Science.gov

Sample records for nanoscale duplex oxide

  1. A nanoscale duplex precipitation approach for improving the properties of Fe-base alloys

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Wen, Y. R.; Fujita, T.; Hirata, A.; Chen, M.W.; Miller, Michael K; Chen, Guang; Chin, Bryan

    2013-01-01

    The precipitate size and number density are important factors for tailoring the mechanical behaviors of nanoscale precipitate-hardened alloys. However during thermal aging, the precipitate size and number density change leading to either poor strength or high strength but significantly reduced ductility. Here we demonstrate, by producing nanoprecipitates with unusual duplex structures in a composition-optimized multicomponent precipitation-hardened alloy, a unique approach to improve the stability of the alloy against the effects of thermal aging and consequently change in the mechanical properties. Our study provides compelling experimental evidence that these nanoscale precipitates consist of a duplex structures with a Cu-enriched bcc core that is partially encased by a B2-ordered Ni(Mn,Al) phase. This duplex structure enables the precipitate size and number density to be independently optimized, provides a more complex obstacle for dislocation movement due to the ordering and an additional interphase interface, and yields a high yield strength alloy without sacrificing the ductility.

  2. A nanoscale shape memory oxide.

    PubMed

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I; Minor, Andrew M; Chu, Ying-Hao; Van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-01-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm(-3) can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems. PMID:24253399

  3. A nanoscale shape memory oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I.; Minor, Andrew M.; Chu, Ying-Hao; van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-11-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm-3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.

  4. Direct observation and quantification of nanoscale spinodal decomposition in super duplex stainless steel weld metals.

    PubMed

    Shariq, Ahmed; Hättestrand, Mats; Nilsson, Jan-Olof; Gregori, Andrea

    2009-06-01

    Three variants of super duplex stainless steel weld metals with the basic composition 29Cr-8Ni-2Mo (wt%) were investigated. The nitrogen content of the three materials was 0.22%, 0.33% and 0.37%, respectively. Isothermal heat treatments were performed at 450 degrees C for times up to 243 h. The hardness evolution of the three materials was found to vary with the overall concentration of the nitrogen. Atom probe field ion microscopy (APFIM) was used to directly detect and quantify the degree of spinodal decomposition in different material conditions. 3-DAP atomic reconstruction clearly illustrate nanoscale variation of iron rich (alpha) and chromium rich (alpha') phases. A longer ageing time produces a coarser microstructure with larger alpha and alpha' domains. Statistical evaluation of APFIM data showed that phase separation was significant already after 1 h of ageing that gradually became more pronounced. Although nanoscale concentration variation was evident, no significant influence of overall nitrogen content on the degree of spinodal decomposition was found. PMID:19504899

  5. Emergent nanoscale superparamagnetism at oxide interfaces

    NASA Astrophysics Data System (ADS)

    Zeldov, Eli

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that do not occur in the parent bulk compounds. The most prominent example is the appearance of highly conducting and superconducting states at the interface between the band insulators LaAlO3 and SrTiO3. We present a new emergent phenomenon at the LaMnO3/SrTiO3 interface in which an antiferromagnetic insulator abruptly transforms into a superparamagnetic state. Above a critical thickness of LaMnO3 of five unit cells, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic islands with in-plane moment of 104 to 105μB with characteristic diameter of 10 to 50 nm. The nanoscale islands display superparamagnetic dynamics of random moment reversals by thermal activation or in response to an in-plane magnetic field. We propose a charge reconstruction model of the polar LaMnO3/SrTiO3 heterostructure which describes a sharp emergence of thermodynamic phase separation leading to nucleation of metallic ferromagnetic islands in an insulating antiferromagnetic matrix. The model suggests that a gate tunable superparamagnetic-ferromagnetic transition can be induced, holding potential for applications in magnetic storage and spintronics.

  6. Emergent nanoscale superparamagnetism at oxide interfaces.

    PubMed

    Anahory, Y; Embon, L; Li, C J; Banerjee, S; Meltzer, A; Naren, H R; Yakovenko, A; Cuppens, J; Myasoedov, Y; Rappaport, M L; Huber, M E; Michaeli, K; Venkatesan, T; Ariando; Zeldov, E

    2016-01-01

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic-ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics. PMID:27558907

  7. Emergent nanoscale superparamagnetism at oxide interfaces

    PubMed Central

    Anahory, Y.; Embon, L.; Li, C. J.; Banerjee, S.; Meltzer, A.; Naren, H. R.; Yakovenko, A.; Cuppens, J.; Myasoedov, Y.; Rappaport, M. L.; Huber, M. E.; Michaeli, K.; Venkatesan, T.; Ariando; Zeldov, E.

    2016-01-01

    Atomically sharp oxide heterostructures exhibit a range of novel physical phenomena that are absent in the parent compounds. A prominent example is the appearance of highly conducting and superconducting states at the interface between LaAlO3 and SrTiO3. Here we report an emergent phenomenon at the LaMnO3/SrTiO3 interface where an antiferromagnetic Mott insulator abruptly transforms into a nanoscale inhomogeneous magnetic state. Upon increasing the thickness of LaMnO3, our scanning nanoSQUID-on-tip microscopy shows spontaneous formation of isolated magnetic nanoislands, which display thermally activated moment reversals in response to an in-plane magnetic field. The observed superparamagnetic state manifests the emergence of thermodynamic electronic phase separation in which metallic ferromagnetic islands nucleate in an insulating antiferromagnetic matrix. We derive a model that captures the sharp onset and the thickness dependence of the magnetization. Our model suggests that a nearby superparamagnetic–ferromagnetic transition can be gate tuned, holding potential for applications in magnetic storage and spintronics. PMID:27558907

  8. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  9. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    SciTech Connect

    Darab, J.G.; Linehan, J.C.; Matson, D.W.; Ma, Y.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  10. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    SciTech Connect

    Darab, J.G.; Linehan, J.C.; Matson, D.W. ); Ma, Y. . Dept. of Physics)

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  11. Controllable Tuning Plasmonic Coupling with Nanoscale Oxidation

    PubMed Central

    2015-01-01

    The nanoparticle on mirror (NPoM) construct is ideal for the strong coupling of localized plasmons because of its simple fabrication and the nanometer-scale gaps it offers. Both of these are much harder to control in nanoparticle dimers. Even so, realizing controllable gap sizes in a NPoM remains difficult and continuous tunability is limited. Here, we use reactive metals as the mirror so that the spacing layer of resulting metal oxide can be easily and controllably created with specific thicknesses resulting in continuous tuning of the plasmonic coupling. Using Al as a case study, we contrast different approaches for oxidation including electrochemical oxidation, thermal annealing, oxygen plasma treatments, and photo-oxidation by laser irradiation. The thickness of the oxidation layer is calibrated with depth-mode X-ray photoemission spectroscopy (XPS). These all consistently show that increasing the thickness of the oxidation layer blue-shifts the plasmonic resonance peak while the transverse mode remains constant, which is well matched by simulations. Our approach provides a facile and reproducible method for scalable, local and controllable fabrication of NPoMs with tailored plasmonic coupling, suited for many applications of sensing, photochemistry, photoemission, and photovoltaics. PMID:25978297

  12. Optical spectroscopy of nanoscale and heterostructured oxides

    NASA Astrophysics Data System (ADS)

    Senty, Tess R.

    Through careful analysis of a material's properties, devices are continually getting smaller, faster and more efficient each day. Without a complete scientific understanding of material properties, devices cannot continue to improve. This dissertation uses optical spectroscopy techniques to understand light-matter interactions in several oxide materials with promising uses mainly in light harvesting applications. Linear absorption, photoluminescence and transient absorption spectroscopy are primarily used on europium doped yttrium vanadate nanoparticles, copper gallium oxide delafossites doped with iron, and cadmium selenide quantum dots attached to titanium dioxide nanoparticles. Europium doped yttrium vanadate nanoparticles have promising applications for linking to biomolecules. Using Fourier-transform infrared spectroscopy, it was shown that organic ligands (benzoic acid, 3-nitro 4-chloro-benzoic acid and 3,4-dihydroxybenzoic acid) can be attached to the surface of these molecules using metal-carboxylate coordination. Photoluminescence spectroscopy display little difference in the position of the dominant photoluminescence peaks between samples with different organic ligands although there is a strong decrease in their intensity when 3,4-dihydroxybenzoic acid is attached. It is shown that this strong quenching is due to the presence of high-frequency hydroxide vibrational modes within the organic linker. Ultraviolet/visible linear absorption measurements on delafossites display that by doping copper gallium oxide with iron allows for the previously forbidden fundamental gap transition to be accessed. Using tauc plots, it is shown that doping with iron lowers the bandgap from 2.8 eV for pure copper gallium oxide, to 1.7 eV for samples with 1 -- 5% iron doping. Using terahertz transient absorption spectroscopy measurements, it was also determined that doping with iron reduces the charge mobility of the pure delafossite samples. A comparison of cadmium selenide

  13. EXAFS and XANES analysis of oxides at the nanoscale

    PubMed Central

    Kuzmin, Alexei; Chaboy, Jesús

    2014-01-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles. PMID:25485137

  14. Transfer molding of nanoscale oxides using water-soluble templates.

    PubMed

    Bass, John D; Schaper, Charles D; Rettner, Charles T; Arellano, Noel; Alharbi, Fahhad H; Miller, Robert D; Kim, Ho-Cheol

    2011-05-24

    We report a facile method for creating nanoscopic oxide structures over large areas that is capable of producing high aspect ratio nanoscale structures with feature sizes below 50 nm. A variety of nanostructured oxides including TiO(2), SnO(2) and organosilicates are formed using sol-gel and nanoparticle precursors by way of molding with water-soluble polymeric templates generated from silicon masters. Sequential stacking techniques are developed that generate unique 3-dimensional nanostructures with combinatorially mixed geometries, scales, and materials. Applicable to a variety of substrates, this scalable method allows access to a broad range of new thin film morphologies for applications in devices, catalysts, and functional surface coatings. PMID:21469708

  15. Characterizing nano-scale electrocatalysis during partial oxidation of methane

    PubMed Central

    Lee, Daehee; Kim, Dongha; Kim, Joosun; Moon, Jooho

    2014-01-01

    Electrochemical analysis allows in situ characterization of solid oxide electrochemical cells (SOCs) under operating conditions. However, the SOCs that have been analyzed in this way have ill-defined or uncommon microstructures in terms of porosity and tortuosity. Therefore, the nano-scale characterization of SOCs with respect to three-phase boundaries has been hindered. We introduce novel in situ electrochemical analysis for SOCs that uses combined solid electrolyte potentiometry (SEP) and impedance measurements. This method is employed to investigate the oscillatory behavior of a porous Ni-yttria-stabilized zirconia (YSZ) anode during the partial oxidation of methane under ambient pressure at 800°C. The cyclic oxidation and reduction of nickel induces the oscillatory behavior in the impedance and electrode potential. The in situ characterization of the nickel surface suggests that the oxidation of the nickel occurs predominantly at the two-phase boundaries, whereas the nickel at the three-phase boundaries remains in the metallic state during the cyclic redox reaction. PMID:24487242

  16. Nano-scale polar-nonpolar oxide heterostructures for photocatalysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongli; Saidi, Wissam A.; Yang, Jinlong; Zhao, Jin

    2016-03-01

    We proposed based on first principles density functional theory calculations that a nano-scale thin film based on a polar-nonpolar transition-metal oxide heterostructure can be used as a highly-efficient photocatalyst. This is demonstrated using a SrTiO3/LaAlO3/SrTiO3 sandwich-like heterostructure with photocatalytic activity in the near-infrared region. The effect of the polar nature of LaAlO3 is two-fold. First, the induced electrostatic field accelerates the photo-generated electrons and holes into opposite directions and minimizes their recombination rates. Hence, the reduction and oxidation reactions can be instigated at the SrTiO3 surfaces located on the opposite sides of the heterostructure. Second, the electric field reduces the band gap of the system making it photoactive in the infrared region. We also show that charge separation can be enhanced by using compressive strain engineering that creates ferroelectric instability in STO. The proposed setup is ideal for tandem oxide photocatalysts especially when combined with photoactive polar materials.We proposed based on first principles density functional theory calculations that a nano-scale thin film based on a polar-nonpolar transition-metal oxide heterostructure can be used as a highly-efficient photocatalyst. This is demonstrated using a SrTiO3/LaAlO3/SrTiO3 sandwich-like heterostructure with photocatalytic activity in the near-infrared region. The effect of the polar nature of LaAlO3 is two-fold. First, the induced electrostatic field accelerates the photo-generated electrons and holes into opposite directions and minimizes their recombination rates. Hence, the reduction and oxidation reactions can be instigated at the SrTiO3 surfaces located on the opposite sides of the heterostructure. Second, the electric field reduces the band gap of the system making it photoactive in the infrared region. We also show that charge separation can be enhanced by using compressive strain engineering that creates

  17. Evaluation of Oxidation and Hydrogen Permeation of Al Containing Duplex Stainless Steels

    SciTech Connect

    Adams, Thad M.; Korinko, Paul; Duncan, Andrew

    2005-06-17

    As the National Hydrogen Economy continues to develop and evolve the need for structural materials that can resist hydrogen assisted degradation will become critical. To date austenitic stainless steel materials have been shown to be mildly susceptible to hydrogen attack which results in lower mechanical and fracture strengths. As a result, hydrogen permeation barrier coatings are typically applied to these steel to retard hydrogen ingress. The focal point of the reported work was to evaluate the potential for intentional alloying of commercial 300-series stainless steels to promote hydrogen permeation resistant oxide scales. Previous research on the Cr- and Fe-oxide scales inherent to 300-series stainless steels has proven to be inconsistent in effecting permeation resistance. The approach undertaken in this research was to add aluminum to the 300-series stainless steels in an attempt to promote a pure Al-oxide or and Al-rich oxide scale. Aloxide had been previously demonstrated to be an effective hydrogen permeation barrier. Results for 304L and 347H alloys doped with Al in concentration from 0.5-3.0 wt% with respect to oxidation kinetic studies, cyclic oxidation and characterization of the oxide scale chemistry are reported herein. Gaseous hydrogen permeation testing of the Al-doped alloys in both the unoxidized and oxidized (600 C, 30 mins) conditions are reported. A critical finding from this work is that at concentration as low as 0.5 wt% Al, the Al stabilizes the ferrite phase in these steels thus producing duplex austenitic-ferritic microstructures. As the Al-content increases the amount of measured ferrite increases thus resulting in hydrogen permeabilities more closely resembling ferritic steels.

  18. Passivation and anodic oxidation of duplex TiN coating on stainless steel

    SciTech Connect

    Rudenja, S.; Pan, J.; Wallinder, I.O.; Leygraf, C.; Kulu, P.

    1999-11-01

    The passivation and anodic oxidation of duplex TiN coatings deposited by arc ion plating onto prenitrided AISI 304 stainless steel have been studied by potentiodynamic polarization, electrochemical impedance spectroscopy, and Mott-Schottky measurements in 0.1 M H{sub 2}SO{sub 4} + 0.05 M HCl. The chemical composition of the oxidized surface film atop TiN was analyzed by X-ray photoelectron spectroscopy. Up to 1.2 V/SHE the TiN coating exhibits passive behavior, which is attributed to the formation of a TiO{sub 2}-like film of nanometer thickness which grows linearly with anodic potential at a rate of 2.4 nm/V. Above 1.2 V/SHE enhanced anodic oxidation of TiN is observed at a rate of 17.7 nm/V, and the overall corrosion performance is governed both by the oxidized TiN coating and by a metallic Ti interlayer atop the nitrided stainless steel substrate. At all potentials the TiO{sub 2} film is characterized by relatively high donor densities and is, furthermore, terminated by a hydroxylated surface.

  19. Photoluminescence mechanism model for oxidized porous silicon and nanoscale-silicon-particle-embedded silicon oxide

    NASA Astrophysics Data System (ADS)

    Qin, G. G.; Li, Y. J.

    2003-08-01

    There is much debate about the photoluminescence (PL) mechanisms of the nanoscale Si/Si oxide systems containing oxidized porous silicon and a nanoscale-Si-particle (NSP)—embedded Si oxide deposited by chemical vapor deposition, sputtering, or Si-ion implanting into Si oxide. In this paper, we suggest that two competitive processes, namely, the quantum confinement (QC) process and the quantum confinement-luminescence center (QCLC) process, take place in the PL. The photoexcitation occurs in the NSPs for both of the processes, while the photoemission occurs either in the NSPs for the QC process or in the luminescence centers (LCs) in Si oxide adjacent to the NSPs for the QCLC process. The rates of the two processes are compared quantitatively. Which process plays the major role in PL is determined by the capture cross section, the luminescence efficiency, and the density of the LCs, and the sizes of the NSPs. For a nanoscale Si/Si oxide system with the LCs having certain capture cross-section and luminescence efficiency, the higher the LC density and the larger the sizes of NSPs, the more beneficial for the QCLC process to surpass the QC process, and vice versa. For certain LC parameters, there is a critical most probable size for the NSPs. When the most probable size of the NSPs is larger than the critical one, the QCLC process dominates the PL, and when the most probable size of the NSPs is smaller than the critical one, the QC process dominates the PL. When the most probable size of the NSPs is close to the critical one, both the QC and QCLC processes should be taken into account. We have used this model to discuss PL experimental results reported for some nanoscale Si/Si oxide systems.

  20. Structure-property relationships of nanoscale engineered perovskite oxides

    NASA Astrophysics Data System (ADS)

    Tian, Wei

    Recent advances in the synthesis of nanoscale customized structure have demonstrated that reactive molecular beam epitaxy (MBE) can be used to construct nanostructure of oxides with atomic control. The ability to engineer the structure and chemistry of oxides at the nanometer scale makes possible for the creation of new functional materials that can be designed to have exceptional properties. This thesis focused on understanding structure-property relationships of such nanoscale customized oxides utilizing state-of-the-art transmission electron microscopy (TEM). Epitaxial thin films of n = 1--5 members of Ruddlesden-Popper homologous series Srn+1Ti nO3n+1 were synthesized by reactive MBE. We investigated the structure and microstructure of these thin films by x-ray diffraction along with high-resolution transmission electron microscopy (HRTEM) in combination with computer image simulations. We found that the thin films of n = 1--3 members are nearly free of intergrowths, e.g. phase-pure, while n = 4 and 5 thin films contain noticeably more intergrowth defects and anti-phase boundaries in their perovskite sheets. We show that these results are consistent with what is known about the thermodynamics of Sr n+1TinO3 n+1 phases. We also investigated the atomic structure and interfacial structure of artificial PbTiO3/SrTiO3 and BaTiO3/SrTiO 3 superlattices grown by MBE both with and without digital compositional grading. Both of these systems form a solid solution over their entire composition range. Thus, these layered heterostructures are metastable. We demonstrated, however, that the thermodynamically metastable superlattices can be kinetically stabilized via layer-by-layer growth. In addition, we found that the interfaces between two constituents in the heterostructures are atomically-abrupt. The superlattice thin films were made fully coherent with the substrates, resulting in a homogeneous large strain in the BaTiO3 layers due to the lattice mismatch between BaTiO3

  1. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  2. Nanoscale inhomogeneities in yttrium-barium-copper-oxide (YBCO) superconductors

    NASA Astrophysics Data System (ADS)

    Islam, Zahirul; Sinha, S. K.; Lang, J. C.; Liu, X.; Haskel, D.; Moss, S. C.; Srajer, G.; Veal, B. W.; Wermeille, D.; Lee, D. R.; Haeffner, D. R.; Welp, U.; Wochner, P.

    2004-03-01

    X-ray diffraction studies at the Advanced Photon Source reveal that nanoscale inhomogeneities, electronic or structural in origin, form in yttrium-barium-copper-oxide (YBa_2Cu_3O_6+x) superconductors and coexist with the superconducting (SC) state. Diffuse scattering from these inhomogeneous superstructures is due to atomic displacements with respect to equilibrium lattice sites (Z. Islam et al. Phys. Rev. B 66, 92501 (2002)), that are characterized by a wavevector of the form q=(q_x,0,0), where qx varies with hole doping from 2 unit cells (along shorter Cu-O-Cu direction) for very low doping to 4 unit cells at optimal doping. Interestingly, while these superstructures are 3-dimensionally ordered when the SC state is weakened (e.g., at x=0.4), as the doping increases, they become quasi 1D with correlation lengths comparable to SC coherence lengths in these cuprates. Recent first-principles calculations (D. de Fontaine et al., to be published) for the x=0.63 compound show that atomic displacements consistent with experimental data can be the result of ordering of O vacancies in YBCO. Models for various superstructures and their role in the phase diagram will be discussed.

  3. Prototropic Equilibria in DNA Containing One-electron Oxidized GC: Intra-duplex vs. Duplex to Solvent Deprotonation

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Munafo, Shawn A.; Khanduri, Deepti; Sevilla, Michael D.

    2015-01-01

    By use of ESR and UV-vis spectral studies, this work identifies the protonation states of one-electron oxidized G:C (viz. G•+:C, G(N1-H)•:C(+H+), G(N1-H)•:C, and G(N2-H)•:C) in a DNA oligomer d[TGCGCGCA]2. Benchmark ESR and UV-vis spectra from one electron oxidized 1-Me-dGuo are employed to analyze the spectral data obtained in one-electron oxidized d[TGCGCGCA]2 at various pHs. At pH ≥7, the initial site of deprotonation of one-electron oxidized d[TGCGCGCA]2 to the surrounding solvent is found to be at N1 forming G(N1-H)•:C at 155 K. However, upon annealing to 175 K, the site of deprotonation to the solvent shifts to an equilibrium mixture of G(N1-H)•:C and G(N2-H)•:C. For the first time, the presence of G(N2-H)•:C in a ds DNA-oligomer is shown to be easily distinguished from the other prototropic forms, owing to its readily observable nitrogen hyperfine coupling (Azz(N2)= 16 G). In addition, for the oligomer in H2O, an additional 8 G N2-H proton HFCC is found. This ESR identification is supported by a UV-vis absorption at 630 nm which is characteristic for G(N2-H)• in model compounds and oligomers. We find that the extent of photo-conversion to the C1′ sugar radical (C1′•) in the one-electron oxidized d[TGCGCGCA]2 allows for a clear distinction among the various G:C protonation states which can not be easily distinguished by ESR or UV-vis spectroscopies with this order for the extent of photo-conversion: G•+:C > G(N1-H)•:C(+H+) >> G(N1-H)•:C. We propose that it is the G•+:C form that undergoes deprotonation at the sugar and this requires reprotonation of G within the lifetime of exited state. PMID:21491657

  4. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  5. Surface evolution at nanoscale during oxidation: A competing mechanism between local curvature effect and stress effect

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Wang, Dan; Lu, Siyuan; Feng, Xue

    2016-04-01

    The process of surface evolution of a chemically etched stepped structure at nanoscale during oxidation at 600 °C is in situ and real time observed using scanning probe microscope, which is integrated in a nanoindentation equipment for high temperature test. Experimental results reveal that this curved stepped structure becomes flat after being oxidized for a short period of time. However, after a longer time of oxidation, it is observed that the originally flat surface near the stepped structure becomes rough. Analysis shows that such a surface evolution is attributed to the competition between the nanoscale curvature effect (related to surface energy) and the stress developed in the oxide film during oxidation (related to strain energy). It is demonstrated that both the surface energy and strain energy can modify the surface chemical potential, which acts as the driving force of the surface diffusion of oxygen and further affects the oxide formation on the surface.

  6. Transition of oxide film configuration and the critical stress inferred by scanning probe microscopy at nanoscale

    NASA Astrophysics Data System (ADS)

    Fang, Xufei; Li, Yan; Zhang, Changxing; Dong, Xuelin; Feng, Xue

    2016-09-01

    Scanning probe microscopy (SPM) equipped in high temperature nanoindentation instrument is adopted to in situ characterize the oxide film growth on Ni-base single crystal at nanoscale. SPM images reveal a transition of oxide film configuration that the originally flat surface roughens during oxidation. Based on the stress-diffusion coupling effect during oxidation, the stress evolution in the oxide film and the evolution of surface configuration are analyzed. A new method to infer the critical stress in the oxide film at the transition point is proposed by measuring the undulated surface wavelength based on the surface morphology obtained by SPM.

  7. Multimode resistive switching in nanoscale hafnium oxide stack as studied by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hou, Y.; Celano, U.; Goux, L.; Liu, L.; Degraeve, R.; Cheng, Y.; Kang, J.; Jurczak, M.; Vandervorst, W.

    2016-07-01

    The nanoscale resistive switching in hafnium oxide stack is investigated by the conductive atomic force microscopy (C-AFM). The initial oxide stack is insulating and electrical stress from the C-AFM tip induces nanometric conductive filaments. Multimode resistive switching can be observed in consecutive operation cycles at one spot. The different modes are interpreted in the framework of a low defect quantum point contact theory. The model implies that the optimization of the conductive filament active region is crucial for the future application of nanoscale resistive switching devices.

  8. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  9. Duplex ultrasound

    MedlinePlus

    Vascular ultrasound; Peripheral vascular ultrasound ... A duplex ultrasound combines traditional ultrasound with Doppler ultrasound . Traditional ultrasound uses sound waves that bounce off blood vessels to create ...

  10. Influence Of pH On The Transport Of Nanoscale Zinc Oxide In Saturated Porous Media

    EPA Science Inventory

    Widespread use of nanoscale zinc oxide (nZnO) in various fields causes subsurface environment contamination. Even though the transport of dissolved zinc ions in subsurface environments such as soils and sediments has been widely studied, the transport mechanism of nZnO in such e...

  11. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  12. G-Quadruplex Folds of the Human Telomere Sequence Alter the Site Reactivity and Reaction Pathway of Guanine Oxidation Compared to Duplex DNA

    PubMed Central

    Fleming, Aaron M.; Burrows, Cynthia J.

    2013-01-01

    Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K+), basket (Na+), and propeller (K+ + 50% CH3CN)) resulting from the sequence 5’-(TAGGGT)4T-3’ and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5’-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5’- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites, but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3•− reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5’-(TAGGGT)8-T-3’, and it provided similar oxidation profiles to the single G-quadruplex. Lastly, CuII/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5

  13. Field emitters with nanoscale tips based on Mo oxide fabricated by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Tsukamoto, Takeo; Sato, Takahiro; Kitamura, Shin; Kitao, Akiko; Kubota, Oichi; Ozaki, Eiji; Motoi, Taiko

    2016-04-01

    Field emitters with nanoscale tips and a fabrication technique using a nanoscale gap are described. Each fabrication technique makes it possible to form emitters on a meter-scale glass substrate. The emitter has a configuration with one side gate to reduce the electron scattering losses at the counter electrode to improve the emission efficiency. All thin film layers constituting the emitter are fabricated by plasma-enhanced chemical vapor deposition and sputtering deposition. Nanoscale tips are formed between a shallow gap less than 7 nm deep by the joule heating of a Mo complex oxide, which is produced by the electro chemical etching of a deposited Mo layer. To our knowledge, this is the first work that shows a uniform efficiency of 5% or more achieved at an anode voltage of 10 kV and an operation voltage of 23 V.

  14. Nanoscale assembly of high-temperature oxidation-resistant nanocomposites.

    PubMed

    Peng, Xiao

    2010-02-01

    Structural considerations for designing a high-temperature oxidation-resistant metallic material are proposed, based on the dependence of the material structure on a promotion of the development of a protective scale of chromia or alumina. The material should have numerous sites on its surface for nucleating the protective oxides at the onset of oxidation and abundant grain boundaries in deeper areas for simultaneously supplying sufficient flux of the protective-oxide-forming elements toward the surface for a rapid linkage of the oxide nuclei through their lateral growth. Based on these considerations, we fabricated, using an electrochemical deposition method, novel nanocomposites which have a nanocrystalline metal matrix containing Cr and/or Al nanoparticles dispersed at the nano length scale. The validity of the design considerations is verified by comparing the high-temperature oxidation of a typical Ni-Cr nanocomposite system with two types of conventional Ni-Cr materials having similar or higher Cr content but different structure: one is a composite having a nanocrystalline Ni matrix containing Cr microparticles dispersed at the microscale and the other are micron-grained Ni-Cr alloys with the Cr distribution at the atomic length scale. PMID:20644803

  15. Catalytic wet oxidation of ammonia solution: activity of the nanoscale platinum-palladium-rhodium composite oxide catalyst.

    PubMed

    Hung, Chang-Mao

    2009-04-15

    Aqueous solutions of 400-1000 mg/L of ammonia were oxidized in a trickle-bed reactor (TBR) in this study of nanoscale platinum-palladium-rhodium composite oxide catalysts, which were prepared by the co-precipitation of H(2)PtCl(6), Pd(NO(3))(3) and Rh(NO(3))(3). Hardly any of the dissolved ammonia was removed by wet oxidation in the absence of any catalyst, whereas about 99% of the ammonia was reduced during wet oxidation over nanoscale platinum-palladium-rhodium composite oxide catalysts at 503 K in an oxygen partial pressure of 2.0 MPa. A synergistic effect exists in the nanoscale platinum-palladium-rhodium composite structure, which is the material with the highest ammonia reduction activity. The nanometer-sized particles were characterized by TEM, XRD and FTIR. The effect of the initial concentration and reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid hourly space velocity of under 9 h(-1) in the wet catalytic processes. PMID:18657902

  16. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics

    NASA Astrophysics Data System (ADS)

    Wei, Zhongqing; Wang, Debin; Kim, Suenne; Kim, Soo-Young; Hu, Yike; Yakes, Michael K.; Laracuente, Arnaldo R.; Dai, Zhenting; Marder, Seth R.; Berger, Claire; King, William P.; de Heer, Walter A.; Sheehan, Paul E.; Riedo, Elisa

    2010-06-01

    The reduced form of graphene oxide (GO) is an attractive alternative to graphene for producing large-scale flexible conductors and for creating devices that require an electronic gap. We report on a means to tune the topographical and electrical properties of reduced GO (rGO) with nanoscopic resolution by local thermal reduction of GO with a heated atomic force microscope tip. The rGO regions are up to four orders of magnitude more conductive than pristine GO. No sign of tip wear or sample tearing was observed. Variably conductive nanoribbons with dimensions down to 12 nanometers could be produced in oxidized epitaxial graphene films in a single step that is clean, rapid, and reliable.

  17. Stochastic stick-slip nanoscale friction on oxide surfaces.

    PubMed

    Craciun, A D; Gallani, J L; Rastei, M V

    2016-02-01

    The force needed to move a nanometer-scale contact on various oxide surfaces has been studied using an atomic force microscope and theoretical modeling. Force-distance traces unveil a stick-slip movement with erratic slip events separated by several nanometers. A linear scaling of friction force with normal load along with low pull-off forces reveals dispersive adhesive interactions at the interface. We model our findings by considering a variable Lennard-Jones-like interaction potential, which accounts for slip-induced variation of the effective contact area. The model explains the formation and fluctuation of stick-slip phases and provides guidelines for predicting transitions from stick-slip to continuous sliding on oxide surfaces. PMID:26751769

  18. Nanoscale reduction of graphene oxide thin films and its characterization

    NASA Astrophysics Data System (ADS)

    Lorenzoni, M.; Giugni, A.; Di Fabrizio, E.; Pérez-Murano, Francesc; Mescola, A.; Torre, B.

    2015-07-01

    In this paper, we report on a method to reduce thin films of graphene oxide (GO) to a spatial resolution better than 100 nm over several tens of micrometers by means of an electrochemical scanning probe based lithography. In situ tip-current measurements show that an edged drop in electrical resistance characterizes the reduced areas, and that the reduction process is, to a good approximation, proportional to the applied bias between the onset voltage and the saturation thresholds. An atomic force microscope (AFM) quantifies the drop of the surface height for the reduced profile due to the loss of oxygen. Complementarily, lateral force microscopy reveals a homogeneous friction coefficient of the reduced regions that is remarkably lower than that of native graphene oxide, confirming a chemical change in the patterned region. Micro Raman spectroscopy, which provides access to insights into the chemical process, allows one to quantify the restoration and de-oxidation of the graphitic network driven by the electrochemical reduction and to determine characteristic length scales. It also confirms the homogeneity of the process over wide areas. The results shown were obtained from accurate analysis of the shift, intensity and width of Raman peaks for the main vibrational bands of GO and reduced graphene oxide (rGO) mapped over large areas. Concerning multilayered GO thin films obtained by drop-casting we have demonstrated an unprecedented lateral resolution in ambient conditions as well as an improved control, characterization and understanding of the reduction process occurring in GO randomly folded multilayers, useful for large-scale processing of graphene-based material.

  19. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  20. Nanoscale characterization of oxidized ultrathin Co-films by ballistic electron emission microscopy

    NASA Astrophysics Data System (ADS)

    Eng Johnson Goh, Kuan; Wang, Simin; Tan, Siew Ting Melissa; Zhang, Zheng; Kawai, Hiroyo; Troadec, Cedric; Ng, Vivian

    2016-01-01

    In anticipation of devices scaling down further to the few nanometer regime, the ability to characterize material localized within the few nm of a critical device region poses a current challenge, particularly when the material is already buried under other material layers such as under a metal contact. Conventional techniques typically provide indirect information of the nanoscale material quality through a surface or volume averaging perspective. Here we present a study of local (nm range) oxidation in few nanometer thick Co-films using Ballistic Electron Emission Microscopy/Spectroscopy (BEEM/BEES). Co films were grown on n-Si(111) substrates, oxidized in ambient atmosphere before capping with a thin Au film to prevent further oxidation and enable BEEM measurements. In addition to BEES, the temporal progression of Co oxidation was also tracked by X-ray Photoelectron Spectroscopy. At room temperature, we report that the electron injection thresholds are sufficiently different for local regions with Co and oxidized-Co enabling their distinction in BEEM measurements. Our results demonstrate the possibility of using BEEM for nanoscale spatial mapping of the oxidized regions in Co-films, and this can provide critical information toward the successful fabrication of next generation Co-based nano-devices.

  1. Thermodynamics of Manganese Oxides at Bulk and Nanoscale: Phase Formation, Transformation, Oxidation-Reduction, and Hydration

    NASA Astrophysics Data System (ADS)

    Birkner, Nancy R.

    Natural manganese oxides are generally formed in surficial environments that are near ambient temperature and water-rich, and may be exposed to wet-dry cycles and a variety of adsorbate species that influence dramatically their level of hydration. Manganese oxide minerals are often poorly crystalline, nanophase, and hydrous. In the near-surface environment they are involved in processes that are important to life, such as water column oxygen cycling, biomineralization, and transport of minerals/nutrients through soils and water. These processes, often involving transformations among manganese oxide polymorphs, are governed by a complex interplay between thermodynamics and kinetics. Manganese oxides are also used in technology as catalysts, and for other applications. The major goal of this dissertation is to examine the energetics of bulk and nanophase manganese oxide phases as a function of particle size, composition, and surface hydration. Careful synthesis and characterization of manganese oxide phases with different surface areas provided samples for the study of enthalpies of formation by high temperature oxide melt solution calorimetry and of the energetics of water adsorption on their surfaces. These data provide a quantitative picture of phase stability and how it changes at the nanoscale. The surface energy of the hydrous surface of Mn3O4 is 0.96 +/- 0.08 J/m2, of Mn2O3 is 1.29 +/- 0.10 J/m2, and of MnO2 is 1.64 +/- 0.10 J/m2. The surface energy of the anhydrous surface of Mn3O4 is 1.62 +/- 0.08 J/m 2, of Mn2O3 is 1.77 +/- 0.10 J/m 2, and of MnO2 is 2.05 +/- 0.10 J/m2. Supporting preliminary findings (Navrotsky et al., 2010), the spinel phase (Mn3O4) has a lower surface energy (more stabilizing) than bixbyite, while the latter has a smaller surface energy than pyrolusite. These differences significantly change the positions in oxygen fugacity---temperature space of the redox couples Mn3O4-Mn2O 3 and Mn2O3-MnO2 favoring the lower surface enthalpy phase (the

  2. Characterization of Nano-scale Aluminum Oxide Transport through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, S.; Reynolds, M.; Miao, Z.; Brusseau, M. L.; Johnson, G. R.

    2011-12-01

    Colloidal material (including that in the nanoparticle size range) is naturally present in most subsurface environments. Mobilization of these colloidal materials via particle disaggregation may occur through abrupt changes in flow rate and/or via chemical perturbations, such as rapid changes in ionic strength or solution pH. While concentrations of natural colloidal materials in the subsurface are typically small, those concentrations may be greatly increased at contaminated sites such as following the application of metal oxides for groundwater remediation efforts. Additionally, while land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers, biosolids have been shown to contain a significant fraction of organic and inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of nano-scale colloidal materials through the soil column and their potential participation in the facilitated transport of contaminants, such as heavy metals and emerging pollutants. The purpose of this study was to investigate the transport behavior of aluminum oxide (Al2O3) nanoparticles through porous media. The impacts of pH, ionic strength, pore-water velocity (i.e., residence time), and aqueous-phase concentration on transport was investigated. All experiments were conducted with large injection pulses to fully characterize the impact of long-term retention and transport behavior relevant for natural systems wherein multiple retention processes may be operative. The results indicate that the observed nonideal transport behavior of the nano-scale colloids is influenced by multiple retention mechanisms/processes. Given the ubiquitous nature of these nano-scale colloids in the environment, a clear understanding of their transport and fate is necessary in further resolving the potential for

  3. Drift-diffusion equation for ballistic transport in nanoscale metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Rhew, Jung-Hoon; Lundstrom, Mark S.

    2002-11-01

    We develop a drift-diffusion equation that describes ballistic transport in a nanoscale metal-oxide-semiconductor field effect transistor (MOSFET). We treat injection from different contacts separately, and describe each injection with a set of extended McKelvey one-flux equations [Phys. Rev. 123, 51 (1961); 125, 1570 (1962)] that include hierarchy closure approximations appropriate for high-field ballistic transport and degenerate carrier statistics. We then reexpress the extended one-flux equations in a drift-diffusion form with a properly defined Einstein relationship. The results obtained for a nanoscale MOSFET show excellent agreement with the solution of the ballistic Boltzmann transport equation with no fitting parameters. These results show that a macroscopic transport model based on the moments of the Boltzmann transport equation can describe ballistic transport.

  4. Deposition of duplex Al 2O 3/aluminum coatings on steel using a combined technique of arc spraying and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Gu, Weichao; Shen, Dejiu; Wang, Yulin; Chen, Guangliang; Feng, Wenran; Zhang, Guling; Fan, Songhua; Liu, Chizi; Yang, Size

    2006-02-01

    Plasma electrolytic oxidation (PEO) is a cost-effective technique that can be used to prepare ceramic coatings on metals such as Ti, Al, Mg, Nb, etc., and their alloys, but this promising technique cannot be used to modify the surface properties of steels, which are the most widely used materials in engineering. In order to prepare metallurgically bonded ceramic coatings on steels, a combined technique of arc spraying and plasma electrolytic oxidation (PEO) was adopted. In this work, metallurgically bonded ceramic coatings on steels were obtained using this method. We firstly prepared aluminum coatings on steels by arc spraying, and then obtained the metallurgically bonded ceramic coatings on aluminum coatings by PEO. The characteristics of duplex coatings were analyzed by X-ray diffractometer (XRD) and scanning electron microscopy (SEM). The corrosion and wear resistance of the ceramic coatings were also studied. The results show that, duplex Al 2O 3/aluminum coatings have been deposited on steel substrate after the combined treatment. The ceramic coatings are mainly composed of α-Al 2O 3, γ-Al 2O 3, θ-Al 2O 3 and some amorphous phase. The duplex coatings show favorable corrosion and wear resistance properties. The investigations indicate that the combination of arc spraying and plasma electrolytic oxidation proves a promising technique for surface modification of steels for protective purposes.

  5. Self-Assembled Epitaxial Au-Oxide Vertically Aligned Nanocomposites for Nanoscale Metamaterials.

    PubMed

    Li, Leigang; Sun, Liuyang; Gomez-Diaz, Juan Sebastian; Hogan, Nicki L; Lu, Ping; Khatkhatay, Fauzia; Zhang, Wenrui; Jian, Jie; Huang, Jijie; Su, Qing; Fan, Meng; Jacob, Clement; Li, Jin; Zhang, Xinghang; Jia, Quanxi; Sheldon, Matthew; Alù, Andrea; Li, Xiaoqin; Wang, Haiyan

    2016-06-01

    Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (∼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales. PMID:27186652

  6. Label-free, atomic force microscopy-based mapping of DNA intrinsic curvature for the nanoscale comparative analysis of bent duplexes

    PubMed Central

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2012-01-01

    We propose a method for the characterization of the local intrinsic curvature of adsorbed DNA molecules. It relies on a novel statistical chain descriptor, namely the ensemble averaged product of curvatures for two nanosized segments, symmetrically placed on the contour of atomic force microscopy imaged chains. We demonstrate by theoretical arguments and experimental investigation of representative samples that the fine mapping of the average product along the molecular backbone generates a characteristic pattern of variation that effectively highlights all pairs of DNA tracts with large intrinsic curvature. The centrosymmetric character of the chain descriptor enables targetting strands with unknown orientation. This overcomes a remarkable limitation of the current experimental strategies that estimate curvature maps solely from the trajectories of end-labeled molecules or palindromes. As a consequence our approach paves the way for a reliable, unbiased, label-free comparative analysis of bent duplexes, aimed to detect local conformational changes of physical or biological relevance in large sample numbers. Notably, such an assay is virtually inaccessible to the automated intrinsic curvature computation algorithms proposed so far. We foresee several challenging applications, including the validation of DNA adsorption and bending models by experiments and the discrimination of specimens for genetic screening purposes. PMID:22402493

  7. Label-free, atomic force microscopy-based mapping of DNA intrinsic curvature for the nanoscale comparative analysis of bent duplexes.

    PubMed

    Buzio, Renato; Repetto, Luca; Giacopelli, Francesca; Ravazzolo, Roberto; Valbusa, Ugo

    2012-06-01

    We propose a method for the characterization of the local intrinsic curvature of adsorbed DNA molecules. It relies on a novel statistical chain descriptor, namely the ensemble averaged product of curvatures for two nanosized segments, symmetrically placed on the contour of atomic force microscopy imaged chains. We demonstrate by theoretical arguments and experimental investigation of representative samples that the fine mapping of the average product along the molecular backbone generates a characteristic pattern of variation that effectively highlights all pairs of DNA tracts with large intrinsic curvature. The centrosymmetric character of the chain descriptor enables targetting strands with unknown orientation. This overcomes a remarkable limitation of the current experimental strategies that estimate curvature maps solely from the trajectories of end-labeled molecules or palindromes. As a consequence our approach paves the way for a reliable, unbiased, label-free comparative analysis of bent duplexes, aimed to detect local conformational changes of physical or biological relevance in large sample numbers. Notably, such an assay is virtually inaccessible to the automated intrinsic curvature computation algorithms proposed so far. We foresee several challenging applications, including the validation of DNA adsorption and bending models by experiments and the discrimination of specimens for genetic screening purposes. PMID:22402493

  8. Nanoscale Surface Modification of Lithium-Rich Layered-Oxide Composite Cathodes for Suppressing Voltage Fade.

    PubMed

    Zheng, Fenghua; Yang, Chenghao; Xiong, Xunhui; Xiong, Jiawen; Hu, Renzong; Chen, Yu; Liu, Meilin

    2015-10-26

    Lithium-rich layered oxides are promising cathode materials for lithium-ion batteries and exhibit a high reversible capacity exceeding 250 mAh g(-1) . However, voltage fade is the major problem that needs to be overcome before they can find practical applications. Here, Li1.2 Mn0.54 Ni0.13 Co0.13 O2 (LLMO) oxides are subjected to nanoscale LiFePO4 (LFP) surface modification. The resulting materials combine the advantages of both bulk doping and surface coating as the LLMO crystal structure is stabilized through cationic doping, and the LLMO cathode materials are protected from corrosion induced by organic electrolytes. An LLMO cathode modified with 5 wt % LFP (LLMO-LFP5) demonstrated suppressed voltage fade and a discharge capacity of 282.8 mAh g(-1) at 0.1 C with a capacity retention of 98.1 % after 120 cycles. Moreover, the nanoscale LFP layers incorporated into the LLMO surfaces can effectively maintain the lithium-ion and charge transport channels, and the LLMO-LFP5 cathode demonstrated an excellent rate capacity. PMID:26335589

  9. Nanoscale mapping of carbon oxidation in pyrogenic black carbon from ancient Amazonian anthrosols.

    PubMed

    Archanjo, B S; Baptista, D L; Sena, L A; Cançado, L G; Falcão, N P S; Jorio, A; Achete, C A

    2015-04-01

    Understanding soil organic matter is necessary for the development of soil amendments, which are important for sustaining agriculture in humid tropical climates. Ancient Amazonian anthrosols are uniquely high in black recalcitrant carbon, making them extremely fertile. In this study, we use high-resolution electron microscopy and spectroscopy to resolve the oxidation process of carbon in the nanoscale crystallites within the black carbon grains of this special soil. Most alkali and acid chemical extraction methods are known to cause chemical modifications in soil organic matter and to give poor or no information about the real spatial structure of soil aggregates. However, here we show that carbon-oxygen functional groups such as phenol, carbonyl, and carboxyl dominate over different spatial regions, with areas varying from over tens to hundreds of nm(2). The chemical maps show that in the nanoscale grain, the surface has a tendency to be less aromatic than the grain core, where higher oxidative-degradation levels are indicated by the presence of carbonyl and carboxyl groups. A deep understanding of these structures could allow artificial reproduction of these natural events. PMID:25699655

  10. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J.; Hwang, Bing-Joe; Dai, Hongjie

    2014-08-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm-2 at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts.

  11. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis.

    PubMed

    Gong, Ming; Zhou, Wu; Tsai, Mon-Che; Zhou, Jigang; Guan, Mingyun; Lin, Meng-Chang; Zhang, Bo; Hu, Yongfeng; Wang, Di-Yan; Yang, Jiang; Pennycook, Stephen J; Hwang, Bing-Joe; Dai, Hongjie

    2014-01-01

    Active, stable and cost-effective electrocatalysts are a key to water splitting for hydrogen production through electrolysis or photoelectrochemistry. Here we report nanoscale nickel oxide/nickel heterostructures formed on carbon nanotube sidewalls as highly effective electrocatalysts for hydrogen evolution reaction with activity similar to platinum. Partially reduced nickel interfaced with nickel oxide results from thermal decomposition of nickel hydroxide precursors bonded to carbon nanotube sidewalls. The metal ion-carbon nanotube interactions impede complete reduction and Ostwald ripening of nickel species into the less hydrogen evolution reaction active pure nickel phase. A water electrolyzer that achieves ~20 mA cm(-2) at a voltage of 1.5 V, and which may be operated by a single-cell alkaline battery, is fabricated using cheap, non-precious metal-based electrocatalysts. PMID:25146255

  12. Coupling carbon dioxide reduction with water oxidation in nanoscale photocatalytic assemblies.

    PubMed

    Kim, Wooyul; McClure, Beth Anne; Edri, Eran; Frei, Heinz

    2016-06-01

    The reduction of carbon dioxide by water with sunlight in an artificial system offers an opportunity for utilizing non-arable land for generating renewable transportation fuels to replace fossil resources. Because of the very large scale required for the impact on fuel consumption, the scalability of artificial photosystems is of key importance. Closing the photosynthetic cycle of carbon dioxide reduction and water oxidation on the nanoscale addresses major barriers for scalability as well as high efficiency, such as resistance losses inherent to ion transport over macroscale distances, loss of charge and other efficiency degrading processes, or excessive need for the balance of system components, to mention a few. For the conversion of carbon dioxide to six-electron or even more highly reduced liquid fuel products, introduction of a proton conducting, gas impermeable separation membrane is critical. This article reviews recent progress in the development of light absorber-catalyst assemblies for the reduction and oxidation half reactions with focus on well defined polynuclear structures, and on novel approaches for optimizing electron transfer among the molecular or nanoparticulate components. Studies by time-resolved optical and infrared spectroscopy for the understanding of charge transfer processes between the chromophore and the catalyst, and of the mechanism of water oxidation at metal oxide nanocatalysts through direct observation of surface reaction intermediates are discussed. All-inorganic polynuclear units for reducing carbon dioxide by water at the nanoscale are introduced, and progress towards core-shell nanotube assemblies for completing the photosynthetic cycle under membrane separation is described. PMID:27121982

  13. Duplex Al2O3/DLC Coating on 15SiCp/2024 Aluminum Matrix Composite Using Combined Microarc Oxidation and Filtered Cathodic Vacuum Arc Deposition

    NASA Astrophysics Data System (ADS)

    Xue, Wenbin; Tian, Hua; Du, Jiancheng; Hua, Ming; Zhang, Xu; Li, Yongliang

    2012-08-01

    Microarc oxidation (MAO) treatment produces a thick Al2O3 coating on the 15SiCp/2024 aluminum matrix composite. After pretreatment of Ti ion implantation, a thin diamond-like carbon film (DLC) was deposited on the top of polished Al2O3 coating by a pulsed filtered cathodic vacuum arc (FCVA) deposition system with a metal vapor vacuum arc (MEVVA) source. The morphology and tribological properties of the duplex Al2O3/DLC multiplayer coating were investigated by Raman spectroscopy, scanning electron microscopy (SEM) and SRV ball-on-disk friction tester. It is found that the duplex Al2O3/DLC coating had good adhesion and a low friction coefficient of less than 0.07. As compared to a single Al2O3 or DLC coating, the duplex Al2O3/DLC coating on aluminum matrix composite exhibited a better wear resistance against ZrO2 ball under dry sliding, because the Al2O3 coating as an intermediate layer improved load support for the top DLC coating on 15SiCp/2024 composite substrate, meanwhile the top DLC coating displayed low friction coefficient.

  14. Compact chromium oxide thin film resistors for use in nanoscale quantum circuits

    SciTech Connect

    Nash, C. R.; Fenton, J. C.; Constantino, N. G. N.; Warburton, P. A.

    2014-12-14

    We report on the electrical characterisation of a series of thin amorphous chromium oxide (CrO{sub x}) films, grown by dc sputtering, to evaluate their suitability for use as on-chip resistors in nanoelectronics. By increasing the level of oxygen doping, the room-temperature sheet resistance of the CrO{sub x} films was varied from 28 Ω/◻ to 32.6 kΩ/◻. The variation in resistance with cooling to 4.2 K in liquid helium was investigated; the sheet resistance at 4.2 K varied with composition from 65 Ω/◻ to above 20 GΩ/◻. All of the films measured displayed linear current–voltage characteristics at all measured temperatures. For on-chip devices for quantum phase-slip measurements using niobium–silicon nanowires, interfaces between niobium–silicon and chromium oxide are required. We also characterised the contact resistance for one CrO{sub x} composition at an interface with niobium–silicon. We found that a gold intermediate layer is favourable: the specific contact resistivity of chromium-oxide-to-gold interfaces was 0.14 mΩcm{sup 2}, much lower than the value for direct CrO{sub x} to niobium–silicon contact. We conclude that these chromium oxide films are suitable for use in nanoscale circuits as high-value resistors, with resistivity tunable by oxygen content.

  15. Synthesis of nanoscale silicon oxide oxidation state distributions: The transformation from hydrophilicity to hydrophobicity

    NASA Astrophysics Data System (ADS)

    Laminack, William; Gole, James L.; White, Mark G.; Ozdemir, Serdar; Ogden, Andrew G.; Martin, Holly J.; Fang, Zongtang; Wang, Tsang-Hsiu; Dixon, David A.

    2016-06-01

    Silicon oxide nanostructures which span the range from hydrophilic to hydrophobic have been synthesized. The surface chemistry of these silicon-based nanostructures was analyzed using a combination of X-ray photoelectron spectroscopy, reflectance infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. The dominant oxidation state for the nanostructured oxides shifts from an average oxidation state of +III to a combination of +II and +III oxidation states. A correlation of the ability to adsorb water with variations in the surface Si:O ratios was observed showing a transition from hydrophilic to hydrophobic character.

  16. Efficient electrochemical water oxidation in neutral and near-neutral systems with a nanoscale silver-oxide catalyst.

    PubMed

    Joya, Khurram S; Ahmad, Zahoor; Joya, Yasir F; Garcia-Esparza, Angel T; de Groot, Huub J M

    2016-08-11

    In electrocatalytic water splitting systems pursuing for renewable energy using sunlight, developing robust, stable and easily accessible materials operating under mild chemical conditions is pivotal. We present here a unique nanoparticulate type silver-oxide (AgOx-NP) based robust and highly stable electrocatalyst for efficient water oxidation. The AgOx-NP is generated in situ in a HCO3(-)/CO2 system under benign conditions. Micrographs show that they exhibit a nanoscale box type squared nano-bipyramidal configuration. The oxygen generation is initiated at low overpotential, and a sustained O2 evolution current density of >1.1 mA cm(-2) is achieved during prolonged-period water electrolysis. The AgOx-NP electrocatalyst performs exceptionally well in metal-ion free neutral or near-neutral carbonate, phosphate and borate buffers relative to recently reported Co-oxide and Ni-oxide based heterogeneous electrocatalysts, which are unstable in metal-ion free electrolytes and tend to deactivate with time and lose catalytic performance during long-term experimental tests. PMID:27472834

  17. Nanoscale conductive niobium oxides made through low temperature phase transformation for electrocatalyst support

    SciTech Connect

    Huang, K; Li, YF; Yan, LT; Xing, YC

    2014-01-01

    We report an effective approach to synthesize nanoscale Nb2O5 coated on carbon nanotubes (CNTs) and transform it at low temperatures to the conductive form of NbO2. The latter, when used as a Pt electrocatalyst support, shows significant enhancement in catalyst activity and durability in the oxygen reduction reaction (ORR). Direct phase transformation of Nb2O5 to NbO2 often requires temperatures above 1000 degrees C. Here we show that this can be achieved at a much lower temperature (e.g. 700 degrees C) if the niobium oxide is first activated with carbon. Low temperature processing allows retaining nanostructures of the oxide without sintering, keeping its high surface areas needed for being a catalyst support. We further show that Pt supported on the conductive oxides on CNTs has two times higher mass activity for the ORR than on bare CNTs. The electrochemical stability of Pt was also outstanding, with only ca. 5% loss in electrochemical surface areas and insignificant reduction in half-wave potential in ORR after 5000 potential cycles.

  18. Oxide films at the nanoscale: new structures, new functions, and new materials.

    PubMed

    Giordano, Livia; Pacchioni, Gianfranco

    2011-11-15

    We all make use of oxide ultrathin films, even if we are unaware of doing so. They are essential components of many common devices, such as mobile phones and laptops. The films in these ubiquitous electronics are composed of silicon dioxide, an unsurpassed material in the design of transistors. But oxide films at the nanoscale (typically just 10 nm or less in thickness) are integral to many other applications. In some cases, they form under normal reactive conditions and confer new properties to a material: one example is the corrosion protection of stainless steel, which is the result of a passive film. A new generation of devices for energy production and communications technology, such as ferroelectric ultrathin film capacitors, tunneling magnetoresistance sensors, solar energy materials, solid oxide fuel cells, and many others, are being specifically designed to exploit the unusual properties afforded by reduced oxide thickness. Oxide ultrathin films also have tremendous potential in chemistry, representing a rich new source of catalytic materials. About 20 years ago, researchers began to prepare model systems of truly heterogeneous catalysts based on thin oxide layers grown on single crystals of metal. Only recently, however, was it realized that these systems may behave quite differently from their corresponding bulk oxides. One of the phenomena uncovered is the occurrence of a spontaneous charge transfer from the metal support to an adsorbed species through the thin insulating layer (or vice versa). The importance of this property is clear: conceptually, the activation and bond breaking of adsorbed molecules begin with precisely the same process, electron transfer into an antibonding orbital. But electron transfer can also be harnessed to make a supported metal particle more chemically active, increase its adhesion energy, or change its shape. Most importantly, the basic principles underlying electron transfer and other phenomena (such as structural

  19. Size-dependent nanoscale kirkendall effect during the oxidation of nickel nanoparticles.

    PubMed

    Railsback, Justin G; Johnston-Peck, Aaron C; Wang, Junwei; Tracy, Joseph B

    2010-04-27

    The transformation of Ni nanoparticles (NPs) of different sizes (average diameters of 9, 26, and 96 nm) during oxidation to hollow (single void) or porous (multiple voids) NiO through the nanoscale Kirkendall effect was observed by transmission electron microscopy. Samples treated for 1-4 h at 200-500 degrees C show that the structures of the completely oxidized NPs do not depend on the temperature, but oxidation proceeds more quickly at elevated temperatures. For the Ni/NiO system, after formation of an initial NiO shell (of thickness approximately 3 nm), single or multiple voids nucleate on the inner surface of the NiO shell, and the voids grow until conversion to NiO is complete. Differences in the void formation and growth processes cause size-dependent nanostructural evolution: For 9 and 26 nm NPs, a single void forms beneath the NiO shell, and the void grows by moving across the NP while conversion to NiO occurs opposite the site where the void initially formed. Because of the differences in the Ni/NiO volume ratios for the 9 and 26 nm NPs when the void first forms, they have distinct nanostructures: The 9 nm NPs form NiO shells that are nearly radially symmetric, while there is a pronounced asymmetry in the NiO shells for 26 nm NPs. By choosing an intermediate oxidation temperature and varying the reaction time, partially oxidized Ni(core)/NiO(shell) NPs can be synthesized with good control. For 96 nm NPs, multiple voids form and grow, which results in porous NiO NPs. PMID:20361781

  20. Electrical Transport in Nanoscale Complex Oxide Thin Films: Strontium titanate and RNiO3

    NASA Astrophysics Data System (ADS)

    Son, Junwoo

    Complex oxide thin films have attracted significant attention due to a wealth of physical phenomena, such as ferroelectricity and Mott transitions arising from strong interactions in d-bands. Moreover, the physical phenomena observed in these materials exhibit sensitivities, which are not found in conventional semiconductors and give rise to abrupt changes in their physical properties. The richness of electronic phases and unique functionalities of complex oxides are attractive for applications in next-generation electronic devices. To realize new electronic devices with complex oxides, it is essential to understand the mechanisms of the electrical transport and to control the transport properties of complex oxide thin films. In this dissertation, electrical transport phenomena and their electrical control are experimentally studied in two different complex oxide thin film systems, exhibiting resistive switching and Mott metal-insulator transitions. The first part will briefly discuss resistive switching in ultrathin SrTiO3 tunnel junctions in metal-insulator-metal (MIM) geometry. The current-voltage characteristics provide hints of the origin of the resistive switching phenomena in SrTiO3 tunnel barriers, which are also relevant for resistive switching in thicker films. The second part focuses on the control of metal-insulator transitions in RNiO3, where R = trivalent rare earth ion, using different strategies: band-width control and band-filling control. The electrical transport in low-dimensional, strongly correlated LaNiO3 is explored in terms of band-width control by strain and dimensionality. A new concept of band-filling control in nanoscale NdNiO3 thin films by modulation doping is discussed, and the experimental charge injection from high-quality La-doped SrTiO3 into NdNiO3 thin films is experimentally studied. The potential and limitations of a Modulation-doped Mott Field Effect Transistor (MM-FET) for future "Mott" electronic devices is discussed.

  1. Duplex Oxide Formation during Transient Oxidation of Cu-5%Ni(001) Investigated by In situ UHV-TEM and XPS

    SciTech Connect

    Yang, J.C.; Starr, D.; Kang, Y.; Luo, L.; Tong, X.; Zhou, G.

    2012-05-20

    The transient oxidation stage of a model metal alloy thin film was characterized with in situ ultra-high vacuum (UHV) transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and analytic high-resolution TEM. We observed the formations of nanosized NiO and Cu{sub 2}O islands when Cu-5a5%Ni(100) was exposed to oxygen partial pressure, pO{sub 2} = 1 x 10{sup -4} Torr and various temperatures in situ. At 350 C epitaxial Cu{sub 2}O islands formed initially and then NiO islands appeared on the surface of the Cu{sub 2}O island, whereas at 750 C NiO appeared first. XPS and TEM was used to reveal a sequential formation of NiO and then Cu{sub 2}O islands at 550 C. The temperature-dependant oxide selection may be due to an increase of the diffusivity of Ni in Cu with increasing temperature.

  2. Exposure, Health and Ecological Effects Review of Engineered Nanoscale Cerium and Cerium Oxide Associated with its Use as a Fuel Additive

    EPA Science Inventory

    Advances of nanoscale science have produced nanomaterials with unique physical and chemical properties at commercial levels which are now incorporated into over 1000 products. Nanoscale cerium (di) oxide (CeO(2)) has recently gained a wide range of applications which includes coa...

  3. Effects of nanoscale morphology and defects in oxide: optoelectronic functions of zinc oxide nanowires

    NASA Astrophysics Data System (ADS)

    Nagao, Tadaaki; Duy Dao, Thang; Sugavaneshwar, R. P.; Chen, Kai; Nanda, K. K.

    2016-02-01

    Oxide nanomaterials have been attracting growing interest for both fundamental research and industrial applications ranging from gas sensors, light-emitting devices, to photocatalysts, and solar cells. The optical and electronic properties of oxide nanomaterials are strongly dependent on their surface morphologies as well as defects, such as surface areas, aspect ratios, foreign atom impurities, and oxygen vacancies. In this review, we describe some examples of our recent contributions to the nanomaterials and devices that exhibit remarkable functionalities based on one-dimensional nanostructures of ZnO and their hetero junctions as well as their variants with appropriately incorporated dopants.

  4. Combined flame and solution synthesis of nanoscale tungsten-oxide and zinc/tin-oxide heterostructures.

    PubMed

    Dong, Zhizhong; Huo, Di; Kear, Bernard H; Tse, Stephen D

    2015-12-28

    Heterostructures of tungsten-oxide nanowires decorated with zinc/tin-oxide nanostructures are synthesized via a combined flame and solution synthesis approach. Vertically well-aligned tungsten-oxide nanowires are grown on a tungsten substrate by a flame synthesis method. Here, tetragonal WO(2.9) nanowires (diameters of 20-50 nm, lengths >10 μm, and coverage density of 10(9)-10(10) cm(-2)) are produced by the vapor-solid mechanism at 1720 K. Various kinds of Zn/Sn-oxide nanostructures are grown or deposited on the WO(2.9) nanowires by adjusting the Sn(2+) : Zn(2+) molar ratio in an aqueous ethylenediamine solution at 65 °C. With WO(2.9) nanowires serving as the base structures, sequential growth or deposition on them of hexagonal ZnO nanoplates, Zn(2)SnO(4) nanocubes, and SnO(2) nanoparticles are attained for Sn(2+) : Zn(2+) ratios of 0 : 1, 1 : 10, and 10 : 1, respectively, along with different saturation conditions. High-resolution transmission electron microscopy of the interfaces at the nanoheterojunctions shows abrupt interfaces for ZnO/WO(2.9) and Zn(2)SnO(4)/WO(2.9), despite lattice mismatches of >20%. PMID:26585764

  5. Synthesis and Characterization of Thermoelectric Oxides at Macro- and Nano-scales

    NASA Astrophysics Data System (ADS)

    Ma, Feiyue

    Thermoelectric materials can directly convert a temperature difference into electrical voltage and vice versa. Due to this unique property, thermoelectric materials are widely used in industry and scientific laboratories for temperature sensing and thermal management applications. Waste heat harvesting, another potential application of thermoelectric materials, has long been limited by the low conversion efficiency of the materials. Potential high temperature applications, such as power plant waste heat harvesting and combustion engine exhaust heat recovery, make thermoelectric oxides a very promising class of thermoelectric materials. In this thesis, the synthesis and characterization of thermoelectric oxide materials are explored. In the first part of this thesis, the measurement methodologies and instrumentation processes employed to investigate different thermoelectric properties, such as the Seebeck coefficient and carrier concentration at the bulk scale and the thermal conductivity at the nanoscale, are detailed. Existing scientific and engineering challenges associated with these measurements are also reviewed. To overcome such problems, original parts and methodologies have been designed. Three fully functional systems were ultimately developed for the characterization of macroscale thermoelectric properties as well as localized thermal conductivity. In the second part of the thesis, the synthesis of NaxCo 2O4, a thermoelectric oxide material, is discussed. Modification of both composition and structure were carried out so as to optimize the thermoelectric performance of NaxCo2O4. Nanostructuring methods, such as ball milling, electrospinning, auto-combustion synthesis, and core-shell structure fabrication, have been developed to refine the grain size of NaxCo2O4 in order to reduce its thermal conductivity. However, the structure of the nanostructured materials is very unstable at high temperature and limited improvement on thermoelectric performance is

  6. Fabrication of Nanoscale Oxide Aperture under the Influence of Electron Beam Exposure

    NASA Astrophysics Data System (ADS)

    Jung, M. Y.; Kim, D. W.; Choi, Seong S.

    2004-03-01

    Recently there have been tremendous interests about near field optical lithographic techniques for the next generation gigabyte information storage devices. The near field optical lithographic technique will circumvent the classical diffraction limit and can provide the sub-wavelength size patterns less than 100 nm and the parallel data processing has been examined. Therefore, several parallel processing techniques such as multi-cantilever array and the nano-size aperture array have been previously reported. In this work, the nano-fabrication technique for the sub-wavelength size aperture array is presented. Initially, the (50× 50) dot array was patterned on the SiO2 thermally grown on Si (100) substrate. Each dot has (5× 5) μ m^2 pattern size. The anisotropic TMAH etching of the Si substrate was performed and followed by anisotropic stress-dependent thermal oxidation at 1000 r C and backside Si etching using TMAH solution. The opening of the nano-size aperture on the oxide pyramid array was carried out using water-diluted (50:1) HF solution. The uniformity of the (50× 50) nano-size aperture array was examined carefully on the four corners of the array patterns. The average diameter of the aperture was ˜ 260 nm and its deviation was found to be ˜ 10%. The opening rate of the nano-oxide aperture presented the slightly higher that the expected data. The increased opening rate was attributed to the large amount of electron accumulation during FE-SEM measurements. The increased opening rate can be attributed to the Fermi level shift from electron accumulation on the nanoscale aperture area..

  7. Detection of Strand Cleavage And Oxidation Damage Using Model DNA Molecules Captured in a Nanoscale Pore

    NASA Technical Reports Server (NTRS)

    Vercoutere, W.; Solbrig, A.; DeGuzman, V.; Deamer, D.; Akeson, M.

    2003-01-01

    We use a biological nano-scale pore to distinguish among individual DNA hairpins that differ by a single site of oxidation or a nick in the sugar-phosphate backbone. In earlier work we showed that the protein ion channel alpha-hemolysin can be used as a detector to distinguish single-stranded from double-stranded DNA, single base pair and single nucleotide differences. This resolution is in part a result of sensitivity to structural changes that influence the molecular dynamics of nucleotides within DNA. The strand cleavage products we examined here included a 5-base-pair (5-bp) hairpin with a 5-prime five-nucleotide overhang, and a complementary five-nucleotide oligomer. These produced predictable shoulder-spike and rapid near-full blockade signatures, respectively. When combined, strand annealing was monitored in real time. The residual current level dropped to a lower discrete level in the shoulder-spike blockade signatures, and the duration lengthened. However, these blockade signatures had a shorter duration than the unmodified l0bp hairpin. To test the pore sensitivity to nucleotide oxidation, we examined a 9-bp hairpin with a terminal 8-oxo-deoxyguanosine (8-oxo-dG), or a penultimate 8-oxo-dG. Each produced blockade signatures that differed from the otherwise identical control 9bp hairpins. This study showed that DNA structure is modified sufficiently by strand cleavage or oxidation damage at a single site to alter in a predictable manner the ionic current blockade signatures produced. This technique improves the ability to assess damage to DNA, and can provide a simple means to help characterize the risks of radiation exposure. It may also provide a method to test radiation protection.

  8. Electroless deposition of conformal nanoscale iron oxide on carbon nanoarchitectures for electrochemical charge storage.

    PubMed

    Sassin, Megan B; Mansour, Azzam N; Pettigrew, Katherine A; Rolison, Debra R; Long, Jeffrey W

    2010-08-24

    We describe a simple self-limiting electroless deposition process whereby conformal, nanoscale iron oxide (FeO(x)) coatings are generated at the interior and exterior surfaces of macroscopically thick ( approximately 90 microm) carbon nanofoam paper substrates via redox reaction with aqueous K(2)FeO(4). The resulting FeO(x)-carbon nanofoams are characterized as device-ready electrode structures for aqueous electrochemical capacitors and they demonstrate a 3-to-7 fold increase in charge-storage capacity relative to the native carbon nanofoam when cycled in a mild aqueous electrolyte (2.5 M Li(2)SO(4)), yielding mass-, volume-, and footprint-normalized capacitances of 84 F g(-1), 121 F cm(-3), and 0.85 F cm(-2), respectively, even at modest FeO(x) loadings (27 wt %). The additional charge-storage capacity arises from faradaic pseudocapacitance of the FeO(x) coating, delivering specific capacitance >300 F g(-1) normalized to the content of FeO(x) as FeOOH, as verified by electrochemical measurements and in situ X-ray absorption spectroscopy. The additional capacitance is electrochemically addressable within tens of seconds, a time scale of relevance for high-rate electrochemical charge storage. We also demonstrate that the addition of borate to buffer the Li(2)SO(4) electrolyte effectively suppresses the electrochemical dissolution of the FeO(x) coating, resulting in <20% capacitance fade over 1000 consecutive cycles. PMID:20731433

  9. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.

    PubMed

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g(-1)) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% 'lithiophilic' layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g(-1) of capacity, exhibits low overpotential (∼80 mV at 3 mA cm(-2)) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles. PMID:26999479

  10. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    PubMed Central

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼1012 inch−2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on–off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  11. Nanoscale-alumina induces oxidative stress and accelerates amyloid beta (Aβ) production in ICR female mice

    NASA Astrophysics Data System (ADS)

    Shah, Shahid Ali; Yoon, Gwang Ho; Ahmad, Ashfaq; Ullah, Faheem; Amin, Faiz Ul; Kim, Myeong Ok

    2015-09-01

    The adverse effects of nanoscale-alumina (Al2O3-NPs) have been previously demonstrated in both in vitro and in vivo studies, whereas little is known about their mechanism of neurotoxicity. It is the goal of this research to determine the toxic effects of nano-alumina on human neuroblastoma SH-SY5Y and mouse hippocampal HT22 cells in vitro and on ICR female mice in vivo. Nano-alumina displayed toxic effects on SH-SY5Y cell lines in three different concentrations also increased aluminium abundance and induced oxidative stress in HT22 cells. Nano-alumina peripherally administered to ICR female mice for three weeks increased brain aluminium and ROS production, disturbing brain energy homeostasis, and led to the impairment of hippocampus-dependent memory. Most importantly, these nano-particles induced Alzheimer disease (AD) neuropathology by enhancing the amyloidogenic pathway of Amyloid Beta (Aβ) production, aggregation and implied the progression of neurodegeneration in the cortex and hippocampus of these mice. In conclusion, these data demonstrate that nano-alumina is toxic to both cells and female mice and that prolonged exposure may heighten the chances of developing a neurodegenerative disease, such as AD.

  12. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching

    NASA Astrophysics Data System (ADS)

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L.

    2016-08-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (~1012 inch-2). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics.

  13. Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching.

    PubMed

    Cho, Seungho; Yun, Chao; Tappertzhofen, Stefan; Kursumovic, Ahmed; Lee, Shinbuhm; Lu, Ping; Jia, Quanxi; Fan, Meng; Jian, Jie; Wang, Haiyan; Hofmann, Stephan; MacManus-Driscoll, Judith L

    2016-01-01

    Resistive switches are non-volatile memory cells based on nano-ionic redox processes that offer energy efficient device architectures and open pathways to neuromorphics and cognitive computing. However, channel formation typically requires an irreversible, not well controlled electroforming process, giving difficulty to independently control ionic and electronic properties. The device performance is also limited by the incomplete understanding of the underlying mechanisms. Here, we report a novel memristive model material system based on self-assembled Sm-doped CeO2 and SrTiO3 films that allow the separate tailoring of nanoscale ionic and electronic channels at high density (∼10(12) inch(-2)). We systematically show that these devices allow precise engineering of the resistance states, thus enabling large on-off ratios and high reproducibility. The tunable structure presents an ideal platform to explore ionic and electronic mechanisms and we expect a wide potential impact also on other nascent technologies, ranging from ionic gating to micro-solid oxide fuel cells and neuromorphics. PMID:27491392

  14. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g–1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g–1 of capacity, exhibits low overpotential (∼80 mV at 3 mA cm–2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  15. Nanoscale metal oxide and supported metal catalysts for Li-air battery

    NASA Astrophysics Data System (ADS)

    Huang, Kan

    The dissertation work focuses on research and development of durable nanoscale catalysts and supports for rechargeable Li-air batteries that use aqueous catholytes. Transition metal oxides, TiO2 and Nb2 O5 in particular, were prepared from a sol-gel process in the form of nanocoatings (5˜50 nm) on carbon nanotubes (CNTs) and studied as catalyst supports. Carbon doping in the oxides and post annealing significantly increased their electronic conductivity. Pt catalyst on the support with TiO 2 (Pt/c-TiO2/CNTs) showed a much better oxygen reduction reaction (ORR) activity than a commercial Pt on carbon black (Pt/C). Negligible loss (< 3%) in ORR activity was found in Pt/c-TiO2/CNTs as compared to more than 50% loss in Pt/C, demonstrating a significantly improved durability in the developed catalysts. However, Pt/c-Nb2O5/CNTs was found to be worse in ORR activity and durability, suggesting that c-Nb 2O5/CNTs may not be a good support. CNTs have fibrous shape and would provide a unique porous structure as electrode. Their buckypapers were made and used to support catalysts of Pt and IrO2 in the cathodes of Li-air batteries with sulfuric acid catholyte. At low Pt loading (5 wt.%) without IrO2 on the buckypaper cathode, the Li-air cell achieved a discharging capacity of 306 mAh/g and a specific energy of 1067 Wh/kg at 0.2 mA/cm2. A significant charge overpotential reduction (˜ 0.3 V) was achieved when IrO2 was also used to form a bifunctional catalyst with Pt on the buckypapers. The round trip efficiency was increased from 72% to 81% with the bifunctional cathode, demonstrating a higher energy conversion efficiency.

  16. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    NASA Astrophysics Data System (ADS)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  17. Interpreting nanoscale size-effects in aggregated Fe-oxide suspensions: Reaction of Fe(II) with Goethite

    NASA Astrophysics Data System (ADS)

    Cwiertny, David M.; Handler, Robert M.; Schaefer, Michael V.; Grassian, Vicki H.; Scherer, Michelle M.

    2008-03-01

    The Fe(II)/Fe(III) redox couple plays an important role in both the subsurface fate and transport of groundwater pollutants and the global cycling of carbon and nitrogen in iron-limited marine environments. Iron oxide particles involved in these redox processes exhibit broad size distributions, and the recent demonstrations of dramatic nanoscale size-effects with various metal oxides has compelled us, as well as many others, to consider whether the rate and extent of Fe(II)/Fe(III) cycling depends upon oxide particle size in natural systems. Here, we investigated the reaction of Fe(II) with three different goethite particle sizes in pH 7.5 suspensions. Acicular goethite rods with primary particle dimensions ranging from 7 by 80 nm to 25 by 670 nm were studied. Similar behavior with respect to Fe(II) sorption, electron transfer and nitrobenzene reduction was observed on a mass-normalized basis despite almost a threefold difference in goethite specific surface areas. Scanning electron microscopy (SEM) images, dynamic light scattering (DLS) and sedimentation measurements all indicated that, at pH 7.5, significant aggregation occurred with all three sizes of goethite particles. SEM images further revealed that nanoscale particles formed dense aggregates on the order of several microns in diameter. The clear formation of particle aggregates in solution raises questions regarding the use of primary particle surface area as a basis for assessing nanoscale size-effects in iron oxide suspensions at circum-neutral pH values. In our case, normalizing the Fe(II) sorption densities and rate constants for nitrobenzene reduction by BET surface area implies that goethite nanoparticles are less reactive than larger particles. We suspect, however, that aggregation is responsible for this observed size-dependence, and argue that BET values should not be used to assess differences in surface site density or intrinsic surface reactivity in aggregated particle suspensions. In order to

  18. Engineered interfaces and nano-scale thin films for solid oxide fuel cell electrolytes

    NASA Astrophysics Data System (ADS)

    Nandasiri, Manjula I.

    Solid state electrolytes with high oxygen ionic conductivity at low temperatures are required to develop cost effective and efficient solid oxide fuel cells. This study investigates the influence of engineered interfaces on the oxygen ionic conductivity of nano-scale multilayer thin film electrolytes. The epitaxial Sm2O3 doped CeO2 (SDC) and Sc2O3 stabilized ZrO2 (ScSZ) are selected as the alternative layers for the proposed multilayer thin film electrolyte based on the optimum structural, chemical, and electrical properties reported in the previous studies. The epitaxial SDC(111)/ScSZ(111) multilayer thin films are grown on high purity Al2O3(0001) substrates by oxygen-plasma assisted molecular beam epitaxy. Prior to the deposition of multilayers, the growth parameters are optimized for epitaxial CeO 2, ZrO2, SDC, and ScSZ thin films. The epitaxial orientation and surface morphology of CeO2 thin films shows dependency on the growth rate. Epitaxial CeO2(111) is obtained at relatively high growth rates (>9 A/min) at a substrate temperature of 650°C and an oxygen partial pressure of 2 x 10 -5 Torr. The same growth parameters are used for the deposition of ZrO2 thin films. ZrO2 exhibits both monoclinic and cubic phases, which is stabilized in the cubic structure by doping with Sc 2O3. The Sm and Sc evaporation rates are varied during the growth to obtain thin films of 15 mol % SmO1.5 doped CeO2 and 20 mol % ScO1.5 stabilized ZrO2, respectively. The SDC/ScSZ multilayer thin films are grown using the same growth parameters by varying the number of layers. The SDC/ScSZ multilayer thin films show significant enhancement in the oxygen ionic conductivity in comparison to single layer SDC and ScSZ thin films. The increase in the oxygen ionic conductivity with the increase in number of layers can be attributed to lattice mismatch induced ionic conductivity along the interfaces. The 8-layer film exhibits the maximum oxygen ionic conductivity with one order of magnitude

  19. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon

  20. Characterization of Nano-scale Aluminum Oxide Transport Through Porous Media

    NASA Astrophysics Data System (ADS)

    Norwood, Sasha Norien

    Land application of biosolids has become common practice in the United States as an alternative to industrial fertilizers. Although nutrient rich, biosolids have been found to contain high concentrations of unregulated and/or unrecognized emerging contaminants (e.g., pharmaceuticals, personal care products) while containing a significant fraction of inorganic nano-scale colloidal materials such as oxides of iron, titanium, and aluminum. Given their reactivity and small size, there are many questions concerning the potential migration of these nano-sized colloidal materials through the soil column and into our surface and groundwater bodies. Transport of emerging pollutants of concern through the soil column, at minimum, is impacted by colloidal properties (e.g., chemical composition, shape, aggregation kinetics), solution chemistry (e.g., pH, ionic strength, natural organic matter), and water flow velocity. The purpose of this current research was to characterize the long-term transport behavior of aluminum oxide nanoparticles (Al 2O3) through a natural porous media with changes in pH, aqueous-phase concentration, pore-water velocity and electrolyte valence. Additionally, deposition rates during the initial stages of deposition were compared to several models developed based on colloid filtration theory and DLVO stability theory. Benchtop column laboratory experiments showed that, under environmentally relevant groundwater conditions, Al2O3 nanoparticles are mobile through saturated porous media. Mobility increased under conditions in which the nanoparticles and porous media were of like charge (pH 9). Changes in linear pore water velocity, under these same high pH conditions, showed similar transport behavior with little mass retained in the system. Deposition is believed to be kinetically controlled at pH 9, as evidenced by the slightly earlier breakthrough as flow rate increased and was further supported by observed concentration effects on the arrival wave

  1. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  2. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    NASA Astrophysics Data System (ADS)

    Han, Un-Bin; Lee, Jang-Sik

    2016-05-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes.

  3. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory.

    PubMed

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  4. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    NASA Astrophysics Data System (ADS)

    Gammelgaard, L.; Bøggild, P.; Wells, J. W.; Handrup, K.; Hofmann, Ph.; Balslev, M. B.; Hansen, J. E.; Petersen, P. R. E.

    2008-09-01

    We present a complementary metal-oxide-semiconductor compatible, nanoscale 12-point-probe based on TiW electrodes placed on a SiO2 monocantilever. Probes are mass fabricated on Si wafers by a combination of electron beam and UV lithography, realizing TiW electrode tips with a width down to 250nm and a probe pitch of 500nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point probes. In-vacuum four-point resistance measurements have been performed on clean Bi(111) using different probe spacings. The results show the expected behavior for bulk Bi, indicating that the contribution of electronic surface states to the transport properties is very small.

  5. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  6. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device.

    PubMed

    Seo, Kyungah; Kim, Insung; Jung, Seungjae; Jo, Minseok; Park, Sangsu; Park, Jubong; Shin, Jungho; Biju, Kuyyadi P; Kong, Jaemin; Lee, Kwanghee; Lee, Byounghun; Hwang, Hyunsang

    2011-06-24

    We demonstrated analog memory, synaptic plasticity, and a spike-timing-dependent plasticity (STDP) function with a nanoscale titanium oxide bilayer resistive switching device with a simple fabrication process and good yield uniformity. We confirmed the multilevel conductance and analog memory characteristics as well as the uniformity and separated states for the accuracy of conductance change. Finally, STDP and a biological triple model were analyzed to demonstrate the potential of titanium oxide bilayer resistive switching device as synapses in neuromorphic devices. By developing a simple resistive switching device that can emulate a synaptic function, the unique characteristics of synapses in the brain, e.g. combined memory and computing in one synapse and adaptation to the outside environment, were successfully demonstrated in a solid state device. PMID:21572200

  7. Structure and properties of a duplex coating combining micro-arc oxidation and baking layer on AZ91D Mg alloy

    NASA Astrophysics Data System (ADS)

    Cui, Xue-Jun; Li, Ming-Tian; Yang, Rui-Song; Yu, Zu-Xiao

    2016-02-01

    A duplex coating (called MAOB coating) was fabricated on AZ91D Mg alloy by combining the process of micro-arc oxidation (MAO) with baking coating (B-coating). The structure, composition, corrosion resistance, and tribological behaviour of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), electrochemical and long-term immersion test, and ball-on-disc friction test. The results show that a dense 92 μm thick B-coating was tightly deposited onto the MAO-coated Mg alloy and exhibited a good mechanical interlock along the rough interface. Compared with the MAO-coated sample, the corrosion current density of the MAOB-coated Mg alloy decreased by two or three orders of magnitude and no corrosion phenomenon was observed during a long-term immersion test of about 500 h (severe corrosion pits were found for MAO-treated samples after about 168 h of immersion). The frictional coefficient values of the MAOB coating were similar to those of the MAO coating using dry sliding tests, while the B-coating on the MAO-coated surface significantly improved the wear resistance of the AZ91D Mg alloy. All of these results indicate that a B-coating can be used to further protect Mg alloys from corrosion and wear by providing a thick, dense barrier.

  8. Cobalt oxide hollow microspheres with micro- and nano-scale composite structure: Fabrication and electrochemical performance

    NASA Astrophysics Data System (ADS)

    Tao, Feifei; Gao, Cuiling; Wen, Zhenhai; Wang, Qiang; Li, Jinghong; Xu, Zheng

    2009-05-01

    Co 3O 4 hollow microspheres with micro- and nano-scale composite structure self-assembled by nanosheets were successfully fabricated by the template-free wet-chemical approach. This method is simple, facile and effective. The Co 3O 4 hollow microspheres with good purity and homogeneous size were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform IR (FTIR), thermogravimetric analysis (TGA) and inductively coupled plasma atomic emission spectrometer (ICP). The formation mechanism was deeply studied. The micro- and nano-scale composite structure constructed by the porous nanosheets promotes to improve the electrochemical properties of Co 3O 4 hollow microspheres. The high discharge capacity of 1048 mAh g -1 indicates it to be the potential application in electrode materials of Li-ion battery.

  9. Nanoscale current spreading analysis in solution-processed graphene oxide/silver nanowire transparent electrodes via conductive atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Shaw, Joseph E.; Perumal, Ajay; Bradley, Donal D. C.; Stavrinou, Paul N.; Anthopoulos, Thomas D.

    2016-05-01

    We use conductive atomic force microscopy (CAFM) to study the origin of long-range conductivity in model transparent conductive electrodes composed of networks of reduced graphene oxide (rGOX) and silver nanowires (AgNWs), with nanoscale spatial resolution. Pristine networks of rGOX (1-3 monolayers-thick) and AgNWs exhibit sheet resistances of ˜100-1000 kΩ/□ and 100-900 Ω/□, respectively. When the materials are deposited sequentially to form bilayer rGOX/AgNW electrodes and thermally annealed at 200 °C, the sheet resistance reduces by up to 36% as compared to pristine AgNW networks. CAFM was used to analyze the current spreading in both systems in order to identify the nanoscale phenomena responsible for this effect. For rGOX networks, the low intra-flake conductivity and the inter-flake contact resistance is found to dominate the macroscopic sheet resistance, while for AgNW networks the latter is determined by the density of the inter-AgNW junctions and their associated resistance. In the case of the bilayer rGOX/AgNWs' networks, rGOX flakes are found to form conductive "bridges" between AgNWs. We show that these additional nanoscopic electrical connections are responsible for the enhanced macroscopic conductivity of the bilayer rGOX/AgNW electrodes. Finally, the critical role of thermal annealing on the formation of these nanoscopic connections is discussed.

  10. The Fundamental Role of Nano-Scale Oxide Films in the Oxidation of Hydrogen and the Reduction of Oxygen on Noble Metal Electrocatalysts

    SciTech Connect

    Digby Macdonald

    2005-04-15

    The derivation of successful fuel cell technologies requires the development of more effective, cheaper, and poison-resistant electrocatalysts for both the anode (H{sub 2} oxidation in the presence of small amounts of CO from the reforming of carbonaceous fuels) and the cathode (reduction of oxygen in the presence of carried-over fuel). The proposed work is tightly focused on one specific aspect of electrocatalysis; the fundamental role(s) played by nanoscale (1-2 nm thick) oxide (''passive'') films that form on the electrocatalyst surfaces above substrate-dependent, critical potentials, on charge transfer reactions, particularly at elevated temperatures (25 C < T < 200 C). Once the role(s) of these films is (are) adequately understood, we will then use this information to specify, at the molecular level, optimal properties of the passive layer for the efficient electrocatalysis of the oxygen reduction reaction.

  11. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. PMID:25441925

  12. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish.

    PubMed

    Johnston, Blair D; Scown, Tessa M; Moger, Julian; Cumberland, Susan A; Baalousha, Mohamed; Linge, Kathryn; van Aerle, Ronny; Jarvis, Kym; Lead, Jamie R; Tyler, Charles R

    2010-02-01

    Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish. PMID:20050652

  13. Nanoscale characterization of the electrical properties of oxide electrodes at the organic semiconductor-oxide electrode interface in organic solar cells

    NASA Astrophysics Data System (ADS)

    MacDonald, Gordon Alex

    This dissertation focuses on characterizing the nanoscale and surface averaged electrical properties of transparent conducting oxide electrodes such as indium tin oxide (ITO) and transparent metal-oxide (MO) electron selective interlayers (ESLs), such as zinc oxide (ZnO), the ability of these materials to rapidly extract photogenerated charges from organic semiconductors (OSCs) used in organic photovoltaic (OPV) cells, and evaluating their impact on the power conversion efficiency (PCE) of OPV devices. In Chapter 1, we will introduce the fundamental principles, benefits, and the key innovations that have advanced this technology. In Chapter 2 of this dissertation, we demonstrate an innovative application of conductive probe atomic force microscopy (CAFM) to map the nanoscale electrical heterogeneity at the interface between ITO, and a well-studied OSC, copper phthalocyanine (CuPc).(MacDonald et al. (2012) ACS Nano, 6, p. 9623) In this work we collected arrays of current-voltage (J-V) curves, using a CAFM probe as the top contact of CuPc/ITO systems, to map the local J-V responses. By comparing J-V responses to known models for charge transport, we were able to determine if the local rate-limiting-step for charge transport is through the OSC (ohmic) or the CuPc/ITO interface (non-ohmic). Chapter 3 focus on the electrical property characterization of RF-magnetron sputtered ZnO (sp-ZnO) ESL films on ITO substrates. We have shown that the energetic alignment of ESLs and the OSC active materials plays a critical role in determining the PCE of OPV devices and UV light soaking sensitivity. We have used a combination of device testing, modeling, and impedance spectroscopy to characterize the effects that energetic alignment has on the charge carrier transport and distribution within the OPV device. In Chapter 4 we demonstrate that the local properties of sp-ZnO films varies as a function of the underlying ITO crystal face. We show that the local ITO crystal face determines

  14. Characterization of AZ31 magnesium alloy by duplex process combining laser surface melting and plasma electrolytic oxidation

    NASA Astrophysics Data System (ADS)

    Liu, Cancan; Liang, Jun; Zhou, Jiansong; Li, Qingbiao; Wang, Lingqian

    2016-09-01

    Top ceramic coatings were fabricated on the laser surface melting (LSM) modified AZ31 alloy by plasma electrolytic oxidation (PEO) in a phosphate electrolyte. The effect of LSM treatment on the microstructure and corrosion behavior of the bare and PEO treated AZ31 alloy was evaluated. Results showed that LSM treatment produced a homogeneous modified layer with redistributed intermetallic compounds, resulting in enhanced corrosion resistance of AZ31 alloy. The LSM treatment had no obvious influence on the surface and cross-sectional microstructures of the PEO coatings on AZ31 alloy. Besides, MgO was the main constituent for PEO coatings, regardless of LSM pretreatment. However, the long-term corrosion properties of the PEO coated AZ31 alloy with LSM pretreatment revealed large enhancement. Based on the analysis of microstructure and corrosion property, the corrosion mechanisms of the PEO and LSM-PEO coated AZ31 alloy were proposed.

  15. Kinetic description of metal nanocrystal oxidation: a combined theoretical and experimental approach for determining morphology and diffusion parameters in hollow nanoparticles by the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshiki; Mowbray, Ryan W.; Rice, Katherine P.; Stoykovich, Mark P.

    2014-10-01

    The oxidation of colloidal metal nanocrystals to form hollow shells via the nanoscale Kirkendall effect has been investigated using a combined theoretical and experimental approach. A generalized kinetic model for the formation of hollow nanoparticles describes the phenomenon and, unlike prior models, is applicable to any material system and accounts for the effect of surface energies. Phase diagrams of the ultimate oxidized nanoparticle morphology and the time to achieve complete oxidation are calculated, and are found to depend significantly upon consideration of surface energy effects that destabilize the initial formation of small voids. For the oxidation of Cu nanocrystals to Cu2O nanoparticles, we find that the diffusion coefficients dictate the morphological outcomes: the ratio of ? to ? controls the void size, ? determines the time of oxidation and ? is largely irrelevant in the kinetics of oxidation. The kinetic model was used to fit experimental measurements of 11 nm diameter Cu nanocrystals oxidized in air from which temperature-dependent diffusivities of ? and ? for 100 ≤ T ≤ 200 °C were determined. In contrast to previous interpretations of the nanoscale Kirkendall effect in the Cu/Cu2O system, these results are obtained without any a priori assumptions about the relative magnitudes of ? and ?. The theoretical and experimental approaches presented here are broadly applicable to any nanoparticle system undergoing oxidation, and can be used to precisely control the final nanoparticle morphology for applications in catalysis or optical materials.

  16. Synthesis of hollow cobalt oxide nanopowders by a salt-assisted spray pyrolysis process applying nanoscale Kirkendall diffusion and their electrochemical properties.

    PubMed

    Ju, Hyeon Seok; Cho, Jung Sang; Kim, Jong Hwa; Choi, Yun Ju; Kang, Yun Chan

    2015-12-21

    A new concept for preparing hollow metal oxide nanopowders by salt-assisted spray pyrolysis applying nanoscale Kirkendall diffusion is introduced. The composite powders of metal oxide and indecomposable metal salt are prepared by spray pyrolysis. Post-treatment under a reducing atmosphere and subsequent washing using distilled water produce aggregation-free metal nanopowders. The metal nanopowders are then transformed into metal oxide hollow nanopowders by nanoscale Kirkendall diffusion. Co3O4 hollow nanopowders are prepared as first target materials. A cobalt oxide-NaCl composite powder prepared by spray pyrolysis transforms into several Co3O4 hollow nanopowders by several treatment processes. The discharge capacities of the Co3O4 nanopowders with filled and hollow structures at a current density of 1 A g(-1) for the 150th cycle are 605 and 775 mA h g(-1), respectively. The hollow structure formed by nanoscale Kirkendall diffusion improves the lithium-ion storage properties of Co3O4 nanopowders. PMID:26571144

  17. Nanoscale analysis of surface oxides on ZnMgAl hot-dip-coated steel sheets.

    PubMed

    Arndt, M; Duchoslav, J; Itani, H; Hesser, G; Riener, C K; Angeli, G; Preis, K; Stifter, D; Hingerl, K

    2012-05-01

    In this work, the first few nanometres of the surface of ZnMgAl hot-dip-galvanised steel sheets were analysed by scanning Auger electron spectroscopy, angle-resolved X-ray photoelectron spectroscopy and atomic force microscopy. Although the ZnMgAl coating itself is exhibiting a complex micro-structure composed of several different phases, it is shown that the topmost surface is covered by a smooth, homogeneous oxide layer consisting of a mixture of magnesium oxide and aluminium oxide, exhibiting a higher amount of magnesium than aluminium and a total film thickness of 4.5 to 5 nm. Especially by the combined analytical approach of surface-sensitive methods, it is directly demonstrated for the first time that within surface imprints--created by industrial skin rolling of the steel sheet which ensures a smooth surface appearance as well as reduced yield-point phenomenon--the original, smooth oxide layer is partly removed and that a layer of native oxides, exactly corresponding to the chemical structure of the underlying metal phases, is formed. PMID:22086398

  18. Molecular- and Nano-Scale Structure and Reactivity of Biogenic Uranium(IV) Oxide

    NASA Astrophysics Data System (ADS)

    Schofield, E. J.; Bargar, J. R.; Veeramani, H.; Sharp, J. O.; Bernier-Latmani, R.; Survova, E.; Giammar, D. E.; Ulrich, K.; Mehta, A.; Webb, S. M.; Conradson, S. D.; Clark, D. L.; Ilton, E. S.

    2008-12-01

    Bioremediation has been proposed and extensively researched as an in-situ immobilization strategy for uranium contamination in the subsurface with nanoparticulate uraninite (UO2) being the commonly reported product. Little detail is known about the structure and reactivity of this material, but based on comparison to its closest abiotic analog, UO2+x (0 < x < 0.25), we expect that it is complex and disordered and capable of structurally incorporating common groundwater cations. In addition, it has been predicted that the nanoparticulate form would induce strain and increase the solubility, and therefore reduce the effectiveness of this method as a remediation technology. In this study, the local-, intermediate- and long-range atomic and nano-scale structure of biogenic UO2 (formed at varying pH and divalent cation concentration, using Shewanella oneidensis strain MR-1) was characterized using EXAFS, SR-based powder diffraction and TEM. The lattice parameter of the nanoparticulate phase is seen to be consistent with bulk UO2. There is no evidence for hyperstoichiometry or strain of the UO2 particles, the latter indicating that surface energy is relatively modest. Similar results were obtained for biogenic UO2 particles produced by other metal reducing bacteria indicating that biological variability may play a minimal role in structure. In agreement with the structural analysis, the surface area-normalized dissolution rate of the biogenic UO2 was found to be comparable to that of coarser, synthetic UO2.00. Mn2+ was found to attenuate the particle size of biogenic UO2+xand to be structurally incorporated. This finding suggests that groundwater composition can have a pronounced impact on the structure and properties of biogenic uraninite.

  19. The boron oxide{endash}boric acid system: Nanoscale mechanical and wear properties

    SciTech Connect

    Ma, X.; Unertl, W.N.; Erdemir, A.

    1999-08-01

    The film that forms spontaneously when boron oxide (B{sub 2}O{sub 3}) is exposed to humid air is a solid lubricant. This film is usually assumed to be boric acid (H{sub 3}BO{sub 3}), the stable bulk phase. We describe the nanometer-scale surface morphology, mechanical properties, and tribological properties of these films and compare them with crystals precipitated from saturated solutions of boric acid. Scanning force microscopy (SFM) and low-load indentation were the primary experimental tools. Mechanical properties and their variation with depth are reported. In all cases, the surfaces were covered with a layer that has different mechanical properties than the underlying bulk. The films formed on boron oxide showed no evidence of crystalline structure. A thin surface layer was rapidly removed, followed by slower wear of the underlying film. The thickness of this initial layer was sensitive to sample preparation conditions, including humidity. Friction on the worn surface was lower than on the as-formed surface in all cases. In contrast, the SFM tip was unable to cause any wear to the surface film on the precipitated crystals. Indentation pop-in features were common for precipitated crystals but did not occur on the films formed on boron oxide. The surface structures were more complex than assumed in models put forth previously to explain the mechanism of lubricity in the boron oxide{endash}boric acid{endash}water system. {copyright} {ital 1999 Materials Research Society.}

  20. Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite.

    PubMed

    Yang, Ye; Lin, Jun

    2016-04-01

    As one of the tip-based top-down nanoscale machining methods, atomic force microscopy (AFM) electric lithography is capable of directly generating flexible nanostructures on conductive or semi-conductive sample surfaces. In this work, distinct fabrication mechanisms and mechanism transition from local anodic oxidation (LAO) to electrical breakdown (BD) in the AFM nanoscale electric lithography of the highly oriented pyrolytic graphite sample surface was studied. We provide direct evidence of the transition process mechanism through the detected current-voltage (I-V) curve. Characteristics of the fabrication results under the LAO, transition, and BD regions involving the oxide growth rate or material removal rate and AFM probe wear are analyzed in detail. These factors are of great significance for improving the machining controllability and expanding its potential applications. PMID:26847869

  1. Degradation of nano-scale cathodes: a new paradigm for selecting low-temperature solid oxide cell materials.

    PubMed

    Call, Ann V; Railsback, Justin G; Wang, Hongqian; Barnett, Scott A

    2016-05-11

    Oxygen electrodes have been able to meet area specific resistance targets for solid oxide cell operating temperatures as low as ∼500 °C, but their stability over expected device operation times of up to 50 000 h is unknown. Achieving good performance at such temperatures requires mixed ionically and electronically-conducting electrodes with nano-scale structure that makes the electrode susceptible to particle coarsening and, as a result, electrode resistance degradation. Here we describe accelerated life testing of nanostructured Sm0.5Sr0.5CoO3-Ce0.9Gd0.1O2 electrodes combining impedance spectroscopy and microstructural evaluation. Measured electrochemical performance degradation is accurately fitted using a coarsening model that is then used to predict cell operating conditions where required performance and long-term stability are both achieved. A new electrode material figure of merit based on both performance and stability metrics is proposed. An implication is that cation diffusion, which determines the coarsening rate, must be considered along with oxygen transport kinetics in the selection of optimal electrode materials. PMID:27117343

  2. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  3. Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale

    PubMed Central

    Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.

    2015-01-01

    Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411

  4. Experimental study of thermal oxidation of nanoscale alloys of aluminium and zinc (nAlZn)

    NASA Astrophysics Data System (ADS)

    Noor, Fahad; Wen, Dongsheng

    2015-10-01

    Aluminium-based alloys have wide applications but little is known about the thermal-chemical kinetics of nanoalloys. This work investigated the thermal oxidation of Zn and Al nanoalloys (nAlZn) with a BET equivalent diameter of 141 nm through the simultaneous TGA/DSC method. The thermal analysis was combined with elemental, morphology and crystalline structure analysis to elucidate the reaction mechanisms. It was found that the complete oxidation of nAlZn in air can be characterised by a three-stage process, including two endothermic and three exothermic reactions. With the help of ex-situ XRD, different reaction pathways were proposed for different stages, forming the end products of ZnO and ZnAl2O4. The reactivity comparison between Al and nAlZn suggested that different criteria should be used for different applications.

  5. Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices.

    PubMed

    Wojcik, Pawel Jerzy; Santos, Lidia; Pereira, Luis; Martins, Rodrigo; Fortunato, Elvira

    2015-02-01

    This paper focuses on the engineering procedures governing the synthesis of tungsten oxide nanocrystals and the formulation of printable dispersions for electrochromic applications. By that means, we aim to stress the relevancy of a proper design strategy that results in improved physicochemical properties of nanoparticle loaded inks. In the present study inkjet printable nanostructured tungsten oxide particles were successfully synthesized via hydrothermal processes using pure or acidified aqueous sol-gel precursors. Based on the proposed scheme, the structure and morphology of the nanoparticles were tailored to ensure the desired printability and electrochromic performance. The developed nanomaterials with specified structures effectively improved the electrochemical response of printed films, resulting in 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films. PMID:25384683

  6. Tailoring nanoscale properties of tungsten oxide for inkjet printed electrochromic devices

    NASA Astrophysics Data System (ADS)

    Wojcik, Pawel Jerzy; Santos, Lidia; Pereira, Luis; Martins, Rodrigo; Fortunato, Elvira

    2015-01-01

    This paper focuses on the engineering procedures governing the synthesis of tungsten oxide nanocrystals and the formulation of printable dispersions for electrochromic applications. By that means, we aim to stress the relevancy of a proper design strategy that results in improved physicochemical properties of nanoparticle loaded inks. In the present study inkjet printable nanostructured tungsten oxide particles were successfully synthesized via hydrothermal processes using pure or acidified aqueous sol-gel precursors. Based on the proposed scheme, the structure and morphology of the nanoparticles were tailored to ensure the desired printability and electrochromic performance. The developed nanomaterials with specified structures effectively improved the electrochemical response of printed films, resulting in 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films.This paper focuses on the engineering procedures governing the synthesis of tungsten oxide nanocrystals and the formulation of printable dispersions for electrochromic applications. By that means, we aim to stress the relevancy of a proper design strategy that results in improved physicochemical properties of nanoparticle loaded inks. In the present study inkjet printable nanostructured tungsten oxide particles were successfully synthesized via hydrothermal processes using pure or acidified aqueous sol-gel precursors. Based on the proposed scheme, the structure and morphology of the nanoparticles were tailored to ensure the desired printability and electrochromic performance. The developed nanomaterials with specified structures effectively improved the electrochemical response of printed films, resulting in 2.5 times higher optical modulation and 2 times faster coloration time when compared with pure amorphous films. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05765a

  7. A Simple Nanoscale Interface Directs Alignment of a Confluent Cell Layer on Oxide and Polymer Surfaces

    PubMed Central

    Donnelly, Patrick E.; Jones, Casey M.; Bandini, Stephen B.; Singh, Shivani; Schwartz, Jeffrey; Schwarzbauer, Jean E.

    2013-01-01

    Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposited at reduced pressure onto a surface pattern that is prepared by photolithography; the substrate is then heated to thermolyze the organic ligands to form surface-bound zirconium oxide patterns. The thickness of this oxide layer ranges from 10 to 70 nanometers, which is controlled by alkoxide complex deposition time. The oxide layer is treated with 1,4-butanediphosphonic acid to give a monolayer pattern whose composition and spatial conformity to the photolithographic mask are determined spectroscopically. NIH 3T3 fibroblasts and human bone marrow-derived mesenchymal stem cells attach and spread in alignment with the pattern without constraint by physical means or by arrays of cytophilic and cytophobic molecules. Cell alignment with the pattern is maintained as cells grow to form a confluent monolayer across the entire substrate surface. PMID:23936630

  8. Considerations in Duplex Investment.

    ERIC Educational Resources Information Center

    Wright, Arthur; Goen, Tom

    Problems of duplex investment are noted in the introduction to this booklet designed to provide a technique by which the investment decision can be approached, develop estimates of typical costs and returns under differing conditions, and encourage investors to analyze objectives and conditions before the decision to buy or build is made. A…

  9. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  10. The Duplex Society.

    ERIC Educational Resources Information Center

    Schorr, Alvin L.

    1984-01-01

    The duplex society, in which the poor live in close proximity to others but in a separate compartment, is already with us. Unless something deeply changes about family income, more than one-third of future generations will come to adulthood having spent a portion of their childhood in official poverty. (RM)

  11. Fluctuations and critical phenomena in catalytic CO oxidation on nanoscale Pt facets

    NASA Astrophysics Data System (ADS)

    Suchorski, Yu.; Beben, J.; Imbihl, R.; James, E. W.; Liu, Da-Jiang; Evans, J. W.

    2001-04-01

    Local fluctuations and fluctuation-induced transitions in catalytic CO oxidation are studied with field electron microscopy on the (112) facets of a [100]-oriented Pt field emitter tip. The reaction is investigated in the bistable range close to the cusp point (critical point) that terminates the bistability range in pCO, T-parameter space. The amplitude and the spatial coherence of the fluctuations increase on approaching the critical point. The fluctuations are spatially well correlated on each flat (112) facet, but their correlation decays rapidly across stepped regions that terminate the flat facets. On smaller (112) facets, an onset of fluctuation-induced transitions is observed earlier (i.e., further away from the critical point) than for larger (112) facets. The behavior of the reaction system near the cusp point appears to be similar to that of an equilibrium system near the critical point. The observed fluctuations are mimicked in a simple reaction model for CO oxidation on surfaces that incorporates both rapid diffusion of adsorbed CO, and superlattice ordering of adsorbed immobile oxygen. The steady states of the model exhibit a cusp bifurcation, from a regime of bistability to one of monostability. The fluctuations increase near this cusp point, as in experiment. This behavior is analyzed via kinetic Monte Carlo simulations and analytic procedures, focusing on the consequences for fluctuation-induced transitions.

  12. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction.

    PubMed

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  13. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    NASA Astrophysics Data System (ADS)

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-12-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750-900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature.

  14. Enhancing oxide ion incorporation kinetics by nanoscale Yttria-doped ceria interlayers.

    PubMed

    Fan, Zeng; Prinz, Fritz B

    2011-06-01

    Interlayering 17.5 nm of Yttria-doped ceria (YDC) thin films between bulk yttria-stabilized-zirconia electrolyte and a porous Pt cathode enhanced the performance of low-temperature solid oxide fuel cells. The added YDC interlayer (14.11% doped Y(2)O(3)) was fabricated by atomic layer deposition and reduced the cathode/electrolyte interfacial resistances while increasing the exchange current density j(0) by a factor of 4 at operating temperatures between 300-500 °C. Tafel plots and the fitted impedance data suggest that the charge transfer coefficient α of interlayered SOFCs was 1.25 times higher, and the electrode/interfacial activation energy was reduced from 0.85 to 0.76 eV. PMID:21563786

  15. Low-Temperature Selective Growth of Tungsten Oxide Nanowires by Controlled Nanoscale Stress Induction

    PubMed Central

    Na, Hyungjoo; Eun, Youngkee; Kim, Min-Ook; Choi, Jungwook; Kim, Jongbaeg

    2015-01-01

    We report a unique approach for the patterned growth of single-crystalline tungsten oxide (WOx) nanowires based on localized stress-induction. Ions implanted into the desired growth area of WOx thin films lead to a local increase in the compressive stress, leading to the growth of nanowire at lower temperatures (600 °C vs. 750–900 °C) than for equivalent non-implanted samples. Nanowires were successfully grown on the microscale patterns using wafer-level ion implantation and on the nanometer scale patterns using a focused ion beam (FIB). Experimental results show that nanowire growth is influenced by a number of factors including the dose of the implanted ions and their atomic radius. The implanted-ion-assisted, stress-induced method proposed here for the patterned growth of WOx nanowires is simpler than alternative approaches and enhances the compatibility of the process by reducing the growth temperature. PMID:26666843

  16. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE PAGESBeta

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V.; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value,more » it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a

  17. Direct Imaging of Nanoscale Conductance Evolution in Ion-Gel-Gated Oxide Transistors.

    PubMed

    Ren, Yuan; Yuan, Hongtao; Wu, Xiaoyu; Chen, Zhuoyu; Iwasa, Yoshihiro; Cui, Yi; Hwang, Harold Y; Lai, Keji

    2015-07-01

    Electrostatic modification of functional materials by electrolytic gating has demonstrated a remarkably wide range of density modulation, a condition crucial for developing novel electronic phases in systems ranging from complex oxides to layered chalcogenides. Yet little is known microscopically when carriers are modulated in electrolyte-gated electric double-layer transistors (EDLTs) due to the technical challenge of imaging the buried electrolyte-semiconductor interface. Here, we demonstrate the real-space mapping of the channel conductance in ZnO EDLTs using a cryogenic microwave impedance microscope. A spin-coated ionic gel layer with typical thicknesses below 50 nm allows us to perform high resolution (on the order of 100 nm) subsurface imaging, while maintaining the capability of inducing the metal-insulator transition under a gate bias. The microwave images vividly show the spatial evolution of channel conductance and its local fluctuations through the transition as well as the uneven conductance distribution established by a large source-drain bias. The unique combination of ultrathin ion-gel gating and microwave imaging offers a new opportunity to study the local transport and mesoscopic electronic properties in EDLTs. PMID:26061780

  18. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol)

    PubMed Central

    2011-01-01

    An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results. PMID:21711760

  19. Nanoscale Mechanics of Graphene and Graphene Oxide in Composites: A Scientific and Technological Perspective.

    PubMed

    Palermo, Vincenzo; Kinloch, Ian A; Ligi, Simone; Pugno, Nicola M

    2016-08-01

    Graphene shows considerable promise in structural composite applications thanks to its unique combination of high tensile strength, Young's modulus and structural flexibility which arise due to its maximal chemical bond strength and minimal atomic thickness. However, the ultimate performance of graphene composites will depend, in addition to the properties of the matrix and interface, on the morphology of the graphene used, including the size and shape of the sheets and the number of chemical defects present. For example, whilst oxidized sp(3) carbon atoms and vacancies in a graphene sheet can degrade its mechanical strength, they can also increase its interaction with other materials such as the polymer matrix of a composite, thus maximizing stress transfer and leading to more efficient mechanical reinforcement. Herein, we present an overview of some recently published work on graphene mechanical properties and discuss a list of challenges that need to be overcome (notwithstanding the strong hype existing on this material) for the development of graphene-based materials into a successful technology. PMID:26960186

  20. Nanoparticle heating: nanoscale to bulk effects of electromagnetically heated iron oxide and gold for biomedical applications

    NASA Astrophysics Data System (ADS)

    Qin, Zhenpeng; Etheridge, Michael; Bischof, John C.

    2011-03-01

    Biomedical applications of nanoparticle heating range in scale from molecular activation (i.e. molecular beacons, protein denaturation, lipid melting and drug release), cellular heating (i.e. nanophotolysis and membrane permeability control and rupture) to whole tumor heating (deep and superficial). This work will present a review on the heating of two classes of biologically compatible metallic nanoparticles: iron oxide and gold with particular focus on spatial and temporal scales of the heating event. The size range of nanoparticles under discussion will focus predominantly in the 10 - 200 nm diameter size range. Mechanisms of heating range from Néelian and Brownian relaxation due to magnetic susceptibility at 100s of kHz, optical absorption due to VIS and NIR lasers and "Joule" heating at higher frequency RF (13.56 MHz). The heat generation of individual nanoparticles and the thermal responses at nano-, micro-, and macroscales are presented. This review will also discuss how to estimate a specific absorption rate (SAR, W/g) based on individual nanoparticles heating in bulk samples. Experimental setups are designed to measure the SAR and the results are compared with theoretical predictions.

  1. Measuring Nanoscale Heat Transfer for Gold-(Gallium Oxide)-Gallium Nitride Interfaces as a Function

    NASA Astrophysics Data System (ADS)

    Szwejkowski, Chester; Sun, Kai; Constantin, Costel; Giri, Ashutosh; Saltonstall, Christopher; Hopkins, Patrick; NanoSynCh Team; Exsite Team

    2014-03-01

    Gallium nitride (GaN) is considered the most important semiconductor after the discovery of Silicon. Understanding the properties of GaN is imperative in determining the utility and applicability of this class of materials to devices. We present results of time domain thermoreflectance (TDTR) measurements as a function of surface root mean square (RMS) roughness. We used commercially available 5mm x 5mm, single-side polished GaN (3-7 μm)/Sapphire (430 μm) substrates that have a Wurtzite crystal structure and are slightly n-type doped. The GaN substrates were annealed in the open atmosphere for 10 minutes (900-1000 °C). This high-temperature treatment produced RMS values from 1-60 nm and growth of gallium oxide (GaO) as measured with an atomic force microscopy and transmission electron microscopy respectively. A gold film (80nm) was deposited on the GaN surface using electron beam physical vapor deposition which was verified using ellipsometry and profilometry. The TDTR measurements suggest that the thermal conductivity decays exponentially with RMS roughness and that there is a minimum value for thermal boundary conductance at a roughness of 15nm.

  2. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters.

    PubMed

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-08-24

    Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [Mo(VI)72Mo(V)60O372(CH3COO)30(H2O)72](42-)), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial Mo(VI) centers of molybdate precursors are reduced to form {Mo(V)2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {Mo(V)2(acetate)} reaches a critical value, it triggers the co-assembly of Mo(V) and Mo(VI) species into the giant clusters. PMID:27459601

  3. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.

    PubMed

    Sun, Yubing; Ding, Congcong; Cheng, Wencai; Wang, Xiangke

    2014-09-15

    The reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) composites were synthesized by chemical deposition method and were characterized by SEM, high resolution TEM, Raman and potentiometric acid-base titrations. The characteristic results showed that the nZVI nanoparticles can be uniformly dispersed on the surface of rGO. The removal of U(VI) on nZVI/rGO composites as a function of contact time, pH and U(VI) initial concentration was investigated by batch technique. The removal kinetics of U(VI) on nZVI and nZVI/rGO were well simulated by a pseudo-first-order kinetic model and pseudo-second-order kinetic model, respectively. The presence of rGO on nZVI nanoparticles increased the reaction rate and removal capacity of U(VI) significantly, which was attributed to the chemisorbed OH(-) groups of rGO and the massive enrichment of Fe(2+) on rGO surface by XPS analysis. The XRD analysis revealed that the presence of rGO retarded the transformation of iron corrosion products from magnetite/maghemite to lepidocrocite. According to the fitting of EXAFS spectra, the UC (at ∼2.9Å) and UFe (at ∼3.2Å) shells were observed, indicating the formation of inner-sphere surface complexes on nZVI/rGO composites. Therefore, the nZVI/rGO composites can be suitable as efficient materials for the in-situ remediation of uranium-contaminated groundwater in the environmental pollution management. PMID:25194557

  4. Visualizing Nanoscale Distribution of Corrosion Cells by Open-Loop Electric Potential Microscopy.

    PubMed

    Honbo, Kyoko; Ogata, Shoichiro; Kitagawa, Takuya; Okamoto, Takahiro; Kobayashi, Naritaka; Sugimoto, Itto; Shima, Shohei; Fukunaga, Akira; Takatoh, Chikako; Fukuma, Takeshi

    2016-02-23

    Corrosion is a traditional problem but still one of the most serious problems in industry. To reduce the huge economic loss caused by corrosion, tremendous effort has been made to understand, predict and prevent it. Corrosion phenomena are generally explained by the formation of corrosion cells at a metal-electrolyte interface. However, experimental verification of their nanoscale distribution has been a major challenge owing to the lack of a method able to visualize the local potential distribution in an electrolytic solution. In this study, we have investigated the nanoscale corrosion behavior of Cu fine wires and a duplex stainless steel by in situ imaging of local corrosion cells by open-loop electric potential microscopy (OL-EPM). For both materials, potential images obtained by OL-EPM show nanoscale contrasts, where areas of higher and lower potential correspond to anodic areas (i.e., corrosion sites) and cathodic areas, respectively. This imaging capability allows us to investigate the real-time transition of local corrosion sites even when surface structures show little change. This is particularly useful for investigating reactions under surface oxide layers or highly corrosion-resistant materials as demonstrated here. The proposed technique should be applicable to the study of other redox reactions on a battery electrode or a catalytic material. The results presented here open up such future applications of OL-EPM in nanoscale electrochemistry. PMID:26811989

  5. Trap state passivation improved hot-carrier instability by zirconium-doping in hafnium oxide in a nanoscale n-metal-oxide semiconductor-field effect transistors with high-k/metal gate

    NASA Astrophysics Data System (ADS)

    Liu, Hsi-Wen; Chang, Ting-Chang; Tsai, Jyun-Yu; Chen, Ching-En; Liu, Kuan-Ju; Lu, Ying-Hsin; Lin, Chien-Yu; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Ye, Yi-Han

    2016-04-01

    This work investigates the effect on hot carrier degradation (HCD) of doping zirconium into the hafnium oxide high-k layer in the nanoscale high-k/metal gate n-channel metal-oxide-semiconductor field-effect-transistors. Previous n-metal-oxide semiconductor-field effect transistor studies demonstrated that zirconium-doped hafnium oxide reduces charge trapping and improves positive bias temperature instability. In this work, a clear reduction in HCD is observed with zirconium-doped hafnium oxide because channel hot electron (CHE) trapping in pre-existing high-k bulk defects is the main degradation mechanism. However, this reduced HCD became ineffective at ultra-low temperature, since CHE traps in the deeper bulk defects at ultra-low temperature, while zirconium-doping only passivates shallow bulk defects.

  6. Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate.

    PubMed

    Ji, Sanghoon; Cho, Gu Young; Yu, Wonjong; Su, Pei-Chen; Lee, Min Hwan; Cha, Suk Won

    2015-02-11

    Nanoscale yttria-stabilized zirconia (YSZ) electrolyte film was deposited by plasma-enhanced atomic layer deposition (PEALD) on a porous anodic aluminum oxide supporting substrate for solid oxide fuel cells. The minimum thickness of PEALD-YSZ electrolyte required for a consistently high open circuit voltage of 1.17 V at 500 °C is 70 nm, which is much thinner than the reported thickness of 180 nm using nonplasmatic ALD and is also the thinnest attainable value reported in the literatures on a porous supporting substrate. By further reducing the electrolyte thickness, the grain size reduction resulted in high surface grain boundary density at the cathode/electrolyte interface. PMID:25625537

  7. Oxidation and flow-injection amperometric determination of 5-hydroxytryptophan at an electrode modified by electrochemically assisted deposition of a sol-gel film with templated nanoscale pores

    PubMed Central

    Ranganathan, David; Zamponi, Silvia; Berrettoni, Mario; Mehdi, B. Layla; Cox, James A.

    2010-01-01

    The oxidation of 5-hydroxytryptophan (5-HTPP) yielded a passivating polymeric film at an indium tin oxide (ITO) electrode. Coating ITO with a nanoscale sol-gel film with a mesoporous structure was shown to change the pathway of the chemical reaction coupled to the electron transfer. The sol-gel film was deposited by an electrochemically assisted process, and the mesoporosity was imparted by including generation-4 poly(amidoamine) dendrimer in the precursor solution. The dendrimer was removed subsequently with an atmospheric oxygen plasma. This electrode remained active during cyclic voltammetry and controlled potential electrolysis of 5-HTPP, which was attributed to dimer, rather than polymer, formation from the oxidation product. Mass spectrometry confirmed this hypothesis. The anodic current was limited by the electron-transfer kinetics. Modification of the sol-gel film by inclusion of cobalt hexacyanoferrate, which catalyzes the oxidation, resulted in a diffusion-limited current. Determination of 5-HTPP by flow-injection amperometry had a detection limit of 17 nM. PMID:20801311

  8. Sustained Oxidative Stress Causes Late Acute Renal Failure via Duplex Regulation on p38 MAPK and Akt Phosphorylation in Severely Burned Rats

    PubMed Central

    Cai, Xiaoqing; Wang, Dexin; Wu, Kaimin; Chen, Hongli; Li, Jia; Lei, Wei

    2013-01-01

    Background Clinical evidence indicates that late acute renal failure (ARF) predicts high mortality in severely burned patients but the pathophysiology of late ARF remains undefined. This study was designed to test the hypothesis that sustained reactive oxygen species (ROS) induced late ARF in a severely burned rat model and to investigate the signaling mechanisms involved. Materials and Methods Rats were exposed to 100°C bath for 15 s to induce severe burn injury (40% of total body surface area). Renal function, ROS generation, tubular necrosis and apoptosis, and phosphorylation of MAPK and Akt were measured during 72 hours after burn. Results Renal function as assessed by serum creatinine and blood urea nitrogen deteriorated significantly at 3 h after burn, alleviated at 6 h but worsened at 48 h and 72 h, indicating a late ARF was induced. Apoptotic cells and cleavage caspase-3 in the kidney went up slowly and turned into significant at 48 h and 72 h. Tubular cell ROS production shot up at 6 h and continuously rose during the 72-h experiment. Scavenging ROS with tempol markedly attenuated tubular apoptosis and renal dysfunction at 72 h after burn. Interestingly, renal p38 MAPK phosphorylation elevated in a time dependent manner whereas Akt phosphorylation increased during the first 24 h but decreased at 48 h after burn. The p38 MAPK specific inhibitor SB203580 alleviated whereas Akt inhibitor exacerbated burn-induced tubular apoptosis and renal dysfunction. Furthermore, tempol treatment exerted a duplex regulation through inhibiting p38 MAPK phosphorylation but further increasing Akt phosphorylation at 72 h postburn. Conclusions These results demonstrate that sustained renal ROS overproduction induces continuous tubular cell apoptosis and thus a late ARF at 72 h after burn in severely burned rats, which may result from ROS-mediated activation of p38 MAPK but a late inhibition of Akt phosphorylation. PMID:23349934

  9. Nanoscale Wicking

    NASA Astrophysics Data System (ADS)

    Zhou, Jijie; Sansom, Elijah; Gharib, Mory; Noca, Flavio

    2003-11-01

    A wick is a bundle of fibers that by capillary attraction draws up to be burned a steady supply of the oil in lamps. In textile research, wicking is the process by which liquids are transported across or along fibers by capillary action (of relevance to perspiration). A similar phenomenon was recently discovered in our lab with mats of nanoscale fibers. A droplet containing a surfactant solution was placed on top of a well-aligned mat of carbon nanotubes: wicking was then observed as a film of liquid propagating within the nanocarpet, such as a stain or drop absorbed into a textile fabric. The nanoscale wicking process in carbon nano-arrays offers a simple and enabling technology for the processing (transport, mixing, filtering) of picoliters of fluids without any need for confinement (nanochannel) or bulky driving pressure apparatus. In this work, nanoscale wicking properties are quantified as a function of surfactant activity and carbon nanoarray geometry. The biomolecular sieving capability of the nanotube arrays is also put to test by the addition of biomolecules, while using the wicking process as the fluid driving force.

  10. Oxidation of nanoscale Au–In alloy particles as a possible route toward stable Au-based catalysts

    PubMed Central

    Sutter, Eli A.; Tong, Xiao; Jungjohann, Katherine

    2013-01-01

    The oxidation of bimetallic alloy nanoparticles comprising a noble and a nonnoble metal is expected to cause the formation of a single-component surface oxide of the nonnoble metal, surrounding a core enriched with the noble metal. Studying the room temperature oxidation of Au–In nanoparticles, we show that this simple picture does not apply to an important class of bimetallic alloys, in which the oxidation proceeds via predominant oxygen diffusion. Instead of a crystalline In2O3 shell, such oxidation leads to an amorphous shell of mixed Au–In oxide that remains stable to high temperatures and whose surface layer is enriched with Au. The Au-rich mixed oxide is capable of adsorbing both CO and O2 and converting them to CO2, which desorbs near room temperature. The oxidation of Au–In alloys to a mixed Au–In oxide shows significant promise as a viable approach toward Au-based oxidation catalysts, which do not require any complex synthesis processes and resist deactivation up to at least 300 °C. PMID:23754412

  11. Switch to duplex stainless steels

    SciTech Connect

    Quik, J.M.A.; Geudeke, M.

    1994-11-01

    Duplex stainless steels contain approximately equal proportions of ferrite and austenite. These stainless steels have become an established material of construction in the chemical process industries (CPI). Duplexes offer benefits over austenitic stainless steels and carbon steels because of their higher strength, and good toughness and ductility, in combination with equivalent resistance to general corrosion, as well as better resistance to localized corrosion and stress corrosion cracking. Additionally, duplex materials have thermal-conductivity and thermal-expansion coefficients similar to those of ferritic materials, are tough at low (sub-zero) temperatures, and have a high resistance to erosion and abrasion. In some of the highly corrosive environments encountered in the CPI, the super duplex stainless steels offer cost-effective options not possible with the standard austenitic stainless steels. The initial applications were almost exclusively as heat exchanger tubing in water-cooled service. In recent times, duplex stainless steels have been used in the oil, gas, and chemical industries. Examples include service in sweet and mildly sour corrosive environments, on offshore platforms where weight savings can be realized, and as a replacement for standard austenitic stainless steel in chemical-processing plants.

  12. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  13. Duplex aluminized coatings

    NASA Technical Reports Server (NTRS)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  14. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    SciTech Connect

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated with the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.

  15. Nanoscale Au-In alloy-oxide core-shell particles as electrocatalysts for efficient hydroquinone detection

    DOE PAGESBeta

    Sutter, E.; Tong, X.; Medina-Plaza, C.; Rodriguez-Mendez, M. L.; Sutter, P.

    2015-10-09

    The presence of hydroquinone (HQ), a phenol ubiquitous in nature and widely used in industry, needs to be monitored because of its toxicity to the environment. Here we demonstrate efficient detection of HQ using simple, fast, and noninvasive electrochemical measurements on indium tin oxide (ITO) electrodes modified with nanoparticles comprising bimetallic Au–In cores and mixed Au–In oxide shells. Whereas bare ITO electrodes show very low activity for the detection of HQ, their modification with Au–In core–shell nanoparticles induces a pronounced shift of the oxidation peak to lower potentials, i.e., facilitated oxidation. The response of the different electrodes was correlated withmore » the initial composition of the bimetallic nanoparticle cores, which in turn determined the amount of Au and In stabilized on the surface of the amorphous Au–In oxide shells available for the electrochemical reaction. While adding core–shell nanostructures with different compositions of the alloy core facilitates the electrocatalytic (reduction-) oxidation of HQ, the activity is highest for particles with AuIn cores (i.e., a Au:In ratio of 1). This optimal system is found to follow a single pathway, the two-electron oxidation of the quinone–hydroquinone couple, which gives rise to high oxidation peaks and is most effective in facilitating the electrode-to-analyte charge transfer and thus detection. The limits of detection (LOD) decreased when increasing the amount of Au exposed on the surface of the amorphous Au–In oxide shells. As a result the LODs were in the range of 10–5 – 10–6 M and were lower than those obtained using bulk Au.« less

  16. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    NASA Astrophysics Data System (ADS)

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-02-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g-1 were 434 and 174 mA h g-1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g-1 for the 1000th cycle at a high current density of 1 A g-1.

  17. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    NASA Astrophysics Data System (ADS)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus

  18. Nanoscale Proteomics

    SciTech Connect

    Shen, Yufeng; Tolic, Nikola; Masselon, Christophe D.; Pasa-Tolic, Liljiana; Camp, David G.; Anderson, Gordon A.; Smith, Richard D.; Lipton, Mary S.

    2004-02-01

    This paper describes efforts to develop a liquid chromatography (LC)/mass spectrometry (MS) technology for ultra-sensitive proteomics studies, i.e. nanoscale proteomics. The approach combines high-efficiency nano-scale LC with advanced MS, including high sensitivity and high resolution Fourier transform ion cyclotron resonance (FTICR) MS, to perform both single-stage MS and tandem MS (MS/MS) proteomic analyses. The technology developed enables large-scale protein identification from nanogram size proteomic samples and characterization of more abundant proteins from sub-picogram size complex samples. Protein identification in such studies using MS is feasible from <75 zeptomole of a protein, and the average proteome measurement throughput is >200 proteins/h and ~3 h/sample. Higher throughput (>1000 proteins/h) and more sensitive detection limits can be obtained using a “accurate mass and time” tag approach developed at our laboratory. These capabilities lay the foundation for studies from single or limited numbers of cells.

  19. Crystallization, Crystal Orientation and Morphology of Poly(ethylene oxide) under 1D Defect-Free Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.

    2009-03-01

    One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.

  20. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides.

    PubMed

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-08-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq(-1)), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices. PMID:26152810

  1. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles.

    PubMed

    Qi, Hua; Alexson, Dimitri; Glembocki, Orest; Prokes, S M

    2010-05-28

    We employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs) and on Si NWs, respectively. The surface stability of the homogeneous Ag NPs formed on the ZnO NW surfaces was investigated by surface enhanced Raman spectroscopy (SERS), which show that the attachment of thiol to the Ag surface can slow down the oxidation process, and the SERS signal remains strong for more than ten days. To further examine the Ag NP oxidation process in air, the oxygen content in the silicon nanowire core/Ag sheath composites was monitored by the energy dispersive x-ray (EDX) method. The amount of oxygen in the system increases with time, indicating the silver NPs were continuously oxidized, and it is not clear if saturation is reached in this time period. To investigate the influence of the Ag NPs size distribution on the oxidation process, the oxygen amount in the NPs formed by EL deposition and e-beam (EB) evaporation on a bare silicon surface was compared. Results indicate a faster oxidation process in the EL formed Ag NPs than those produced by EB evaporation. We attribute this observation to the small diameter of the EL produced silver particles, which results in a higher surface energy. PMID:20431201

  2. The effect of size and size distribution on the oxidation kinetics and plasmonics of nanoscale Ag particles

    NASA Astrophysics Data System (ADS)

    Qi, Hua; Alexson, Dimitri; Glembocki, Orest; Prokes, S. M.

    2010-05-01

    We employed a simple and effective electroless (EL) plating approach to produce silver nanoparticles (NPs) on bare silicon, on dielectric ZnO nanowires (NWs) and on Si NWs, respectively. The surface stability of the homogeneous Ag NPs formed on the ZnO NW surfaces was investigated by surface enhanced Raman spectroscopy (SERS), which show that the attachment of thiol to the Ag surface can slow down the oxidation process, and the SERS signal remains strong for more than ten days. To further examine the Ag NP oxidation process in air, the oxygen content in the silicon nanowire core/Ag sheath composites was monitored by the energy dispersive x-ray (EDX) method. The amount of oxygen in the system increases with time, indicating the silver NPs were continuously oxidized, and it is not clear if saturation is reached in this time period. To investigate the influence of the Ag NPs size distribution on the oxidation process, the oxygen amount in the NPs formed by EL deposition and e-beam (EB) evaporation on a bare silicon surface was compared. Results indicate a faster oxidation process in the EL formed Ag NPs than those produced by EB evaporation. We attribute this observation to the small diameter of the EL produced silver particles, which results in a higher surface energy.

  3. Nano-scale imaging and spectroscopy of plasmonic systems, thermal near-fields, and phase separation in complex oxides

    NASA Astrophysics Data System (ADS)

    Jones, Andrew C.

    Optical spectroscopy represents a powerful characterization technique with the ability to directly interact with the electronic, spin, and lattice excitations in matter. In addition, through implementation of ultrafast techniques, further insight into the real-time dynamics of elementary interactions can be gained. However, the resolution of far-field microscopy techniques is restricted by the diffraction limit setting a spatial resolution limit in the 100s nm to micron range for visible and IR light, respectively. This resolution is too coarse for the characterization of mesoscopic phenomena in condensed matter physics. The development of experimental techniques with nanoscale resolution and sensitivity to optical fields has been a long standing obstacle to the characterization of condensed matter systems on their natural length scales. This dissertation focuses on the fundamental near-field optical properties of surfaces and nanoscale systems as well as the utilization of nano-optical techniques, specifically apertureless scattering-type Scanning Near-field Optical Microscopy (s-SNOM), to characterize said optical properties with nanometer scale resolution. First, the s-SNOM characterization of the field enhancement associated with the localized surface plasmon resonances on metallic structures is discussed. With their ability to localize light, plasmonic nano-structures are promising candidate systems to serve as molecular sensors and nano-photonic devices; however, it is well known that particle morphology and the plasmon resonance alone do not uniquely reflect the details of the local field distribution. Here, I demonstrate the use interferometric s-SNOM for imaging of the near-fields associated with plasmonic resonances of crystalline triangular silver nano-prisms in the visible spectral range. I subsequently show the extension of the concept of a localized plasmon into the mid-IR spectral range with the characterization of near-fields of silver nano

  4. Nanoscale 2013

    NASA Astrophysics Data System (ADS)

    Koenders, Ludger; Ducourtieux, Sebastien

    2014-04-01

    The accurate determination of the properties of micro- and nano-structures is essential in research and development. It is also a prerequisite in process control and quality assurance in industry. In most cases, especially at the nanometer range, knowledge of the dimensional properties of structures is the fundamental base, to which further physical properties are linked. Quantitative measurements presuppose reliable and stable instruments, suitable measurement procedures as well as calibration artifacts and methods. This special issue of Measurement Science and Technology presents selected contributions from the NanoScale 2013 seminar held in Paris, France, on 25 and 26 April. It was the 6th Seminar on NanoScale Calibration Standards and Methods and the 10th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized with the Nanometrology Group of the Technical Committee-Length of EURAMET, the Physikalisch-Technische Bundesanstalt and the Laboratoire National de Métrologie et d'Essais. Three satellite meetings related to nanometrology were coupled to the seminar. The first one was an open Symposium on Scanning Probe Microscopy Standardization organized by the ISO/TC 201/SC9 technical committee. The two others were specific meetings focused on two European Metrology Research Projects funded by the European Association of National Metrology Institutes (EURAMET) (see www.euramet.org), the first one focused on the improvement of the traceability for high accuracy devices dealing with sub-nm length measurement and implementing optical interferometers or capacitive sensors (JRP SIB08 subnano), the second one aiming to develop a new metrological traceability for the measurement of the mechanical properties of nano-objects (JRP NEW05 MechProNo). More than 100 experts from industry, calibration laboratories and metrology institutes from around the world joined the NanoScale 2013 Seminar to attend 23 oral and 64 poster

  5. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    NASA Astrophysics Data System (ADS)

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-02-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode.

  6. Nanoscale Control Over Interfacial Properties in Mixed Reverse Micelles Formulated by Using Sodium 1,4-bis-2-ethylhexylsulfosuccinate and Tri-n-octyl Phosphine Oxide Surfactants.

    PubMed

    Odella, Emmanuel; Falcone, R Darío; Silber, Juana J; Correa, N Mariano

    2016-08-01

    The interfacial properties of pure reverse micelles (RMs) are a consequence of the magnitude and nature of noncovalent interactions between confined water and the surfactant polar head. Addition of a second surfactant to form mixed RMs is expected to influence these interactions and thus affect these properties at the nanoscale level. Herein, pure and mixed RMs stabilized by sodium 1,4-bis-2-ethylhexylsulfosuccinate and tri-n-octyl phosphine oxide (TOPO) surfactants in n-heptane were formulated and studied by varying both the water content and the TOPO mole fraction. The microenvironment generated was sensed by following the solvatochromic behavior of the 1-methyl-8-oxyquinolinium betaine probe and (31) P NMR spectroscopy. The results reveal unique properties of mixed RMs and we give experimental evidence that free water can be detected in the polar core of the mixed RMs at very low water content. We anticipate that these findings will have an impact on the use of such media as nanoreactors for many types of chemical reactions, such as enzymatic reactions and nanoparticle synthesis. PMID:27128745

  7. Proton-conducting Micro-solid Oxide Fuel Cells with Improved Cathode Reactions by a Nanoscale Thin Film Gadolinium-doped Ceria Interlayer

    PubMed Central

    Li, Yong; Wang, Shijie; Su, Pei-Chen

    2016-01-01

    An 8 nm-thick gadolinium-doped ceria (GDC) layer was inserted as a cathodic interlayer between the nanoscale proton-conducting yttrium-doped barium zirconate (BZY) electrolyte and the porous platinum cathode of a micro-solid oxide fuel cell (μ-SOFC), which has effectively improved the cathode reaction kinetics and rendered high cell power density. The addition of the GDC interlayer significantly reduced the cathodic activation loss and increased the peak power density of the μ-SOFC by 33% at 400 °C. The peak power density reached 445 mW/cm2 at 425 °C, which is the highest among the reported μ-SOFCs using proton-conducting electrolytes. The impressive performance was attributed to the mixed protonic and oxygen ionic conducting properties of the nano-granular GDC, and also to the high densities of grain boundaries and lattice defects in GDC interlayer that favored the oxygen incorporation and transportation during the oxygen reduction reaction (ORR) and the water evolution reaction at cathode. PMID:26928192

  8. Solar hydrogen generation by nanoscale p-n junction of p-type molybdenum disulfide/n-type nitrogen-doped reduced graphene oxide.

    PubMed

    Meng, Fanke; Li, Jiangtian; Cushing, Scott K; Zhi, Mingjia; Wu, Nianqiang

    2013-07-17

    Molybdenum disulfide (MoS2) is a promising candidate for solar hydrogen generation but it alone has negligible photocatalytic activity. In this work, 5-20 nm sized p-type MoS2 nanoplatelets are deposited on the n-type nitrogen-doped reduced graphene oxide (n-rGO) nanosheets to form multiple nanoscale p-n junctions in each rGO nanosheet. The p-MoS2/n-rGO heterostructure shows significant photocatalytic activity toward the hydrogen evolution reaction (HER) in the wavelength range from the ultraviolet light through the near-infrared light. The photoelectrochemical measurement shows that the p-MoS2/n-rGO junction greatly enhances the charge generation and suppresses the charge recombination, which is responsible for enhancement of solar hydrogen generation. The p-MoS2/n-rGO is an earth-abundant and environmentally benign photocatalyst for solar hydrogen generation. PMID:23808935

  9. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura J.

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine an activation energy for the catalyst-assisted systems.

  10. Cavitation erosion of duplex and super duplex stainless steels

    SciTech Connect

    Kwok, C.T.; Man, H.C.; Cheng, F.T.

    1998-10-05

    Owing to their excellent corrosion resistance, stainless steels are widely used both in the marine, urban water, chemical and food industries. In addition to the corrosive environment, high fluid flow speeds are always encountered for components used in these industries. The cavitation characteristics of S30400 and S31600 austenitic stainless steels and duplex stainless steels were studied in detail by a number of authors. It was generally agreed that S30400 has higher cavitation erosion resistance than that of S31600 due to higher tendency of strain induced martensitic transformation under high impulse of stress. A considerable number of results on stress corrosion cracking characteristics of SDSS and duplex stainless steels have been published but data concerning their cavitation erosion property are extremely rare.

  11. Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Park, G. D.; Cho, J. S.; Kang, Y. C.

    2015-10-01

    Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the 150th cycle of the nickel sulfide/rGO composite powders prepared by sulfidation of the Ni/rGO composite and nickel acetate/GO composite powders at a current density of 0.3 A g-1 are 449 and 363 mA h g-1, respectively; their capacity retentions, calculated from the tenth cycle, are 100 and 87%. The nickel sulfide hollow nanospheres/rGO composite powders possess structural stability over repeated Na-ion insertion and extraction processes, and also show excellent rate performance for Na-ion storage.Spray-drying and the nanoscale Kirkendall diffusion process are used to prepare nickel sulfide hollow nanospheres/reduced graphene oxide (rGO) composite powders with excellent Na-ion storage properties. Metallic Ni nanopowder-decorated rGO powders, formed as intermediate products, are transformed into composite powders of nickel sulfide hollow nanospheres/rGO with mixed crystal structures of Ni3S2 and Ni9S8 phases by the sulfidation process under H2S gas. Nickel sulfide/rGO composite powders with the main crystal structure of Ni3S2 are also prepared as comparison samples by the direct sulfidation of nickel acetate-graphene oxide (GO) composite powders obtained by spray-drying. In electrochemical properties, the discharge capacities at the

  12. Orientation-dependent recrystallization in an oxide dispersion strengthened steel after dynamic plastic deformation

    NASA Astrophysics Data System (ADS)

    Zhang, Z. B.; Tao, N. R.; Mishin, O. V.; Pantleon, W.

    2015-08-01

    The microstructure of the oxide dispersion strengthened ferritic steel PM2000 has been investigated after compression by dynamic plastic deformation to a strain of 2.1 and after subsequent annealing at 715 °C. Nanoscale lamellae, exhibiting a strong <100> + <111> duplex fibre texture, form during dynamic plastic deformation. Different boundary spacings and different stored energy densities for regions belonging to either of the two fibre texture components result in a quite heterogeneous deformation microstructure. Upon annealing, preferential recovery and preferential nucleation of recrystallization are found in the <111>- oriented lamellae, which had a higher stored energy density in the as-deformed condition. In the course of recrystallization, the initial duplex fibre texture is replaced by a strong <111> fibre recrystallization texture.

  13. Na-ion Storage Performances of FeSex and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process

    PubMed Central

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    Uniquely structured FeSex-reduced graphene oxide (rGO) composite powders, in which hollow FeSex nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSex-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSex nanoparticles during the selenization process. The FeSex-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSex-rGO composite powders. The FeSex-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSex- and Fe2O3-rGO composite powders for the 200th cycle at a constant current density of 0.3 A g−1 were 434 and 174 mA h g−1, respectively. The FeSex-rGO composite powders had a high discharge capacity of 311 mA h g−1 for the 1000th cycle at a high current density of 1 A g−1. PMID:26928312

  14. Applications and experiences with super duplex stainless steel in wet FGD scrubber systems

    SciTech Connect

    Francis, R.; Byrne, G.; Warburton, G.; Hebdon, S.

    1998-12-31

    The paper presents the properties of the author`s company`s proprietary super duplex stainless steel. Work is presented showing the development of a more realistic laboratory solution representing typical limestone slurries found in real flue gas desulfurization (FGD) systems. The importance of additions of metal ions such as Fe{sup 3+} and Mn{sup 2+} as well as partially oxidized sulfur species is demonstrated. Results are presented comparing the crevice corrosion resistance of super duplex stainless steel in these slurries with other commonly used wrought and cast stainless steels, for both simulated anthracite and lignite type slurries. Data from loop tests on the erosion resistance of a range of alloys in simulated FGD slurries is presented. The results clearly show the superior resistance of super duplex stainless steel to both crevice corrosion and erosion in FGD slurries. Finally the experiences in UK FGD systems with both cast and wrought super duplex stainless steel are presented.

  15. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron.

    PubMed

    Chaithawiwat, Krittanut; Vangnai, Alisa; McEvoy, John M; Pruess, Birgit; Krajangpan, Sita; Khan, Eakalak

    2016-09-15

    An Escherichia coli BW25113 wildtype strain and mutant strains lacking genes that protect against oxidative stress were examined at different growth phases for susceptibility to zero-valent iron (nZVI). Viability of cells was determined by the plate count method. All mutant strains were more susceptible than the wild type strain to nZVI; however, susceptibility differed among the mutant strains. Consistent with the role of rpoS as a global stress regulator, an rpoS gene knockout mutant exhibited the greatest susceptibility to nZVI under the majority of conditions tested (except exponential and declining phases at longer exposure time). Mutants lacking genes encoding the inducible and constitutively expressed cytosolic superoxide dismutases, sodA and sodB, respectively, were more susceptible to nZVI than a mutant lacking the gene encoding sodC, a periplasmic superoxide dismutase. This suggests that nZVI induces oxidative stress inside the cells via superoxide generation. Quantitative polymerase chain reaction was used to examine the expression of katG, a gene encoding the catalase-peroxidase enzyme, in nZVI-treated E. coli at different growth phases. Results showed that nZVI repressed the expression of katG in all but lag phases. PMID:26953142

  16. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    Instrumentation and measurement techniques at the nanoscale play a crucial role not only in extending our knowledge of the properties of matter and processes in nanosciences, but also in addressing new measurement needs in process control and quality assurance in industry. Micro- and nanotechnologies are now facing a growing demand for quantitative measurements to support the reliability, safety and competitiveness of products and services. Quantitative measurements presuppose reliable and stable instruments and measurement procedures as well as suitable calibration artefacts to ensure the quality of measurements and traceability to standards. This special issue of Measurement Science and Technology presents selected contributions from the Nanoscale 2008 seminar held at the Istituto Nazionale di Ricerca Metrologica (INRIM), Torino, in September 2008. This was the 4th Seminar on Nanoscale Calibration Standards and Methods and the 8th Seminar on Quantitative Microscopy (the first being held in 1995). The seminar was jointly organized by the Nanometrology Group within EUROMET (The European Collaboration in Measurement Standards), the German Nanotechnology Competence Centre 'Ultraprecise Surface Figuring' (CC-UPOB), the Physikalisch-Technische Bundesanstalt (PTB) and INRIM. A special event during the seminar was the 'knighting' of Günter Wilkening from PTB, Braunschweig, Germany, as the 1st Knight of Dimensional Nanometrology. Günter Wilkening received the NanoKnight Award for his outstanding work in the field of dimensional nanometrology over the last 20 years. The contributions in this special issue deal with the developments and improvements of instrumentation and measurement methods for scanning force microscopy (SFM), electron and optical microscopy, high-resolution interferometry, calibration of instruments and new standards, new facilities and applications including critical dimension (CD) measurements on small and medium structures and nanoparticle

  17. Probing Ligand Binding to Duplex DNA using KMnO4 Reactions and Electrospray Ionization Tandem Mass spectrometry

    PubMed Central

    Mazzitelli, Carolyn L.; Brodbelt, Jennifer S.

    2008-01-01

    An ESI-MS/MS strategy employing the thymine-selective KMnO4 oxidation reaction to detect conformational changes and ligand binding sites in non-covalent DNA/drug complexes is reported. ESI-MS/MS is used to detect specific mass shifts of the DNA ions that are associated with the oxidation of thymines. This KMnO4 oxidation/ESI-MS/MS approach is an alternative to conventional gel-based oxidation methods and affords excellent sensitivity while eliminating the reliance on radiolabelled DNA. Comparison of single strand versus duplex DNA indicates that the duplexes exhibit a significant resistance to the reaction, thus confirming that the oxidation process is favored for unwound or single strand regions of DNA. DNA complexes containing different drugs including echinomycin, actinomycin-D, ethidium bromide, Hoechst 33342 and cis-C1 were subjected to the oxidation reaction. Echinomycin, a ligand with a bisintercalative binding mode, was found to induce the greatest KMnO4 reactivity, while Hoechst 33342, a minor groove binder, caused no increase in the oxidation of DNA. The oxidation of echinomycin/DNA containing duplexes with different sequences and lengths was also assessed. Duplexes with thymines closer to the terminal ends of the duplex demonstrated a greater increase in the degree of oxidation than those with thymines in the middle of the sequence. CAD and IRMPD experiments were used to determine the site of oxidation based on oligonucleotide fragmentation patterns. PMID:17508717

  18. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    DOE PAGESBeta

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Roberts, Nicholas A.; Plank, Harald; Rack, Philip D.

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributedmore » to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.« less

  19. Direct fabrication of thin layer MoS{sub 2} field-effect nanoscale transistors by oxidation scanning probe lithography

    SciTech Connect

    Espinosa, Francisco M.; Ryu, Yu K.; Garcia, Ricardo; Marinov, Kolyo; Dumcenco, Dumitru; Kis, Andras

    2015-03-09

    Thin layer MoS{sub 2}-based field effect transistors (FET) are emerging candidates to fabricate very fast and sensitive devices. Here, we demonstrate a method to fabricate very narrow transistor channel widths on a single layer MoS{sub 2} flake connected to gold electrodes. Oxidation scanning probe lithography is applied to pattern insulating barriers on the flake. The process narrows the electron path to about 200 nm. The output and transfer characteristics of the fabricated FET show a behavior that is consistent with the minimum channel width of the device. The method relies on the direct and local chemical modification of MoS{sub 2}. The straightforward character and the lack of specific requirements envisage the controlled patterning of sub-100 nm electron channels in MoS{sub 2} FETs.

  20. Purification of Nanoscale Electron-Beam-Induced Platinum Deposits via a Pulsed Laser-Induced Oxidation Reaction

    SciTech Connect

    Stanford, Michael G.; Lewis, Brett B.; Noh, Joo Hyon; Fowlkes, Jason Davidson; Roberts, Nicholas A.; Plank, Harald; Rack, Philip D.

    2014-11-05

    Platinum–carbon deposits made via electron-beam-induced deposition were purified in this study via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ~485 K, and the purification rate is a function of the PtC5 thickness (80–360 nm) and laser pulse width (1–100 μs) in the ranges studied. The thickness dependence is attributed to the ~235 nm penetration depth of the PtC5 composite at the laser wavelength, and the pulse-width dependence is attributed to the increased temperatures achieved at longer pulse widths. Finally, remarkably fast purification is realized at cumulative laser exposure times of less than 1 s.

  1. 60 Years of duplex stainless steel applications

    SciTech Connect

    Olsson, J.; Liljas, M.

    1994-12-31

    In this paper the history of wrought duplex stainless steel development and applications is described. Ferritic-austenitic stainless steels were introduced only a few decades after stainless steels were developed. The paper gives details from the first duplex stainless steels in the 1930`s to the super duplex stainless steel development during the 1980`s. During the years much effort has been devoted to production and welding metallurgy as well as corrosion research of the duplex stainless steels. Therefore, duplex stainless steels are to-day established in a wide product range. Numerous important applications are exemplified. In most cases the selection of a duplex steel has been a result of the combination high strength excellent corrosion resistance. In the pulp and paper industry the most interesting use is as vessel material in digesters. For chemical process industry, the duplex steels are currently used in heat exchangers. The largest application of duplex steels exists in the oil and gas/offshore industry. Hundreds of kms of pipelines are installed and are still being installed. An increased use of duplex steels is foreseen in areas where the strength is of prime importance.

  2. Fabrication of long-term stable superoleophobic surface based on copper oxide/cobalt oxide with micro-nanoscale hierarchical roughness

    NASA Astrophysics Data System (ADS)

    Barthwal, Sumit; Lim, Si-Hyung

    2015-02-01

    We have demonstrated a simple and cost-effective technique for the large-area fabrication of a superoleophobic surface using copper as a substrate. The whole process included three simple steps: First, the copper substrate was oxidized under hot alkaline conditions to fabricate flower-like copper oxide microspheres by heating at a particular temperature for an interval of time. Second, the copper-oxide-covered copper substrate was further heated in a solution of cobalt nitrate and ammonium nitrate in the presence of an ammonia solution to fabricate cobalt oxide nanostructures. We applied this second step to increase the surface roughness because it is an important criterion for improved superoleophobicity. Finally, to reduce the surface energy of the fabricated structures, the surfaces were chemically modified with perfluorooctyltrichlorosilane. Contact-angle measurements indicate that the micro-nano binary (MNB) hierarchical structures fabricated on the copper substrate became super-repellent toward a broad range of liquids with surface tension in the range of 21.5-72 mN/m. In an attempt to significantly improve the superoleophobic property of the surface, we also examined and compared the role of nanostructures in MNB hierarchical structures with only micro-fabricated surfaces. The fabricated MNB hierarchical structures also displays thermal stability and excellent long-term stability after exposure in air for more than 9 months. Our method might provide a general route toward the preparation of novel hierarchical films on metal substrates for various industrial applications.

  3. Adsorption and decomposition of organophosphorus compounds on nanoscale metal oxide particle. In situ GC-MS studies of pulsed microreactions over magnesium oxide. (Reannouncement with new availability information). Progress report, 31 December 1991-30 June 1992

    SciTech Connect

    Li, Y.X.; Koper, O.; Atteya, M.; Klabunde, K.J.

    1992-12-31

    Using an in situ reactor GC-MS system, the thermal decomposition of organophosphorus compound (as models of nerve agents) has been compared with their destructive adsorption on high surface area magnesium oxide. Dramatically lower temperatures are required when MgO is present. Volatile products evolved were formic acid, water, alcohols, and alkenes. At higher temperatures CO, CH4, and water predominated. Phosphorus residues remained completed immobilized. Addition of water enhanced the facility of MgO to destroy these compounds, and in fact, water pulses were found to partially regenerate a spent MgO bed. Using 18O labeling some aspects of the reaction mechanisms were clarified and in particular showed that oxygen scrambling occurred. Surface OH and MgO groups transferred oxygen in the formation of formic acid, and surface mobility and reactivity of adsorbed groups was very high. The substantial capacity of high surface area MgO for destruction and immobilization of such toxic substance makes it attractive for air purification schemes as well as solid reagents for destruction and immobilization of bulk quantities of hazardous phosphorus compounds or organohalides. Organophosphorus, ultrafine powder, destructive adsorption, magnesium oxide, immobilization, nanoscale powder.

  4. Characterizing the bending and flexibility induced by bulges in DNA duplexes

    NASA Astrophysics Data System (ADS)

    Schreck, John S.; Ouldridge, Thomas E.; Romano, Flavio; Louis, Ard A.; Doye, Jonathan P. K.

    2015-04-01

    Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures.

  5. Nanoscale connectivity in a TiO2/CdSe quantum dots/functionalized graphene oxide nanosheets/Au nanoparticles composite for enhanced photoelectrochemical solar cell performance.

    PubMed

    Narayanan, Remya; Deepa, Melepurath; Srivastava, Avanish Kumar

    2012-01-14

    Electron transfer dynamics in a photoactive coating made of CdSe quantum dots (QDs) and Au nanoparticles (NPs) tethered to a framework of ionic liquid functionalized graphene oxide (FGO) nanosheets and mesoporous titania (TiO(2)) was studied. High resolution transmission electron microscopy analyses on TiO(2)/CdSe/FGO/Au not only revealed the linker mediated binding of CdSe QDs with TiO(2) but also, surprisingly, revealed a nanoscale connectivity between CdSe QDs, Au NPs and TiO(2) with FGO nanosheets, achieved by a simple solution processing method. Time resolved fluorescence decay experiments coupled with the systematic quenching of CdSe emission by Au NPs or FGO nanosheets or by a combination of the latter two provide concrete evidences favoring the most likely pathway of ultrafast decay of excited CdSe in the composite to be a relay mechanism. A balance between energetics and kinetics of the system is realized by alignment of conduction band edges, whereby, CdSe QDs inject photogenerated electrons into the conduction band of TiO(2), from where, electrons are promptly transferred to FGO nanosheets and then through Au NPs to the current collector. Conductive-atomic force microscopy also provided a direct correlation between the local nanostructure and the enhanced ability of composite to conduct electrons. Point contact I-V measurements and average photoconductivity results demonstrated the current distribution as well as the population of conducting domains to be uniform across the TiO(2)/CdSe/FGO/Au composite, thus validating the higher photocurrent generation. A six-fold enhancement in photocurrent and a 100 mV increment in photovoltage combined with an incident photon to current conversion efficiency of 27%, achieved in the composite, compared to the inferior performance of the TiO(2)/CdSe/Au composite imply that FGO nanosheets and Au NPs work in tandem to promote charge separation and furnish less impeded pathways for electron transfer and transport. Such a

  6. Duplex Direct Data Distribution System

    NASA Technical Reports Server (NTRS)

    Greenfield, Israel (Technical Monitor)

    2001-01-01

    The NASA Glenn Research Center (GRC) is developing and demonstrating communications and network technologies that are helping to enable the near-Earth space Internet. GRC envisions several service categories. The first of these categories is direct data distribution or D3 (pronounced "D-cubed"). Commercially provided D3 will make it possible to download a data set from a spacecraft, like the International Space Station. as easily as one can extract a file from a remote server today, using a file transfer protocol. In a second category, NASA spacecraft will make use of commercial satellite communication (SATCOM) systems. Some of those services will come from purchasing time on unused transponders that cover landmasses. While it is likely there will be gaps in service coverage, Internet services should be available using these systems. This report addresses alternative methods of implementing a full duplex enhancement of the GRC developed experimental Ka-Band Direct Data Distribution (D3) space-to-ground communication link. The resulting duplex version is called the Duplex Direct Data Distribution (D4) system. The D4 system is intended to provide high-data-rate commercial direct or internet-based communications service between the NASA spacecraft in low earth orbit (LEO) and the respective principal investigators associated with these spacecraft. Candidate commercial services were assessed regarding their near-term potential to meet NASA requirements. Candidates included Ka-band and V-band geostationary orbit and non-geostationary orbit satellite relay services and direct downlink ("LEO teleport") services. End-to-end systems concepts were examined and characterized in terms of alternative link layer architectures. Alternatives included a Direct Link, a Relay Link, a Hybrid Link, and a Dual Mode Link. The direct link assessment examined sample ground terminal placements and antenna angle issues. The SATCOM-based alternatives examined existing or proposed commercial

  7. Nanoscale thermal probing

    PubMed Central

    Yue, Yanan; Wang, Xinwei

    2012-01-01

    Nanoscale novel devices have raised the demand for nanoscale thermal characterization that is critical for evaluating the device performance and durability. Achieving nanoscale spatial resolution and high accuracy in temperature measurement is very challenging due to the limitation of measurement pathways. In this review, we discuss four methodologies currently developed in nanoscale surface imaging and temperature measurement. To overcome the restriction of the conventional methods, the scanning thermal microscopy technique is widely used. From the perspective of measuring target, the optical feature size method can be applied by using either Raman or fluorescence thermometry. The near-field optical method that measures nanoscale temperature by focusing the optical field to a nano-sized region provides a non-contact and non-destructive way for nanoscale thermal probing. Although the resistance thermometry based on nano-sized thermal sensors is possible for nanoscale thermal probing, significant effort is still needed to reduce the size of the current sensors by using advanced fabrication techniques. At the same time, the development of nanoscale imaging techniques, such as fluorescence imaging, provides a great potential solution to resolve the nanoscale thermal probing problem. PMID:22419968

  8. Effect of Nanosize Yittria and Tungsten Addition to Duplex Stainless Steel During High Energy Planetary Milling

    NASA Astrophysics Data System (ADS)

    Nayak, A. K.; Shashanka, R.; Chaira, D.

    2016-02-01

    In this present investigation, elemental powders of duplex stainless steel composition (Fe-18Cr-13Ni) with 1 wt. % nano yittria and tungsten were milled separately in dual drive planetary mill (DDPM) for 10 h to fabricate yittria dispersed and tungsten dispersed duplex stainless steel powders. The milled powder samples were characterized by X-Ray diffraction and scanning electron microscopy (SEM) to study the size, morphology and phase evolution during milling. The gradual transformation from ferrite to austenite is evident from XRD spectra during milling. The crystallite size and lattice strain of yittria dispersed duplex stainless steel after 10 h milling were found to be 7 nm and 1.1% respectively. The crystallite size of tungsten dispersed duplex stainless steel was 5 nm. It has been observed from SEM analysis that particles size has been reduced from 40 to 5 μm in both cases. Annealing of 10 h milled powder was performed at 750°C for 1 h under argon atmosphere to study phase transformation in both yittria and tungsten dispersed duplex stainless steel. The XRD analysis of annealed stainless steel depicts the phase transformation from α-Fe to γ-Fe with the formation of oxides of Y,Fe and Cr. The differential scanning calorimetry analysis was conducted by heating the milled powder from room temperature to 1200°C under argon atmosphere to investigate the thermal analysis of both the stainless steel powders.

  9. In situ TEM Studies of the Initial Oxidation stage of Cu and Cu Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Yang, Judith; Kang, Yihong; Luo, Langli; Ciston, James; Stach, Eric; Zhou, Guangwen

    2012-02-01

    The fundamental understanding of oxidation at the nanoscale is important for the environmental stability of coating materials as well as processing of oxide nanostructures. Our previous studies show the epitaxial growth of Cu2O islands during the initial stages of oxidation of Cu thin films, where surface diffusion and strain impact the oxide development and morphologies. The addition of secondary elements changes the oxidation mechanism. If the secondary element is non-oxidizing, such as Au, it will limit the Cu2O island growth due to the depletion of Cu near the oxide islands. When the secondary element is oxidizing, for example Ni, the alloy will show more complex behaviour, where duplex oxide islands were observed. Nucleation density and growth rate of oxide islands are observed under various temperatures and oxygen partial pressures (pO2) as a function of time by in situ ultra high vacuum (UHV)-transmission electron microscopy (TEM). Our initial results of Cu-Ni(001) oxidation is that the oxide epitaxy and morphologies change as function of Ni concentration. For higher spatial resolution, we are examining the atomic scale oxidation by aberration-corrected ETEM with 1å resolution.

  10. Duplex sampling apparatus and method

    DOEpatents

    Brown, Paul E.; Lloyd, Robert

    1992-01-01

    An improved apparatus is provided for sampling a gaseous mixture and for measuring mixture components. The apparatus includes two sampling containers connected in series serving as a duplex sampling apparatus. The apparatus is adapted to independently determine the amounts of condensable and noncondensable gases in admixture from a single sample. More specifically, a first container includes a first port capable of selectively connecting to and disconnecting from a sample source and a second port capable of selectively connecting to and disconnecting from a second container. A second container also includes a first port capable of selectively connecting to and disconnecting from the second port of the first container and a second port capable of either selectively connecting to and disconnecting from a differential pressure source. By cooling a mixture sample in the first container, the condensable vapors form a liquid, leaving noncondensable gases either as free gases or dissolved in the liquid. The condensed liquid is heated to drive out dissolved noncondensable gases, and all the noncondensable gases are transferred to the second container. Then the first and second containers are separated from one another in order to separately determine the amount of noncondensable gases and the amount of condensable gases in the sample.

  11. Structure sensitivity and nanoscale effects in electrocatalysis

    NASA Astrophysics Data System (ADS)

    Koper, Marc T. M.

    2011-05-01

    This review discusses the role of the detailed nanoscale structure of catalytic surfaces on the activity of various electrocatalytic reactions of importance for fuel cells, hydrogen production, and other environmentally important catalytic reactions, such as carbon monoxide oxidation, methanol and ethanol oxidation, ammonia oxidation, nitric oxide reduction, hydrogen evolution, and oxygen reduction. Specifically, results and insights obtained from surface-science single-crystal-based model experiments are linked to experiments on well-defined shape-controlled nanoparticles. A classification of structure sensitive effects in electrocatalysis is suggested, based both on empirical grounds and on quantum-chemical viz. thermochemical considerations. The mutual relation between the two classification schemes is also discussed. The review underscores the relevance of single-crystal modeling of nanoscale effects in catalysis, and points to the special role of two kinds of active sites for electrocatalysis on nanoparticulate surfaces: (i) steps and defects in (111) terraces or facets, and (ii) long-range (100) terraces or facets.

  12. FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 810, REAR OF DUPLEX SHOWING COURTYARD BETWEEN WINGS, OBLIQUE VIEW FACING EAST. - Schofield Barracks Military Reservation, Duplex Housing Type with Corner Entries, Between Hamilton & Tidball Streets near Williston Avenue, Wahiawa, Honolulu County, HI

  13. Extensional duplex in the Purcell Mountains of southeastern British Columbia

    SciTech Connect

    Root, K.G. )

    1990-05-01

    An extensional duplex consisting of fault-bounded blocks (horses) located between how-angle normal faults is exposed in Proterozoic strata in the Purcell Mountains of British Columbia, Canada. This is one of the first documented extensional duplexes, and it is geometrically and kinematically analogous to duplexes developed in contractional and strike-slip fault systems. The duplex formed within an extensional fault with a ramp and flat geometry when horses were sliced from the ramp and transported within the fault system.

  14. Multiphase and Double-Layer NiFe2O4@NiO-Hollow-Nanosphere-Decorated Reduced Graphene Oxide Composite Powders Prepared by Spray Pyrolysis Applying Nanoscale Kirkendall Diffusion.

    PubMed

    Park, Gi Dae; Cho, Jung Sang; Kang, Yun Chan

    2015-08-01

    Multicomponent metal oxide hollow-nanosphere decorated reduced graphene oxide (rGO) composite powders are prepared by spray pyrolysis with nanoscale Kirkendall diffusion. The double-layer NiFe2O4@NiO-hollow-nanosphere decorated rGO composite powders are prepared using the first target material. The NiFe-alloy-nanopowder decorated rGO powders are prepared as an intermediate product by post-treatment under the reducing atmosphere of the NiFe2O4/NiO-decorated rGO composite powders obtained by spray pyrolysis. The different diffusion rates of Ni (83 pm for Ni(2+)) and Fe (76 pm for Fe(2+), 65 pm for Fe(3+)) cations with different radii during nanoscale Kirkendall diffusion result in multiphase and double-layer NiFe2O4@NiO hollow nanospheres. The mean size of the hollow NiFe2O4@NiO nanospheres decorated uniformly within crumpled rGO is 14 nm. The first discharge capacities of the nanosphere-decorated rGO composite powders with filled NiFe2O4/NiO and hollow NiFe2O4@NiO at a current density of 1 A g(-1) are 1168 and 1319 mA h g(-1), respectively. Their discharge capacities for the 100th cycle are 597 and 951 mA h g(-1), respectively. The discharge capacity of the NiFe2O4@NiO-hollow-nanosphere-decorated rGO composite powders at the high current density of 4 A g(-1) for the 400th cycle is 789 mA h g(-1). PMID:26186601

  15. Performance and properties of nanoscale calcium peroxide for toluene removal.

    PubMed

    Qian, Yajie; Zhou, Xuefei; Zhang, Yalei; Zhang, Weixian; Chen, Jiabin

    2013-04-01

    Due to the large diameter and small surface, the contaminant degradation by conventional calcium peroxide (CaO2) is slow with high dosage required. The aggregation of conventional CaO2 also makes it difficult to operate. Nanoscale CaO2 was therefore synthesized and applied to remove toluene in this study. Prepared from nanoscale Ca(OH)2 and H2O2 in the ratio of 1:7, the finely dispersed nanoscale CaO2 particles were confirmed by the scanning electron microscope to be in the range of 100-200nm in size. Compared to their non nanoscale counterparts, the synthesized nanoscale CaO2 demonstrated a superior performance in the degradation of toluene, which could be eliminated in 3d at pH 6. The oxidation products of toluene were analyzed to include benzyl alcohol, benzaldehyde and three cresol isomers. With the addition of 2-propanol, hydroxyl radicals were indicated as the main reactive oxygen species in the oxidation of toluene by nanoscale CaO2. Superoxide radicals were also investigated as the marker of nanoscale CaO2 in the solution. Our study thus provides an important insight into the application of nanoscale CaO2 in the removal of toluene contaminants, which is significant, especially for controlling the petroleum contaminations. PMID:23466092

  16. Bench-scale synthesis of nanoscale materials

    SciTech Connect

    Buehler, M.F.; Darab, J.G.; Matson, D.W.; Linehan, J.C.

    1993-12-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was demonstrated on a laboratory scale and scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 m{sup 2}/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO{sub 2} produced by RTDS are included.

  17. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  18. Measuring secondary phases in duplex stainless steels

    NASA Astrophysics Data System (ADS)

    Calliari, I.; Brunelli, K.; Dabalà, M.; Ramous, E.

    2009-01-01

    The use of duplex stainless steels is limited by their susceptibility to the formation of dangerous intermetallic phases resulting in detrimental effects on impact toughness and corrosion resistance. This precipitation and the quantitative determinations of the phases have received considerable attention and different precipitation sequences (σ phase, χ phase, and carbides) have been suggested. This study investigates the phase transformation during continuous cooling and isothermal treatments in commercial duplex stainless steel grades and the effects on alloy properties, and compares the most common techniques of analysis.

  19. Case of herpes zoster duplex bilateralis.

    PubMed

    Shin, Bong Seok; Seo, Hyun Deok; Na, Chan Ho; Choi, Kyu Chul

    2009-02-01

    Non-contiguously simultaneous development of herpes zoster is very rare. It is named either herpes zoster duplex unilateralis or bilaterarlis, depending on whether one or both sides of the body are involved. Herein, we report a 21-year-old man, who had been treated for ulcerative colitis with prednisolone, and presented with painful grouped vesicles of the lower abdomen and back in a relatively symmetrical distribution. A Tzanck smear and punch biopsy were performed on the vesicles of the back. We report a rare case of symmetrical herpes zoster duplex bilateralis. PMID:19284453

  20. Full-duplex optical communication system

    NASA Technical Reports Server (NTRS)

    Shay, Thomas M. (Inventor); Hazzard, David A. (Inventor); Horan, Stephen (Inventor); Payne, Jason A. (Inventor)

    2004-01-01

    A method of full-duplex electromagnetic communication wherein a pair of data modulation formats are selected for the forward and return data links respectively such that the forward data electro-magnetic beam serves as a carrier for the return data. A method of encoding optical information is used wherein right-hand and left-hand circular polarizations are assigned to optical information to represent binary states. An application for an earth to low earth orbit optical communications system is presented which implements the full-duplex communication and circular polarization keying modulation format.

  1. DIET at the nanoscale

    NASA Astrophysics Data System (ADS)

    Dujardin, G.; Boer-Duchemin, E.; Le Moal, E.; Mayne, A. J.; Riedel, D.

    2016-01-01

    We review the long evolution of DIET (Dynamics at surfaces Induced by Electronic Transitions) that began in the 1960s when Menzel, Gomer and Redhead proposed their famous stimulated desorption model. DIET entered the "nanoscale" in the 1990s when researchers at Bell Labs and IBM realized that the Scanning Tunneling Microscope (STM) could be used as an atomic size source of electrons to electronically excite individual atoms and molecules on surfaces. Resonant and radiant Inelastic Electron Tunneling (IET) using the STM have considerably enlarged the range of applications of DIET. Nowadays, "DIET at the nanoscale" covers a broad range of phenomena at the atomic-scale. This includes molecular dynamics (dissociation, desorption, isomerization, displacement, chemical reactions), vibrational spectroscopy and dynamics, spin spectroscopy and manipulation, luminescence spectroscopy, Raman spectroscopy and plasmonics. Future trends of DIET at the nanoscale offer exciting prospects for new methods to control light and matter at the nanoscale.

  2. Simulation of Nanoscale Two-Bit Not-And-type Silicon-Oxide-Nitride-Oxide-Silicon Nonvolatile Memory Devices with a Separated Double-Gate Fin Field Effect Transistor Structure Containing Different Tunneling Oxide Thicknesses

    NASA Astrophysics Data System (ADS)

    Oh, Se Woong; Park, Sang Su; Kim, Dong Hun; Kim, Hyun Woo; Kim, Tae Whan

    2009-06-01

    Not-and (NAND)-type silicon-oxide-nitride-oxide-silicon (SONOS) nonvolatile memory (NVM) devices with a separated double-gate (SDG) Fin field effect transistor structure were proposed to reduce the unit cell size of such memory devices and increase their memory density in comparison with that of conventional NVM devices. The proposed memory device consisted of a pair of control gates separated along the length of the Fin channel direction. Each SDG had a different thickness of the tunneling oxide to operate the proposed memory device as a two-bit/cell device. A technology computer-aided design simulation was performed to investigate the program/erase and two-bit characteristics. The simulation results show that the proposed devices can be used to increase the scaling down capability and charge storage density of NAND-type SONOS NVM devices.

  3. Ultra-short silicon MMI duplexer

    NASA Astrophysics Data System (ADS)

    Yi, Huaxiang; Huang, Yawen; Wang, Xingjun; Zhou, Zhiping

    2012-11-01

    The fiber-to-the-home (FTTH) systems are growing fast these days, where two different wavelengths are used for upstream and downstream traffic, typically 1310nm and 1490nm. The duplexers are the key elements to separate these wavelengths into different path in central offices (CO) and optical network unit (ONU) in passive optical network (PON). Multimode interference (MMI) has some benefits to be a duplexer including large fabrication tolerance, low-temperature dependence, and low-polarization dependence, but its size is too large to integrate in conventional case. Based on the silicon photonics platform, ultra-short silicon MMI duplexer was demonstrated to separate the 1310nm and 1490nm lights. By studying the theory of self-image phenomena in MMI, the first order images are adopted in order to keep the device short. A cascaded MMI structure was investigated to implement the wavelength splitting, where both the light of 1310nm and 1490nm was input from the same port, and the 1490nm light was coupling cross the first MMI and output at the cross-port in the device while the 1310nm light was coupling through the first and second MMI and output at the bar-port in the device. The experiment was carried on with the SOI wafer of 340nm top silicon. The cascaded MMI was investigated to fold the length of the duplexer as short as 117μm with the extinct ratio over 10dB.

  4. Duplex stainless steels for osteosynthesis devices.

    PubMed

    Cigada, A; Rondelli, G; Vicentini, B; Giacomazzi, M; Roos, A

    1989-09-01

    The austenitic stainless steels used today for the manufacture of osteosynthesis devices are sensitive to crevice corrosion. In this study the corrosion properties of some duplex stainless steels were evaluated and compared to traditional austenitic stainless steels. According to our results the following ranking was established: 23Cr-4Ni less than AISI 316L less than ASTM F138 less than 22Cr-5Ni-3Mo less than 27Cr-31Ni-3.5Mo less than 25Cr-7Ni-4Mo-N. In particular the results showed that the high-performance 25Cr-7Ni-4Mo-N duplex stainless steel, with high molybdenum and nitrogen contents, can be considered not susceptible to crevice corrosion in the human body. The duplex stainless steels have also better mechanical properties at the same degree of cold working compared with austenitic stainless steels. Hence the 25Cr-7Ni-4Mo-N duplex stainless steel can be considered a convenient substitute of ASTM F138 for orthopedic and osteosynthesis devices. PMID:2777835

  5. Duplex Design Project: Science Pilot Test.

    ERIC Educational Resources Information Center

    Center for Research on Evaluation, Standards, and Student Testing, Los Angeles, CA.

    Work is reported towards the completion of a prototype duplex-design assessment instrument for grade-12 science. The student course-background questionnaire and the pretest section of the two-stage instrument that was developed were administered to all 134 12th-grade students at St. Clairsville High School (Ohio). Based on the information obtained…

  6. Base pairing and structural insights into the 5-formylcytosine in RNA duplex

    PubMed Central

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O.; Chen, Doris; Sheng, Jia

    2016-01-01

    5-Formylcytidine (f5C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m5C) through 5-hydroxymethylcytidine (hm5C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f5C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5′-GUA(f5C)GUAC-3′]2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f5C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  7. Base pairing and structural insights into the 5-formylcytosine in RNA duplex.

    PubMed

    Wang, Rui; Luo, Zhipu; He, Kaizhang; Delaney, Michael O; Chen, Doris; Sheng, Jia

    2016-06-01

    5-Formylcytidine (f(5)C), a previously discovered natural nucleotide in the mitochondrial tRNA of many species including human, has been recently detected as the oxidative product of 5-methylcytidine (m(5)C) through 5-hydroxymethylcytidine (hm(5)C) in total RNA of mammalian cells. The discovery indicated that these cytosine derivatives in RNA might also play important epigenetic roles similar as in DNA, which has been intensively investigated in the past few years. In this paper, we studied the base pairing specificity of f(5)C in different RNA duplex contexts. We found that the 5-formyl group could increase duplex thermal stability and enhance base pairing specificity. We present three high-resolution crystal structures of an octamer RNA duplex [5'-GUA(f(5)C)GUAC-3']2 that have been solved under three crystallization conditions with different buffers and pH values. Our results showed that the 5-formyl group is located in the same plane as the cytosine base and forms an intra-residue hydrogen bond with the amino group in the N4 position. In addition, this modification increases the base stacking between the f(5)C and the neighboring bases while not causing significant global and local structure perturbations. This work provides insights into the effects of 5-formylcytosine on RNA duplex. PMID:27079978

  8. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  9. Stress corrosion cracking of duplex stainless steels in caustic solutions

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ananya

    Duplex stainless steels (DSS) with roughly equal amount of austenite and ferrite phases are being used in industries such as petrochemical, nuclear, pulp and paper mills, de-salination plants, marine environments, and others. However, many DSS grades have been reported to undergo corrosion and stress corrosion cracking in some aggressive environments such as chlorides and sulfide-containing caustic solutions. Although stress corrosion cracking of duplex stainless steels in chloride solution has been investigated and well documented in the literature but the SCC mechanisms for DSS in caustic solutions were not known. Microstructural changes during fabrication processes affect the overall SCC susceptibility of these steels in caustic solutions. Other environmental factors, like pH of the solution, temperature, and resulting electrochemical potential also influence the SCC susceptibility of duplex stainless steels. In this study, the role of material and environmental parameters on corrosion and stress corrosion cracking of duplex stainless steels in caustic solutions were investigated. Changes in the DSS microstructure by different annealing and aging treatments were characterized in terms of changes in the ratio of austenite and ferrite phases, phase morphology and intermetallic precipitation using optical micrography, SEM, EDS, XRD, nano-indentation and microhardness methods. These samples were then tested for general and localized corrosion susceptibility and SCC to understand the underlying mechanisms of crack initiation and propagation in DSS in the above-mentioned environments. Results showed that the austenite phase in the DSS is more susceptible to crack initiation and propagation in caustic solutions, which is different from that in the low pH chloride environment where the ferrite phase is the more susceptible phase. This study also showed that microstructural changes in duplex stainless steels due to different heat treatments could affect their SCC

  10. Adsorption on ordered and disordered duplex layers of porous anodic alumina.

    PubMed

    Bruschi, Lorenzo; Mistura, Giampaolo; Phadungbut, Poomiwat; Do, D D; Nicholson, D; Mayamei, Yashar; Lee, Woo

    2015-05-01

    We have carried out systematic experiments and numerical simulations of the adsorption on porous anodic aluminum oxide (AAO) duplex layers presenting either an ordered or a disordered interconnecting interface between the large (cavity) and small (constriction) sections of the structured pores. Selective blocking of the pore openings resulted in three different pore topologies: open structured pores, funnel pores, and ink-bottle pores. In the case of the structured pores having an ordered interface, the adsorption isotherms present a rich phenomenology characterized by the presence of two steps in the condensation branch and the opening of one (two) hysteresis loops during evaporation for the ink-bottle (open and funnel) pores. The isotherms can be obtained by summing the isotherms measured on uniform pores having the dimensions of the constrictions or of the cavities. The numerical analysis of the three different pore topologies indicates that the shape of the junction between the two pore sections is only important for the adsorption branch. In particular, a conic junction which resembles that of the AAO pores represents the experimental isotherms for the open and funnel pores better, but the shape of the junction in the ink bottle pores does not matter. The isotherms for the duplex layers with a disordered interface display the same general features found for the ordered duplex layers. In both cases, the adsorption branches coincide and have two steps which are shifted to lower relative pressures compared to those for the ordered duplex. Furthermore, the desorption branches comprise hysteresis loops much wider than those of the ordered duplex layers. Overall, this study highlights the important role played by morphologies where there are interconnections between large and small pores. PMID:25871845

  11. Symptomatic “H” Type Duplex Gallbladder

    PubMed Central

    Khandelwal, Radha Govind; Srinivasa Reddy, Thallu Venkata; Swamy Balachandar, Tirupporur Govinda; Palaniswamy, K.R.

    2010-01-01

    Gallbladder duplication with an incidence at autopsy of about 1 in 4000 is important in clinical practice, because it may cause some clinical, surgical, and diagnostic problems. Preoperative identification of this rare anomaly avoids biliary injuries and the other consequences of missed diagnosis. In this report, we present a case of ductular type duplex gallbladder diagnosed preoperatively by magnetic resonance cholangiopancreatography (MRCP) and ultrasound and managed successfully by laparoscopy. PMID:21605535

  12. A Duplex Stainless Steel for Chloride Environments

    NASA Astrophysics Data System (ADS)

    Sridhar, N.; Kolts, J.; Flasche, L. H.

    1985-03-01

    This paper examines the effects of microstructural changes on the corrosion, stress corrosion cracking and corrosion fatigue resistance of a duplex stainless steel to chloride environments. The microstructural changes can be precipitation of phases such as sigma and carbides, or changes in the distribution of austenite and ferrite. The former can be important in hot forming operations while the latter is important in welding. The methods of minimizing these deleterious effects can sometimes be different from those used for austenitic stainless steel.

  13. Nanoscale science and engineering forum (706c) design of solid lipid particles with iron oxide quantum dots for the delivery of therapeutic agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solid lipid particles provide a method to encapsulate and control the release of drugs in vivo but lack the imaging capability provided by CdS quantum dots. This shortcoming was addressed by combining these two technologies into a model system that uses iron oxide as a non-toxic imaging component in...

  14. Electron Beam Welding of Duplex Steels with using Heat Treatment

    NASA Astrophysics Data System (ADS)

    Schwarz, Ladislav; Vrtochová, Tatiana; Ulrich, Koloman

    2010-01-01

    This contribution presents characteristics, metallurgy and weldability of duplex steels with using concentrated energy source. The first part of the article describes metallurgy of duplex steels and the influence of nitrogen on their solidification. The second part focuses on weldability of duplex steels with using electron beam aimed on acceptable structure and corrosion resistance performed by multiple runs of defocused beam over the penetration weld.

  15. Excess electron trapping in duplex DNA: long range transfer via stacked adenines.

    PubMed

    Black, Paul J; Bernhard, William A

    2012-11-01

    An understanding of charge transfer (CT) in DNA lies at the root of assessing the risks and benefits of exposure to ionizing radiation. Energy deposition by high-energy photons and fast-charged particles creates holes and excess electrons (EEs) in DNA, and the subsequent reactions determine the complexity of DNA damage and ultimately the risk of disease. Further interest in CT comes from the possibility that hole transfer, excess electron transfer (EET), or both in DNA might be used to develop nanoscale circuits. To study EET in DNA, EPR spectroscopy was used to determine the distribution of EE trapping by oligodeoxynucleotides irradiated and observed at 4 K. Our results indicate that stretches of consecutive adenine bases on the same strand serve as an ideal conduit for intrastrand EET in duplex DNA at 4 K. Specifically, we show that A is an efficient trap for EE at 4 K if, and only if, the A strand of the duplex does not contain one of the other three bases. If there is a T, C, or G on the A strand, then trapping occurs at T or C instead of A. This holds true for stretches up to 32 A's. Whereas T competes effectively against A for the EE, it does not compete effectively against C. Long stretches of T pass the majority of EE to C. Our results show that AT stretches channel EE to cytosine, an end point with significance to both radiation damage and the photochemical repair of pyrimidine dimers. PMID:23067129

  16. The influence of MoO{sub x} gap states on hole injection from aluminum doped zinc oxide with nanoscale MoO{sub x} surface layer anodes for organic light emitting diodes

    SciTech Connect

    Jha, Jitendra Kumar; Santos-Ortiz, Reinaldo; Du, Jincheng; Shepherd, Nigel D.

    2015-08-14

    The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoO{sub x}). Hole only devices with anodes consisting of 3 nm of MoO{sub x} on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm{sup 2}) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoO{sub x} exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoO{sub x}, or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoO{sub x} films are more reduced and farther away from MoO{sub 3} stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoO{sub x}. A schematic band diagram is proposed. The thicker MoO{sub x} layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoO{sub x} layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.

  17. Na-ion Storage Performances of FeSe(x) and Fe2O3 Hollow Nanoparticles-Decorated Reduced Graphene Oxide Balls prepared by Nanoscale Kirkendall Diffusion Process.

    PubMed

    Park, Gi Dae; Cho, Jung Sang; Lee, Jung-Kul; Kang, Yun Chan

    2016-01-01

    Uniquely structured FeSe(x)-reduced graphene oxide (rGO) composite powders, in which hollow FeSe(x) nanoparticles are uniformly distributed throughout the rGO matrix, were prepared by spray pyrolysis applying the nanoscale Kirkendall diffusion process. Iron oxide-rGO composite powders were transformed into FeSe(x)-rGO composite powders by a two-step post-treatment process. Metallic Fe nanocrystals formed during the first-step post-treatment process were transformed into hollow FeSe(x) nanoparticles during the selenization process. The FeSe(x)-rGO composite powders had mixed crystal structures of FeSe and FeSe2 phases. A rGO content of 33% was estimated from the TG analysis of the FeSe(x)-rGO composite powders. The FeSe(x)-rGO composite powders had superior sodium-ion storage properties compared to those of the Fe2O3-rGO composite powders with similar morphological characteristics. The discharge capacities of the FeSe(x)- and Fe2O3-rGO composite powders for the 200(th) cycle at a constant current density of 0.3 A g(-1) were 434 and 174 mA h g(-1), respectively. The FeSe(x)-rGO composite powders had a high discharge capacity of 311 mA h g(-1) for the 1000(th) cycle at a high current density of 1 A g(-1). PMID:26928312

  18. The influence of MoOx gap states on hole injection from aluminum doped zinc oxide with nanoscale MoOx surface layer anodes for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Jha, Jitendra Kumar; Santos-Ortiz, Reinaldo; Du, Jincheng; Shepherd, Nigel D.

    2015-08-01

    The effective workfunction of Al doped ZnO films (AZO) increased from 4.1 eV to 5.55 eV after surface modification with nanoscale molybdenum sub-oxides (MoOx). Hole only devices with anodes consisting of 3 nm of MoOx on AZO exhibited a lower turn-on voltage (1.5 vs 1.8 V), and larger charge injection (190 vs 118 mA/cm2) at the reference voltage, compared to indium tin oxide (ITO). AZO devices with 10 nm of MoOx exhibited the highest workfunction but performed poorly compared to devices with 3 nm of MoOx, or standard ITO. Ultraviolet photoelectron, X-ray photoelectron, and optical spectroscopies indicate that the 3 nm MoOx films are more reduced and farther away from MoO3 stoichiometry than their 10 nm equivalents. The vacancies associated with non-stoichiometry result in donor-like gap states which we assign to partially occupied Mo 4d levels. We propose that Fowler-Nordheim tunneling from these levels is responsible for the reduction in threshold voltage measured in devices with 3 nm of MoOx. A schematic band diagram is proposed. The thicker MoOx layers are more stoichiometric and resistive, and the voltage drop across these layers dominates their electrical performance, leading to an increase in threshold voltage. The results indicate that AZO with MoOx layers of optimal thickness may be potential candidates for anode use in organic light emitting diodes.

  19. Nano-scale investigation of the association of microbial nitrogen residues with iron (hydr)oxides in a forest soil O-horizon

    NASA Astrophysics Data System (ADS)

    Keiluweit, Marco; Bougoure, Jeremy J.; Zeglin, Lydia H.; Myrold, David D.; Weber, Peter K.; Pett-Ridge, Jennifer; Kleber, Markus; Nico, Peter S.

    2012-10-01

    Amino sugars in fungal cell walls (such as chitin) represent an important source of nitrogen (N) in many forest soil ecosystems. Despite the importance of this material in soil nitrogen cycling, comparatively little is known about abiotic and biotic controls on and the timescale of its turnover. Part of the reason for this lack of information is the inaccessibility of these materials to classic bulk extraction methods. To address this issue, we used advanced visualization tools to examine transformation pathways of chitin-rich fungal cell wall residues as they interact with microorganisms, soil organic matter and mineral surfaces. Our goal was to document initial micro-scale dynamics of the incorporation of 13C- and 15N-labeled chitin into fungi-dominated microenvironments in O-horizons of old-growth forest soils. At the end of a 3-week incubation experiment, high-resolution secondary ion mass spectrometry imaging of hyphae-associated soil microstructures revealed a preferential association of 15N with Fe-rich particles. Synchrotron-based scanning transmission X-ray spectromicroscopy (STXM/NEXAFS) of the same samples showed that thin organic coatings on these soil microstructures are enriched in aliphatic C and amide N on Fe (hydr)oxides, suggesting a concentration of microbial lipids and proteins on these surfaces. A possible explanation for the results of our micro-scale investigation of chemical and spatial patterns is that amide N from chitinous fungal cell walls was assimilated by hyphae-associated bacteria, resynthesized into proteinaceous amide N, and subsequently concentrated onto Fe (hydr)oxide surfaces. If confirmed in other soil ecosystems, such rapid association of microbial N with hydroxylated Fe oxide surfaces may have important implications for mechanistic models of microbial cycling of C and N.

  20. Sensing at the nanoscale

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Hierold, Christofer

    2013-11-01

    The merits of nanostructures in sensing may seem obvious, yet playing these attributes to their maximum advantage can be a work of genius. As fast as sensing technology is improving, expectations are growing, with demands for cheaper devices with higher sensitivities and an ever increasing range of functionalities and compatibilities. At the same time tough scientific challenges like low power operation, noise and low selectivity are keeping researchers busy. This special issue on sensing at the nanoscale with guest editor Christofer Hierold from ETH Zurich features some of the latest developments in sensing research pushing at the limits of current capabilities. Cheap and easy fabrication is a top priority. Among the most popular nanomaterials in sensing are ZnO nanowires and in this issue Dario Zappa and colleagues at Brescia University in Italy simplify an already cheap and efficient synthesis method, demonstrating ZnO nanowire fabrication directly onto silicon substrates [1]. Meanwhile Nicolae Barson and colleagues in Germany point out the advantages of flame spray pyrolysis fabrication in a topical review [2] and, maximizing on existing resources, researchers in Denmark and Taiwan report cantilever sensing using a US20 commercial DVD-ROM optical pickup unit as the readout source [3]. The sensor is designed to detect physiological concentrations of soluble urokinase plasminogen activator receptor, a protein associated with inflammation due to HIV, cancer and other infectious diseases. With their extreme properties carbon nanostructures feature prominently in the issue, including the demonstration of a versatile and flexible carbon nanotube strain sensor [4] and a graphene charge sensor with sensitivities of the order of 1.3 × 10-3 e Hz-1/2 [5]. The issue of patterning for sensing devices is also tackled by researchers in the US who demonstrate a novel approach for multicomponent pattering metal/metal oxide nanoparticles on graphene [6]. Changes in electrical

  1. Insight into the Nanoscale Mechanism of Rapid H2O Transport within a Graphene Oxide Membrane: Impact of Oxygen Functional Group Clustering.

    PubMed

    Ban, Shuai; Xie, Jing; Wang, Yajun; Jing, Bo; Liu, Bei; Zhou, Hongjun

    2016-01-13

    Realistic models of graphene oxide membranes were developed and validated to interpret the exceptional water permeation in association with X-ray photoelectron spectroscopy, thermogravimetric and differential scanning calorimetry analysis, and dynamic vapor sorption measurements. With respect to the GO oxidization level, surface distributions of functionalized domains were analyzed in line with TEM observations, and 3 types of interlayer domains in slit pores of GO membranes were identified. The hydrophilicity degrees of as-defined domains strongly influence their H2O uptake capacities. Calculated sorption enthalpies and isotherms are in good agreement with experimental data, and the results indicate the dominant role of dipole interactions. GO expansion shows a transition from the interstratification of an H2O monolayer to the accumulation of H2O multilayers at an interlayer distance of 0.8 nm. The evolution of both hydrogen bonds and H2O diffusivities suggests the existence of three types of H2O species with different binding states and molecular mobilities. The computed H2O permeability on the basis of sorption-diffusion theory supports the exceptional H2O transport capacity in GO membranes. PMID:26653332

  2. DNA in Nanoscale Electronics

    NASA Astrophysics Data System (ADS)

    Slinker, Jason

    2012-10-01

    DNA, the quintessential molecule of life, possesses a number of attractive properties for use in nanoscale circuits. Charge transport (CT) through DNA itself is of both fundamental and practical interest. Fundamentally, DNA has a unique configuration of π-stacked bases in a well ordered, double helical structure. Given its unparalleled importance to life processes and its arrangement of conjugated subunits, DNA has been a compelling target of conductivity studies. In addition, further understanding of DNA CT will elucidate the biological implications of this process and advance its use in sensing technologies. We have investigated the fundamentals of DNA CT by measuring the electrochemistry of DNA monolayers under biologically-relevant conditions. We have uncovered both fundamental kinetic parameters to distinguish between competing models of operation as well as the practical implications of DNA CT for sensing. Furthermore, we are leveraging our studies of DNA conductivity for the manufacture of nanoscale circuits. We are investigating the electrical properties and self-assembly of DNA nanowires containing artificial base pair surrogates, which can be prepared through low cost and high throughput automated DNA synthesis. This unique and economically viable approach will establish a new paradigm for the scalable manufacture of nanoscale semiconductor devices.

  3. An exploration of sequence specific DNA-duplex/pyrene interactions for intercalated and surface-associated pyrene species. Technical progress report

    SciTech Connect

    Netzel, T.L.

    1994-01-07

    The use of both short (5-atom) and long (12-atom) covalent linking chains to attach, respectively, a pyrenesulfonate or a pyrenebutyrate moiety to a central region of a DNA duplex allows construction of DNA-duplex/pyrene assemblies of two types. Long linking chains permit pyrene to intercalate within the DNA duplex, while the short chains constrain pyrene to remain in the outer-surface region of the major-groove of the duplex. Electrochemical data suggest that reductive electron-transfer (ET) quenching of photoexcited pyrene (pyrene*) labels will be most exothermic for guanosine than for the other three DNA nucleosides and that oxidative ET quenching of pyrene* will be most exothermic for thymidine than for the other three DNA nucleosides. The study combines two effects, (1) differential DNA/pyrene geometries in covalent assemblies with different length linking chains and (2) differential ET quenching reactivities among the DNA nucleotides to explore sequence specific and duplex/pyrene association specific effects on DNA-base ionization reactions. This report describes progress in synthesizing target pyrene-labeled nucleosides and oligonucleotides, in commissioning our fluorescence lifetime measurement system, and in the photochemical behavior of pyrene-labeled nucleosides, single strands of DNA, and duplexes of DNA.

  4. JAEA Fatigue Analysis of EBR-II Duplex Tubing

    SciTech Connect

    J. H. Jackson; D. L. Porter; W. R. Lloyd

    2009-07-01

    This work addresses questions brought up concerning the mechanisms associated with fatigue crack growth retardation and/or arrest within the nickel bond layer in duplex 2¼ Cr-1Mo steel superheater tubes. Previous work performed at the Idaho National Laboratory (INL) indicated that the nickel bond layer did not function as a crack arrestor during fatigue crack propagation with the exception of one, isolated case involving an exceptionally low fatigue load and a high temperature (400 0C) environment. Since it is atypical for a fatigue crack to propagate from a relatively soft material (the nickel bond layer) to a harder material (the 2¼ Cr-1Mo steel) there has been speculation that the nickel bond layer was hardened in service. Additionally, there are questions surrounding the nature of the fatigue crack propagation within the nickel bond layer; specifically with regard to the presence of voids seen on micrographs of the bond layer and oxidation within the steel along the edge of the nickel bond layer. There is uncertainty as to the effect of these voids and/or oxide barriers with respect to potential fatigue crack arrest.

  5. Effect of Solution Conditions on the Nanoscale Intermolecular Interactions Between Human Serum Albumin and Low Grafting Density Surfaces of Poly(ethylene oxide)

    NASA Astrophysics Data System (ADS)

    Rixman, Monica; Macias, Celia; Dean, Delphine; Ortiz, Christine

    2003-03-01

    The first step in the biological rejection response to an implanted blood-contacting biomaterial is the non-covalent adsorption of proteins onto the surface, which triggers a cascade reaction ultimately resulting in thrombus formation. Using the technique of high resolution force spectroscopy, we have quantified the nonspecific intermolecular forces between fatty acid-complexed human serum albumin (HSA) covalently attached to a cantilever probe tip and individual end-grafted poly(ethylene oxide) mushrooms. In order to help elucidate the molecular origins of the constituent forces (e.g. steric, electrostatic, van der Waals), experiments were performed varying both the solution environmental conditions (e.g. ionic strength, removal of the bound fatty acids, and the addition of the antihydrophobic agent isopropanol), and the probe deflection rate.

  6. Full Duplex, Spread Spectrum Radio System

    NASA Technical Reports Server (NTRS)

    Harvey, Bruce A.

    2000-01-01

    The goal of this project was to support the development of a full duplex, spread spectrum voice communications system. The assembly and testing of a prototype system consisting of a Harris PRISM spread spectrum radio, a TMS320C54x signal processing development board and a Zilog Z80180 microprocessor was underway at the start of this project. The efforts under this project were the development of multiple access schemes, analysis of full duplex voice feedback delays, and the development and analysis of forward error correction (FEC) algorithms. The multiple access analysis involved the selection between code division multiple access (CDMA), frequency division multiple access (FDMA) and time division multiple access (TDMA). Full duplex voice feedback analysis involved the analysis of packet size and delays associated with full loop voice feedback for confirmation of radio system performance. FEC analysis included studies of the performance under the expected burst error scenario with the relatively short packet lengths, and analysis of implementation in the TMS320C54x digital signal processor. When the capabilities and the limitations of the components used were considered, the multiple access scheme chosen was a combination TDMA/FDMA scheme that will provide up to eight users on each of three separate frequencies. Packets to and from each user will consist of 16 samples at a rate of 8,000 samples per second for a total of 2 ms of voice information. The resulting voice feedback delay will therefore be 4 - 6 ms. The most practical FEC algorithm for implementation was a convolutional code with a Viterbi decoder. Interleaving of the bits of each packet will be required to offset the effects of burst errors.

  7. 51. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. Photocopy of copy of original Officers' Duplex Quarters drawing by B.S. Elliott, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Plumbing - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  8. 53. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    53. Photocopy of copy of original Officers' Duplex Quarters drawing by A.G.D., 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Electrical - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  9. Acoustical and perceptual influence of duplex stringing in grand pianos.

    PubMed

    Öberg, Fredrik; Askenfelt, Anders

    2012-01-01

    This study investigates the acoustical and perceptual influence of the string parts outside the speaking length in grand pianos (front and rear duplex strings). Acoustical measurements on a grand piano in concert condition were conducted, measuring the fundamental frequencies of all main and duplex strings in the four octaves D4-C8. Considerable deviations from the nominal harmonic relations between the rear duplex and main string frequencies, as described by the manufacturer in a patent, were observed. Generally the rear duplex strings were tuned higher than the nominal harmonic relations with average and median deviations approaching +50 cent. Single keys reached +190 and -100 cent. The spread in deviation from harmonic relations within trichords was also substantial with average and median values around 25 cent, occasionally reaching 60 cent. Contributions from both front and rear duplex strings were observed in the bridge motion and sound. The audibility of the duplex strings was studied in an ABX listening test. Complete dampening of the front duplex was clearly perceptible both for an experiment group consisting of musicians and a control group with naive subjects. The contribution from the rear duplex could also be perceived, but less pronounced. PMID:22280708

  10. Methods And Devices For Characterizing Duplex Nucleic Acid Molecules

    DOEpatents

    Akeson, Mark; Vercoutere, Wenonah; Haussler, David; Winters-Hilt, Stephen

    2005-08-30

    Methods and devices are provided for characterizing a duplex nucleic acid, e.g., a duplex DNA molecule. In the subject methods, a fluid conducting medium that includes a duplex nucleic acid molecule is contacted with a nanopore under the influence of an applied electric field and the resulting changes in current through the nanopore caused by the duplex nucleic acid molecule are monitored. The observed changes in current through the nanopore are then employed as a set of data values to characterize the duplex nucleic acid, where the set of data values may be employed in raw form or manipulated, e.g., into a current blockade profile. Also provided are nanopore devices for practicing the subject methods, where the subject nanopore devices are characterized by the presence of an algorithm which directs a processing means to employ monitored changes in current through a nanopore to characterize a duplex nucleic acid molecule responsible for the current changes. The subject methods and devices find use in a variety of applications, including, among other applications, the identification of an analyte duplex DNA molecule in a sample, the specific base sequence at a single nulceotide polymorphism (SNP), and the sequencing of duplex DNA molecules.

  11. Structural properties of g,t-parallel duplexes.

    PubMed

    Aviñó, Anna; Cubero, Elena; Gargallo, Raimundo; González, Carlos; Orozco, Modesto; Eritja, Ramon

    2010-01-01

    The structure of G,T-parallel-stranded duplexes of DNA carrying similar amounts of adenine and guanine residues is studied by means of molecular dynamics (MD) simulations and UV- and CD spectroscopies. In addition the impact of the substitution of adenine by 8-aminoadenine and guanine by 8-aminoguanine is analyzed. The presence of 8-aminoadenine and 8-aminoguanine stabilizes the parallel duplex structure. Binding of these oligonucleotides to their target polypyrimidine sequences to form the corresponding G,T-parallel triplex was not observed. Instead, when unmodified parallel-stranded duplexes were mixed with their polypyrimidine target, an interstrand Watson-Crick duplex was formed. As predicted by theoretical calculations parallel-stranded duplexes carrying 8-aminopurines did not bind to their target. The preference for the parallel-duplex over the Watson-Crick antiparallel duplex is attributed to the strong stabilization of the parallel duplex produced by the 8-aminopurines. Theoretical studies show that the isomorphism of the triads is crucial for the stability of the parallel triplex. PMID:20798879

  12. Zoster duplex: a clinical report and etiologic analysis

    PubMed Central

    Zhang, Feng; Zhou, Jin

    2015-01-01

    Objective: Herpes zoster (HZ) duplex is a rare disease presentation. The mechanisms of varicella zoster virus (VZV) reactivation in multiple dermal regions are unknown. To present a HZ duplex case occurring in an immunocompetent woman and to analyze the possible underlying causes of HZ duplex. Methods: We present a HZ duplex case in an immunocompetent woman and analyzed the possible contributing factors in 36 HZ duplex cases. Continuously distributed variables were categorized by numbers and percentages. Results: In our study, 24 cases (66.7%) were from Asia, 16 cases (44.4%) were in individuals ≥ 50 years of age, and 17 cases (47.2%) occurred in immunocompromised patients. Of the 36 cases, 23 involved women (63.9%) and 13 involved men. Eighteen patients suffering from HZ duplex, 13 of which were women (72.2%), did not suffer from any chronic systemic disease or have a long history of taking drugs. Conclusion: HZ duplex is a rare event that can occur in both immunocompetent and immunosuppressed individuals. HZ duplex might be associated with the Asia region, advanced age, immunosuppression, and being female. PMID:26379899

  13. FACILITY 209, SINGLESTORY DUPLEX, VIEW OF FRONT FROM CENTER DRIVE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, VIEW OF FRONT FROM CENTER DRIVE, FACING SE. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  14. FACILITY 209, SINGLESTORY DUPLEX, VIEW OF SIDE FROM FACILITY 210 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, VIEW OF SIDE FROM FACILITY 210 SIDE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  15. FACILITY 224, TWOSTORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF UPSTAIRS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 224, TWO-STORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF UPSTAIRS HALL FROM BATH, VIEW FACING NW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  16. FACILITY 209, SINGLESTORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM CENTER DRIVE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  17. FACILITY 210, TWOSTORY DUPLEX, REAR OBLIQUE FROM CENTER DRIVE, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO-STORY DUPLEX, REAR OBLIQUE FROM CENTER DRIVE, VIEW FACING EAST. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  18. FACILITY 210, TWOSTORY DUPLEX, VIEW FROM CENTER DRIVE BY FACILITY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO-STORY DUPLEX, VIEW FROM CENTER DRIVE BY FACILITY 201 FACING SE. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  19. FACILITY 226, SINGLESTORY DUPLEX, UNIT 327 (UNOCCUPIED), INTERIOR FROM HALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 226, SINGLE-STORY DUPLEX, UNIT 327 (UNOCCUPIED), INTERIOR FROM HALL LOOKING INTO BEDROOMS WITH DIFFERENT WINDOW ARRANGEMENTS. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  20. FACILITY 224, TWOSTORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF LIVING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 224, TWO-STORY DUPLEX, UNIT 319 (UNOCCUPIED), INTERIOR OF LIVING ROOM FROM DINING AREA. KITCHEN TO LEFT, VIEW FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  1. FACILITY 226, SINGLESTORY DUPLEX, UNIT 327 (UNOCCUPIED ). INTERIOR OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 226, SINGLE-STORY DUPLEX, UNIT 327 (UNOCCUPIED ). INTERIOR OF LIVING ROOM LOOKING TOWARD FRONT DOOR FROM DINING AREA - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  2. FACILITY 210, TWO STORY DUPLEX, FRONT OBLIQUE. FACILITY 209 TO ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 210, TWO STORY DUPLEX, FRONT OBLIQUE. FACILITY 209 TO LEFT, 201 TO RIGHT, VIEW FACING NW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Two-Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  3. 52. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopy of copy of original Officers' Duplex Quarters drawing by Copeland, 7 April 1932 (Original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Heating - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  4. 50. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University. Detail of front entrance and of gable dormer - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  5. 48. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Attic and roof, basement, first floor, and second floor plans - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  6. 49. Photocopy of copy of original Officers' Duplex Quarters drawing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. Photocopy of copy of original Officers' Duplex Quarters drawing by Turner, 7 April 1932 (original in possession of Veterans Administration, Wichita, Kansas, copy at Ablah Library, Wichita State University). Front, rear, and side elevations, and cross-section - Veterans Administration Center, Officers Duplex Quarters, 5302 East Kellogg (Legal Address); 5500 East Kellogg (Common Address), Wichita, Sedgwick County, KS

  7. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts

    PubMed Central

    Willhite, Calvin C.; Karyakina, Nataliya A.; Yokel, Robert A.; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M.; Arnold, Ian M. F.; Momoli, Franco; Krewski, Daniel

    2016-01-01

    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al” assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+2 and Al(H2O)6+3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2•− and OH•. Thus, it is the Al+3-induced formation of oxygen radicals that accounts for the oxidative damage that

  8. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts.

    PubMed

    Willhite, Calvin C; Karyakina, Nataliya A; Yokel, Robert A; Yenugadhati, Nagarajkumar; Wisniewski, Thomas M; Arnold, Ian M F; Momoli, Franco; Krewski, Daniel

    2014-10-01

    oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer's disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances. PMID:25233067

  9. Linking Precursor Alterations to Nanoscale Structure and Optical Transparency in Polymer Assisted Fast-Rate Dip-Coating of Vanadium Oxide Thin Films

    PubMed Central

    Glynn, Colm; Creedon, Donal; Geaney, Hugh; Armstrong, Eileen; Collins, Timothy; Morris, Michael A.; Dwyer, Colm O’

    2015-01-01

    Solution processed metal oxide thin films are important for modern optoelectronic devices ranging from thin film transistors to photovoltaics and for functional optical coatings. Solution processed techniques such as dip-coating, allow thin films to be rapidly deposited over a large range of surfaces including curved, flexible or plastic substrates without extensive processing of comparative vapour or physical deposition methods. To increase the effectiveness and versatility of dip-coated thin films, alterations to commonly used precursors can be made that facilitate controlled thin film deposition. The effects of polymer assisted deposition and changes in solvent-alkoxide dilution on the morphology, structure, optoelectronic properties and crystallinity of vanadium pentoxide thin films was studied using a dip-coating method using a substrate withdrawal speed within the fast-rate draining regime. The formation of sub-100 nm thin films could be achieved rapidly from dilute alkoxide based precursor solutions with high optical transmission in the visible, linked to the phase and film structure. The effects of the polymer addition was shown to change the crystallized vanadium pentoxide thin films from a granular surface structure to a polycrystalline structure composed of a high density of smaller in-plane grains, resulting in a uniform surface morphology with lower thickness and roughness. PMID:26123117

  10. Corrosion behavior of 2205 duplex stainless steel.

    PubMed

    Platt, J A; Guzman, A; Zuccari, A; Thornburg, D W; Rhodes, B F; Oshida, Y; Moore, B K

    1997-07-01

    The corrosion of 2205 duplex stainless steel was compared with that of AISI type 316L stainless steel. The 2205 stainless steel is a potential orthodontic bracket material with low nickel content (4 to 6 wt%), whereas the 316L stainless steel (nickel content: 10 to 14 wt%) is a currently used bracket material. Both stainless steels were subjected to electrochemical and immersion (crevice) corrosion tests in 37 degrees C, 0.9 wt% sodium chloride solution. Electrochemical testing indicates that 2205 has a longer passivation range than 316L. The corrosion rate of 2205 was 0.416 MPY (milli-inch per year), whereas 316L exhibited 0.647 MPY. When 2205 was coupled to 316L with equal surface area ratio, the corrosion rate of 2205 reduced to 0.260 MPY, indicating that 316L stainless steel behaved like a sacrificial anode. When 316L is coupled with NiTi, TMA, or stainless steel arch wire and was subjected to the immersion corrosion test, it was found that 316L suffered from crevice corrosion. On the other hand, 2205 stainless steel did not show any localized crevice corrosion, although the surface of 2205 was covered with corrosion products, formed when coupled to NiTi and stainless steel wires. This study indicates that considering corrosion resistance, 2205 duplex stainless steel is an improved alternative to 316L for orthodontic bracket fabrication when used in conjunction with titanium, its alloys, or stainless steel arch wires. PMID:9228844

  11. Nanotribology and Nanoscale Friction

    SciTech Connect

    Guo, Yi; Qu, Zhihua; Braiman, Yehuda; Zhang, Zhenyu; Barhen, Jacob

    2008-01-01

    Tribology is the science and technology of contacting solid surfaces in relative motion, including the study of lubricants, lubrication, friction, wear, and bearings. It is estimated that friction and wear cost the U.S. economy 6% of the gross national product (Persson, 2000). For example, 5% of the total energy generated in an automobile engine is lost to frictional resistance. The study of nanoscale friction has a technological impact in reducing energy loss in machines, in microelectromechanical systems (MEMS), and in the development of durable, low-friction surfaces and ultra-thin lubrication films.

  12. Nitrogen containing shielding gases for GTAW duplex stainless steels

    SciTech Connect

    Creffield, G.K.; Cole, M.H.; Paciej, R.; Huang, W.; Urmston, S.

    1993-12-31

    The duplex stainless steel are alloys characterized as consisting of two phases; austenite and ferrite. As such, they combine the benefits of both phases i.e. good ductility and general corrosion resistance of austenite, but with improved stress corrosion cracking resistance and strength associate with ferrite. Carefully controlled manufacturing techniques are employed to produce this combination in roughly equal proportions to ensure optimum properties. The range of duplex alloys studied in this work covered both the standard grade (2205) and the latest generation of super duplex (2507) alloys; typical compositions are shown in Table 1. Although the standard duplex is the most commonly available and widely used, super duplexes, which are characterized by higher chromium, nickel, molybdenum and nitrogen contents, have even better corrosion properties and are finding increasing applications in the offshore industry. To benefit from the superior properties of duplex, it is vital that these alloys can be welded effectively and that the properties of the welded joint match those of the parent weld. The objective of the current investigation was to study the effect of nitrogen, in both the shielding and purge gas, on the weld metal nitrogen content, microstructure and corrosion resistance, with the eventual aim of recommending an effective shielding gas mixture for duplex stainless steels.

  13. Nanoscale Optoelectronic Photosynthetic Devices

    NASA Astrophysics Data System (ADS)

    Greenbaum, Elias; Lee, Ida; Guillorn, Michael; Lee, James W.; Simpson, Michael L.

    2001-03-01

    This presentation provides an overview and recent progress in the Oak Ridge National Laboratory research program in molecular electronics and green plant photosynthesis. The photosynthetic reaction center is a nanoscale molecular diode and photovoltaic device. The key thrust of our research program is the construction of molecular electronic devices from these nanoscale structures. Progress in this multidisciplinary research program has been demonstrated by direct electrical contact of emergent electrons with the Photosystem I (PS I) reaction center by nanoparticle precipitation. Demonstration of stable diode properties of isolated reaction centers combined with the ability to orient PS I by self-assembly on a planar surface, makes this structure a good building block for 2-D and potentially 3-D devices. Metallization of isolated PS I does not alter their fundamental photophysical properties and they can be bonded to metal surfaces. We report here the first measurement of photovoltage from single PS I reaction centers. Working at the Cornell University National Nanofabrication Facility, we have constructed sets of dissimilar metal electrodes separated by distances as small as 6 nm. We plan to use these structures to make electrical contact to both ends of oriented PSI reaction centers and thereby realize biomolecular logic circuits. Potential applications of PSI reaction centers for optoelectronic applications as well as molecular logic device construction will be discussed.

  14. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time. PMID:26955048

  15. Nanoscale control designs for systems.

    PubMed

    Chen, Yung-Yue

    2014-02-01

    Nanoscale control is the science of the control of objects at dimensions with 100 nm or less and the manipulation of them at this level of precision. The desired attributes of systems under nanoscale control design are extreme high resolution, accuracy, stability, and fast response. An important perspective of investigation in nanoscale control design includes system modeling and precision control devices and materials at a nanoscale dimension, i.e., design of nanopositioners. Nanopositioners are mechatronic systems with an ultraprecise resolution down to a fraction of an atomic diameter and developed to move objects over a small range in nanoscale dimension. After reviewing a lot of existing literatures for nanoscale control designs, the way to successful nanoscale control is accurate position sensing and feedback control of the motion. An overview of nanoscale identification, linear, and nonlinear control technologies, and devices that are playing a key role in improving precision, accuracy, and response of operation of these systems are introduced in this research. PMID:24749455

  16. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale. PMID:27219742

  17. Streamlined analysis of duplex sequencing data with Du Novo.

    PubMed

    Stoler, Nicholas; Arbeithuber, Barbara; Guiblet, Wilfried; Makova, Kateryna D; Nekrutenko, Anton

    2016-01-01

    Duplex sequencing was originally developed to detect rare nucleotide polymorphisms normally obscured by the noise of high-throughput sequencing. Here we describe a new, streamlined, reference-free approach for the analysis of duplex sequencing data. We show the approach performs well on simulated data and precisely reproduces previously published results and apply it to a newly produced dataset, enabling us to type low-frequency variants in human mitochondrial DNA. Finally, we provide all necessary tools as stand-alone components as well as integrate them into the Galaxy platform. All analyses performed in this manuscript can be repeated exactly as described at http://usegalaxy.org/duplex . PMID:27566673

  18. Mechanism for radical cation transport in duplex DNA oligonucleotides.

    PubMed

    Liu, Chu-Sheng; Hernandez, Rigoberto; Schuster, Gary B

    2004-03-10

    We investigated the photoinduced one-electron oxidation of a series of DNA oligomers having a covalently linked anthraquinone group (AQ) and containing [(A)(n)GG](m) or [(T)(n)GG](m) segments. These oligomers have m GG steps, where m = 4 or 6, separated by (A)(n) or (T)(n) segments, where n = 1-7 for the (A)(n) set and 1-5 for the (T)(n) set. Irradiation with UV light that is absorbed by the AQ causes injection of a radical cation into the DNA. The radical cation migrates through the DNA, causing chemical reaction, primarily at GG steps, that leads to strand cleavage after piperidine treatment. The uniform, systematic structure of the DNA oligonucleotides investigated permits the numerical solution of a kinetic scheme that models these reactions. This analysis yields two rate constants, k(hop), for hopping of the radical cation from one site to adjacent sites, and k(trap), for irreversible reaction of the radical cation with H(2)O or O(2). Analysis of these findings indicates that radical cation hopping in these duplex DNA oligomers is a process that occurs on a microsecond time scale. The value of k(hop) depends on the number of base pairs in the (A)(n) and (T)(n) segments in a systematic way. We interpret these results in terms of a thermally activated adiabatic mechanism for radical cation hopping that we identify as phonon-assisted polaron hopping. PMID:14995205

  19. Corrosion behavior of sensitized duplex stainless steel.

    PubMed

    Torres, F J; Panyayong, W; Rogers, W; Velasquez-Plata, D; Oshida, Y; Moore, B K

    1998-01-01

    The present work investigates the corrosion behavior of 2205 duplex stainless steel in 0.9% NaCl solution after various heat-treatments, and compares it to that of 316L austenitic stainless steel. Both stainless steels were heat-treated at 500, 650, and 800 degrees C in air for 1 h, followed by furnace cooling. Each heat-treated sample was examined for their microstructures and Vickers micro-hardness, and subjected to the X-ray diffraction for the phase identification. Using potentiostatic polarization method, each heat-treated sample was corrosion-tested in 37 degrees C 0.9% NaCl solution to estimate its corrosion rate. It was found that simulated sensitization showed an adverse influence on both steels, indicating that corrosion rates increased by increasing the sensitization temperatures. PMID:9713683

  20. Lubrication for high load duplex bearings

    SciTech Connect

    Steinhoff, R.G.

    1997-08-01

    Three ES and H-compatible lubricants (Environment, Safety and Health) for high load duplex bearing applications were evaluated and compared against trichlorotrifluoroethane (Freon) deposition of low molecular weight polytetrafluoroethylene (PTFE) bearing lubricant extracted from Vydax{trademark}. Vydax is a product manufactured by DuPont consisting of various molecular weights of PTFE suspended in trichlorotrifluoroethane (Freon) which is an ozone-depleting solvent. Bearings with Supercritical CO{sub 2} deposition of PTFE extracted from Vydax AR/IPA, bearings with titanium carbide coated balls, and bearings with diamond-like carbon races and retainers were evaluated. Bearings with Supercritical CO{sub 2} deposition of PTFE from Vydax AR/IPA performed as well as bearings with Freon deposition of PTFE from Freon-based Vydax.

  1. Reverse micelle synthesis of nanoscale metal containing catalysts

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  2. Nanoscale Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Baloch, Kamal; Brintlinger, Todd; Qi, Yi; Goldhaber-Gordon, David; Cumings, John

    2007-03-01

    We present real time, in-situ, high resolution thermal imaging of metallic nanowires. The nanowires are grown on the front-side of silicon nitride membranes. Resistive heating along the wires produces thermal gradients which melt/freeze 20-200nm diameter indium islands deposited by thermal evaporation on the back-side of the membrane. These transitions can be imaged using a transmission electron microscope operating in dark-field mode such that contrast corresponds to the phase of an individual island. Global changes in temperature can be used to calibrate the melting point of individual islands and to account for the presence of the ˜100nm thick silicon nitride membrane. Thermal modeling confirms the imaged thermal behavior. This technique could be generally employed for thermal imaging of nanowires and nanotubes, wherein the nanoscale systems are imaged in-situ and under electrical bias. Results of local resistive heating in a carbon nanotube device will also be shown

  3. Dissipation in Nanoscale Superfluids

    NASA Astrophysics Data System (ADS)

    Del Maestro, Adrian; Rosenow, Bernd

    Pressure driven flow of a superfluid inside a narrow channel can be maintained by the nucleation of vortices and their resulting motion across the flow lines. The maximum velocity of the superfluid is set by a nucleation rate which crucially depends on the microscopic details of the vortices and flow profile. Within the kinetic vortex theory, we have determined the critical superfluid velocity inside a nanoscale constriction and obtain agreement with experimental results for superfluid helium-4 in nanopores. In the small pore limit, when the ratio of pore radius to correlation length is of order unity, we find a drastic suppression of the superfluid velocity that can be understood within the Langer-Ambegaokar-McCumber-Halperin theory of resistive fluctuations in thin superconducting wires.

  4. Anatomy of Nanoscale Propulsion.

    PubMed

    Yadav, Vinita; Duan, Wentao; Butler, Peter J; Sen, Ayusman

    2015-01-01

    Nature supports multifaceted forms of life. Despite the variety and complexity of these forms, motility remains the epicenter of life. The applicable laws of physics change upon going from macroscales to microscales and nanoscales, which are characterized by low Reynolds number (Re). We discuss motion at low Re in natural and synthetic systems, along with various propulsion mechanisms, including electrophoresis, electrolyte diffusiophoresis, and nonelectrolyte diffusiophoresis. We also describe the newly uncovered phenomena of motility in non-ATP-driven self-powered enzymes and the directional movement of these enzymes in response to substrate gradients. These enzymes can also be immobilized to function as fluid pumps in response to the presence of their substrates. Finally, we review emergent collective behavior arising from interacting motile species, and we discuss the possible biomedical applications of the synthetic nanobots and microbots. PMID:26098511

  5. Nanoscale memristive radiofrequency switches

    NASA Astrophysics Data System (ADS)

    Pi, Shuang; Ghadiri-Sadrabadi, Mohammad; Bardin, Joseph C.; Xia, Qiangfei

    2015-06-01

    Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 1012 with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

  6. 43. View of station from southwest side with duplex keepers' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    43. View of station from southwest side with duplex keepers' dwelling to the left. USLHB photo by Herbert Bamber, June 9, 1893. - Bodie Island Light Station, Off Highway 12, Nags Head, Dare County, NC

  7. Thermoacoustic Duplex Technology for Cooling and Powering a Venus Lander

    NASA Astrophysics Data System (ADS)

    Walker, A. R.; Haberbusch, M. S.; Sasson, J.

    2015-04-01

    A Thermoacoustic Stirling Heat Engine (TASHE) is directly coupled to a Pulse Tube Refrigerator (PTR) in a duplex configuration, providing simultaneous cooling and electrical power, thereby suiting the needs of a long-lived Venus lander.

  8. Probing the duplex stainless steel phases via magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Gheno, S. M.; Santos, F. S.; Kuri, S. E.

    2008-03-01

    Duplex stainless steels are austenitic-ferritic alloys used in many applications, thanks to their excellent mechanical properties and high corrosion resistance. In this work, chemical analyses, x-ray diffraction, and magnetic force microscopy (MFM) were employed to characterize the solution annealed and aged duplex stainless steel. The samples exhibited no changes in lattice parameters and the MFM technique proved successful in clearly imaging the magnetic domain structure of the ferrite phase.

  9. Perspective view of Building No. 61 from northwest. These duplex ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of Building No. 61 from northwest. These duplex quarters were built during the 1920s on the south edge of the Northwestern Branch campus. This building is sited on a rise and shares paths and lawn with two similar structures - Buildings 56 and 79. Now located directly adjacent to the current hospital complex (background), all three duplexes are slated for demolition. - National Home for Disabled Volunteer Soldiers, Northwestern Branch, Quarters, 5000 West National Avenue, Milwaukee, Milwaukee County, WI

  10. Phase Transformations in Cast Duplex Stainless Steels

    SciTech Connect

    Yoon-Jun Kim

    2004-12-19

    Duplex stainless steels (DSS) constitute both ferrite and austenite as a matrix. Such a microstructure confers a high corrosion resistance with favorable mechanical properties. However, intermetallic phases such as {sigma} and {chi} can also form during casting or high-temperature processing and can degrade the properties of the DSS. This research was initiated to develop time-temperature-transformation (TTT) and continuous-cooling-transformation (CCT) diagrams of two types of cast duplex stainless steels, CD3MN (Fe-22Cr-5Ni-Mo-N) and CD3MWCuN (Fe-25Cr-7Ni-Mo-W-Cu-N), in order to understand the time and temperature ranges for intermetallic phase formation. The alloys were heat treated isothermally or under controlled cooling conditions and then characterized using conventional metallographic methods that included tint etching, and also using electron microscopy (SEM, TEM) and wavelength dispersive spectroscopy (WDS). The kinetics of intermetallic-phase ({sigma} + {chi}) formation were analyzed using the Johnson-Mehl-Avrami (MA) equation in the case of isothermal transformations and a modified form of this equation in the case of continuous cooling transformations. The rate of intermetallic-phase formation was found to be much faster in CD3MWCuN than CD3MN due mainly to differences in the major alloying contents such as Cr, Ni and Mo. To examine in more detail the effects of these elements of the phase stabilities; a series of eight steel castings was designed with the Cr, Ni and Mo contents systematically varied with respect to the nominal composition of CD3MN. The effects of varying the contents of alloying additions on the formation of intermetallic phases were also studied computationally using the commercial thermodynamic software package, Thermo-Calc. In general, {sigma} was stabilized with increasing Cr addition and {chi} by increasing Mo addition. However, a delicate balance among Ni and other minor elements such as N and Si also exists. Phase equilibria in