Sample records for nanoscale 3d cellular

  1. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  2. Nanoscale Resolution 3D Printing with Pin-Modified Electrified Inkjets for Tailorable Nano/Macrohybrid Constructs for Tissue Engineering.

    PubMed

    Kim, Jeong In; Kim, Cheol Sang

    2018-04-18

    Cells respond to their microenvironment, which is of a size comparable to that of the cells. The macroscale features of three-dimensional (3D) printing struts typically result in whole cell contact guidance (CCG). In contrast, at the nanoscale, where features are of a size similar to that of receptors of cells, the response of cells is more complex. The cell-nanotopography interaction involves nanoscale adhesion localized structures, which include cell adhesion-related particles that change in response to the clustering of integrin. For this reason, it is necessary to develop a technique for manufacturing tailorable nano/macrohybrid constructs capable of freely controlling the cellular activity. In this study, a hierarchical 3D nano- to microscale hybrid structure was fabricated by combinational processing of 3D printing and electrified inkjet spinning via pin motions. This method overcomes the disadvantages of conventional 3D printing, providing a novel combinatory technique for the fabrication of 3D hybrid constructs with excellent cell proliferation. Through a pin-modified electrified inkjet spinning, we have successfully fabricated customizable nano-/microscale hybrid constructs in a fibrous or mesh form, which can control the cell fate. We have conducted this study of cell-topography interactions from the fabrication approach to accelerate the development of next-generation 3D scaffolds.

  3. Nanoscale tissue engineering: spatial control over cell-materials interactions

    PubMed Central

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  4. Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Junwei; Lan, Qianqian; Ma, Hongbin; Qu, Ke; Inkson, Beverley J.; Mellors, Nigel J.; Xue, Desheng; Peng, Yong

    2014-10-01

    One-dimensional Sn-3.5Ag alloy nanosolders have been successfully fabricated by a dc electrodeposition technique into nanoporous templates, and their soldering quality has been demonstrated in nanoscale electrical welding for the first time, which indicates that they can easily form remarkably reliable conductive joints. The electrical measurement shows that individual 1D Sn-3.5Ag nanosolders have a resistivity of 28.9 μΩ·cm. The morphology, crystal structure and chemistry of these nanosolders have been characterized at the nanoscale. It is found that individual 1D Sn-3.5Ag alloy nanosolders have a continuous morphology and smooth surface. XPS confirms the presence of tin and silver with a mass ratio of 96.54:3.46, and EDX elemental mappings clearly reveal that the Sn and Ag elements have a uniform distribution. Coveragent beam electron diffractions verify that the crystal phases of individual 1D Sn-3.5Ag alloy nanosolders consist of matrix β-Sn and the intermetallic compound Ag3Sn. The reflow experiments reveal that the eutectic composition of the 1D Sn-Ag alloy nanowire is shifted to the Sn rich corner. This work may contribute one of the most important tin-based alloy nanosolders for future nanoscale welding techniques, which are believed to have broad applications in nanotechnology and the future nano-industry.

  5. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are

  6. Multifunctional Cellular Materials Based on 2D Nanomaterials: Prospects and Challenges.

    PubMed

    Qiu, Ling; He, Zijun; Li, Dan

    2018-01-01

    Recent advances in emerging 2D nanomaterial-based cellular materials (2D-CMs) open up new opportunities for the development of next generation cellular solids with exceptional properties. Herein, an overview of the current research status of 2D-CMs is provided and their future opportunities are highlighted. First, the unique features of 2D nanomaterials are introduced to illustrate why these nanoscale building blocks are promising for the development of novel cellular materials and what the new features of 2D nanoscale building blocks can offer when compared to their 0D and 1D counterparts. An in-depth discussion on the structure-property relationships of 2D-CMs is then provided, and the remarkable functions that can be achieved by engineering their cellular architecture are highlighted. Additionally, the use of 2D-CMs to tackle key challenges in different practical applications is demonstrated. In conclusion, a personal perspective on the challenges and future research directions of 2D-CMs is given. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    PubMed

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields. Copyright 2016 IOP Publishing Ltd.

  8. Advanced 3D Printers for Cellular Solids

    DTIC Science & Technology

    2016-06-30

    2211 3d printing , cellular solids REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8...quality 3D printing and rapid prototyping in a fraction of the time taken by traditional 3D printers, using eco-friendly, inexpensive office paper and...STL file, which then can be used in printing the 3D model. Mechanical performance using compressive crushing of the 3D printed part will be studied

  9. Fabrication of nano-scale Cu bond pads with seal design in 3D integration applications.

    PubMed

    Chen, K N; Tsang, C K; Wu, W W; Lee, S H; Lu, J Q

    2011-04-01

    A method to fabricate nano-scale Cu bond pads for improving bonding quality in 3D integration applications is reported. The effect of Cu bonding quality on inter-level via structural reliability for 3D integration applications is investigated. We developed a Cu nano-scale-height bond pad structure and fabrication process for improved bonding quality by recessing oxides using a combination of SiO2 CMP process and dilute HF wet etching. In addition, in order to achieve improved wafer-level bonding, we introduced a seal design concept that prevents corrosion and provides extra mechanical support. Demonstrations of these concepts and processes provide the feasibility of reliable nano-scale 3D integration applications.

  10. Hybrid 3D-2D printing for bone scaffolds fabrication

    NASA Astrophysics Data System (ADS)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  11. Cellular Factors Shape 3D Genome Landscape

    Cancer.gov

    Researchers, using novel large-scale imaging technology, have mapped the spatial location of individual genes in the nucleus of human cells and identified 50 cellular factors required for the proper 3D positioning of genes. These spatial locations play important roles in gene expression, DNA repair, genome stability, and other cellular activities.

  12. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    PubMed

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  13. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  14. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.

    PubMed

    Warmuth, Franziska; Körner, Carolin

    2015-12-02

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.

  15. Comparative studies of cellular viability levels on 2D and 3D in vitro culture matrices.

    PubMed

    Gargotti, M; Lopez-Gonzalez, U; Byrne, H J; Casey, A

    2018-02-01

    In this study, the cellular viability and function of immortalized human cervical and dermal cells are monitored and compared in conventional 2D and two commercial 3D membranes, Collagen and Geltrex, of varying working concentration and volume. Viability was monitored with the aid of the Alamar Blue assay, cellular morphology was monitored with confocal microscopy, and cell cycle studies and cell death mechanism studies were performed with flow cytometry. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to 3D environment causing alterations to effective resazurin concentration, uptake and conversion rates, which was dependent on exposure time, but also due to the effect of the membrane itself on cellular function. These effects were verified by flow cytometry, in which no significant differences in viable cell numbers between 2D and 3D systems were observed after 24 h culture. The results showed the observed effect was different after shorter exposure periods, was also dependent on working concentration of the 3D system and could be mediated by altering the culture vessel size. Cell cycle analysis revealed cellular function could be altered by growth on the 3D substrates and the alterations were noted to be dependent on 3D membrane concentration. The use of 3D culture matrices has been widely interpreted to result in "improved viability levels" or "reduced" toxicity or cellular "resistance" compared to cells cultured on traditional 2D systems. The results of this study show that cellular health and viability levels are not altered by culture in 3D environments, but their normal cycle can be altered as indicated in the cell cycle studies performed and such variations must be accounted for in studies employing 3D membranes for in vitro cellular screening.

  16. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D

    PubMed Central

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-01-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent. PMID:25834481

  17. Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures

    PubMed Central

    Warmuth, Franziska; Körner, Carolin

    2015-01-01

    The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713

  18. Controlled implant/soft tissue interaction by nanoscale surface modifications of 3D porous titanium implants.

    PubMed

    Rieger, Elisabeth; Dupret-Bories, Agnès; Salou, Laetitia; Metz-Boutigue, Marie-Helene; Layrolle, Pierre; Debry, Christian; Lavalle, Philippe; Vrana, Nihal Engin

    2015-06-07

    -laden gelatin hydrogels, significantly more cells migrated towards the acid etched beads. In conclusion, the nanoscale surface treatment of 3D porous titanium structures can modulate in vivo integration by the accumulative effect of the surface treatment on several physical factors such as protein adsorption, surface hydrophilicity and surface roughness. The improved protein adsorption capacity of the treated implants can be further exploited by a pre-treatment with autologous serum to render the implant surface more bioactive. Titanium microbeads are a good model system to observe these effects in a 3D microenvironment and provide a better representation of cellular responses in 3D.

  19. Growth and nanomechanical characterization of nanoscale 3D architectures grown via focused electron beam induced deposition

    DOE PAGES

    Lewis, Brett B.; Mound, Brittnee A.; Srijanto, Bernadeta; ...

    2017-10-12

    Here, nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.

  20. Multiplex, quantitative cellular analysis in large tissue volumes with clearing-enhanced 3D microscopy (Ce3D)

    PubMed Central

    Li, Weizhe; Germain, Ronald N.

    2017-01-01

    Organ homeostasis, cellular differentiation, signal relay, and in situ function all depend on the spatial organization of cells in complex tissues. For this reason, comprehensive, high-resolution mapping of cell positioning, phenotypic identity, and functional state in the context of macroscale tissue structure is critical to a deeper understanding of diverse biological processes. Here we report an easy to use method, clearing-enhanced 3D (Ce3D), which generates excellent tissue transparency for most organs, preserves cellular morphology and protein fluorescence, and is robustly compatible with antibody-based immunolabeling. This enhanced signal quality and capacity for extensive probe multiplexing permits quantitative analysis of distinct, highly intermixed cell populations in intact Ce3D-treated tissues via 3D histo-cytometry. We use this technology to demonstrate large-volume, high-resolution microscopy of diverse cell types in lymphoid and nonlymphoid organs, as well as to perform quantitative analysis of the composition and tissue distribution of multiple cell populations in lymphoid tissues. Combined with histo-cytometry, Ce3D provides a comprehensive strategy for volumetric quantitative imaging and analysis that bridges the gap between conventional section imaging and disassociation-based techniques. PMID:28808033

  1. Giant Thermal Expansion in 2D and 3D Cellular Materials.

    PubMed

    Zhu, Hanxing; Fan, Tongxiang; Peng, Qing; Zhang, Di

    2018-05-01

    When temperature increases, the volume of an object changes. This property was quantified as the coefficient of thermal expansion only a few hundred years ago. Part of the reason is that the change of volume due to the variation of temperature is in general extremely small and imperceptible. Here, abnormal giant linear thermal expansions in different types of two-ingredient microstructured hierarchical and self-similar cellular materials are reported. The cellular materials can be 2D or 3D, and isotropic or anisotropic, with a positive or negative thermal expansion due to the convex or/and concave shape in their representative volume elements respectively. The magnitude of the thermal expansion coefficient can be several times larger than the highest value reported in the literature. This study suggests an innovative approach to develop temperature-sensitive functional materials and devices. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Protein corona of airborne nanoscale PM2.5 induces aberrant proliferation of human lung fibroblasts based on a 3D organotypic culture.

    PubMed

    Li, Yan; Wang, Pengcheng; Hu, Chuanlin; Wang, Kun; Chang, Qing; Liu, Lieju; Han, Zhenggang; Shao, Yang; Zhai, Ying; Zuo, Zhengyu; Mak, Michael; Gong, Zhiyong; Wu, Yang

    2018-01-31

    Exposure to PM2.5 has become one of the most important factors affecting public health in the world. Both clinical and research studies have suggested that PM2.5 inhalation is associated with impaired lung function. In this study, material characterization identified the existence of nanoscale particulate matter (NPM) in airborne PM2.5 samples. When coming into contact with protein-rich fluids, the NPM becomes covered by a protein layer that forms a "protein corona". Based on a 3D organotypic cell culture, the protein corona was shown to mitigate NPM cytotoxicity and further stimulate the proliferation of human lung fibroblasts (HLFs). ROS-activated alpha-smooth muscle actin (α-SMA) is considered to be one of the proliferation pathways. In this research, 3D cell cultures exhibited more tissue-like properties compared with the growth in 2D models. Animal models have been widely used in toxicological research. However, species differences make it impossible to directly translate discoveries from animals to humans. In this research, the 3D HLF model could partly simulate the biological responses of NPM-protein corona-induced aberrant HLF proliferation in the human lung. Our 3D cellular results provide auxiliary support for an animal model in research on PM2.5-induced impaired lung function, particularly in lung fibrosis.

  3. High-strength cellular ceramic composites with 3D microarchitecture.

    PubMed

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-02-18

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m(3); only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina-polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m(3).

  4. Self-interference 3D super-resolution microscopy for deep tissue investigations.

    PubMed

    Bon, Pierre; Linarès-Loyez, Jeanne; Feyeux, Maxime; Alessandri, Kevin; Lounis, Brahim; Nassoy, Pierre; Cognet, Laurent

    2018-06-01

    Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.

  5. Unravelling the secret of seed-based gels in water: the nanoscale 3D network formation.

    PubMed

    Samateh, Malick; Pottackal, Neethu; Manafirasi, Setareh; Vidyasagar, Adiyala; Maldarelli, Charles; John, George

    2018-05-09

    Chia (Salvia hispanica) and basil (Ocimum basilicum) seeds have the intrinsic ability to form a hydrogel concomitant with moisture-retention, slow releasing capability and proposed health benefits such as curbing diabetes and obesity by delaying digestion process. However, the underlying mode of gelation at nanoscopic level is not clearly explained or explored. The present study elucidates and corroborates the hypothesis that the gelling behavior of such seeds is due to their nanoscale 3D-network formation. The preliminary study revealed the influence of several conditions like polarity, pH and hydrophilicity/hydrophobicity on fiber extrusion from the seeds which leads to gelation. Optical microscopic analysis clearly demonstrated bundles of fibers emanating from the seed coat while in contact with water, and live growth of fibers to form 3D network. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies confirmed 3D network formation with fiber diameters ranging from 20 to 50 nm.

  6. In situ evidence of mineral physical protection and carbon stabilization revealed by nanoscale 3-D tomography

    NASA Astrophysics Data System (ADS)

    Weng, Yi-Tse; Wang, Chun-Chieh; Chiang, Cheng-Cheng; Tsai, Heng; Song, Yen-Fang; Huang, Shiuh-Tsuen; Liang, Biqing

    2018-05-01

    An approach for nanoscale 3-D tomography of organic carbon (OC) and associated mineral nanoparticles was developed to illustrate their spatial distribution and boundary interplay, using synchrotron-based transmission X-ray microscopy (TXM). The proposed 3-D tomography technique was first applied to in situ observation of a laboratory-made consortium of black carbon (BC) and nanomineral (TiO2, 15 nm), and its performance was evaluated using dual-scan (absorption contrast and phase contrast) modes. This novel tool was then successfully applied to a natural OC-mineral consortium from mountain soil at a spatial resolution of 60 nm, showing the fine structure and boundary of OC, the distribution of abundant nano-sized minerals, and the 3-D organo-mineral association in situ. The stabilization of 3500-year-old natural OC was mainly attributed to the physical protection of nano-sized iron (Fe)-containing minerals (Fe oxyhydroxides including ferrihydrite, goethite, and lepidocrocite), and the strong organo-mineral complexation. In situ evidence revealed an abundance of mineral nanoparticles, in dense thin layers or nano-aggregates/clusters, instead of crystalline clay-sized minerals on or near OC surfaces. The key working minerals for C stabilization were reactive short-range-order (SRO) mineral nanoparticles and poorly crystalline submicron-sized clay minerals. Spectroscopic analyses demonstrated that the studied OC was not merely in crisscross co-localization with reactive SRO minerals; there could be a significant degree of binding between OC and the minerals. The ubiquity and abundance of mineral nanoparticles on the OC surface, and their heterogeneity in the natural environment may have been severely underestimated by traditional research approaches. Our in situ description of organo-mineral interplay at the nanoscale provides direct evidence to substantiate the importance of mineral physical protection for the long-term stabilization of OC. This high-resolution 3-D

  7. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-05-01

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition. © 2017 The Authors. Journal of Microscopy published by JohnWiley & Sons Ltd on behalf of Royal Microscopical Society.

  8. 3D-engineering of Cellularized Conduits for Peripheral Nerve Regeneration

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Wu, Yao; Gou, Zhiyuan; Tao, Jie; Zhang, Jiumeng; Liu, Qianqi; Kang, Tianyi; Jiang, Shu; Huang, Siqing; He, Jiankang; Chen, Shaochen; Du, Yanan; Gou, Maling

    2016-08-01

    Tissue engineered conduits have great promise for bridging peripheral nerve defects by providing physical guiding and biological cues. A flexible method for integrating support cells into a conduit with desired architectures is wanted. Here, a 3D-printing technology is adopted to prepare a bio-conduit with designer structures for peripheral nerve regeneration. This bio-conduit is consisted of a cryopolymerized gelatin methacryloyl (cryoGelMA) gel cellularized with adipose-derived stem cells (ASCs). By modeling using 3D-printed “lock and key” moulds, the cryoGelMA gel is structured into conduits with different geometries, such as the designed multichannel or bifurcating and the personalized structures. The cryoGelMA conduit is degradable and could be completely degraded in 2-4 months in vivo. The cryoGelMA scaffold supports the attachment, proliferation and survival of the seeded ASCs, and up-regulates the expression of their neurotrophic factors mRNA in vitro. After implanted in a rat model, the bio-conduit is capable of supporting the re-innervation across a 10 mm sciatic nerve gap, with results close to that of the autografts in terms of functional and histological assessments. The study describes an indirect 3D-printing technology for fabricating cellularized designer conduits for peripheral nerve regeneration, and could lead to the development of future nerve bio-conduits for clinical use.

  9. Nanoscale elastic changes in 2D Ti 3C 2T x (MXene) pseudocapacitive electrodes

    DOE PAGES

    Come, Jeremy; Xie, Yu; Naguib, Michael; ...

    2016-02-01

    Designing sustainable electrodes for next generation energy storage devices relies on the understanding of their fundamental properties at the nanoscale, including the comprehension of ions insertion into the electrode and their interactions with the active material. One consequence of ion storage is the change in the electrode volume resulting in mechanical strain and stress that can strongly affect the cycle life. Therefore, it is important to understand the changes of dimensions and mechanical properties occurring during electrochemical reactions. While the characterization of mechanical properties via macroscopic measurements is well documented, in-situ characterization of their evolution has never been achieved atmore » the nanoscale. Two dimensional (2D) carbides, known as MXenes, are promising materials for supercapacitors and various kinds of batteries, and understating the coupling between their mechanical and electrochemical properties is therefore necessary. Here we report on in-situ imaging, combined with density functional theory of the elastic changes, of a 2D titanium carbide (Ti 3C 2T x) electrode in direction normal to the basal plane during cation intercalation. The results show a strong correlation between the Li+ ions content and the elastic modulus, whereas little effects of K+ ions are observed. Moreover, this strategy enables identifying the preferential intercalation pathways within a single particle.« less

  10. A Hierarchical Multiscale Particle Computational Method for Simulation of Nanoscale Flows on 3D Unstructured Grids

    DTIC Science & Technology

    2009-08-14

    3 is presented in Figure 12. These cases simulate the smallest na- nochannels with H = 0.1 /im and correspond to the near free -molecular flow with a...nal energy flux (or heat transfer rate) from a free stream with p, T.S to a flat plate with surface temperature T aligned with the flow is, 25 S2... Simulation of Nanoscale Flows on 3D Unstructured Grids 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9950-06-1-0236 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S

  11. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  12. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    DOE PAGES

    Lai, King C.; Evans, James W.; Liu, Da -Jiang

    2017-11-27

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, D N ~ N –β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for “perfect” sizes N p = L 2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for N p+3, Nmore » p+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes N p+1 and N p+2. D N versus N oscillates strongly between the slowest branch (for N p+3) and the fastest branch (for N p+1). All branches merge for N = O(10 2), but macroscale behavior is only achieved for much larger N = O(10 3). Here, this analysis reveals the unprecedented diversity of behavior on the nanoscale.« less

  13. Development of 3D woven cellular structures for adaptive composites based on thermoplastic hybrid yarns

    NASA Astrophysics Data System (ADS)

    Sennewald, C.; Vorhof, M.; Schegner, P.; Hoffmann, G.; Cherif, C.; Boblenz, J.; Sinapius, M.; Hühne, C.

    2018-05-01

    Flexible cellular 3D structures with structure-inherent compliance made of fiber-reinforced composites have repeatedly aroused the interest of international research groups. Such structures offer the possibility to meet the increasing demand for flexible and adaptive structures. The aim of this paper is the development of cellular 3D structures based on weaving technology. Considering the desired geometry of the 3D structure, algorithms are developed for the formation of geometry through tissue sub-areas. Subsequently, these sub-areas are unwound into the weaving level and appropriate weave patterns are developed. A particular challenge is the realization of compliant mechanisms in the woven fabric. This can be achieved either by combining different materials or, in particular, by implementing large stiffness gradients by means of varying the woven fabrics thickness, whereas differences in wall thickness have to be realized with a factor of 1:10. A manufacturing technology based on the weaving process is developed for the realization of the developed 3D cellular structures. To this end, solutions for the processing of hybrid thermoplastic materials (e.g. tapes), solutions for the integration of inlays in the weaving process (thickening of partial areas), and solutions for tissue retraction, as well as for the fabric pull-off (linear pull-off system) are being developed. In this way, woven cellular 3D structures with woven outer layers and woven joint areas (compliance) can be realized in a single process step and are subsequently characterized.

  14. 3D Encoding of Musical Score Information and the Playback Method Used by the Cellular Phone

    NASA Astrophysics Data System (ADS)

    Kubo, Hitoshi; Sugiura, Akihiko

    Recently, 3G cellular phone that can take a movie has spread by improving the digital camera function. And, 2Dcode has accurate readout and high operability. And it has spread as an information transmission means. However, the symbol is expanded and complicated when information of 2D codes increases. To solve these, 3D code was proposed. But it need the special equipment for readout, and specializes in the enhancing reality feeling technology. Therefore, it is difficult to apply it to the cellular phone. And so, we propose 3D code that can be recognized by the movie shooting function of the cellular phone. And, score information was encoded. We apply Gray Code to the property of music, and encode it. And the effectiveness was verified.

  15. Nanoscale Photoacoustic Tomography (nPAT) for label-free super-resolution 3D imaging of red blood cells

    NASA Astrophysics Data System (ADS)

    Samant, Pratik; Hernandez, Armando; Conklin, Shelby; Xiang, Liangzhong

    2017-08-01

    We present our results in developing nanoscale photoacoustic tomography (nPAT) for label-free super-resolution imaging in 3D. We have made progress in the development of nPAT, and have acquired our first signal. We have also performed simulations that demonstrate that nPAT is a viable imaging modality for the visualization of malaria infected red blood cells (RBCs). Our results demonstrate that nPAT is both feasible and powerful for the high resolution labelfree imaging of RBCs.

  16. An image encryption algorithm based on 3D cellular automata and chaotic maps

    NASA Astrophysics Data System (ADS)

    Del Rey, A. Martín; Sánchez, G. Rodríguez

    2015-05-01

    A novel encryption algorithm to cipher digital images is presented in this work. The digital image is rendering into a three-dimensional (3D) lattice and the protocol consists of two phases: the confusion phase where 24 chaotic Cat maps are applied and the diffusion phase where a 3D cellular automata is evolved. The encryption method is shown to be secure against the most important cryptanalytic attacks.

  17. Nanoscale chromatin structure characterization for optical applications: a transmission electron microscopy study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Yue; Cherkezyan, Lusik; Zhang, Di; Almassalha, Luay; Roth, Eric; Chandler, John; Bleher, Reiner; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2017-02-01

    Structural and biological origins of light scattering in cells and tissue are still poorly understood. We demonstrate how this problem might be addressed through the use of transmission electron microscopy (TEM). For biological samples, TEM image intensity is proportional to mass-density, and thus proportional to refractive index (RI). By calculating the autocorrelation function (ACF) of TEM image intensity of a thin-section of cells, we essentially maintain the nanoscale ACF of the 3D cellular RI distribution, given that the RI distribution is statistically isotropic. Using this nanoscale 3D RI ACF, we can simulate light scattering through biological samples, and thus guiding many optical techniques to quantify specific structures. In this work, we chose to use Partial Wave Spectroscopy (PWS) microscopy as a one of the nanoscale-sensitive optical techniques. Hela cells were prepared using standard protocol to preserve nanoscale ultrastructure, and a 50-nm slice was sectioned for TEM imaging at 6 nm resolution. The ACF was calculated for chromatin, and the PWS mean sigma was calculated by summing over the power spectral density in the visible light frequency of a random medium generated to match the ACF. A 1-µm slice adjacent to the 50-nm slice was sectioned for PWS measurement to guarantee identical chromatin structure. For 33 cells, we compared the calculated PWS mean sigma from TEM and the value measured directly, and obtained a strong correlation of 0.69. This example indicates the great potential of using TEM measured RI distribution to better understand the quantification of cellular nanostructure by optical methods.

  18. Endocytosis of Nanoscale Systems for Cancer Treatments.

    PubMed

    Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui

    2017-04-28

    Advances of nanoscale systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these nanoscale systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and nanoscale systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for nanoscale systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of nanoscale systems, discusses some factors associated with cellular uptake for nanoscale systems and introduces the trafficking behavior for nanoscale systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient nanoscale systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  20. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  1. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  2. Tissue engineering on the nanoscale: lessons from the heart.

    PubMed

    Fleischer, Sharon; Dvir, Tal

    2013-08-01

    Recognizing the limitations of biomaterials for engineering complex tissues and the desire for closer recapitulation of the natural matrix have led tissue engineers to seek new technologies for fabricating 3-dimensional (3D) cellular microenvironments. In this review, through examples from cardiac tissue engineering, we describe the nanoscale hallmarks of the extracellular matrix that tissue engineers strive to mimic. Furthermore, we discuss the use of inorganic nanoparticles and nanodevices for improving and monitoring the performance of engineered tissues. Finally, we offer our opinion on the main challenges and prospects of applying nanotechnology in tissue engineering. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.

  5. Communication: Diverse nanoscale cluster dynamics: Diffusion of 2D epitaxial clusters

    NASA Astrophysics Data System (ADS)

    Lai, King C.; Evans, James W.; Liu, Da-Jiang

    2017-11-01

    The dynamics of nanoscale clusters can be distinct from macroscale behavior described by continuum formalisms. For diffusion of 2D clusters of N atoms in homoepitaxial systems mediated by edge atom hopping, macroscale theory predicts simple monotonic size scaling of the diffusion coefficient, DN ˜ N-β, with β = 3/2. However, modeling for nanoclusters on metal(100) surfaces reveals that slow nucleation-mediated diffusion displaying weak size scaling β < 1 occurs for "perfect" sizes Np = L2 and L(L+1) for integer L = 3,4,… (with unique square or near-square ground state shapes), and also for Np+3, Np+4,…. In contrast, fast facile nucleation-free diffusion displaying strong size scaling β ≈ 2.5 occurs for sizes Np+1 and Np+2. DN versus N oscillates strongly between the slowest branch (for Np+3) and the fastest branch (for Np+1). All branches merge for N = O(102), but macroscale behavior is only achieved for much larger N = O(103). This analysis reveals the unprecedented diversity of behavior on the nanoscale.

  6. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    PubMed Central

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-01-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648

  7. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  8. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles.

    PubMed

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-08-17

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.

  9. 3D surface reconstruction and visualization of the Drosophila wing imaginal disc at cellular resolution

    NASA Astrophysics Data System (ADS)

    Bai, Linge; Widmann, Thomas; Jülicher, Frank; Dahmann, Christian; Breen, David

    2013-01-01

    Quantifying and visualizing the shape of developing biological tissues provide information about the morphogenetic processes in multicellular organisms. The size and shape of biological tissues depend on the number, size, shape, and arrangement of the constituting cells. To better understand the mechanisms that guide tissues into their final shape, it is important to investigate the cellular arrangement within tissues. Here we present a data processing pipeline to generate 3D volumetric surface models of epithelial tissues, as well as geometric descriptions of the tissues' apical cell cross-sections. The data processing pipeline includes image acquisition, editing, processing and analysis, 2D cell mesh generation, 3D contourbased surface reconstruction, cell mesh projection, followed by geometric calculations and color-based visualization of morphological parameters. In their first utilization we have applied these procedures to construct a 3D volumetric surface model at cellular resolution of the wing imaginal disc of Drosophila melanogaster. The ultimate goal of the reported effort is to produce tools for the creation of detailed 3D geometric models of the individual cells in epithelial tissues. To date, 3D volumetric surface models of the whole wing imaginal disc have been created, and the apicolateral cell boundaries have been identified, allowing for the calculation and visualization of cell parameters, e.g. apical cross-sectional area of cells. The calculation and visualization of morphological parameters show position-dependent patterns of cell shape in the wing imaginal disc. Our procedures should offer a general data processing pipeline for the construction of 3D volumetric surface models of a wide variety of epithelial tissues.

  10. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  11. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3.

    PubMed

    Valle, Francesco; Brucale, Marco; Chiodini, Stefano; Bystrenova, Eva; Albonetti, Cristiano

    2017-09-01

    While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nanoscale Experimental Characterization and 3D Mechanistic Modeling of Shale with Quantified Heterogeneity

    NASA Astrophysics Data System (ADS)

    Bennett, K. C.; Borja, R. I.

    2014-12-01

    Shale is a fine-grained sedimentary rock consisting primarily of clay and silt, and is of particular interest with respect to hydrocarbon production as both a source and seal rock. The deformation and fracture properties of shale depend on the mechanical properties of its basic constituents, including solid clay particles, inclusions such as silt and organics, and multiscale porosity. This paper presents the results of a combined experimental/numerical investigation into the mechanical behavior of shale at the nanoscale. Large grids of nanoindentation tests, spanning various length scales ranging from 200-20000 nanometers deep, were performed on a sample of Woodford shale in both the bedding plane normal (BPN) and bedding plane parallel (BPP) directions. The nanoindentions were performed in order to determine the mechanical properties of the constituent materials in situ as well as those of the highly heterogeneous composite material at this scale. Focused ion beam (FIB) milling and scanning electron microscopy (SEM) were used in conjunction (FIB-SEM) to obtain 2D and 3D images characterizing the heterogeneity of the shale at this scale. The constituent materials were found to be best described as consisting of near micrometer size clay and silt particles embedded in a mixed organic/clay matrix, with some larger (near 10 micrometers in diameter) pockets of organic material evident. Indented regions were identified through SEM, allowing the 200-1000 nanometer deep indentations to be classified according to the constituent materials which they engaged. We use nonlinear finite element modeling to capture results of low-load (on the order of milliNewtons) and high-load (on the order of a few Newtons) nanoindentation tests. Experimental results are used to develop a 3D mechanistic model that interprets the results of nanoindentation tests on specimens of Woodford shale with quantified heterogeneity.

  13. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE PAGES

    Petrik, Nikolay G.; Kimmel, Greg A.

    2018-01-01

    100 eV electrons are stopped in the H 2 O portion of the isotopically-layered nanoscale film on α-Al 2 O 3 (0001) but D 2 is produced at the D 2 O/alumina interface by mobile electronic excitations and/or hydronium ions.

  14. Vibrational density of states and thermodynamics at the nanoscale: the 3D-2D transition in gold nanostructures

    NASA Astrophysics Data System (ADS)

    Carles, R.; Benzo, P.; Pécassou, B.; Bonafos, C.

    2016-12-01

    Surface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering. By reducing the size down to few nanometers, the role of surface atoms versus volume atoms become dominant, and the “text-book” 3D-2D transition on the dynamical behavior is experimentally emphasized. “Anomalies” that have been predicted by a large panel of simulations at the atomic scale, are really observed, like the enhancement of the VDOS at low frequencies or the occurrence of localized modes at frequencies beyond the cut-off in bulk. Consequences on the thermodynamic properties at the nanoscale, like the reduction of the Debye temperature or the excess of the specific heat, have been evaluated. Finally the high sensitivity of reminiscent bulk-like phonons on the arrangements at the atomic scale is used to access the morphology and internal disorder of the nanoparticles.

  15. Vibrational density of states and thermodynamics at the nanoscale: the 3D-2D transition in gold nanostructures

    PubMed Central

    Carles, R.; Benzo, P.; Pécassou, B.; Bonafos, C.

    2016-01-01

    Surface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering. By reducing the size down to few nanometers, the role of surface atoms versus volume atoms become dominant, and the “text-book” 3D-2D transition on the dynamical behavior is experimentally emphasized. “Anomalies” that have been predicted by a large panel of simulations at the atomic scale, are really observed, like the enhancement of the VDOS at low frequencies or the occurrence of localized modes at frequencies beyond the cut-off in bulk. Consequences on the thermodynamic properties at the nanoscale, like the reduction of the Debye temperature or the excess of the specific heat, have been evaluated. Finally the high sensitivity of reminiscent bulk-like phonons on the arrangements at the atomic scale is used to access the morphology and internal disorder of the nanoparticles. PMID:27982080

  16. 3D cellular structures and co-cultures formed through the contactless magnetic manipulation of cells on adherent surfaces.

    PubMed

    Abdel Fattah, Abdel Rahman; Mishriki, Sarah; Kammann, Tobias; Sahu, Rakesh P; Geng, Fei; Puri, Ishwar K

    2018-02-27

    A magnet array is employed to manipulate diamagnetic cells that are contained in paramagnetic medium to demonstrate for the first time the contactless bioprinting of three-dimensional (3D) cellular structures and co-cultures of breast cancer MCF-7 and endothelial HUVEC at prescribed locations on tissue culture treated well plates. Sequential seeding of different cell lines and the spatial displacement of the magnet array creates co-cultured cellular structures within a well without using physically intrusive well inserts. Both monotypic and co-culture experiments produce morphologically rich 3D cell structures that are otherwise absent in regular monolayer cell cultures. The magnetic contactless bioprinting of cells provides further insight into cell behaviour, invasion strategies and transformations that are useful for potential applications in drug screening, 3D cell culture formation and tissue engineering.

  17. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE PAGES

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.; ...

    2017-09-14

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  18. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  19. Around the macrolide - Impact of 3D structure of macrocycles on lipophilicity and cellular accumulation.

    PubMed

    Koštrun, Sanja; Munic Kos, Vesna; Matanović Škugor, Maja; Palej Jakopović, Ivana; Malnar, Ivica; Dragojević, Snježana; Ralić, Jovica; Alihodžić, Sulejman

    2017-06-16

    The aim of this study was to investigate lipophilicity and cellular accumulation of rationally designed azithromycin and clarithromycin derivatives at the molecular level. The effect of substitution site and substituent properties on a global physico-chemical profile and cellular accumulation of investigated compounds was studied using calculated structural parameters as well as experimentally determined lipophilicity. In silico models based on the 3D structure of molecules were generated to investigate conformational effect on studied properties and to enable prediction of lipophilicity and cellular accumulation for this class of molecules based on non-empirical parameters. The applicability of developed models was explored on a validation and test sets and compared with previously developed empirical models. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  1. Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    PubMed Central

    Soares Medeiros, Lia Carolina; De Souza, Wanderley; Jiao, Chengge; Barrabin, Hector; Miranda, Kildare

    2012-01-01

    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures. PMID:22432024

  2. 3D X-ray ultra-microscopy of bone tissue.

    PubMed

    Langer, M; Peyrin, F

    2016-02-01

    We review the current X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. We further review the different ultra-structural features that have so far been resolved: the lacuno-canalicular network, collagen orientation, nano-scale mineralization and their use as basis for mechanical simulations. X-ray computed tomography at the micro-metric scale is increasingly considered as the reference technique in imaging of bone micro-structure. The trend has been to push towards increasingly higher resolution. Due to the difficulty of realizing optics in the hard X-ray regime, the magnification has mainly been due to the use of visible light optics and indirect detection of the X-rays, which limits the attainable resolution with respect to the wavelength of the visible light used in detection. Recent developments in X-ray optics and instrumentation have allowed to implement several types of methods that achieve imaging that is limited in resolution by the X-ray wavelength, thus enabling computed tomography at the nano-scale. We review here the X-ray techniques with 3D imaging capability at the nano-scale: transmission X-ray microscopy, ptychography and in-line phase nano-tomography. Further, we review the different ultra-structural features that have so far been resolved and the applications that have been reported: imaging of the lacuno-canalicular network, direct analysis of collagen orientation, analysis of mineralization on the nano-scale and use of 3D images at the nano-scale to drive mechanical simulations. Finally, we discuss the issue of going beyond qualitative description to quantification of ultra-structural features.

  3. Designing Nanoscale Counter Using Reversible Gate Based on Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Moharrami, Elham; Navimipour, Nima Jafari

    2018-04-01

    Some new technologies such as Quantum-dot Cellular Automata (QCA) is suggested to solve the physical limits of the Complementary Metal-Oxide Semiconductor (CMOS) technology. The QCA as one of the novel technologies at nanoscale has potential applications in future computers. This technology has some advantages such as minimal size, high speed, low latency, and low power consumption. As a result, it is used for creating all varieties of memory. Counter circuits as one of the important circuits in the digital systems are composed of some latches, which are connected to each other in series and actually they count input pulses in the circuit. On the other hand, the reversible computations are very important because of their ability in reducing energy in nanometer circuits. Improving the energy efficiency, increasing the speed of nanometer circuits, increasing the portability of system, making smaller components of the circuit in a nuclear size and reducing the power consumption are considered as the usage of reversible logic. Therefore, this paper aims to design a two-bit reversible counter that is optimized on the basis of QCA using an improved reversible gate. The proposed reversible structure of 2-bit counter can be increased to 3-bit, 4-bit and more. The advantages of the proposed design have been shown using QCADesigner in terms of the delay in comparison with previous circuits.

  4. Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks

    PubMed Central

    McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.

    2018-01-01

    Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634

  5. Probing the nanoscale interaction forces and elastic properties of organic and inorganic materials using force-distance (F-D) spectroscopy

    NASA Astrophysics Data System (ADS)

    Vincent, Abhilash

    Due to their therapeutic applications such as radical scavenging, MRI contrast imaging, Photoluminescence imaging, drug delivery, etc., nanoparticles (NPs) have a significant importance in bio-nanotechnology. The reason that prevents the utilizing NPs for drug delivery in medical field is mostly due to their biocompatibility issues (incompatibility can lead to toxicity and cell death). Changes in the surface conditions of NPs often lead to NP cytotoxicity. Investigating the role of NP surface properties (surface charges and surface chemistry) on their interactions with biomolecules (Cells, protein and DNA) could enhance the current understanding of NP cytotoxicity. Hence, it is highly beneficial to the nanotechnology community to bring more attention towards the enhancement of surface properties of NPs to make them more biocompatible and less toxic to biological systems. Surface functionalization of NPs using specific ligand biomolecules have shown to enhance the protein adsorption and cellular uptake through more favorable interaction pathways. Cerium oxide NPs (CNPs also known as nanoceria) are potential antioxidants in cell culture models and understanding the nature of interaction between cerium oxide NPs and biological proteins and cells are important due to their therapeutic application (especially in site specific drug delivery systems). The surface charges and surface chemistry of CNPs play a major role in protein adsorption and cellular uptake. Hence, by tuning the surface charges and by selecting proper functional molecules on the surface, CNPs exhibiting strong adhesion to biological materials can be prepared. By probing the nanoscale interaction forces acting between CNPs and protein molecules using Atomic Force Microscopy (AFM) based force-distance (F-D) spectroscopy, the mechanism of CNP-protein adsorption and CNP cellular uptake can be understood more quantitatively. The work presented in this dissertation is based on the application of AFM in

  6. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  7. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  8. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  9. 3D Printed Bionic Nanodevices

    PubMed Central

    Kong, Yong Lin; Gupta, Maneesh K.; Johnson, Blake N.; McAlpine, Michael C.

    2016-01-01

    Summary The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and ‘living’ platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with

  10. Real-time 3D visualization of cellular rearrangements during cardiac valve formation

    PubMed Central

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke

    2016-01-01

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. PMID:27302398

  11. Real-time 3D visualization of cellular rearrangements during cardiac valve formation.

    PubMed

    Pestel, Jenny; Ramadass, Radhan; Gauvrit, Sebastien; Helker, Christian; Herzog, Wiebke; Stainier, Didier Y R

    2016-06-15

    During cardiac valve development, the single-layered endocardial sheet at the atrioventricular canal (AVC) is remodeled into multilayered immature valve leaflets. Most of our knowledge about this process comes from examining fixed samples that do not allow a real-time appreciation of the intricacies of valve formation. Here, we exploit non-invasive in vivo imaging techniques to identify the dynamic cell behaviors that lead to the formation of the immature valve leaflets. We find that in zebrafish, the valve leaflets consist of two sets of endocardial cells at the luminal and abluminal side, which we refer to as luminal cells (LCs) and abluminal cells (ALCs), respectively. By analyzing cellular rearrangements during valve formation, we observed that the LCs and ALCs originate from the atrium and ventricle, respectively. Furthermore, we utilized Wnt/β-catenin and Notch signaling reporter lines to distinguish between the LCs and ALCs, and also found that cardiac contractility and/or blood flow is necessary for the endocardial expression of these signaling reporters. Thus, our 3D analyses of cardiac valve formation in zebrafish provide fundamental insights into the cellular rearrangements underlying this process. © 2016. Published by The Company of Biologists Ltd.

  12. Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes

    DOE PAGES

    Devaraj, Arun; Gu, Meng; Colby, Robert J.; ...

    2015-08-14

    The distribution and concentration of lithium in Li-ion battery cathodes at different stages of cycling is a pivotal factor in determining battery performance. Non-uniform distribution of the transition metal cations has been shown to affect cathode performance; however, the Li is notoriously challenging to characterize with typical high-spatial-resolution imaging techniques. Here, for the first time, laser–assisted atom probe tomography is applied to two advanced Li-ion battery oxide cathode materials—layered Li 1.2Ni 0.2Mn 0.6O 2 and spinel LiNi 0.5Mn 1.5O 4—to unambiguously map the three dimensional (3D) distribution of Li at sub-nanometer spatial resolution and correlate it with the distribution ofmore » the transition metal cations (M) and the oxygen. The as-fabricated layered Li 1.2Ni 0.2Mn 0.6O 2 is shown to have Li-rich Li 2MO 3 phase regions and Li-depleted Li(Ni 0.5Mn 0.5)O 2 regions while in the cycled layered Li 1.2Ni 0.2Mn 0.6O 2 an overall loss of Li and presence of Ni rich regions, Mn rich regions and Li rich regions are shown in addition to providing the first direct evidence for Li loss on cycling of layered LNMO cathodes. The spinel LiNi 0.5Mn 1.5O 4 cathode is shown to have a uniform distribution of all cations. These results were additionally validated by correlating with energy dispersive spectroscopy mapping of these nanoparticles in a scanning transmission electron microscope. Thus, we have opened the door for probing the nanoscale compositional fluctuations in crucial Li-ion battery cathode materials at an unprecedented spatial resolution of sub-nanometer scale in 3D which can provide critical information for understanding capacity decay mechanisms in these advanced cathode materials.« less

  13. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    NASA Astrophysics Data System (ADS)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  14. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE PAGES

    Petrik, Nikolay G.; Kimmel, Greg A.

    2018-04-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  15. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2 O 3 (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Greg A.

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D 2O) films adsorbed on an α-Al 2O 3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products (D 2, O 2 and D 2O) and the total sputtering yield increased with increasing D 2O coverage up to ~15 water monolayers (i.e. ~15 x 10 15 cm -2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D 2O and H 2O) demonstrated thatmore » the highest water decomposition yields occurred at the interfaces of the nanoscale water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO 2(110) interfaces. Here, we propose that the relatively low activity of Al 2O 3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the formation of molecular hydrogen.« less

  16. Electron-stimulated reactions in nanoscale water films adsorbed on α-Al 2O 3 (0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.100 eV electrons are stopped in the H 2O portion of the isotopically-layered nanoscale film on α-Al 2O 3(0001) but D 2is produced at the D 2O/alumina interface by mobile electronic excitations and/or hydronium ions.« less

  17. Broadening and shifting of Bragg reflections of nanoscale-microtwinned LT-Ni3Sn2

    NASA Astrophysics Data System (ADS)

    Leineweber, Andreas; Krumeich, Frank

    2013-12-01

    The effect of nanoscale microtwinning of long-range ordered domains in LT-Ni3Sn2 on its diffraction behaviour was studied by X-ray powder diffraction and electron microscopy. LT-Ni3Sn2 exhibits a Ni2In/NiAs-type structure with a superstructure breaking the symmetry relative to the hexagonal high-temperature (HT) to the orthorhombic low-temperature (LT) phase, implying three different twin-domain orientations. The microstructure was generated by annealing HT-Ni3Sn2 considerably below the order-disorder transition temperature, establishing the LT phase avoiding too much domain coarsening. High-resolution electron microscopy reveals domain sizes of 100-200 Å compatible with the Scherrer broadening of the superstructure reflections recorded by X-ray diffraction. Whereas the orthorhombic symmetry of the LT phase leads in powder-diffraction patterns from coarse-domain size material to splitting of the fundamental reflections, this splitting does not occur for the LT-Ni3Sn2 with nanoscale domains. Instead, a (pseudo)hexagonal indexing is possible giving hexagonal lattice parameters, which are, however, incompatible with the positions of the superstructure reflections. This can be attributed to interference between X-rays scattered by the differently oriented, truly orthorhombic domains leading to merging of the fundamental reflections. These show pronounced anisotropic microstrain-like broadening, where the integral breadths ? on the reciprocal d-spacing scale of a series of higher order reflection increase in a non-linear fashion with upward curvature with the reciprocal d-spacings ? of these reflections. Such a type of unusual microstrain broadening appears to be typical for microstructures which are inhomogeneous on the nanoscale, and in which the structural inhomogeneities lead to small phase shifts of the scattered radiation from different locations (e.g. domains).

  18. Engineering the extracellular environment: Strategies for building 2D and 3D cellular structures.

    PubMed

    Guillame-Gentil, Orane; Semenov, Oleg; Roca, Ana Sala; Groth, Thomas; Zahn, Raphael; Vörös, Janos; Zenobi-Wong, Marcy

    2010-12-21

    Cell fate is regulated by extracellular environmental signals. Receptor specific interaction of the cell with proteins, glycans, soluble factors as well as neighboring cells can steer cells towards proliferation, differentiation, apoptosis or migration. In this review, approaches to build cellular structures by engineering aspects of the extracellular environment are described. These methods include non-specific modifications to control the wettability and stiffness of surfaces using self-assembled monolayers (SAMs) and polyelectrolyte multilayers (PEMs) as well as methods where the temporal activation and spatial distribution of adhesion ligands is controlled. Building on these techniques, construction of two-dimensional cell sheets using temperature sensitive polymers or electrochemical dissolution is described together with current applications of these grafts in the clinical arena. Finally, methods to pattern cells in three-dimensions as well as to functionalize the 3D environment with biologic motifs take us one step closer to being able to engineer multicellular tissues and organs. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Modeling of flow-induced shear stress applied on 3D cellular scaffolds: Implications for vascular tissue engineering.

    PubMed

    Lesman, Ayelet; Blinder, Yaron; Levenberg, Shulamit

    2010-02-15

    Novel tissue-culture bioreactors employ flow-induced shear stress as a means of mechanical stimulation of cells. We developed a computational fluid dynamics model of the complex three-dimensional (3D) microstructure of a porous scaffold incubated in a direct perfusion bioreactor. Our model was designed to predict high shear-stress values within the physiological range of those naturally sensed by vascular cells (1-10 dyne/cm(2)), and will thereby provide suitable conditions for vascular tissue-engineering experiments. The model also accounts for cellular growth, which was designed as an added cell layer grown on all scaffold walls. Five model variants were designed, with geometric differences corresponding to cell-layer thicknesses of 0, 50, 75, 100, and 125 microm. Four inlet velocities (0.5, 1, 1.5, and 2 cm/s) were applied to each model. Wall shear-stress distribution and overall pressure drop calculations were then used to characterize the relation between flow rate, shear stress, cell-layer thickness, and pressure drop. The simulations showed that cellular growth within 3D scaffolds exposes cells to elevated shear stress, with considerably increasing average values in correlation to cell growth and inflow velocity. Our results provide in-depth analysis of the microdynamic environment of cells cultured within 3D environments, and thus provide advanced control over tissue development in vitro. 2009 Wiley Periodicals, Inc.

  20. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    characterization. The papers in the first part report on new or improved instrumentation, details of developments of metrology SFM, improvements to SFM, probes and scanning methods in the direction of nanoscale coordinate measuring machines and true 3D measurements as well as of progress of a 2D encoder based on a regular crystalline lattice. To ensure traceability to the SI unit of length many highly sophisticated instruments are equipped with laser interferometers to measure small displacements in the nanometre range very accurately. Improving these techniques is still a challenge and therefore new interferometric techniques are considered in several papers as well as improved sensors for nanodisplacement measurements or the development of a deep UV microscope for micro- and nanostructures. The tactile measurement of small structures also calls for a better control of forces in the nano- and piconewton range. A nanoforce facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, is presented for the measurement of small forces. In the second part the contributions are related to calibration and correction strategies and standards such as the development of test objects based on 3D silicon structures, and of samples with irregular surface profiles, and their use for calibration. The shape of the tip and its influence on measurements is still a contentious issue and addressed in several papers: use of nanospheres for tip characterization, a geometrical approach for reconstruction errors by tactile probing. Molecular dynamical calculations, classical as well as ab initio (based on density functional theory), are used to discuss effects of tip-sample relaxation on the topography and to have a better base from which to estimate uncertainties in measurements of small particles or features. Some papers report about measurements of air refractivity fluctuations by phase modulation interferometry, angle-scale traceability by laser

  1. Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016).

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

    PubMed

    Wang, Mian; Favi, Pelagie; Cheng, Xiaoqian; Golshan, Negar H; Ziemer, Katherine S; Keidar, Michael; Webster, Thomas J

    2016-12-01

    Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. However, scaffolds not only need 3D biocompatible structures that mimic the micron structure of natural tissues, they also require mimicking of the nano-scale extracellular matrix properties of the tissue they intend to replace. In order to achieve this, the objective of the present in vitro study was to use cold atmospheric plasma (CAP) as a quick and inexpensive way to modify the nano-scale roughness and chemical composition of a 3D printed scaffold surface. Water contact angles of a normal 3D printed poly-lactic-acid (PLA) scaffold dramatically dropped after CAP treatment from 70±2° to 24±2°. In addition, the nano-scale surface roughness (Rq) of the untreated 3D PLA scaffolds drastically increased (up to 250%) after 1, 3, and 5min of CAP treatment from 1.20nm to 10.50nm, 22.90nm, and 27.60nm, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that the ratio of oxygen to carbon significantly increased after CAP treatment, which indicated that the CAP treatment of PLA not only changed nano-scale roughness but also chemistry. Both changes in hydrophilicity and nano-scale roughness demonstrated a very efficient plasma treatment, which in turn significantly promoted both osteoblast (bone forming cells) and mesenchymal stem cell attachment and proliferation. These promising results suggest that CAP surface modification may have potential applications for enhancing 3D printed PLA bone tissue engineering materials (and all 3D printed materials) in a quick and an inexpensive manner and, thus, should be further studied. Three-dimensional (3D) printing is a new fabrication method for tissue engineering which can precisely control scaffold architecture at the micron-scale. Although their success is related to their ability to exactly mimic the structure of natural tissues and control mechanical

  3. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-07

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models.

  4. 3D printing functional materials and devices (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McAlpine, Michael C.

    2017-05-01

    The development of methods for interfacing high performance functional devices with biology could impact regenerative medicine, smart prosthetics, and human-machine interfaces. Indeed, the ability to three-dimensionally interweave biological and functional materials could enable the creation of devices possessing unique geometries, properties, and functionalities. Yet, most high quality functional materials are two dimensional, hard and brittle, and require high crystallization temperatures for maximal performance. These properties render the corresponding devices incompatible with biology, which is three-dimensional, soft, stretchable, and temperature sensitive. We overcome these dichotomies by: 1) using 3D printing and scanning for customized, interwoven, anatomically accurate device architectures; 2) employing nanotechnology as an enabling route for overcoming mechanical discrepancies while retaining high performance; and 3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This three-dimensional blending of functional materials and `living' platforms may enable next-generation 3D printed devices.

  5. FIB and MIP: understanding nanoscale porosity in molecularly imprinted polymers via 3D FIB/SEM tomography.

    PubMed

    Neusser, G; Eppler, S; Bowen, J; Allender, C J; Walther, P; Mizaikoff, B; Kranz, C

    2017-10-05

    We present combined focused ion beam/scanning electron beam (FIB/SEM) tomography as innovative method for differentiating and visualizing the distribution and connectivity of pores within molecularly imprinted polymers (MIPs) and non-imprinted control polymers (NIPs). FIB/SEM tomography is used in cell biology for elucidating three-dimensional structures such as organelles, but has not yet been extensively applied for visualizing the heterogeneity of nanoscopic pore networks, interconnectivity, and tortuosity in polymers. To our best knowledge, the present study is the first application of this strategy for analyzing the nanoscale porosity of MIPs. MIPs imprinted for propranolol - and the corresponding NIPs - were investigated establishing FIB/SEM tomography as a viable future strategy complementing conventional isotherm studies. For visualizing and understanding the properties of pore networks in detail, polymer particles were stained with osmium tetroxide (OsO 4 ) vapor, and embedded in epoxy resin. Staining with OsO 4 provides excellent contrast during high-resolution SEM imaging. After optimizing the threshold to discriminate between the stained polymer matrix, and pores filled with epoxy resin, a 3D model of the sampled volume may be established for deriving not only the pore volume and pore surface area, but also to visualize the interconnectivity and tortuosity of the pores within the sampled polymer volume. Detailed studies using different types of cross-linkers and the effect of hydrolysis on the resulting polymer properties have been investigated. In comparison of MIP and NIP, it could be unambiguously shown that the interconnectivity of the visualized pores in MIPs is significantly higher vs. the non-imprinted polymer, and that the pore volume and pore area is 34% and approx. 35% higher within the MIP matrix. This confirms that the templating process not only induces selective binding sites, but indeed also affects the physical properties of such

  6. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  7. Regulation of cellular growth by the Drosophila target of rapamycin dTOR

    PubMed Central

    Zhang, Hongbing; Stallock, James P.; Ng, Joyce C.; Reinhard, Christoph; Neufeld, Thomas P.

    2000-01-01

    The TOR protein kinases (TOR1 and TOR2 in yeast; mTOR/FRAP/RAFT1 in mammals) promote cellular proliferation in response to nutrients and growth factors, but their role in development is poorly understood. Here, we show that the Drosophila TOR homolog dTOR is required cell autonomously for normal growth and proliferation during larval development, and for increases in cellular growth caused by activation of the phosphoinositide 3-kinase (PI3K) signaling pathway. As in mammalian cells, the kinase activity of dTOR is required for growth factor-dependent phosphorylation of p70 S6 kinase (p70S6K) in vitro, and we demonstrate that overexpression of p70S6K in vivo can rescue dTOR mutant animals to viability. Loss of dTOR also results in cellular phenotypes characteristic of amino acid deprivation, including reduced nucleolar size, lipid vesicle aggregation in the larval fat body, and a cell type-specific pattern of cell cycle arrest that can be bypassed by overexpression of the S-phase regulator cyclin E. Our results suggest that dTOR regulates growth during animal development by coupling growth factor signaling to nutrient availability. PMID:11069888

  8. 2D Quantum Mechanical Study of Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, B.; Kwak, Dochan (Technical Monitor)

    2000-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density-gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. We present the results of our simulations of MIT 25, 50 and 90 nm "well-tempered" MOSFETs and compare them to those of classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. Surprisingly, the self-consistent potential profile shows lower injection barrier in the channel in quantum case. These results are qualitatively consistent with ID Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and subthreshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  9. Three-dimensional nanoscale imaging by plasmonic Brownian microscopy

    NASA Astrophysics Data System (ADS)

    Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang

    2017-12-01

    Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.

  10. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  11. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  12. Nanoelectronics Meets Biology: From Novel Nanoscale Devices for Live Cell Recording to 3D Innervated Tissues†

    PubMed Central

    Duan, Xiaojie; Lieber, Charles M.

    2013-01-01

    High spatio-temporal resolution interfacing between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. This focused review summarizes recent progresses in the development and application of novel nanoscale devices for intracellular electrical recordings of action potentials, and the effort of merging electronic and biological systems seamlessly in three dimension using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large scale, high spatial resolution, and three dimensional neural activity mapping will be highlighted. PMID:23946279

  13. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.

    PubMed

    Duan, Xiaojie; Lieber, Charles M

    2013-10-01

    High spatiotemporal resolution interfaces between electrical sensors and biological systems, from single live cells to tissues, is crucial for many areas, including fundamental biophysical studies as well as medical monitoring and intervention. Herein, we summarize recent progress in the development and application of novel nanoscale devices for intracellular electrical recording of action potentials and the effort of merging electronic and biological systems seamlessly in three dimensions by using macroporous nanoelectronic scaffolds. The uniqueness of these nanoscale devices for minimally invasive, large-scale, high spatial resolution, and three-dimensional neural activity mapping are highlighted. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Developing 3D SEM in a broad biological context

    PubMed Central

    Kremer, A; Lippens, S; Bartunkova, S; Asselbergh, B; Blanpain, C; Fendrych, M; Goossens, A; Holt, M; Janssens, S; Krols, M; Larsimont, J-C; Mc Guire, C; Nowack, MK; Saelens, X; Schertel, A; Schepens, B; Slezak, M; Timmerman, V; Theunis, C; Van Brempt, R; Visser, Y; GuÉRin, CJ

    2015-01-01

    When electron microscopy (EM) was introduced in the 1930s it gave scientists their first look into the nanoworld of cells. Over the last 80 years EM has vastly increased our understanding of the complex cellular structures that underlie the diverse functions that cells need to maintain life. One drawback that has been difficult to overcome was the inherent lack of volume information, mainly due to the limit on the thickness of sections that could be viewed in a transmission electron microscope (TEM). For many years scientists struggled to achieve three-dimensional (3D) EM using serial section reconstructions, TEM tomography, and scanning EM (SEM) techniques such as freeze-fracture. Although each technique yielded some special information, they required a significant amount of time and specialist expertise to obtain even a very small 3D EM dataset. Almost 20 years ago scientists began to exploit SEMs to image blocks of embedded tissues and perform serial sectioning of these tissues inside the SEM chamber. Using first focused ion beams (FIB) and subsequently robotic ultramicrotomes (serial block-face, SBF-SEM) microscopists were able to collect large volumes of 3D EM information at resolutions that could address many important biological questions, and do so in an efficient manner. We present here some examples of 3D EM taken from the many diverse specimens that have been imaged in our core facility. We propose that the next major step forward will be to efficiently correlate functional information obtained using light microscopy (LM) with 3D EM datasets to more completely investigate the important links between cell structures and their functions. Lay Description Life happens in three dimensions. For many years, first light, and then EM struggled to image the smallest parts of cells in 3D. With recent advances in technology and corresponding improvements in computing, scientists can now see the 3D world of the cell at the nanoscale. In this paper we present the

  15. Three-dimensional microscopic deformation measurements on cellular solids.

    PubMed

    Genovese, K

    2016-07-01

    The increasing interest in small-scale problems demands novel experimental protocols providing dense sets of 3D deformation data of complex shaped microstructures. Obtaining such information is particularly significant for the study of natural and engineered cellular solids for which experimental data collected at macro scale and describing the global mechanical response provide only limited information on their function/structure relationship. Cellular solids, in fact, due their superior mechanical performances to a unique arrangement of the bulk material properties (i.e. anisotropy and heterogeneity) and cell structural features (i.e. pores shape, size and distribution) at the micro- and nano-scales. To address the need for full-field experimental data down to the cell level, this paper proposes a single-camera stereo-Digital Image Correlation (DIC) system that makes use of a wedge prism in series to a telecentric lens for performing surface shape and deformation measurements on microstructures in three dimensions. Although the system possesses a limited measurement volume (FOV~2.8×4.3mm(2), error-free DOF ~1mm), large surface areas of cellular samples can be accurately covered by employing a sequential image capturing scheme followed by an optimization-based mosaicing procedure. The basic principles of the proposed method together with the results of the benchmarking of its metrological performances and error analysis are here reported and discussed in detail. Finally, the potential utility of this method is illustrated with micro-resolution three-dimensional measurements on a 3D printed honeycomb and on a block sample of a Luffa sponge under compression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.

  17. High-speed 3D imaging of cellular activity in the brain using axially-extended beams and light sheets.

    PubMed

    Hillman, Elizabeth Mc; Voleti, Venkatakaushik; Patel, Kripa; Li, Wenze; Yu, Hang; Perez-Campos, Citlali; Benezra, Sam E; Bruno, Randy M; Galwaduge, Pubudu T

    2018-06-01

    As optical reporters and modulators of cellular activity have become increasingly sophisticated, the amount that can be learned about the brain via high-speed cellular imaging has increased dramatically. However, despite fervent innovation, point-scanning microscopy is facing a fundamental limit in achievable 3D imaging speeds and fields of view. A range of alternative approaches are emerging, some of which are moving away from point-scanning to use axially-extended beams or sheets of light, for example swept confocally aligned planar excitation (SCAPE) microscopy. These methods are proving effective for high-speed volumetric imaging of the nervous system of small organisms such as Drosophila (fruit fly) and D. Rerio (Zebrafish), and are showing promise for imaging activity in the living mammalian brain using both single and two-photon excitation. This article describes these approaches and presents a simple model that demonstrates key advantages of axially-extended illumination over point-scanning strategies for high-speed volumetric imaging, including longer integration times per voxel, improved photon efficiency and reduced photodamage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The nanoscale organization of signaling domains at the plasma membrane.

    PubMed

    Griffié, Juliette; Burn, Garth; Owen, Dylan M

    2015-01-01

    In this chapter, we present an overview of the role of the nanoscale organization of signaling domains in regulating key cellular processes. In particular, we illustrate the importance of protein and lipid nanodomains as triggers and mediators of cell signaling. As particular examples, we summarize the state of the art of understanding the role of nanodomains in the mounting of an immune response, cellular adhesion, intercellular communication, and cell proliferation. Thus, this chapter underlines the essential role the nanoscale organization of key signaling proteins and lipid domains. We will also see how nanodomains play an important role in the lifecycle of many pathogens relevant to human disease and therefore illustrate how these structures may become future therapeutic targets. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. 3-D Cellular Ultrastructure Can Be Resolved by X-ray Microscopy | Center for Cancer Research

    Cancer.gov

    X-ray microscopy (XRM) is more rapid than cryoelectron tomography or super-resolution fluorescence microscopy and could fill an important gap in current technologies used to investigate in situ three-dimensional structure of cells. New XRM methods developed by first author Gerd Schneider, Ph.D., working with James McNally. Ph.D., and a team of colleagues, is capable of revealing full cellular ultrastructure without requiring fixation, staining, or sectioning.

  20. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission X-ray microscopy at 5.4 keV.

    PubMed

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-07-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard X-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high-throughput sample screening. The yeast cells were fixed and double-stained with Reynold's lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus, and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The X-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard X-ray microscopy is a complementary method for imaging and analyzing biological samples.

  1. 3D nanoscale imaging of the yeast, Schizosaccharomyces pombe, by full-field transmission x-ray microscopy at 5.4 keV

    PubMed Central

    Chen, Jie; Yang, Yunhao; Zhang, Xiaobo; Andrews, Joy C.; Pianetta, Piero; Guan, Yong; Liu, Gang; Xiong, Ying; Wu, Ziyu; Tian, Yangchao

    2010-01-01

    Three-dimensional (3D) nanoscale structures of the fission yeast, Schizosaccharomyces pombe, can be obtained by full-field transmission hard x-ray microscopy with 30 nm resolution using synchrotron radiation sources. Sample preparation is relatively simple and the samples are portable across various imaging environments, allowing for high throughput sample screening. The yeast cells were fixed and double stained with Reynold’s lead citrate and uranyl acetate. We performed both absorption contrast and Zernike phase contrast imaging on these cells in order to test this method. The membranes, nucleus and subcellular organelles of the cells were clearly visualized using absorption contrast mode. The x-ray images of the cells could be used to study the spatial distributions of the organelles in the cells. These results show unique structural information, demonstrating that hard x-ray microscopy is a complementary method for imaging and analyzing biological samples. PMID:20349228

  2. Write-Read 3D Patterning with a Dual-Channel Nanopipette.

    PubMed

    Momotenko, Dmitry; Page, Ashley; Adobes-Vidal, Maria; Unwin, Patrick R

    2016-09-27

    Nanopipettes are becoming extremely versatile and powerful tools in nanoscience for a wide variety of applications from imaging to nanoscale sensing. Herein, the capabilities of nanopipettes to build complex free-standing three-dimensional (3D) nanostructures are demonstrated using a simple double-barrel nanopipette device. Electrochemical control of ionic fluxes enables highly localized delivery of precursor species from one channel and simultaneous (dynamic and responsive) ion conductance probe-to-substrate distance feedback with the other for reliable high-quality patterning. Nanopipettes with 30-50 nm tip opening dimensions of each channel allowed confinement of ionic fluxes for the fabrication of high aspect ratio copper pillar, zigzag, and Γ-like structures, as well as permitted the subsequent topographical mapping of the patterned features with the same nanopipette probe as used for nanostructure engineering. This approach offers versatility and robustness for high-resolution 3D "printing" (writing) and read-out at the nanoscale.

  3. Self-Expansion Construction of Ultralight Carbon Nanotube Aerogels with a 3D and Hierarchical Cellular Structure.

    PubMed

    Luo, Yufeng; Luo, Shu; Wu, Hengcai; Li, Mengya; Wang, Ke; Yan, Lingjia; Jiang, Kaili; Li, Qunqing; Fan, Shoushan; Wang, Jiaping

    2017-07-01

    A novel and simple strategy is developed to construct ultralight and 3D pure carbon nanotube (CNT) aerogels by the spontaneous expansion of superaligned CNT films soaked in a piranha (mixed H 2 SO 4 and H 2 O 2 ) solution, followed by cryodesiccation. The macroscopic CNT aerogels have an extremely low apparent density (0.12 mg cm -3 ), ultrahigh porosity (99.95%), high specific surface area (298 m 2 g -1 ), and a hierarchical cellular structure with giant and ultrathin CNT sheets as cell walls. The pure CNT aerogels show high adsorption abilities for various kinds of solvents, and have great potential in widespread applications such as energy storage, catalysis, and bioengineering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Three-dimensional coherent x-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution.

    PubMed

    Jiang, Huaidong; Xu, Rui; Chen, Chien-Chun; Yang, Wenge; Fan, Jiadong; Tao, Xutang; Song, Changyong; Kohmura, Yoshiki; Xiao, Tiqiao; Wang, Yong; Fei, Yingwei; Ishikawa, Tetsuya; Mao, Wendy L; Miao, Jianwei

    2013-05-17

    We report quantitative 3D coherent x-ray diffraction imaging of a molten Fe-rich alloy and crystalline olivine sample, synthesized at 6 GPa and 1800 °C, with nanoscale resolution. The 3D mass density map is determined and the 3D distribution of the Fe-rich and Fe-S phases in the olivine-Fe-S sample is observed. Our results indicate that the Fe-rich melt exhibits varied 3D shapes and sizes in the olivine matrix. This work has potential for not only improving our understanding of the complex interactions between Fe-rich core-forming melts and mantle silicate phases but also paves the way for quantitative 3D imaging of materials at nanoscale resolution under extreme pressures and temperatures.

  5. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  6. 3D simulation of friction stir welding based on movable cellular automaton method

    NASA Astrophysics Data System (ADS)

    Eremina, Galina M.

    2017-12-01

    The paper is devoted to a 3D computer simulation of the peculiarities of material flow taking place in friction stir welding (FSW). The simulation was performed by the movable cellular automaton (MCA) method, which is a representative of particle methods in mechanics. Commonly, the flow of material in FSW is simulated based on computational fluid mechanics, assuming the material as continuum and ignoring its structure. The MCA method considers a material as an ensemble of bonded particles. The rupture of interparticle bonds and the formation of new bonds enable simulations of crack nucleation and healing as well as mas mixing and microwelding. The simulation results showed that using pins of simple shape (cylinder, cone, and pyramid) without a shoulder results in small displacements of plasticized material in workpiece thickness directions. Nevertheless, the optimal ratio of longitudinal velocity to rotational speed makes it possible to transport the welded material around the pin several times and to produce a joint of good quality.

  7. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  8. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2010 seminar held in Brno, Czech Republic. It was the 5th Seminar on Nanoscale Calibration Standards and Methods and the 9th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Czech Metrology Institute (CMI) and the Nanometrology Group of the Technical Committee-Length of EURAMET. There were two workshops that were integrated into NanoScale 2010: first a workshop presenting the results obtained in NANOTRACE, a European Metrology Research Project (EMRP) on displacement-measuring optical interferometers, and second a workshop about the European metrology landscape in nanometrology related to thin films, scanning probe microscopy and critical dimension. The aim of this workshop was to bring together developers, applicants and metrologists working in this field of nanometrology and to discuss future needs. For more information see www.co-nanomet.eu. The articles in this special issue of Measurement Science and Technology cover some novel scientific results. This issue can serve also as a representative selection of topics that are currently being investigated in the field of European and world-wide nanometrology. Besides traditional topics of dimensional metrology, like development of novel interferometers or laser stabilization techniques, some novel interesting trends in the field of nanometrology are observed. As metrology generally reflects the needs of scientific and industrial research, many research topics addressed refer to current trends in nanotechnology, too, focusing on traceability and improved measurement accuracy in this field. While historically the most studied standards in nanometrology were related to simple geometric structures like step heights or 1D or 2D gratings, now we are facing tasks to measure 3D structures and many unforeseen questions arising from interesting physical

  9. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

    DOE PAGES

    Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; ...

    2016-05-16

    Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less

  10. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules

    NASA Astrophysics Data System (ADS)

    Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.

    2017-02-01

    Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.

  11. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...

    2018-02-14

    Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID requiredmore » for real applications/device prototyping.« less

  12. High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Computer-Aided Design (3BID)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.

    Currently, there are few techniques that allow true 3D-printing on the nanoscale. The most promising candidate to fill this void is focused electron-beam-induced deposition (FEBID), a resist-free, nanofabrication compatible, direct-write method. The basic working principles of a computer-aided design (CAD) program (3BID) enabling 3D-FEBID is presented and simultaneously released for download. The 3BID capability significantly expands the currently limited toolbox for 3D-nanoprinting, providing access to geometries for optoelectronic, plasmonic, and nanomagnetic applications that were previously unattainable due to the lack of a suitable method for synthesis. In conclusion, the CAD approach supplants trial and error toward more precise/accurate FEBID requiredmore » for real applications/device prototyping.« less

  13. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  14. Direct Numerical Simulation of Cellular-Scale Blood Flow in 3D Microvascular Networks.

    PubMed

    Balogh, Peter; Bagchi, Prosenjit

    2017-12-19

    We present, to our knowledge, the first direct numerical simulation of 3D cellular-scale blood flow in physiologically realistic microvascular networks. The vascular networks are designed following in vivo images and data, and are comprised of bifurcating, merging, and winding vessels. Our model resolves the large deformation and dynamics of each individual red blood cell flowing through the networks with high fidelity, while simultaneously retaining the highly complex geometric details of the vascular architecture. To our knowledge, our simulations predict several novel and unexpected phenomena. We show that heterogeneity in hemodynamic quantities, which is a hallmark of microvascular blood flow, appears both in space and time, and that the temporal heterogeneity is more severe than its spatial counterpart. The cells are observed to frequently jam at vascular bifurcations resulting in reductions in hematocrit and flow rate in the daughter and mother vessels. We find that red blood cell jamming at vascular bifurcations results in several orders-of-magnitude increase in hemodynamic resistance, and thus provides an additional mechanism of increased in vivo blood viscosity as compared to that determined in vitro. A striking result from our simulations is negative pressure-flow correlations observed in several vessels, implying a significant deviation from Poiseuille's law. Furthermore, negative correlations between vascular resistance and hematocrit are observed in various vessels, also defying a major principle of particulate suspension flow. To our knowledge, these novel findings are absent in blood flow in straight tubes, and they underscore the importance of considering realistic physiological geometry and resolved cellular interactions in modeling microvascular hemodynamics. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry

    PubMed Central

    Kuznetsov, Ilya; Filevich, Jorge; Dong, Feng; Woolston, Mark; Chao, Weilun; Anderson, Erik H.; Bernstein, Elliot R.; Crick, Dean C.; Rocca, Jorge J.; Menoni, Carmen S.

    2015-01-01

    Analytical probes capable of mapping molecular composition at the nanoscale are of critical importance to materials research, biology and medicine. Mass spectral imaging makes it possible to visualize the spatial organization of multiple molecular components at a sample's surface. However, it is challenging for mass spectral imaging to map molecular composition in three dimensions (3D) with submicron resolution. Here we describe a mass spectral imaging method that exploits the high 3D localization of absorbed extreme ultraviolet laser light and its fundamentally distinct interaction with matter to determine molecular composition from a volume as small as 50 zl in a single laser shot. Molecular imaging with a lateral resolution of 75 nm and a depth resolution of 20 nm is demonstrated. These results open opportunities to visualize chemical composition and chemical changes in 3D at the nanoscale. PMID:25903827

  16. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration.

    PubMed

    Meghezi, Sébastien; Seifu, Dawit G; Bono, Nina; Unsworth, Larry; Mequanint, Kibret; Mantovani, Diego

    2015-06-16

    Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The "static bioreactor" provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues.

  17. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    DOE PAGES

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na +; Li +) to tetragonal Mn 3O 4 to spinel LiMn 2O 4. The first reaction step involves topotactic exchange of interlayer Na + by Li + in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layeredmore » oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn 2O 4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less

  18. Interwoven Aligned Conductive Nanofiber Yarn/Hydrogel Composite Scaffolds for Engineered 3D Cardiac Anisotropy.

    PubMed

    Wu, Yaobin; Wang, Ling; Guo, Baolin; Ma, Peter X

    2017-06-27

    Mimicking the anisotropic cardiac structure and guiding 3D cellular orientation play a critical role in designing scaffolds for cardiac tissue regeneration. Significant advances have been achieved to control cellular alignment and elongation, but it remains an ongoing challenge for engineering 3D cardiac anisotropy using these approaches. Here, we present a 3D hybrid scaffold based on aligned conductive nanofiber yarns network (NFYs-NET, composition: polycaprolactone, silk fibroin, and carbon nanotubes) within a hydrogel shell for mimicking the native cardiac tissue structure, and further demonstrate their great potential for engineering 3D cardiac anisotropy for cardiac tissue engineering. The NFYs-NET structures are shown to control cellular orientation and enhance cardiomyocytes (CMs) maturation. 3D hybrid scaffolds were then fabricated by encapsulating NFYs-NET layers within hydrogel shell, and these 3D scaffolds performed the ability to promote aligned and elongated CMs maturation on each layer and individually control cellular orientation on different layers in a 3D environment. Furthermore, endothelialized myocardium was constructed by using this hybrid strategy via the coculture of CMs on NFYs-NET layer and endothelial cells within hydrogel shell. Therefore, these 3D hybrid scaffolds, containing NFYs-NET layer inducing cellular orientation, maturation, and anisotropy and hydrogel shell providing a suitable 3D environment for endothelialization, has great potential in engineering 3D cardiac anisotropy.

  19. Correlative two-photon and serial block face scanning electron microscopy in neuronal tissue using 3D near-infrared branding maps.

    PubMed

    Lees, Robert M; Peddie, Christopher J; Collinson, Lucy M; Ashby, Michael C; Verkade, Paul

    2017-01-01

    Linking cellular structure and function has always been a key goal of microscopy, but obtaining high resolution spatial and temporal information from the same specimen is a fundamental challenge. Two-photon (2P) microscopy allows imaging deep inside intact tissue, bringing great insight into the structural and functional dynamics of cells in their physiological environment. At the nanoscale, the complex ultrastructure of a cell's environment in tissue can be reconstructed in three dimensions (3D) using serial block face scanning electron microscopy (SBF-SEM). This provides a snapshot of high resolution structural information pertaining to the shape, organization, and localization of multiple subcellular structures at the same time. The pairing of these two imaging modalities in the same specimen provides key information to relate cellular dynamics to the ultrastructural environment. Until recently, approaches to relocate a region of interest (ROI) in tissue from 2P microscopy for SBF-SEM have been inefficient or unreliable. However, near-infrared branding (NIRB) overcomes this by using the laser from a multiphoton microscope to create fiducial markers for accurate correlation of 2P and electron microscopy (EM) imaging volumes. The process is quick and can be user defined for each sample. Here, to increase the efficiency of ROI relocation, multiple NIRB marks are used in 3D to target ultramicrotomy. A workflow is described and discussed to obtain a data set for 3D correlated light and electron microscopy, using three different preparations of brain tissue as examples. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D

    PubMed Central

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron

    2017-01-01

    Abstract Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. PMID:28814063

  1. iCAVE: an open source tool for visualizing biomolecular networks in 3D, stereoscopic 3D and immersive 3D.

    PubMed

    Liluashvili, Vaja; Kalayci, Selim; Fluder, Eugene; Wilson, Manda; Gabow, Aaron; Gümüs, Zeynep H

    2017-08-01

    Visualizations of biomolecular networks assist in systems-level data exploration in many cellular processes. Data generated from high-throughput experiments increasingly inform these networks, yet current tools do not adequately scale with concomitant increase in their size and complexity. We present an open source software platform, interactome-CAVE (iCAVE), for visualizing large and complex biomolecular interaction networks in 3D. Users can explore networks (i) in 3D using a desktop, (ii) in stereoscopic 3D using 3D-vision glasses and a desktop, or (iii) in immersive 3D within a CAVE environment. iCAVE introduces 3D extensions of known 2D network layout, clustering, and edge-bundling algorithms, as well as new 3D network layout algorithms. Furthermore, users can simultaneously query several built-in databases within iCAVE for network generation or visualize their own networks (e.g., disease, drug, protein, metabolite). iCAVE has modular structure that allows rapid development by addition of algorithms, datasets, or features without affecting other parts of the code. Overall, iCAVE is the first freely available open source tool that enables 3D (optionally stereoscopic or immersive) visualizations of complex, dense, or multi-layered biomolecular networks. While primarily designed for researchers utilizing biomolecular networks, iCAVE can assist researchers in any field. © The Authors 2017. Published by Oxford University Press.

  2. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  3. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    PubMed Central

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  4. High-quality ultrastructural preservation using cryofixation for 3D electron microscopy of genetically labeled tissues

    PubMed Central

    Boassa, Daniela; Hu, Junru; Romoli, Benedetto; Phan, Sebastien; Dulcis, Davide

    2018-01-01

    Electron microscopy (EM) offers unparalleled power to study cell substructures at the nanoscale. Cryofixation by high-pressure freezing offers optimal morphological preservation, as it captures cellular structures instantaneously in their near-native state. However, the applicability of cryofixation is limited by its incompatibility with diaminobenzidine labeling using genetic EM tags and the high-contrast en bloc staining required for serial block-face scanning electron microscopy (SBEM). In addition, it is challenging to perform correlated light and electron microscopy (CLEM) with cryofixed samples. Consequently, these powerful methods cannot be applied to address questions requiring optimal morphological preservation. Here, we developed an approach that overcomes these limitations; it enables genetically labeled, cryofixed samples to be characterized with SBEM and 3D CLEM. Our approach is broadly applicable, as demonstrated in cultured cells, Drosophila olfactory organ and mouse brain. This optimization exploits the potential of cryofixation, allowing for quality ultrastructural preservation for diverse EM applications. PMID:29749931

  5. A 3D Self-Shaping Strategy for Nanoresolution Multicomponent Architectures.

    PubMed

    Su, Meng; Huang, Zhandong; Li, Yifan; Qian, Xin; Li, Zheng; Hu, Xiaotian; Pan, Qi; Li, Fengyu; Li, Lihong; Song, Yanlin

    2018-01-01

    3D printing or fabrication pursues the essential surface behavior manipulation of droplets or a liquid for rapidly and precisely constructing 3D multimaterial architectures. Further development of 3D fabrication desires a self-shaping strategy that can heterogeneously integrate functional materials with disparate electrical or optical properties. Here, a 3D liquid self-shaping strategy is reported for rapidly patterning materials over a series of compositions and accurately achieving micro- and nanoscale structures. The predesigned template selectively pins the droplet, and the surface energy minimization drives the self-shaping processing. The as-prepared 3D circuits assembled by silver nanoparticles carry a current of 208-448 µA at 0.01 V impressed voltage, while the 3D architectures achieved by two different quantum dots show noninterfering optical properties with feature resolution below 3 µm. This strategy can facilely fabricate micro-nanogeometric patterns without a modeling program, which will be of great significance for the development of 3D functional devices. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Breast MR segmentation and lesion detection with cellular neural networks and 3D template matching.

    PubMed

    Ertaş, Gökhan; Gülçür, H Ozcan; Osman, Onur; Uçan, Osman N; Tunaci, Mehtap; Dursun, Memduh

    2008-01-01

    A novel fully automated system is introduced to facilitate lesion detection in dynamic contrast-enhanced, magnetic resonance mammography (DCE-MRM). The system extracts breast regions from pre-contrast images using a cellular neural network, generates normalized maximum intensity-time ratio (nMITR) maps and performs 3D template matching with three layers of 12x12 cells to detect lesions. A breast is considered to be properly segmented when relative overlap >0.85 and misclassification rate <0.10. Sensitivity, false-positive rate per slice and per lesion are used to assess detection performance. The system was tested with a dataset of 2064 breast MR images (344slicesx6 acquisitions over time) from 19 women containing 39 marked lesions. Ninety-seven percent of the breasts were segmented properly and all the lesions were detected correctly (detection sensitivity=100%), however, there were some false-positive detections (31%/lesion, 10%/slice).

  7. Controlling Cellular Endocytosis at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Battaglia, Giuseppe

    2011-03-01

    One of the most challenging aspects of drug delivery is the intra-cellular delivery of active agents. Several drugs and especially nucleic acids all need to be delivered within the cell interior to exert their therapeutic action. Small hydrophobic molecules can permeate cell membranes with relative ease, but hydrophilic molecules and especially large macromolecules such as proteins and nucleic acids require a vector to assist their transport across the cell membrane. This must be designed so as to ensure intracellular delivery without compromising cell viability. We have recently achieved this by using pH-sensitive poly(2-(methacryloyloxy)ethyl-phosphorylcholine)- co -poly(2-(diisopropylamino)ethyl methacrylate) (PMPC-PDPA) and poly(ethylene oxide)-co- poly(2-(diisopropylamino)ethyl methacrylate) (PEO-PDPA) diblock copolymers that self-assemble to form vesicles in aqueous solution. These vesicles combine a non-fouling PMPC or PEO block with a pH-sensitive PDPA block and have the ability to encapsulate both hydrophobic molecules within the vesicular membrane and hydrophilic molecules within their aqueous cores. The pH sensitive nature of the PDPA blocks make the diblock copolymers forming stable vesicles at physiological pH but that rapid dissociation of these vesicles occurs between pH 5 and pH 6 to form molecularly dissolved copolymer chains (unimers). We used these vesicles to encapsulate small and large macromolecules and these were successfully delivered intracellularly including nucleic acid, drugs, quantum dots, and antibodies. Dynamic light scattering, zeta potential measurements, and transmission electron microscopy were used to study and optimise the encapsulation processes. Confocal laser scanning microscopy, fluorescence flow cytometry and lysates analysis were used to quantify cellular uptake and to study the kinetics of this process in vitro and in vivo. We show the effective cytosolic delivery of nucleic acids, proteins, hydrophobic molecules

  8. The design and performance characteristics of a cellular logic 3-D image classification processor

    NASA Astrophysics Data System (ADS)

    Ankeney, L. A.

    1981-04-01

    The introduction of high resolution scanning laser radar systems which are capable of collecting range and reflectivity images, is predicted to significantly influence the development of processors capable of performing autonomous target classification tasks. Actively sensed range images are shown to be superior to passively collected infrared images in both image stability and information content. An illustrated tutorial introduces cellular logic (neighborhood) transformations and two and three dimensional erosion and dilation operations which are used for noise filters and geometric shape measurement. A unique 'cookbook' approach to selecting a sequence of neighborhood transformations suitable for object measurement is developed and related to false alarm rate and algorithm effectiveness measures. The cookbook design approach is used to develop an algorithm to classify objects based upon their 3-D geometrical features. A Monte Carlo performance analysis is used to demonstrate the utility of the design approach by characterizing the ability of the algorithm to classify randomly positioned three dimensional objects in the presence of additive noise, scale variations, and other forms of image distortion.

  9. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE PAGES

    Park, Jungwok; Elmlund, Hans; Ercius, Peter; ...

    2015-07-17

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  10. 3D structure of individual nanocrystals in solution by electron microscopy

    NASA Astrophysics Data System (ADS)

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T.; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A.; Zettl, A.; Alivisatos, A. Paul

    2015-07-01

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.

  11. 3D structure of individual nanocrystals in solution by electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jungwok; Elmlund, Hans; Ercius, Peter

    Here, knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unorderedmore » nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.« less

  12. Cellular and Molecular effects of Vitamin D on Carcinogenesis

    PubMed Central

    Welsh, JoEllen

    2011-01-01

    Epidemiologic data suggest that the incidence and severity of many types of cancer inversely correlates with indices of vitamin D status. The vitamin D receptor (VDR) is highly expressed in epithelial cells at risk for carcinogenesis including those resident in skin, breast, prostate and colon, providing a direct molecular link by which vitamin D status impacts on carcinogenesis. Consistent with this concept, activation of VDR by its ligand 1,25-dihydroxyvitamin D (1,25D) triggers comprehensive genomic changes in epithelial cells that contribute to maintenance of the differentiated phenotype, resistance to cellular stresses and protection of the genome. Many epithelial cells also express the vitamin D metabolizing enzyme CYP27B1 which enables autocrine generation of 1,25D from the circulating vitamin D metabolite 25-hydroxyvitamin D (25D), critically linking overall vitamin D status with cellular anti-tumor actions. Furthermore, pre-clinical studies in animal models has demonstrated that dietary supplementation with vitamin D or chronic treatment with VDR agonists decreases tumor development in skin, colon, prostate and breast. Conversely, deletion of the VDR gene in mice alters the balance between proliferation and apoptosis, increases oxidative DNA damage, and enhances susceptibility to carcinogenesis in these tissues. Because VDR expression is retained in many human tumors, vitamin D status may be an important modulator of cancer progression in persons living with cancer. Collectively, these observations have reinforced the need to further define the molecular actions of the VDR and the human requirement for vitamin D in relation to cancer development and progression. PMID:22085499

  13. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy

    PubMed Central

    Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao

    2015-01-01

    Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658

  14. Electron-stimulated reactions in nanoscale water films adsorbed on (alpha)-Al2O3(0001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrik, Nikolay G.; Kimmel, Gregory A.

    2018-05-11

    The radiation-induced decomposition and desorption of nanoscale amorphous solid water (D2O) films adsorbed on -Al2O3(0001) surface was studied at low temperature in ultrahigh vacuum using temperature programmed desorption (TPD) and electron stimulated desorption (ESD) with a mono-energetic, low energy electron source. ESD yields of molecular products ( D2, O2 and D¬2O) and the total sputtering yield increased with increasing D2O coverage up to ~15 water monolayers (i.e. ~15 1015 cm-2) to a coverage-independent level for thicker water films. Experiments with isotopically-layered water films (D2O and H2O) demonstrated that the highest water decomposition yields occurred at the interfaces of the nanoscalemore » water films with the alumina substrate and vacuum. However, the increased reactivity of the water/alumina interface is relatively small compared to the enhancements in the non-thermal reactions previously observed at the water/Pt(111) and water/TiO2(110) interfaces. We propose that the relatively low activity of Al2O3(0001) for the radiation-induced production of molecular hydrogen is associated with lower reactivity of this surface with hydrogen atoms, which are likely precursors for the molecular hydrogen.« less

  15. Transient inter-cellular polymeric linker.

    PubMed

    Ong, Siew-Min; He, Lijuan; Thuy Linh, Nguyen Thi; Tee, Yee-Han; Arooz, Talha; Tang, Guping; Tan, Choon-Hong; Yu, Hanry

    2007-09-01

    Three-dimensional (3D) tissue-engineered constructs with bio-mimicry cell-cell and cell-matrix interactions are useful in regenerative medicine. In cell-dense and matrix-poor tissues of the internal organs, cells support one another via cell-cell interactions, supplemented by small amount of the extra-cellular matrices (ECM) secreted by the cells. Here we connect HepG2 cells directly but transiently with inter-cellular polymeric linker to facilitate cell-cell interaction and aggregation. The linker consists of a non-toxic low molecular-weight polyethyleneimine (PEI) backbone conjugated with multiple hydrazide groups that can aggregate cells within 30 min by reacting with the aldehyde handles on the chemically modified cell-surface glycoproteins. The cells in the cellular aggregates proliferated; and maintained the cortical actin distribution of the 3D cell morphology while non-aggregated cells died over 7 days of suspension culture. The aggregates lost distinguishable cell-cell boundaries within 3 days; and the ECM fibers became visible around cells from day 3 onwards while the inter-cellular polymeric linker disappeared from the cell surfaces over time. The transient inter-cellular polymeric linker can be useful for forming 3D cellular and tissue constructs without bulk biomaterials or extensive network of engineered ECM for various applications.

  16. Elastomeric Cellular Structure Enhanced by Compressible Liquid Filler

    NASA Astrophysics Data System (ADS)

    Sun, Yueting; Xu, Xiaoqing; Xu, Chengliang; Qiao, Yu; Li, Yibing

    2016-05-01

    Elastomeric cellular structures provide a promising solution for energy absorption. Their flexible and resilient nature is particularly relevant to protection of human bodies. Herein we develop an elastomeric cellular structure filled with nanoporous material functionalized (NMF) liquid. Due to the nanoscale infiltration in NMF liquid and its interaction with cell walls, the cellular structure has a much enhanced mechanical performance, in terms of loading capacity and energy absorption density. Moreover, it is validated that the structure is highly compressible and self-restoring. Its hyper-viscoelastic characteristics are elucidated.

  17. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    PubMed Central

    Sawakuchi, Gabriel O.; Ferreira, Felisberto A.; McFadden, Conor H.; Hallacy, Timothy M.; Granville, Dal A.; Sahoo, Narayan; Akselrod, Mark S.

    2016-01-01

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared with LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments. PMID:27147359

  18. Nanoscale measurements of proton tracks using fluorescent nuclear track detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawakuchi, Gabriel O., E-mail: gsawakuchi@mdanderson.org; Sahoo, Narayan; Ferreira, Felisberto A.

    Purpose: The authors describe a method in which fluorescence nuclear track detectors (FNTDs), novel track detectors with nanoscale spatial resolution, are used to determine the linear energy transfer (LET) of individual proton tracks from proton therapy beams by allowing visualization and 3D reconstruction of such tracks. Methods: FNTDs were exposed to proton therapy beams with nominal energies ranging from 100 to 250 MeV. Proton track images were then recorded by confocal microscopy of the FNTDs. Proton tracks in the FNTD images were fit by using a Gaussian function to extract fluorescence amplitudes. Histograms of fluorescence amplitudes were then compared withmore » LET spectra. Results: The authors successfully used FNTDs to register individual proton tracks from high-energy proton therapy beams, allowing reconstruction of 3D images of proton tracks along with delta rays. The track amplitudes from FNTDs could be used to parameterize LET spectra, allowing the LET of individual proton tracks from therapeutic proton beams to be determined. Conclusions: FNTDs can be used to directly visualize proton tracks and their delta rays at the nanoscale level. Because the track intensities in the FNTDs correlate with LET, they could be used further to measure LET of individual proton tracks. This method may be useful for measuring nanoscale radiation quantities and for measuring the LET of individual proton tracks in radiation biology experiments.« less

  19. Methods and devices for fabricating three-dimensional nanoscale structures

    DOEpatents

    Rogers, John A.; Jeon, Seokwoo; Park, Jangung

    2010-04-27

    The present invention provides methods and devices for fabricating 3D structures and patterns of 3D structures on substrate surfaces, including symmetrical and asymmetrical patterns of 3D structures. Methods of the present invention provide a means of fabricating 3D structures having accurately selected physical dimensions, including lateral and vertical dimensions ranging from 10s of nanometers to 1000s of nanometers. In one aspect, methods are provided using a mask element comprising a conformable, elastomeric phase mask capable of establishing conformal contact with a radiation sensitive material undergoing photoprocessing. In another aspect, the temporal and/or spatial coherence of electromagnetic radiation using for photoprocessing is selected to fabricate complex structures having nanoscale features that do not extend entirely through the thickness of the structure fabricated.

  20. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses

    NASA Astrophysics Data System (ADS)

    Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; Berntsen, Peter; Bielecki, Johan; Daurer, Benedikt J.; DeMirci, Hasan; Fromme, Petra; Hantke, Max Felix; Maia, Filipe R. N. C.; Munke, Anna; Nettelblad, Carl; Pande, Kanupriya; Reddy, Hemanth K. N.; Sellberg, Jonas A.; Sierra, Raymond G.; Svenda, Martin; van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu; Aquila, Andrew; Zwart, Peter H.; Mancuso, Adrian P.

    2017-10-01

    We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.

  1. Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility.

    PubMed

    Tan, X P; Tan, Y J; Chow, C S L; Tor, S B; Yeong, W Y

    2017-07-01

    Metallic cellular scaffold is one of the best choices for orthopaedic implants as a replacement of human body parts, which could improve life quality and increase longevity for the people needed. Unlike conventional methods of making cellular scaffolds, three-dimensional (3D) printing or additive manufacturing opens up new possibilities to fabricate those customisable intricate designs with highly interconnected pores. In the past decade, metallic powder-bed based 3D printing methods emerged and the techniques are becoming increasingly mature recently, where selective laser melting (SLM) and selective electron beam melting (SEBM) are the two representatives. Due to the advantages of good dimensional accuracy, high build resolution, clean build environment, saving materials, high customisability, etc., SLM and SEBM show huge potential in direct customisable manufacturing of metallic cellular scaffolds for orthopaedic implants. Ti-6Al-4V to date is still considered to be the optimal materials for producing orthopaedic implants due to its best combination of biocompatibility, corrosion resistance and mechanical properties. This paper presents a state-of-the-art overview mainly on manufacturing, topological design, mechanical properties and biocompatibility of cellular Ti-6Al-4V scaffolds via SLM and SEBM methods. Current manufacturing limitations, topological shortcomings, uncertainty of biocompatible test were sufficiently discussed herein. Future perspectives and recommendations were given at the end. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. High Resolution, Large Deformation 3D Traction Force Microscopy

    PubMed Central

    López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients. PMID:24740435

  3. Micromechanics of Amorphous Metal/Polymer Hybrid Structures with 3D Cellular Architectures: Size Effects, Buckling Behavior, and Energy Absorption Capability.

    PubMed

    Mieszala, Maxime; Hasegawa, Madoka; Guillonneau, Gaylord; Bauer, Jens; Raghavan, Rejin; Frantz, Cédric; Kraft, Oliver; Mischler, Stefano; Michler, Johann; Philippe, Laetitia

    2017-02-01

    By designing advantageous cellular geometries and combining the material size effects at the nanometer scale, lightweight hybrid microarchitectured materials with tailored structural properties are achieved. Prior studies reported the mechanical properties of high strength cellular ceramic composites, obtained by atomic layer deposition. However, few studies have examined the properties of similar structures with metal coatings. To determine the mechanical performance of polymer cellular structures reinforced with a metal coating, 3D laser lithography and electroless deposition of an amorphous layer of nickel-boron (NiB) is used for the first time to produce metal/polymer hybrid structures. In this work, the mechanical response of microarchitectured structures is investigated with an emphasis on the effects of the architecture and the amorphous NiB thickness on their deformation mechanisms and energy absorption capability. Microcompression experiments show an enhancement of the mechanical properties with the NiB thickness, suggesting that the deformation mechanism and the buckling behavior are controlled by the brittle-to-ductile transition in the NiB layer. In addition, the energy absorption properties demonstrate the possibility of tuning the energy absorption efficiency with adequate designs. These findings suggest that microarchitectured metal/polymer hybrid structures are effective in producing materials with unique property combinations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Double Dirac point semimetal in 2D material: Ta2Se3

    NASA Astrophysics Data System (ADS)

    Ma, Yandong; Jing, Yu; Heine, Thomas

    2017-06-01

    Here, we report by first-principles calculations one new stable 2D Dirac material, Ta2Se3 monolayer. For this system, stable layered bulk phase exists, and exfoliation should be possible. Ta2Se3 monolayer is demonstrated to support two Dirac points close to the Fermi level, achieving the exotic 2D double Dirac semimetal. And like 2D single Dirac and 2D node-line semimetals, spin-orbit coupling could introduce an insulating state in this new class of 2D Dirac semimetals. Moreover, the Dirac feature in this system is layer-dependent and a metal-to-insulator transition is identified in Ta2Se3 when reducing the layer-thickness from bilayer to monolayer. These findings are of fundamental interests and of great importance for nanoscale device applications.

  5. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  6. Flyweight 3D Graphene Scaffolds with Microinterface Barrier-Derived Tunable Thermal Insulation and Flame Retardancy.

    PubMed

    Zhang, Qiangqiang; Hao, Menglong; Xu, Xiang; Xiong, Guoping; Li, Hui; Fisher, Timothy S

    2017-04-26

    In this article, flyweight three-dimensional (3D) graphene scaffolds (GSs) have been demonstrated with a microinterface barrier-derived thermal insulation and flame retardancy characteristics. Such 3D GSs were fabricated by a modified hydrothermal method and a unidirectional freeze-casting process with hierarchical porous microstructures. Because of high porosity (99.9%), significant phonon scattering, and strong π-π interaction at the interface barriers of multilayer graphene cellular walls, the GSs demonstrate a sequence of multifunctional properties simultaneously, such as lightweight density, thermal insulating characteristics, and outstanding mechanical robustness. At 100 °C, oxidized GSs exhibit a thermal conductivity of 0.0126 ± 0.0010 W/(m K) in vacuum. The thermal conductivity of oxidized GSs remains relatively unaffected despite large-scale deformation-induced densification of the microstructures, as compared to the behavior of reduced GSs (rGSs) whose thermal conductivity increases dramatically under compression. The contrasting behavior of oxidized GSs and rGSs appears to derive from large differences in the intersheet contact resistance and varying intrinsic thermal conductivity between reduced and oxidized graphene sheets. The oxidized GSs also exhibit excellent flame retardant behavior and mechanical robustness, with only 2% strength decay after flame treatment. In a broader context, this work demonstrates a useful strategy to design porous nanomaterials with a tunable heat conduction behavior through interface engineering at the nanoscale.

  7. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses

    DOE PAGES

    Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; ...

    2017-10-12

    We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates frommore » the expected perfect icosahedral symmetry. Lastly, our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.« less

  8. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    appears to enhance the critical temperature [4]. This is a hot topic as in the past year many works have clarified the nanoscale phase separation in electron-doped chalcogenides, showing the key role of a complex texture of nanograins and opening new avenues for the fundamental understanding of quantum phenomena in networks of superconducting nanograins. The advances in nanotechnology allow the exploration of the possible existence of superconductivity in single carbon nanotubes [5]. The technological applications presented by Gomez [6] and Lehtinen [7] show the fundamental physics of superconductivity at the nanoscale to promote new advances in quantum devices. We hope that this combination will make these focus papers in Superconductor Science and Technology interesting and promote cross-fertilization among the different sub-branches of the field which all share the same goal of addressing the key questions on nanoscale superconductors. References [1]Croitoru M D, Vagov A, Shanenko A A and Axt V M 2012 The Cooper problem in nanoscale: enhancement of the coupling due to confinement Supercond. Sci. Technol. 25 124001 [2]Perali A, Innocenti A, Valletta A and Bianconi A 2012 Anomalous isotope effect near a 2.5 Lifshitz transition in a multi-band multi-condensate superconductor made of a superlattice of stripes Supercond. Sci. Technol. 25 124002 [3]Zeng S W, Huang Z, Wang X, Lü W M, Liu Z Q, Zhang B M, Dhar S, Venkatesan T and Ariando 2012 The influence of La substitution and oxygen reduction in ambipolar La-doped YBa2Cu3Oy thin films Supercond. Sci. Technol. 25 124003 [4]Poccia N, Bianconi A, Campi G, Fratini M and Ricci A 2012 Size evolution of the oxygen interstitial nanowires in La2CuO4+y by thermal treatments and x-ray continuous illumination Supercond. Sci. Technol. 25 124004 [5]Yang Y, Fedorov G, Zhang J, Tselev A, Shafranjuk S and Barbara P 2012 The search for superconductivity at van Hove singularities in carbon nanotubes Supercond. Sci. Technol. 25 124005 [6]Gomez

  9. Measurement of nanoscale three-dimensional diffusion in the interior of living cells by STED-FCS.

    PubMed

    Lanzanò, Luca; Scipioni, Lorenzo; Di Bona, Melody; Bianchini, Paolo; Bizzarri, Ranieri; Cardarelli, Francesco; Diaspro, Alberto; Vicidomini, Giuseppe

    2017-07-06

    The observation of molecular diffusion at different spatial scales, and in particular below the optical diffraction limit (<200 nm), can reveal details of the subcellular topology and its functional organization. Stimulated-emission depletion microscopy (STED) has been previously combined with fluorescence correlation spectroscopy (FCS) to investigate nanoscale diffusion (STED-FCS). However, stimulated-emission depletion fluorescence correlation spectroscopy has only been used successfully to reveal functional organization in two-dimensional space, such as the plasma membrane, while, an efficient implementation for measurements in three-dimensional space, such as the cellular interior, is still lacking. Here we integrate the STED-FCS method with two analytical approaches, the recent separation of photons by lifetime tuning and the fluorescence lifetime correlation spectroscopy, to simultaneously probe diffusion in three dimensions at different sub-diffraction scales. We demonstrate that this method efficiently provides measurement of the diffusion of EGFP at spatial scales tunable from the diffraction size down to ∼80 nm in the cytoplasm of living cells.The measurement of molecular diffusion at sub-diffraction scales has been achieved in 2D space using STED-FCS, but an implementation for 3D diffusion is lacking. Here the authors present an analytical approach to probe diffusion in 3D space using STED-FCS and measure the diffusion of EGFP at different spatial scales.

  10. Design and Realization of 3D Printed AFM Probes.

    PubMed

    Alsharif, Nourin; Burkatovsky, Anna; Lissandrello, Charles; Jones, Keith M; White, Alice E; Brown, Keith A

    2018-05-01

    Atomic force microscope (AFM) probes and AFM imaging by extension are the product of exceptionally refined silicon micromachining, but are also restricted by the limitations of these fabrication techniques. Here, the nanoscale additive manufacturing technique direct laser writing is explored as a method to print monolithic cantilevered probes for AFM. Not only are 3D printed probes found to function effectively for AFM, but they also confer several advantages, most notably the ability to image in intermittent contact mode with a bandwidth approximately ten times larger than analogous silicon probes. In addition, the arbitrary structural control afforded by 3D printing is found to enable programming the modal structure of the probe, a capability that can be useful in the context of resonantly amplifying nonlinear tip-sample interactions. Collectively, these results show that 3D printed probes complement those produced using conventional silicon micromachining and open the door to new imaging techniques. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The iRoCS Toolbox--3D analysis of the plant root apical meristem at cellular resolution.

    PubMed

    Schmidt, Thorsten; Pasternak, Taras; Liu, Kun; Blein, Thomas; Aubry-Hivet, Dorothée; Dovzhenko, Alexander; Duerr, Jasmin; Teale, William; Ditengou, Franck A; Burkhardt, Hans; Ronneberger, Olaf; Palme, Klaus

    2014-03-01

    To achieve a detailed understanding of processes in biological systems, cellular features must be quantified in the three-dimensional (3D) context of cells and organs. We described use of the intrinsic root coordinate system (iRoCS) as a reference model for the root apical meristem of plants. iRoCS enables direct and quantitative comparison between the root tips of plant populations at single-cell resolution. The iRoCS Toolbox automatically fits standardized coordinates to raw 3D image data. It detects nuclei or segments cells, automatically fits the coordinate system, and groups the nuclei/cells into the root's tissue layers. The division status of each nucleus may also be determined. The only manual step required is to mark the quiescent centre. All intermediate outputs may be refined if necessary. The ability to learn the visual appearance of nuclei by example allows the iRoCS Toolbox to be easily adapted to various phenotypes. The iRoCS Toolbox is provided as an open-source software package, licensed under the GNU General Public License, to make it accessible to a broad community. To demonstrate the power of the technique, we measured subtle changes in cell division patterns caused by modified auxin flux within the Arabidopsis thaliana root apical meristem. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. A 3D Image Filter for Parameter-Free Segmentation of Macromolecular Structures from Electron Tomograms

    PubMed Central

    Ali, Rubbiya A.; Landsberg, Michael J.; Knauth, Emily; Morgan, Garry P.; Marsh, Brad J.; Hankamer, Ben

    2012-01-01

    3D image reconstruction of large cellular volumes by electron tomography (ET) at high (≤5 nm) resolution can now routinely resolve organellar and compartmental membrane structures, protein coats, cytoskeletal filaments, and macromolecules. However, current image analysis methods for identifying in situ macromolecular structures within the crowded 3D ultrastructural landscape of a cell remain labor-intensive, time-consuming, and prone to user-bias and/or error. This paper demonstrates the development and application of a parameter-free, 3D implementation of the bilateral edge-detection (BLE) algorithm for the rapid and accurate segmentation of cellular tomograms. The performance of the 3D BLE filter has been tested on a range of synthetic and real biological data sets and validated against current leading filters—the pseudo 3D recursive and Canny filters. The performance of the 3D BLE filter was found to be comparable to or better than that of both the 3D recursive and Canny filters while offering the significant advantage that it requires no parameter input or optimisation. Edge widths as little as 2 pixels are reproducibly detected with signal intensity and grey scale values as low as 0.72% above the mean of the background noise. The 3D BLE thus provides an efficient method for the automated segmentation of complex cellular structures across multiple scales for further downstream processing, such as cellular annotation and sub-tomogram averaging, and provides a valuable tool for the accurate and high-throughput identification and annotation of 3D structural complexity at the subcellular level, as well as for mapping the spatial and temporal rearrangement of macromolecular assemblies in situ within cellular tomograms. PMID:22479430

  13. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  14. A Nonfullerene Small Molecule Acceptor with 3D Interlocking Geometry Enabling Efficient Organic Solar Cells.

    PubMed

    Lee, Jaewon; Singh, Ranbir; Sin, Dong Hun; Kim, Heung Gyu; Song, Kyu Chan; Cho, Kilwon

    2016-01-06

    A new 3D nonfullerene small-molecule acceptor is reported. The 3D interlocking geometry of the small-molecule acceptor enables uniform molecular conformation and strong intermolecular connectivity, facilitating favorable nanoscale phase separation and electron charge transfer. By employing both a novel polymer donor and a nonfullerene small-molecule acceptor in the solution-processed organic solar cells, a high-power conversion efficiency of close to 6% is demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. A spherical harmonics intensity model for 3D segmentation and 3D shape analysis of heterochromatin foci.

    PubMed

    Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl

    2016-08-01

    The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Micro-optical foundry: 3D lithography by freezing liquid instabilities at nanoscale

    NASA Astrophysics Data System (ADS)

    Grilli, S.; Coppola, S.; Vespini, V.; Merola, F.; Finizio, A.; Ferraro, P.

    2012-06-01

    The pyroelectric functionality of a Lithium Niobate (LN) substrate is used for non-contact manipulation of polymeric material. In this work we introduced a novel approach for fabricating a wide variety of soft solid-like microstructures, thus leading to a new concept in 3D lithography. A relatively easy to accomplish technique has been demonstrated for curing different transient stages of polymer fluids by rapid cross-linking of PDMS. The method is twofold innovative thanks to the electrode-less configuration and to the rapid formation of a wide variety of 3D solid-like structures by exploiting polymer instabilities. This new and unique technique is named "pyro-electrohydrodynamic (PEHD) lithography", meaning the generation of structures by using forces produced by electric fields generated by the pyroelectric effect. The fabrication of polymer wires, needles, pillars, cones, or microspheres is reported, and practical proofs of their use in photonics are presented.

  17. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.

    PubMed

    Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A

    2012-10-22

    We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

  18. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  19. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE PAGES

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...

    2017-03-08

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  20. Human cardiac telocytes: 3D imaging by FIB-SEM tomography.

    PubMed

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-11-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs' three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  1. Influence of electrospun fiber mesh size on hMSC oxygen metabolism in 3D collagen matrices: experimental and theoretical evidences.

    PubMed

    Guaccio, Angela; Guarino, Vincenzo; Perez, Marco A Alvarez-; Cirillo, Valentina; Netti, Paolo A; Ambrosio, Luigi

    2011-08-01

    The traditional paradigm of tissue engineering of regenerating in vitro tissue or organs, through the combination of an artificial matrix and a cellular population has progressively changed direction. The most recent concept is the realization of a fully functional biohybrid, where both, the artificial and the biotic phase, concur in the formation of the novel organic matter. In this direction, interest is growing in approaches taking advantage of the control at micro- and nano-scale of cell material interaction based on the realization of elementary tassels of cells and materials which constitute the beginning point for the expansion of 3D more complex structures. Since a spontaneous assembly of all these components is expected, however, it becomes more fundamental than ever to define the features influencing cellular behavior, either they were material functional properties, or material architecture. In this work, it has been investigated the direct effect of electrospun fiber sizes on oxygen metabolism of h-MSC cells, when any other culture parameter was kept constant. To this aim, thin PCL electrospun membranes, with micro- and nano-scale texturing, were layered between two collagen slices up to create a sandwich structure (µC-PCL-C and nC-PCL-C). Cells were seeded on membranes, and the oxygen consumption was determined by a phosphorescence quenching technique. Results indicate a strong effect of the architecture of scaffolds on cell metabolism, also revealed by the increasing of HIF1-α gene expression in nC-PCL-C. These findings offer new insights into the role of materials in specific cell activities, also implying the existence of very interesting criteria for the control of tissue growth through the tuning of scaffold architecture. Copyright © 2011 Wiley Periodicals, Inc.

  2. Nanoscale invaginations of the nuclear envelope: Shedding new light on wormholes with elusive function.

    PubMed

    Schoen, Ingmar; Aires, Lina; Ries, Jonas; Vogel, Viola

    2017-09-03

    Recent advances in fluorescence microscopy have opened up new possibilities to investigate chromosomal and nuclear 3D organization on the nanoscale. We here discuss their potential for elucidating topographical details of the nuclear lamina. Single molecule localization microscopy (SMLM) in combination with immunostainings of lamina proteins readily reveals tube-like invaginations with a diameter of 100-500 nm. Although these invaginations have been established as a frequent and general feature of interphase nuclei across different cell types, their formation mechanism and function have remained largely elusive. We critically review the current state of research, propose possible connections to lamina associated domains (LADs), and revisit the discussion about the potential role of these invaginations for accelerating mRNA nuclear export. Illustrative studies using 3D super-resolution imaging are shown and will be instrumental to decipher the physiological role of these nanoscale invaginations.

  3. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miao, Hongchen; Sun, Yao; Zhou, Xilong

    Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower thanmore » the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.« less

  4. Nanoscale Landscape of Phosphoinositides Revealed by Specific Pleckstrin Homology (PH) Domains Using Single-molecule Superresolution Imaging in the Plasma Membrane*

    PubMed Central

    Ji, Chen; Zhang, Yongdeng; Xu, Pingyong; Xu, Tao; Lou, Xuelin

    2015-01-01

    Both phosphatidylinositol 4-phosphate (PI4P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) are independent plasma membrane (PM) determinant lipids that are essential for multiple cellular functions. However, their nanoscale spatial organization in the PM remains elusive. Using single-molecule superresolution microscopy and new photoactivatable fluorescence probes on the basis of pleckstrin homology domains that specifically recognize phosphatidylinositides in insulin-secreting INS-1 cells, we report that the PI(4,5)P2 probes exhibited a remarkably uniform distribution in the major regions of the PM, with some sparse PI(4,5)P2-enriched membrane patches/domains of diverse sizes (383 ± 14 nm on average). Quantitative analysis revealed a modest concentration gradient that was much less steep than previously thought, and no densely packed PI(4,5)P2 nanodomains were observed. Live-cell superresolution imaging further demonstrated the dynamic structural changes of those domains in the flat PM and membrane protrusions. PI4P and phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) showed similar spatial distributions as PI(4,5)P2. These data reveal the nanoscale landscape of key inositol phospholipids in the native PM and imply a framework for local cellular signaling and lipid-protein interactions at a nanometer scale. PMID:26396197

  5. Universal deformation pathways and flexural hardening of nanoscale 2D-material standing folds

    NASA Astrophysics Data System (ADS)

    Chacham, Helio; Barboza, Ana Paula M.; de Oliveira, Alan B.; de Oliveira, Camilla K.; Batista, Ronaldo J. C.; Neves, Bernardo R. A.

    2018-03-01

    In the present work, we use atomic force microscopy nanomanipulation of 2D-material standing folds to investigate their mechanical deformation. Using graphene, h-BN and talc nanoscale wrinkles as testbeds, universal force-strain pathways are clearly uncovered and well-accounted for by an analytical model. Such universality further enables the investigation of each fold bending stiffness κ as a function of its characteristic height h 0. We observe a more than tenfold increase of κ as h 0 increases in the 10-100 nm range, with power-law behaviors of κ versus h 0 with exponents larger than unity for the three materials. This implies anomalous scaling of the mechanical responses of nano-objects made from these materials.

  6. Simulation-Guided 3D Nanomanufacturing via Focused Electron Beam Induced Deposition

    DOE PAGES

    Fowlkes, Jason D.; Winkler, Robert; Lewis, Brett B.; ...

    2016-06-10

    Focused electron beam induced deposition (FEBID) is one of the few techniques that enables direct-write synthesis of free-standing 3D nanostructures. While the fabrication of simple architectures such as vertical or curving nanowires has been achieved by simple trial and error, processing complex 3D structures is not tractable with this approach. This is due, inpart, to the dynamic interplay between electron–solid interactions and the transient spatial distribution of absorbed precursor molecules on the solid surface. Here, we demonstrate the ability to controllably deposit 3D lattice structures at the micro/nanoscale, which have received recent interest owing to superior mechanical and optical properties.more » Moreover, a hybrid Monte Carlo–continuum simulation is briefly overviewed, and subsequently FEBID experiments and simulations are directly compared. Finally, a 3D computer-aided design (CAD) program is introduced, which generates the beam parameters necessary for FEBID by both simulation and experiment. In using this approach, we demonstrate the fabrication of various 3D lattice structures using Pt-, Au-, and W-based precursors.« less

  7. Growth of Nanoscale BaTiO3/SrTiO3 Superlattices by Molecular-Beam Epitaxy

    DTIC Science & Technology

    2008-05-01

    also of interest for novel acous- tic phonon devices including mirrors, filters, and cavities for coherent acoustic phonon generation and control...phonon “laser”).4 The structure of these devices is de- termined by the acoustic phonon wavelength, which is typically in the range of a few nanometers...nanoscale [(BaTiO3)n /(SrTiO3)m]p superlattices with atomically abrupt interfaces that are vital for the perfor- mance of acoustic phonon devices as

  8. Effect of 3D Cultivation Conditions on the Differentiation of Endodermal Cells

    PubMed Central

    Petrakova, O. S.; Ashapkin, V. V.; Voroteliak, E. A.; Bragin, E. Y.; Shtratnikova, V. Y.; Chernioglo, E. S.; Sukhanov, Y. V.; Terskikh, V. V.; Vasiliev, A. V.

    2012-01-01

    Cellular therapy of endodermal organs is one of the most important issues in modern cellular biology and biotechnology. One of the most promising directions in this field is the study of the transdifferentiation abilities of cells within the same germ layer. A method for anin vitroinvestigation of the cell differentiation potential (the cell culture in a three-dimensional matrix) is described in this article. Cell cultures of postnatal salivary gland cells and postnatal liver progenitor cells were obtained; their comparative analysis under 2D and 3D cultivation conditions was carried out. Both cell types have high proliferative abilities and can be cultivated for more than 20 passages. Under 2D cultivation conditions, the cells remain in an undifferentiated state. Under 3D conditions, they undergo differentiation, which was confirmed by a lower cell proliferation and by an increase in the differentiation marker expression. Salivary gland cells can undergo hepatic and pancreatic differentiation under 3D cultivation conditions. Liver progenitor cells also acquire a pancreatic differentiation capability under conditions of 3D cultivation. Thus, postnatal salivary gland cells exhibit a considerable differentiation potential within the endodermal germ layer and can be used as a promising source of endodermal cells for the cellular therapy of liver pathologies. Cultivation of cells under 3D conditions is a useful model for thein vitroanalysis of the cell differentiation potential. PMID:23346379

  9. Optical properties of tetragonal and nanoscale BiFeO3

    NASA Astrophysics Data System (ADS)

    Chen, P.; Xu, X. S.; Musfeldt, J. L.; Santulli, A. C.; Koenigsmann, C.; Wong, S. S.; Podraza, N. J.; Melville, A.; Vlahos, E.; Gopalan, V.; Schlom, D. G.; Ramesh, R.

    2010-03-01

    We measured the optical properties of tetragonal thin film and nanoscale rhombohedral BiFeO3 in the range from near infrared to the near ultraviolet. The absorption spectrum in the tetragonal film is overall blue-shifted compared with that of the rhombohedral BiFeO3 film. It shows an absorption onset near 2.25 eV, a direct 3.1 eV band gap, and charge transfer excitations that are ˜0.4 eV higher than those of the rhombohedral counterpart. In the nanoparticles, the band gap decreases from 2.7 eV to ˜2.3 eV, and the well-known 3.2 and 4.5 eV charge transfer excitations split into multiplets. We discuss these results in terms of structural strain, surface strain, and local symmetry breaking.

  10. The Role of Membrane Curvature in Nanoscale Topography-Induced Intracellular Signaling.

    PubMed

    Lou, Hsin-Ya; Zhao, Wenting; Zeng, Yongpeng; Cui, Bianxiao

    2018-05-15

    Over the past decade, there has been growing interest in developing biosensors and devices with nanoscale and vertical topography. Vertical nanostructures induce spontaneous cell engulfment, which enhances the cell-probe coupling efficiency and the sensitivity of biosensors. Although local membranes in contact with the nanostructures are found to be fully fluidic for lipid and membrane protein diffusions, cells appear to actively sense and respond to the surface topography presented by vertical nanostructures. For future development of biodevices, it is important to understand how cells interact with these nanostructures and how their presence modulates cellular function and activities. How cells recognize nanoscale surface topography has been an area of active research for two decades before the recent biosensor works. Extensive studies show that surface topographies in the range of tens to hundreds of nanometers can significantly affect cell functions, behaviors, and ultimately the cell fate. For example, titanium implants having rough surfaces are better for osteoblast attachment and host-implant integration than those with smooth surfaces. At the cellular level, nanoscale surface topography has been shown by a large number of studies to modulate cell attachment, activity, and differentiation. However, a mechanistic understanding of how cells interact and respond to nanoscale topographic features is still lacking. In this Account, we focus on some recent studies that support a new mechanism that local membrane curvature induced by nanoscale topography directly acts as a biochemical signal to induce intracellular signaling, which we refer to as the curvature hypothesis. The curvature hypothesis proposes that some intracellular proteins can recognize membrane curvatures of a certain range at the cell-to-material interface. These proteins then recruit and activate downstream components to modulate cell signaling and behavior. We discuss current technologies

  11. A 2D flood inundation model based on cellular automata approach

    NASA Astrophysics Data System (ADS)

    Dottori, Francesco; Todini, Ezio

    2010-05-01

    In the past years, the cellular automata approach has been successfully applied in two-dimensional modelling of flood events. When used in experimental applications, models based on such approach have provided good results, comparable to those obtained with more complex 2D models; moreover, CA models have proven significantly faster and easier to apply than most of existing models, and these features make them a valuable tool for flood analysis especially when dealing with large areas. However, to date the real degree of accuracy of such models has not been demonstrated, since they have been mainly used in experimental applications, while very few comparisons with theoretical solutions have been made. Also, the use of an explicit scheme of solution, which is inherent in cellular automata models, forces them to work only with small time steps, thus reducing model computation speed. The present work describes a cellular automata model based on the continuity and diffusive wave equations. Several model versions based on different solution schemes have been realized and tested in a number of numerical cases, both 1D and 2D, comparing the results with theoretical and numerical solutions. In all cases, the model performed well compared to the reference solutions, and proved to be both stable and accurate. Finally, the version providing the best results in terms of stability was tested in a real flood event and compared with different hydraulic models. Again, the cellular automata model provided very good results, both in term of computational speed and reproduction of the simulated event.

  12. 3D printing technologies for electrochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.

    Fabrication of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limited capability in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale and from nanowatt to megawatt, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, morphology) and structure with enhanced specific energy and power densities. Moreover, the additive manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. With the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nanomaterials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focused on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over multiple length scale

  13. 3D printing technologies for electrochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.

    We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over

  14. 3D printing technologies for electrochemical energy storage

    DOE PAGES

    Zhang, Feng; Wei, Min; Viswanathan, Vilayanur V.; ...

    2017-08-24

    We present that fabrication and assembly of electrodes and electrolytes play an important role in promoting the performance of electrochemical energy storage (EES) devices such as batteries and supercapacitors. Traditional fabrication techniques have limitations in controlling the geometry and architecture of the electrode and solid-state electrolytes, which would otherwise compromise the performance. 3D printing, a disruptive manufacturing technology, has emerged as an innovative approach to fabricating EES devices from nanoscale to macroscale, providing great opportunities to accurately control device geometry (e.g., dimension, porosity, and morphology) and structure with enhanced specific energy and power densities. Moreover, the “additive” manufacturing nature ofmore » 3D printing provides excellent controllability of the electrode thickness with much simplified process in a cost effective manner. Additionally, with the unique spatial and temporal material manipulation capability, 3D printing can integrate multiple nano-materials in the same print, and multi-functional EES devices (including functional gradient devices) can be fabricated. Herein, we review recent advances in 3D printing of EES devices. We focus on two major 3D printing technologies including direct writing and inkjet printing. The direct material deposition characteristics of these two processes enable them to print on a variety of flat substrates, even a conformal one, well suiting them to applications such as wearable devices and on-chip integrations. Other potential 3D printing techniques such as freeze nano-printing, stereolithography, fused deposition modeling, binder jetting, laminated object manufacturing, and metal 3D printing are also introduced. The advantages and limitations of each 3D printing technology are extensively discussed. More importantly, we provide a perspective on how to integrate the emerging 3D printing with existing technologies to create structures over

  15. Double activity imaging reveals distinct cellular targets of haloperidol, clozapine and dopamine D(3) receptor selective RGH-1756.

    PubMed

    Kovács, K J; Csejtei, M; Laszlovszky, I

    2001-03-01

    Acute administration of typical (haloperidol) and atypical (clozapine) antipsychotics results in distinct and overlapping regions of immediate-early gene expression in the rat brain. RGH-1756 is a recently developed atypical antipsychotic with high affinity to dopamine D(3) receptors that results in a unique pattern of c-Fos induction. A single injection of either antipsychotic results in c-fos mRNA expression that peaks around 30 min after drug administration, while the maximum of c-Fos protein induction is seen 2 h after challenge. The transient and distinct temporal inducibility of c-fos mRNA and c-Fos protein was exploited to reveal and compare cellular targets of different antipsychotic drugs by concomitant localization of c-fos mRNA and c-Fos immunoreactivity in brain sections of rats that were timely challenged with two different antipsychotics. Double activity imaging revealed that haloperidol, clozapine and RGH-1756 share cellular targets in the nucleus accumbens, where 40% of all labeled neurons displayed both c-fos mRNA and c-Fos protein. Haloperidol activates cells in the caudate putamen, while clozapine-responsive, single labeled neurons were dominant in the prefrontal cortex and major island of Calleja. RGH-1756 targets haloperidol-sensitive cells in the caudate putamen, but cells that are activated by clozapine and RGH-1756 in the major island of Calleja are different.

  16. Nanoparticle imaging. 3D structure of individual nanocrystals in solution by electron microscopy.

    PubMed

    Park, Jungwon; Elmlund, Hans; Ercius, Peter; Yuk, Jong Min; Limmer, David T; Chen, Qian; Kim, Kwanpyo; Han, Sang Hoon; Weitz, David A; Zettl, A; Alivisatos, A Paul

    2015-07-17

    Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale. Copyright © 2015, American Association for the Advancement of Science.

  17. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  18. 3D Printed Shock Mitigating Structures

    NASA Astrophysics Data System (ADS)

    Schrand, Amanda; Elston, Edwin; Dennis, Mitzi; Metroke, Tammy; Chen, Chenggang; Patton, Steven; Ganguli, Sabyasachi; Roy, Ajit

    Here we explore the durability, and shock mitigating potential, of solid and cellular 3D printed polymers and conductive inks under high strain rate, compressive shock wave and high g acceleration conditions. Our initial designs include a simple circuit with 4 resistors embedded into circular discs and a complex cylindrical gyroid shape. A novel ink consisting of silver-coated carbon black nanoparticles in a thermoplastic polyurethane was used as the trace material. One version of the disc structural design has the advantage of allowing disassembly after testing for direct failure analysis. After increasing impacts, printed and traditionally potted circuits were examined for functionality. Additionally, in the open disc design, trace cracking and delamination of resistors were able to be observed. In a parallel study, we examined the shock mitigating behavior of 3D printed cellular gyroid structures on a Split Hopkinson Pressure Bar (SHPB). We explored alterations to the classic SHPB setup for testing the low impedance, cellular samples to most accurately reflect the stress state inside the sample (strain rates from 700 to 1750 s-1). We discovered that the gyroid can effectively absorb the impact of the test resulting in crushing the structure. Future studies aim to tailor the unit cell dimensions for certain frequencies, increase print accuracy and optimize material compositions for conductivity and adhesion to manufacture more durable devices.

  19. Current State-of-the-Art 3D Tissue Models and Their Compatibility with Live Cell Imaging.

    PubMed

    Bardsley, Katie; Deegan, Anthony J; El Haj, Alicia; Yang, Ying

    2017-01-01

    Mammalian cells grow within a complex three-dimensional (3D) microenvironment where multiple cells are organized and surrounded by extracellular matrix (ECM). The quantity and types of ECM components, alongside cell-to-cell and cell-to-matrix interactions dictate cellular differentiation, proliferation and function in vivo. To mimic natural cellular activities, various 3D tissue culture models have been established to replace conventional two dimensional (2D) culture environments. Allowing for both characterization and visualization of cellular activities within possibly bulky 3D tissue models presents considerable challenges due to the increased thickness and subsequent light scattering features of such 3D models. In this chapter, state-of-the-art methodologies used to establish 3D tissue models are discussed, first with a focus on both scaffold-free and scaffold-based 3D tissue model formation. Following on, multiple 3D live cell imaging systems, mainly optical imaging modalities, are introduced. Their advantages and disadvantages are discussed, with the aim of stimulating more research in this highly demanding research area.

  20. Dynamic interactions between 14-3-3 proteins and phosphoproteins regulate diverse cellular processes

    PubMed Central

    2004-01-01

    14-3-3 proteins exert an extraordinarily widespread influence on cellular processes in all eukaryotes. They operate by binding to specific phosphorylated sites on diverse target proteins, thereby forcing conformational changes or influencing interactions between their targets and other molecules. In these ways, 14-3-3s ‘finish the job’ when phosphorylation alone lacks the power to drive changes in the activities of intracellular proteins. By interacting dynamically with phosphorylated proteins, 14-3-3s often trigger events that promote cell survival – in situations from preventing metabolic imbalances caused by sudden darkness in leaves to mammalian cell-survival responses to growth factors. Recent work linking specific 14-3-3 isoforms to genetic disorders and cancers, and the cellular effects of 14-3-3 agonists and antagonists, indicate that the cellular complement of 14-3-3 proteins may integrate the specificity and strength of signalling through to different cellular responses. PMID:15167810

  1. Interplay of Nanoscale, Hybrid P3HT/ZTO Interface on Optoelectronics and Photovoltaic Cells.

    PubMed

    Lai, Jian-Jhong; Li, Yu-Hsun; Feng, Bo-Rui; Tang, Shiow-Jing; Jian, Wen-Bin; Fu, Chuan-Min; Chen, Jiun-Tai; Wang, Xu; Lee, Pooi See

    2017-09-27

    Photovoltaic effects in poly(3-hexylthiophene-2,5-diyl) (P3HT) have attracted much attention recently. Here, natively p-type doped P3HT nanofibers and n-type doped zinc tin oxide (ZTO) nanowires are used for making not only field-effect transistors (FETs) but also p-n nanoscale diodes. The hybrid P3HT/ZTO p-n heterojunction shows applications in many directions, and it also facilitates the investigation of photoelectrons and photovoltaic effects on the nanoscale. As for applications, the heterojunction device shows a simultaneously high on/off ratio of n- and p-type FETs, gatable p-n junction diodes, tristate buffer devices, gatable photodetectors, and gatable solar cells. On the other hand, P3HT nanofibers are taken as a photoactive layer and the role played by the p-n heterojunction in the photoelectric and photovoltaic effects is investigated. It is found that the hybrid P3HT/ZTO p-n heterojunction assists in increasing photocurrents and enhancing photovoltaic effects. Through the controllable gating of the heterojunction, we can discuss the background mechanisms of photocurrent generation and photovoltaic energy harvesting.

  2. An instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography.

    PubMed

    Mochalov, Konstantin E; Chistyakov, Anton A; Solovyeva, Daria O; Mezin, Alexey V; Oleinikov, Vladimir A; Vaskan, Ivan S; Molinari, Michael; Agapov, Igor I; Nabiev, Igor; Efimov, Anton E

    2017-11-01

    In the past decade correlative microscopy, which combines the potentials of different types of high-resolution microscopies with a variety of optical microspectroscopy techniques, has been attracting increasing attention in material science and biological research. One of outstanding solutions in this area is the combination of scanning probe microscopy (SPM), which provides data on not only the topography, but also the spatial distribution of a wide range of physical properties (elasticity, conductivity, etc.), with ultramicrotomy, allowing 3D multiparametric examination of materials. The combination of SPM and ultramicrotomy (scanning probe nanotomography) is very appropriate for characterization of soft multicompound nanostructurized materials, such as polymer matrices and microstructures doped with different types of nanoparticles (magnetic nanoparticles, quantum dots, nanotubes, etc.), and biological materials. A serious problem of this technique is a lack of chemical and optical characterization tools, which may be solved by using optical microspectroscopy. Here, we report the development of an instrumental approach to combining confocal microspectroscopy and 3D scanning probe nanotomography in a single apparatus. This approach retains all the advantages of SPM and upright optical microspectroscopy and allows 3D multiparametric characterization using both techniques. As the first test of the system developed, we have performed correlative characterization of the morphology and the magnetic and fluorescent properties of fluorescent magnetic microspheres doped with a fluorescent dye and magnetic nanoparticles. The results of this study can be used to obtain 3D volume images of a specimen for most high-resolution near-field scanning probe microscopies: SNOM, TERS, AFM-IR, etc. This approach will result in development of unique techniques combining the advantages of SPM (nanoscale morphology and a wide range of physical parameters) and high-resolution optical

  3. Classifying and Analyzing 3d Cell Motion in Jammed Microgels

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Tapomoy; Sawyer, W. Gregory; Angelini, Thomas

    Soft granular polyelectrolyte microgels swell in liquid cell growth media to form a continuous elastic solid that can easily transition between solid to fluid state under a low shear stress. Such Liquid-like solids (LLS) have recently been used to create 3D cellular constructs as well as to support, culture and harvest cells in 3D. Current understanding of cell migration mechanics in 3D was established from experiments performed in natural and synthetic polymer networks. Spatial variation in network structure and the transience of degradable gels limit their usefulness in quantitative cell mechanics studies. By contrast, LLS growth media approximates a homogeneous continuum, enabling tractable cell mechanics measurements to be performed in 3D. Here, we introduce a process to understand and classify cytotoxic T cell motion in 3D by studying cellular motility in LLS media. General classification of T cell motion can be achieved with a very traditional statistical approach: the cell's mean squared displacement (MSD) as a function of delay time. We will also use Langevin approaches combined with the constitutive equations of the LLS medium to predict the statistics of T cell motion. National Science Foundation under Grant No. DMR-1352043.

  4. Neural patterning of human induced pluripotent stem cells in 3-D cultures for studying biomolecule-directed differential cellular responses.

    PubMed

    Yan, Yuanwei; Bejoy, Julie; Xia, Junfei; Guan, Jingjiao; Zhou, Yi; Li, Yan

    2016-09-15

    different neuronal subtypes in 3-D differentiation from hiPSCs and the differential cellular responses of region-specific neuronal subtypes to various biomolecules have not been fully investigated. By tuning neural patterning of hiPSCs with small molecules targeting sonic hedgehog signaling, this study provides knowledge on the differential susceptibility of region-specific neuronal subtypes derived from hiPSCs to different biomolecules in extracellular matrix remodeling and neurotoxicity. The findings are significant for understanding 3-D neural patterning of hiPSCs for the applications in brain organoid formation, neurological disease modeling, and drug discovery. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Localized Symmetry Breaking for Tuning Thermal Expansion in ScF 3 Nanoscale Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Lei; Qin, Feiyu; Sanson, Andrea

    The local symmetry, beyond the averaged crystallographic structure, tends to bring unu-sual performances. Negative thermal expansion is a peculiar physical property of solids. Here, we report the delicate design of the localized symmetry breaking to achieve the controllable thermal expansion in ScF3 nano-scale frameworks. Intriguingly, an isotropic zero thermal expansion is concurrently engi-neered by localized symmetry breaking, with a remarkably low coefficient of thermal expansion of about +4.0×10-8/K up to 675K. This mechanism is investigated by the joint analysis of atomic pair dis-tribution function of synchrotron X-ray total scattering and extended X-ray absorption fine structure spectra. A localized rhombohedral distortionmore » presumably plays a critical role in stiffening ScF3 nano-scale frameworks and concomitantly suppressing transverse thermal vibrations of fluorine atoms. This physical scenario is also theoretically corroborated by the extinction of phonon modes with negative Grüneisen parameters in the rhombohedral ScF3. The present work opens an untraditional chemical modification to achieve controllable thermal expansion by breaking local symmetries of materials.« less

  6. 3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.

    PubMed

    Chiappone, Annalisa; Fantino, Erika; Roppolo, Ignazio; Lorusso, Massimo; Manfredi, Diego; Fino, Paolo; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-03-02

    In this work, three-dimensional (3D) structured hybrid materials were fabricated combining 3D printing technology with in situ generation of inorganic nanoparticles by sol-gel technique. Those materials, consisting of silica nanodomains covalently interconnected with organic polymers, were 3D printed in complex multilayered architectures, incorporating liquid silica precursors into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. A post sol-gel treatment in acidic vapors allowed the in situ generation of the inorganic phase in a dedicated step. This method allows to build hybrid structures operating with a full liquid formulation without meeting the drawbacks of incorporating inorganic powders into 3D printable formulations. The influence of the generated silica nanoparticle on the printed objects was deeply investigated at macro- and nanoscale; the resulting light hybrid structures show improved mechanical properties and, thus, have a huge potential for applications in a variety of advanced technologies.

  7. 3D printing of nano- and micro-structures

    NASA Astrophysics Data System (ADS)

    Ramasamy, Mouli; Varadan, Vijay K.

    2016-04-01

    Additive manufacturing or 3D printing techniques are being vigorously investigated as a replacement to the traditional and conventional methods in fabrication to bring forth cost and time effective approaches. Introduction of 3D printing has led to printing micro and nanoscale structures including tissues and organelles, bioelectric sensors and devices, artificial bones and transplants, microfluidic devices, batteries and various other biomaterials. Various microfabrication processes have been developed to fabricate micro components and assemblies at lab scale. 3D Fabrication processes that can accommodate the functional and geometrical requirements to realize complicated structures are becoming feasible through advances in additive manufacturing. This advancement could lead to simpler development mechanisms of novel components and devices exhibiting complex features. For instance, development of microstructure electrodes that can penetrate the epidermis of the skin to collect the bio potential signal may prove very effective than the electrodes that measure signal from the skin's surface. The micro and nanostructures will have to possess extraordinary material and mechanical properties for its dexterity in the applications. A substantial amount of research being pursued on stretchable and flexible devices based on PDMA, textiles, and organic electronics. Despite the numerous advantages these substrates and techniques could solely offer, 3D printing enables a multi-dimensional approach towards finer and complex applications. This review emphasizes the use of 3D printing to fabricate micro and nanostructures for that can be applied for human healthcare.

  8. Dopant atoms as quantum components in silicon nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  9. Effects of 1,25(OH)2 D3 and 25(OH)D3 on C2C12 Myoblast Proliferation, Differentiation, and Myotube Hypertrophy.

    PubMed

    van der Meijden, K; Bravenboer, N; Dirks, N F; Heijboer, A C; den Heijer, M; de Wit, G M J; Offringa, C; Lips, P; Jaspers, R T

    2016-11-01

    An adequate vitamin D status is essential to optimize muscle strength. However, whether vitamin D directly reduces muscle fiber atrophy or stimulates muscle fiber hypertrophy remains subject of debate. A mechanism that may affect the role of vitamin D in the regulation of muscle fiber size is the local conversion of 25(OH)D to 1,25(OH)2 D by 1α-hydroxylase. Therefore, we investigated in a murine C2C12 myoblast culture whether both 1,25(OH)2 D3 and 25(OH)D3 affect myoblast proliferation, differentiation, and myotube size and whether these cells are able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . We show that myoblasts not only responded to 1,25(OH)2 D3 , but also to the precursor 25(OH)D3 by increasing their VDR mRNA expression and reducing their proliferation. In differentiating myoblasts and myotubes 1,25(OH)2 D3 as well as 25(OH)D3 stimulated VDR mRNA expression and in myotubes 1,25(OH)2 D3 also stimulated MHC mRNA expression. However, this occurred without notable effects on myotube size. Moreover, no effects on the Akt/mTOR signaling pathway as well as MyoD and myogenin mRNA levels were observed. Interestingly, both myoblasts and myotubes expressed CYP27B1 and CYP24 mRNA which are required for vitamin D3 metabolism. Although 1α-hydroxylase activity could not be shown in myotubes, after treatment with 1,25(OH)2 D3 or 25(OH)D3 myotubes showed strongly elevated CYP24 mRNA levels compared to untreated cells. Moreover, myotubes were able to convert 25(OH)D3 to 24R,25(OH)2 D3 which may play a role in myoblast proliferation and differentiation. These data suggest that skeletal muscle is not only a direct target for vitamin D3 metabolites, but is also able to metabolize 25(OH)D3 and 1,25(OH)2 D3 . J. Cell. Physiol. 231: 2517-2528, 2016. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.

  10. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  11. Reversible Flip-Flops in Quantum-Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Rad, Samaneh Kazemi; Heikalabad, Saeed Rasouli

    2017-09-01

    Quantum-dot cellular automata is a new technology to design the efficient combinational and sequential circuits at the nano-scale. This technology has many desirable advantages compared to the CMOS technology such as low power consumption, less occupation area and low latency. These features make it suitable for use in flip-flop design. In this paper, with knowing the characteristics of reversible logic, we design new structures for flip-flops. The operations of these structures are evaluated with QCADesigner Version 2.0.3 simulator. In addition, we calculate the power dissipation of these structures by QCAPro tool. The results illustrated that proposed structures are efficient compared to the previous ones.

  12. Vitamin D deficiency may be a risk factor for recurrent pregnancy losses by increasing cellular immunity and autoimmunity.

    PubMed

    Ota, Kuniaki; Dambaeva, Svetlana; Han, Ae-Ra; Beaman, Kenneth; Gilman-Sachs, Alice; Kwak-Kim, Joanne

    2014-02-01

    Do women with recurrent pregnancy losses (RPL) and low vitamin D have increased prevalence of auto- and cellular immune abnormalities when compared with women with RPL who have normal vitamin D, and does vitamin D have any effect on cellular immunity in vitro? A high proportion of women with RPL have vitamin D deficiency and the risk of auto- and cellular immune abnormalities is increased in women with RPL and vitamin D deficiency. Vitamin D deficiency in pregnant women is associated with increased risk of obstetrical complications such as pre-eclampsia, bacterial vaginosis associated preterm delivery, gestational diabetes mellitus and small-for-gestational age births. A retrospective cross-sectional study of 133 women with RPL who were enrolled in a 2-year period, together with laboratory experiments. Women with three or more consecutive spontaneous abortions prior to 20 weeks of gestation who were enrolled at the University clinic. Serum vitamin D level, cellular activity and autoimmune parameters in vivo and in vitro were measured. Sixty-three out of 133 women (47.4%) had low vitamin D (<30 ng/ml). The prevalence of antiphospholipid antibody (APA) was significantly higher in low vitamin D group (VDlow) (39.7%) than in the normal vitamin D group (VDnl) (22.9%) (P< 0.05) and the adjusted odds ratio (OR) for APA in VDlow was 2.22 with the 95% confidence interval (CI) of 1.0-4.7. The prevalence of antinuclear antigen antibody (VDlow versus VDnl; 23.8% versus 10.0%, OR 2.81, 95% CI 1.1-7.4), anti-ssDNA (19.0% versus 5.7%, OR 3.76, 95% CI 1.1-12.4) and thyroperoxidase antibody (33.3% versus 15.7%, OR 2.68, 95% CI 1.2-6.1) was significantly higher in VDlow than those of VDnl (P < 0.05 each). Peripheral blood CD19(+) B and CD56(+) NK cell levels and NK cytotoxicity at effector to target cell (E:T) ratio of 25:1 were significantly higher in VDlow when compared with those of VDnl (P < 0.05 each). Reduction (%) of NK cytotoxicity (at E:T ratio of 50:1 and 25:1) by IgG (12

  13. Nodule Detection in a Lung Region that's Segmented with Using Genetic Cellular Neural Networks and 3D Template Matching with Fuzzy Rule Based Thresholding

    PubMed Central

    Osman, Onur; Ucan, Osman N.

    2008-01-01

    Objective The purpose of this study was to develop a new method for automated lung nodule detection in serial section CT images with using the characteristics of the 3D appearance of the nodules that distinguish themselves from the vessels. Materials and Methods Lung nodules were detected in four steps. First, to reduce the number of region of interests (ROIs) and the computation time, the lung regions of the CTs were segmented using Genetic Cellular Neural Networks (G-CNN). Then, for each lung region, ROIs were specified with using the 8 directional search; +1 or -1 values were assigned to each voxel. The 3D ROI image was obtained by combining all the 2-Dimensional (2D) ROI images. A 3D template was created to find the nodule-like structures on the 3D ROI image. Convolution of the 3D ROI image with the proposed template strengthens the shapes that are similar to those of the template and it weakens the other ones. Finally, fuzzy rule based thresholding was applied and the ROI's were found. To test the system's efficiency, we used 16 cases with a total of 425 slices, which were taken from the Lung Image Database Consortium (LIDC) dataset. Results The computer aided diagnosis (CAD) system achieved 100% sensitivity with 13.375 FPs per case when the nodule thickness was greater than or equal to 5.625 mm. Conclusion Our results indicate that the detection performance of our algorithm is satisfactory, and this may well improve the performance of computer-aided detection of lung nodules. PMID:18253070

  14. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  15. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution

    DOE PAGES

    Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.; ...

    2017-04-21

    Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less

  16. Quantitative 3D evolution of colloidal nanoparticle oxidation in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yugang; Zuo, Xiaobing; Sankaranarayanan, Subramanian K. R. S.

    Real-time tracking three-dimensional (3D) evolution of colloidal nanoparticles in solution is essential for understanding complex mechanisms involved in nanoparticle growth and transformation. We simultaneously use time-resolved small-angle and wide-angle x-ray scattering to monitor oxidation of highly uniform colloidal iron nanoparticles, enabling the reconstruction of intermediate 3D morphologies of the nanoparticles with a spatial resolution of ~5 Å. The in-situ probing combined with large-scale reactive molecular dynamics simulations reveals the transformational details from the solid metal nanoparticles to hollow metal oxide nanoshells via nanoscale Kirkendall process, for example, coalescence of voids upon their growth, reversing of mass diffusion direction depending onmore » crystallinity, and so forth. In conclusion, our results highlight the complex interplay between defect chemistry and defect dynamics in determining nanoparticle transformation and formation.« less

  17. Protein Bricks: 2D and 3D Bio-Nanostructures with Shape and Function on Demand.

    PubMed

    Jiang, Jianjuan; Zhang, Shaoqing; Qian, Zhigang; Qin, Nan; Song, Wenwen; Sun, Long; Zhou, Zhitao; Shi, Zhifeng; Chen, Liang; Li, Xinxin; Mao, Ying; Kaplan, David L; Gilbert Corder, Stephanie N; Chen, Xinzhong; Liu, Mengkun; Omenetto, Fiorenzo G; Xia, Xiaoxia; Tao, Tiger H

    2018-05-01

    Precise patterning of polymer-based biomaterials for functional bio-nanostructures has extensive applications including biosensing, tissue engineering, and regenerative medicine. Remarkable progress is made in both top-down (based on lithographic methods) and bottom-up (via self-assembly) approaches with natural and synthetic biopolymers. However, most methods only yield 2D and pseudo-3D structures with restricted geometries and functionalities. Here, it is reported that precise nanostructuring on genetically engineered spider silk by accurately directing ion and electron beam interactions with the protein's matrix at the nanoscale to create well-defined 2D bionanopatterns and further assemble 3D bionanoarchitectures with shape and function on demand, termed "Protein Bricks." The added control over protein sequence and molecular weight of recombinant spider silk via genetic engineering provides unprecedented lithographic resolution (approaching the molecular limit), sharpness, and biological functions compared to natural proteins. This approach provides a facile method for patterning and immobilizing functional molecules within nanoscopic, hierarchical protein structures, which sheds light on a wide range of biomedical applications such as structure-enhanced fluorescence and biomimetic microenvironments for controlling cell fate. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    PubMed

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  19. Engineering cancer microenvironments for in vitro 3-D tumor models

    PubMed Central

    Asghar, Waseem; El Assal, Rami; Shafiee, Hadi; Pitteri, Sharon; Paulmurugan, Ramasamy; Demirci, Utkan

    2017-01-01

    The natural microenvironment of tumors is composed of extracellular matrix (ECM), blood vasculature, and supporting stromal cells. The physical characteristics of ECM as well as the cellular components play a vital role in controlling cancer cell proliferation, apoptosis, metabolism, and differentiation. To mimic the tumor microenvironment outside the human body for drug testing, two-dimensional (2-D) and murine tumor models are routinely used. Although these conventional approaches are employed in preclinical studies, they still present challenges. For example, murine tumor models are expensive and difficult to adopt for routine drug screening. On the other hand, 2-D in vitro models are simple to perform, but they do not recapitulate natural tumor microenvironment, because they do not capture important three-dimensional (3-D) cell–cell, cell–matrix signaling pathways, and multi-cellular heterogeneous components of the tumor microenvironment such as stromal and immune cells. The three-dimensional (3-D) in vitro tumor models aim to closely mimic cancer microenvironments and have emerged as an alternative to routinely used methods for drug screening. Herein, we review recent advances in 3-D tumor model generation and highlight directions for future applications in drug testing. PMID:28458612

  20. Micro- and nanoscale devices for investigation of epigenetics and chromatin dynamics

    PubMed Central

    2014-01-01

    DNA is the blueprint upon which life is based and transmitted, yet the manner in which chromatin, the dynamic complex of nucleic acids and proteins, is packaged and behaves within the cellular nucleus has only begun to be investigated. The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations, and therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA and chromatin modifications and higher order chromatin structure. PMID:24091454

  1. Bringing macromolecular machinery to life using 3D animation.

    PubMed

    Iwasa, Janet H

    2015-04-01

    Over the past decade, there has been a rapid rise in the use of three-dimensional (3D) animation to depict molecular and cellular processes. Much of the growth in molecular animation has been in the educational arena, but increasingly, 3D animation software is finding its way into research laboratories. In this review, I will discuss a number of ways in which 3d animation software can play a valuable role in visualizing and communicating macromolecular structures and dynamics. I will also consider the challenges of using animation tools within the research sphere. Copyright © 2015. Published by Elsevier Ltd.

  2. MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains

    PubMed Central

    1996-01-01

    Cellular disintegrins are a family of proteins that are related to snake venom integrin ligands and metalloproteases. We have cloned and sequenced the mouse and human homologue of a widely expressed cellular disintegrin, which we have termed MDC9 (for metalloprotease/disintegrin/cysteine-rich protein 9). The deduced mouse and human protein sequences are 82% identical. MDC9 contains several distinct protein domains: a signal sequence is followed by a prodomain and a domain with sequence similarity to snake venom metalloproteases, a disintegrin domain, a cysteine-rich region, an EGF repeat, a membrane anchor, and a cytoplasmic tail. The cytoplasmic tail of MDC9 has two proline-rich sequences which can bind the SH3 domain of Src, and may therefore function as SH3 ligand domains. Western blot analysis shows that MDC9 is an approximately 84-kD glycoprotein in all mouse tissues examined, and in NIH 3T3 fibroblast and C2C12 myoblast mouse cell lines. MDC9 can be both cell surface biotinylated and 125I-labeled in NIH 3T3 mouse fibroblasts, indicating that the protein is present on the plasma membrane. Expression of MDC9 in COS-7 cells yields an 84-kD protein, and immunofluorescence analysis of COS-7 cells expressing MDC9 shows a staining pattern that is consistent with a plasma membrane localization. The apparent molecular mass of 84 kD suggests that MDC9 contains a membrane-anchored metalloprotease and disintegrin domain. We propose that MDC9 might function as a membrane-anchored integrin ligand or metalloprotease, or that MDC9 may combine both activities in one protein. PMID:8647900

  3. Cellular reprogramming dynamics follow a simple 1D reaction coordinate

    NASA Astrophysics Data System (ADS)

    Teja Pusuluri, Sai; Lang, Alex H.; Mehta, Pankaj; Castillo, Horacio E.

    2018-01-01

    Cellular reprogramming, the conversion of one cell type to another, induces global changes in gene expression involving thousands of genes, and understanding how cells globally alter their gene expression profile during reprogramming is an ongoing problem. Here we reanalyze time-course data on cellular reprogramming from differentiated cell types to induced pluripotent stem cells (iPSCs) and show that gene expression dynamics during reprogramming follow a simple 1D reaction coordinate. This reaction coordinate is independent of both the time it takes to reach the iPSC state as well as the details of the experimental protocol used. Using Monte-Carlo simulations, we show that such a reaction coordinate emerges from epigenetic landscape models where cellular reprogramming is viewed as a ‘barrier-crossing’ process between cell fates. Overall, our analysis and model suggest that gene expression dynamics during reprogramming follow a canonical trajectory consistent with the idea of an ‘optimal path’ in gene expression space for reprogramming.

  4. 1α,25-Dihydroxyvitamin D3-3β-bromoacetate, a potential cancer therapeutic agent: synthesis and molecular mechanism of action

    PubMed Central

    Ray, Rahul; Lambert, James R.

    2011-01-01

    Synthesis of 1α,25-dihydroxyvitamin D3-3β-bromoacetate (1,25(OH)2D3-3-BE), a potential anti-cancer agent is presented. We also report that mechanism of action of 1,25(OH)2D3-3-BE may involve reduction of its catabolism, as evidenced by the reduced and delayed expression of 1α,25-dihydroxyvitamin D3-24-hydroxylase (CYP24) gene in cellular assays. PMID:21392983

  5. The effect of Si nano-columns in 2-D and 3-D on cellular behaviour: nanotopography-induced CaP deposition from differentiating mesenchymal stem cells.

    PubMed

    Guvendik, S; Trabzon, L; Ramazanoglu, M

    2011-10-01

    Si nano-columns were deposited in 2-D and 3-D in the form of well-defined geometries by physical vapor deposition. The films were grown by e-beam evaporation with an angle between source and substrate. The Si nano-columns were deposited in the shape of spiral with two different incoming atomic flux angle so that the manipulation of nano-columns in 3-D (out-of-plane) was obtained. The Si nano-columns were also grown as vertical stick with square, triangle and linear cross sections in 2D (in-plane). Rat bone marrow mesenchymal stem cells (MSCs) were cultured on these different Si nanosurfaces. MTS assay was carried out to determine the cell proliferation and viability based on different nanotopographies. For the evaluation of cell distribution and morphology, a SEM (Scanning Electron Microscopy) analysis was performed. Any CaP deposition on Si nanosurfaces was observed using energy dispersive X-Ray spectroscopy in SEM (SEM-EDX). After 4 days of culture, there was a higher value of cell proliferation on square columns and spiral Si nano-columns grown with 85 degrees of incoming atomic flux. The cell attachment and spreading was also affected by the geometry of Si nano-columns. While there were still cells showing round/spherical morphology with minimal spreading on conventional Si surfaces, most of the cells cultured on different Si nanotopographies attached on the surface and displayed flattened morphology, especially on the square columns surface. Moreover, CaP deposition was discovered on square columns and spiral films with 85 degrees substrate angle. So, it can be concluded that there is a clear correlation between cell responses and nano-sized geometry on Si surface and it is possible to induce cellular differentiation and CaP formation in certain geometrical constraints.

  6. Hybrid 3D printing by bridging micro/nano processes

    NASA Astrophysics Data System (ADS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  7. Emerging ferroelectric transistors with nanoscale channel materials: the possibilities, the limitations

    NASA Astrophysics Data System (ADS)

    Hong, Xia

    2016-03-01

    Combining the nonvolatile, locally switchable polarization field of a ferroelectric thin film with a nanoscale electronic material in a field effect transistor structure offers the opportunity to examine and control a rich variety of mesoscopic phenomena and interface coupling. It is also possible to introduce new phases and functionalities into these hybrid systems through rational design. This paper reviews two rapidly progressing branches in the field of ferroelectric transistors, which employ two distinct classes of nanoscale electronic materials as the conducting channel, the two-dimensional (2D) electron gas graphene and the strongly correlated transition metal oxide thin films. The topics covered include the basic device physics, novel phenomena emerging in the hybrid systems, critical mechanisms that control the magnitude and stability of the field effect modulation and the mobility of the channel material, potential device applications, and the performance limitations of these devices due to the complex interface interactions and challenges in achieving controlled materials properties. Possible future directions for this field are also outlined, including local ferroelectric gate control via nanoscale domain patterning and incorporating other emergent materials in this device concept, such as the simple binary ferroelectrics, layered 2D transition metal dichalcogenides, and the 4d and 5d heavy metal compounds with strong spin-orbit coupling.

  8. Comparative Study on Cushion Performance Between 3D Printed Kelvin Structure and 3D Printed Lattice Structure

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Lakshmi

    Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.

  9. Comparison of 3D cellular imaging techniques based on scanned electron probes: Serial block face SEM vs. Axial bright-field STEM tomography.

    PubMed

    McBride, E L; Rao, A; Zhang, G; Hoyne, J D; Calco, G N; Kuo, B C; He, Q; Prince, A A; Pokrovskaya, I D; Storrie, B; Sousa, A A; Aronova, M A; Leapman, R D

    2018-06-01

    Microscopies based on focused electron probes allow the cell biologist to image the 3D ultrastructure of eukaryotic cells and tissues extending over large volumes, thus providing new insight into the relationship between cellular architecture and function of organelles. Here we compare two such techniques: electron tomography in conjunction with axial bright-field scanning transmission electron microscopy (BF-STEM), and serial block face scanning electron microscopy (SBF-SEM). The advantages and limitations of each technique are illustrated by their application to determining the 3D ultrastructure of human blood platelets, by considering specimen geometry, specimen preparation, beam damage and image processing methods. Many features of the complex membranes composing the platelet organelles can be determined from both approaches, although STEM tomography offers a higher ∼3 nm isotropic pixel size, compared with ∼5 nm for SBF-SEM in the plane of the block face and ∼30 nm in the perpendicular direction. In this regard, we demonstrate that STEM tomography is advantageous for visualizing the platelet canalicular system, which consists of an interconnected network of narrow (∼50-100 nm) membranous cisternae. In contrast, SBF-SEM enables visualization of complete platelets, each of which extends ∼2 µm in minimum dimension, whereas BF-STEM tomography can typically only visualize approximately half of the platelet volume due to a rapid non-linear loss of signal in specimens of thickness greater than ∼1.5 µm. We also show that the limitations of each approach can be ameliorated by combining 3D and 2D measurements using a stereological approach. Copyright © 2018. Published by Elsevier Inc.

  10. 3D Mimicry of Native-Tissue-Fiber Architecture Guides Tendon-Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs.

    PubMed

    Laranjeira, Mariana; Domingues, Rui M A; Costa-Almeida, Raquel; Reis, Rui L; Gomes, Manuela E

    2017-08-01

    Tendon and ligament (T/L) function is intrinsically related with their unique hierarchically and anisotropically organized extracellular matrix. Their natural healing capacity is, however, limited. Here, continuous and aligned electrospun nanofiber threads (CANT) based on synthetic/natural polymer blends mechanically reinforced with cellulose nanocrystals are produced to replicate the nanoscale collagen fibrils grouped into microscale collagen fibers that compose the native T/L. CANT are then incrementally assembled into 3D hierarchical scaffolds, resulting in woven constructions, which simultaneously mimic T/L nano-to-macro architecture, nanotopography, and nonlinear biomechanical behavior. Biological performance is assessed using human-tendon-derived cells (hTDCs) and human adipose stem cells (hASCs). Scaffolds nanotopography and microstructure induce a high cytoskeleton elongation and anisotropic organization typical of tendon tissues. Moreover, the expression of tendon-related markers (Collagen types I and III, Tenascin-C, and Scleraxis) by both cell types, and the similarities observed on their expression patterns over time suggest that the developed scaffolds not only prevent the phenotypic drift of hTDCs, but also trigger tenogenic differentiation of hASCs. Overall, these results demonstrate a feasible approach for the scalable production of 3D hierarchical scaffolds that exhibit key structural and biomechanical properties, which can be advantageously explored in acellular and cellular T/L TE strategies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Predictability in Cellular Automata

    PubMed Central

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case. PMID:25271778

  12. Predictability in cellular automata.

    PubMed

    Agapie, Alexandru; Andreica, Anca; Chira, Camelia; Giuclea, Marius

    2014-01-01

    Modelled as finite homogeneous Markov chains, probabilistic cellular automata with local transition probabilities in (0, 1) always posses a stationary distribution. This result alone is not very helpful when it comes to predicting the final configuration; one needs also a formula connecting the probabilities in the stationary distribution to some intrinsic feature of the lattice configuration. Previous results on the asynchronous cellular automata have showed that such feature really exists. It is the number of zero-one borders within the automaton's binary configuration. An exponential formula in the number of zero-one borders has been proved for the 1-D, 2-D and 3-D asynchronous automata with neighborhood three, five and seven, respectively. We perform computer experiments on a synchronous cellular automaton to check whether the empirical distribution obeys also that theoretical formula. The numerical results indicate a perfect fit for neighbourhood three and five, which opens the way for a rigorous proof of the formula in this new, synchronous case.

  13. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  14. In situ 3-D mapping of pore structures and hollow grains of interplanetary dust particles with phase contrast X-ray nanotomography

    NASA Astrophysics Data System (ADS)

    Hu, Z. W.; Winarski, R. P.

    2016-09-01

    Unlocking the 3-D structure and properties of intact chondritic porous interplanetary dust particles (IDPs) in nanoscale detail is challenging, which is also complicated by atmospheric entry heating, but is important for advancing our understanding of the formation and origins of IDPs and planetary bodies as well as dust and ice agglomeration in the outer protoplanetary disk. Here, we show that indigenous pores, pristine grains, and thermal alteration products throughout intact particles can be noninvasively visualized and distinguished morphologically and microstructurally in 3-D detail down to ~10 nm by exploiting phase contrast X-ray nanotomography. We have uncovered the surprisingly intricate, submicron, and nanoscale pore structures of a ~10-μm-long porous IDP, consisting of two types of voids that are interconnected in 3-D space. One is morphologically primitive and mostly submicron-sized intergranular voids that are ubiquitous; the other is morphologically advanced and well-defined intragranular nanoholes that run through the approximate centers of ~0.3 μm or lower submicron hollow grains. The distinct hollow grains exhibit complex 3-D morphologies but in 2-D projections resemble typical organic hollow globules observed by transmission electron microscopy. The particle, with its outer region characterized by rough vesicular structures due to thermal alteration, has turned out to be an inherently fragile and intricately submicron- and nanoporous aggregate of the sub-μm grains or grain clumps that are delicately bound together frequently with little grain-to-grain contact in 3-D space.

  15. Interactions with nanoscale topography: adhesion quantification and signal transduction in cells of osteogenic and multipotent lineage.

    PubMed

    Biggs, Manus J P; Richards, R Geoff; Gadegaard, Nikolaj; McMurray, Rebecca J; Affrossman, Stanley; Wilkinson, Chris D W; Oreffo, Richard O C; Dalby, Mathew J

    2009-10-01

    Polymeric medical devices widely used in orthopedic surgery play key roles in fracture fixation and orthopedic implant design. Topographical modification and surface micro-roughness of these devices regulate cellular adhesion, a process fundamental in the initiation of osteoinduction and osteogenesis. Advances in fabrication techniques have evolved the field of surface modification; in particular, nanotechnology has allowed the development of nanoscale substrates for the investigation into cell-nanofeature interactions. In this study human osteoblasts (HOBs) were cultured on ordered nanoscale pits and random nano "craters" and "islands". Adhesion subtypes were quantified by immunofluorescent microscopy and cell-substrate interactions investigated via immuno-scanning electron microscopy. To investigate the effects of these substrates on cellular function 1.7 k microarray analysis was used to establish gene profiles of enriched STRO-1+ progenitor cell populations cultured on these nanotopographies. Nanotopographies affected the formation of adhesions on experimental substrates. Adhesion formation was prominent on planar control substrates and reduced on nanocrater and nanoisland topographies; nanopits, however, were shown to inhibit directly the formation of large adhesions. STRO-1+ progenitor cells cultured on experimental substrates revealed significant changes in genetic expression. This study implicates nanotopographical modification as a significant modulator of osteoblast adhesion and cellular function in mesenchymal populations.

  16. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  17. Extrusion-Based 3D Printing of Hierarchically Porous Advanced Battery Electrodes.

    PubMed

    Lacey, Steven D; Kirsch, Dylan J; Li, Yiju; Morgenstern, Joseph T; Zarket, Brady C; Yao, Yonggang; Dai, Jiaqi; Garcia, Laurence Q; Liu, Boyang; Gao, Tingting; Xu, Shaomao; Raghavan, Srinivasa R; Connell, John W; Lin, Yi; Hu, Liangbing

    2018-03-01

    A highly porous 2D nanomaterial, holey graphene oxide (hGO), is synthesized directly from holey graphene powder and employed to create an aqueous 3D printable ink without the use of additives or binders. Stable dispersions of hydrophilic hGO sheets in water (≈100 mg mL -1 ) can be readily achieved. The shear-thinning behavior of the aqueous hGO ink enables extrusion-based printing of fine filaments into complex 3D architectures, such as stacked mesh structures, on arbitrary substrates. The freestanding 3D printed hGO meshes exhibit trimodal porosity: nanoscale (4-25 nm through-holes on hGO sheets), microscale (tens of micrometer-sized pores introduced by lyophilization), and macroscale (<500 µm square pores of the mesh design), which are advantageous for high-performance energy storage devices that rely on interfacial reactions to promote full active-site utilization. To elucidate the benefit of (nano)porosity and structurally conscious designs, the additive-free architectures are demonstrated as the first 3D printed lithium-oxygen (Li-O 2 ) cathodes and characterized alongside 3D printed GO-based materials without nanoporosity as well as nanoporous 2D vacuum filtrated films. The results indicate the synergistic effect between 2D nanomaterials, hierarchical porosity, and overall structural design, as well as the promise of a freeform generation of high-energy-density battery systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    NASA Astrophysics Data System (ADS)

    Malik, S.; Hewitt, I. J.; Powell, A. K.

    2014-07-01

    The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI) and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4) was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain) is associated with neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS) gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  19. 3D and 4D Bioprinting of the Myocardium: Current Approaches, Challenges, and Future Prospects

    PubMed Central

    Ong, Chin Siang; Nam, Lucy; Ong, Kingsfield; Krishnan, Aravind; Huang, Chen Yu; Fukunishi, Takuma

    2018-01-01

    3D and 4D bioprinting of the heart are exciting notions in the modern era. However, myocardial bioprinting has proven to be challenging. This review outlines the methods, materials, cell types, issues, challenges, and future prospects in myocardial bioprinting. Advances in 3D bioprinting technology have significantly improved the manufacturing process. While scaffolds have traditionally been utilized, 3D bioprinters, which do not require scaffolds, are increasingly being employed. Improved understanding of the cardiac cellular composition and multiple strategies to tackle the issues of vascularization and viability had led to progress in this field. In vivo studies utilizing small animal models have been promising. 4D bioprinting is a new concept that has potential to advance the field of 3D bioprinting further by incorporating the fourth dimension of time. Clinical translation will require multidisciplinary collaboration to tackle the pertinent issues facing this field. PMID:29850546

  20. 1D-3D hybrid modeling-from multi-compartment models to full resolution models in space and time.

    PubMed

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator-which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to the

  1. High-throughput 3D whole-brain quantitative histopathology in rodents

    PubMed Central

    Vandenberghe, Michel E.; Hérard, Anne-Sophie; Souedet, Nicolas; Sadouni, Elmahdi; Santin, Mathieu D.; Briet, Dominique; Carré, Denis; Schulz, Jocelyne; Hantraye, Philippe; Chabrier, Pierre-Etienne; Rooney, Thomas; Debeir, Thomas; Blanchard, Véronique; Pradier, Laurent; Dhenain, Marc; Delzescaux, Thierry

    2016-01-01

    Histology is the gold standard to unveil microscopic brain structures and pathological alterations in humans and animal models of disease. However, due to tedious manual interventions, quantification of histopathological markers is classically performed on a few tissue sections, thus restricting measurements to limited portions of the brain. Recently developed 3D microscopic imaging techniques have allowed in-depth study of neuroanatomy. However, quantitative methods are still lacking for whole-brain analysis of cellular and pathological markers. Here, we propose a ready-to-use, automated, and scalable method to thoroughly quantify histopathological markers in 3D in rodent whole brains. It relies on block-face photography, serial histology and 3D-HAPi (Three Dimensional Histology Analysis Pipeline), an open source image analysis software. We illustrate our method in studies involving mouse models of Alzheimer’s disease and show that it can be broadly applied to characterize animal models of brain diseases, to evaluate therapeutic interventions, to anatomically correlate cellular and pathological markers throughout the entire brain and to validate in vivo imaging techniques. PMID:26876372

  2. An efficient way of high-contrast, quasi-3D cellular imaging: off-axis illumination.

    PubMed

    Hostounský, Zdenĕk; Pelc, Radek

    2006-07-31

    An imaging system enabling a convenient visualisation of cells and other small objects is presented. It represents an adaptation of the optical microscope condenser, accommodating a built-in edge (relief) diaphragm brought close to the condenser iris diaphragm and enabling high-contrast pseudo-relief (quasi-3D) imaging. The device broadens the family of available apparatus based on the off-axis (or anaxial, asymmetric, inclined, oblique, schlieren-type, sideband) illumination. The simplicity of the design makes the condenser a user-friendly, dedicated device delivering high-contrast quasi-3D images of phase objects. Those are nearly invisible under the ordinary (axial) illumination. The phase contrast microscopy commonly used in visualisation of phase objects does not deliver the quasi-3D effect and introduces a disturbing 'halo' effect around the edges. The performance of the device presented here is demonstrated on living cells and tissue replicas. High-contrast quasi-3D images of cell-free preparations of biological origin (paper fibres and microcrystals) are shown as well.

  3. 3D Printing of Organs-On-Chips.

    PubMed

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-25

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms.

  4. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication

    PubMed Central

    Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong

    2016-01-01

    ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against

  5. Sculplexity: Sculptures of Complexity using 3D printing

    NASA Astrophysics Data System (ADS)

    Reiss, D. S.; Price, J. J.; Evans, T. S.

    2013-11-01

    We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.

  6. Nanoscale live cell optical imaging of the dynamics of intracellular microvesicles in neural cells.

    PubMed

    Lee, Sohee; Heo, Chaejeong; Suh, Minah; Lee, Young Hee

    2013-11-01

    Recent advances in biotechnology and imaging technology have provided great opportunities to investigate cellular dynamics. Conventional imaging methods such as transmission electron microscopy, scanning electron microscopy, and atomic force microscopy are powerful techniques for cellular imaging, even at the nanoscale level. However, these techniques have limitations applications in live cell imaging because of the experimental preparation required, namely cell fixation, and the innately small field of view. In this study, we developed a nanoscale optical imaging (NOI) system that combines a conventional optical microscope with a high resolution dark-field condenser (Cytoviva, Inc.) and halogen illuminator. The NOI system's maximum resolution for live cell imaging is around 100 nm. We utilized NOI to investigate the dynamics of intracellular microvesicles of neural cells without immunocytological analysis. In particular, we studied direct, active random, and moderate random dynamic motions of intracellular microvesicles and visualized lysosomal vesicle changes after treatment of cells with a lysosomal inhibitor (NH4Cl). Our results indicate that the NOI system is a feasible, high-resolution optical imaging system for live small organelles that does not require complicated optics or immunocytological staining processes.

  7. Characterization of Phenotypic and Transcriptional Differences in Human Pluripotent Stem Cells under 2D and 3D Culture Conditions.

    PubMed

    Kamei, Ken-Ichiro; Koyama, Yoshie; Tokunaga, Yumie; Mashimo, Yasumasa; Yoshioka, Momoko; Fockenberg, Christopher; Mosbergen, Rowland; Korn, Othmar; Wells, Christine; Chen, Yong

    2016-11-01

    Human pluripotent stem cells hold great promise for applications in drug discovery and regenerative medicine. Microfluidic technology is a promising approach for creating artificial microenvironments; however, although a proper 3D microenvironment is required to achieve robust control of cellular phenotypes, most current microfluidic devices provide only 2D cell culture and do not allow tuning of physical and chemical environmental cues simultaneously. Here, the authors report a 3D cellular microenvironment plate (3D-CEP), which consists of a microfluidic device filled with thermoresponsive poly(N-isopropylacrylamide)-β-poly(ethylene glycol) hydrogel (HG), which enables systematic tuning of both chemical and physical environmental cues as well as in situ cell monitoring. The authors show that H9 human embryonic stem cells (hESCs) and 253G1 human induced pluripotent stem cells in the HG/3D-CEP system maintain their pluripotent marker expression under HG/3D-CEP self-renewing conditions. Additionally, global gene expression analyses are used to elucidate small variations among different test environments. Interestingly, the authors find that treatment of H9 hESCs under HG/3D-CEP self-renewing conditions results in initiation of entry into the neural differentiation process by induction of PAX3 and OTX1 expression. The authors believe that this HG/3D-CEP system will serve as a versatile platform for developing targeted functional cell lines and facilitate advances in drug screening and regenerative medicine. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Intelligent Design of Nano-Scale Molecular Imaging Agents

    PubMed Central

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-01-01

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on–off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents. PMID:23235326

  9. Intelligent design of nano-scale molecular imaging agents.

    PubMed

    Kim, Sung Bae; Hattori, Mitsuru; Ozawa, Takeaki

    2012-12-12

    Visual representation and quantification of biological processes at the cellular and subcellular levels within living subjects are gaining great interest in life science to address frontier issues in pathology and physiology. As intact living subjects do not emit any optical signature, visual representation usually exploits nano-scale imaging agents as the source of image contrast. Many imaging agents have been developed for this purpose, some of which exert nonspecific, passive, and physical interaction with a target. Current research interest in molecular imaging has mainly shifted to fabrication of smartly integrated, specific, and versatile agents that emit fluorescence or luminescence as an optical readout. These agents include luminescent quantum dots (QDs), biofunctional antibodies, and multifunctional nanoparticles. Furthermore, genetically encoded nano-imaging agents embedding fluorescent proteins or luciferases are now gaining popularity. These agents are generated by integrative design of the components, such as luciferase, flexible linker, and receptor to exert a specific on-off switching in the complex context of living subjects. In the present review, we provide an overview of the basic concepts, smart design, and practical contribution of recent nano-scale imaging agents, especially with respect to genetically encoded imaging agents.

  10. Fabricating Ohmic contact on Nb-doped SrTiO{sub 3} surface in nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuhang; National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang, Sichuan 621999; Shi, Xiaolan

    2016-05-09

    Fabricating reliable nano-Ohmic contact on wide gap semiconductors is an important yet difficult step in oxide nanoelectronics. We fabricated Ohmic contact on the n-type wide gap oxide Nb-doped SrTiO{sub 3} in nanoscale by mechanically scratching the surface using an atomic force microscopy tip. Although contacted to high work function metal, the scratched area exhibits nearly linear IV behavior with low contact resistance, which maintains for hours in vacuum. In contrast, the unscratched area shows Fowler–Nordheim tunneling dominated Schottky rectifying behavior with high contact resistance. It was found that the Ohmic conductivity in the scratched area was drastically suppressed by oxygenmore » gas indicating the oxygen vacancy origin of the Ohmic behavior. The surface oxygen vacancy induced barrier width reduction was proposed to explain the phenomena. The nanoscale approach is also applicable to macroscopic devices and has potential application in all-oxide devices.« less

  11. Modulatory effects of vitamin D on peripheral cellular immunity in patients with recurrent miscarriage.

    PubMed

    Chen, Xian; Yin, Biao; Lian, Ruo-Chun; Zhang, Tao; Zhang, Hong-Zhan; Diao, Liang-Hui; Li, Yu-Ye; Huang, Chun-Yu; Liang, De-Sheng; Zeng, Yong

    2016-12-01

    We aimed to investigate the modulatory effects of vitamin D on peripheral blood cellular immune response in patients with recurrent miscarriage (RM). The effect of vitamin D on the number of peripheral blood cells, T helper 1 (Th1) cytokines, and NK cytotoxicity was measured in 99 women with RM. The percentage of CD19 + B cells and NK cytotoxicity at an effector-to-target cell (E:T) ratio of 50:1, 25:1, and 12.5:1 were significantly higher in the vitamin D insufficiency group (VDI) than in the vitamin D normal group (VDN) (P<.05 each). The proportion of TNF-α-expressing Th cells was significantly higher in the vitamin D deficiency group (VDD) than in VDN (P<.05). However, there were no significant differences between VDI and VDD. This dysregulation was significantly reduced with 1,25(OH) 2 D supplementation. The data suggest that the abnormalities of cellular immune response were observed in RM patients with a low vitamin D level, which could be regulated to some extent with 1,25(OH) 2 D supplementation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  13. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour.

    PubMed

    Childs, Peter G; Boyle, Christina A; Pemberton, Gabriel D; Nikukar, Habib; Curtis, Adam S G; Henriquez, Fiona L; Dalby, Matthew J; Reid, Stuart

    2016-04-01

    The ability to control cell behaviour, cell fate and simulate reliable tissue models in vitro remains a significant challenge yet is crucial for various applications of high throughput screening e.g. drug discovery. Mechanotransduction (the ability of cells to convert mechanical forces in their environment to biochemical signalling) represents an alternative mechanism to attain this control with such studies developing techniques to reproducibly control the mechanical environment in techniques which have potential to be scaled. In this review, the use of techniques such as finite element modelling and precision interferometric measurement are examined to provide context for a novel technique based on nanoscale vibration, also known as "nanokicking". Studies have shown this stimulus to alter cellular responses in both endothelial and mesenchymal stem cells (MSCs), particularly in increased proliferation rate and induced osteogenesis respectively. Endothelial cell lines were exposed to nanoscale vibration amplitudes across a frequency range of 1-100 Hz, and MSCs primarily at 1 kHz. This technique provides significant potential benefits over existing technologies, as cellular responses can be initiated without the use of expensive engineering techniques and/or chemical induction factors. Due to the reproducible and scalable nature of the apparatus it is conceivable that nanokicking could be used for controlling cell behaviour within a wide array of high throughput procedures in the research environment, within drug discovery, and for clinical/therapeutic applications. The results discussed within this article summarise the potential benefits of using nanoscale vibration protocols for controlling cell behaviour. There is a significant need for reliable tissue models within the clinical and pharma industries, and the control of cell behaviour and stem cell differentiation would be highly beneficial. The full potential of this method of controlling cell behaviour has not

  14. Probing and manipulating magnetization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2012-02-01

    Combining semiconductors with magnetism in hetero- and nano-structured geometries provides a powerful means of exploring the interplay between spin-dependent transport and nanoscale magnetism. We describe two recent studies in this context. First, we use spin-dependent transport in ferromagnetic semiconductor thin films to provide a new window into nanoscale magnetism [1]: here, we exploit the large anomalous Hall effect in a ferromagnetic semiconductor as a nanoscale probe of the reversible elastic behavior of magnetic domain walls and gain insight into regimes of domain wall behavior inaccessible to more conventional optical techniques. Next, we describe novel ways to create self-assembled hybrid semiconductor/ferromagnet core-shell nanowires [2] and show how magnetoresistance measurements in single nanowires, coupled with micromagnetic simulations, can provide detailed insights into the magnetization reversal process in nanoscale ferromagnets [3]. The work described here was carried out in collaboration with Andrew Balk, Jing Liang, Nicholas Dellas, Mark Nowakowski, David Rench, Mark Wilson, Roman Engel-Herbert, Suzanne Mohney, Peter Schiffer and David Awschalom. This work is supported by ONR, NSF and the NSF-MRSEC program.[4pt] [1] A. L. Balk et al., Phys. Rev.Lett. 107, 077205 (2011).[0pt] [2] N. J. Dellas et al., Appl. Phys. Lett. 97, 072505 (2010).[0pt] [3] J. Liang et al., in preparation.

  15. 3D elemental sensitive imaging using transmission X-ray microscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Wang, Junyue; Requena, Guillermo; Williams, Phillip; Nelson, Johanna; Mehta, Apurva; Andrews, Joy C; Pianetta, Piero

    2012-09-01

    Determination of the heterogeneous distribution of metals in alloy/battery/catalyst and biological materials is critical to fully characterize and/or evaluate the functionality of the materials. Using synchrotron-based transmission x-ray microscopy (TXM), it is now feasible to perform nanoscale-resolution imaging over a wide X-ray energy range covering the absorption edges of many elements; combining elemental sensitive imaging with determination of sample morphology. We present an efficient and reliable methodology to perform 3D elemental sensitive imaging with excellent sample penetration (tens of microns) using hard X-ray TXM. A sample of an Al-Si piston alloy is used to demonstrate the capability of the proposed method.

  16. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE PAGES

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun; ...

    2018-05-11

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  17. Glancing-incidence focussed ion beam milling: A coherent X-ray diffraction study of 3D nano-scale lattice strains and crystal defects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Harder, Ross J.; Liu, Wenjun

    Here, this study presents a detailed examination of the lattice distortions introduced by glancing incidence Focussed Ion Beam (FIB) milling. Using non-destructive multi-reflection Bragg coherent X-ray diffraction we probe damage formation in an initially pristine gold micro-crystal following several stages of FIB milling. These experiments allow access to the full lattice strain tensor in the micro-crystal with ~25 nm 3D spatial resolution, enabling a nano-scale analysis of residual lattice strains and defects formed. Our results show that 30 keV glancing incidence milling produces fewer large defects than normal incidence milling at the same energy. However the resulting residual lattice strainsmore » have similar magnitude and extend up to ~50 nm into the sample. At the edges of the milled surface, where the ion-beam tails impact the sample at near-normal incidence, large dislocation loops with a range of Burgers vectors are formed. Further glancing incidence FIB polishing with 5 keV ion energy removes these dislocation loops and reduces the lattice strains caused by higher energy FIB milling. However, even at the lower ion energy, damage-induced lattice strains are present within a ~20 nm thick surface layer. These results highlight the need for careful consideration and management of FIB damage. They also show that low-energy FIB-milling is an effective tool for removing FIB-milling induced lattice strains. This is important for the preparation of micro-mechanical test specimens and strain microscopy samples.« less

  18. EDITORIAL: Physical behaviour at the nanoscale: a model for fertile research Physical behaviour at the nanoscale: a model for fertile research

    NASA Astrophysics Data System (ADS)

    Demming, Anna

    2013-06-01

    that allow new ideas and a deepening understanding to take root. Over the last few decades nanoscale research has matured into a science with generally well understood principles, allowing technology companies to develop next-generation devices with functions that dwarf some of the most creative fancies of science fiction. Yet some of the greatest leaps of inspiration have come where observations tax the limits of what current theory can explain, forcing researchers to question and examine historic reasoning. As Di Ventra and Pershin demonstrate in this issue, current memristor research is proving very fertile ground for such questioning and examining, ultimately leading to a deepening understanding of the physical properties of these nanoscale systems. References [1] Di Ventra M and Pershin Y V 2013 On the physical properties of memristive, memcapacitive, and meminductive systems Nanotechnology 24 255201 [2] Miller R E and Shenoy V B 2000 Size-dependent elastic properties of nanosized structural elements Nanotechnology 11 139-47 [3] Buehler M J 2006 Nature designs tough collagen: explaining the nanostructure of collagen fibrils Proc. Natl Acad. Sci. USA 103 12285-90 [4] Keten S, Xu Z, Ihle B and Buehler M J 2010 Nanoconfinement controls stiffness, strength and mechanical toughness of B-sheet crystals in silk Nature Mater. 9 359-67 [5] Misewich J A, Martel R, Avouris Ph, Tsang J C, Heinze S and Tersoff J 2003 Electrically induced optical emission from a carbon nanotube FET Science 300 783-6 [6]Jiang H, Hu J, Gu F and Li C 2009 Stable field emission performance from urchin-like ZnO nanostructures Nanotechnology 20 055706 [7] Forbes R G 2012 Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation Nanotechnology 23 095706 [8] Chua L O 1971 Memristor—the missing circuit element IEEE Trans. Circuit Theory 18 507-19 [9]Strukov D B, Snider G S, Stewart D R and Williams R S 2008 The missing memristor found

  19. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  20. 3D Printing of Organs-On-Chips

    PubMed Central

    Yi, Hee-Gyeong; Lee, Hyungseok; Cho, Dong-Woo

    2017-01-01

    Organ-on-a-chip engineering aims to create artificial living organs that mimic the complex and physiological responses of real organs, in order to test drugs by precisely manipulating the cells and their microenvironments. To achieve this, the artificial organs should to be microfabricated with an extracellular matrix (ECM) and various types of cells, and should recapitulate morphogenesis, cell differentiation, and functions according to the native organ. A promising strategy is 3D printing, which precisely controls the spatial distribution and layer-by-layer assembly of cells, ECMs, and other biomaterials. Owing to this unique advantage, integration of 3D printing into organ-on-a-chip engineering can facilitate the creation of micro-organs with heterogeneity, a desired 3D cellular arrangement, tissue-specific functions, or even cyclic movement within a microfluidic device. Moreover, fully 3D-printed organs-on-chips more easily incorporate other mechanical and electrical components with the chips, and can be commercialized via automated massive production. Herein, we discuss the recent advances and the potential of 3D cell-printing technology in engineering organs-on-chips, and provides the future perspectives of this technology to establish the highly reliable and useful drug-screening platforms. PMID:28952489

  1. Physical controls on directed virus assembly at nanoscale chemical templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C L; Chung, S; Chatterji, A

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less

  2. Nanoscale plasmonic waveguides for filtering and demultiplexing devices

    NASA Astrophysics Data System (ADS)

    Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.

    2010-05-01

    Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.

  3. 1D-3D hybrid modeling—from multi-compartment models to full resolution models in space and time

    PubMed Central

    Grein, Stephan; Stepniewski, Martin; Reiter, Sebastian; Knodel, Markus M.; Queisser, Gillian

    2014-01-01

    Investigation of cellular and network dynamics in the brain by means of modeling and simulation has evolved into a highly interdisciplinary field, that uses sophisticated modeling and simulation approaches to understand distinct areas of brain function. Depending on the underlying complexity, these models vary in their level of detail, in order to cope with the attached computational cost. Hence for large network simulations, single neurons are typically reduced to time-dependent signal processors, dismissing the spatial aspect of each cell. For single cell or networks with relatively small numbers of neurons, general purpose simulators allow for space and time-dependent simulations of electrical signal processing, based on the cable equation theory. An emerging field in Computational Neuroscience encompasses a new level of detail by incorporating the full three-dimensional morphology of cells and organelles into three-dimensional, space and time-dependent, simulations. While every approach has its advantages and limitations, such as computational cost, integrated and methods-spanning simulation approaches, depending on the network size could establish new ways to investigate the brain. In this paper we present a hybrid simulation approach, that makes use of reduced 1D-models using e.g., the NEURON simulator—which couples to fully resolved models for simulating cellular and sub-cellular dynamics, including the detailed three-dimensional morphology of neurons and organelles. In order to couple 1D- and 3D-simulations, we present a geometry-, membrane potential- and intracellular concentration mapping framework, with which graph- based morphologies, e.g., in the swc- or hoc-format, are mapped to full surface and volume representations of the neuron and computational data from 1D-simulations can be used as boundary conditions for full 3D simulations and vice versa. Thus, established models and data, based on general purpose 1D-simulators, can be directly coupled to

  4. 3D Printing of Tissue Engineered Constructs for In Vitro Modeling of Disease Progression and Drug Screening.

    PubMed

    Vanderburgh, Joseph; Sterling, Julie A; Guelcher, Scott A

    2017-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D vs. 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs.

  5. 3D Printing of Tissue Engineered Constructs for in vitro Modeling of Disease Progression and Drug Screening

    PubMed Central

    Vanderburgh, Joseph; Sterling, Julie A.

    2016-01-01

    2D cell culture and preclinical animal models have traditionally been implemented for investigating the underlying cellular mechanisms of human disease progression. However, the increasing significance of 3D versus 2D cell culture has initiated a new era in cell culture research in which 3D in vitro models are emerging as a bridge between traditional 2D cell culture and in vivo animal models. Additive manufacturing (AM, also known as 3D printing), defined as the layer-by-layer fabrication of parts directed by digital information from a 3D computer-aided design (CAD) file, offers the advantages of simultaneous rapid prototyping and biofunctionalization as well as the precise placement of cells and extracellular matrix with high resolution. In this review, we highlight recent advances in 3D printing of tissue engineered constructs (TECs) that recapitulate the physical and cellular properties of the tissue microenvironment for investigating mechanisms of disease progression and for screening drugs. PMID:27169894

  6. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiti, A.; Small, W.; Lewicki, J.

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  7. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    DOE PAGES

    Maiti, A.; Small, W.; Lewicki, J.; ...

    2016-04-27

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curvesmore » predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. As a result, this indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.« less

  8. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    NASA Astrophysics Data System (ADS)

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-04-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance.

  9. 3D printed cellular solid outperforms traditional stochastic foam in long-term mechanical response

    PubMed Central

    Maiti, A.; Small, W.; Lewicki, J. P.; Weisgraber, T. H.; Duoss, E. B.; Chinn, S. C.; Pearson, M. A.; Spadaccini, C. M.; Maxwell, R. S.; Wilson, T. S.

    2016-01-01

    3D printing of polymeric foams by direct-ink-write is a recent technological breakthrough that enables the creation of versatile compressible solids with programmable microstructure, customizable shapes, and tunable mechanical response including negative elastic modulus. However, in many applications the success of these 3D printed materials as a viable replacement for traditional stochastic foams critically depends on their mechanical performance and micro-architectural stability while deployed under long-term mechanical strain. To predict the long-term performance of the two types of foams we employed multi-year-long accelerated aging studies under compressive strain followed by a time-temperature-superposition analysis using a minimum-arc-length-based algorithm. The resulting master curves predict superior long-term performance of the 3D printed foam in terms of two different metrics, i.e., compression set and load retention. To gain deeper understanding, we imaged the microstructure of both foams using X-ray computed tomography, and performed finite-element analysis of the mechanical response within these microstructures. This indicates a wider stress variation in the stochastic foam with points of more extreme local stress as compared to the 3D printed material, which might explain the latter’s improved long-term stability and mechanical performance. PMID:27117858

  10. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    NASA Astrophysics Data System (ADS)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.; Liu, Xiaoran; Meyers, D.; Middey, S.; Choudhury, D.; Shafer, P.; Guo, Jiandong; Freeland, J. W.; Arenholz, E.; Gu, Lin; Chakhalian, J.

    2016-02-01

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3 /SrTiO3/YTiO3 , in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3 /SrTiO3 and SrTiO3 /YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3 /SrTiO3 and localized SrTiO3 /YTiO3 electrons. Our results provide a route with prospects for exploring new magnetic interfaces, designing a tunable two-dimensional d -electron Kondo lattice, and potential spin Hall applications.

  11. Magnetic Interactions at the Nanoscale in Trilayer Titanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Yanwei; Yang, Zhenzhong; Kareev, M.

    2016-02-17

    We report on the phase diagram of competing magnetic interactions at the nanoscale in engineered ultrathin trilayer heterostructures of LaTiO3/SrTiO3/YTiO3, in which the interfacial inversion symmetry is explicitly broken. Combined atomic layer resolved scanning transmission electron microscopy with electron energy loss spectroscopy and electrical transport have confirmed the formation of a spatially separated two-dimensional electron liquid and high density two-dimensional localized magnetic moments at the LaTiO3/SrTiO3 and SrTiO3/YTiO3 interfaces, respectively. Resonant soft x-ray linear dichroism spectroscopy has demonstrated the presence of orbital polarization of the conductive LaTiO3/SrTiO3 and localized SrTiO3/YTiO3 electrons. Our results provide a route with prospects for exploringmore » new magnetic interfaces, designing a tunable two-dimensional d-electron Kondo lattice, and potential spin Hall applications.« less

  12. 3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7

    PubMed Central

    Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo

    2015-01-01

    ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321

  13. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  14. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction

    PubMed Central

    Hoshyar, Nazanin; Gray, Samantha; Han, Hongbin; Bao, Gang

    2016-01-01

    Nanoparticle-based technologies offer exciting new approaches to disease diagnostics and therapeutics. To take advantage of unique properties of nanoscale materials and structures, the size, shape and/or surface chemistry of nanoparticles need to be optimized, allowing their functionalities to be tailored for different biomedical applications. Here we review the effects of nanoparticle size on cellular interaction and in vivo pharmacokinetics, including cellular uptake, biodistribution and circulation half-life of nanoparticles. Important features of nanoparticle probes for molecular imaging and modeling of nanoparticle size effects are also discussed. PMID:27003448

  15. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-08

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  16. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    NASA Astrophysics Data System (ADS)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  17. 3D-3-culture: A tool to unveil macrophage plasticity in the tumour microenvironment.

    PubMed

    Rebelo, Sofia P; Pinto, Catarina; Martins, Tatiana R; Harrer, Nathalie; Estrada, Marta F; Loza-Alvarez, Pablo; Cabeçadas, José; Alves, Paula M; Gualda, Emilio J; Sommergruber, Wolfgang; Brito, Catarina

    2018-05-01

    The tumour microenvironment (TME) shapes disease progression and influences therapeutic response. Most aggressive solid tumours have high levels of myeloid cell infiltration, namely tumour associated macrophages (TAM). Recapitulation of the interaction between the different cellular players of the TME, along with the extracellular matrix (ECM), is critical for understanding the mechanisms underlying disease progression. This particularly holds true for prediction of therapeutic response(s) to standard therapies and interrogation of efficacy of TME-targeting agents. In this work, we explored a culture platform based on alginate microencapsulation and stirred culture systems to develop the 3D-3-culture, which entails the co-culture of tumour cell spheroids of non-small cell lung carcinoma (NSCLC), cancer associated fibroblasts (CAF) and monocytes. We demonstrate that the 3D-3-culture recreates an invasive and immunosuppressive TME, with accumulation of cytokines/chemokines (IL4, IL10, IL13, CCL22, CCL24, CXCL1), ECM elements (collagen type I, IV and fibronectin) and matrix metalloproteinases (MMP1/9), supporting cell migration and promoting cell-cell interactions within the alginate microcapsules. Importantly, we show that both the monocytic cell line THP-1 and peripheral blood-derived monocytes infiltrate the tumour tissue and transpolarize into an M2-like macrophage phenotype expressing CD68, CD163 and CD206, resembling the TAM phenotype in NSCLC. The 3D-3-culture was challenged with chemo- and immunotherapeutic agents and the response to therapy was assessed in each cellular component. Specifically, the macrophage phenotype was modulated upon treatment with the CSF1R inhibitor BLZ945, resulting in a decrease of the M2-like macrophages. In conclusion, the crosstalk between the ECM and tumour, stromal and immune cells in microencapsulated 3D-3-culture promotes the activation of monocytes into TAM, mimicking aggressive tumour stages. The 3D-3-culture constitutes a

  18. 3D plasmonic nanoantennas integrated with MEA biosensors

    NASA Astrophysics Data System (ADS)

    Dipalo, Michele; Messina, Gabriele C.; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; de Angelis, Francesco

    2015-02-01

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic

  19. Cancer cells growing on perfused 3D collagen model produced higher reactive oxygen species level and were more resistant to cisplatin compared to the 2D model.

    PubMed

    Liu, Qingxi; Zhang, Zijiang; Liu, Yupeng; Cui, Zhanfeng; Zhang, Tongcun; Li, Zhaohui; Ma, Wenjian

    2018-03-01

    Three-dimensional (3D) collagen scaffold models, due to their ability to mimic the tissue and organ structure in vivo, have received increasing interest in drug discovery and toxicity evaluation. In this study, we developed a perfused 3D model and studied cellular response to cytotoxic drugs in comparison with traditional 2D cell cultures as evaluated by cancer drug cisplatin. Cancer cells grown in perfused 3D environments showed increased levels of reactive oxygen species (ROS) production compared to the 2D culture. As determined by growth analysis, cells in the 3D culture, after forming a spheroid, were more resistant to the cancer drug cisplatin compared to that of the 2D cell culture. In addition, 3D culturing cells showed elevated level of ROS, indicating a physiological change or the formation of a microenvironment that resembles tumor cells in vivo. These data revealed that cellular response to drugs for cells growing in 3D environments are dramatically different from that of 2D cultured cells. Thus, the perfused 3D collagen scaffold model we report here might be a potentially very useful tool for drug analysis.

  20. Crystallization, Crystal Orientation and Morphology of Poly(ethylene oxide) under 1D Defect-Free Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.

    2009-03-01

    One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.

  1. Slight temperature changes affect protein affinity and cellular uptake/toxicity of nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahmoudi, Morteza; Shokrgozar, Mohammad A.; Behzadi, Shahed

    2013-03-01

    It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular/organ temperature.It is known that what the cell actually ``sees'' at the nanoscale is an outer shell formed of `protein corona' on the surface of nanoparticles (NPs). The amount and composition of various proteins on the corona are strongly dependent on the biophysicochemical properties of NPs, which have been extensively studied. However, the effect of a small variation in temperature, due to the human circadian rhythm, on the composition of the protein corona and the affinity of various proteins to the surface of NPs, was ignored. Here, the effect of temperature on the composition of protein corona and the affinity of various proteins to the surface of NPs and, subsequently, cell responses to the protein coated NPs are probed. The results confirmed that cellular entrance, dispersion, and toxicity of NPs are strongly diverse with slight body temperature changes. This new finding can help scientists to maximise NP entrance to specific cells/organs with lower toxicity by adjusting the cellular

  2. Toward single cell traction microscopy within 3D collagen matrices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives onmore » the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.« less

  3. Mechanisms of DNA Damage Response to Targeted Irradiation in Organotypic 3D Skin Cultures

    PubMed Central

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M.; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  4. Cell migration through connective tissue in 3-D

    NASA Astrophysics Data System (ADS)

    Fabry, Ben

    2008-03-01

    A prerequisite for metastasis formation is the ability of tumor cells to invade and migrate through connective tissue. Four key components endow tumor cells with this ability: secretion of matrix-degrading enzymes, firm but temporary adhesion onto connective tissue fibers, contractile force generation, and rapid remodeling of cytoskeletal structures. Cell adhesion, contraction, and cytoskeletal remodeling are biomechanical parameter that can be measured on single cells using a panel of biophysical methods. We use 2-D and 3-D traction microscopy to measure contractile forces; magnetic tweezer microrheology to estimate adhesion strengths, cytoskeletal stiffness and molecular turn-over rates; and nanoscale particle tracking to measure cytoskeletal remodeling. On a wide range of tumor cell lines we could show that cell invasiveness correlates with increased expression of integrin adhesion receptors, increased contractile force generation, and increased speed of cytoskeletal reorganization. Each of those biomechanical parameters, however, varied considerably between cell lines of similar invasivity, suggesting that tumor cells employ multiple invasion strategies that cannot be unambiguously characterized using a single assay.

  5. Chemistry of wood in 3D: new infrared imaging

    Treesearch

    Barbara L. Illman; Julia Sedlmair; Miriam Unger; Casey Crooks; Marli Oliveira; Carol Hirschmugl

    2015-01-01

    Chemical detection, mapping and imaging in three dimensions will help refine our understanding of wood properties and durability. We describe here a pioneering infrared method to create visual 3D images of the chemicals in wood, providing for the first time, spatial and architectural information at the cellular level without liquid extraction or prior fixation....

  6. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  7. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis

    PubMed Central

    Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635

  8. Direct aqueous measurement of 25-hydroxyvitamin D levels in a cellular environment by LC-MS/MS using the novel chemical derivatization reagent MDBP.

    PubMed

    Müller, Miriam J; Bruns, Heiko; Volmer, Dietrich A

    2017-04-01

    Vitamin D measurements in biological fluids by mass spectrometry are challenging at very low concentration levels. As a result, chemical derivatization is often employed to enhance the ionization properties of low abundant vitamin D compounds. Cookson-type reagents such as 4-phenyl-1,2,4-triazoline-3,5-dione (PTAD) or similar derivatives work well but require careful, water-free experimental conditions, as traces of water inactivate the reagent and inhibit or stop the derivatization reactions, thus making quantitative measurements in aqueous samples impossible. We describe a novel electrospray liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for determining 25-hydroxyvitamin D 3 (25(OH)D 3 ) directly in aqueous cellular systems using a new derivatization reagent, the ionic liquid 12-(maleimidyl)dodecyl-tri-n-butylphosphonium bromide (MDBP). The proof-of-concept for the MDBP assay was demonstrated by measuring the levels of 25(OH)D 3 in four different human cell types, namely T cells, helper T cells, B cells, and macrophages. In addition to the ability to determine the levels of 25(OH)D 3 directly in aqueous samples, the cellular integrity was maintained in our application. We show the time-dependent uptake of 25(OH)D 3 into the investigated cells to demonstrate the applicability of the new label. Furthermore, the MDBP derivatization technique may be equally useful in imaging mass spectrometry, where it could be used for response enhancements of spatially localized vitamin D metabolites on wet tissue surfaces, without destroying the integrity of the tissue surface. Graphical Abstract MDBP labelling of 25-hydroxyvitamin D in the extracellular space.

  9. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies.

    PubMed

    Cook, Colin A; Huri, Pinar Y; Ginn, Brian P; Gilbert-Honick, Jordana; Somers, Sarah M; Temple, Joshua P; Mao, Hai-Quan; Grayson, Warren L

    2016-08-01

    In vitro engineering systems can be powerful tools for studying tissue development in response to biophysical stimuli as well as for evaluating the functionality of engineered tissue grafts. It has been challenging, however, to develop systems that adequately integrate the application of biomimetic mechanical strain to engineered tissue with the ability to assess functional outcomes in real time. The aim of this study was to design a bioreactor system capable of real-time conditioning (dynamic, uniaxial strain, and electrical stimulation) of centimeter-long 3D tissue engineered constructs simultaneously with the capacity to monitor local strains. The system addresses key limitations of uniform sample loading and real-time imaging capabilities. Our system features an electrospun fibrin scaffold, which exhibits physiologically relevant stiffness and uniaxial alignment that facilitates cell adhesion, alignment, and proliferation. We have demonstrated the capacity for directly incorporating human adipose-derived stromal/stem cells into the fibers during the electrospinning process and subsequent culture of the cell-seeded constructs in the bioreactor. The bioreactor facilitates accurate pre-straining of the 3D constructs as well as the application of dynamic and static uniaxial strains while monitoring bulk construct tensions. The incorporation of fluorescent nanoparticles throughout the scaffolds enables in situ monitoring of local strain fields using fluorescent digital image correlation techniques, since the bioreactor is imaging compatible, and allows the assessment of local sample stiffness and stresses when coupled with force sensor measurements. In addition, the system is capable of measuring the electromechanical coupling of skeletal muscle explants by applying an electrical stimulus and simultaneously measuring the force of contraction. The packaging of these technologies, biomaterials, and analytical methods into a single bioreactor system has produced a

  10. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  11. Biomimetic Graphene-Based 3D Scaffold for Long-Term Cell Culture and Real-Time Electrochemical Monitoring.

    PubMed

    Hu, Xue-Bo; Liu, Yan-Ling; Wang, Wen-Jie; Zhang, Hai-Wei; Qin, Yu; Guo, Shan; Zhang, Xin-Wei; Fu, Lei; Huang, Wei-Hua

    2018-01-16

    Current achievements on electrochemical monitoring of cells are often gained on two-dimensional (2D) substrates, which fail in mimicking the cellular environments and accurately reproducing the cellular functions within a three-dimensional (3D) tissue. In this regard, 3D scaffold concurrently integrated with the function of cell culture and electrochemical sensing is conceivably a promising platform to monitor cells in real time under their in vivo-like 3D microenvironments. However, it is particularly challenging to construct such a multifunctional scaffold platform. Herein, we developed a 3-aminophenylboronic acid (APBA) functionalized graphene foam (GF) network, which combines the biomimetic property of APBA with the mechanical and electrochemical properties of GF. Hence, the GF network can serve as a 3D scaffold to culture cells for a long period with high viability and simultaneously as an electrode for highly sensitive electrochemical sensing. This allows monitoring of gaseous messengers H 2 S released from the cells cultured on the 3D scaffold in real time. This work represents considerable progress in fabricating 3D cell culture scaffold with electrochemical properties, thereby facilitating future studies of physiologically relevant processes.

  12. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  13. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  14. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  16. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  17. Detonation models of fast combustion waves in nanoscale Al-MoO3 bulk powder media

    NASA Astrophysics Data System (ADS)

    Shaw, Benjamin D.; Pantoya, Michelle L.; Dikici, Birce

    2013-02-01

    The combustion of nanometric aluminum (Al) powder with an oxidiser such as molybdenum trioxide (MoO3) is studied analytically. This study focuses on detonation wave models and a Chapman-Jouget detonation model provides reasonable agreement with experimentally-observed wave speeds provided that multiphase equilibrium sound speeds are applied at the downstream edge of the detonation wave. The results indicate that equilibrium sound speeds of multiphase mixtures can play a critical role in determining speeds of fast combustion waves in nanoscale Al-MoO3 powder mixtures.

  18. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  19. Production of d-allulose from d-glucose by Escherichia coli transformant cells co-expressing d-glucose isomerase and d-psicose 3-epimerase genes.

    PubMed

    Zhang, Wenli; Li, Hao; Jiang, Bo; Zhang, Tao; Mu, Wanmeng

    2017-08-01

    d-Allulose is a novel and low-calorie rare monosaccharide that is a C-3 epimer of d-fructose. Because of its excellent physiological properties and commercial potential, d-allulose has attracted researchers' interests. Based on the Izumoring strategy, d-allulose is converted from d-fructose by d-psicose 3-epimerase (DPEase), while d-fructose is converted from d-glucose by d-glucose isomerase (GIase). In this study, we created a cellular system capable of converting d-glucose to d-allulose in a one-step process that co-expressed the GIase from Acidothermus cellulolyticus and the DPEase from Dorea sp. CAG. The co-expression plasmid pETDuet-Dosp-DPE/Acce-GI was generated and transformed into Escherichia coli BL21(DE3) cells. The recombinant co-expression cells exhibited maximum catalytic activity at pH 6.5 and 75 °C. These cells were thermostable at less than 60 °C. The addition of Co 2+ significantly increased the catalytic activity by 10.8-fold. When the reaction equilibrium was reached, the ratio of d-glucose, d-fructose and d-allulose was approximately 6.5:7:3, respectively. A recombinant co-expression strain that catalysed the bioconversion of d-allulose from d-glucose in a one-step process was created and characterised. When adding 500 g L -1 d-glucose as a substrate, 204.3 g L -1 d-fructose and 89.1 g L -1 d-allulose were produced. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  20. Tissue vascularization through 3D printing: Will technology bring us flow?

    PubMed

    Paulsen, S J; Miller, J S

    2015-05-01

    Though in vivo models provide the most physiologically relevant environment for studying tissue function, in vitro studies provide researchers with explicit control over experimental conditions and the potential to develop high throughput testing methods. In recent years, advancements in developmental biology research and imaging techniques have significantly improved our understanding of the processes involved in vascular development. However, the task of recreating the complex, multi-scale vasculature seen in in vivo systems remains elusive. 3D bioprinting offers a potential method to generate controlled vascular networks with hierarchical structure approaching that of in vivo networks. Bioprinting is an interdisciplinary field that relies on advances in 3D printing technology along with advances in imaging and computational modeling, which allow researchers to monitor cellular function and to better understand cellular environment within the printed tissue. As bioprinting technologies improve with regards to resolution, printing speed, available materials, and automation, 3D printing could be used to generate highly controlled vascularized tissues in a high throughput manner for use in regenerative medicine and the development of in vitro tissue models for research in developmental biology and vascular diseases. © 2015 Wiley Periodicals, Inc.

  1. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  2. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    PubMed

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  3. The integrin alphav beta3 increases cellular stiffness and cytoskeletal remodeling dynamics to facilitate cancer cell invasion

    NASA Astrophysics Data System (ADS)

    Mierke, Claudia Tanja

    2013-01-01

    The process of cancer cell invasion through the extracellular matrix (ECM) of connective tissue plays a prominent role in tumor progression and is based fundamentally on biomechanics. Cancer cell invasion usually requires cell adhesion to the ECM through the cell-matrix adhesion receptors integrins. The expression of the αvβ3 integrin is increased in several tumor types and is consistently associated with increased metastasis formation in patients. The hypothesis was that the αvβ3 integrin expression increases the invasiveness of cancer cells through increased cellular stiffness, and increased cytoskeletal remodeling dynamics. Here, the invasion of cancer cells with different αvβ3 integrin expression levels into dense three-dimensional (3D) ECMs has been studied. Using a cell sorter, two subcell lines expressing either high or low amounts of αvβ3 integrins (αvβ3high or αvβ3low cells, respectively) have been isolated from parental MDA-MB-231 breast cancer cells. αvβ3high cells showed a threefold increased cell invasion compared to αvβ3low cells. Similar results were obtained for A375 melanoma, 786-O kidney and T24 bladder carcinoma cells, and cells in which the β3 integrin subunit was knocked down using specific siRNA. To investigate whether contractile forces are essential for αvβ3 integrin-mediated increased cellular stiffness and subsequently enhanced cancer cell invasion, invasion assays were performed in the presence of myosin light chain kinase inhibitor ML-7 and Rho kinase inhibitor Y27632. Indeed, cancer cell invasiveness was reduced after addition of ML-7 and Y27632 in αvβ3high cells but not in αvβ3low cells. Moreover, after addition of the contractility enhancer calyculin A, an increase in pre-stress in αvβ3low cells was observed, which enhanced cellular invasiveness. In addition, inhibition of the Src kinase, STAT3 or Rac1 strongly reduced the invasiveness of αvβ3high cells, whereas the invasiveness of β3 specific knock

  4. L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary.

    PubMed

    Coux, Rémi-Xavier; Teixeira, Felipe Karam; Lehmann, Ruth

    2018-04-04

    Maintenance of cellular identity is essential for tissue development and homeostasis. At the molecular level, cell identity is determined by the coordinated activation and repression of defined sets of genes. The tumor suppressor L(3)mbt has been shown to secure cellular identity in Drosophila larval brains by repressing germline-specific genes. Here, we interrogate the temporal and spatial requirements for L(3)mbt in the Drosophila ovary, and show that it safeguards the integrity of both somatic and germline tissues. l(3)mbt mutant ovaries exhibit multiple developmental defects, which we find to be largely caused by the inappropriate expression of a single gene, nanos , a key regulator of germline fate, in the somatic ovarian cells. In the female germline, we find that L(3)mbt represses testis-specific and neuronal genes. At the molecular level, we show that L(3)mbt function in the ovary is mediated through its co-factor Lint-1 but independently of the dREAM complex. Together, our work uncovers a more complex role for L(3)mbt than previously understood and demonstrates that L(3)mbt secures tissue identity by preventing the simultaneous expression of original identity markers and tissue-specific misexpression signatures. © 2018. Published by The Company of Biologists Ltd.

  5. Accessing microfluidics through feature-based design software for 3D printing.

    PubMed

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  6. Accessing microfluidics through feature-based design software for 3D printing

    PubMed Central

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  7. Refilling of carbon nanotube cartridges for 3D nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Bekarevich, Raman; Toyoda, Masami; Baba, Shuichi; Nakata, Toshihiko; Hirahara, Kaori

    2016-03-01

    Metal-filled carbon nanotubes (CNTs) are known to be used as pen-tip injectors for 3D manufacturing on the nanoscale. However, the CNT interior cannot accumulate enough material to fabricate complex metallic nanostructures. Therefore a method for refilling the CNT cartridge needs to be developed. The strategy for refilling of CNT cartridges is suggested in this study. Controlled growth of gold nanowires in the interior of isolated CNTs using a real-time manipulator installed in a transmission electron microscope is reported herein. The encapsulation process of discrete gold nanoparticles in the hollow spaces of open-ended multi-wall CNTs was evaluated in detail. The experimental results reveal that the serial loading of isolated gold nanoparticles allows the control of the length of the loaded nanowires with nanometer accuracy. Thermophoresis and the coalescence of gold nanoparticles are assumed to be the primary mechanisms responsible for gold loading into a CNT cartridge.Metal-filled carbon nanotubes (CNTs) are known to be used as pen-tip injectors for 3D manufacturing on the nanoscale. However, the CNT interior cannot accumulate enough material to fabricate complex metallic nanostructures. Therefore a method for refilling the CNT cartridge needs to be developed. The strategy for refilling of CNT cartridges is suggested in this study. Controlled growth of gold nanowires in the interior of isolated CNTs using a real-time manipulator installed in a transmission electron microscope is reported herein. The encapsulation process of discrete gold nanoparticles in the hollow spaces of open-ended multi-wall CNTs was evaluated in detail. The experimental results reveal that the serial loading of isolated gold nanoparticles allows the control of the length of the loaded nanowires with nanometer accuracy. Thermophoresis and the coalescence of gold nanoparticles are assumed to be the primary mechanisms responsible for gold loading into a CNT cartridge. Electronic

  8. A Protocol for Real-time 3D Single Particle Tracking.

    PubMed

    Hou, Shangguo; Welsher, Kevin

    2018-01-03

    Real-time three-dimensional single particle tracking (RT-3D-SPT) has the potential to shed light on fast, 3D processes in cellular systems. Although various RT-3D-SPT methods have been put forward in recent years, tracking high speed 3D diffusing particles at low photon count rates remains a challenge. Moreover, RT-3D-SPT setups are generally complex and difficult to implement, limiting their widespread application to biological problems. This protocol presents a RT-3D-SPT system named 3D Dynamic Photon Localization Tracking (3D-DyPLoT), which can track particles with high diffusive speed (up to 20 µm 2 /s) at low photon count rates (down to 10 kHz). 3D-DyPLoT employs a 2D electro-optic deflector (2D-EOD) and a tunable acoustic gradient (TAG) lens to drive a single focused laser spot dynamically in 3D. Combined with an optimized position estimation algorithm, 3D-DyPLoT can lock onto single particles with high tracking speed and high localization precision. Owing to the single excitation and single detection path layout, 3D-DyPLoT is robust and easy to set up. This protocol discusses how to build 3D-DyPLoT step by step. First, the optical layout is described. Next, the system is calibrated and optimized by raster scanning a 190 nm fluorescent bead with the piezoelectric nanopositioner. Finally, to demonstrate real-time 3D tracking ability, 110 nm fluorescent beads are tracked in water.

  9. Nanoscale cellular imaging with scanning angle interference microscopy.

    PubMed

    DuFort, Christopher; Paszek, Matthew

    2014-01-01

    Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.

  10. Laser-directed 3D assembly of carbon nanotubes using two-photon polymerization (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Xiong, Wei; Jiang, Li Jia; Zhou, Yunshen; Li, Dawei; Jiang, Lan; Silvain, Jean-Francois; Lu, Yongfeng

    2017-02-01

    Precise assembly of carbon nanotubes (CNTs) in arbitrary 3D space with proper alignment is critically important and desirable for CNT applications but still remains as a long-standing challenge. Using the two-photon polymerization (TPP) technique, it is possible to fabricate 3D micro/nanoscale CNT/polymer architectures with proper CNT alignments in desired directions, which is expected to enable a broad range of applications of CNTs in functional devices. To unleash the full potential of CNTs, it is strategically important to develop TPP-compatible resins with high CNT concentrations for precise assembly of CNTs into 3D micro/nanostructures for functional device applications. We investigated a thiol grafting method in functionalizing multiwalled carbon nanotubes (MWNTs) to develop TPP-compatible MWNT-thiol-acrylate (MTA) composite resins. The composite resins developed had high MWNT concentrations up to 0.2 wt%, over one order of magnitude higher than previously published work. Significantly enhanced electrical and mechanical properties of the 3D micro/nanostructures were achieved. Precisely controlled MWNT assembly and strong anisotropic effects were confirmed. Microelectronic devices made of the MTA composite polymer were demonstrated. The nanofabrication method can achieve controlled assembly of MWNTs in 3D micro/nanostructures, enabling a broad range of CNT applications, including 3D electronics, integrated photonics, and micro/nanoelectromechanical systems (MEMS/NEMS).

  11. Aspartate β-hydroxylase modulates cellular senescence via glycogen synthase kinase 3β in hepatocellular carcinoma

    PubMed Central

    Iwagami, Yoshifumi; Huang, Chiung-Kuei; Olsen, Mark J.; Thomas, John-Michael; Jang, Grace; Kim, Miran; Lin, Qiushi; Carlson, Rolf I.; Wagner, Carl E.; Dong, Xiaoqun; Wands, Jack R.

    2015-01-01

    Background & Aims Aspartate β-hydroxylase (ASPH) is an enzyme overexpressed in human hepatocellular carcinoma (HCC) tumors and participates in the malignant transformation process. We determined if ASPH was a therapeutic target by exerting effects on cellular senescence to retard HCC progression. Methods ASPH knockdown or knockout was achieved by shRNAs or CRISPR/Cas9 system, respectively, whereas enzymatic inhibition was rendered by a potent 2nd generation small molecule inhibitor (SMI) of ASPH. Alterations of cell proliferation, colony formation and cellular senescence were evaluated in human HCC cell lines. The potential mechanisms for activating cellular senescence were explored using murine subcutaneous and orthotopic xenograft models. Results Inhibition of ASPH expression and enzymatic activity significantly reduced cell proliferation and colony formation, but induced tumor cell senescence. Following inhibition of ASPH activity, phosphorylation of GSK3β and p16 expression were increased to promote senescence whereas cyclin D1 and PCNA were decreased to reduce cell proliferation. The mechanisms involved demonstrate that ASPH binds to GSK3β and inhibits its subsequent interactions with AKT and p38 upstream kinases as shown by co-immunoprecipitation. In vivo experiments demonstrated that the SMI treatment of HCC bearing mice resulted in significant dose-dependent reduced tumor growth, induced phosphorylation of GSK3β, enhanced p16 expression in tumor cells and promoted cellular senescence. Conclusions We have identified a new mechanism that promotes HCC growth and progression by modulating senescence of tumor cells. These findings suggest that ASPH enzymatic activity is a novel therapeutic target for HCC. PMID:26683595

  12. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy

    PubMed Central

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.

    2017-01-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096

  13. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  14. Cellular uptake and retention measurements of alkylphosphocholines in the SK-BR-3 breast cancer and Molt-4 leukemia cell line using capillary gas chromatography.

    PubMed

    Brochez, V; Van Heuverswyn, D; Diniz, J A; De Potter, C R; Van den Eeckhout, E G

    1999-05-01

    The determination of cellular content of octadecylphosphocholine (D-19391) and hexadecylphosphocholine (HePC, D-18506), two anticancer agents of the alkylphosphocholine group, using capillary gas chromatography is described. The compounds' cytotoxicity was first determined by the MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium] assay, being indicative for the concentration used in the uptake and retention measurements. D-19391 was added to the SK-BR-3 breast cancer cell line and HePC to the Molt-4 leukemia cell line in concentrations of, respectively, 18.6 and 15.0 microM, during a 36-h incubation period at 37 degrees C, 5% CO2. HePC uptake in the leukemia cells was followed by a 24-h reversibility test in drug-free medium. Subsequently, sample clean-up was performed on a weak cation-exchange column. For the quantitative analysis, HePC was used as internal standard for the D-19391 measurements and vice versa. Derivatization of the samples with trimethylsilylbromide was followed by capillary gas chromatographic analysis. From these data we conclude that our uptake results are quite similar with those of a previous study of HePC cellular uptake in the more resistant Caco-2T colon cancer cell line. Without having investigated the mechanism that underlies the cellular uptake results obtained, our study points to no direct correlation between the compounds' cellular uptake and their cytotoxic effects.

  15. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration

    PubMed Central

    Nyberg, Ethan L.; Farris, Ashley L.; Hung, Ben P.; Dias, Miguel; Garcia, Juan R.; Dorafshar, Amir H.; Grayson, Warren L.

    2016-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are 3 key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects. PMID:27295184

  16. Preparation of Hollow Fe2O3 Nanorods and Nanospheres by Nanoscale Kirkendall Diffusion, and Their Electrochemical Properties for Use in Lithium-Ion Batteries.

    PubMed

    Cho, Jung Sang; Park, Jin-Sung; Kang, Yun Chan

    2016-12-13

    A novel process for the preparation of aggregate-free metal oxide nanopowders with spherical (0D) and non-spherical (1D) hollow nanostructures was introduced. Carbon nanofibers embedded with iron selenide (FeSe) nanopowders with various nanostructures are prepared via the selenization of electrospun nanofibers. Ostwald ripening occurs during the selenization process, resulting in the formation of a FeSe-C composite nanofiber exhibiting a hierarchical structure. These nanofibers transform into aggregate-free hollow Fe 2 O 3 powders via the complete oxidation of FeSe and combustion of carbon. Indeed, the zero- (0D) and one-dimensional (1D) FeSe nanocrystals transform into the hollow-structured Fe 2 O 3 nanopowders via a nanoscale Kirkendall diffusion process, thus conserving their overall morphology. The discharge capacities for the 1000 th cycle of the hollow-structured Fe 2 O 3 nanopowders obtained from the FeSe-C composite nanofibers prepared at selenization temperatures of 500, 800, and 1000 °C at a current density of 1 A g -1 are 932, 767, and 544 mA h g -1 , respectively; and their capacity retentions from the second cycle are 88, 92, and 78%, respectively. The high structural stabilities of these hollow Fe 2 O 3 nanopowders during repeated lithium insertion/desertion processes result in superior lithium-ion storage performances.

  17. TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications

    NASA Astrophysics Data System (ADS)

    Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.

    2009-08-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.

  18. Micro- and nanoscale devices for the investigation of epigenetics and chromatin dynamics

    NASA Astrophysics Data System (ADS)

    Aguilar, Carlos A.; Craighead, Harold G.

    2013-10-01

    Deoxyribonucleic acid (DNA) is the blueprint on which life is based and transmitted, but the way in which chromatin -- a dynamic complex of nucleic acids and proteins -- is packaged and behaves in the cellular nucleus has only begun to be investigated. Epigenetic modifications sit 'on top of' the genome and affect how DNA is compacted into chromatin and transcribed into ribonucleic acid (RNA). The packaging and modifications around the genome have been shown to exert significant influence on cellular behaviour and, in turn, human development and disease. However, conventional techniques for studying epigenetic or conformational modifications of chromosomes have inherent limitations and, therefore, new methods based on micro- and nanoscale devices have been sought. Here, we review the development of these devices and explore their use in the study of DNA modifications, chromatin modifications and higher-order chromatin structures.

  19. 3D culture of murine neural stem cells on decellularized mouse brain sections.

    PubMed

    De Waele, Jorrit; Reekmans, Kristien; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2015-02-01

    Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1-7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    PubMed

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  1. 3D lithography by rapid curing of the liquid instabilities at nanoscale

    PubMed Central

    Coppola, Sara; Vespini, Veronica; Merola, Francesco; Finizio, Andrea; Ferraro, Pietro

    2011-01-01

    In liquids realm, surface tension and capillarity are the key forces driving the formation of the shapes pervading the nature. The steady dew drops appearing on plant leaves and spider webs result from the minimization of the overall surface energy [Zheng Y, et al. (2010) Nature 463:640–643]. Thanks to the surface tension, the interfaces of such spontaneous structures exhibit extremely good spherical shape and consequently worthy optical quality. Also nanofluidic instabilities generate a variety of fascinating liquid silhouettes, but they are however intrinsically short-lived. Here we show that such unsteady liquid structures, shaped in polymeric liquids by an electrohydrodynamic pressure, can be rapidly cured by appropriate thermal treatments. The fabrication of many solid microstructures exploitable in photonics is demonstrated, thus leading to a new concept in 3D lithography. The applicability of specific structures as optical tweezers and as novel remotely excitable quantum dots–embedded microresonators is presented. PMID:21896720

  2. Time-Dependent Measure of a Nano-Scale Force-Pulse Driven by the Axonemal Dynein Motors in Individual Live Sperm Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, M J; Rudd, R E; McElfresh, M W

    Nano-scale mechanical forces generated by motor proteins are crucial to normal cellular and organismal functioning. The ability to measure and exploit such forces would be important to developing motile biomimetic nanodevices powered by biological motors for Nanomedicine. Axonemal dynein motors positioned inside the sperm flagellum drive microtubule sliding giving rise to rhythmic beating of the flagellum. This force-generating action makes it possible for the sperm cell to move through viscous media. Here we report new nano-scale information on how the propulsive force is generated by the sperm flagellum and how this force varies over time. Single cell recordings reveal discretemore » {approx}50 ms pulses oscillating with amplitude 9.8 {+-} 2.6 nN independent of pulse frequency (3.5-19.5 Hz). The average work carried out by each cell is 4.6 x 10{sup -16} J per pulse, equivalent to the hydrolysis of {approx}5,500 ATP molecules. The mechanochemical coupling at each active dynein head is {approx}2.2 pN/ATP, and {approx}3.9 pN per dynein arm, in agreement with previously published values obtained using different methods.« less

  3. A Mechanistic Study of Wetting Superhydrophobic Porous 3D Meshes

    PubMed Central

    Yohe, Stefan T.; Freedman, Jonathan D.; Falde, Eric J.; Colson, Yolonda L.; Grinstaff, Mark W.

    2014-01-01

    Superhydrophobic, porous, 3D materials composed of poly( ε -caprolactone) (PCL) and the hydrophobic polymer dopant poly(glycerol monostearate-co- ε -caprolactone) (PGC-C18) are fabricated using the electrospinning technique. These 3D materials are distinct from 2D superhydrophobic surfaces, with maintenance of air at the surface as well as within the bulk of the material. These superhydrophobic materials float in water, and when held underwater and pressed, an air bubble is released and will rise to the surface. By changing the PGC-C18 doping concentration in the meshes and/or the fiber size from the micro- to nanoscale, the long-term stability of the entrapped air layer is controlled. The rate of water infiltration into the meshes, and the resulting displacement of the entrapped air, is quantitatively measured using X-ray computed tomography. The properties of the meshes are further probed using surfactants and solvents of different surface tensions. Finally, the application of hydraulic pressure is used to quantify the breakthrough pressure to wet the meshes. The tools for fabrication and analysis of these superhydrophobic materials as well as the ability to control the robustness of the entrapped air layer are highly desirable for a number of existing and emerging applications. PMID:25309305

  4. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  5. 3D Cell Printed Tissue Analogues: A New Platform for Theranostics

    PubMed Central

    Choi, Yeong-Jin; Yi, Hee-Gyeong; Kim, Seok-Won; Cho, Dong-Woo

    2017-01-01

    Stem cell theranostics has received much attention for noninvasively monitoring and tracing transplanted therapeutic stem cells through imaging agents and imaging modalities. Despite the excellent regenerative capability of stem cells, their efficacy has been limited due to low cellular retention, low survival rate, and low engraftment after implantation. Three-dimensional (3D) cell printing provides stem cells with the similar architecture and microenvironment of the native tissue and facilitates the generation of a 3D tissue-like construct that exhibits remarkable regenerative capacity and functionality as well as enhanced cell viability. Thus, 3D cell printing can overcome the current concerns of stem cell therapy by delivering the 3D construct to the damaged site. Despite the advantages of 3D cell printing, the in vivo and in vitro tracking and monitoring of the performance of 3D cell printed tissue in a noninvasive and real-time manner have not been thoroughly studied. In this review, we explore the recent progress in 3D cell technology and its applications. Finally, we investigate their potential limitations and suggest future perspectives on 3D cell printing and stem cell theranostics. PMID:28839468

  6. Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes.

    PubMed

    Silvestri, Cinzia; Riccio, Michele; Poelma, René H; Jovic, Aleksandar; Morana, Bruno; Vollebregt, Sten; Irace, Andrea; Zhang, Guo Qi; Sarro, Pasqualina M

    2018-04-17

    The high aspect ratio and the porous nature of spatially oriented forest-like carbon nanotube (CNT) structures represent a unique opportunity to engineer a novel class of nanoscale assemblies. By combining CNTs and conformal coatings, a 3D lightweight scaffold with tailored behavior can be achieved. The effect of nanoscale coatings, aluminum oxide (Al 2 O 3 ) and nonstoichiometric amorphous silicon carbide (a-SiC), on the thermal transport efficiency of high aspect ratio vertically aligned CNTs, is reported herein. The thermal performance of the CNT-based nanostructure strongly depends on the achieved porosity, the coating material and its infiltration within the nanotube network. An unprecedented enhancement in terms of effective thermal conductivity in a-SiC coated CNTs has been obtained: 181% compared to the as-grown CNTs and Al 2 O 3 coated CNTs. Furthermore, the integration of coated high aspect ratio CNTs in an epoxy molding compound demonstrates that, next to the required thermal conductivity, the mechanical compliance for thermal interface applications can also be achieved through coating infiltration into foam-like CNT forests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A nanoporous titanium surface promotes the maturation of focal adhesions and formation of filopodia with distinctive nanoscale protrusions by osteogenic cells.

    PubMed

    Guadarrama Bello, Dainelys; Fouillen, Aurélien; Badia, Antonella; Nanci, Antonio

    2017-09-15

    While topography is a key determinant of the cellular response to biomaterials, the mechanisms implicated in the cell-surface interactions are complex and still not fully elucidated. In this context, we have examined the effect of nanoscale topography on the formation of filopodia, focal adhesions, and gene expression of proteins associated with cell adhesion and sensing. Commercially pure titanium discs were treated by oxidative nanopatterning with a solution of H 2 SO 4 /H 2 O 2 50:50 (v/v). Scanning electron microscopy and atomic force microscopy characterizations showed that this facile chemical treatment efficiently creates a unique nanoporous surface with a root-mean-square roughness of 11.5nm and pore diameter of 20±5nm. Osteogenic cells were cultured on polished (control) and nanotextured discs for periods of 6, 24, and 72h. Immunofluorescence analysis revealed increases in the adhesion formation per cell area, focal adhesion length, and maturity on the nanoporous surface. Gene expression for various focal adhesion markers, including paxillin and talin, and different integrins (e.g. α1, β1, and α5) was also significantly increased. Scanning electron microscopy revealed the presence of more filopodia on cells grown on the nanoporous surface. These cell extensions displayed abundant and distinctive nanoscale lateral protrusions of 10-15nm diameter that molded the nanopore walls. Together the increase in the focal adhesions and abundance of filopodia and associated protrusions could contribute to strengthening the adhesive interaction of cells with the surface, and thereby, alter the nanoscale biomechanical relationships that trigger cellular cascades that regulate cell behavior. Oxidative patterning was exploited to create a unique three-dimensional network of nanopores on titanium surfaces. Our study illustrates how a facile chemical treatment can be advantageously used to modulate cellular behavior. The nanoscale lateral protrusions on filopodia

  8. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  9. 3D-Printing Technologies for Craniofacial Rehabilitation, Reconstruction, and Regeneration.

    PubMed

    Nyberg, Ethan L; Farris, Ashley L; Hung, Ben P; Dias, Miguel; Garcia, Juan R; Dorafshar, Amir H; Grayson, Warren L

    2017-01-01

    The treatment of craniofacial defects can present many challenges due to the variety of tissue-specific requirements and the complexity of anatomical structures in that region. 3D-printing technologies provide clinicians, engineers and scientists with the ability to create patient-specific solutions for craniofacial defects. Currently, there are three key strategies that utilize these technologies to restore both appearance and function to patients: rehabilitation, reconstruction and regeneration. In rehabilitation, 3D-printing can be used to create prostheses to replace or cover damaged tissues. Reconstruction, through plastic surgery, can also leverage 3D-printing technologies to create custom cutting guides, fixation devices, practice models and implanted medical devices to improve patient outcomes. Regeneration of tissue attempts to replace defects with biological materials. 3D-printing can be used to create either scaffolds or living, cellular constructs to signal tissue-forming cells to regenerate defect regions. By integrating these three approaches, 3D-printing technologies afford the opportunity to develop personalized treatment plans and design-driven manufacturing solutions to improve aesthetic and functional outcomes for patients with craniofacial defects.

  10. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  11. Early detection of skin cancer via terahertz spectral profiling and 3D imaging.

    PubMed

    Rahman, Anis; Rahman, Aunik K; Rao, Babar

    2016-08-15

    Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  13. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  14. E3Net: a system for exploring E3-mediated regulatory networks of cellular functions.

    PubMed

    Han, Youngwoong; Lee, Hodong; Park, Jong C; Yi, Gwan-Su

    2012-04-01

    Ubiquitin-protein ligase (E3) is a key enzyme targeting specific substrates in diverse cellular processes for ubiquitination and degradation. The existing findings of substrate specificity of E3 are, however, scattered over a number of resources, making it difficult to study them together with an integrative view. Here we present E3Net, a web-based system that provides a comprehensive collection of available E3-substrate specificities and a systematic framework for the analysis of E3-mediated regulatory networks of diverse cellular functions. Currently, E3Net contains 2201 E3s and 4896 substrates in 427 organisms and 1671 E3-substrate specific relations between 493 E3s and 1277 substrates in 42 organisms, extracted mainly from MEDLINE abstracts and UniProt comments with an automatic text mining method and additional manual inspection and partly from high throughput experiment data and public ubiquitination databases. The significant functions and pathways of the extracted E3-specific substrate groups were identified from a functional enrichment analysis with 12 functional category resources for molecular functions, protein families, protein complexes, pathways, cellular processes, cellular localization, and diseases. E3Net includes interactive analysis and navigation tools that make it possible to build an integrative view of E3-substrate networks and their correlated functions with graphical illustrations and summarized descriptions. As a result, E3Net provides a comprehensive resource of E3s, substrates, and their functional implications summarized from the regulatory network structures of E3-specific substrate groups and their correlated functions. This resource will facilitate further in-depth investigation of ubiquitination-dependent regulatory mechanisms. E3Net is freely available online at http://pnet.kaist.ac.kr/e3net.

  15. Large scale superres 3D imaging: light-sheet single-molecule localization microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lu, Chieh Han; Chen, Peilin; Chen, Bi-Chang

    2017-02-01

    Optical imaging techniques provide much important information in understanding life science especially cellular structure and morphology because "seeing is believing". However, the resolution of optical imaging is limited by the diffraction limit, which is discovered by Ernst Abbe, i.e. λ/2(NA) (NA is the numerical aperture of the objective lens). Fluorescence super-resolution microscopic techniques such as Stimulated emission depletion microscopy (STED), Photoactivated localization microscopy (PALM), and Stochastic optical reconstruction microscopy (STORM) are invented to have the capability of seeing biological entities down to molecular level that are smaller than the diffraction limit (around 200-nm in lateral resolution). These techniques do not physically violate the Abbe limit of resolution but exploit the photoluminescence properties and labelling specificity of fluorescence molecules to achieve super-resolution imaging. However, these super-resolution techniques limit most of their applications to the 2D imaging of fixed or dead samples due to the high laser power needed or slow speed for the localization process. Extended from 2D imaging, light sheet microscopy has been proven to have a lot of applications on 3D imaging at much better spatiotemporal resolutions due to its intrinsic optical sectioning and high imaging speed. Herein, we combine the advantage of localization microscopy and light-sheet microscopy to have super-resolved cellular imaging in 3D across large field of view. With high-density labeled spontaneous blinking fluorophore and wide-field detection of light-sheet microscopy, these allow us to construct 3D super-resolution multi-cellular imaging at high speed ( minutes) by light-sheet single-molecule localization microscopy.

  16. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  17. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  18. Dual-color 3D superresolution microscopy by combined spectral-demixing and biplane imaging.

    PubMed

    Winterflood, Christian M; Platonova, Evgenia; Albrecht, David; Ewers, Helge

    2015-07-07

    Multicolor three-dimensional (3D) superresolution techniques allow important insight into the relative organization of cellular structures. While a number of innovative solutions have emerged, multicolor 3D techniques still face significant technical challenges. In this Letter we provide a straightforward approach to single-molecule localization microscopy imaging in three dimensions and two colors. We combine biplane imaging and spectral-demixing, which eliminates a number of problems, including color cross-talk, chromatic aberration effects, and problems with color registration. We present 3D dual-color images of nanoscopic structures in hippocampal neurons with a 3D compound resolution routinely achieved only in a single color. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Freeform inkjet printing of cellular structures with bifurcations.

    PubMed

    Christensen, Kyle; Xu, Changxue; Chai, Wenxuan; Zhang, Zhengyi; Fu, Jianzhong; Huang, Yong

    2015-05-01

    Organ printing offers a great potential for the freeform layer-by-layer fabrication of three-dimensional (3D) living organs using cellular spheroids or bioinks as building blocks. Vascularization is often identified as a main technological barrier for building 3D organs. As such, the fabrication of 3D biological vascular trees is of great importance for the overall feasibility of the envisioned organ printing approach. In this study, vascular-like cellular structures are fabricated using a liquid support-based inkjet printing approach, which utilizes a calcium chloride solution as both a cross-linking agent and support material. This solution enables the freeform printing of spanning and overhang features by providing a buoyant force. A heuristic approach is implemented to compensate for the axially-varying deformation of horizontal tubular structures to achieve a uniform diameter along their axial directions. Vascular-like structures with both horizontal and vertical bifurcations have been successfully printed from sodium alginate only as well as mouse fibroblast-based alginate bioinks. The post-printing fibroblast cell viability of printed cellular tubes was found to be above 90% even after a 24 h incubation, considering the control effect. © 2014 Wiley Periodicals, Inc.

  20. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  1. Apple derived cellulose scaffolds for 3D mammalian cell culture.

    PubMed

    Modulevsky, Daniel J; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment.

  2. Development of a 3D bone marrow adipose tissue model.

    PubMed

    Fairfield, Heather; Falank, Carolyne; Farrell, Mariah; Vary, Calvin; Boucher, Joshua M; Driscoll, Heather; Liaw, Lucy; Rosen, Clifford J; Reagan, Michaela R

    2018-01-26

    Over the past twenty years, evidence has accumulated that biochemically and spatially defined networks of extracellular matrix, cellular components, and interactions dictate cellular differentiation, proliferation, and function in a variety of tissue and diseases. Modeling in vivo systems in vitro has been undeniably necessary, but when simplified 2D conditions rather than 3D in vitro models are used, the reliability and usefulness of the data derived from these models decreases. Thus, there is a pressing need to develop and validate reliable in vitro models to reproduce specific tissue-like structures and mimic functions and responses of cells in a more realistic manner for both drug screening/disease modeling and tissue regeneration applications. In adipose biology and cancer research, these models serve as physiologically relevant 3D platforms to bridge the divide between 2D cultures and in vivo models, bringing about more reliable and translationally useful data to accelerate benchtop to bedside research. Currently, no model has been developed for bone marrow adipose tissue (BMAT), a novel adipose depot that has previously been overlooked as "filler tissue" but has more recently been recognized as endocrine-signaling and systemically relevant. Herein we describe the development of the first 3D, BMAT model derived from either human or mouse bone marrow (BM) mesenchymal stromal cells (MSCs). We found that BMAT models can be stably cultured for at least 3 months in vitro, and that myeloma cells (5TGM1, OPM2 and MM1S cells) can be cultured on these for at least 2 weeks. Upon tumor cell co-culture, delipidation occurred in BMAT adipocytes, suggesting a bidirectional relationship between these two important cell types in the malignant BM niche. Overall, our studies suggest that 3D BMAT represents a "healthier," more realistic tissue model that may be useful for elucidating the effects of MAT on tumor cells, and tumor cells on MAT, to identify novel therapeutic

  3. 3D Printed, Microgroove Pattern-Driven Generation of Oriented Ligamentous Architectures.

    PubMed

    Park, Chan Ho; Kim, Kyoung-Hwa; Lee, Yong-Moo; Giannobile, William V; Seol, Yang-Jo

    2017-09-08

    Specific orientations of regenerated ligaments are crucially required for mechanoresponsive properties and various biomechanical adaptations, which are the key interplay to support mineralized tissues. Although various 2D platforms or 3D printing systems can guide cellular activities or aligned organizations, it remains a challenge to develop ligament-guided, 3D architectures with the angular controllability for parallel, oblique or perpendicular orientations of cells required for biomechanical support of organs. Here, we show the use of scaffold design by additive manufacturing for specific topographies or angulated microgroove patterns to control cell orientations such as parallel (0°), oblique (45°) and perpendicular (90°) angulations. These results demonstrate that ligament cells displayed highly predictable and controllable orientations along microgroove patterns on 3D biopolymeric scaffolds. Our findings demonstrate that 3D printed topographical approaches can regulate spatiotemporal cell organizations that offer strong potential for adaptation to complex tissue defects to regenerate ligament-bone complexes.

  4. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  5. Magnetic superlattices and their nanoscale phase transition effects

    PubMed Central

    Cheon, Jinwoo; Park, Jong-Il; Choi, Jin-sil; Jun, Young-wook; Kim, Sehun; Kim, Min Gyu; Kim, Young-Min; Kim, Youn Joong

    2006-01-01

    The systematic assembly of nanoscale constituents into highly ordered superlattices is of significant interest because of the potential of their multifunctionalities and the discovery of new collective properties. However, successful observations of such superlattice-associated nanoscale phenomena are still elusive. Here, we present magnetic superlattices of Co and Fe3O4 nanoparticles with multidimensional symmetry of either AB (NaCl) or AB2 (AlB2). The discovery of significant enhancement (≈25 times) of ferrimagnetism is further revealed by forming previously undescribed superlattices of magnetically soft–hard Fe3O4@CoFe2O4 through the confined geometrical effect of thermally driven intrasuperlattice phase transition between the nanoparticulate components. PMID:16492783

  6. 3D plasmonic nanoantennas integrated with MEA biosensors.

    PubMed

    Dipalo, Michele; Messina, Gabriele C; Amin, Hayder; La Rocca, Rosanna; Shalabaeva, Victoria; Simi, Alessandro; Maccione, Alessandro; Zilio, Pierfrancesco; Berdondini, Luca; De Angelis, Francesco

    2015-02-28

    Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal assemblies, in this work three-dimensional (3D) plasmonic nanoantennas are integrated with multielectrode arrays (MEA). Nanoantennas are fabricated by fast ion beam milling on optical resist; gold is deposited on the nanoantennas in order to connect them electrically to the MEA microelectrodes and to obtain plasmonic behavior. The optical properties of these 3D nanostructures are studied through finite elements method (FEM) simulations that show a high electromagnetic field enhancement. This plasmonic enhancement is confirmed by surface enhancement Raman spectroscopy of a dye performed in liquid, which presents an enhancement of almost 100 times the incident field amplitude at resonant excitation. Finally, the reported MEA devices are tested on cultured rat hippocampal neurons. Neurons develop by extending branches on the nanostructured electrodes and extracellular action potentials are recorded over multiple days in vitro. Raman spectra of living neurons cultured on the nanoantennas are also acquired. These results highlight that these nanostructures could be potential candidates for combining electrophysiological measures of large networks with simultaneous spectroscopic investigations at the molecular level.

  7. Controlled mechanical buckling for origami-inspired construction of 3D microstructures in advanced materials.

    PubMed

    Yan, Zheng; Zhang, Fan; Wang, Jiechen; Liu, Fei; Guo, Xuelin; Nan, Kewang; Lin, Qing; Gao, Mingye; Xiao, Dongqing; Shi, Yan; Qiu, Yitao; Luan, Haiwen; Kim, Jung Hwan; Wang, Yiqi; Luo, Hongying; Han, Mengdi; Huang, Yonggang; Zhang, Yihui; Rogers, John A

    2016-04-25

    Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.

  8. Effective grain pinning revealed by nanoscale electron tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Y. Q.; Tang, W.; Dennis, K. W.

    2011-03-21

    The grain pinning behavior of TiC particles in a rapidly solidified MRE-Fe-B (MRE = Nd + Y + Dy) nanocrystalline hard magnet was studied using electron tomography (ET). The 3D reconstruction overcomes the inherent 2D nature of conventional transmission electronmicroscopy (TEM) to reveal how this grain boundary phase controls the nanoscale structure in the rapidly solidified alloy. The 3D reconstruction was performed on the optimally annealed alloy (750 C/15 min) with hard magnetic properties of M{sub r} = 8.1 kGs, H{sub c} = 6.2 kOe, (BH){sub max} = 11.2 MGOe measured at 300 k. The sampled volume, 425 x 425more » x 92.5 nm{sup 3}, contains more than 20 grains of the RE2-14-1 phase and more than 70 TiC nanoparticles. The TiC grains shapes depend on their sizes and locations along the grain boundary. Most of the TiC particles are oval or short rod like shapes and range from 5 nm to 10 nm. TiC particles less than 10 nm formed between adjacent 2-14-1 grains, while the largest ones formed at triple junctions. There are -1.7 x 10{sup 8} TiC particles within a 1 mm{sup 3} volume in the alloy. This accounts for the strong grain boundary pinning effect, which limits grain growth during annealing.« less

  9. Cellular Delivery of Nanoparticles Revealed with Combined Optical and Isotopic Nanoscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Proetto, Maria T.; Anderton, Christopher R.; Hu, Dehong

    Synthetic drug-carrying nanomaterials offer great potential as targeted cellular delivery vehicles. Typically, their size, morphology, surface chemistry and stability are optimized in order to control their effect on drug release kinetics, cellular uptake pathways, efficiency and site of action. However, methods to track the carriers and their cargo independently at the micro- and nanoscale have been severely underutilized preventing the correlation between structure and function. Here we show that by using combined optical and isotopic nanoscopy we can track the uptake in cancer cells and subsequent drug release of a Pt(II)-loaded anticancer nanoparticle (NP) system. We found that by directlymore » polymerizing an oxaliplatin analogue containing a norbornyl moiety amenable to polymerization via ring opening metathesis polymerization (ROMP) we could generate amphiphiles in one pot. Spontaneous self-assembly of the drug-containing polymers in aqueous solution led to well-defined NPs in a reproducible manner. Our results demonstrate that the covalently loaded NPs are equipotent with free oxaliplatin and are taken up intact via endocytic pathways before release of the cytotoxic cargo. This was confirmed by super resolution fluorescence structured illumination microscopy (SIM) and nanoscale secondary ion mass spectrometry (NanoSIMS). We anticipate that this type of multimodal cellular tracking of NP and drug will bridge the knowledge gap between particle structure and performance for the vast array of currently generalizable systems in the literature. Furthermore, the use of covalently loaded NP drug systems should allow development of more stable, reproducible and site specific nanodelivery agents.« less

  10. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo

    2017-02-01

    We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.

  11. Control of cell growth on 3D-printed cell culture platforms for tissue engineering.

    PubMed

    Tan, Zhikai; Liu, Tong; Zhong, Juchang; Yang, Yikun; Tan, Weihong

    2017-12-01

    Biocompatible tissue growth has excellent prospects for tissue engineering. These tissues are built over scaffolds, which can influence aspects such as cell adhesion, proliferation rate, morphology, and differentiation. However, the ideal 3D biological structure has not been developed yet. Here, we applied the electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid, PLGA) solution to print varied culture platforms for engineered tissue structures. The effects of different parameters (electrical voltage, plotting speed, and needle sizes) on the outcome were investigated. We compared the biological compatibility of the 3D printed culture platforms with that of random fibers. Finally, we used the 3D-printed PLGA platforms to culture fibroblasts, the main cellular components of loose connective tissue. The results show that the E-jet printed platforms could guide and improve cell growth. These highly aligned fibers were able to support cellular alignment and proliferation. Cell angle was consistent with the direction of the fibers, and cells cultured on these fibers showed a much faster migration, potentially enhancing wound healing performance. Thus, the potential of this technology for 3D biological printing is large. This process can be used to grow biological scaffolds for the engineering of tissues. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3281-3292, 2017. © 2017 Wiley Periodicals, Inc.

  12. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  13. Importing super-resolution imaging into nanoscale puzzles of materials dynamics

    NASA Astrophysics Data System (ADS)

    King, John; Tsang, Chi Hang Boyce; Wilson, William; Granick, Steve

    2014-03-01

    A limitation of the exciting recent advances in sub-diffraction microscopy is that they focus on imaging rather than dynamical changes. We are engaged in extending this technique beyond the usual biological applications to address materials problems instead. To this end, we employ stimulated emission depletion (STED) microscopy, which relies on selectively turning off fluorescence emitters through stimulated emission, allowing only a small subset of emitters to be detected, such that the excitation spot size can be downsized to tens of nanometers. By coupling the STED excitation scheme to fluorescence correlation spectroscopy (FCS), diffusive processes are studied with nanoscale resolution. Here, we demonstrate the benefits of such experimental capabilities in a diverse range of complex systems, ranging from the diffusion of nano-objects in crowded 3D environments to the study of polymer diffusion on 2D surfaces.

  14. Comparative analysis of 2D and 3D distance measurements to study spatial genome organization.

    PubMed

    Finn, Elizabeth H; Pegoraro, Gianluca; Shachar, Sigal; Misteli, Tom

    2017-07-01

    The spatial organization of genomes is non-random, cell-type specific, and has been linked to cellular function. The investigation of spatial organization has traditionally relied extensively on fluorescence microscopy. The validity of the imaging methods used to probe spatial genome organization often depends on the accuracy and precision of distance measurements. Imaging-based measurements may either use 2 dimensional datasets or 3D datasets which include the z-axis information in image stacks. Here we compare the suitability of 2D vs 3D distance measurements in the analysis of various features of spatial genome organization. We find in general good agreement between 2D and 3D analysis with higher convergence of measurements as the interrogated distance increases, especially in flat cells. Overall, 3D distance measurements are more accurate than 2D distances, but are also more susceptible to noise. In particular, z-stacks are prone to error due to imaging properties such as limited resolution along the z-axis and optical aberrations, and we also find significant deviations from unimodal distance distributions caused by low sampling frequency in z. These deviations are ameliorated by significantly higher sampling frequency in the z-direction. We conclude that 2D distances are preferred for comparative analyses between cells, but 3D distances are preferred when comparing to theoretical models in large samples of cells. In general and for practical purposes, 2D distance measurements are preferable for many applications of analysis of spatial genome organization. Published by Elsevier Inc.

  15. From SHAPE Signatures to 3-D Structures | Center for Cancer Research

    Cancer.gov

    RNAs undergo extensive folding to form sophisticated based-paired secondary structures that are, in part, indicators of more complex three-dimensional structures.  These 3-D shapes are an integral part of the cellular gene-expression machinery. Deconstructing these structures is no small matter, yet it is critical to understanding their function.

  16. 3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography

    PubMed Central

    Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun

    2012-01-01

    Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867

  17. Differences in primary cellular factors influencing the metabolism and distribution of 3,5,3′-L-triiodothyronine and L-thyroxine

    PubMed Central

    Oppenheimer, Jack H.; Schwartz, Harold L.; Shapiro, Harvey C.; Bernstein, Gerald; Surks, Martin I.

    1970-01-01

    Administration of phenobarbital, which acts exclusively on cellular sites, results in an augmentation of the liver/plasma concentration ratio of L-thyroxine (T4) in rats but no change in the liver/plasma concentration ratio of L-triiodothyronine (T3). Whereas phenobarbital stimulates the fecal clearance rate both of T3 and T4, it increases the deiodinative clearance rate of T4 only. These findings suggest basic differences in the cellular metabolism of T3 and T4. Further evidence pointing to cellular differences was obtained from a comparison of the distribution and metabolism of these hormones with appropriate corrections for the effect of differential plasma binding. The percentage of total exchangeable cellular T4 within the liver (28.5) is significantly greater than the corresponding percentage of exchangeable cellular T3 within this organ (12.3). Extrahepatic tissues bind T3 twice as firmly as T4. The cellular metabolic clearance rate (= free hormone clearance rate) of T3 exceeds that of T4 by a factor 1.8 in the rat. The corresponding ratio in man, 2.4, was determined by noncompartmental analysis of turnover studies in four individuals after the simultaneous injection of T4-125I and T3-131I. The greater cellular metabolic clearance rate of T3 both in rat and man may be related to the higher specific hormonal potency of this iodothyronine. PMID:5441537

  18. One-Step Sub-micrometer-Scale Electrohydrodynamic Inkjet Three-Dimensional Printing Technique with Spontaneous Nanoscale Joule Heating.

    PubMed

    Zhang, Bin; Seong, Baekhoon; Lee, Jaehyun; Nguyen, VuDat; Cho, Daehyun; Byun, Doyoung

    2017-09-06

    A one-step sub-micrometer-scale electrohydrodynamic (EHD) inkjet three-dimensional (3D)-printing technique that is based on the drop-on-demand (DOD) operation for which an additional postsintering process is not required is proposed. Both the numerical simulation and the experimental observations proved that nanoscale Joule heating occurs at the interface between the charged silver nanoparticles (Ag-NPs) because of the high electrical contact resistance during the printing process; this is the reason why an additional postsintering process is not required. Sub-micrometer-scale 3D structures were printed with an above-35 aspect ratio via the use of the proposed printing technique; furthermore, it is evident that the designed 3D structures such as a bridge-like shape can be printed with the use of the proposed printing technique, allowing for the cost-effective fabrication of a 3D touch sensor and an ultrasensitive air flow-rate sensor. It is believed that the proposed one-step printing technique may replace the conventional 3D conductive-structure printing techniques for which a postsintering process is used because of its economic efficiency.

  19. Categorical prototyping: incorporating molecular mechanisms into 3D printing.

    PubMed

    Brommer, Dieter B; Giesa, Tristan; Spivak, David I; Buehler, Markus J

    2016-01-15

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to 'protoype a model', as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  20. Crossed wires: 3D genome misfolding in human disease.

    PubMed

    Norton, Heidi K; Phillips-Cremins, Jennifer E

    2017-11-06

    Mammalian genomes are folded into unique topological structures that undergo precise spatiotemporal restructuring during healthy development. Here, we highlight recent advances in our understanding of how the genome folds inside the 3D nucleus and how these folding patterns are miswired during the onset and progression of mammalian disease states. We discuss potential mechanisms underlying the link among genome misfolding, genome dysregulation, and aberrant cellular phenotypes. We also discuss cases in which the endogenous 3D genome configurations in healthy cells might be particularly susceptible to mutation or translocation. Together, these data support an emerging model in which genome folding and misfolding is critically linked to the onset and progression of a broad range of human diseases. © 2017 Norton and Phillips-Cremins.

  1. Structure and Reversibility of 2D von Neumann Cellular Automata Over Triangular Lattice

    NASA Astrophysics Data System (ADS)

    Uguz, Selman; Redjepov, Shovkat; Acar, Ecem; Akin, Hasan

    2017-06-01

    Even though the fundamental main structure of cellular automata (CA) is a discrete special model, the global behaviors at many iterative times and on big scales could be a close, nearly a continuous, model system. CA theory is a very rich and useful phenomena of dynamical model that focuses on the local information being relayed to the neighboring cells to produce CA global behaviors. The mathematical points of the basic model imply the computable values of the mathematical structure of CA. After modeling the CA structure, an important problem is to be able to move forwards and backwards on CA to understand their behaviors in more elegant ways. A possible case is when CA is to be a reversible one. In this paper, we investigate the structure and the reversibility of two-dimensional (2D) finite, linear, triangular von Neumann CA with null boundary case. It is considered on ternary field ℤ3 (i.e. 3-state). We obtain their transition rule matrices for each special case. For given special triangular information (transition) rule matrices, we prove which triangular linear 2D von Neumann CAs are reversible or not. It is known that the reversibility cases of 2D CA are generally a much challenged problem. In the present study, the reversibility problem of 2D triangular, linear von Neumann CA with null boundary is resolved completely over ternary field. As far as we know, there is no structure and reversibility study of von Neumann 2D linear CA on triangular lattice in the literature. Due to the main CA structures being sufficiently simple to investigate in mathematical ways, and also very complex to obtain in chaotic systems, it is believed that the present construction can be applied to many areas related to these CA using any other transition rules.

  2. Nanostructured 2D cellular materials in silicon by sidewall transfer lithography NEMS

    NASA Astrophysics Data System (ADS)

    Syms, Richard R. A.; Liu, Dixi; Ahmad, Munir M.

    2017-07-01

    Sidewall transfer lithography (STL) is demonstrated as a method for parallel fabrication of 2D nanostructured cellular solids in single-crystal silicon. The linear mechanical properties of four lattices (perfect and defected diamond; singly and doubly periodic honeycomb) with low effective Young’s moduli and effective Poisson’s ratio ranging from positive to negative are modelled using analytic theory and the matrix stiffness method with an emphasis on boundary effects. The lattices are fabricated with a minimum feature size of 100 nm and an aspect ratio of 40:1 using single- and double-level STL and deep reactive ion etching of bonded silicon-on-insulator. Nanoelectromechanical systems (NEMS) containing cellular materials are used to demonstrate stretching, bending and brittle fracture. Predicted edge effects are observed, theoretical values of Poisson’s ratio are verified and failure patterns are described.

  3. Geospatial Modelling Approach for 3d Urban Densification Developments

    NASA Astrophysics Data System (ADS)

    Koziatek, O.; Dragićević, S.; Li, S.

    2016-06-01

    With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.

  4. Meta!Blast computer game: a pipeline from science to 3D art to education

    NASA Astrophysics Data System (ADS)

    Schneller, William; Campbell, P. J.; Bassham, Diane; Wurtele, Eve Syrkin

    2012-03-01

    Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell.

  5. Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model

    NASA Astrophysics Data System (ADS)

    Kassebaum, Paul G.; Iannacchione, Germano S.

    The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.

  6. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  7. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  10. Chemomechanically engineered 3D organotypic platforms of bladder cancer dormancy and reactivation.

    PubMed

    Pavan Grandhi, Taraka Sai; Potta, Thrimoorthy; Nitiyanandan, Rajeshwar; Deshpande, Indrani; Rege, Kaushal

    2017-10-01

    Tumors undergo periods of dormancy followed by reactivation leading to metastatic disease. Arrest in the G0/G1 phase of the cell cycle and resistance to chemotherapeutic drugs are key hallmarks of dormant tumor cells. Here, we describe a 3D platform of bladder cancer cell dormancy and reactivation facilitated by a novel aminoglycoside-derived hydrogel, Amikagel. These 3D dormant tumor microenvironments (3D-DTMs) were arrested in the G0/G1 phase and were highly resistant to anti-proliferative drugs. Inhibition of targets in the cellular protein production machinery led to induction of endoplasmic reticulum (ER) stress and complete ablation of 3D-DTMs. Nanoparticle-mediated calcium delivery significantly accelerated ER stress-mediated 3D-DTM death. Transfer of 3D-DTMs onto weaker and adhesive Amikagels resulted in selective reactivation of a sub-population of N-cadherin deficient cells from dormancy. Whole-transcriptome analyses further indicated key biochemical differences between dormant and proliferative cancer cells. Taken together, our results indicate that 3D bladder cancer microenvironments of dormancy and reactivation can facilitate fundamental advances and novel drug discovery in cancer. Copyright © 2017. Published by Elsevier Ltd.

  11. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    PubMed

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Theoretical Analysis of Novel Quasi-3D Microscopy of Cell Deformation

    PubMed Central

    Qiu, Jun; Baik, Andrew D.; Lu, X. Lucas; Hillman, Elizabeth M. C.; Zhuang, Zhuo; Guo, X. Edward

    2012-01-01

    A novel quasi-three-dimensional (quasi-3D) microscopy technique has been developed to enable visualization of a cell under dynamic loading in two orthogonal planes simultaneously. The three-dimensional (3D) dynamics of the mechanical behavior of a cell under fluid flow can be examined at a high temporal resolution. In this study, a numerical model of a fluorescently dyed cell was created in 3D space, and the cell was subjected to uniaxial deformation or unidirectional fluid shear flow via finite element analysis (FEA). Therefore, the intracellular deformation in the simulated cells was exactly prescribed. Two-dimensional fluorescent images simulating the quasi-3D technique were created from the cell and its deformed states in 3D space using a point-spread function (PSF) and a convolution operation. These simulated original and deformed images were processed by a digital image correlation technique to calculate quasi-3D-based intracellular strains. The calculated strains were compared to the prescribed strains, thus providing a theoretical basis for the measurement of the accuracy of quasi-3D and wide-field microscopy-based intracellular strain measurements against the true 3D strains. The signal-to-noise ratio (SNR) of the simulated quasi-3D images was also modulated using additive Gaussian noise, and a minimum SNR of 12 was needed to recover the prescribed strains using digital image correlation. Our computational study demonstrated that quasi-3D strain measurements closely recovered the true 3D strains in uniform and fluid flow cellular strain states to within 5% strain error. PMID:22707985

  13. 3D imaging by serial block face scanning electron microscopy for materials science using ultramicrotomy.

    PubMed

    Hashimoto, Teruo; Thompson, George E; Zhou, Xiaorong; Withers, Philip J

    2016-04-01

    Mechanical serial block face scanning electron microscopy (SBFSEM) has emerged as a means of obtaining three dimensional (3D) electron images over volumes much larger than possible by focused ion beam (FIB) serial sectioning and at higher spatial resolution than achievable with conventional X-ray computed tomography (CT). Such high resolution 3D electron images can be employed for precisely determining the shape, volume fraction, distribution and connectivity of important microstructural features. While soft (fixed or frozen) biological samples are particularly well suited for nanoscale sectioning using an ultramicrotome, the technique can also produce excellent 3D images at electron microscope resolution in a time and resource-efficient manner for engineering materials. Currently, a lack of appreciation of the capabilities of ultramicrotomy and the operational challenges associated with minimising artefacts for different materials is limiting its wider application to engineering materials. Consequently, this paper outlines the current state of the art for SBFSEM examining in detail how damage is introduced during slicing and highlighting strategies for minimising such damage. A particular focus of the study is the acquisition of 3D images for a variety of metallic and coated systems. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Nanoscale PdO Catalyst Functionalized Co3O4 Hollow Nanocages Using MOF Templates for Selective Detection of Acetone Molecules in Exhaled Breath.

    PubMed

    Koo, Won-Tae; Yu, Sunmoon; Choi, Seon-Jin; Jang, Ji-Soo; Cheong, Jun Young; Kim, Il-Doo

    2017-03-08

    The increase of surface area and the functionalization of catalyst are crucial to development of high-performance semiconductor metal oxide (SMO) based chemiresistive gas sensors. Herein, nanoscale catalyst loaded Co 3 O 4 hollow nanocages (HNCs) by using metal-organic framework (MOF) templates have been developed as a new sensing platform. Nanoscale Pd nanoparticles (NPs) were easily loaded on the cavity of Co based zeolite imidazole framework (ZIF-67). The porous structure of ZIF-67 can restrict the size of Pd NPs (2-3 nm) and separate Pd NPs from each other. Subsequently, the calcination of Pd loaded ZIF-67 produced the catalytic PdO NPs functionalized Co 3 O 4 HNCs (PdO-Co 3 O 4 HNCs). The ultrasmall PdO NPs (3-4 nm) are well-distributed in the wall of Co 3 O 4 HNCs, the unique structure of which can provide high surface area and high catalytic activity. As a result, the PdO-Co 3 O 4 HNCs exhibited improved acetone sensing response (R gas /R air = 2.51-5 ppm) compared to PdO-Co 3 O 4 powders (R gas /R air = 1.98), Co 3 O 4 HNCs (R gas /R air = 1.96), and Co 3 O 4 powders (R gas /R air = 1.45). In addition, the PdO-Co 3 O 4 HNCs showed high acetone selectivity against other interfering gases. Moreover, the sensor array clearly distinguished simulated exhaled breath of diabetics from healthy people's breath. These results confirmed the novel synthesis of MOF templated nanoscale catalyst loaded SMO HNCs for high performance gas sensors.

  15. The cellular source for APOBEC3G's incorporation into HIV-1

    PubMed Central

    2011-01-01

    Background Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear. Results Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:21211018

  16. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  17. Hypervitaminosis D3 in broiler chicks: histopathological, immunomodulatory and immunohistochemical approach.

    PubMed

    Kumar, R; Brar, R S; Banga, H S

    2017-01-01

    The present study was undertaken to investigate the toxic effects of higher doses (1,00,000 IU i.e. 2.5 mg/kg body weight (BW)) of vitamin D 3 , concomitantly with bacterial endotoxins (lipopolysaccharides: LPS) to study the immunomodulatory potential of vitamin D 3 in IBL-80 broiler chicks. The chicks were divided into four groups [group I (NSS), group II (LPS), group III (Vit. D 3 + NSS), and group IV (Vit. D 3 + LPS)] containing eight chicks in each group, treated accordingly for 21 days. Birds were kept under close observation for apparent clinical signs and symptoms. Clinically, vitamin D 3 treated chicks were dull, off feed, showed polydipsia, polyuria, watery faeces, rigidity of limbs, severe dehydration, weakness and significant progressive emaciation. Grossly, the bones were soft whereas most organs revealed congestion and hemorrhages in visceral organs. Histopathologically, renal tubular epithelium showed coagulative necrosis and metastatic calcification. The lung parenchyma and bronchi showed hemorrhages, congestion with diffuse heterophilic cell infiltration in inter-alveolar septa and infiltration of heterophils in alveoli along with proteinacious fluid in LPS treated chicks of treatment group, suggesting immunomodulatory action of vitamin D 3 . Vitamin D 3 treated chicks showed strong expression of Calbindin D28k in intestine and kidney but weak expression in lung, which can be linked to nephrocalcinosis seen in kidney and from its prospective role in cellular calcium homeostasis.

  18. Nanoscale insight of high piezoelectricity in high-TC PMN-PH-PT ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, Rongfeng; Zhang, Qihui; Fang, Bijun; Zhang, Shuai; Zhao, Xiangyong; Ding, Jianning

    2018-03-01

    The piezoelectric properties of the high-Curie temperature (high-TC) 0.15Pb(Mg1/3Nb2/3)O3-0.38PbHfO3-0.47PbTiO3 (0.15PMN-0.38PH-0.47PT) ceramics prepared by three different methods were compared. The 0.15PMN-0.38PH-0.47PT ceramics synthesized by the partial oxalate route exhibit the optimum properties, in which d33* = 845.3 pm/V, d33 = 456.2 pC/N, Kp = 67.2%, and TC = 291 °C. The nanoscale origin of the high piezoelectric response of the 0.15PMN-0.38PH-0.47PT ceramics was investigated by piezoresponse force microscopy (PFM) using the ceramics synthesized by the partial oxalate route. Large quantities of fine stripe submicron ferroelectric domains are observed, which form large island domains. In order to give further insights into the piezoelectric properties of the 0.15PMN-0.38PH-0.47PT ceramics from a microscopic point of view, the local poling experiments and local switching spectroscopy piezoresponse force microscopy (SS-PFM) were investigated, from which the local converse piezoelectric coefficient d33*(l) is calculated as 220 pm/V.

  19. Nanoscale chemical mapping of laser-solubilized silk

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Kobayashi, Hanae; Balčytis, Armandas; Wang, Xuewen; Vongsvivut, Jitraporn; Li, Jingliang; Urayama, Norio; Mizeikis, Vygantas; Tobin, Mark; Juodkazis, Saulius; Morikawa, Junko

    2017-11-01

    A water soluble amorphous form of silk was made by ultra-short laser pulse irradiation and detected by nanoscale IR mapping. An optical absorption-induced nanoscale surface expansion was probed to yield the spectral response of silk at IR molecular fingerprinting wavelengths with a high  ˜ 20 nm spatial resolution defined by the tip of the probe. Silk microtomed sections of 1-5 μm in thickness were prepared for nanoscale spectroscopy and a laser was used to induce amorphisation. Comparison of silk absorbance measurements carried out by table-top and synchrotron Fourier transform IR spectroscopy proved that chemical imaging obtained at high spatial resolution and specificity (able to discriminate between amorphous and crystalline silk) is reliably achieved by nanoscale IR. Differences in absorbance and spectral line-shapes of the bands are related to the different sensitivity of the applied methods to real and imaginary parts of permittivity. A nanoscale material characterization by combining synchrotron IR radiation and nano-IR is discussed.

  20. Three-dimensional nanoscale characterisation of materials by atom probe tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devaraj, Arun; Perea, Daniel E.; Liu, Jia

    The development of three-dimensional (3D), characterization techniques with high spatial and mass resolution is crucial for understanding and developing advanced materials for many engineering applications as well as for understanding natural materials. In recent decades, atom probe tomography (APT) which combines a point projection microscope and time-of-flight mass spectrometer has evolved to be an excellent characterization technique capable of providing 3D nanoscale characterization of materials with sub-nanometer scale spatial resolution, with equal sensitivity for all elements. This review discusses the current state as of beginning of the year 2016 of APT instrumentation, new developments in sample preparation methods, experimental proceduresmore » for different material classes, reconstruction of APT results, the current status of correlative microscopy, and application of APT for microstructural characterization in established scientific areas like structural materials as well as new applications in semiconducting nanowires, semiconductor devices, battery materials, catalyst materials, geological materials and biological materials. Finally, a brief perspective is given regarding the future of APT.« less

  1. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  2. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  3. Nanoscale Morphology of Type I Collagen is Altered in the Brtl Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.

    2010-01-01

    Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252

  4. High-Throughput Top-Down and Bottom-Up Processes for Forming Single-Nanotube Based Architectures for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; von Allmen, Paul; Kowalczyk, Robert; Baron, Richard

    2009-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers for forming the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth. Such scalable, high throughput top-down fabrication techniques, combined with bottom-up tube synthesis, should accelerate the development of PECVD tubes for applications such as interconnects, nano-electromechanical (NEMS), sensors or 3D electronics in general.

  5. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  6. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  7. Quantum Materials at the Nanoscale - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Stephen Lance

    The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters

  8. Development and Optimization of Viable Human Platforms through 3D Printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, Paul R.; Moya, Monica L.; Wheeler, Elizabeth K.

    2015-08-21

    3D printing technology offers a unique method for creating cell cultures in a manner far more conducive to accurate representation of human tissues and systems. Here we print cellular structures capable of forming vascular networks and exhibiting qualities of natural tissues and human systems. This allows for cheaper and readily available sources for further study of biological and pharmaceutical agents.

  9. Human cardiac telocytes: 3D imaging by FIB-SEM tomography

    PubMed Central

    Cretoiu, D; Hummel, E; Zimmermann, H; Gherghiceanu, M; Popescu, L M

    2014-01-01

    Telocyte (TC) is a newly identified type of cell in the cardiac interstitium (www.telocytes.com). TCs are described by classical transmission electron microscopy as cells with very thin and long telopodes (Tps; cellular prolongations) having podoms (dilations) and podomers (very thin segments). TCs’ three-dimensional (3D) morphology is still unknown. Cardiac TCs seem to be particularly involved in long and short distance intercellular signalling and, therefore, their 3D architecture is important for understanding their spatial connections. Using focused ion beam scanning electron microscopy (FIB-SEM) we show, for the first time, the whole ultrastructural anatomy of cardiac TCs. 3D reconstruction of cardiac TCs by FIB-SEM tomography confirms that they have long, narrow but flattened (ribbon-like) telopodes, with humps generated by the podoms. FIB-SEM tomography also confirms the network made by TCs in the cardiac interstitium through adherens junctions. This study provides the first FIB-SEM tomography of a human cell type. PMID:25327290

  10. Bilayered nanofibrous 3D hierarchy as skin rudiment by emulsion electrospinning for burn wound management.

    PubMed

    Pal, Pallabi; Dadhich, Prabhash; Srivas, Pavan Kumar; Das, Bodhisatwa; Maulik, Dhrubajyoti; Dhara, Santanu

    2017-08-22

    Mimicking skin extracellular matrix hierarchy, the present work aims to develop a bilayer skin graft comprising a porous cotton-wool-like 3D layer with membranous structure of PCL-chitosan nanofibers. Emulsion electrospinning with differential stirring periods of PCL-chitosan emulsion results in development of a bilayer 3D structure with varied morphology. The electrospun membrane has fiber diameter ∼274 nm and pore size ∼1.16 μm while fluffy 3D layer has fiber diameter ∼1.62 μm and pore size ∼62 μm. The 3D layer was further coated with collagen I isolated from Cirrhinus cirrhosus fish scales to improve biofunctionality. Surface coating with collagen I resulted in bundling the fibers together, thereby increasing their average diameter to 2.80 μm and decreasing pore size to ∼45 μm. The architecture and composition of the scaffold promotes efficient cellular activity where interconnected porosity with ECM resembling collagen I coating assists cellular adhesion, infiltration, and proliferation from initial days of fibroblast seeding, while keratinocytes migrate on the surface only without infiltrating in the membranous nanofiber layer. Anatomy of the scaffold arising due to variation in pore size distribution at different layers thereby facilitates compartmentalization and prevents initial cellular transmigration. The scaffold also assists in extracellular matrix protein synthesis and keratinocyte stratification in vitro. Further, the scaffold effectively integrates and attaches with third-degree burn wound margins created in rat models and accelerates healing in comparison to standard Tegaderm dressing™. The bilayer scaffold is thus a promising, readily available, cost-effective, off-the-shelf matrix as a skin substitute.

  11. 3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.

    PubMed

    Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O

    2017-11-08

    Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.

  12. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    PubMed

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-05

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers.

  13. Cellular modelling of secondary radial growth in conifer trees: application to Pinus radiata (D. Don).

    PubMed

    Forest, Loïc; Demongeot, Jacques; Demongeota, Jacques

    2006-05-01

    The radial growth of conifer trees proceeds from the dynamics of a merismatic tissue called vascular cambium or cambium. Cambium is a thin layer of active proliferating cells. The purpose of this paper was to model the main characteristics of cambial activity and its consecutive radial growth. Cell growth is under the control of the auxin hormone indole-3-acetic. The model is composed of a discrete part, which accounts for cellular proliferation, and a continuous part involving the transport of auxin. Cambium is modeled in a two-dimensional cross-section by a cellular automaton that describes the set of all its constitutive cells. Proliferation is defined as growth and division of cambial cells under neighbouring constraints, which can eliminate some cells from the cambium. The cell-growth rate is determined from auxin concentration, calculated with the continuous model. We studied the integration of each elementary cambial cell activity into the global coherent movement of macroscopic morphogenesis. Cases of normal and abnormal growth of Pinus radiata (D. Don) are modelled. Abnormal growth includes deformed trees where gravity influences auxin transport, producing heterogeneous radial growth. Cross-sectional microscopic views are also provided to validate the model's hypothesis and results.

  14. Feasibility and Biocompatibility of 3D-Printed Photopolymerized and Laser Sintered Polymers for Neuronal, Myogenic, and Hepatic Cell Types.

    PubMed

    Rimington, Rowan P; Capel, Andrew J; Player, Darren J; Bibb, Richard J; Christie, Steven D R; Lewis, Mark P

    2018-06-13

    The integration of additive manufacturing (AM) technology within biological systems holds significant potential, specifically when refining the methods utilized for the creation of in vitro models. Therefore, examination of cellular interaction with the physical/physicochemical properties of 3D-printed polymers is critically important. In this work, skeletal muscle (C 2 C 12 ), neuronal (SH-SY5Y) and hepatic (HepG2) cell lines are utilized to ascertain critical evidence of cellular behavior in response to 3D-printed candidate polymers: Clear-FL (stereolithography, SL), PA-12 (laser sintering, LS), and VeroClear (PolyJet). This research outlines initial critical evidence for a framework of polymer/AM process selection when 3D printing biologically receptive scaffolds, derived from industry standard, commercially available AM instrumentation. C 2 C 12 , SH-SY5Y, and HepG2 cells favor LS polymer PA-12 for applications in which cellular adherence is necessitated. However, cell type specific responses are evident when cultured in the chemical leachate of photopolymers (Clear-FL and VeroClear). With the increasing prevalence of 3D-printed biointerfaces, the development of rigorous cell type specific biocompatibility data is imperative. Supplementing the currently limited database of functional 3D-printed biomaterials affords the opportunity for experiment-specific AM process and polymer selection, dependent on biological application and intricacy of design features required. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Partially nanofibrous architecture of 3D tissue engineering scaffolds.

    PubMed

    Wei, Guobao; Ma, Peter X

    2009-11-01

    An ideal tissue-engineering scaffold should provide suitable pores and appropriate pore surface to induce desired cellular activities and to guide 3D tissue regeneration. In the present work, we have developed macroporous polymer scaffolds with varying pore wall architectures from smooth (solid), microporous, partially nanofibrous, to entirely nanofibrous ones. All scaffolds are designed to have well-controlled interconnected macropores, resulting from leaching sugar sphere template. We examine the effects of material composition, solvent, and phase separation temperature on the pore surface architecture of 3D scaffolds. In particular, phase separation of PLLA/PDLLA or PLLA/PLGA blends leads to partially nanofibrous scaffolds, in which PLLA forms nanofibers and PDLLA or PLGA forms the smooth (solid) surfaces on macropore walls, respectively. Specific surface areas are measured for scaffolds with similar macroporosity but different macropore wall architectures. It is found that the pore wall architecture predominates the total surface area of the scaffolds. The surface area of a partially nanofibrous scaffold increases linearly with the PLLA content in the polymer blend. The amounts of adsorbed proteins from serum increase with the surface area of the scaffolds. These macroporous scaffolds with adjustable pore wall surface architectures may provide a platform for investigating the cellular responses to pore surface architecture, and provide us with a powerful tool to develop superior scaffolds for various tissue-engineering applications.

  16. Biomaterials for integration with 3-D bioprinting.

    PubMed

    Skardal, Aleksander; Atala, Anthony

    2015-03-01

    Bioprinting has emerged in recent years as an attractive method for creating 3-D tissues and organs in the laboratory, and therefore is a promising technology in a number of regenerative medicine applications. It has the potential to (i) create fully functional replacements for damaged tissues in patients, and (ii) rapidly fabricate small-sized human-based tissue models, or organoids, for diagnostics, pathology modeling, and drug development. A number of bioprinting modalities have been explored, including cellular inkjet printing, extrusion-based technologies, soft lithography, and laser-induced forward transfer. Despite the innovation of each of these technologies, successful implementation of bioprinting relies heavily on integration with compatible biomaterials that are responsible for supporting the cellular components during and after biofabrication, and that are compatible with the bioprinting device requirements. In this review, we will evaluate a variety of biomaterials, such as curable synthetic polymers, synthetic gels, and naturally derived hydrogels. Specifically we will describe how they are integrated with the bioprinting technologies above to generate bioprinted constructs with practical application in medicine.

  17. A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells

    NASA Astrophysics Data System (ADS)

    Posati, Tamara; Pistone, Assunta; Saracino, Emanuela; Formaggio, Francesco; Mola, Maria Grazia; Troni, Elisabetta; Sagnella, Anna; Nocchetti, Morena; Barbalinardo, Marianna; Valle, Francesco; Bonetti, Simone; Caprini, Marco; Nicchia, Grazia Paola; Zamboni, Roberto; Muccini, Michele; Benfenati, Valentina

    2016-08-01

    Potassium channels and aquaporins expressed by astrocytes are key players in the maintenance of cerebral homeostasis and in brain pathophysiologies. One major challenge in the study of astrocyte membrane channels in vitro, is that their expression pattern does not resemble the one observed in vivo. Nanostructured interfaces represent a significant resource to control the cellular behaviour and functionalities at micro and nanoscale as well as to generate novel and more reliable models to study astrocytes in vitro. However, the potential of nanotechnologies in the manipulation of astrocytes ion channels and aquaporins has never been previously reported. Hydrotalcite-like compounds (HTlc) are layered materials with increasing potential as biocompatible nanoscale interface. Here, we evaluate the effect of the interaction of HTlc nanoparticles films with primary rat neocortical astrocytes. We show that HTlc films are biocompatible and do not promote gliotic reaction, while favouring astrocytes differentiation by induction of F-actin fibre alignment and vinculin polarization. Western Blot, Immunofluorescence and patch-clamp revealed that differentiation was accompanied by molecular and functional up-regulation of both inward rectifying potassium channel Kir 4.1 and aquaporin 4, AQP4. The reported results pave the way to engineering novel in vitro models to study astrocytes in a in vivo like condition.

  18. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.

    PubMed

    Seuter, Sabine; Pehkonen, Petri; Heikkinen, Sami; Carlberg, Carsten

    2013-12-01

    The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes. © 2013.

  19. Assembly and Self-Assembly of Nanomembrane Materials-From 2D to 3D.

    PubMed

    Huang, Gaoshan; Mei, Yongfeng

    2018-04-01

    Nanoscience and nanotechnology offer great opportunities and challenges in both fundamental research and practical applications, which require precise control of building blocks with micro/nanoscale resolution in both individual and mass-production ways. The recent and intensive nanotechnology development gives birth to a new focus on nanomembrane materials, which are defined as structures with thickness limited to about one to several hundred nanometers and with much larger (typically at least two orders of magnitude larger, or even macroscopic scale) lateral dimensions. Nanomembranes can be readily processed in an accurate manner and integrated into functional devices and systems. In this Review, a nanotechnology perspective of nanomembranes is provided, with examples of science and applications in semiconductor, metal, insulator, polymer, and composite materials. Assisted assembly of nanomembranes leads to wrinkled/buckled geometries for flexible electronics and stacked structures for applications in photonics and thermoelectrics. Inspired by kirigami/origami, self-assembled 3D structures are constructed via strain engineering. Many advanced materials have begun to be explored in the format of nanomembranes and extend to biomimetic and 2D materials for various applications. Nanomembranes, as a new type of nanomaterials, allow nanotechnology in a controllable and precise way for practical applications and promise great potential for future nanorelated products. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Bioengineered silk scaffolds in 3D tissue modeling with focus on mammary tissues.

    PubMed

    Maghdouri-White, Yas; Bowlin, Gary L; Lemmon, Christopher A; Dréau, Didier

    2016-02-01

    In vitro generation of three-dimensional (3D) biological tissues and organ-like structures is a promising strategy to study and closely model complex aspects of the molecular, cellular, and physiological interactions of tissue. In particular, in vitro 3D tissue modeling holds promises to further our understanding of breast development. Indeed, biologically relevant 3D structures that combine mammary cells and engineered matrices have improved our knowledge of mammary tissue growth, organization, and differentiation. Several polymeric biomaterials have been used as scaffolds to engineer 3D mammary tissues. Among those, silk fibroin-based biomaterials have many biologically relevant properties and have been successfully used in multiple medical applications. Here, we review the recent advances in engineered scaffolds with an emphasis on breast-like tissue generation and the benefits of modified silk-based scaffolds. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Complex furrows in a 2D epithelial sheet code the 3D structure of a beetle horn.

    PubMed

    Matsuda, Keisuke; Gotoh, Hiroki; Tajika, Yuki; Sushida, Takamichi; Aonuma, Hitoshi; Niimi, Teruyuki; Akiyama, Masakazu; Inoue, Yasuhiro; Kondo, Shigeru

    2017-10-24

    The external organs of holometabolous insects are generated through two consecutive processes: the development of imaginal primordia and their subsequent transformation into the adult structures. During the latter process, many different phenomena at the cellular level (e.g. cell shape changes, cell migration, folding and unfolding of epithelial sheets) contribute to the drastic changes observed in size and shape. Because of this complexity, the logic behind the formation of the 3D structure of adult external organs remains largely unknown. In this report, we investigated the metamorphosis of the horn in the Japanese rhinoceros beetle Trypoxylus dichotomus. The horn primordia is essentially a 2D epithelial cell sheet with dense furrows. We experimentally unfolded these furrows using three different methods and found that the furrow pattern solely determines the 3D horn structure, indicating that horn formation in beetles occurs by two distinct processes: formation of the furrows and subsequently unfolding them. We postulate that this developmental simplicity offers an inherent advantage to understanding the principles that guide 3D morphogenesis in insects.

  2. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  3. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells.

    PubMed

    Liu, Haijiao; Usprech, Jenna; Sun, Yu; Simmons, Craig A

    2016-04-01

    Cellular microenvironments present cells with multiple stimuli, including not only soluble biochemical and insoluble matrix cues but also mechanical factors. Biomaterial array platforms have been used to combinatorially and efficiently probe and define two-dimensional (2D) and 3D microenvironmental cues to guide cell functions for tissue engineering applications. However, there are few examples of array platforms that include dynamic mechanical forces, particularly to enable stretching of 3D cell-seeded biomaterials, which is relevant to engineering connective and cardiovascular tissues. Here we present a deformable membrane platform that enables 3D dynamic mechanical stretch of arrayed biomaterial constructs. Cell-seeded polyethylene glycol norbornene (PEG-NB) hydrogels were bound to miniaturized deformable membranes via a thiol-ene reaction with off-stoichiometry thiol-ene based polydimethylsiloxane (OSTE-PDMS) as the membrane material. Bonding to OSTE-PDMS enabled the 3D hydrogel microconstructs to be cyclically deformed and stretched by the membrane. As a first demonstration, human mesenchymal stromal cells (MSCs) embedded in PEG-NB were stretched for several days. They were found to be viable, spread in the 3D hydrogels, and exhibited a contractile myofibroblast phenotype when exposed to dynamic 3D mechanical deformation. This platform, which is readily scalable to larger arrays, enables systematic interrogation of the relationships between combinations of 3D mechanobiological cues and cellular responses, and thus has the potential to identify strategies to predictably control the construction of functional engineered tissues. Current high-throughput biomaterial screening approaches fail to consider the effects of dynamic mechanical stimulation, despite its importance in a wide variety of regenerative medicine applications. To meet this need, we developed a deformable membrane platform that enables 3D dynamic stretch of arrayed biomaterial constructs. Our

  4. Mechanical writing of n-type conductive layers on the SrTiO3 surface in nanoscale

    PubMed Central

    Wang, Yuhang; Zhao, Kehan; Shi, Xiaolan; Li, Geng; Xie, Guanlin; Lai, Xubo; Ni, Jun; Zhang, Liuwan

    2015-01-01

    The fabrication and control of the conductive surface and interface on insulating SrTiO3 bulk provide a pathway for oxide electronics. The controllable manipulation of local doping concentration in semiconductors is an important step for nano-electronics. Here we show that conductive patterns can be written on bare SrTiO3 surface by controllable doping in nanoscale using the mechanical interactions of atomic force microscopy tip without applying external electric field. The conductivity of the layer is n-type, oxygen sensitive, and can be effectively tuned by the gate voltage. Hence, our findings have potential applications in oxide nano-circuits and oxygen sensors. PMID:26042679

  5. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle.

    PubMed

    West, Adrian R; Zaman, Nishat; Cole, Darren J; Walker, Matthew J; Legant, Wesley R; Boudou, Thomas; Chen, Christopher S; Favreau, John T; Gaudette, Glenn R; Cowley, Elizabeth A; Maksym, Geoffrey N

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell "microtissues" capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma.

  6. Nanoscale patterning of electronic devices at the amorphous LaAlO3/SrTiO3 oxide interface using an electron sensitive polymer mask

    NASA Astrophysics Data System (ADS)

    Bjørlig, Anders V.; von Soosten, Merlin; Erlandsen, Ricci; Dahm, Rasmus Tindal; Zhang, Yu; Gan, Yulin; Chen, Yunzhong; Pryds, Nini; Jespersen, Thomas S.

    2018-04-01

    A simple approach is presented for designing complex oxide mesoscopic electronic devices based on the conducting interfaces of room temperature grown LaAlO3/SrTiO3 heterostructures. The technique is based entirely on methods known from conventional semiconductor processing technology, and we demonstrate a lateral resolution of ˜100 nm. We study the low temperature transport properties of nanoscale wires and demonstrate the feasibility of the technique for defining in-plane gates allowing local control of the electrostatic environment in mesoscopic devices.

  7. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics.

    PubMed

    Yam, Kah Meng; Guo, Na; Zhang, Chun

    2018-06-15

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu 2 Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu 2 Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu 2 Si-NiPc-Cu 2 Si junction is about three orders higher than that through graphene-NiPc-graphene. Detailed analysis shows that the surprisingly high conductivity of Cu 2 Si-NiPc-Cu 2 Si originates from the mixing of the Cu 2 Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu 2 Si may be an excellent candidate for electrode materials for future nanoscale devices.

  8. Two-dimensional Cu2Si sheet: a promising electrode material for nanoscale electronics

    NASA Astrophysics Data System (ADS)

    Meng Yam, Kah; Guo, Na; Zhang, Chun

    2018-06-01

    Building electronic devices on top of two-dimensional (2D) materials has recently become one of most interesting topics in nanoelectronics. Finding high-performance 2D electrode materials is one central issue in 2D nanoelectronics. In the current study, based on first-principles calculations, we compare the electronic and transport properties of two nanoscale devices. One device consists of two single-atom-thick planar Cu2Si electrodes, and a nickel phthalocyanine (NiPc) molecule in the middle. The other device is made of often-used graphene electrodes and a NiPc molecule. Planer Cu2Si is a new type of 2D material that was recently predicted to exist and be stable under room temperature [11]. We found that at low bias voltages, the electric current through the Cu2Si–NiPc–Cu2Si junction is about three orders higher than that through graphene–NiPc–graphene. Detailed analysis shows that the surprisingly high conductivity of Cu2Si–NiPc–Cu2Si originates from the mixing of the Cu2Si state near Fermi energy and the highest occupied molecular orbital of NiPc. These results suggest that 2D Cu2Si may be an excellent candidate for electrode materials for future nanoscale devices.

  9. NASA GSFC Strategic Nanotechnology Interests: Symposium on High-Rate Nanoscale Printing for Devices and Structures

    NASA Technical Reports Server (NTRS)

    Ericsson, Aprille J.

    2014-01-01

    The seminars invitees include representatives from industry, nonprofit research facility and universities. The presentation provides an overview of the NASAGSFC locations, technical capabilities and applied nanotechnology interests. Initially presented are advances by the broader technological communities on current miniaturized multiscale advanced manufacturing and 3D printing products on the micro and macro scale. Briefly assessed is the potential of moving toward the nanoscale for possible space flight applications and challenges. Lastly, highlighted are GSFCs current successes in nano-technology developments and targeted future applications.

  10. Synthesis of Compositionally Defined Single-Crystalline Eu 3+ -Activated Molybdate–Tungstate Solid-Solution Composite Nanowires and Observation of Charge Transfer in a Novel Class of 1D CaMoO 4 –CaWO 4 :Eu 3+ –0D CdS/CdSe QD Nanoscale Heterostructures

    DOE PAGES

    Han, Jinkyu; McBean, Coray; Wang, Lei; ...

    2015-02-10

    As a first step, we have synthesized and optically characterized a systematic series of one-dimensional (1D) single-crystalline Eu³⁺-activated alkaline-earth metal tungstate/molybdate solid solution composite CaW₁₋ xMo xO₄ (0 ≤ ‘x’ ≤ 1) nanowires of controllable chemical composition using a modified template-directed methodology under ambient room-temperature conditions. Extensive characterization of the resulting nanowires has been performed using X-ray diffraction, electron microscopy, and optical spectroscopy. The crystallite size and single crystallinity of as-prepared 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) solid solution composite nanowires increase with increasing Mo component (‘x’). We note a clear dependence of luminescence output uponmore » nanowire chemical composition with our 1D CaW₁₋ xMo xO₄: Eu³⁺ (0 ≤ ‘x’ ≤ 1) evincing the highest photoluminescence (PL) output at ‘x’ = 0.8, amongst samples tested. Subsequently, coupled with either zero-dimensional (0D) CdS or CdSe quantum dots (QDs), we successfully synthesized and observed charge transfer processes in 1D CaW1-xMoxO4: Eu3+ (‘x’ = 0.8) – 0D QD composite nanoscale heterostructures. Our results show that CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) nanowires give rise to PL quenching when CdSe QDs and CdS QDs are anchored onto the surfaces of 1D CaW₁₋ xMo xO₄: Eu³⁺ nanowires. The observed PL quenching is especially pronounced in CaW₁₋ xMo xO₄: Eu³⁺ (‘x’ = 0.8) – 0D CdSe QD heterostructures. Conversely, the PL output and lifetimes of CdSe and CdS QDs within these heterostructures are not noticeably altered as compared with unbound CdSe and CdS QDs. The difference in optical behavior between 1D Eu³⁺ activated tungstate and molybdate solid solution nanowires and the semiconducting 0D QDs within our heterostructures can be correlated with the relative positions of their conduction and valence energy band levels. We

  11. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles.

    PubMed

    Chia, Sing Ling; Tay, Chor Yong; Setyawati, Magdiel I; Leong, David T

    2015-02-11

    Our current mechanistic understanding on the effects of engineered nanoparticles (NPs) on cellular physiology is derived mainly from 2D cell culture studies. However, conventional monolayer cell culture may not accurately model the mass transfer gradient that is expected in 3D tissue physiology and thus may lead to artifactual experimental conclusions. Herein, using a micropatterned agarose hydrogel platform, the effects of ZnO NPs (25 nm) on 3D colon cell spheroids of well-defined sizes are examined. The findings show that cell dimensionality plays a critical role in governing the spatiotemporal cellular outcomes like inflammatory response and cytotoxicity in response to ZnO NPs treatment. More importantly, ZnO NPs can induce different modes of cell death in 2D and 3D cell culture systems. Interestingly, the outer few layers of cells in 3D model could only protect the inner core of cells for a limited time and periodically slough off from the spheroids surface. These findings suggest that toxicological conclusions made from 2D cell models might overestimate the toxicity of ZnO NPs. This 3D cell spheroid model can serve as a reproducible platform to better reflect the actual cell response to NPs and to study a more realistic mechanism of nanoparticle-induced toxicity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hypervitaminosis D3 in broiler chicks: histopathological, immunomodulatory and immunohistochemical approach

    PubMed Central

    Kumar, R.; Brar, R. S.; Banga, H. S.

    2017-01-01

    The present study was undertaken to investigate the toxic effects of higher doses (1,00,000 IU i.e. 2.5 mg/kg body weight (BW)) of vitamin D3, concomitantly with bacterial endotoxins (lipopolysaccharides: LPS) to study the immunomodulatory potential of vitamin D3 in IBL-80 broiler chicks. The chicks were divided into four groups [group I (NSS), group II (LPS), group III (Vit. D3 + NSS), and group IV (Vit. D3 + LPS)] containing eight chicks in each group, treated accordingly for 21 days. Birds were kept under close observation for apparent clinical signs and symptoms. Clinically, vitamin D3 treated chicks were dull, off feed, showed polydipsia, polyuria, watery faeces, rigidity of limbs, severe dehydration, weakness and significant progressive emaciation. Grossly, the bones were soft whereas most organs revealed congestion and hemorrhages in visceral organs. Histopathologically, renal tubular epithelium showed coagulative necrosis and metastatic calcification. The lung parenchyma and bronchi showed hemorrhages, congestion with diffuse heterophilic cell infiltration in inter-alveolar septa and infiltration of heterophils in alveoli along with proteinacious fluid in LPS treated chicks of treatment group, suggesting immunomodulatory action of vitamin D3. Vitamin D3 treated chicks showed strong expression of Calbindin D28k in intestine and kidney but weak expression in lung, which can be linked to nephrocalcinosis seen in kidney and from its prospective role in cellular calcium homeostasis. PMID:29163645

  13. Isotropic enhancement in the critical current density of YBCO thin films incorporating nanoscale Y2BaCuO5 inclusions

    NASA Astrophysics Data System (ADS)

    Jha, Alok K.; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2017-09-01

    The effect of incorporation of nanoscale Y2BaCuO5 (Y211) inclusions on the vortex pinning properties of YBa2Cu3O7-δ (YBCO or Y123) superconducting thin films is investigated in detail on the basis of variation of critical current density (JC) with applied magnetic field and also with the orientation of the applied magnetic field at two different temperatures: 77 K and 65 K. Surface modified target approach is employed to incorporate nanoscale Y211 inclusions into the superconducting YBCO matrix. The efficiency of Y211 nanoinclusions in reducing the angular anisotropy of critical current density is found to be significant. The observed angular dependence of the critical current density is discussed on the basis of mutually occupied volume by a vortex and spherical and/or planar defect. A dip in JC near the ab-plane is also observed which has been analyzed on the basis of variation of pinning potential corresponding to a spherical (3-D) or planar (2-D) pinning center and has been attributed to a reduced interaction volume of the vortices with a pinning center and competing nature of the potentials due to spherical and planar defects.

  14. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.

    PubMed

    Pati, Falguni; Cho, Dong-Woo

    2017-01-01

    Bioprinting provides an exciting opportunity to print and pattern all the components that make up a tissue-cells and extracellular matrix (ECM) material-in three dimensions (3D) to generate tissue analogues. A large number of materials have been used for making bioinks; however, majority of them cannot represent the complexity of natural ECM and thus are unable to reconstitute the intrinsic cellular morphologies and functions. We present here a method for making of bioink from decellularized extracellular matrices (dECMs) and a protocol for bioprinting of cell-laden constructs with this novel bioink. The dECM bioink is capable of providing an optimized microenvironment that is conducive to the growth of 3D structured tissue. We have prepared bioinks from different tissues, including adipose, cartilage and heart tissues and achieved high cell viability and functionality of the bioprinted tissue structures using our novel bioink.

  15. Dynamics of systems on the nanoscale

    NASA Astrophysics Data System (ADS)

    Korol, Andrei V.; Solov'yov, Andrey V.

    2017-12-01

    Various aspects of the structure formation and dynamics of animate and inanimate matter on the nanoscale is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the Nanoscale (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  16. Strain-Driven Nanoscale Phase Competition near the Antipolar-Nonpolar Phase Boundary in Bi0.7La0.3FeO3 Thin Films.

    PubMed

    Dedon, Liv R; Chen, Zuhuang; Gao, Ran; Qi, Yajun; Arenholz, Elke; Martin, Lane W

    2018-05-02

    Complex-oxide materials tuned to be near phase boundaries via chemistry/composition, temperature, pressure, etc. are known to exhibit large susceptibilities. Here, we observe a strain-driven nanoscale phase competition in epitaxially constrained Bi 0.7 La 0.3 FeO 3 thin films near the antipolar-nonpolar phase boundary and explore the evolution of the structural, dielectric, (anti)ferroelectric, and magnetic properties with strain. We find that compressive and tensile strains can stabilize an antipolar PbZrO 3 -like Pbam phase and a nonpolar Pnma orthorhombic phase, respectively. Heterostructures grown with little to no strain exhibit a self-assembled nanoscale mixture of the two orthorhombic phases, wherein the relative fraction of each phase can be modified with film thickness. Subsequent investigation of the dielectric and (anti)ferroelectric properties reveals an electric-field-driven phase transformation from the nonpolar phase to the antipolar phase. X-ray linear dichroism reveals that the antiferromagnetic-spin axes can be effectively modified by the strain-induced phase transition. This evolution of antiferromagnetic-spin axes can be leveraged in exchange coupling between the antiferromagnetic Bi 0.7 La 0.3 FeO 3 and a ferromagnetic Co 0.9 Fe 0.1 layer to tune the ferromagnetic easy axis of the Co 0.9 Fe 0.1 . These results demonstrate that besides chemical alloying, epitaxial strain is an alternative and effective way to modify subtle phase relations and tune physical properties in rare earth-alloyed BiFeO 3 . Furthermore, the observation of antiferroelectric-antiferromagnetic properties in the Pbam Bi 0.7 La 0.3 FeO 3 phase could be of significant scientific interest and great potential in magnetoelectric devices because of its dual antiferroic nature.

  17. 3D imaging, 3D printing and 3D virtual planning in endodontics.

    PubMed

    Shah, Pratik; Chong, B S

    2018-03-01

    The adoption and adaptation of recent advances in digital technology, such as three-dimensional (3D) printed objects and haptic simulators, in dentistry have influenced teaching and/or management of cases involving implant, craniofacial, maxillofacial, orthognathic and periodontal treatments. 3D printed models and guides may help operators plan and tackle complicated non-surgical and surgical endodontic treatment and may aid skill acquisition. Haptic simulators may assist in the development of competency in endodontic procedures through the acquisition of psycho-motor skills. This review explores and discusses the potential applications of 3D printed models and guides, and haptic simulators in the teaching and management of endodontic procedures. An understanding of the pertinent technology related to the production of 3D printed objects and the operation of haptic simulators are also presented.

  18. Coarse-grained modeling of RNA 3D structure.

    PubMed

    Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M

    2016-07-01

    Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  1. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D

  2. High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array.

    PubMed

    Tung, Yi-Chung; Hsiao, Amy Y; Allen, Steven G; Torisawa, Yu-suke; Ho, Mitchell; Takayama, Shuichi

    2011-02-07

    Culture of cells as three-dimensional (3D) aggregates can enhance in vitro tests for basic biological research as well as for therapeutics development. Such 3D culture models, however, are often more complicated, cumbersome, and expensive than two-dimensional (2D) cultures. This paper describes a 384-well format hanging drop culture plate that makes spheroid formation, culture, and subsequent drug testing on the obtained 3D cellular constructs as straightforward to perform and adapt to existing high-throughput screening (HTS) instruments as conventional 2D cultures. Using this platform, we show that drugs with different modes of action produce distinct responses in the physiological 3D cell spheroids compared to conventional 2D cell monolayers. Specifically, the anticancer drug 5-fluorouracil (5-FU) has higher anti-proliferative effects on 2D cultures whereas the hypoxia activated drug commonly referred to as tirapazamine (TPZ) are more effective against 3D cultures. The multiplexed 3D hanging drop culture and testing plate provides an efficient way to obtain biological insights that are often lost in 2D platforms.

  3. Nanoscale Optical Imaging and Spectroscopy from Visible to Mid-Infrared

    DTIC Science & Technology

    2015-11-13

    field characterization of nanoscale materials, it also complements the near- field scanning optical microscope currently available in the PI’s lab...field scanning optical microscope currently available in the PI’s lab. This equipment will begin making major impacts on at least three current DoD...SECURITY CLASSIFICATION OF: 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY NOTES 12. DISTRIBUTION AVAILIBILITY STATEMENT 6

  4. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere S b 3. Thismore » enables us to see clearly, at the level of partition function, to what extent G C complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  5. Fabrication and durable antibacterial properties of 3D porous wet electrospun RCSC/PCL nanofibrous scaffold with silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Mei; Lin, Han; Wang, Yilong; Yang, Guang; Zhao, He; Sun, Dahui

    2017-08-01

    Electrospunnanofibers are used as three-dimensional (3D) scaffold materials that can alter cell attachment and cell proliferation, change the antibacterial properties of materials, and can be used as wound dressings. But the fabrication of porous 3D scaffold structure and the antibacterial properties enhancing are challenges remained to improve. With the states here, a Ranachensinensis skin collagen (RCSC)/poly(ɛ-caprolactone) (PCL)AgNP-loaded3D nanofiber scaffold is fabricated as a wound dressing material by using an improved wet electrospinning method (blending). The nanoscale of the AgNPs is proved. The 3D porous morphologies of the materials with different AgNP loadings, are determined with field emission scanning electron microscopy (FESEM) and the presence and uniformity distribution of AgNPs is confirmed by Energy dispersive X-ray (EDX) spectroscopy. The silver-ion release rates, antibacterial properties, and cytotoxicities of dressing materials with different AgNP contents are evaluated using ICP-AES, the zone inhibition method, and MTT testing. These results showed that the improved wet electrospun is an effective way to fabricate AgNP loaded 3D scaffold materials with porous structure and nearly 90% porosity and the presence of AgNPs in dressing materials strengthen the antibacterial properties. The RCSC/PCL 3D scaffold materials containing 2.0%AgNP would be promising for dressing materials application nearly without cytotoxicities.

  6. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  7. Rapid 3D Refractive‐Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation

    PubMed Central

    Habaza, Mor; Kirschbaum, Michael; Guernth‐Marschner, Christian; Dardikman, Gili; Barnea, Itay; Korenstein, Rafi; Duschl, Claus

    2016-01-01

    A major challenge in the field of optical imaging of live cells is achieving rapid, 3D, and noninvasive imaging of isolated cells without labeling. If successful, many clinical procedures involving analysis and sorting of cells drawn from body fluids, including blood, can be significantly improved. A new label‐free tomographic interferometry approach is presented. This approach provides rapid capturing of the 3D refractive‐index distribution of single cells in suspension. The cells flow in a microfluidic channel, are trapped, and then rapidly rotated by dielectrophoretic forces in a noninvasive and precise manner. Interferometric projections of the rotated cell are acquired and processed into the cellular 3D refractive‐index map. Uniquely, this approach provides full (360°) coverage of the rotation angular range around any axis, and knowledge on the viewing angle. The experimental demonstrations presented include 3D, label‐free imaging of cancer cells and three types of white blood cells. This approach is expected to be useful for label‐free cell sorting, as well as for detection and monitoring of pathological conditions resulting in cellular morphology changes or occurrence of specific cell types in blood or other body fluids. PMID:28251046

  8. Phase retrieval and 3D imaging in gold nanoparticles based fluorescence microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Weiss, Aryeh M.; Meir, Rinat; Zalevsky, Zeev

    2017-02-01

    Optical sectioning microscopy can provide highly detailed three dimensional (3D) images of biological samples. However, it requires acquisition of many images per volume, and is therefore time consuming, and may not be suitable for live cell 3D imaging. We propose the use of the modified Gerchberg-Saxton phase retrieval algorithm to enable full 3D imaging of gold nanoparticles tagged sample using only two images. The reconstructed field is free space propagated to all other focus planes using post processing, and the 2D z-stack is merged to create a 3D image of the sample with high fidelity. Because we propose to apply the phase retrieving on nano particles, the regular ambiguities typical to the Gerchberg-Saxton algorithm, are eliminated. The proposed concept is then further enhanced also for tracking of single fluorescent particles within a three dimensional (3D) cellular environment based on image processing algorithms that can significantly increases localization accuracy of the 3D point spread function in respect to regular Gaussian fitting. All proposed concepts are validated both on simulated data as well as experimentally.

  9. Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.

    Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less

  10. Plasmon 3D Electron Tomography and Local Electric-Field Enhancement of Engineered Plasmonic Nanoantennas

    DOE PAGES

    Archanjo, B. S.; Vasconcelos, T. L.; Oliveira, B. S.; ...

    2018-06-01

    Plasmonic nano-antennas are pushing the limits of optical imaging resolution capabilities in near-field scanning optical microscopy (NSOM). Accordingly, these techniques are driving the basic understanding of photonic and optoelectronic nanoscale devices with applications in sensing, energy conversion, solid-state lighting and information technology. Imaging the localized surface plasmon resonance (LSPR) at the nanoscale is a key to understanding the optical responses of a given tip geometry in order to engineer better plasmonic nano-antennas for near-field experiments. In recent years the advancement of focused ion beam technology provides the ability to directly modify plasmonic structures with nanometer resolution. Also, scanning transmission electronmore » microscopy (STEM) with electron energy loss spectroscopy (EELS) is an established technique allowing imaging of LSPR. Specifically, the combination of these two techniques provides spectrally sensitive two-dimensional (2D) imaging information to better visualize and understand LSPR on the nanometer scale. This can be combined with electron tomography to provide the three-dimensional LSPR distribution. Here in this paper we demonstrate the fabrication of Au nano-pyramids using helium ion microscopy, and analyze the LSPR in 3D reconstructions produced by total variation (TV)-norm minimization of a set of 2D STEM-EELS maps. Additionally, a boundary element simulation method was used to verify the experimentally observed nanopyramid LSPR modes. Finally, we show that the point-spread-functions (PSF) of LSPR mode hot spots in nanopyramids differ to local electric-field enhancement under optical excitation making direct comparison to NSOM experimental resolution difficult. However, the STEM-EELS results show how LSPR modes are influenced by the tip characteristics, which can inform the development of new nano-antenna designs.« less

  11. Micro-Mirrors for Nanoscale Three-Dimensional Microscopy

    PubMed Central

    Seale, Kevin; Janetopoulos, Chris; Wikswo, John

    2013-01-01

    A research-grade optical microscope is capable of resolving fine structures in two-dimensional images. However, three-dimensional resolution, or the ability of the microscope to distinguish between objects lying above or below the focal plane from in-focus objects, is not nearly as good as in-plane resolution. In this issue of ACS Nano, McMahon et al. report the use of mirrored pyramidal wells with a conventional microscope for rapid, 3D localization and tracking of nanoparticles. Mirrors have been used in microscopy before, but recent work with MPWs is unique because it enables the rapid determination of the x-, y-, and z-position of freely diffusing nanoparticles and cellular nanostructures with unprecedented speed and spatial accuracy. As inexpensive tools for 3D visualization, mirrored pyramidal wells may prove to be invaluable aids in nanotechnology and engineering of nanomaterials. PMID:19309167

  12. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage.

    PubMed

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-10-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications.

  13. Dielectric capacitors with three-dimensional nanoscale interdigital electrodes for energy storage

    PubMed Central

    Han, Fangming; Meng, Guowen; Zhou, Fei; Song, Li; Li, Xinhua; Hu, Xiaoye; Zhu, Xiaoguang; Wu, Bing; Wei, Bingqing

    2015-01-01

    Dielectric capacitors are promising candidates for high-performance energy storage systems due to their high power density and increasing energy density. However, the traditional approach strategies to enhance the performance of dielectric capacitors cannot simultaneously achieve large capacitance and high breakdown voltage. We demonstrate that such limitations can be overcome by using a completely new three-dimensional (3D) nanoarchitectural electrode design. First, we fabricate a unique nanoporous anodic aluminum oxide (AAO) membrane with two sets of interdigitated and isolated straight nanopores opening toward opposite planar surfaces. By depositing carbon nanotubes in both sets of pores inside the AAO membrane, the new dielectric capacitor with 3D nanoscale interdigital electrodes is simply realized. In our new capacitors, the large specific surface area of AAO can provide large capacitance, whereas uniform pore walls and hemispheric barrier layers can enhance breakdown voltage. As a result, a high energy density of 2 Wh/kg, which is close to the value of a supercapacitor, can be achieved, showing promising potential in high-density electrical energy storage for various applications. PMID:26601294

  14. The Production of 3D Tumor Spheroids for Cancer Drug Discovery

    PubMed Central

    Sant, Shilpa; Johnston, Paul A.

    2017-01-01

    New cancer drug approval rates are ≤ 5% despite significant investments in cancer research, drug discovery and development. One strategy to improve the rate of success of new cancer drugs transitioning into the clinic would be to more closely align the cellular models used in the early lead discovery with pre-clinical animal models and patient tumors. For solid tumors, this would mandate the development and implementation of three dimensional (3D) in vitro tumor models that more accurately recapitulate human solid tumor architecture and biology. Recent advances in tissue engineering and regenerative medicine have provided new techniques for 3D spheroid generation and a variety of in vitro 3D cancer models are being explored for cancer drug discovery. Although homogeneous assay methods and high content imaging approaches to assess tumor spheroid morphology, growth and viability have been developed, the implementation of 3D models in HTS remains challenging due to reasons that we discuss in this review. Perhaps the biggest obstacle to achieve acceptable HTS assay performance metrics occurs in 3D tumor models that produce spheroids with highly variable morphologies and/or sizes. We highlight two methods that produce uniform size-controlled 3D multicellular tumor spheroids that are compatible with cancer drug research and HTS; tumor spheroids formed in ultra-low attachment microplates, or in polyethylene glycol dimethacrylate hydrogel microwell arrays. PMID:28647083

  15. Inducing repetitive action potential firing in neurons via synthesized photoresponsive nanoscale cellular prostheses.

    PubMed

    Lu, Siyuan; Madhukar, Anupam

    2013-02-01

    Recently we reported an analysis that examined the potential of synthesized photovoltaic functional abiotic nanosystems (PVFANs) to modulate membrane potential and activate action potential firing in neurons. Here we extend the analysis to delineate the requirements on the electronic energy levels and the attendant photophysical properties of the PVFANs to induce repetitive action potential under continuous light, a capability essential for the proposed potential application of PVFANs as retinal cellular prostheses to compensate for loss of photoreceptors. We find that repetitive action potential firing demands two basic characteristics in the electronic response of the PVFANs: an exponential dependence of the PVFAN excited state decay rate on the membrane potential and a three-state system such that, following photon absorption, the electron decay from the excited state to the ground state is via intermediate state(s) whose lifetime is comparable to the refractory time following an action potential. In this study, the potential of synthetic photovoltaic functional abiotic nanosystems (PVFANs) is examined under continuous light to modulate membrane potential and activate action potential firing in neurons with the proposed potential application of PVFANs as retinal cellular prostheses. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Annihilation rates of 3D2(2--) and 3D3(3--) heavy quarkonia

    NASA Astrophysics Data System (ADS)

    Wang, Tianhong; Fu, Hui-Feng; Jiang, Yue; Li, Qiang; Wang, Guo-Li

    2017-03-01

    We calculate the annihilation decay rates of the 3D 2(2--) and 3D 3(3--) charmonia and bottomonia by using the instantaneous Bethe-Salpeter (BS) method. The wave functions of states with quantum numbers JPC = 2-- and 3-- are constructed. By solving the corresponding instantaneous BS equations, we obtain the mass spectra and wave functions of the quarkonia. The annihilation amplitude is written within Mandelstam formalism and the relativistic corrections are taken into account properly. This is important, especially for high excited states, since their relativistic corrections are large. The results for the 3g channel are as follows: Γ13D2(cc¯)→ggg = 9.24 keV, Γ13D3(cc¯)→ggg = 25.0 keV, Γ13D2(bb¯)→ggg = 1.87 keV and Γ13D3(bb¯)→ggg = 0.815 keV.

  17. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    DOE PAGES

    Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund; ...

    2017-04-06

    The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less

  18. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund

    The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less

  19. Nucleus and nucleus-cytoskeleton connections in 3D cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lingling, E-mail: liulingling2012@163.com; Luo, Qing, E-mail: qing.luo@cqu.edu.cn; Sun, Jinghui, E-mail: sunjhemail@163.com

    Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and reviewmore » how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from

  20. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  1. 3D printing nano conductive multi-walled carbon nanotube scaffolds for nerve regeneration

    NASA Astrophysics Data System (ADS)

    Lee, Se-Jun; Zhu, Wei; Nowicki, Margaret; Lee, Grace; Nyoung Heo, Dong; Kim, Junghoon; Zuo, Yi Y.; Zhang, Lijie Grace

    2018-02-01

    Objective. Nanomaterials, such as carbon nanotubes (CNTs), have been introduced to modify the surface properties of scaffolds, thus enhancing the interaction between the neural cells and biomaterials. In addition to superior electrical conductivity, CNTs can provide nanoscale structures similar to those present in the natural neural environment. The primary objective of this study is to investigate the proliferative capability and differential potential of neural stem cells (NSCs) seeded on a CNT incorporated scaffold. Approach. Amine functionalized multi-walled carbon nanotubes (MWCNTs) were incorporated with a PEGDA polymer to provide enhanced electrical properties as well as nanofeatures on the surface of the scaffold. A stereolithography 3D printer was employed to fabricate a well-dispersed MWCNT-hydrogel composite neural scaffold with a tunable porous structure. 3D printing allows easy fabrication of complex 3D scaffolds with extremely intricate microarchitectures and controlled porosity. Main results. Our results showed that MWCNT-incorporated scaffolds promoted neural stem cell proliferation and early neuronal differentiation when compared to those scaffolds without the MWCNTs. Furthermore, biphasic pulse stimulation with 500 µA current promoted neuronal maturity quantified through protein expression analysis by quantitative polymerase chain reaction. Significance. Results of this study demonstrated that an electroconductive MWCNT scaffold, coupled with electrical stimulation, may have a synergistic effect on promoting neurite outgrowth for therapeutic application in nerve regeneration.

  2. Nanoscale Ge fin etching using F- and Cl-based etchants for Ge-based multi-gate devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bingxin; An, Xia; Li, Ming; Hao, Peilin; Zhang, Xing; Huang, Ru

    2018-04-01

    In this paper, nanoscale germanium (Ge) fin etching with inductively coupled plasma equipment with SF6/CHF3/Ar and Cl2/BCl3/Ar gas mixes are experimentally demonstrated. The impact of the gas ratio on etching induced Ge surface flatness, etch rate and sidewall steepness are comprehensively investigated and compared for these two kinds of etchants and the optimized gas ratio is provided. By using silicon oxide as a hard mask, nanoscale Ge fin with a flat surface and sharp sidewall is experimentally illustrated, which indicates great potential for use in nanoscale Ge-based multi-gate MOSFETs.

  3. Primary thermometry with nanoscale tunnel junctions

    NASA Astrophysics Data System (ADS)

    Hirvi, K. P.; Kauppinen, J. P.; Paalanen, M. A.; Pekola, J. P.

    1995-10-01

    We have found current-voltage (I-V) and conductance (dI/dV) characteristics of arrays of nanoscale tunnel junctions between normal metal electrodes to exhibit suitable features for primary thermometry. The current through a uniform array depends on the ratio of the thermal energy kBT and the electrostatic charging energy E c of the islands between the junctions and is completely blocked by Coulomb repulsion at T = 0 and at small voltages eV/2 ≤ Ec. In the opposite limit, kBT ≫ Ec, the width of the conductance minimum scales linearly and universally with T and N, the number of tunnel junctions, and qualifies as a primary thermometer. The zero bias drop in the conductance is proportional to T-1 and can be used as a secondary thermometer. We will show with Monte Carlo simulations how background charge and nonuniformities of the array will affect the thermometer.

  4. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  5. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  6. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  7. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness.

    PubMed

    Kong, Hyun Joon; Polte, Thomas R; Alsberg, Eben; Mooney, David J

    2005-03-22

    The mechanical properties of cell adhesion substrates regulate cell phenotype, but the mechanism of this relation is currently unclear. It may involve the magnitude of traction force applied by the cell, and/or the ability of the cells to rearrange the cell adhesion molecules presented from the material. In this study, we describe a FRET technique that can be used to evaluate the mechanics of cell-material interactions at the molecular level and simultaneously quantify the cell-based nanoscale rearrangement of the material itself. We found that these events depended on the mechanical rigidity of the adhesion substrate. Furthermore, both the proliferation and differentiation of preosteoblasts (MC3T3-E1) correlated to the magnitude of force that cells generate to cluster the cell adhesion ligands, but not the extent of ligand clustering. Together, these data demonstrate the utility of FRET in analyzing cell-material interactions, and suggest that regulation of phenotype with substrate stiffness is related to alterations in cellular traction forces.

  8. Pop-up assembly of 3D structures actuated by heat shrinkable polymers

    NASA Astrophysics Data System (ADS)

    Cui, Jianxun; Adams, J. G. M.; Zhu, Yong

    2017-12-01

    Folding 2D sheets into desired 3D structures is a promising fabrication technique that can find a wide range of applications. Compressive buckling provides an attractive strategy to actuate the folding and can be applied to a broad range of materials. Here a new and simple method is reported to achieve controlled compressive buckling, which is actuated by a heat shrinkable polymer sheet. The buckling deformation is localized at the pre-defined creases in the 2D sheet, resulting in sharp folding. Two approaches are developed to actuate the transformation, which follow similar geometric rules. In the first approach, the 2D precursor is pushed from outside, which leads to a 3D structure surrounded by the shrunk polymer sheet. Assembled 3D structures include prisms/pyramids with different base shapes, house roof, partial soccer ball, Miura-ori structure and insect wing. In the second approach, the 2D precursor is pulled from inside, which leads to a 3D structure enclosing the shrunk polymer sheet. Prisms/pyramids with different base shapes are assembled. The assembled structures are further tessellated to fabricate cellular structures that can be used as thermal insulator and crash energy absorber. They are also stacked vertically to fabricate complex multilayer structures.

  9. Biological Response of Human Bone Marrow-Derived Mesenchymal Stem Cells to Commercial Tantalum Coatings with Microscale and Nanoscale Surface Topographies

    NASA Astrophysics Data System (ADS)

    Skoog, Shelby A.; Kumar, Girish; Goering, Peter L.; Williams, Brian; Stiglich, Jack; Narayan, Roger J.

    2016-06-01

    Tantalum is a promising orthopaedic implant coating material due to its robust mechanical properties, corrosion resistance, and excellent biocompatibility. Previous studies have demonstrated improved biocompatibility and tissue integration of surface-treated tantalum coatings compared to untreated tantalum. Surface modification of tantalum coatings with biologically inspired microscale and nanoscale features may be used to evoke optimal tissue responses. The goal of this study was to evaluate commercial tantalum coatings with nanoscale, sub-microscale, and microscale surface topographies for orthopaedic and dental applications using human bone marrow-derived mesenchymal stem cells (hBMSCs). Tantalum coatings with different microscale and nanoscale surface topographies were fabricated using a diffusion process or chemical vapor deposition. Biological evaluation of the tantalum coatings using hBMSCs showed that tantalum coatings promote cellular adhesion and growth. Furthermore, hBMSC adhesion to the tantalum coatings was dependent on surface feature characteristics, with enhanced cell adhesion on sub-micrometer- and micrometer-sized surface topographies compared to hybrid nano-/microstructures. Nanostructured and microstructured tantalum coatings should be further evaluated to optimize the surface coating features to promote osteogenesis and enhance osseointegration of tantalum-based orthopaedic implants.

  10. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al

  11. 2D or not 2D? The impact of nanoscale roughness and substrate interactions on the tribological properties of graphene and MoS2

    NASA Astrophysics Data System (ADS)

    Elinski, Meagan B.; Liu, Zhuotong; Spear, Jessica C.; Batteas, James D.

    2017-03-01

    The use of 2D nanomaterials for controlling friction and wear at interfaces has received increased attention over the past few years due to their unique structural, thermal, electrical and mechanical properties. These materials proffer potential critical solutions to challenges in boundary lubrication across numerous platforms ranging from engines, to biomedical implants and micro- and nano-scaled machines that will play a major role in the Internet of Things. There has been significant work on a range of 2D nanomaterials, such as graphene and molybdenum disulfide (MoS2). From these studies, their frictional properties have been shown to be highly dependent on numerous factors, such as substrate structure, strain, and competing chemical interactions between the interfaces in sliding contact. Moreover, when considering real contacts in machined interfaces, these surfaces are often composed of nanoscaled asperities, whose intermittent contact dominates the tribochemical processes that result in wear. In this review we aim to capture recent work on the tribological properties of graphene and MoS2 and to discuss the impacts of surface roughness (from the atomic scale to the nanoscale) and chemical interactions at interfaces on their frictional properties, and their use in designing advanced boundary lubrication schemes.

  12. Customizable 3D Printed ‘Plug and Play’ Millifluidic Devices for Programmable Fluidics

    PubMed Central

    Tsuda, Soichiro; Jaffery, Hussain; Doran, David; Hezwani, Mohammad; Robbins, Phillip J.; Yoshida, Mari; Cronin, Leroy

    2015-01-01

    Three dimensional (3D) printing is actively sought after in recent years as a promising novel technology to construct complex objects, which scope spans from nano- to over millimeter scale. Previously we utilized Fused deposition modeling (FDM)-based 3D printer to construct complex 3D chemical fluidic systems, and here we demonstrate the construction of 3D milli-fluidic structures for programmable liquid handling and control of biological samples. Basic fluidic operation devices, such as water-in-oil (W/O) droplet generators for producing compartmentalized mono-disperse droplets, sensor-integrated chamber for online monitoring of cellular growth, are presented. In addition, chemical surface treatment techniques are used to construct valve-based flow selector for liquid flow control and inter-connectable modular devices for networking fluidic parts. As such this work paves the way for complex operations, such as mixing, flow control, and monitoring of reaction / cell culture progress can be carried out by constructing both passive and active components in 3D printed structures, which designs can be shared online so that anyone with 3D printers can reproduce them by themselves. PMID:26558389

  13. Epstein-Barr virus/complement fragment C3d receptor (CR2) reacts with p53, a cellular antioncogene-encoded membrane phosphoprotein: detection by polyclonal anti-idiotypic anti-CR2 antibodies.

    PubMed Central

    Barel, M; Fiandino, A; Lyamani, F; Frade, R

    1989-01-01

    Epstein-Barr virus and the C3d fragment of the third component of complement are specific extracellular ligands for complement receptor type 2 (CR2). However, intracellular proteins that react specifically with CR2 and are involved in post-membrane signals remain unknown. We recently prepared polyclonal anti-idiotypic anti-CR2 antibodies (Ab2) by using the highly purified CR2 molecule as original immunogen. We showed that Ab2 contained anti-idiotypic specificities that mimicked extracellular domains of CR2 and detected two distinct binding sites on CR2 for its specific extracellular ligands, Epstein-Barr virus and C3d. We postulated that Ab2 might also contain specificities that could mimic intracellular domains of CR2. Here we report that Ab2, which did not react with Raji B-lymphoma cell surface components, detected specifically, among all components solubilized from Raji cell membranes, a single intracellular membrane protein of apparent molecular mass of 53 kDa. This protein was identified as the p53 cellular antioncogene-encoded membrane phosphoprotein by analyzing its antigenic properties with Pab1801, a monoclonal anti-p53 antibody, and by comparing its biochemical properties with those of p53. Additionally, solubilized and purified CR2 bound to solubilized p53 immobilized on Pab1801-Sepharose. p53, like CR2, was localized only in purified plasma membranes and nuclei of Raji cells. These data suggest strongly that p53, a cellular antioncogene-encoded phosphoprotein, reacted specifically with CR2 in Raji membranes. This interaction may represent one of the important steps through which CR2 could be involved in human B-lymphocyte proliferation and transformation. Images PMID:2557614

  14. 3′ UTR lengthening as a novel mechanism in regulating cellular senescence

    PubMed Central

    Chen, Meng; Lyu, Guoliang; Han, Miao; Nie, Hongbo; Shen, Ting; Chen, Wei; Niu, Yichi; Song, Yifan; Li, Xueping; Li, Huan; Chen, Xinyu; Wang, Ziyue; Xia, Zheng; Li, Wei; Tian, Xiao-Li; Ding, Chen; Gu, Jun; Zheng, Yufang; Liu, Xinhua; Hu, Jinfeng; Wei, Gang; Tao, Wei

    2018-01-01

    Cellular senescence has been viewed as a tumor suppression mechanism and also as a contributor to individual aging. Widespread shortening of 3′ untranslated regions (3′ UTRs) in messenger RNAs (mRNAs) by alternative polyadenylation (APA) has recently been discovered in cancer cells. However, the role of APA in the process of cellular senescence remains elusive. Here, we found that hundreds of genes in senescent cells tended to use distal poly(A) (pA) sites, leading to a global lengthening of 3′ UTRs and reduced gene expression. Genes that harbor longer 3′ UTRs in senescent cells were enriched in senescence-related pathways. Rras2, a member of the Ras superfamily that participates in multiple signal transduction pathways, preferred longer 3′ UTR usage and exhibited decreased expression in senescent cells. Depletion of Rras2 promoted senescence, while rescue of Rras2 reversed senescence-associated phenotypes. Mechanistically, splicing factor TRA2B bound to a core “AGAA” motif located in the alternative 3′ UTR of Rras2, thereby reducing the RRAS2 protein level and causing senescence. Both proximal and distal poly(A) signals showed strong sequence conservation, highlighting the vital role of APA regulation during evolution. Our results revealed APA as a novel mechanism in regulating cellular senescence. PMID:29440281

  15. Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics.

    PubMed

    Fang, Yin; Jiang, Yuanwen; Acaron Ledesma, Hector; Yi, Jaeseok; Gao, Xiang; Weiss, Dara E; Shi, Fengyuan; Tian, Bozhi

    2018-06-18

    Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.

  16. Two-dimensional nanoscale correlations in the strong negative thermal expansion material ScF 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handunkanda, Sahan U.; Occhialini, Connor A.; Said, Ayman H.

    We present diffuse x-ray scattering data on the strong negative thermal expansion (NTE) material ScF3 and find that two-dimensional nanoscale correlations exist at momentum-space regions associated with possibly rigid rotations of the perovskite octahedra. We address the extent to which rigid octahedral motion describes the dynamical fluctuations behind NTE by generalizing a simple model supporting a single floppy mode that is often used to heuristically describe instances of NTE. We find this model has tendencies toward dynamic inhomogeneities and its application to recent and existing experimental data suggest an intricate link between the nanometer correlation length scale, the energy scalemore » for octahedral tilt fluctuations, and the coefficient of thermal expansion in ScF3. We then investigate the breakdown of the rigid limit and propose a resolution to an outstanding debate concerning the role of molecular rigidity in strong NTE materials.« less

  17. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  18. Laser nanostructuring 3-D bioconstruction based on carbon nanotubes in a water matrix of albumin

    NASA Astrophysics Data System (ADS)

    Gerasimenko, Alexander Y.; Ichkitidze, Levan P.; Podgaetsky, Vitaly M.; Savelyev, Mikhail S.; Selishchev, Sergey V.

    2016-04-01

    3-D bioconstructions were created using the evaporation method of the water-albumin solution with carbon nanotubes (CNTs) by the continuous and pulsed femtosecond laser radiation. It is determined that the volume structure of the samples created by the femtosecond radiation has more cavities than the one created by the continuous radiation. The average diameter for multi-walled carbon nanotubes (MWCNTs) samples was almost two times higher (35-40 nm) than for single-walled carbon nanotubes (SWCNTs) samples (20-30 nm). The most homogenous 3-D bioconstruction was formed from MWCNTs by the continuous laser radiation. The hardness of such samples totaled up to 370 MPa at the nanoscale. High strength properties and the resistance of the 3-D bioconstructions produced by the laser irradiation depend on the volume nanotubes scaffold forming inside them. The scaffold was formed by the electric field of the directed laser irradiation. The covalent bond energy between the nanotube carbon molecule and the oxygen of the bovine serum albumin aminoacid residue amounts 580 kJ/mol. The 3-D bioconstructions based on MWCNTs and SWCNTs becomes overgrown with the cells (fibroblasts) over the course of 72 hours. The samples based on the both types of CNTs are not toxic for the cells and don't change its normal composition and structure. Thus the 3-D bioconstructions that are nanostructured by the pulsed and continuous laser radiation can be applied as implant materials for the recovery of the connecting tissues of the living body.

  19. Altered cellular localization and hemichannel activities of KID syndrome associated connexin26 I30N and D50Y mutations.

    PubMed

    Aypek, Hande; Bay, Veysel; Meşe, Gülistan

    2016-02-02

    Gap junctions facilitate exchange of small molecules between adjacent cells, serving a crucial function for the maintenance of cellular homeostasis. Mutations in connexins, the basic unit of gap junctions, are associated with several human hereditary disorders. For example, mutations in connexin26 (Cx26) cause both non-syndromic deafness and syndromic deafness associated with skin abnormalities such as keratitis-ichthyosis-deafness (KID) syndrome. These mutations can alter the formation and function of gap junction channels through different mechanisms, and in turn interfere with various cellular processes leading to distinct disorders. The KID associated Cx26 mutations were mostly shown to result in elevated hemichannel activities. However, the effects of these aberrant hemichannels on cellular processes are recently being deciphered. Here, we assessed the effect of two Cx26 mutations associated with KID syndrome, Cx26I30N and D50Y, on protein biosynthesis and channel function in N2A and HeLa cells. Immunostaining experiments showed that Cx26I30N and D50Y failed to form gap junction plaques at cell-cell contact sites. Further, these mutations resulted in the retention of Cx26 protein in the Golgi apparatus. Examination of hemichannel function by fluorescent dye uptake assays revealed that cells with Cx26I30N and D50Y mutations had increased dye uptake compared to Cx26WT (wild-type) containing cells, indicating abnormal hemichannel activities. Cells with mutant proteins had elevated intracellular calcium levels compared to Cx26WT transfected cells, which were abolished by a hemichannel blocker, carbenoxolone (CBX), as measured by Fluo-3 AM loading and flow cytometry. Here, we demonstrated that Cx26I30N and D50Y mutations resulted in the formation of aberrant hemichannels that might result in elevated intracellular calcium levels, a process which may contribute to the hyperproliferative epidermal phenotypes of KID syndrome.

  20. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells.

    PubMed

    Takahashi, Yu; Hori, Yuji; Yamamoto, Tomohisa; Urashima, Toshiki; Ohara, Yasunori; Tanaka, Hideo

    2015-05-07

    3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2 and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to corresponding inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular responses in order to identify potential drugs. © 2015 Authors.

  1. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  2. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cellmore » migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.« less

  3. 3D Nanofabrication Using AFM-Based Ultrasonic Vibration Assisted Nanomachining

    NASA Astrophysics Data System (ADS)

    Deng, Jia

    Nanolithography and nanofabrication processes have significant impact on the recent development of fundamental research areas such as physics, chemistry and biology, as well as the modern electronic devices that have reached nanoscale domain such as optoelectronic devices. Many advanced nanofabrication techniques have been developed and reported to satisfy different requirements in both research areas and applications such as electron-beam lithography. However, it is expensive to use and maintain the equipment. Atomic Force Microscope (AFM) based nanolithography processes provide an alternative approach to nanopatterning with significantly lower cost. Recently, three dimensional nanostructures have attracted a lot of attention, motivated by many applications in various fields including optics, plasmonics and nanoelectromechanical systems. AFM nanolithography processes are able to create not only two dimensional nanopatterns but also have the great potential to fabricate three dimensional nanostructures. The objectives of this research proposal are to investigate the capability of AFM-based three dimensional nanofabrication processes, to transfer the three dimensional nanostructures from resists to silicon surfaces and to use the three dimensional nanostructures on silicon in applications. Based on the understanding of literature, a novel AFM-based ultrasonic vibration assisted nanomachining system is utilized to develop three dimensional nanofabrication processes. In the system, high-frequency in plane circular xy-vibration was introduced to create a virtual tool, whose diameter is controlled by the amplitude of xy-vibration and is larger than that of a regular AFM tip. Therefore, the feature width of a single trench is tunable. Ultrasonic vibration of sample in z-direction was introduced to control the depth of single trenches, creating a high-rate 3D nanomachining process. Complicated 3D nanostructures on PMMA are fabricated under both the setpoint force and z

  4. Fabrication, Densification, and Replica Molding of 3D Carbon Nanotube Microstructures

    PubMed Central

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A. John

    2012-01-01

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques 1, 2, and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  5. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures.

    PubMed

    Copic, Davor; Park, Sei Jin; Tawfick, Sameh; De Volder, Michael; Hart, A John

    2012-07-02

    The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in applications of microfabrication to biomedical engineering and biology. Nevertheless, it remains challenging to fabricate microstructures with well-defined nanoscale surface textures, and to fabricate arbitrary 3D shapes at the micro-scale. Robustness of master molds and maintenance of shape integrity is especially important to achieve high fidelity replication of complex structures and preserving their nanoscale surface texture. The combination of hierarchical textures, and heterogeneous shapes, is a profound challenge to existing microfabrication methods that largely rely upon top-down etching using fixed mask templates. On the other hand, the bottom-up synthesis of nanostructures such as nanotubes and nanowires can offer new capabilities to microfabrication, in particular by taking advantage of the collective self-organization of nanostructures, and local control of their growth behavior with respect to microfabricated patterns. Our goal is to introduce vertically aligned carbon nanotubes (CNTs), which we refer to as CNT "forests", as a new microfabrication material. We present details of a suite of related methods recently developed by our group: fabrication of CNT forest microstructures by thermal CVD from lithographically patterned catalyst thin films; self-directed elastocapillary densification of CNT microstructures; and replica molding of polymer microstructures using CNT composite master molds. In particular, our work shows that self-directed capillary densification ("capillary forming"), which is performed by condensation of a solvent onto the substrate with CNT

  6. The Physics and Applications of a 3D Plasmonic Nanostructure

    NASA Astrophysics Data System (ADS)

    Terranova, Brandon B.

    In this work, the dynamics of electromagnetic field interactions with free electrons in a 3D metallic nanostructure is evaluated theoretically. This dissertation starts by reviewing the relevant fundamentals of plasmonics and modern applications of plasmonic systems. Then, motivated by the need to have a simpler way of understanding the surface charge dynamics on complex plasmonic nanostructures, a new plasmon hybridization tree method is introduced. This method provides the plasmonicist with an intuitive way to determine the response of free electrons to incident light in complex nanostructures within the electrostatic regime. Next, a novel 3D plasmonic nanostructure utilizing reflective plasmonic coupling is designed to perform biosensing and plasmonic tweezing applications. By applying analytical and numerical methods, the effectiveness of this nanostructure at performing these applications is determined from the plasmonic response of the nanostructure to an excitation beam of coherent light. During this analysis, it was discovered that under certain conditions, this 3D nanostructure exhibits a plasmonic Fano resonance resulting from the interference of an in-plane dark mode and an out-of-plane bright mode. In evaluating this nanostructure for sensing changes in the local dielectric environment, a figure of merit of 68 is calculated, which is competitive with current localized surface plasmon resonance refractometric sensors. By evaluating the Maxwell stress tensor on a test particle in the vicinity of the nanostructure, it was found that under the right conditions, this plasmonic nanostructure design is capable of imparting forces greater than 10.5 nN on dielectric objects of nanoscale dimensions. The results obtained in these studies provides new routes to the design and engineering of 3D plasmonic nanostructures and Fano resonances in these systems. In addition, the nanostructure presented in this work and the design principles it utilizes have shown

  7. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.

    PubMed

    Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J

    2005-12-01

    It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.

  8. Nanoscale thermal transport: Theoretical method and application

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  9. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Study on the regulation of focal adesions and cortical actin by matrix nanotopography in 3D environment

    NASA Astrophysics Data System (ADS)

    Han, Jingjing; Lin, Keng-Hui; Chew, Lock Yue

    2017-11-01

    Matrix nanotopography plays an important role in regulating cell behaviors by providing spatial as well as mechanical cues for cells to sense. It has been proposed that nanoscale topography is possible to modulate the tensions which direct the formation of cytoskeleton and the organization of the membrane receptor within the cell, which in turn regulate intracellular mechanical and biochemical signaling. With current studies on this topic being performed mainly in 2D platforms, the question on how nanotopography can influence cell bahaviors in 3D environments has yet to be addressed. In this paper, we explored this question by placing cells in 3D hollow spherical polydimethylsiloxane scaffolds. After culturing rat embryonic fibroblast cells in two kinds of scaffold, one with smooth surface and the other with numerous nano-spikes, we observed that cells in the smooth scaffold have more anchoring sites and more focal adhesions than in the etched scaffold. Moreover, we found the presence of correlation between cortical actin, the important component for supporting cell attachment, and local cell geometry.

  11. Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells.

    PubMed

    Zhu, Yaqi; Yang, Yan; Guo, Juanjuan; Dai, Ying; Ye, Lina; Qiu, Jianbin; Zeng, Zhihong; Wu, Xiaoting; Xing, Yanmei; Long, Xiang; Wu, Xufeng; Ye, Lin; Wang, Shubin; Li, Hui

    2017-02-28

    Herpes simplex virus type 2 (HSV-2) infects human genital mucosa and establishes life-long latent infection. It is unmet need to establish a human cell-based microphysiological system for virus biology and anti-viral drug discovery. One of barriers is lacking of culture system of normal epithelial cells in vitro over decades. In this study, we established human normal vaginal epithelial cell (HNVEC) culture using co-culture system. HNVEC cells were then propagated rapidly and stably in a defined culture condition. HNVEC cells exhibited a normal diploid karyotype and formed the well-defined and polarized spheres in matrigel three-dimension (3D) culture, while malignant cells (HeLa) formed disorganized and nonpolar solid spheres. HNVEC cells had a normal cellular response to DNA damage and had no transforming property using soft agar assays. HNVEC expressed epithelial marker cytokeratin 14 (CK14) and p63, but not cytokeratin 18 (CK18). Next, we reconstructed HNVEC-derived 3D vaginal epithelium using air-liquid interface (ALI) culture. This 3D vaginal epithelium has the basal and apical layers with expression of epithelial markers as its originated human vaginal tissue. Finally, we established an HSV-2 infection model based on the reconstructed 3D vaginal epithelium. After inoculation of HSV-2 (G strain) at apical layer of the reconstructed 3D vaginal epithelium, we observed obvious pathological effects gradually spreading from the apical layer to basal layer with expression of a viral protein. Thus, we established an ex vivo 2D and 3D HSV-2 infection model that can be used for HSV-2 virology and anti-viral drug discovery.

  12. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  13. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  14. RAG-3D: A search tool for RNA 3D substructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  15. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.

    PubMed

    Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.

  16. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment

    PubMed Central

    Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026

  17. Bioinspired Cellular Structures: Additive Manufacturing and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Stampfl, J.; Pettermann, H. E.; Liska, R.

    Biological materials (e.g., wood, trabecular bone, marine skeletons) rely heavily on the use of cellular architecture, which provides several advantages. (1) The resulting structures can bear the variety of "real life" load spectra using a minimum of a given bulk material, featuring engineering lightweight design principles. (2) The inside of the structures is accessible to body fluids which deliver the required nutrients. (3) Furthermore, cellular architectures can grow organically by adding or removing individual struts or by changing the shape of the constituting elements. All these facts make the use of cellular architectures a reasonable choice for nature. Using additive manufacturing technologies (AMT), it is now possible to fabricate such structures for applications in engineering and biomedicine. In this chapter, we present methods that allow the 3D computational analysis of the mechanical properties of cellular structures with open porosity. Various different cellular architectures including disorder are studied. In order to quantify the influence of architecture, the apparent density is always kept constant. Furthermore, it is shown that how new advanced photopolymers can be used to tailor the mechanical and functional properties of the fabricated structures.

  18. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The

  19. Multiplexed 3D FRET imaging in deep tissue of live embryos

    PubMed Central

    Zhao, Ming; Wan, Xiaoyang; Li, Yu; Zhou, Weibin; Peng, Leilei

    2015-01-01

    Current deep tissue microscopy techniques are mostly restricted to intensity mapping of fluorophores, which significantly limit their applications in investigating biochemical processes in vivo. We present a deep tissue multiplexed functional imaging method that probes multiple Förster resonant energy transfer (FRET) sensors in live embryos with high spatial resolution. The method simultaneously images fluorescence lifetimes in 3D with multiple excitation lasers. Through quantitative analysis of triple-channel intensity and lifetime images, we demonstrated that Ca2+ and cAMP levels of live embryos expressing dual FRET sensors can be monitored simultaneously at microscopic resolution. The method is compatible with a broad range of FRET sensors currently available for probing various cellular biochemical functions. It opens the door to imaging complex cellular circuitries in whole live organisms. PMID:26387920

  20. Design and implementation of a novel mechanical testing system for cellular solids.

    PubMed

    Nazarian, Ara; Stauber, Martin; Müller, Ralph

    2005-05-01

    Cellular solids constitute an important class of engineering materials encompassing both man-made and natural constructs. Materials such as wood, cork, coral, and cancellous bone are examples of cellular solids. The structural analysis of cellular solid failure has been limited to 2D sections to illustrate global fracture patterns. Due to the inherent destructiveness of 2D methods, dynamic assessment of fracture progression has not been possible. Image-guided failure assessment (IGFA), a noninvasive technique to analyze 3D progressive bone failure, has been developed utilizing stepwise microcompression in combination with time-lapsed microcomputed tomographic imaging (microCT). This method allows for the assessment of fracture progression in the plastic region, where much of the structural deformation/energy absorption is encountered in a cellular solid. Therefore, the goal of this project was to design and fabricate a novel micromechanical testing system to validate the effectiveness of the stepwise IGFA technique compared to classical continuous mechanical testing, using a variety of engineered and natural cellular solids. In our analysis, we found stepwise compression to be a valid approach for IGFA with high precision and accuracy comparable to classical continuous testing. Therefore, this approach complements the conventional mechanical testing methods by providing visual insight into the failure propagation mechanisms of cellular solids. (c) 2005 Wiley Periodicals, Inc.

  1. Nanoscale Controls on CO2-water-rock Interactions in Saline Reservoirs

    NASA Astrophysics Data System (ADS)

    Deyoreo, J.; Depaolo, D. J.

    2009-12-01

    achieve the efficient filling of pore space while maximizing solubility and mineral trapping and reducing potential leakage. Advanced knowledge of these small-scale processes is an important step toward developing a next-generation predictive capability for reactive transport of CO2-brine systems. The Center involves scientists with expertise in hydrology, geochemistry, materials science, mineralogy, chemistry, microbiology, geophysics, and reactive transport modeling and simulation. This presentation will describe the initial stages of some of the research, which in total involves the use of synchrotron light sources, neutron scattering methods, NanoSIMS, molecular dynamics simulations, thermochemistry, molecular biology, nanotechnology, laboratory scale experiments, and advanced computation applied to flow and reactive transport in heterogeneous porous media. The Center for Nanoscale Control of Geologic CO2 key personnel: Director - D. DePaolo, Co-Director - J. DeYoreo; Research Area Leads - K. Knauss (LBNL), G. Waychunas (LBNL), J. Banfield (UCB/LBNL), A Navrotsky (UC Davis), F.J. Ryerson (LLNL); G. Sposito (UCB/LBNL), T. Tokunaga (LBNL), D. Cole (ORNL), C. Steefel (LBNL), D. Rothman (MIT), S. Pride (LBNL).

  2. Discovery and SAR study of c-Met kinase inhibitors bearing an 3-amino-benzo[d]isoxazole or 3-aminoindazole scaffold.

    PubMed

    Jiang, Xiaolong; Liu, Hongyan; Song, Zilan; Peng, Xia; Ji, Yinchun; Yao, Qizheng; Geng, Meiyu; Ai, Jing; Zhang, Ao

    2015-02-01

    A series of 3-amino-benzo[d]isoxazole-/3-aminoindazole-based compounds were designed, synthesized and pharmacologically evaluated as tyrosine kinase c-Met inhibitors. The SAR study was conducted leading to identification of nine compounds (8d, 8e, 12, 28a-d, 28h and 28i) with IC50s less than 10nM against c-Met. Compound 28a stood out as the most potent c-Met inhibitor displaying potent inhibitory effects both at enzymatic (IC50=1.8 nM) and cellular (IC50=0.18 μM on EBC-1 cells) levels. In addition, 28a had a relatively good selectivity compared to a panel of our in-house 14 RTKs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  4. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  5. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  6. MRS3D: 3D Spherical Wavelet Transform on the Sphere

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2011-12-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. We present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We tested the 3D wavelet transform and as a toy-application, applied a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and found we can successfully remove noise without much loss to the large scale structure. The new spherical 3D isotropic wavelet transform, called MRS3D, is ideally suited to analysing and denoising future 3D spherical cosmological surveys; it uses a novel discrete spherical Fourier-Bessel Transform. MRS3D is based on two packages, IDL and Healpix and can be used only if these two packages have been installed.

  7. 3D Volume Rendering and 3D Printing (Additive Manufacturing).

    PubMed

    Katkar, Rujuta A; Taft, Robert M; Grant, Gerald T

    2018-07-01

    Three-dimensional (3D) volume-rendered images allow 3D insight into the anatomy, facilitating surgical treatment planning and teaching. 3D printing, additive manufacturing, and rapid prototyping techniques are being used with satisfactory accuracy, mostly for diagnosis and surgical planning, followed by direct manufacture of implantable devices. The major limitation is the time and money spent generating 3D objects. Printer type, material, and build thickness are known to influence the accuracy of printed models. In implant dentistry, the use of 3D-printed surgical guides is strongly recommended to facilitate planning and reduce risk of operative complications. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. High-Throughput Processes and Structural Characterization of Single-Nanotube Based Devices for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, A. B.; Megerian, K. G.; Baron, R. L.; Jennings, A. T.; Jang, D.; Greer, J. R.

    2011-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers to form the 3D nanoscale architectures. The tube growth was performed using dc plasmaenhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. The TEM analysis of our tubes revealed graphitic basal planes inclined to the central or fiber axis, with cone angles up to 30 deg. for the particular growth conditions used. In addition, bending tests performed using a custom nanoindentor, suggest that the tubes are well adhered to the Si substrate. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth.

  9. Phenotypic feature quantification of patient derived 3D cancer spheroids in fluorescence microscopy image

    NASA Astrophysics Data System (ADS)

    Kang, Mi-Sun; Rhee, Seon-Min; Seo, Ji-Hyun; Kim, Myoung-Hee

    2017-03-01

    Patients' responses to a drug differ at the cellular level. Here, we present an image-based cell phenotypic feature quantification method for predicting the responses of patient-derived glioblastoma cells to a particular drug. We used high-content imaging to understand the features of patient-derived cancer cells. A 3D spheroid culture formation resembles the in vivo environment more closely than 2D adherent cultures do, and it allows for the observation of cellular aggregate characteristics. However, cell analysis at the individual level is more challenging. In this paper, we demonstrate image-based phenotypic screening of the nuclei of patient-derived cancer cells. We first stitched the images of each well of the 384-well plate with the same state. We then used intensity information to detect the colonies. The nuclear intensity and morphological characteristics were used for the segmentation of individual nuclei. Next, we calculated the position of each nucleus that is appeal of the spatial pattern of cells in the well environment. Finally, we compared the results obtained using 3D spheroid culture cells with those obtained using 2D adherent culture cells from the same patient being treated with the same drugs. This technique could be applied for image-based phenotypic screening of cells to determine the patient's response to the drug.

  10. Arc/Arg3.1 mRNA expression reveals a sub-cellular trace of prior sound exposure in adult primary auditory cortex

    PubMed Central

    Ivanova, Tamara; Matthews, Andrew; Gross, Christina; Mappus, Rudolph C.; Gollnick, Clare; Swanson, Andrew; Bassell, Gary J.; Liu, Robert C.

    2011-01-01

    Acquiring the behavioral significance of a sound has repeatedly been shown to correlate with long term changes in response properties of neurons in the adult primary auditory cortex. However, the molecular and cellular basis for such changes is still poorly understood. To address this, we have begun examining the auditory cortical expression of an activity-dependent effector immediate early gene (IEG) with documented roles in synaptic plasticity and memory consolidation in the hippocampus: Arc/Arg3.1. For initial characterization, we applied a repeated 10 minute (24 hour separation) sound exposure paradigm to determine the strength and consistency of sound-evoked Arc/Arg3.1 mRNA expression in the absence of explicit behavioral contingencies for the sound. We used 3D surface reconstruction methods in conjunction with fluorescent in-situ hybridization (FISH) to assess the layer-specific sub-cellular compartmental expression of Arc/Arg3.1 mRNA. We unexpectedly found that both the intranuclear and cytoplasmic patterns of expression depended on the prior history of sound stimulation. Specifically, the percentage of neurons with expression only in the cytoplasm increased for repeated versus singular sound exposure, while intranuclear expression decreased. In contrast, the total cellular expression did not differ, consistent with prior IEG studies of primary auditory cortex. Our results were specific for cortical layers 3–6, as there was virtually no sound driven Arc/Arg3.1 mRNA in layers 1–2 immediately after stimulation. Our results are consistent with the kinetics and/or detectability of cortical sub-cellular Arc/Arg3.1 mRNA expression being altered by the initial exposure to the sound, suggesting exposure-induced modifications in the cytoplasmic Arc/Arg3.1 mRNA pool. PMID:21334422

  11. 3D Reticular Li1.2Ni0.2Mn0.6O2 Cathode Material for Lithium-Ion Batteries.

    PubMed

    Li, Li; Wang, Lecai; Zhang, Xiaoxiao; Xue, Qing; Wei, Lei; Wu, Feng; Chen, Renjie

    2017-01-18

    In this study, a hard-templating route was developed to synthesize a 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 cathode material using ordered mesoporous silica as the hard template. The synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 microparticles consisted of two interlaced 3D nanonetworks and a mesopore channel system. When used as the cathode material in a lithium-ion battery, the as-synthesized 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 exhibited remarkably enhanced electrochemical performance, namely, superior rate capability and better cycling stability than those of its bulk counterpart. Specifically, a high discharge capacity of 195.6 mA h g -1 at 1 C with 95.6% capacity retention after 50 cycles was achieved with the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 . A high discharge capacity of 135.7 mA h g -1 even at a high current of 1000 mA g -1 was also obtained. This excellent electrochemical performance of the 3D reticular Li 1.2 Ni 0.2 Mn 0.6 O 2 is attributed to its designed structure, which provided nanoscale lithium pathways, large specific surface area, good thermal and mechanical stability, and easy access to the material center.

  12. Traceable nanoscale measurement at NML-SIRIM

    NASA Astrophysics Data System (ADS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  13. Neuromorphic computing with nanoscale spintronic oscillators.

    PubMed

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  14. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    other interactions across interfaces and over mUltiple length scales? (2) Understand and control the interactions between nanoscale building blocks to assemble specific integrated structures? (3) Design and exploit interactions within assembled structures to achieve new properties and specific functionalities? These high level questions can serve to drive research, and to advance understanding of the complex phenomena and multifunctionality that may emerge from integration. For example, in photonics there is considerable effort to understand and control the response of nanoscale conducting structures on dielectrics, to allow one to localize, manipulate, and control electromagnetic energy in integrated systems such as in the field known as metamaterials. Essential to this area is a fundamental understanding of energy transfer across multiple length scales (question 1 above).« less

  15. Visualizing Earth's Core-Mantle Interactions using Nanoscale X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Mao, W. L.; Wang, J.; Yang, W.; Hayter, J.; Pianetta, P.; Zhang, L.; Fei, Y.; Mao, H.; Hustoft, J. W.; Kohlstedt, D. L.

    2010-12-01

    Early-stage, core-mantle differentiation and core formation represent a pivotal geological event which defined the major geochemical signatures. However current hypotheses of the potential mechanism for core-mantle separation and interaction need more experimental input which has been awaiting technological breakthroughs. Nanoscale x-ray computed tomography (nanoXCT) within a laser-heated diamond anvil cell has exciting potential as a powerful 3D petrographic probe for non-destructive, nanoscale (<40nm) resolution of multiple minerals and amorphous phases (including melts) which are synthesized under the high pressure-temperature conditions found deep within the Earth and planetary interiors. Results from high pressure-temperature experiments which illustrate the potential for this technique will be presented. By extending measurements of the texture, shape, porosity, tortuosity, dihedral angle, and other characteristics of molten Fe-rich alloys in relation to silicates and oxides, along with the fracture systems of rocks under deformation by high pressure-temperature conditions, potential mechanisms of core formation can be tested. NanoXCT can also be used to investigate grain shape, intergrowth, orientation, and foliation -- as well as mineral chemistry and crystallography at core-mantle boundary conditions -- to understand whether shape-preferred orientation is a primary source of the observed seismic anisotropy in Earth’s D” layer and to determine the textures and shapes of the melt pockets and channels which would form putative partial melt which may exist in ultralow velocity zones.

  16. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  17. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  18. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  19. Broadband sum-frequency generation using d33 in periodically poled LiNbO3 thin film in the telecommunications band.

    PubMed

    Li, Guangzhen; Chen, Yuping; Jiang, Haowei; Chen, Xianfeng

    2017-03-01

    We demonstrate the first, to the best of our knowledge, type-0 broadband sum-frequency generation (SFG) based on single-crystal periodically poled LiNbO3 (PPLN) thin film. The broad bandwidth property was largely tuned from mid-infrared region to the telecommunications band by engineering the thickness of PPLN from bulk crystal to nanoscale. It provides SFG a solution with both broadband and high efficiency by using the highest nonlinear coefficient d33 instead of d31 in type-I broadband SFG or second-harmonic generation. The measured 3 dB upconversion bandwidth is about 15.5 nm for a 4 cm long single crystal at 1530 nm wavelength. It can find applications in chip-scale spectroscopy, quantum information processing, LiNbO3-thin-film-based microresonator and optical nonreciprocity devices, etc.

  20. Engineering 3D Models of Tumors and Bone to Understand Tumor-Induced Bone Disease and Improve Treatments.

    PubMed

    Kwakwa, Kristin A; Vanderburgh, Joseph P; Guelcher, Scott A; Sterling, Julie A

    2017-08-01

    Bone is a structurally unique microenvironment that presents many challenges for the development of 3D models for studying bone physiology and diseases, including cancer. As researchers continue to investigate the interactions within the bone microenvironment, the development of 3D models of bone has become critical. 3D models have been developed that replicate some properties of bone, but have not fully reproduced the complex structural and cellular composition of the bone microenvironment. This review will discuss 3D models including polyurethane, silk, and collagen scaffolds that have been developed to study tumor-induced bone disease. In addition, we discuss 3D printing techniques used to better replicate the structure of bone. 3D models that better replicate the bone microenvironment will help researchers better understand the dynamic interactions between tumors and the bone microenvironment, ultimately leading to better models for testing therapeutics and predicting patient outcomes.

  1. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than the averagedmore » phonon mean-free path in BaTiO3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. This time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  2. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  3. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE PAGES

    Zhu, Yi; Chen, Frank; Park, Joonkyu; ...

    2017-11-16

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  4. Imaging of oxygenation in 3D tissue models with multi-modal phosphorescent probes

    NASA Astrophysics Data System (ADS)

    Papkovsky, Dmitri B.; Dmitriev, Ruslan I.; Borisov, Sergei

    2015-03-01

    Cell-penetrating phosphorescence based probes allow real-time, high-resolution imaging of O2 concentration in respiring cells and 3D tissue models. We have developed a panel of such probes, small molecule and nanoparticle structures, which have different spectral characteristics, cell penetrating and tissue staining behavior. The probes are compatible with conventional live cell imaging platforms and can be used in different detection modalities, including ratiometric intensity and PLIM (Phosphorescence Lifetime IMaging) under one- or two-photon excitation. Analytical performance of these probes and utility of the O2 imaging method have been demonstrated with different types of samples: 2D cell cultures, multi-cellular spheroids from cancer cell lines and primary neurons, excised slices from mouse brain, colon and bladder tissue, and live animals. They are particularly useful for hypoxia research, ex-vivo studies of tissue physiology, cell metabolism, cancer, inflammation, and multiplexing with many conventional fluorophors and markers of cellular function.

  5. Fast and background-free three-dimensional (3D) live-cell imaging with lanthanide-doped upconverting nanoparticles.

    PubMed

    Jo, Hong Li; Song, Yo Han; Park, Jinho; Jo, Eun-Jung; Goh, Yeongchang; Shin, Kyujin; Kim, Min-Gon; Lee, Kang Taek

    2015-12-14

    We report on the development of a three-dimensional (3D) live-cell imaging technique with high spatiotemporal resolution using lanthanide-doped upconverting nanoparticles (UCNPs). It employs the sectioning capability of confocal microscopy except that the two-dimensional (2D) section images are acquired by wide-field epi-fluorescence microscopy. Although epi-fluorescence images are contaminated with the out-of-focus background in general, the near-infrared (NIR) excitation used for the excitation of UCNPs does not generate any autofluorescence, which helps to lower the background. Moreover, the image blurring due to defocusing was naturally eliminated in the image reconstruction process. The 3D images were used to investigate the cellular dynamics such as nuclear uptake and single-particle tracking that require 3D description.

  6. Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment.

    PubMed

    Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon

    2017-02-21

    The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus.

  7. Differential regulation of cellular functions by the C-termini of transmembrane 4 L six family proteins in 2- or 3-dimensional environment

    PubMed Central

    Cheong, Jin-Gyu; Song, Dae-Geun; Song, Haeng Eun; Berditchevski, Fedor; Nam, Seo Hee; Jung, Jae Woo; Kim, Hye-Jin; Kim, Ji Eon; Kim, Somi; Ryu, Jihye; Cho, Chang Yun; Lee, Kyung-Min; Lee, Jung Weon

    2017-01-01

    The transmembrane 4 L six family proteins TM4SF1, TM4SF4, and TM4SF5 share 40-50% overall sequence identity, but their C-terminus identity is limited. It may be likely that the C-termini of the members are important and unique for own regulatory functions. We thus examined how the TM4SF5 C-terminus affected cellular functions differentially from other family members. Using colon cancer cells expressing wildtype (WT), C-terminus-deleted, or chimeric mutants, diverse cellular functions were explored in 2-dimensional (2D) and 3-dimensional (3D) condition. The C-termini of the proteins were relatively comparable with respect to 2D cell proliferation, although each C-terminal-deletion mutant exhibited increased proliferation relative to the WT. Using chimeric constructs, we found that the TM4SF5 C-terminus was critical for regulating the diverse metastatic functions of TM4SF5, and could positively replace the C-termini of other family members. Replacement of the TM4SF1 or TM4SF4 C-terminus with that of TM4SF5 increased spheroids growth, transwell migration, and invasive dissemination from spheroids in 3D collagen gels. TM4SF5-mediated effects required its extracellular loop 2 linked to the C-terminus via the transmembrane domain 4, with causing c-Src activation. Altogether, the C-terminus of TM4SF5 appears to mediate pro-migratory roles, depending on a structural relay from the second extracellular loop to the C-terminus. PMID:28129652

  8. Cellular nanotechnology: making biological interfaces smarter.

    PubMed

    Mendes, Paula M

    2013-12-21

    Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.

  9. Autofluorescence imaging captures heterogeneous drug response differences between 2D and 3D breast cancer cultures

    PubMed Central

    Cannon, T. M.; Shah, A. T.; Skala, M. C.

    2017-01-01

    Two-photon microscopy of cellular autofluorescence intensity and lifetime (optical metabolic imaging, or OMI) is a promising tool for preclinical drug development. OMI, which exploits the endogenous fluorescence from the metabolic coenzymes NAD(P)H and FAD, is sensitive to changes in cell metabolism produced by drug treatment. Previous studies have shown that drug response, genetic expression, cell-cell communication, and cell signaling in 3D culture match those of the original in vivo tumor, but not those of 2D culture. The goal of this study is to use OMI to quantify dynamic cell-level metabolic differences in drug response in 2D cell lines vs. 3D organoids generated from xenograft tumors of the same cell origin. BT474 cells and Herceptin-resistant BT474 (HR6) cells were tested. Cells were treated with vehicle control, Herceptin, XL147 (PI3K inhibitor), and the combination. The OMI index was used to quantify response, and is a linear combination of the redox ratio (intensity of NAD(P)H divided by FAD), mean NADH lifetime, and mean FAD lifetime. The results confirm that the OMI index resolves significant differences (p<0.05) in drug response for 2D vs. 3D cultures, specifically for BT474 cells 24 hours after Herceptin treatment, for HR6 cells 24 and 72 hours after combination treatment, and for HR6 cells 72 hours after XL147 treatment. Cell-level analysis of the OMI index also reveals differences in the number of cell sub-populations in 2D vs. 3D culture at 24, 48, and 72 hours post-treatment in control and treated groups. Finally, significant increases (p<0.05) in the mean lifetime of NADH and FAD were measured in 2D vs. 3D for both cell lines at 72 hours post-treatment in control and all treatment groups. These whole-population differences in the mean NADH and FAD lifetimes are supported by differences in the number of cell sub-populations in 2D vs. 3D. Overall, these studies confirm that OMI is sensitive to differences in drug response in 2D vs. 3D, and

  10. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDerm™).

    PubMed

    Wills, John W; Hondow, Nicole; Thomas, Adam D; Chapman, Katherine E; Fish, David; Maffeis, Thierry G; Penny, Mark W; Brown, Richard A; Jenkins, Gareth J S; Brown, Andy P; White, Paul A; Doak, Shareen H

    2016-09-09

    The rapid production and incorporation of engineered nanomaterials into consumer products alongside research suggesting nanomaterials can cause cell death and DNA damage (genotoxicity) makes in vitro assays desirable for nanosafety screening. However, conflicting outcomes are often observed when in vitro and in vivo study results are compared, suggesting more physiologically representative in vitro models are required to minimise reliance on animal testing. BASF Levasil® silica nanoparticles (16 and 85 nm) were used to adapt the 3D reconstructed skin micronucleus (RSMN) assay for nanomaterials administered topically or into the growth medium. 3D dose-responses were compared to a 2D micronucleus assay using monocultured human B cells (TK6) after standardising dose between 2D / 3D assays by total nanoparticle mass to cell number. Cryogenic vitrification, scanning electron microscopy and dynamic light scattering techniques were applied to characterise in-medium and air-liquid interface exposures. Advanced transmission electron microscopy imaging modes (high angle annular dark field) and X-ray spectrometry were used to define nanoparticle penetration / cellular uptake in the intact 3D models and 2D monocultured cells. For all 2D exposures, significant (p < 0.002) increases in genotoxicity were observed (≥100 μg/mL) alongside cell viability decreases (p < 0.015) at doses ≥200 μg/mL (16 nm-SiO2) and ≥100 μg/mL (85 nm-SiO2). In contrast, 2D-equivalent exposures to the 3D models (≤300 μg/mL) caused no significant DNA damage or impact on cell viability. Further increasing dose to the 3D models led to probable air-liquid interface suffocation. Nanoparticle penetration / cell uptake analysis revealed no exposure to the live cells of the 3D model occurred due to the protective nature of the skin model's 3D cellular microarchitecture (topical exposures) and confounding barrier effects of the collagen cell attachment layer (in-medium exposures). 2D

  11. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  12. Predictive modeling of synergistic effects in nanoscale ion track formation

    DOE PAGES

    Zarkadoula, Eva; Pakarinen, Olli H.; Xue, Haizhou; ...

    2015-08-05

    Molecular dynamics techniques and the inelastic thermal spike model are used to study the coupled effects of inelastic energy loss due to 21 MeV Ni ion irradiation and pre-existing defects in SrTiO 3. We determine the dependence on pre-existing defect concentration of nanoscale track formation occurring from the synergy between the inelastic energy loss and the pre-existing atomic defects. We show that the nanoscale ion tracks’ size can be controlled by the concentration of pre-existing disorder. This work identifies a major gap in fundamental understanding concerning the role played by defects in electronic energy dissipation and electron–lattice coupling.

  13. Acute D2/D3 dopaminergic agonism but chronic D2/D3 antagonism prevents NMDA antagonist neurotoxicity.

    PubMed

    Farber, Nuri B; Nemmers, Brian; Noguchi, Kevin K

    2006-09-15

    Antagonists of the N-methyl-D-aspartate (NMDA) glutamate receptor, most likely by producing disinhibtion in complex circuits, acutely produce psychosis and cognitive disturbances in humans, and neurotoxicity in rodents. Studies examining NMDA Receptor Hypofunction (NRHypo) neurotoxicity in animals, therefore, may provide insights into the pathophysiology of psychotic disorders. Dopaminergic D2 and/or D3 agents can modify psychosis over days to weeks, suggesting involvement of these transmitter system(s). We studied the ability of D2/D3 agonists and antagonists to modify NRHypo neurotoxicity both after a one-time acute exposure and after chronic daily exposure. Here we report that D2/D3 dopamine agonists, probably via D3 receptors, prevent NRHypo neurotoxicity when given acutely. The protective effect with D2/D3 agonists is not seen after chronic daily dosing. In contrast, the antipsychotic haloperidol does not affect NRHypo neurotoxicity when given acutely at D2/D3 doses. However, after chronic daily dosing of 1, 3, or 5 weeks, haloperidol does prevent NRHypo neurotoxicity with longer durations producing greater protection. Understanding the changes that occur in the NRHypo circuit after chronic exposure to dopaminergic agents could provide important clues into the pathophysiology of psychotic disorders.

  14. Size Effects in Nanoscale Structural Phenomena

    NASA Astrophysics Data System (ADS)

    McElhinny, Kyle Matthew

    The creation of nanostructures offers the opportunity to modify and tune properties in ways inaccessible in bulk materials. A key component in this development is the introduction of size effects which reduce the physical size, dimensionality, and increase the contribution of surface effects. The size effects strongly modify the structural dynamics in nanoscale systems and leads to changes in the vibrational, electrical, and optical properties. An increased level of understanding and control of nanoscale structural dynamics will enable more precise control over nanomaterial transport properties. My work has shown that 1D spatial confinement through the creation of semiconducting nanomembranes modifies the phonon population and dispersion. X ray thermal diffuse scattering distributions show an excess in intensity for nanomembranes less than 100 nm in thickness, for phonon modes with wavevectors spanning the entire Brillouin zone. This excess intensity indicates the development of new low energy phonon modes or the softening of elastic constants. Furthermore, an additional anisotropy in the phonon dispersion is observed with a symmetry matching the direction of spatial confinement. This work has also extended x ray thermal diffuse scattering for use in studying nanomaterials. In electro- and photoactive monolayers a structural reconfiguration can be produced by external optical stimuli. I have developed an electro and photoactive molecular monolayers on oxide surfaces. Using x ray reflectivity, I have evaluated the organization and reconfiguration of molecular monolayers deposited by Langmuir Blodgett technique. I have designed and probed the reconfiguration of optically reconfigurable monolayers of azobenzene donor molecules on semiconducting surfaces. These monolayers reconfigure through a cooperative switching process leading to the development of large isomeric domains. This work represents an advancement in the interpretation of x ray reflectivity from molecular

  15. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    EPA Science Inventory

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  16. Perception of 3D spatial relations for 3D displays

    NASA Astrophysics Data System (ADS)

    Rosen, Paul; Pizlo, Zygmunt; Hoffmann, Christoph; Popescu, Voicu S.

    2004-05-01

    We test perception of 3D spatial relations in 3D images rendered by a 3D display (Perspecta from Actuality Systems) and compare it to that of a high-resolution flat panel display. 3D images provide the observer with such depth cues as motion parallax and binocular disparity. Our 3D display is a device that renders a 3D image by displaying, in rapid succession, radial slices through the scene on a rotating screen. The image is contained in a glass globe and can be viewed from virtually any direction. In the psychophysical experiment several families of 3D objects are used as stimuli: primitive shapes (cylinders and cuboids), and complex objects (multi-story buildings, cars, and pieces of furniture). Each object has at least one plane of symmetry. On each trial an object or its "distorted" version is shown at an arbitrary orientation. The distortion is produced by stretching an object in a random direction by 40%. This distortion must eliminate the symmetry of an object. The subject's task is to decide whether or not the presented object is distorted under several viewing conditions (monocular/binocular, with/without motion parallax, and near/far). The subject's performance is measured by the discriminability d', which is a conventional dependent variable in signal detection experiments.

  17. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns

    NASA Astrophysics Data System (ADS)

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-09-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  18. Brightness-compensated 3-D optical flow algorithm for monitoring cochlear motion patterns.

    PubMed

    von Tiedemann, Miriam; Fridberger, Anders; Ulfendahl, Mats; de Monvel, Jacques Boutet

    2010-01-01

    A method for three-dimensional motion analysis designed for live cell imaging by fluorescence confocal microscopy is described. The approach is based on optical flow computation and takes into account brightness variations in the image scene that are not due to motion, such as photobleaching or fluorescence variations that may reflect changes in cellular physiology. The 3-D optical flow algorithm allowed almost perfect motion estimation on noise-free artificial sequences, and performed with a relative error of <10% on noisy images typical of real experiments. The method was applied to a series of 3-D confocal image stacks from an in vitro preparation of the guinea pig cochlea. The complex motions caused by slow pressure changes in the cochlear compartments were quantified. At the surface of the hearing organ, the largest motion component was the transverse one (normal to the surface), but significant radial and longitudinal displacements were also present. The outer hair cell displayed larger radial motion at their basolateral membrane than at their apical surface. These movements reflect mechanical interactions between different cellular structures, which may be important for communicating sound-evoked vibrations to the sensory cells. A better understanding of these interactions is important for testing realistic models of cochlear mechanics.

  19. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    PubMed

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  20. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.

    PubMed

    Horman, Shane R; To, Jeremy; Orth, Anthony P

    2013-12-01

    There has been increasing interest in the development of cellular behavior models that take advantage of three-dimensional (3D) cell culture. To enable assessment of differential perturbagen impacts on cell growth in 2D and 3D, we have miniaturized and adapted for high-throughput screening (HTS) the soft agar colony formation assay, employing a laser-scanning cytometer to image and quantify multiple cell types simultaneously. The assay is HTS compatible, providing high-quality, image-based, replicable data for multiple, co-cultured cell types. As proof of concept, we subjected colorectal carcinoma colonies in 3D soft agar to a mini screen of 1528 natural product compounds. Hit compounds from the primary screen were rescreened in an HTS 3D co-culture matrix containing colon stromal cells and cancer cells. By combining tumor cells and normal, nontransformed colon epithelial cells in one primary screening assay, we were able to obtain differential IC50 data, thereby distinguishing tumor-specific compounds from general cytotoxic compounds. Moreover, we were able to identify compounds that antagonized tumor colony formation in 3D only, highlighting the importance of this assay in identifying agents that interfere with 3D tumor structural growth. This screening platform provides a fast, simple, and robust method for identification of tumor-specific agents in a biologically relevant microenvironment.