operational simplicity. Although clays are very useful for many application in the field of catalysis, they have main disadvantage: their lack of pore volume and spesific surface area. Porosity and stability of these materials are improved by pillaring the clay layers with SnCl4, which leads to materials known as pillared clays (PILC). This research aims were to characterize the Bentonite and Sn-Bentonite as catalysts for cracking and oligomerization. The Sn-Bentonite was prepared by pillarization method with a variation in metal ratio of 5 mmol dan 10 mmol.gr-1 of bentonit. The catalyst characterized by X-ray Diffraction, X-ray Fluorescence, Fourier Transform Infra Red, Brunauer Emmett Teller, Thermogravimetric Analysis. The results showed that the Sn-Bentonite catalyst had large basal spacing and good porous structure, and the specific surface areas increased. XRF detected the Sn in the Bentonite and TGA results showed the ability Sn-Bentonite in receiving heat. FTIR test showed two type of acidity, broansted and lewis acid. The characterized results indicated that Sn-Bentonite with metal ratio 5 mmol.gr-1 better than Sn-Bentonite with metal ratio 10 mmol.gr-1, in which there was a significant increase the basal spacings, specific surface area, and pore volume. The TGA results for Sn-Bentonite appeared to be more thermally stable than Bentonite.

  9. 30 CFR 75.386 - Final mining of pillars.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... one mine opening is available due to final mining of pillars, no more than 20 miners at a time shall be allowed in the mine, and the distance between the mine opening and working face shall not exceed...

  10. Computational predictions of the new Gallium nitride nanoporous structures

    NASA Astrophysics Data System (ADS)

    Lien, Le Thi Hong; Tuoc, Vu Ngoc; Duong, Do Thi; Thu Huyen, Nguyen

    2018-05-01

    Nanoporous structural prediction is emerging area of research because of their advantages for a wide range of materials science and technology applications in opto-electronics, environment, sensors, shape-selective and bio-catalysis, to name just a few. We propose a computationally and technically feasible approach for predicting Gallium nitride nanoporous structures with hollows at the nano scale. The designed porous structures are studied with computations using the density functional tight binding (DFTB) and conventional density functional theory methods, revealing a variety of promising mechanical and electronic properties, which can potentially find future realistic applications. Their stability is discussed by means of the free energy computed within the lattice-dynamics approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with their parent’s bulk stable phase. The electronic band structures of these nanoporous structures are finally examined in detail.

  11. Nanoporous Cyanate Ester Resins: Structure-Gas Transport Property Relationships

    NASA Astrophysics Data System (ADS)

    Gusakova, Kristina; Fainleib, Alexander; Espuche, Eliane; Grigoryeva, Olga; Starostenko, Olga; Gouanve, Fabrice; Boiteux, Gisèle; Saiter, Jean-Marc; Grande, Daniel

    2017-04-01

    This contribution addresses the relationships between the structure and gas transport properties of nanoporous thermostable cyanate ester resins (CERs) derived from polycyclotrimerization of 1,1'-bis(4-cyanatophenyl)ethane in the presence of 30 or 50 wt% of inert high-boiling temperature porogens (i.e., dimethyl- or dibutyl phthalates), followed by their quantitative removal. The nanopores in the films obtained were generated via a chemically induced phase separation route with further porogen extraction from the densely crosslinked CERs. To ensure a total desorption of the porogen moieties from the networks, an additional short-term thermal annealing at 250 °C was performed. The structure and morphology of such nanoporous CER-based films were investigated by FTIR and SEM techniques, respectively. Further, the gas transport properties of CER films were analyzed after the different processing steps, and relationships between the material structure and the main gas transport parameters were established.

  12. Configuration-controlled Au nanocluster arrays on inverse micelle nano-patterns: versatile platforms for SERS and SPR sensors

    NASA Astrophysics Data System (ADS)

    Jang, Yoon Hee; Chung, Kyungwha; Quan, Li Na; Špačková, Barbora; Šípová, Hana; Moon, Seyoung; Cho, Won Joon; Shin, Hae-Young; Jang, Yu Jin; Lee, Ji-Eun; Kochuveedu, Saji Thomas; Yoon, Min Ji; Kim, Jihyeon; Yoon, Seokhyun; Kim, Jin Kon; Kim, Donghyun; Homola, Jiří; Kim, Dong Ha

    2013-11-01

    Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated.Nanopatterned 2-dimensional Au nanocluster arrays with controlled configuration are fabricated onto reconstructed nanoporous poly(styrene-block-vinylpyridine) inverse micelle monolayer films. Near-field coupling of localized surface plasmons is studied and compared for disordered and ordered core-centered Au NC arrays. Differences in evolution of the absorption band and field enhancement upon Au nanoparticle adsorption are shown. The experimental results are found to be in good agreement with theoretical studies based on the finite-difference time-domain method and rigorous coupled-wave analysis. The realized Au nanopatterns are exploited as substrates for surface-enhanced Raman scattering and integrated into Kretschmann-type SPR sensors, based on which unprecedented SPR-coupling-type sensors are demonstrated. Electronic supplementary information (ESI) available: TEM image and UV-vis absorption spectrum of citrate-capped Au NPs, AFM images of Au NC arrays on the PS-b-P4VP (41k-24k) template, ImageJ-analyzed results of PS-b-P4VP (41k-24k)-templated Au NC arrays, calculated %-surface coverage values, SEM images of Au NC arrays on the PS-b-P2VP (172k-42k

  13. Measuring the order in ordered porous arrays: can bees outperform humans?

    NASA Astrophysics Data System (ADS)

    Kaatz, F. H.

    2006-08-01

    A method that explains how to quantify the amount of order in “ordered” and “highly ordered” porous arrays is derived. Ordered arrays from bee honeycomb and several from the general field of nanoscience are compared. Accurate measures of the order in porous arrays are made using the discrete radial distribution function (RDF). Nanoporous anodized aluminum oxide (AAO), hexagonal arrays from functional materials, hexagonal arrays from nanosphere lithography, and square arrays defined by interference lithography (all taken from the literature) are compared to two-dimensional model systems. These arrays have a range of pore diameters from ˜60 to 180 nm. An order parameter, OP 3 , is defined to evaluate the total order in a given array such that an ideal network has the value of 1. When we compare RDFs of man-made arrays with that of our honeycomb (pore diameter ˜5.89 mm), a locally grown version made by Apis mellifera without the use of foundation comb, we find OP 3 =0.399 for the honeycomb and OP 3 =0.572 for man’s best hexagonal array. The nearest neighbor peaks range from 4.65 for the honeycomb to 5.77 for man’s best hexagonal array, while the ideal hexagonal array has an average of 5.93 nearest neighbors. Ordered arrays are now becoming quite common in nanostructured science, while bee honeycombs were studied for millennia. This paper describes the first method to quantify the order found in these arrays with a simple yet elegant procedure that provides a precise measurement of the order in one array compared to other arrays.

  14. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  15. Short infrared (IR) laser pulses can induce nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Glickman, Randolph D.; Beier, Hope T.

    2016-03-01

    Short infrared (IR) laser pulses on the order of hundreds of microseconds to single milliseconds with typical wavelengths of 1800-2100 nm, have shown the capability to reversibly stimulate action potentials (AP) in neuronal cells. While the IR stimulation technique has proven successful for several applications, the exact mechanism(s) underlying the AP generation has remained elusive. To better understand how IR pulses cause AP stimulation, we determined the threshold for the formation of nanopores in the plasma membrane. Using a surrogate calcium ion, thallium, which is roughly the same shape and charge, but lacks the biological functionality of calcium, we recorded the flow of thallium ions into an exposed cell in the presence of a battery of channel antagonists. The entry of thallium into the cell indicated that the ions entered via nanopores. The data presented here demonstrate a basic understanding of the fundamental effects of IR stimulation and speculates that nanopores, formed in response to the IR exposure, play an upstream role in the generation of AP.

  16. Electrical characteristics in reverse electrodialysis using nanoporous membranes

    NASA Astrophysics Data System (ADS)

    Chanda, Sourayon; Tsai, Peichun Amy

    2017-11-01

    We experimentally and numerically investigate the effects of concentration difference and flow velocity on sustainable electricity generation and associated fluid dynamics using a single reverse electrodialysis (RED) cell. By exploiting the charge-selective nature of nanoporous interfaces, electrical energy is generated by reverse electrodialysis harnessing chemical Gibbs energy via a salinity gradient. Experimentally, a RED cell was designed with two reservoirs, which are separated by a nanoporous, cation-selective membrane. We injected deionized water through one reservoir, whereas a solution of high salt concentration through the other. The gradient of salt concentration primarily drives the flow in the charged nano-pores, due to the interplay between charge selectivity, diffusion processes, and electro-migration. The current-voltage characteristics of the single RED cell shows a linear current-voltage relationship, similar to an electrochemical cell. The membrane resistance is increased with increasing salt concentration difference and external flow rate. The present experimental work was further analyzed numerically to better understand the detailed electrical and flow fields under different concentration gradients and external flows. NSERC Discovery, Accelerator, and CRC Programs.

  17. Mechanisms of water infiltration into conical hydrophobic nanopores.

    PubMed

    Liu, Ling; Zhao, Jianbing; Yin, Chun-Yang; Culligan, Patricia J; Chen, Xi

    2009-08-14

    Fluid channels with inclined solid walls (e.g. cone- and slit-shaped pores) have wide and promising applications in micro- and nano-engineering and science. In this paper, we use molecular dynamics (MD) simulations to investigate the mechanisms of water infiltration (adsorption) into cone-shaped nanopores made of a hydrophobic graphene sheet. When the apex angle is relatively small, an external pressure is required to initiate infiltration and the pressure should keep increasing in order to further advance the water front inside the nanopore. By enlarging the apex angle, the pressure required for sustaining infiltration can be effectively lowered. When the apex angle is sufficiently large, under ambient condition water can spontaneously infiltrate to a certain depth of the nanopore, after which an external pressure is still required to infiltrate more water molecules. The unusual involvement of both spontaneous and pressure-assisted infiltration mechanisms in the case of blunt nanocones, as well as other unique nanofluid characteristics, is explained by the Young's relation enriched with the size effects of surface tension and contact angle in the nanoscale confinement.

  18. Monitoring tetracycline through a solid-state nanopore sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Yuechuan; Chen, Yanling; Fu, Yongqi; Ying, Cuifeng; Feng, Yanxiao; Huang, Qimeng; Wang, Chao; Pei, De-Sheng; Wang, Deqiang

    2016-06-01

    Antibiotics as emerging environmental contaminants, are widely used in both human and veterinary medicines. A solid-state nanopore sensing method is reported in this article to detect Tetracycline, which is based on Tet-off and Tet-on systems. rtTA (reverse tetracycline-controlled trans-activator) and TRE (Tetracycline Responsive Element) could bind each other under the action of Tetracycline to form one complex. When the complex passes through nanopores with 8 ~ 9 nanometers in diameter, we could detect the concentrations of Tet from 2 ng/mL to 2000 ng/mL. According to the Logistic model, we could define three growth zones of Tetracycline for rtTA and TRE. The slow growth zone is 0-39.5 ng/mL. The rapid growth zone is 39.5-529.7 ng/mL. The saturated zone is > 529.7 ng/mL. Compared to the previous methods, the nanopore sensor could detect and quantify these different kinds of molecule at the single-molecule level.

  19. A universal model for nanoporous carbon supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimentalmore » breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.« less

  20. Laser-induced fabrication of nanoporous monolayer WS2 membranes

    NASA Astrophysics Data System (ADS)

    Danda, Gopinath; Masih Das, Paul; Drndić, Marija

    2018-07-01

    Porous transition metal dichalcogenides (TMDs) are promising candidates for a variety of catalytic, purification, and energy storage applications. Despite recent advances, current fabrication techniques face issues concerning scalability and control over sample porosity. By utilizing water-assisted laser irradiation, we present here a new method for the fabrication of micron-scale, atomically-thin nanoporous tungsten disulfide (WS2) membranes. The electronic and physical structures of the porous membranes are characterized with photoluminescence (PL) spectroscopy and aberration-corrected scanning transmission electron microscopy (AC-STEM), respectively. With increasing laser irradiation dose, we observe a decay of PL signal, and a relative increase in the trion contribution compared to that of the neutral exciton, suggesting defect-related n-type doping and degradation of the membrane. AC-STEM images show the nucleation of tungsten oxide islands on the membrane, and the formation of triangular defect clusters containing a combination of nanopores and oxide-filled regions, providing insight at the atomic level into the photo-oxidation process in TMDs. A linear dependence of the nanoporous area percentage on the laser irradiation dose over the range of 102–105 W cm‑2 is observed. The methods proposed here pave the way for the scalable production of nanoporous membranes through the laser-induced photo-oxidation of WS2 and other transition metal dichalcogenides.

  1. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  2. A diabetic retinopathy detection method using an improved pillar K-means algorithm.

    PubMed

    Gogula, Susmitha Valli; Divakar, Ch; Satyanarayana, Ch; Rao, Allam Appa

    2014-01-01

    The paper presents a new approach for medical image segmentation. Exudates are a visible sign of diabetic retinopathy that is the major reason of vision loss in patients with diabetes. If the exudates extend into the macular area, blindness may occur. Automated detection of exudates will assist ophthalmologists in early diagnosis. This segmentation process includes a new mechanism for clustering the elements of high-resolution images in order to improve precision and reduce computation time. The system applies K-means clustering to the image segmentation after getting optimized by Pillar algorithm; pillars are constructed in such a way that they can withstand the pressure. Improved pillar algorithm can optimize the K-means clustering for image segmentation in aspects of precision and computation time. This evaluates the proposed approach for image segmentation by comparing with Kmeans and Fuzzy C-means in a medical image. Using this method, identification of dark spot in the retina becomes easier and the proposed algorithm is applied on diabetic retinal images of all stages to identify hard and soft exudates, where the existing pillar K-means is more appropriate for brain MRI images. This proposed system help the doctors to identify the problem in the early stage and can suggest a better drug for preventing further retinal damage.

  3. A cost-effective nanoporous ultrathin film electrode based on nanoporous gold/IrO2 composite for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Zeng, Yachao; Guo, Xiaoqian; Shao, Zhigang; Yu, Hongmei; Song, Wei; Wang, Zhiqiang; Zhang, Hongjie; Yi, Baolian

    2017-02-01

    A cost-effective nanoporous ultrathin film (NPUF) electrode based on nanoporous gold (NPG)/IrO2 composite has been constructed for proton exchange membrane (PEM) water electrolysis. The electrode was fabricated by integrating IrO2 nanoparticles into NPG through a facile dealloying and thermal decomposition method. The NPUF electrode is featured in its 3D interconnected nanoporosity and ultrathin thickness. The nanoporous ultrathin architecture is binder-free and beneficial for improving electrochemical active surface area, enhancing mass transport and facilitating releasing of oxygen produced during water electrolysis. Serving as anode, a single cell performance of 1.728 V (@ 2 A cm-2) has been achieved by NPUF electrode with a loading of IrO2 and Au at 86.43 and 100.0 μg cm-2 respectively, the electrolysis voltage is 58 mV lower than that of conventional electrode with an Ir loading an order of magnitude higher. The electrolysis voltage kept relatively constant up to 300 h (@250 mA cm-2) during the course of durability test, manifesting that NPUF electrode is promising for gas evolution.

  4. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    PubMed

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  5. Ultrasound-propelled nanoporous gold wire for efficient drug loading and release.

    PubMed

    Garcia-Gradilla, Victor; Sattayasamitsathit, Sirilak; Soto, Fernando; Kuralay, Filiz; Yardımcı, Ceren; Wiitala, Devan; Galarnyk, Michael; Wang, Joseph

    2014-10-29

    Ultrasound (US)-powered nanowire motors based on nanoporous gold segment are developed for increasing the drug loading capacity. The new highly porous nanomotors are characterized with a tunable pore size, high surface area, and high capacity for the drug payload. These nanowire motors are prepared by template membrane deposition of a silver-gold alloy segment followed by dealloying the silver component. The drug doxorubicin (DOX) is loaded within the nanopores via electrostatic interactions with an anionic polymeric coating. The nanoporous gold structure also facilitates the near-infrared (NIR) light controlled release of the drug through photothermal effects. Ultrasound-driven transport of the loaded drug toward cancer cells followed by NIR-light triggered release is illustrated. The incorporation of the nanoporous gold segment leads to a nearly 20-fold increase in the active surface area compared to common gold nanowire motors. It is envisioned that such US-powered nanomotors could provide a new approach to rapidly and efficiently deliver large therapeutic payloads in a target-specific manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DNA translocation measurements in solid-state nanopores fabricated using helium-ion microscope

    NASA Astrophysics Data System (ADS)

    Liu, Liping; Miao, Wang; Huynh, Chuong; Liu, Quanjun; Ling, Xinsheng

    2012-02-01

    We report high-quality DNA translocation measurements in solid-state nanopores drilled in free-standing SiN membranes by using a helium-ion beam in a Zeiss helium-ion microscope (HIM). We show that the HIM nanopores have similar performance as the TEM-drilled pores.

  7. Instrumentation for low noise nanopore-based ionic current recording under laser illumination

    NASA Astrophysics Data System (ADS)

    Roelen, Zachary; Bustamante, José A.; Carlsen, Autumn; Baker-Murray, Aidan; Tabard-Cossa, Vincent

    2018-01-01

    We describe a nanopore-based optofluidic instrument capable of performing low-noise ionic current recordings of individual biomolecules under laser illumination. In such systems, simultaneous optical measurements generally introduce significant parasitic noise in the electrical signal, which can severely reduce the instrument sensitivity, critically hindering the monitoring of single-molecule events in the ionic current traces. Here, we present design rules and describe simple adjustments to the experimental setup to mitigate the different noise sources encountered when integrating optical components to an electrical nanopore system. In particular, we address the contributions to the electrical noise spectra from illuminating the nanopore during ionic current recording and mitigate those effects through control of the illumination source and the use of a PDMS layer on the SiNx membrane. We demonstrate the effectiveness of our noise minimization strategies by showing the detection of DNA translocation events during membrane illumination with a signal-to-noise ratio of ˜10 at 10 kHz bandwidth. The instrumental guidelines for noise minimization that we report are applicable to a wide range of nanopore-based optofluidic systems and offer the possibility of enhancing the quality of synchronous optical and electrical signals obtained during single-molecule nanopore-based analysis.

  8. Nanopore Force Spectroscopy of Aptamer–Ligand Complexes

    PubMed Central

    Arnaut, Vera; Langecker, Martin; Simmel, Friedrich C.

    2013-01-01

    The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans–cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified. PMID:24010663

  9. Aptamer-Encoded Nanopore for Ultrasensitive Detection of Bioterrorist Agent Ricin at Single-Molecule Resolution

    PubMed Central

    Gu, Li-Qun; Ding, Shu; Gao, Changlu

    2011-01-01

    The molecular-scale pore structure, called nanopore, can be formed from protein ion channels by genetic engineering or fabricated on solid substrates using fashion nanotechnology. Target molecules in interaction with the functionalized lumen of nanopore, can produce characteristic changes in the pore conductance, which act as fingerprints, allowing us to identify single molecules and simultaneously quantify each target species in the mixture. Nanopore sensors have been created for tremendous biomedical detections, with targets ranging from metal ions, drug compounds and cellular second messengers, to proteins and DNAs. Here we will review our recent discoveries with a lab-in-hand glass nanopore: single-molecule discrimination of chiral enantiomers with a trapped cyclodextrin, and sensing of bioterrorist agent ricin. PMID:19964179

  10. Logic Gate Operation by DNA Translocation through Biological Nanopores.

    PubMed

    Yasuga, Hiroki; Kawano, Ryuji; Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs "1" and "0" as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment.

  11. Evolution of dealloying induced strain in nanoporous gold crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.

    For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less

  12. Logic Gate Operation by DNA Translocation through Biological Nanopores

    PubMed Central

    Takinoue, Masahiro; Tsuji, Yutaro; Osaki, Toshihisa; Kamiya, Koki; Miki, Norihisa; Takeuchi, Shoji

    2016-01-01

    Logical operations using biological molecules, such as DNA computing or programmable diagnosis using DNA, have recently received attention. Challenges remain with respect to the development of such systems, including label-free output detection and the rapidity of operation. Here, we propose integration of biological nanopores with DNA molecules for development of a logical operating system. We configured outputs “1” and “0” as single-stranded DNA (ssDNA) that is or is not translocated through a nanopore; unlabeled DNA was detected electrically. A negative-AND (NAND) operation was successfully conducted within approximately 10 min, which is rapid compared with previous studies using unlabeled DNA. In addition, this operation was executed in a four-droplet network. DNA molecules and associated information were transferred among droplets via biological nanopores. This system would facilitate linking of molecules and electronic interfaces. Thus, it could be applied to molecular robotics, genetic engineering, and even medical diagnosis and treatment. PMID:26890568

  13. Evolution of dealloying induced strain in nanoporous gold crystals

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Harder, Ross; Dunand, David C.; ...

    2017-04-10

    For this paper, we studied the evolution of dealloying-induced strain along the {111} in a Ag-Au nano-crystal in situ, during formation of nanoporous gold at the initial stage of dealloying using Bragg coherent x-ray diffractive imaging. The maximum strain magnitude in the crystal doubled in 10 s of dealloying. Although formation of nano-pores just began at the surface, the greatest strain is located 60-80 nm deep within the crystal. Dealloying induced a compressive strain in this region, indicating volume shrinkage occurred during pore formation. The crystal interior showed a small tensile strain, which can be explained by 'pulling' of themore » dealloyed region by the non-dealloyed region during volume reduction. A surface strain relaxation developed, attributed to atomic rearrangement during dealloying. This clearer understanding of the role of strain in the initial stages of formation of nanoporous gold by dealloying can be exploited for development of new sensors, battery electrodes, and materials for catalysis.« less

  14. Mechanism of How Salt-Gradient-Induced Charges Affect the Translocation of DNA Molecules through a Nanopore

    PubMed Central

    He, Yuhui; Tsutsui, Makusu; Scheicher, Ralph H.; Fan, Chun; Taniguchi, Masateru; Kawai, Tomoji

    2013-01-01

    Experiments using nanopores demonstrated that a salt gradient enhances the capture rate of DNA and reduces its translocation speed. These two effects can help to enable electrical DNA sequencing with nanopores. Here, we provide a quantitative theoretical evaluation that shows the positive net charges, which accumulate around the pore entrance due to the salt gradient, are responsible for the two observed effects: they reinforce the electric capture field, resulting in promoted molecule capture rate; and they induce cationic electroosmotic flow through the nanopore, thus significantly retarding the motion of the anionic DNA through the nanopore. Our multiphysical simulation results show that, during the polymer trapping stage, the former effect plays the major role, thus resulting in promoted DNA capture rate, while during the nanopore-penetrating stage the latter effect dominates and consequently reduces the DNA translocation speed significantly. Quantitative agreement with experimental results has been reached by further taking nanopore wall surface charges into account. PMID:23931325

  15. Biological nanopore MspA for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Manrao, Elizabeth A.

    Unlocking the information hidden in the human genome provides insight into the inner workings of complex biological systems and can be used to greatly improve health-care. In order to allow for widespread sequencing, new technologies are required that provide fast and inexpensive readings of DNA. Nanopore sequencing is a third generation DNA sequencing technology that is currently being developed to fulfill this need. In nanopore sequencing, a voltage is applied across a small pore in an electrolyte solution and the resulting ionic current is recorded. When DNA passes through the channel, the ionic current is partially blocked. If the DNA bases uniquely modulate the ionic current flowing through the channel, the time trace of the current can be related to the sequence of DNA passing through the pore. There are two main challenges to realizing nanopore sequencing: identifying a pore with sensitivity to single nucleotides and controlling the translocation of DNA through the pore so that the small single nucleotide current signatures are distinguishable from background noise. In this dissertation, I explore the use of Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. In order to determine MspA's sensitivity to single nucleotides, DNA strands of various compositions are held in the pore as the resulting ionic current is measured. DNA is immobilized in MspA by attaching it to a large molecule which acts as an anchor. This technique confirms the single nucleotide resolution of the pore and additionally shows that MspA is sensitive to epigenetic modifications and single nucleotide polymorphisms. The forces from the electric field within MspA, the effective charge of nucleotides, and elasticity of DNA are estimated using a Freely Jointed Chain model of single stranded DNA. These results offer insight into the interactions of DNA within the pore. With the nucleotide sensitivity of MspA confirmed, a method is introduced to controllably pass DNA through the pore

  16. Negative differential electrolyte resistance in a solid-state nanopore resulting from electroosmotic flow bistability.

    PubMed

    Luo, Long; Holden, Deric A; White, Henry S

    2014-03-25

    A solid-state nanopore separating two aqueous solutions containing different concentrations of KCl is demonstrated to exhibit negative differential resistance (NDR) when a constant pressure is applied across the nanopore. NDR refers to a decrease in electrical current when the voltage applied across the nanopore is increased. NDR results from the interdependence of solution flow (electroosmotic and pressure-engendered) with the distributions of K+ and Cl- within the nanopore. A switch from a high-conductivity state to a low-conductivity state occurs over a very narrow voltage window (<2 mV) that depends on the nanopore geometry, electrolyte concentration, and nanopore surface charge density. Finite element simulations based on a simultaneous solution of the Navier-Stokes, Poisson, and Nernst-Planck equations demonstrate that NDR results from a positive feedback mechanism between the ion distributions and electroosmotic flow, yielding a true bistability in fluid flow and electrical current at a critical applied voltage, i.e., the NDR "switching potential". Solution pH and Ca2+ were separately employed as chemical stimuli to investigate the dependence of the NDR on the surface charge density. The NDR switching potential is remarkably sensitive to the surface charge density, and thus to pH and the presence of Ca2+, suggesting possible applications in chemical sensing.

  17. Anisotropic particles strengthen granular pillars under compression

    NASA Astrophysics Data System (ADS)

    Harrington, Matt; Durian, Douglas J.

    2018-01-01

    We probe the effects of particle shape on the global and local behavior of a two-dimensional granular pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct measurement of global material response, as well as tracking of all individual particle trajectories. In general, drawing connections between local structure and local dynamics can be challenging in amorphous materials due to lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together (dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight connections between local deformation rates and local structure.

  18. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE PAGES

    Dou, Jian; Tang, Yu; Nguyen, Luan; ...

    2016-12-22

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  19. Oxidation of Cyclohexene Catalyzed by Nanoporous Au(Ag) in Liquid Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dou, Jian; Tang, Yu; Nguyen, Luan

    Nanoporous gold with minor silver content has been identified as a new type of gold based catalyst for selective oxidation of cyclohexene with molecular oxygen in liquid. By oxidation of the leached nanoporous gold foils in ozone, the minor silver content was oxidized in this paper to form silver oxide nanoclusters on the surface of nanoporous gold. With further treatment in methanol, the surface silver oxide was reduced and surface alloy was formed on gold ligaments. Both nanoporous gold treated with ozone only and the one with ozone and then methanol are very active for selective oxidation of cyclohexene withmore » molecular oxygen in liquid of cyclohexene with a turn-over-frequency (TOF) of 0.55–0.99 molecules per surface Au atom per second under a solvent-free and initiator- free condition. The total selectivity for production of 2-cyclohexene-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide was increased from 57.5 % to 80.8 % by an additional treatment of nanoporous gold in methanol after activation in zone. Finally, the correlation of catalytic selectivity for the production of the three products and corresponding surface chemistry of ligament suggests that (1) the formed Au–Ag alloy surface is favorable for the formation of 2-cyclohexen-1-one, 2-cyclohexene-1-ol, and cyclohexene oxide and (2) the surface silver oxide is favorable for the production of cyclohexenyl hydroperoxide.« less

  20. A novel material screening platform for nanoporous gold-based neural electrodes

    NASA Astrophysics Data System (ADS)

    Chapman, Christopher Abbott Reece

    Neural-electrical interfaces have emerged in the past decades as a promising modality to facilitate the understanding of the electropathophysiology of neurological disorders as well as the normal functioning of the central nervous system, and enable the treatment of neurological defects through electrical stimulation or electrically-controlled drug delivery. However, chronically implanted electrodes face a myriad of design challenges, including their coupling to neural tissue (biocompatibility), small form factor requirement, and their electrical properties (maintaining a low electrical impedance). Planar electrode materials such as planar platinum and gold experience a large increase in electrical impedance when electrode dimensions are reduced to increase spatial resolution of neural recordings. A decrease in electrode surface area reduces the total capacitance of the electrode double layer resulting in an increase in electrode impedance. This high impedance can reduce the signal amplitude and increase the thermal noise, resulting in degradation of signal-to-noise ratio. Conventionally, this increase in electrical impedance at small electrode dimensions has been mitigated by coatings with rough morphologies such as platinum black, conducting polymers, and titanium nitride. Porous surfaces have high effective surface area enabling low impedance at small electrode dimensions. However, achieving long-term stability of cellular coupling to the electrode surface has remained difficult. Designing electrodes that can physically couple with neurons successfully and maintain low impedance at small electrode dimensions necessitates consideration of novel electrode coatings, such as carbon nanotubes and gold nanopillars. Another promising material, and focus of this proposal, is thin film nanoporous gold (np-Au). Nanoporous gold is a promising material for addressing these limitations because of its inherently large effective surface area allows for lower impedances at

  1. [Effects of different annealing conditions on the photoluminescence of nanoporous alumina film].

    PubMed

    Xie, Ning; Ma, Kai-Di; Shen, Yi-Fan; Wang, Qian

    2013-12-01

    The nanoporous alumina films were prepared by two-step anodic oxidation in 0.5 mol L-1 oxalic acid electrolyte at 40 V. Photoluminescence (PL) of nanoporous alumina films was investigated under different annealing atmosphere and different temperature. The authors got three results about the PL measurements. In the same annealing atmosphere, when the annealling temperature T< or =600 degreeC, the intensity of the PL peak increases with elevated annealing temperature and reaches a maximum value at 500 degreeC, but the intensity decreases with a further increase in the annealing temperature, and the PL peak intensity of samples increases with the increase in the annealing temperature when the annealling temperature T> or =800 degreeC. In the different annealling atmosphere, the change in the photoluminescence peak position for nanoporous alumina films with the increase in the annealing temperature is different: With the increase in the annealling temperature, the PL peak position for the samples annealed in air atmosphere is blue shifted, while the PL peak position for the samples annealed in vacuum atmosphere will not change. The PL spectra of nanoporous alumina films annealed at 1100 degreeC in air atmosphere can be de-convoluted by three Gaussian components at an excitation wavelength of 350 nm, with bands centered at 387, 410 and 439 nm, respectively. These results suggest that there might be three luminescence centers for the PL of annealed alumina films. At the same annealling temperature, the PL peak intensity of samples annealed in air atmosphere is stronger than that annealed in the vacuum. Based on the experimental results and the X-ray dispersive energy spectrum (EDS) combined with infrared reflect spectra, the luminescence mechanisms of nanoporous alumina films are discussed. There are three luminescence centers in the annealed nanoporous alumina films, which originate from the F center, F+ center and the center associated with the oxalic impurities. The

  2. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity

    NASA Astrophysics Data System (ADS)

    Arefpour, M.; Almasi Kashi, M.; Ramazani, A.; Montazer, A. H.

    2016-07-01

    While a variety of template-based strategies have been developed in the fabrication of nanowires (NWs), a uniform pore filling across the template still poses a major challenge. Here, we present a large area controlled pore filling strategy in the reproducible fabrication of various magnetic and metallic NW arrays, embedded inside anodic aluminum oxide templates. Using a diffusive pulsed electrodeposition (DPED) technique, this versatile strategy relies on the optimized filling of branched nanopores at the bottom of templates with Cu. Serving the Cu filled nanopores as appropriate nucleation sites, the DPED is followed by a uniform and homogeneous deposition of magnetic (Ni and Fe) and metallic (Cu and Zn) NWs at a current density of 50 mA cm-2 for an optimal thickness of alumina barrier layer (˜18 nm). Our strategy provides large area uniformity (exceeding 400 μm2) in the fabrication of 16 μm long free-standing NW arrays. Using hysteresis loop measurements and scanning electron microscopy images, the electrodeposition efficiency (EE) and pore filling percentage (F p) are evaluated, leading to maximum EE and F p values of 91% and 95% for Ni and Zn, respectively. Moreover, the resulting NW arrays are found to be highly crystalline. Accordingly, the DPED technique is capable of cheaply and efficiently controlling NW growth over a large area, providing a tool for various nanoscale applications including biomedical devices, electronics, photonics, magnetic storage medium and nanomagnet computing.

  3. Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity.

    PubMed

    Arefpour, M; Kashi, M Almasi; Ramazani, A; Montazer, A H

    2016-06-01

    While a variety of template-based strategies have been developed in the fabrication of nanowires (NWs), a uniform pore filling across the template still poses a major challenge. Here, we present a large area controlled pore filling strategy in the reproducible fabrication of various magnetic and metallic NW arrays, embedded inside anodic aluminum oxide templates. Using a diffusive pulsed electrodeposition (DPED) technique, this versatile strategy relies on the optimized filling of branched nanopores at the bottom of templates with Cu. Serving the Cu filled nanopores as appropriate nucleation sites, the DPED is followed by a uniform and homogeneous deposition of magnetic (Ni and Fe) and metallic (Cu and Zn) NWs at a current density of 50 mA cm -2 for an optimal thickness of alumina barrier layer (∼18 nm). Our strategy provides large area uniformity (exceeding 400 μm 2 ) in the fabrication of 16 μm long free-standing NW arrays. Using hysteresis loop measurements and scanning electron microscopy images, the electrodeposition efficiency (EE) and pore filling percentage (F p ) are evaluated, leading to maximum EE and F p values of 91% and 95% for Ni and Zn, respectively. Moreover, the resulting NW arrays are found to be highly crystalline. Accordingly, the DPED technique is capable of cheaply and efficiently controlling NW growth over a large area, providing a tool for various nanoscale applications including biomedical devices, electronics, photonics, magnetic storage medium and nanomagnet computing.

  4. Subangstrom Measurements of Enzyme Function Using a Biological Nanopore, SPRNT.

    PubMed

    Laszlo, A H; Derrrington, I M; Gundlach, J H

    2017-01-01

    Nanopores are emerging as new single-molecule tools in the study of enzymes. Based on the progress in nanopore sequencing of DNA, a tool called Single-molecule Picometer Resolution Nanopore Tweezers (SPRNT) was developed to measure the movement of enzymes along DNA in real time. In this new method, an enzyme is loaded onto a DNA (or RNA) molecule. A single-stranded DNA end of this complex is drawn into a nanopore by an electrostatic potential that is applied across the pore. The single-stranded DNA passes through the pore's constriction until the enzyme comes into contact with the pore. Further progression of the DNA through the pore is then controlled by the enzyme. An ion current that flows through the pore's constriction is modulated by the DNA in the constriction. Analysis of ion current changes reveals the advance of the DNA with high spatiotemporal precision, thereby providing a real-time record of the enzyme's activity. Using an engineered version of the protein nanopore MspA, SPRNT has spatial resolution as small as 40pm at millisecond timescales, while simultaneously providing the DNA's sequence within the enzyme. In this chapter, SPRNT is introduced and its extraordinary potential is exemplified using the helicase Hel308. Two distinct substates are observed for each one-nucleotide advance; one of these about half-nucleotide long steps is ATP dependent and the other is ATP independent. The spatiotemporal resolution of this low-cost single-molecule technique lifts the study of enzymes to a new level of precision, enabling exploration of hitherto unobservable enzyme dynamics in real time. © 2017 Elsevier Inc. All rights reserved.

  5. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    PubMed Central

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; Di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs. PMID:28091599

  6. A Comprehensive Numerical Model for Simulating Fluid Transport in Nanopores

    NASA Astrophysics Data System (ADS)

    Zhang, Yuan; Yu, Wei; Sepehrnoori, Kamy; di, Yuan

    2017-01-01

    Since a large amount of nanopores exist in tight oil reservoirs, fluid transport in nanopores is complex due to large capillary pressure. Recent studies only focus on the effect of nanopore confinement on single-well performance with simple planar fractures in tight oil reservoirs. Its impacts on multi-well performance with complex fracture geometries have not been reported. In this study, a numerical model was developed to investigate the effect of confined phase behavior on cumulative oil and gas production of four horizontal wells with different fracture geometries. Its pore sizes were divided into five regions based on nanopore size distribution. Then, fluid properties were evaluated under different levels of capillary pressure using Peng-Robinson equation of state. Afterwards, an efficient approach of Embedded Discrete Fracture Model (EDFM) was applied to explicitly model hydraulic and natural fractures in the reservoirs. Finally, three fracture geometries, i.e. non-planar hydraulic fractures, non-planar hydraulic fractures with one set natural fractures, and non-planar hydraulic fractures with two sets natural fractures, are evaluated. The multi-well performance with confined phase behavior is analyzed with permeabilities of 0.01 md and 0.1 md. This work improves the analysis of capillarity effect on multi-well performance with complex fracture geometries in tight oil reservoirs.

  7. Nanopores creation in boron and nitrogen doped polycrystalline graphene: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Izadifar, Mohammadreza; Abadi, Rouzbeh; Nezhad Shirazi, Ali Hossein; Alajlan, Naif; Rabczuk, Timon

    2018-05-01

    In the present paper, molecular dynamic simulations have been conducted to investigate the nanopores creation on 10% of boron and nitrogen doped polycrystalline graphene by silicon and diamond nanoclusters. Two types of nanoclusters based on silicon and diamond are used to investigate their effect for the fabrication of nanopores. Therefore, three different diameter sizes of the clusters with five kinetic energies of 10, 50, 100, 300 and 500 eV/atom at four different locations in boron or nitrogen doped polycrystalline graphene nanosheets have been perused. We also study the effect of 3% and 6% of boron doped polycrystalline graphene with the best outcome from 10% of doping. Our results reveal that the diamond cluster with diameter of 2 and 2.5 nm fabricates the largest nanopore areas on boron and nitrogen doped polycrystalline graphene, respectively. Furthermore, the kinetic energies of 10 and 50 eV/atom can not fabricate nanopores in some cases for silicon and diamond clusters on boron doped polycrystalline graphene nanosheets. On the other hand, silicon and diamond clusters fabricate nanopores for all locations and all tested energies on nitrogen doped polycrystalline graphene. The area sizes of nanopores fabricated by silicon and diamond clusters with diameter of 2 and 2.5 nm are close to the actual area size of the related clusters for the kinetic energy of 300 eV/atom in all locations on boron doped polycrystalline graphene. The maximum area and the average maximum area of nanopores are fabricated by the kinetic energy of 500 eV/atom inside the grain boundary at the center of the nanosheet and in the corner of nanosheet with diameters of 2 and 3 nm for silicon and diamond clusters on boron and nitrogen doped polycrystalline graphene.

  8. Scan-rate-dependent current rectification of cone-shaped silica nanopores in quartz nanopipettes.

    PubMed

    Guerrette, Joshua P; Zhang, Bo

    2010-12-08

    Here we report the voltammetric behavior of cone-shaped silica nanopores in quartz nanopipettes in aqueous solutions as a function of the scan rate, v. Current rectification behavior for silica nanopores with diameters in the range 4-25 nm was studied. The rectification behavior was found to be strongly dependent on the scan rate. At low scan rates (e.g., v < 1 V/s), the rectification ratio was found to be at its maximum and relatively independent of v. At high scan rates (e.g., v > 200 V/s), a nearly linear current-voltage response was obtained. In addition, the initial voltage was shown to play a critical role in the current-voltage response of cone-shaped nanopores at high scan rates. We explain this v-dependent current-voltage response by ionic redistribution in the vicinity of the nanopore mouth.

  9. Co-delivery of ibuprofen and gentamicin from nanoporous anodic titanium dioxide layers.

    PubMed

    Pawlik, Anna; Jarosz, Magdalena; Syrek, Karolina; Sulka, Grzegorz D

    2017-04-01

    Although single-drug therapy may prove insufficient in treating bacterial infections or inflammation after orthopaedic surgeries, complex therapy (using both an antibiotic and an anti-inflammatory drug) is thought to address the problem. Among drug delivery systems (DDSs) with prolonged drug release profiles, nanoporous anodic titanium dioxide (ATO) layers on Ti foil are very promising. In the discussed research, ATO samples were synthesized via a three-step anodization process in an ethylene glycol-based electrolyte with fluoride ions. The third step lasted 2, 5 and 10min in order to obtain different thicknesses of nanoporous layers. Annealing the as-prepared amorphous layers at the temperature of 400°C led to obtaining the anatase phase. In this study, water-insoluble ibuprofen and water-soluble gentamicin were used as model drugs. Three different drug loading procedures were applied. The desorption-desorption-diffusion (DDD) model of the drug release was fitted to the experimental data. The effects of crystalline structure, depth of TiO 2 nanopores and loading procedure on the drug release profiles were examined. The duration of the drug release process can be easily altered by changing the drug loading sequence. Water-soluble gentamicin is released for a long period of time if gentamicin is loaded in ATO as the first drug. Additionally, deeper nanopores and anatase phase suppress the initial burst release of drugs. These results confirm that factors such as morphological and crystalline structure of ATO layers, and the procedure of drug loading inside nanopores, allow to alter the drug release performance of nanoporous ATO layers. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Nanoporous polysulfone membranes via a degradable block copolymer precursor for redox flow batteries

    DOE PAGES

    Gindt, Brandon P.; Abebe, Daniel G.; Tang, Zhijiang J.; ...

    2016-02-16

    In this study, nanoporous polysulfone (PSU) membranes were fabricated via post-hydrolysis of polylactide (PLA) from PLA–PSU–PLA triblock copolymer membranes. The PSU scaffold was thermally crosslinked before sacrificing PLA blocks. The resulting nanopore surface was chemically modified with sulfonic acid moieties. The membranes were analyzed and evaluated as separators for vanadium redox flow batteries. Nanoporous PSU membranes prepared by this new method and further chemically modified to a slight degree exhibited unique behavior with respect to their ionic conductivity when exposed to solutions of increasing acid concentration.

  11. Nanoporous SiC: a candidate semi-permeable material for biomedical applications.

    PubMed

    Rosenbloom, A J; Sipe, D M; Shishkin, Y; Ke, Y; Devaty, R P; Choyke, W J

    2004-12-01

    We have fabricated free-standing SiC nanoporous membranes in both p -type and n -type material. We showed that these membranes will permit the diffusion of proteins up to 29000 Daltons, while excluding larger proteins. By using radioactively labeled albumin, we also show that porous SiC has very low protein adsorption, comparable to the best commercially available polymer nanoporous membrane.

  12. Immobilization of folic acid on Eu3+-doped nanoporous silica spheres.

    PubMed

    Tagaya, Motohiro; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Xu, Zhefeng; Tanaka, Junzo

    2011-08-07

    Folic acid (FA) was immobilized on Eu(3+)-doped nanoporous silica spheres (Eu:NPSs) through mediation of the 3-aminopropyltriethoxysilane adlayer. The ordered nanopores of Eu:NPS were preserved by the immobilization. The FA-immobilized Eu:NPSs showed the characteristic photoluminescence peak due to interactions between the FA molecules and Eu(3+) ions, and highly dispersed stability in phosphate buffered saline.

  13. Atomic layer deposition of TIO{sub 2} thin films on nanoporous alumina templates : medical applications.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narayan, R. J.; Monteiro-Riviere, N. A.; Brigmon, R. L.

    2009-06-01

    Nanostructured materials may play a significant role in controlled release of pharmacologic agents for treatment of cancer. Many nanoporous polymer materials are inadequate for use in drug delivery. Nanoporous alumina provides several advantages over other materials for use in controlled drug delivery and other medical applications. Atomic layer deposition was used to coat all the surfaces of a nanoporous alumina membrane in order to reduce the pore size in a controlled manner. Neither the 20 nm nor the 100 nm TiO{sub 2}-coated nanoporous alumina membranes exhibited statistically lower viability compared to the uncoated nanoporous alumina membrane control materials. Nanostructured materialsmore » prepared using atomic layer deposition may be useful for delivering a pharmacologic agent at a precise rate to a specific location in the body. These materials may serve as the basis for 'smart' drug delivery devices, orthopedic implants, or self-sterilizing medical devices.« less

  14. Solid-state nanopore localization by controlled breakdown of selectively thinned membranes

    NASA Astrophysics Data System (ADS)

    Carlsen, Autumn T.; Briggs, Kyle; Hall, Adam R.; Tabard-Cossa, Vincent

    2017-02-01

    We demonstrate precise positioning of nanopores fabricated by controlled breakdown (CBD) on solid-state membranes by spatially varying the electric field strength with localized membrane thinning. We show 100 × 100 nm2 precision in standard SiN x membranes (30-100 nm thick) after selective thinning by as little as 25% with a helium ion beam. Control over nanopore position is achieved through the strong dependence of the electric field-driven CBD mechanism on membrane thickness. Confinement of pore formation to the thinned region of the membrane is confirmed by TEM imaging and by analysis of DNA translocations. These results enhance the functionality of CBD as a fabrication approach and enable the production of advanced nanopore devices for single-molecule sensing applications.

  15. Enabling cell-cell communication via nanopore formation: structure, function and localization of the unique cell wall amidase AmiC2 of Nostoc punctiforme.

    PubMed

    Büttner, Felix M; Faulhaber, Katharina; Forchhammer, Karl; Maldener, Iris; Stehle, Thilo

    2016-04-01

    To orchestrate a complex life style in changing environments, the filamentous cyanobacterium Nostoc punctiforme facilitates communication between neighboring cells through septal junction complexes. This is achieved by nanopores that perforate the peptidoglycan (PGN) layer and traverse the cell septa. The N-acetylmuramoyl-l-alanine amidase AmiC2 (Npun_F1846; EC 3.5.1.28) in N. punctiforme generates arrays of such nanopores in the septal PGN, in contrast to homologous amidases that mediate daughter cell separation after cell division in unicellular bacteria. Nanopore formation is therefore a novel property of AmiC homologs. Immunofluorescence shows that native AmiC2 localizes to the maturing septum. The high-resolution crystal structure (1.12 Å) of its catalytic domain (AmiC2-cat) differs significantly from known structures of cell splitting and PGN recycling amidases. A wide and shallow binding cavity allows easy access of the substrate to the active site, which harbors an essential zinc ion. AmiC2-cat exhibits strong hydrolytic activity in vitro. A single point mutation of a conserved glutamate near the zinc ion results in total loss of activity, whereas zinc removal leads to instability of AmiC2-cat. An inhibitory α-helix, as found in the Escherichia coli AmiC(E. coli) structure, is absent. Taken together, our data provide insight into the cell-biological, biochemical and structural properties of an unusual cell wall lytic enzyme that generates nanopores for cell-cell communication in multicellular cyanobacteria. The novel structural features of the catalytic domain and the unique biological function of AmiC2 hint at mechanisms of action and regulation that are distinct from other amidases. The AmiC2-cat structure has been deposited in the Protein Data Bank under accession number 5EMI. © 2016 Federation of European Biochemical Societies.

  16. Surface chemistry driven actuation in nanoporous gold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biener, J; Wittstock, A; Zepeda-Ruiz, L

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into amore » mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.« less

  17. Four Pillars of Service-Oriented Architecture

    DTIC Science & Technology

    2007-09-01

    ic A lig n m e n t Figure 1: Pillars of SOA-Based Systems Development Service -Oriented Architectures 12 CROSSTALK The Journal of Defense Software ...et al. “On the Business Value and Technical Challenges of Adopting Web Services .” Journal of Software Maintenance and Evolution 16 (2004): 16, 31-50...10 CROSSTALK The Journal of Defense Software Engineering September 2007 Acornerstone of DoD policy forfuture software and systems policy is the

  18. Al13-pillared anatase TiO2 as a cathode for a lithium battery

    NASA Astrophysics Data System (ADS)

    Sun, X. D.; Ma, C. L.; Wang, Y. D.; Li, H. D.

    2004-11-01

    Al13-pillared anatase TiO2 is used as a cathode of a lithium battery for the first time. First, a layered titanium dioxide with cationic surfactant ions of cetyltrimethylammonium (CTA+) in the interlayers is synthesized by self-assembly. Then, pillared TiO2 is obtained by exchange of polyoxo cations of aluminium, [Al13O4(OH)24(H2O)12]7+, with CTA+ and subsequent calcination at 300 °C for 1 h in the air. Powder x-ray diffraction (XRD), transmission electron microscopy (TEM) and surface area (BET) methods are used to characterize the layered and pillared forms of titanium dioxide. A lithium battery with the Al13-pillared TiO2 as the cathode and Li metal foil as the anode is studied within the 1-2.2 V voltage range. The specific capacity of the closed button cell (size 2025) that is delivered on the initial discharge reached 191.4 mA h g-1 at the rate of 25 mA g-1. The cell shows good cycling performance over 50 cycles.

  19. Structural Integrity of Proteins under Applied Bias during Solid-State Nanopore Translocation

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad R.; Khanzada, Raja Raheel; Mahmood, Mohammed A. I.; Ashfaq, Adnan; Iqbal, Samir M.

    2015-03-01

    The translocation behavior of proteins through solid-state nanopores can be used as a new way to detect and identify proteins. The ionic current through a nanopore that flows under applied bias gets perturbed when a biomolecule traverses the Nanopore. It is important for a protein detection scheme to know of any changes in the three-dimensional structure of the molecule during the process. Here we report the data on structural integrity of protein during translocation through nanopore under different applied biases. Nanoscale Molecular Dynamic was used to establish a framework to study the changes in protein structures as these travelled across the nanopore. The analysis revealed the contributions of structural changes of protein to its ionic current signature. As a model, thrombin protein crystalline structure was imported and positioned inside a 6 nm diameter pore in a 6 nm thick silicon nitride membrane. The protein was solvated in 1 M KCl at 295 K and the system was equilibrated for 20 ns to attain its minimum energy state. The simulation was performed at different electric fields from 0 to 1 kCal/(mol.Å.e). RMSD, radial distribution function, movement of the center of mass and velocity of the protein were calculated. The results showed linear increments in the velocity and perturbations in ionic current profile with increasing electric potential. Support Acknowledged from NSF through ECCS-1201878.

  20. Active sieving across driven nanopores for tunable selectivity

    NASA Astrophysics Data System (ADS)

    Marbach, Sophie; Bocquet, Lydéric

    2017-10-01

    Molecular separation traditionally relies on sieving processes across passive nanoporous membranes. Here we explore theoretically the concept of non-equilibrium active sieving. We investigate a simple model for an active noisy nanopore, where gating—in terms of size or charge—is externally driven at a tunable frequency. Our analytical and numerical results unveil a rich sieving diagram in terms of the forced gating frequency. Unexpectedly, the separation ability is strongly increased as compared to its passive (zero frequency) counterpart. It also points to the possibility of tuning dynamically the osmotic pressure. Active separation outperforms passive sieving and represents a promising avenue for advanced filtration.