Science.gov

Sample records for nanoscale metal clusters

  1. Nanoscale electrodeposition of low-dimensional metal phases and clusters.

    PubMed

    Staikov, Georgi

    2016-08-01

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated. PMID:27273215

  2. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  3. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    PubMed Central

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-01-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage. PMID:26559602

  4. Label-free colorimetric detection of mercury via Hg2+ ions-accelerated structural transformation of nanoscale metal-oxo clusters

    NASA Astrophysics Data System (ADS)

    Chen, Kun; She, Shan; Zhang, Jiangwei; Bayaguud, Aruuhan; Wei, Yongge

    2015-11-01

    Mercury and its compounds are known to be extremely toxic but widely distributed in environment. Although many works have been reported to efficiently detect mercury, development of simple and convenient sensors is still longed for quick analyzing mercury in water. In this work, a nanoscale metal-oxo cluster, (n-Bu4N)2[Mo5NaO13(OCH3)4(NO)], (MLPOM), organically-derivatized from monolacunary Lindqvist-type polyoxomolybdate, is found to specifically react with Hg2+ in methanol/water via structural transformation. The MLPOM methanol solution displays a color change from purple to brown within seconds after being mixed with an aqueous solution containing Hg2+. By comparing the structure of polyoxomolybdate before and after reaction, the color change is revealed to be the essentially structural transformation of MLPOM accelerated by Hg2+. Based on this discovery, MLPOM could be utilized as a colorimetric sensor to sense the existence of Hg2+, and a simple and label-free method is developed to selectively detect aqueous Hg2+. Furthermore, the colorimetric sensor has been applied to indicating mercury contamination in industrial sewage.

  5. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics.

    PubMed

    Yang, Yuchao; Gao, Peng; Li, Linze; Pan, Xiaoqing; Tappertzhofen, Stefan; Choi, ShinHyun; Waser, Rainer; Valov, Ilia; Lu, Wei D

    2014-01-01

    Nanoscale metal inclusions in or on solid-state dielectrics are an integral part of modern electrocatalysis, optoelectronics, capacitors, metamaterials and memory devices. The properties of these composite systems strongly depend on the size, dispersion of the inclusions and their chemical stability, and are usually considered constant. Here we demonstrate that nanoscale inclusions (for example, clusters) in dielectrics dynamically change their shape, size and position upon applied electric field. Through systematic in situ transmission electron microscopy studies, we show that fundamental electrochemical processes can lead to universally observed nucleation and growth of metal clusters, even for inert metals like platinum. The clusters exhibit diverse dynamic behaviours governed by kinetic factors including ion mobility and redox rates, leading to different filament growth modes and structures in memristive devices. These findings reveal the microscopic origin behind resistive switching, and also provide general guidance for the design of novel devices involving electronics and ionics. PMID:24953477

  6. Properties of nanoscale metal hydrides.

    PubMed

    Fichtner, Maximilian

    2009-05-20

    Nanoscale hydride particles may exhibit chemical stabilities which differ from those of a macroscopic system. The stabilities are mainly influenced by a surface energy term which contains size-dependent values of the surface tension, the molar volume and an additional term which takes into account a potential reduction of the excess surface energy. Thus, the equilibrium of a nanoparticular hydride system may be shifted to the hydrogenated or to the dehydrogenated side, depending on the size and on the prefix of the surface energy term of the hydrogenated and dehydrogenated material. Additional complexity appears when solid-state reactions of complex hydrides are considered and phase segregation has to be taken into account. In such a case the reversibility of complex hydrides may be reduced if the nanoparticles are free standing on a surface. However, it may be enhanced if the system is enclosed by a nanoscale void which prevents the reaction partners on the dehydrogenated side from diffusing away from each other. Moreover, the generally enhanced diffusivity in nanocrystalline systems may lower the kinetic barriers for the material's transformation and, thus, facilitate hydrogen absorption and desorption. PMID:19420657

  7. Nanoscale growth twins in sputtered metal films

    SciTech Connect

    Misra, Amit; Anderoglu, Osman; Hoagland, Richard G; Zhang, X

    2008-01-01

    We review recent studies on the mechanical properties of sputtered Cu and 330 stainless steel films with {l_brace}1 1 1{r_brace} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering and the deformation mechanisms that enable usually high strengths in nanotwinned structures are highlighted. Growth twins in sputtered films possess good thermal stability at elevated temperature, providing an approach to extend the application of high strength nanostructured metals to higher temperatures.

  8. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  9. Instabilities of structured metal films on nanoscale

    NASA Astrophysics Data System (ADS)

    Dong, Nanyi; Wu, Yueying; Fowlkes, Jason; Rack, Philip; Kondic, Lou

    2014-11-01

    We consider instabilities of metal films on nanoscale, with particular focus on the interplay between the initial geometry and instability development. In experiments, metal films are deposited lithographically, allowing for precise control of the initial shape, and then exposed to laser pulses that liquefy them. The considered geometries involve various shapes (cylinders or prisms) superimposed on top of a flat film. We consider this problem within the framework of the long wave (lubrication) theory. Our simulations show that the main features of the instability development could be captured, as long as destabilizing liquid-solid interaction is considered in the model. We conclude by discussing the influence of the distance between the imposed perturbations, their shape, as well as experimental noise on the evolution. Supported by NSF Grant No. CBET-1235710.

  10. Nanoscale Structure, Dynamics, and Aging Behavior of Metallic Glass Thin Films

    NASA Astrophysics Data System (ADS)

    Burgess, J. A. J.; Holt, C. M. B.; Luber, E. J.; Fortin, D. C.; Popowich, G.; Zahiri, B.; Concepcion, P.; Mitlin, D.; Freeman, M. R.

    2016-08-01

    Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100‑xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections.

  11. Nanoscale Structure, Dynamics, and Aging Behavior of Metallic Glass Thin Films

    PubMed Central

    Burgess, J. A. J.; Holt, C. M. B.; Luber, E. J.; Fortin, D. C.; Popowich, G.; Zahiri, B.; Concepcion, P.; Mitlin, D.; Freeman, M. R.

    2016-01-01

    Scanning tunnelling microscopy observations resolve the structure and dynamics of metallic glass Cu100−xHfx films and demonstrate scanning tunnelling microscopy control of aging at a metallic glass surface. Surface clusters exhibit heterogeneous hopping dynamics. Low Hf concentration films feature an aged surface of larger, slower clusters. Argon ion-sputtering destroys the aged configuration, yielding a surface in constant fluctuation. Scanning tunnelling microscopy can locally restore the relaxed state, allowing for nanoscale lithographic definition of aged sections. PMID:27498698

  12. Nanoscale Cluster Detection in Massive Atom Probe Tomography Data

    SciTech Connect

    Seal, Sudip K; Yoginath, Srikanth B; Miller, Michael K

    2014-01-01

    Recent technological advances in atom probe tomography (APT) have led to unprecedented data acquisition capabilities that routinely generate data sets containing hundreds of millions of atoms. Detecting nanoscale clusters of different atom types present in these enormous amounts of data and analyzing their spatial correlations with one another are fundamental to understanding the structural properties of the material from which the data is derived. Extant algorithms for nanoscale cluster detection do not scale to large data sets. Here, a scalable, CUDA-based implementation of an autocorrelation algorithm is presented. It isolates spatial correlations amongst atomic clusters present in massive APT data sets in linear time using a linear amount of storage. Correctness of the algorithm is demonstrated using large synthetically generated data with known spatial distributions. Benefits and limitations of using GPU-acceleration for autocorrelation-based APT data analyses are presented with supporting performance results on data sets with up to billions of atoms. To our knowledge, this is the first nanoscale cluster detection algorithm that scales to massive APT data sets and executes on commodity hardware.

  13. Nanoscale Metal Oxide Semiconductors for Gas Sensing

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.; Evans, Laura; Xu, Jennifer C.; VanderWal, Randy L.; Berger, Gordon M.; Kulis, Michael J.

    2011-01-01

    A report describes the fabrication and testing of nanoscale metal oxide semiconductors (MOSs) for gas and chemical sensing. This document examines the relationship between processing approaches and resulting sensor behavior. This is a core question related to a range of applications of nanotechnology and a number of different synthesis methods are discussed: thermal evaporation- condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed, providing a processing overview to developers of nanotechnology- based systems. The results of a significant amount of testing and comparison are also described. A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. The TECsynthesized single-crystal nanowires offer uniform crystal surfaces, resistance to sintering, and their synthesis may be done apart from the substrate. The TECproduced nanowire response is very low, even at the operating temperature of 200 C. In contrast, the electrospun polycrystalline nanofiber response is high, suggesting that junction potentials are superior to a continuous surface depletion layer as a transduction mechanism for chemisorption. Using a catalyst deposited upon the surface in the form of nanoparticles yields dramatic gains in sensitivity for both nanostructured, one-dimensional forms. For the nanowire materials, the response magnitude and response rate uniformly increase with increasing operating temperature. Such changes are interpreted in terms of accelerated surface diffusional processes, yielding greater access to chemisorbed oxygen species and faster dissociative chemisorption, respectively. Regardless of operating temperature, sensitivity of the nanofibers is a factor of 10 to 100 greater than that of nanowires with the same catalyst for the same test condition. In summary, nanostructure appears critical to governing the reactivity, as measured by electrical

  14. Deformation of a ceramic/metal interface at the nanoscale

    NASA Astrophysics Data System (ADS)

    Jiang, Lin; Hu, Tao; Yang, Hanry; Zhang, Dalong; Topping, Troy; Lavernia, Enrique J.; Schoenung, Julie M.

    2016-05-01

    The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed.The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02011a

  15. Nanoscale growth twins in sputtered metal films

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Anderoglu, O.; Hoagland, R. G.; Misra, A.

    2008-09-01

    This article reviews recent studies on the mechanical properties of sputtered copper and 330 stainless-steel films with {111} nanoscale growth twins preferentially oriented perpendicular to growth direction. The mechanisms of formation of growth twins during sputtering, unusually high strengths, and excellent thermal stability of nanotwinned structures are highlighted.

  16. Metal interactions with boron clusters

    SciTech Connect

    Grimes, R.N.

    1982-01-01

    This book presents information on the following topics: the structural and bonding features of metallaboranes and metallacarboranes; transition-metal derivatives of nido-boranes and some related species; interactions of metal groups with the octahydrotriborate (1-) anion, B/sub 3/H/sub 8/; metallaboron cage compounds of the main group metals; closo-carborane-metal complexes containing metal-carbon and metal-boron omega-bonds; electrochemistry of metallaboron cage compounds; and boron clusters with transition metal-hydrogen bonds.

  17. Reverse micelle synthesis of nanoscale metal containing catalysts

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  18. Instability of nanoscale metallic particles under electron irradiation in TEM

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Zhang, S. G.; Xia, M. X.; Li, J. G.

    2016-03-01

    The stability of nano metallic glass under electron beam in transmission electron microscope (TEM) was investigated. The most common voltage of TEM used in metallic materials characterization was either 200 kV or 300 kV. Both situations were investigated in this work. An amorphous metallic particle with a dimension of a few hundred nanometers was tested under 300 keV electron irradiation. New phase decomposed from the parent phase was observed. Moreover, a crystal particle with the same composition and dimension was tested under 200 keV irradiation. Decomposition process also occurred in this situation. Besides, crystal orientation modification was observed during irradiation. These results proved that the electron beam in TEM have an effect on the stability of nanoscale samples during long time irradiation. Atomic displacement was induced and diffusion was enhanced by electron irradiation. Thus, artifacts would be induced when a nanoscale metallic sample was characterized in TEM.

  19. Deformation of a ceramic/metal interface at the nanoscale.

    PubMed

    Jiang, Lin; Hu, Tao; Yang, Hanry; Zhang, Dalong; Topping, Troy; Lavernia, Enrique J; Schoenung, Julie M

    2016-05-19

    The mechanical response of heterophase interfaces has attracted substantial attention in recent years. Here, we utilized an in situ transmission electron microscopy (TEM) technique to isolate an individual nanoscale ceramic/metal interface and characterize its nanomechanical response. The interface, at which there was a Mg-rich segregation nanolayer between the single crystal ceramic (B4C) and the polycrystalline metal (Al alloy, AA5083), was determined to have a bond strength greater than 1.5 GPa. Bimodal failure and metallic grain rotation occurred in the metallic region, allowing the interface to accommodate a deformation strain of 5.4%. The roles of elemental segregation and nanoscale dimensions on interfacial debonding mechanisms are discussed. PMID:27147300

  20. Hybrid uranium-transition-metal oxide cage clusters.

    PubMed

    Ling, Jie; Hobbs, Franklin; Prendergast, Steven; Adelani, Pius O; Babo, Jean-Marie; Qiu, Jie; Weng, Zhehui; Burns, Peter C

    2014-12-15

    Transition-metal based polyoxometalate clusters have been known for decades, whereas those built from uranyl peroxide polyhedra have more recently emerged as a family of complex clusters. Here we report the synthesis and structures of six nanoscale uranyl peroxide cage clusters that contain either tungstate or molybdate polyhedra as part of the cage, as well as phosphate tetrahedra. These transition-metal-uranium hybrid clusters exhibit unique polyhedral connectivities and topologies that include 6-, 7-, 8-, 10-, and 12-membered rings of uranyl polyhedra and uranyl ions coordinated by bidentate peroxide in both trans and cis configurations. The transition-metal polyhedra appear to stabilize unusual units built of uranyl polyhedra, rather than templating their formation. PMID:25434424

  1. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    SciTech Connect

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects of both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.

  2. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGESBeta

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; Kennedy, Marian S.

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  3. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  4. Nanoscale High-Speed Metal-Semiconductor Photodetectors

    NASA Astrophysics Data System (ADS)

    Liu, Mark Yue

    This thesis work studies the design, fabrication and characterization of nanoscale high-speed metal-semiconductor -metal (MSM) photodetectors. Smallest, fastest MSM photodetectors will be presented. Important design issues such as carrier transit time, carrier recombination time, light penetration depth, and device parasitic elements are investigated. Carrier transport in nanoscale detectors is studied using a Monte Carlo method. Based on the theoretical and experimental data, scaling rules for high-speed operation of MSM photodetectors are proposed. Nanoscale MSM photodetectors are fabricated using a custom-built ultra-high-resolution electron beam lithography system and a lift-off process. Different resist schemes and accurate dose control are essential to produce desired nanoscale structures. MSM photodetectors with finger spacing and width as small as 25 nm are fabricated on GaAs, Si and silicon-on-insulator (SOI) substrate. To our knowledge, they represent the smallest ever reported to date. Sub-picosecond characterization of the detectors' impulse response is performed using an electro-optic system and a femtosecond laser. The fastest MSM photodetectors have a response time and a 3-dB bandwidth of, respectively, 0.87 ps and 510 GHz on low-temperature-grown GaAs, 1.5 ps and 300 GHz on bulk GaAs, 3.7 ps and 110 GHz on bulk Si, and 3.2 ps and 140 GHz on SOI. They are, to the best of our knowledge, the fastest photodetectors of their kind. MSM photodetectors on GaAs and Si can also be used at 1.3 to 1.55 μm wavelength range, based on the internal emission of carriers at the metal-semiconductor interface. The performance of the GaAs and Si detector at 1.3 μm wavelength, including the dependence of responsivity on finger size, optical power, and applied bias, will be presented in this thesis. Finally, we will propose a new silicon Fabry-Perot planar waveguide modulator structure consisting of two Bragg mirrors, which are nanoscale trenches in the waveguide

  5. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  6. Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

    NASA Astrophysics Data System (ADS)

    Borghi, F.; Sogne, E.; Lenardi, C.; Podestà, A.; Merlini, M.; Ducati, C.; Milani, P.

    2016-08-01

    Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.

  7. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  8. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  9. Reactive cluster model of metallic glasses

    SciTech Connect

    Jones, Travis E.; Miorelli, Jonathan; Eberhart, Mark E.

    2014-02-28

    Though discovered more than a half century ago metallic glasses remain a scientific enigma. Unlike crystalline metals, characterized by short, medium, and long-range order, in metallic glasses short and medium-range order persist, though long-range order is absent. This fact has prompted research to develop structural descriptions of metallic glasses. Among these are cluster-based models that attribute amorphous structure to the existence of clusters that are incommensurate with crystalline periodicity. Not addressed, however, are the chemical factors stabilizing these clusters and promoting their interconnections. We have found that glass formers are characterized by a rich cluster chemistry that above the glass transformation temperature promotes exchange as well as static and vibronic sharing of atoms between clusters. The vibronic mechanism induces correlated motions between neighboring clusters and we hypothesize that the distance over which these motions are correlated mediates metallic glass stability and influences critical cooling rates.

  10. The mechanical behavior of nanoscale metallic multilayers: A survey

    NASA Astrophysics Data System (ADS)

    Zhou, Q.; Xie, J. Y.; Wang, F.; Huang, P.; Xu, K. W.; Lu, T. J.

    2015-06-01

    The mechanical behavior of nanoscale metallic multilayers (NMMs) has attracted much attention from both scientific and practical views. Compared with their monolithic counterparts, the large number of interfaces existing in the NMMs dictates the unique behavior of this special class of structural composite materials. While there have been a number of reviews on the mechanical mechanism of microlaminates, the rapid development of nanotechnology brought a pressing need for an overview focusing exclusively on a property-based definition of the NMMs, especially their size-dependent microstructure and mechanical performance. This article attempts to provide a comprehensive and up-to-date review on the microstructure, mechanical property and plastic deformation physics of NMMs. We hope this review could accomplish two purposes: (1) introducing the basic concepts of scaling and dimensional analysis to scientists and engineers working on NMM systems, and (2) providing a better understanding of interface behavior and the exceptional qualities the interfaces in NMMs display at atomic scale.

  11. Global minimum search via annealing: Nanoscale gold clusters

    NASA Astrophysics Data System (ADS)

    Andreeva, Nadezhda A.; Chaban, Vitaly V.

    2015-02-01

    Global minimum potential energy state can be very challenging to locate in a relatively large atomistic system. Our present work investigates this problem using an example of gold nanoclusters, Au10, Au20, Au30, Au50. Nanoscale gold particles (NGPs) contribute heavily in life sciences through their applications in diagnostics and therapeutics. NGPs feature manifold atomistic configurations depending on the conditions of synthesis. We apply annealing molecular dynamics (AMD) as an alternative and supplement to the well-established eigenfollowing (EF) geometry optimization. We conclude that the combination of AMD and EF systematically works more efficiently than EF alone.

  12. MODELING THE METALLICITY DISTRIBUTION OF GLOBULAR CLUSTERS

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y. E-mail: ognedin@umich.ed

    2010-08-01

    Observed metallicities of globular clusters reflect physical conditions in the interstellar medium of their high-redshift host galaxies. Globular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are often interpreted as indicating two distinct modes of cluster formation. The metal-rich and metal-poor clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as their masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We present such a model, which prescribes the formation of globular clusters semi-analytically using galaxy assembly history from cosmological simulations coupled with observed scaling relations for the amount and metallicity of cold gas available for star formation. We assume that massive star clusters form only during mergers of massive gas-rich galaxies and tune the model parameters to reproduce the observed distribution in the Galaxy. A wide, but not the entire, range of model realizations produces metallicity distributions consistent with the data. We find that early mergers of smaller hosts create exclusively blue clusters, whereas subsequent mergers of more massive galaxies create both red and blue clusters. Thus, bimodality arises naturally as the result of a small number of late massive merger events. This conclusion is not significantly affected by the large uncertainties in our knowledge of the stellar mass and cold gas mass in high-redshift galaxies. The fraction of galactic stellar mass locked in globular clusters declines from over 10% at z > 3 to 0.1% at present.

  13. Design and fabrication of memory devices based on nanoscale polyoxometalate clusters

    NASA Astrophysics Data System (ADS)

    Busche, Christoph; Vilà-Nadal, Laia; Yan, Jun; Miras, Haralampos N.; Long, De-Liang; Georgiev, Vihar P.; Asenov, Asen; Pedersen, Rasmus H.; Gadegaard, Nikolaj; Mirza, Muhammad M.; Paul, Douglas J.; Poblet, Josep M.; Cronin, Leroy

    2014-11-01

    Flash memory devices--that is, non-volatile computer storage media that can be electrically erased and reprogrammed--are vital for portable electronics, but the scaling down of metal-oxide-semiconductor (MOS) flash memory to sizes of below ten nanometres per data cell presents challenges. Molecules have been proposed to replace MOS flash memory, but they suffer from low electrical conductivity, high resistance, low device yield, and finite thermal stability, limiting their integration into current MOS technologies. Although great advances have been made in the pursuit of molecule-based flash memory, there are a number of significant barriers to the realization of devices using conventional MOS technologies. Here we show that core-shell polyoxometalate (POM) molecules can act as candidate storage nodes for MOS flash memory. Realistic, industry-standard device simulations validate our approach at the nanometre scale, where the device performance is determined mainly by the number of molecules in the storage media and not by their position. To exploit the nature of the core-shell POM clusters, we show, at both the molecular and device level, that embedding [(Se(IV)O3)2]4- as an oxidizable dopant in the cluster core allows the oxidation of the molecule to a [Se(V)2O6]2- moiety containing a {Se(V)-Se(V)} bond (where curly brackets indicate a moiety, not a molecule) and reveals a new 5+ oxidation state for selenium. This new oxidation state can be observed at the device level, resulting in a new type of memory, which we call `write-once-erase'. Taken together, these results show that POMs have the potential to be used as a realistic nanoscale flash memory. Also, the configuration of the doped POM core may lead to new types of electrical behaviour. This work suggests a route to the practical integration of configurable molecules in MOS technologies as the lithographic scales approach the molecular limit.

  14. Development of Metal Cluster-Based Energetic Materials

    NASA Astrophysics Data System (ADS)

    Lightstone, James; Hooper, Joseph; Stoltz, Chad; Wilson, Becca; Mayo, Dennis; Eichhorn, Bryan; Bowen, Kit

    2011-06-01

    The energy available from the combustion of Al is 2 to 3 times that of conventional high explosives and as a result is often loaded into explosive and propellant formulations in micron and nano-particle form. However, even at the nano-scale the release of energy is slowed by the reaction kinetics of particle oxidation. In order to realize faster reaction rates, on the order of current CHNO explosives, the size of the particles of interest need to be reduced significantly into the molecular size-range (10's of atoms). Current research efforts at NSWC-IHD are utilizing gas-phase molecular beam studies, theoretical calculations, and condensed-phase production methods to identify novel metal cluster systems in which passivated metal clusters make up the subunit of a molecular metal-based energetic material. To date, small amounts of a metal-based compound with a subunit containing four Al atoms and four Cp* ligands has been produced and is currently being characterized using DSC and TGA. Additional Al based systems passivated with a variety of organic ligands are being systematically examined. Analytical and theoretical results obtained for Al4Cp*4 and the additional cluster systems under investigation along with their potential energetic applications will be presented.

  15. Fission and dipole resonances in metal clusters

    SciTech Connect

    Martin, T. P.; Billas, I. M. L.; Branz, W.; Heinebrodt, M.; Tast, F.; Malinowski, N.

    1997-06-20

    It is not obvious that metal clusters should behave like atomic nuclei--but they do. Of course the energy and distance scales are quite different. But aside from this, the properties of these two forms of condensed matter are amazingly similar. The shell model developed by nuclear physicists describes very nicely the electronic properties of alkali metal clusters. The giant dipole resonances in the excitation spectra of nuclei have their analogue in the plasmon resonances of metal clusters. Finally, the droplet model describing the fission of unstable nuclei can be successively applied to the fragmentation of highly charged metal clusters. The similarity between clusters and nuclei is not accidental. Both systems consist of fermions moving, nearly freely, in a confined space.

  16. Adamantyl- and Furanyl-Protected Nanoscale Silver Sulfide Clusters.

    PubMed

    Bestgen, Sebastian; Yang, Xiaoxun; Issac, Ibrahim; Fuhr, Olaf; Roesky, Peter W; Fenske, Dieter

    2016-07-11

    The silver salts of 1-adamantanethiol (AdSH) and furan-2-ylmethanethiol (FurCH2 SH) were successfully applied as building blocks for ligand-protected Ag2 S nanoclusters. The reaction of the silver thiolates [AgSAd]x and [AgSCH2 Fur]x with S(SiMe3 )2 and 1,5-bis(diphenylphosphino)pentane (dpppt) afforded three different clusters with 58, 94 and, 190 silver atoms. The intensely colored compounds [Ag58 S13 (SAd)32 ] (1), [Ag94 S34 (SAd)26 (dpppt)6 ] (2), and [Ag190 S58 (SCH2 Fur)74 (dpppt)8 ] (3) were structurally characterized by single-crystal X-ray diffraction and exhibit different cluster core geometries and ligand shells. The diameters of the well-defined sphere-shaped nanoclusters range from 2.2 nm to 3.5 nm. PMID:27297587

  17. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  18. A Simple MO Treatment of Metal Clusters.

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1980-01-01

    Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)

  19. Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces

    NASA Astrophysics Data System (ADS)

    Ren, Jie; Zhu, Jian-Xin

    2013-06-01

    Controlling heat flow by phononic nanodevices has received significant attention recently because of its fundamental and practical implications. Elementary phononic devices such as thermal rectifiers, transistors, and logic gates are essentially based on two intriguing properties: heat diode effect and negative differential thermal conductance. However, little is known about these heat transfer properties across metal-dielectric interfaces, especially at nanoscale. Here we analytically resolve the microscopic mechanism of the nonequilibrium nanoscale energy transfer across metal-dielectric interfaces, where the inelastic electron-phonon scattering directly assists the energy exchange. We demonstrate the emergence of heat diode effect and negative differential thermal conductance in nanoscale interfaces and explain why these novel thermal properties are usually absent in bulk metal-dielectric interfaces. These results will generate exciting prospects for the nanoscale interfacial energy transfer, which should have important implications in designing hybrid circuits for efficient thermal control and open up potential applications in thermal energy harvesting with low-dimensional nanodevices.

  20. Molecular dynamics simulation of nanoscale surface diffusion of heterogeneous adatoms clusters

    NASA Astrophysics Data System (ADS)

    Muhammad, Imran; Fayyaz, Hussain; Muhammad, Rashid; Muhammad, Ismail; Hafeez, Ullah; Yongqing, Cai; M Arshad, Javid; Ejaz, Ahmad; S, A. Ahmad

    2016-07-01

    Molecular dynamics simulation employing the embedded atom method potential is utilized to investigate nanoscale surface diffusion mechanisms of binary heterogeneous adatoms clusters at 300 K, 500 K, and 700 K. Surface diffusion of heterogeneous adatoms clusters can be vital for the binary island growth on the surface and can be useful for the formation of alloy-based thin film surface through atomic exchange process. The results of the diffusion process show that at 300 K, the diffusion of small adatoms clusters shows hopping, sliding, and shear motion; whereas for large adatoms clusters (hexamer and above), the diffusion is negligible. At 500 K, small adatoms clusters, i.e., dimer, show almost all possible diffusion mechanisms including the atomic exchange process; however no such exchange is observed for adatoms clusters greater than dimer. At 700 K, the exchange mechanism dominates for all types of clusters, where Zr adatoms show maximum tendency and Ag adatoms show minimum or no tendency toward the exchange process. Separation and recombination of one or more adatoms are also observed at 500 K and 700 K. The Ag adatoms also occupy pop-up positions over the adatoms clusters for short intervals. At 700 K, the vacancies are also generated in the vicinity of the adatoms cluster, vacancy formation, filling, and shifting can be observed from the results.

  1. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    SciTech Connect

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction and precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.

  2. Nanoscale electrical characteristics of metal (Au, Pd)-graphene-metal (Cu) contacts

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Meli, G.; Grimaldi, M. G.

    2016-01-01

    Free-standing graphene presents exceptional physical properties (as a high carrier mobility) making it the ideal candidate for the next generation nanoelectronics. However, when graphene layers are inserted in real electronics devices, metal contacting is required. The metal-graphene interaction significantly affects the graphene electrical properties, drastically changing its behavior with respect to the free-standing configuration. So, this work presents an experimental study on the nanoscale electric characteristics of metal/graphene/metal contacts. In particular, starting from single-layer graphene grown on Cu foil we deposited on the graphene surface two different metal films (Au or Pd) and the Au/graphene/Cu and Pd/graphene/Cu current-voltage characteristics are acquired, on the nanometric scale, by the conductive atomic force microscopy. Both systems presented a current voltage rectifying behavior. However, the Au/graphene/Cu system conducts significantly at negative applied bias (graphene behaves as a p-type semiconductor in a meta/semiconductor contact), while in the Pd/graphene/Cu at positive applied bias (graphene behaves as a n-type semiconductor in a metal/semiconductor contact). This difference is discussed on the basis of the band energy diagram at the metal/graphene interface and the modification of the graphene Fermi level due to the Au/graphene or Pd/graphene interaction.

  3. Rational control of nano-scale metal-catalysts for biomass conversion.

    PubMed

    Wang, Yunzhu; De, Sudipta; Yan, Ning

    2016-05-01

    Nano-scale metal particles have huge potential due to their wide range of diverse catalytic applications. Recently, they have found numerous applications in the field of biomass conversion. The proposed contribution is aimed at providing a brief account of remarkable recent findings and advances in the design of metal-based nanocatalysts for biomass valorization. We have discussed the rational control of the size, shape, composition and surface properties of nano-scale metal catalysts. Following that, the interplay between various structural parameters and the catalytic properties in the transformation of cellulose, chitin, lignin and lipids has been critically discussed. PMID:27022992

  4. Metal-organic frameworks as templates for nanoscale NaAlH4.

    PubMed

    Bhakta, Raghunandan K; Herberg, Julie L; Jacobs, Benjamin; Highley, Aaron; Behrens, Richard; Ockwig, Nathan W; Greathouse, Jeffery A; Allendorf, Mark D

    2009-09-23

    Metal-organic frameworks (MOFs) offer an attractive alternative to traditional hard and soft templates for nanocluster synthesis because their ordered crystalline lattice provides a highly controlled and inherently understandable environment. We demonstrate that MOFs are stable hosts for metal hydrides proposed for hydrogen storage and their reactive precursors, providing platform to test recent theoretical predictions that some of these materials can be destabilized with respect to hydrogen desorption by reducing their critical dimension to the nanoscale. With the MOF HKUST-1 as template, we show that NaAlH(4) nanoclusters as small as eight formula units can be synthesized. The confinement of these clusters within the MOF pores dramatically accelerates the desorption kinetics, causing decomposition to occur at approximately 100 degrees C lower than bulk NaAlH(4). However, using simultaneous thermogravimetric modulated beam mass spectrometry, we also show that the thermal decomposition mechanism of NaAlH(4) is complex and may involve processes such as nucleation and growth in addition to the normally assumed two-step chemical decomposition reactions. PMID:19719170

  5. Using Dynamic Quantum Clustering to Analyze Hierarchically Heterogeneous Samples on the Nanoscale

    SciTech Connect

    Hume, Allison; /Princeton U. /SLAC

    2012-09-07

    Dynamic Quantum Clustering (DQC) is an unsupervised, high visual data mining technique. DQC was tested as an analysis method for X-ray Absorption Near Edge Structure (XANES) data from the Transmission X-ray Microscopy (TXM) group. The TXM group images hierarchically heterogeneous materials with nanoscale resolution and large field of view. XANES data consists of energy spectra for each pixel of an image. It was determined that DQC successfully identifies structure in data of this type without prior knowledge of the components in the sample. Clusters and sub-clusters clearly reflected features of the spectra that identified chemical component, chemical environment, and density in the image. DQC can also be used in conjunction with the established data analysis technique, which does require knowledge of components present.

  6. Structural evolution and metallicity of lead clusters

    NASA Astrophysics Data System (ADS)

    Götz, Daniel A.; Shayeghi, Armin; Johnston, Roy L.; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-05-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps

  7. Cage Destruction in Metal-Fullerene Clusters

    SciTech Connect

    Tast, F.; Malinowski, N.; Frank, S.; Heinebrodt, M.; Billas, I.M.; Martin, T.P.

    1996-10-01

    Mass spectrometric studies on free clusters composed of single fullerene molecules and transition metal atoms (C{sub 60}{ital M}{sub {ital x}} and C{sub 70}{ital M}{sub {ital x}}; {ital x}=0.150, {ital M}{element_of}{l_brace}Ti,V,Nb,Ta{r_brace}) reveal that they undergo a laser induced transformation from metal-fullerene clusters to metal carbide and metallo-carbohedrene clusters. Two types of fragmentation behavior are observed. Fullerenes doped with titanium or vanadium seem to be stable at low laser intensities, whereas tantalum and niobium severely destabilize the fullerene cage. Photofragmentation spectra of preselected C{sub 60}Ta{sub {ital x}} indicate that the C{sub 60} cage is destroyed for {ital x}{ge}3. {copyright} {ital 1996 The American Physical Society.}

  8. Shell structure in faceted metal clusters

    NASA Astrophysics Data System (ADS)

    Pavloff, Nicolas; Creagh, Stephen C.

    1993-12-01

    We study the quantized electronic energy levels in a three-dimensional icosahedral billiard modeling a faceted metal cluster. The first 2000 levels are determined numerically. The magic numbers are compared with experimental data and with the results for a spherical model. We discuss the supershell structure and propose its study as a test of cluster sphericity. We compare our results with the predictions of the semiclassical trace formula and point out the relevance of diffractive orbits.

  9. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  10. Radial distribution of metallicity in the LMC cluster systems

    NASA Technical Reports Server (NTRS)

    Kontizas, M.; Kontizas, E.; Michalitsianos, A. G.

    1993-01-01

    New determinations of the deprojected distances to the galaxy center for 94 star clusters and their metal abundances are used to investigate the variation of metallicity across the two LMC star cluster systems (Kontizas et al. 1990). A systematic radial trend of metallicity is observed in the extended outer cluster system, the outermost clusters being significantly metal poorer than the more central ones, with the exception of six clusters (which might lie out of the plane of the cluster system) out of 77. A radial metallicity gradient has been found, qualitatively comparable to that of the Milky Way for its system of the old disk clusters. If the six clusters are taken into consideration then the outer cluster system is well mixed up to 8 kpc. The spatial distribution of metallicities for the inner LMC cluster system, consisting of very young globulars does not show a systematic radial trend; they are all metal rich.

  11. Structural evolution and metallicity of lead clusters.

    PubMed

    Götz, Daniel A; Shayeghi, Armin; Johnston, Roy L; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-06-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms. PMID:27181365

  12. Metals Cluster Brief. Vocational Education in Oregon.

    ERIC Educational Resources Information Center

    Little, Ralph

    This guide sets forth minimum approval criteria for metals occupational clusters training programs in Oregon. The information in the guide is intended for use by district-level curriculum planners, teachers, regional coordinators, or state education department staff involved with new program development or revisions of existing programs. The guide…

  13. Synthesis, characterization and catalytic application of nanoscale metal and metal oxide heterogeneous catalysts

    NASA Astrophysics Data System (ADS)

    Wang, Xue

    Nanoscale metals or metal oxides with high surface area to volume ratios have been widely used as catalysts for various chemical reactions. A major challenge to utilize metal nanocatalysts commercially is their tendency to sinter under working reaction conditions. To overcome this, much research is being done to anchor metal nanocatalysts on various supports to prevent their agglomeration. Mesoporous silica, SBA-15 is an attractive support material candidate because of its high surface area, stable structure and chemical inertness. Scientists have anchored metal nanocatalysts onto the pore of SBA-15 and observed some improvement in the stability. However, the interactions between the nanocatalysts and SBA-15 are relatively weak and sintering still occurs resulting in a loss of activity. In order to impart enhanced robustness, a new type of stable metal/SBA-15 nanocomposite has been prepared by intercalating metal nanoparticles into the walls of mesoporous silica SBA-15 by a unique synthetic strategy using metal coordinating agents such as bis[3-(triethoxysilyl) propyl]-tetrasulfide (TESPTS). In this dissertation, systemic research on the preparation parameters and extension to other metals will be presented. The structure changes caused by addition of TESPTS to the preparation of mesoporous silica were investigated. The relationship between increasing amounts of TESPTS and the structural change was obtained. Afterwards, a new type of PdMS catalyst with Pd intercalated in the walls of SBA-15 was synthesized for the first time using a modified preparation pathway. These materials were characterized by N2 physisorption, X-ray diffraction, transmission electron microscopy and inductively coupled plasma. The PdMS system was utilized as an active and robust catalyst for Heck reactions. Notably, after the catalytic reaction, the PdMS catalysts maintained its reactivity and size without undergoing any agglomeration due to the stable nanocomposite structure. Carbon

  14. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    NASA Astrophysics Data System (ADS)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  15. Laser-induced nanoscale superhydrophobic structures on metal surfaces.

    PubMed

    Jagdheesh, R; Pathiraj, B; Karatay, E; Römer, G R B E; Huis in't Veld, A J

    2011-07-01

    The combination of a dual-scale (nano and micro) roughness with an inherent low-surface energy coating material is an essential factor for the development of superhydrophobic surfaces. Ultrashort pulse laser (USPL) machining/structuring is a promising technique for obtaining the dual-scale roughness. Sheets of stainless steel (AISI 304 L SS) and Ti-6Al-4V alloys were laser-machined with ultraviolet laser pulses of 6.7 ps, with different numbers of pulses per irradiated area. The surface energy of the laser-machined samples was reduced via application of a layer of perfluorinated octyltrichlorosilane (FOTS). The influence of the number of pulses per irradiated area on the geometry of the nanostructure and the wetting properties of the laser-machined structures has been studied. The results show that with an increasing number of pulses per irradiated area, the nanoscale structures tend to become predominantly microscale. The top surface of the microscale structures is seen covered with nanoscale protrusions that are most pronounced in Ti-6Al-4V. The laser-machined Ti-6Al-4V surface attained superhydrophobicity, and the improvement in the contact angle was >27% when compared to that of a nontextured surface. PMID:21627133

  16. Nanoscale size effects in crystallization of metallic glass nanorods

    PubMed Central

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J.

    2015-01-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding. PMID:26323828

  17. Nanoscale size effects in crystallization of metallic glass nanorods.

    PubMed

    Sohn, Sungwoo; Jung, Yeonwoong; Xie, Yujun; Osuji, Chinedum; Schroers, Jan; Cha, Judy J

    2015-01-01

    Atomistic understanding of crystallization in solids is incomplete due to the lack of appropriate materials and direct experimental tools. Metallic glasses possess simple metallic bonds and slow crystallization kinetics, making them suitable to study crystallization. Here, we investigate crystallization of metallic glass-forming liquids by in-situ heating metallic glass nanorods inside a transmission electron microscope. We unveil that the crystallization kinetics is affected by the nanorod diameter. With decreasing diameters, crystallization temperature decreases initially, exhibiting a minimum at a certain diameter, and then rapidly increases below that. This unusual crystallization kinetics is a consequence of multiple competing factors: increase in apparent viscosity, reduced nucleation probability and enhanced heterogeneous nucleation. The first two are verified by slowed grain growth and scatter in crystallization temperature with decreasing diameters. Our findings provide insight into relevant length scales in crystallization of supercooled metallic glasses, thus offering accurate processing conditions for predictable metallic glass nanomolding. PMID:26323828

  18. The structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  19. Metallicities and Reddenings For Young Globular Clusters

    NASA Astrophysics Data System (ADS)

    Sarajedini, Ata; Layden, Andrew

    1996-04-01

    We have obtained VI CCD photometry for the young globular clusters Ruprecht 106, Terzan 7, and Arp 2 using the 0.9m and 1.5m telescopes at Cerro Tololo Inter-American Observatory. The resulting V ~ (V-I) color-magnitude diagrams extend from the tip of the red giant branch to approximately 3 magnitudes below the horizontal branch. We have applied the SRM method of Sarajedini (1994) to the RGBs of these clusters in order to measure their reddenings and metallicities. Furthermore, we have formulated the SRM method in the V ~ (B-V) color-magnitude plane and applied it to published BV photometry for these young globular clusters. The implications of these derived parameters will be discussed.

  20. A transition in mechanisms of size dependent electrical transport at nanoscale metal-oxide interfaces

    SciTech Connect

    Hou, Jiechang; Nonnenmann, Stephen S.; Qin, Wei; Bonnell, Dawn A.

    2013-12-16

    As device miniaturization approaches nanoscale dimensions, interfaces begin to dominate electrical properties. Here the system archetype Au/SrTiO{sub 3} is used to examine the origin of size dependent transport properties along metal-oxide interfaces. We demonstrate that a transition between two classes of size dependent electronic transport mechanisms exists, defined by a critical size ε. At sizes larger than ε an edge-related tunneling effect proportional to 1/D (the height of the supported Au nanoparticle) is observed; interfaces with sizes smaller than ε exhibit random fluctuations in current. The ability to distinguish between these mechanisms is important to future developments in nanoscale device design.

  1. Assembly of Fe-substituted Dawson-type nanoscale selenotungstate clusters with photocatalytic H2 evolution activity.

    PubMed

    Chen, Wei-Chao; Qin, Chao; Wang, Xin-Long; Li, Yang-Guang; Zang, Hong-Ying; Jiao, Yan-Qing; Huang, Peng; Shao, Kui-Zhan; Su, Zhong-Min; Wang, En-Bo

    2014-11-11

    Two Fe-substituted Dawson-type nanoscale selenotungstate clusters, {Fe6Se6W34} and {Fe10Se8W62} involving {α-Se2W14} and {γ-Se2W14} building blocks, have been isolated, which exhibit photocatalytic H2 evolution activity. Their electrochemical behaviours and magnetic properties were also investigated. PMID:25232933

  2. Dual-probe scanning tunneling microscope for study of nanoscale metal-semiconductor interfaces

    NASA Astrophysics Data System (ADS)

    Yi, W.; Kaya, I. I.; Altfeder, I. B.; Appelbaum, I.; Chen, D. M.; Narayanamurti, V.

    2005-06-01

    Using a dual-probe scanning tunneling microscope, we have performed three-terminal ballistic electron emission spectroscopy on Au /GaAs(100) by contacting the patterned metallic thin film with one tip and injecting ballistic electrons with another tip. The collector current spectra agree with a Monte-Carlo simulation based on modified planar tunneling theory. Our results suggest that it is possible to study nanoscale metal-semiconductor interfaces without the requirement of an externally-contacted continuous metal thin film.

  3. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters.

    PubMed

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-08-24

    Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [Mo(VI)72Mo(V)60O372(CH3COO)30(H2O)72](42-)), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial Mo(VI) centers of molybdate precursors are reduced to form {Mo(V)2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {Mo(V)2(acetate)} reaches a critical value, it triggers the co-assembly of Mo(V) and Mo(VI) species into the giant clusters. PMID:27459601

  4. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian J.; Heinz, Sebastian; Reynolds, Christopher S.

    2016-04-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  5. Jet-driven redistribution of metal in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Morsony, Brian; Heinz, Sebastian; Reynolds, Christopher; Ruszkowski, Mateusz; Brueggen, Marcus

    2015-08-01

    The ICM in galaxy clusters is metal enriched, typically to about 30% of solar metallicity, out to large radii. However, metals should form mostly in galaxies and remained bound to their progenitor systems. To enrich the ICM, effective mixing of gas needs to occur across large scales. We carry out numerical simulations of mixing driven by AGN jets in dynamical galaxy clusters. These jets lift gas out of the center of the cluster, redistributing metals and adding energy to the ICM. We compare our results to X-ray observations of metallicity in clusters.

  6. Modeling of a nanoscale rectangular hole in a real metal.

    PubMed

    Kumar, Arun; Srivastava, Triranjita

    2008-02-15

    We propose and implement a simple and accurate method to analyze a subwavelength rectangular hole in a real metal and obtain the modal characteristics of its fundamental mode. Our results are found to be in excellent agreement with those reported in the literature, obtained by the effective index method (EIM) and finite-element and finite-difference methods. Unlike the EIM, the present method has no ambiguity in its implementation and is able to predict the major field components also, which may be useful in understanding the extraordinary transmission characteristics of such structures. PMID:18278101

  7. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass

    PubMed Central

    Lu, Y. M.; Zeng, J. F.; Wang, S.; Sun, B. A.; Wang, Q.; Lu, J.; Gravier, S.; Bladin, J. J.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-01-01

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3–0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs. PMID:27383387

  8. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass

    NASA Astrophysics Data System (ADS)

    Lu, Y. M.; Zeng, J. F.; Wang, S.; Sun, B. A.; Wang, Q.; Lu, J.; Gravier, S.; Bladin, J. J.; Wang, W. H.; Pan, M. X.; Liu, C. T.; Yang, Y.

    2016-07-01

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3–0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs.

  9. Structural Signature of Plasticity Unveiled by Nano-Scale Viscoelastic Contact in a Metallic Glass.

    PubMed

    Lu, Y M; Zeng, J F; Wang, S; Sun, B A; Wang, Q; Lu, J; Gravier, S; Bladin, J J; Wang, W H; Pan, M X; Liu, C T; Yang, Y

    2016-01-01

    Room-temperature plasticity in metallic glasses (MGs) is commonly associated with local structural heterogeneity; however, direct observation of the subtle structural change caused by plasticity is vitally important but the data are extremely scarce. Based on dynamic atomic force microscopy (DAFM), here we show that plasticity-induced structural evolution in a Zr-Ni MG can be revealed via nano-scale viscoelastic contacts between an AFM tip and plastically deformed MG surface layers. Our experimental results clearly show a spatial amplification of the nano-scale structural heterogeneity caused by the distributed plastic flow, which can be linked to the limited growth, reorientation and agglomeration of some nano-scale energy-absorbing regions, which are reminiscent of the behavior of the defect-like regions with non-affine deformation as conceived in many theories and models. Furthermore, we are able to experimentally extract the thermodynamic properties of these nano-scale regions, which possess an energy barrier of 0.3-0.5 eV, about half of that for a typical shear transformation event that usually occurs at the onset of plasticity. The outcome of our current work sheds quantitative insights into the correlation between plasticity and structural heterogeneity in MGs. PMID:27383387

  10. Nanoscale metal oxide and supported metal catalysts for Li-air battery

    NASA Astrophysics Data System (ADS)

    Huang, Kan

    The dissertation work focuses on research and development of durable nanoscale catalysts and supports for rechargeable Li-air batteries that use aqueous catholytes. Transition metal oxides, TiO2 and Nb2 O5 in particular, were prepared from a sol-gel process in the form of nanocoatings (5˜50 nm) on carbon nanotubes (CNTs) and studied as catalyst supports. Carbon doping in the oxides and post annealing significantly increased their electronic conductivity. Pt catalyst on the support with TiO 2 (Pt/c-TiO2/CNTs) showed a much better oxygen reduction reaction (ORR) activity than a commercial Pt on carbon black (Pt/C). Negligible loss (< 3%) in ORR activity was found in Pt/c-TiO2/CNTs as compared to more than 50% loss in Pt/C, demonstrating a significantly improved durability in the developed catalysts. However, Pt/c-Nb2O5/CNTs was found to be worse in ORR activity and durability, suggesting that c-Nb 2O5/CNTs may not be a good support. CNTs have fibrous shape and would provide a unique porous structure as electrode. Their buckypapers were made and used to support catalysts of Pt and IrO2 in the cathodes of Li-air batteries with sulfuric acid catholyte. At low Pt loading (5 wt.%) without IrO2 on the buckypaper cathode, the Li-air cell achieved a discharging capacity of 306 mAh/g and a specific energy of 1067 Wh/kg at 0.2 mA/cm2. A significant charge overpotential reduction (˜ 0.3 V) was achieved when IrO2 was also used to form a bifunctional catalyst with Pt on the buckypapers. The round trip efficiency was increased from 72% to 81% with the bifunctional cathode, demonstrating a higher energy conversion efficiency.

  11. High Temperature In Situ Compression of Thermoplastically Formed Nano-scale Metallic Glass

    NASA Astrophysics Data System (ADS)

    Mridha, Sanghita; Arora, Harpreet Singh; Lefebvre, Joseph; Bhowmick, Sanjit; Mukherjee, Sundeep

    2016-05-01

    The mechanical behavior of nano-scale metallic glasses was investigated by in situ compression tests in a scanning electron microscope. Platinum-based metallic glass nano-pillars were fabricated by thermoplastic forming. The nano-pillars and corresponding bulk substrate were tested in compression over the range of room temperature to glass transition. Stress-strain curves of the nano-pillars were obtained along with in situ observation of their deformation behavior. The bulk substrate as well as nano-pillars showed an increase in elastic modulus with temperature which is explained by diffusive rearrangement of atomic-scale viscoelastic units.

  12. Deviations from mean-field behavior in disordered nanoscale superconductor normal-metal superconductor arrays

    NASA Astrophysics Data System (ADS)

    Kouh, Taejoon; Valles, J. M.

    2003-04-01

    We have fabricated quasi-two-dimensional disordered arrays of nanoscale Pb grains coupled by an overlayer of Ag grains. Their temperature-dependent resistive transitions follow predictions for an array of mesoscopic superconductor normal-metal superconductor junctions. The decrease of their transition temperatures with Ag overlayer thickness systematically deviates from the Cooper limit theory of the proximity effect as the Pb grain size decreases. The deviations occur when the estimated number of Cooper pairs per grain is <1 and suggest the approach to a superconductor-to-metal transition.

  13. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    SciTech Connect

    Zbib, Hussein M; Bahr, David F

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  14. Nanoscale Metal-Organic Framework-Hemoglobin Conjugates.

    PubMed

    Wang, Weiqi; Wang, Lei; Huang, Yubin; Xie, Zhigang; Jing, Xiabin

    2016-03-01

    A metal-organic framework (MOF)-protein conjugate, NH2 -MIL-125(Ti)-hemoglobin [MIL-125(Ti)-Hb], was synthesized by a covalent postmodification strategy. The crystalline structure was maintained after chemical and protein modification. The content of grafted Hb was tuned by the stoichiometric ratio and reached 50 wt % if the mass ratio of MIL-125(Ti)/Hb was 1:1.25 in the feed. The oxygen-transporting capacity of grafted Hb was kept, and the P50 (the half O2 pressure saturated with O2 ) and Hill coefficients of the MIL-125(Ti)-Hb conjugate were found to be 22.9 mm Hg and 2.35, respectively, which are close to the respective values of free Hb. All the results indicate that the MIL-125(Ti)-Hb conjugate could be potentially used as an oxygen carrier. PMID:26692560

  15. Reduction-Triggered Self-Assembly of Nanoscale Molybdenum Oxide Molecular Clusters

    DOE PAGESBeta

    Yin, Panchao; Wu, Bin; Li, Tao; Bonnesen, Peter V.; Hong, Kunlun; Seifert, Soenke; Porcar, Lionel; Do, Changwoo; Keum, Jong Kahk

    2016-07-26

    A 2.9 nm molybdenum oxide cluster {Mo132} (Formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42-) can be obtained by reducing ammonium molybdate with hydrazine sulfate in weakly acidic CH3COOH/CH3COO- buffers. This reaction has been monitored by time-resolved UV-Vis, 1H-NMR, small angle X-ray/neutron scattering, and X-ray absorption near edge structure spectroscopy. The growth of {Mo132} cluster shows a typical sigmoid curve, suggesting a multi-step assembly mechanism for this reaction. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a critical value,more » it triggers the assembly of MoV and MoVI species into {Mo132} clusters. Parameters such as the type and amount of reducing agent, the pH, the type of cation, and the type of organic ligand in the reaction buffer, have been studied for the roles they play in the formation of the target clusters.Understanding the formation mechanism of giant molecular clusters is essential for rational design and synthesis of cluster-based nanomaterials with required morphologies and functionalities. Here, typical synthetic reactions of a 2.9 nm spherical molybdenum oxide cluster, {Mo132} (formula: [MoVI72MoV60O372(CH3COO)30(H2O)72]42), with systematically varied reaction parameters have been fully explored to determine the morphologies and concentration of products, reduction of metal centers, and chemical environments of the organic ligands. The growth of these clusters shows a typical sigmoid curve, suggesting a general multistep self-assembly mechanism for the formation of giant molecular clusters. The reaction starts with a lag phase period when partial MoVI centers of molybdate precursors are reduced to form {MoV2(acetate)} structures under the coordination effect of the acetate groups. Once the concentration of {MoV2(acetate)} reaches a

  16. Size-dependent catalytic activity of supported metal clusters

    NASA Astrophysics Data System (ADS)

    Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch, S. E.; Gates, B. C.

    1994-11-01

    BECAUSE catalysis by metals is a surface phenomenon, many technological catalysts contain small (typically nanometre-sized) supported metal particles with a large fraction of the atoms exposed1. Many reactions, such as hydrocarbon hydrogenations, are structure-insensitive, proceeding at approximately the same rate on metal particles of various sizes provided that they are larger than about 1 nm and show bulk-like metallic behaviour1. But it is not known whether the catalytic properties of metal particles become size-dependent as the particles become so small that they are no longer metallic in character. Here we investigate the catalytic behaviour of precisely defined clusters of just four and six iridium atoms on solid supports. We find that the Ir4 and Ir6 clusters differ in catalytic activity both from each other and from metallic Ir particles. This raises the possibility of tailoring the catalytic behaviour of metal clusters by controlling the cluster size.

  17. Nanoscale Imaging Reveals a Tetraspanin-CD9 Coordinated Elevation of Endothelial ICAM-1 Clusters

    PubMed Central

    Franz, Jonas; Brinkmann, Benjamin F.; König, Michael; Hüve, Jana; Stock, Christian; Ebnet, Klaus; Riethmüller, Christoph

    2016-01-01

    Endothelial barriers have a central role in inflammation as they allow or deny the passage of leukocytes from the vasculature into the tissue. To bind leukocytes, endothelial cells form adhesive clusters containing tetraspanins and ICAM-1, so-called endothelial adhesive platforms (EAPs). Upon leukocyte binding, EAPs evolve into docking structures that emanate from the endothelial surface while engulfing the leukocyte. Here, we show that TNF-α is sufficient to induce apical protrusions in the absence of leukocytes. Using advanced quantitation of atomic force microscopy (AFM) recordings, we found these structures to protrude by 160 ± 80 nm above endothelial surface level. Confocal immunofluorescence microscopy proved them positive for ICAM-1, JAM-A, tetraspanin CD9 and f-actin. Microvilli formation was inhibited in the absence of CD9. Our findings indicate that stimulation with TNF-α induces nanoscale changes in endothelial surface architecture and that—via a tetraspanin CD9 depending mechanism—the EAPs rise above the surface to facilitate leukocyte capture. PMID:26731655

  18. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    SciTech Connect

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; Berkum, J. G. M. van

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ∼0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  19. Local traps as nanoscale reaction-diffusion probes: B clustering in c-Si

    NASA Astrophysics Data System (ADS)

    Pawlak, B. J.; Cowern, N. E. B.; Ahn, C.; Vandervorst, W.; Gwilliam, R.; van Berkum, J. G. M.

    2014-12-01

    A series of B implantation experiments into initially amorphized and not fully recrystallized Si, i.e., into an existing a/c-Si bi-layer material, have been conducted. We varied B dose, energy, and temperature during implantation process itself. Significant B migration has been observed within c-Si part near the a/c-interface and near the end-of-range region before any activation annealing. We propose a general concept of local trapping sites as experimental probes of nanoscale reaction-diffusion processes. Here, the a/c-Si interface acts as a trap, and the process itself is explored as the migration and clustering of mobile BI point defects in nearby c-Si during implantation at temperatures from 77 to 573 K. We find that at room temperature—even at B concentrations as high as 1.6 atomic %, the key B-B pairing step requires diffusion lengths of several nm owing to a small, ˜0.1 eV, pairing energy barrier. Thus, in nanostructures doped by ion implantation, the implant distribution can be strongly influenced by thermal migration to nearby impurities, defects, and interfaces.

  20. Nanoscale metals and semiconductors for the storage of solar energy in chemical bonds

    NASA Astrophysics Data System (ADS)

    Manthiram, Karthish

    The transduction of electrical energy into chemical bonds represents one potential strategy for storing energy derived from intermittent sources such as solar and wind. Driving the electrochemical reduction of carbon dioxide using light requires (1) developing light absorbers which convert photons into electron-hole pairs and (2) catalysts which utilize these electrons and holes to reduce carbon dioxide and oxidize water, respectively. For both the light absorbers and catalysts, the use of nanoscale particles is advantageous, as charge transport length scales are minimized in the case of nanoscale light absorbers and catalytic surface-area-to-volume ratio is maximized for nanoscale catalysts. In many cases, although semiconductors and metals in the form of thin films and foils are increasingly well-characterized as photoabsorbers and electrocatalysts for carbon dioxide reduction, respectively, the properties of their nanoscale counterparts remain poorly understood. This dissertation explores the nature of the light absorption mode of non-stoichiometric semiconductors which are utilized as light absorbers and the development of catalysts with enhanced stability, activity, and selectivity for carbon dioxide reduction. Chapter 1 provides an overview of the state of development of methods of transducing the energy of photons into chemical bonds. Chapters 2 and 3 investigate the development of stable, active, and selective catalysts for the electrochemical reduction of carbon dioxide. Chapter 2 examines how copper nanoparticles have enhanced activities and selectivities for methanation compared to copper foils. Chapter 3 focuses on the development of strategies to stabilize high-surface-area catalysts to prevent surface area loss during electrochemical carbon dioxide reduction. Chapters 4 and 5 entail a fundamental understanding of the light absorption mode of nanoscale photoabsorbers used in both photoelectrochemical cells and in photovoltaics. Chapter 4 focuses on the

  1. Drift-diffusion equation for ballistic transport in nanoscale metal-oxide-semiconductor field effect transistors

    NASA Astrophysics Data System (ADS)

    Rhew, Jung-Hoon; Lundstrom, Mark S.

    2002-11-01

    We develop a drift-diffusion equation that describes ballistic transport in a nanoscale metal-oxide-semiconductor field effect transistor (MOSFET). We treat injection from different contacts separately, and describe each injection with a set of extended McKelvey one-flux equations [Phys. Rev. 123, 51 (1961); 125, 1570 (1962)] that include hierarchy closure approximations appropriate for high-field ballistic transport and degenerate carrier statistics. We then reexpress the extended one-flux equations in a drift-diffusion form with a properly defined Einstein relationship. The results obtained for a nanoscale MOSFET show excellent agreement with the solution of the ballistic Boltzmann transport equation with no fitting parameters. These results show that a macroscopic transport model based on the moments of the Boltzmann transport equation can describe ballistic transport.

  2. Large area nanoscale metal meshes for use as transparent conductive layers

    NASA Astrophysics Data System (ADS)

    Jin, Yuanhao; Li, Qunqing; Chen, Mo; Li, Guanhong; Zhao, Yudan; Xiao, Xiaoyang; Wang, Jiaping; Jiang, Kaili; Fan, Shoushan

    2015-10-01

    We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple drawing process of the SACNT networks prepared and a common deposition process. This approach should be easy to extend to various research fields and has broad prospects in commercial applications.We report on the experimental realization of using super-aligned carbon nanotubes (SACNTs) as etching masks for the fabrication of large area nanoscale metal meshes. This method can easily be extended to different metals on both rigid and flexible substrates. The as-fabricated metal meshes, including the ones made of gold, copper, and aluminum, are suitable for use as transparent conductive layers (TCLs). The metal meshes, which are similar to the SACNT networks in their dimensional features of tens of nanometers, exhibit compatible performance in terms of optical transmittance and sheet resistance. Moreover, because the metal meshes are fabricated as an integrated material, there is no junction resistance between the interconnected metal nanostructures, which markedly lowers their sheet resistance at high temperatures. The fabrication of such an effective etching mask involves a simple

  3. A Technique to Transfer Metallic Nanoscale Patterns to Small and Non-Planar Surfaces

    PubMed Central

    Smythe, Elizabeth J.; Dickey, Michael D.; Whitesides, George M.; Capasso, Federico

    2009-01-01

    Conventional lithographic methods (e.g. electron-beam writing, photolithography) are capable of producing high-resolution structures over large areas, but are generally limited to large (>1 cm2) planar substrates. Incorporation of these features on unconventional substrates (i.e., small (<1 mm2) and/or non-planar substrates) would open possibilities for many applications, including remote fiber-based sensing, nanoscale optical lithography, three-dimensional fabrication, and integration of compact optical elements on fiber and semiconductor lasers. Here we introduce a simple method in which a thin thiol-ene film strips arbitrary nanoscale metallic features from one substrate and is then transferred, along with the attached features, to a substrate that would be difficult or impossible to pattern with conventional lithographic techniques. An oxygen plasma removes the sacrificial film, leaving behind the metallic features. The transfer of dense and sparse patterns of isolated and connected gold features ranging from 30 nm to 1 μm, to both an optical fiber facet and a silica microsphere, demonstrates the versatility of the method. A distinguishing feature of this technique is the use of a thin, sacrificial film to strip and transfer metallic nanopatterns and its ability to directly transfer metallic structures produced by conventional lithography. PMID:19206249

  4. Impact of biogenic nanoscale metals Fe, Cu, Zn and Se on reproductive LV chickens

    NASA Astrophysics Data System (ADS)

    Khiem Nguyen, Quy; Dieu Nguyen, Duy; Kien Nguyen, Van; Thinh Nguyen, Khac; Chau Nguyen, Hoai; Tin Tran, Xuan; Nguyen, Huu Cuong; Tien Phung, Duc

    2015-09-01

    Using biogenic nanoscale metals (Fe, Cu, ZnO, Se) to supplement into diet premix of reproductive LV (a Vietnamese Luong Phuong chicken breed) chickens resulted in certain improvement of poultry farming. The experimental data obtained showed that the farming indices depend mainly on the quantity of nanocrystalline metals which replaced the inorganic mineral component in the feed premix. All four experimental groups with different quantities of the replacement nano component grew and developed normally with livability reaching 91 to 94%, hen’s bodyweight at 38 weeks of age and egg weight ranged from 2.53-2.60 kg/hen and 50.86-51.55 g/egg, respectively. All these farming indices together with laying rate, egg productivity and chick hatchability peaked at group 5 with 25% of nanoscale metals compared to the standard inorganic mineral supplement, while feed consumption was lowest. The results also confirmed that nanocrystalline metals Fe, Cu, ZnO and Se supplemented to chicken feed were able to decrease inorganic minerals in the diet premixes at least four times, allowing animals to more effectively absorb feed minerals, consequently decreasing environmental pollution risks.

  5. On the metallicity of open clusters. III. Homogenised sample

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C.

    2016-01-01

    Context. Open clusters are known as excellent tools for various topics in Galactic research. For example, they allow accurately tracing the chemical structure of the Galactic disc. However, the metallicity is known only for a rather low percentage of the open cluster population, and these values are based on a variety of methods and data. Therefore, a large and homogeneous sample is highly desirable. Aims: In the third part of our series we compile a large sample of homogenised open cluster metallicities using a wide variety of different sources. These data and a sample of Cepheids are used to investigate the radial metallicity gradient, age effects, and to test current models. Methods: We used photometric and spectroscopic data to derive cluster metallicities. The different sources were checked and tested for possible offsets and correlations. Results: In total, metallicities for 172 open cluster were derived. We used the spectroscopic data of 100 objects for a study of the radial metallicity distribution and the age-metallicity relation. We found a possible increase of metallicity with age, which, if confirmed, would provide observational evidence for radial migration. Although a statistical significance is given, more studies are certainly needed to exclude selection effects, for example. The comparison of open clusters and Cepheids with recent Galactic models agrees well in general. However, the models do not reproduce the flat gradient of the open clusters in the outer disc. Thus, the effect of radial migration is either underestimated in the models, or an additional mechanism is at work. Conclusions: Apart from the Cepheids, open clusters are the best tracers for metallicity over large Galactocentric distances in the Milky Way. For a sound statistical analysis, a sufficiently large and homogeneous sample of cluster metallicities is needed. Our compilation is currently by far the largest and provides the basis for several basic studies such as the statistical

  6. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  7. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices.

    PubMed

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-08-01

    We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states. PMID:27218609

  8. Atomistic simulations of electrochemical metallization cells: mechanisms of ultra-fast resistance switching in nanoscale devices

    NASA Astrophysics Data System (ADS)

    Onofrio, Nicolas; Guzman, David; Strachan, Alejandro

    2016-07-01

    We describe a new method that enables reactive molecular dynamics (MD) simulations of electrochemical processes and apply it to study electrochemical metallization cells (ECMs). The model, called EChemDID, extends the charge equilibration method to capture the effect of external electrochemical potential on partial atomic charges and describes its equilibration over connected metallic structures, on-the-fly, during the MD simulation. We use EChemDID to simulate resistance switching in nanoscale ECMs; these devices consist of an electroactive metal separated from an inactive electrode by an insulator and can be reversibly switched to a low-resistance state by the electrochemical formation of a conducting filament between electrodes. Our structures use Cu as the active electrode and SiO2 as the dielectric and have dimensions at the foreseen limit of scalability of the technology, with a dielectric thickness of approximately 1 nm. We explore the effect of device geometry on switching timescales and find that nanowires with an electroactive shell, where ions migrate towards a smaller inactive electrode core, result in faster switching than planar devices. We observe significant device-to-device variability in switching timescales and intermittent switching for these nanoscale devices. To characterize the evolution in the electronic structure of the dielectric as dissolved metallic ions switch the device, we perform density functional theory calculations on structures obtained from an EChemDID MD simulation. These results confirm the appearance of states around the Fermi energy as the metallic filament bridges the electrodes and show that the metallic ions and not defects in the dielectric contribute to the majority of those states.

  9. High-nuclearity magnetic clusters: Magnetic interactions in clusters encapsulated by molecular metal oxides

    NASA Astrophysics Data System (ADS)

    Borras-Almenar, Juan José; Coronado, Eugenio; Galan-Mascaros, Jose Ramón; Gómez-García, Carlos J.

    1995-02-01

    The ability of the molecular metal oxides derived from the Keggin anion [PW 12O 40] 3- to accommodate magnetic ions at specific sites, giving rise to polymetallic clusters with increasing spin nuclearities is discussed. Examples of magnetic clusters with three, four and nine metal ions exhibiting ferromagnetic exchange couplings or a coexistence of ferro- and antiferromagnetic couplings are reported.

  10. Effect of nanoscale size and medium on metal work function in oleylamine-capped gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Abdellatif, M. H.; Ghosh, S.; Liakos, I.; Scarpellini, A.; Marras, S.; Diaspro, A.; Salerno, M.

    2016-02-01

    The work function is an important material property with several applications in photonics and optoelectronics. We aimed to characterize the work function of clusters resulting from gold nanocrystals capped with oleylamine surfactant and drop-casted onto gold substrate. We used scanning Kelvin probe microscopy to investigate the work function, and complemented our study mainly with X-ray diffraction and X-ray photoelectron spectroscopy. The oleylamine works as an electron blocking layer through which the electrical conduction takes place by tunneling effect. The surface potential appears to depend on the size of the clusters, which can be ascribed to their difference in effective work function with the substrate. The charge state of gold clusters is discussed in comparison with theory, and their capacitance is calculated from a semi-analytical equation. The results suggest that at the nanoscale the work function is not an intrinsic property of a material but rather depends on the size and morphology of the clusters, including also effects of the surrounding materials.

  11. Synthesis and characterization of nanoscale polymer films grafted to metal surfaces

    NASA Astrophysics Data System (ADS)

    Galabura, Yuriy

    Anchoring thin polymer films to metal surfaces allows us to alter, tune, and control their biocompatibility, lubrication, friction, wettability, and adhesion, while the unique properties of the underlying metallic substrates, such as magnetism and electrical conductivity, remain unaltered. This polymer/metal synergy creates significant opportunities to develop new hybrid platforms for a number of devices, actuators, and sensors. This present work focused on the synthesis and characterization of polymer layers grafted to the surface of metal objects. We report the development of a novel method for surface functionalization of arrays of high aspect ratio nickel nanowires/micronails. The polymer "grafting to" technique offers the possibility to functionalize different segments of the nickel nanowires/micronails with polymer layers that possess antagonistic (hydrophobic/hydrophilic) properties. This method results in the synthesis of arrays of Ni nanowires and micronails, where the tips modified with hydrophobic layer (polystyrene) and the bottom portions with a hydrophilic layer (polyacrylic acid). The developed modification platform will enable the fabrication of switchable field-controlled devices (actuators). Specifically, the application of an external magnetic field and the bending deformation of the nickel nanowires and micronails will make initially hydrophobic surface more hydrophilic by exposing different segments of the bent nanowires/micronails. We also investigate the grafting of thin polymer films to gold objects. The developed grafting technique is employed for the surface modification of Si/SiO2/Au microprinted electrodes. When electronic devices are scaled down to submicron sizes, it becomes critical to obtain uniform and robust insulating nanoscale polymer films. Therefore, we address the electrical properties of polymer layers of poly(glycidyl methacrylate) (PGMA), polyacrylic acid (PAA), poly(2-vinylpyridine) (P2VP), and polystyrene (PS) grafted to

  12. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  13. Ion beam induced nanosized Ag metal clusters in glass

    NASA Astrophysics Data System (ADS)

    Mahnke, H.-E.; Schattat, B.; Schubert-Bischoff, P.; Novakovic, N.

    2006-04-01

    Silver metal clusters have been formed in soda lime glass by high-energy heavy-ion irradiation at ISL. The metal cluster formation was detected with X-ray absorption spectroscopy (EXAFS) in fluorescence mode, and the shape of the clusters was imaged with transmission electron microscopy. While annealing in reducing atmosphere alone, leads to the formation of metal clusters in Ag-containing glasses, where the Ag was introduced by ion-exchange, such clusters are not very uniform in size and are randomly distributed over the Ag-containing glass volume. Irradiation with 600-MeV Au ions followed by annealing, however, results in clusters more uniform in size and arranged in chains parallel to the direction of the ion beam.

  14. Metal-assisted chemical etching of Ge(100) surfaces in water toward nanoscale patterning

    NASA Astrophysics Data System (ADS)

    Kawase, Tatsuya; Mura, Atsushi; Dei, Katsuya; Nishitani, Keisuke; Kawai, Kentaro; Uchikoshi, Junichi; Morita, Mizuho; Arima, Kenta

    2013-04-01

    We propose the metal-assisted chemical etching of Ge surfaces in water mediated by dissolved oxygen molecules (O2). First, we demonstrate that Ge surfaces around deposited metallic particles (Ag and Pt) are preferentially etched in water. When a Ge(100) surface is used, most etch pits are in the shape of inverted pyramids. The mechanism of this anisotropic etching is proposed to be the enhanced formation of soluble oxide (GeO2) around metals by the catalytic activity of metallic particles, reducing dissolved O2 in water to H2O molecules. Secondly, we apply this metal-assisted chemical etching to the nanoscale patterning of Ge in water using a cantilever probe in an atomic force microscopy setup. We investigate the dependences of probe material, dissolved oxygen concentration, and pressing force in water on the etched depth of Ge(100) surfaces. We find that the enhanced etching of Ge surfaces occurs only when both a metal-coated probe and saturated-dissolved-oxygen water are used. In this study, we present the possibility of a novel lithography method for Ge in which neither chemical solutions nor resist resins are needed.

  15. Nanoscale dynamics of the Insulator-to-Metal transition in VO2

    NASA Astrophysics Data System (ADS)

    Sternbach, Aaron

    We have improved upon the technique of time resolved scanning near-field optical microscopy to study the development of inhomogeneous phase transitions in the time domain with 20 nanometer spatial resolution and 100 femtosecond temporal resolution. In our present work, we study Vanadium Dioxide (VO2) , which is a canonical correlated electron system that exhibits an insulator-to-metal transition (IMT) above room temperature. We observe inhomogeneous dynamics that are related to mesoscopic strain variations. Our measurement resolves the dynamical evolution of the IMT on length scales that are short compared with the typical sizes of metallic domains in VO2. By using Near-Infrared radiation, measured on a pulse-to-pulse basis, we are able to achieve an unprecedented Signal-to-Noise ratio. Our advances pave a pathway to study a wide range of systems with inhomogeneities properties on the nanoscale with high sensitivity, nanoscopic spatial, and ultrafast temporal resolution.

  16. A Nanoscale Multiresponsive Luminescent Sensor Based on a Terbium(III) Metal-Organic Framework.

    PubMed

    Dang, Song; Wang, Ting; Yi, Feiyan; Liu, Qinghui; Yang, Weiting; Sun, Zhong-Ming

    2015-08-01

    A nanoscale terbium-containing metal-organic framework (nTbL), with a layer-like structure and [H2 NMe2 ](+) cations located in the framework channels, was synthesized under hydrothermal conditions. The structure of the as-prepared sample was systematically confirmed by powder XRD and elemental analysis; the morphology was characterized by field-emission SEM and TEM. The photoluminescence studies revealed that rod-like nTbL exhibited bright-green emission, corresponding to (5)D4 →(7)FJ (J=6-3) transitions of the Tb(3+) ion under excitation. Further sensing measurements revealed that as-prepared nTbL could be utilized as a multiresponsive luminescent sensor, which showed significant and exclusive detection ability for Fe(3+) ions and phenylmethanol. These results highlight the practical applications of lanthanide-containing metal-organic frameworks as fluorescent probes. PMID:25965107

  17. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    PubMed Central

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  18. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory

    NASA Astrophysics Data System (ADS)

    Han, Un-Bin; Lee, Jang-Sik

    2016-05-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes.

  19. Bottom-up synthesis of ordered metal/oxide/metal nanodots on substrates for nanoscale resistive switching memory.

    PubMed

    Han, Un-Bin; Lee, Jang-Sik

    2016-01-01

    The bottom-up approach using self-assembled materials/processes is thought to be a promising solution for next-generation device fabrication, but it is often found to be not feasible for use in real device fabrication. Here, we report a feasible and versatile way to fabricate high-density, nanoscale memory devices by direct bottom-up filling of memory elements. An ordered array of metal/oxide/metal (copper/copper oxide/copper) nanodots was synthesized with a uniform size and thickness defined by self-organized nanotemplate mask by sequential electrochemical deposition (ECD) of each layer. The fabricated memory devices showed bipolar resistive switching behaviors confirmed by conductive atomic force microscopy. This study demonstrates that ECD with bottom-up growth has great potential to fabricate high-density nanoelectronic devices beyond the scaling limit of top-down device fabrication processes. PMID:27157385

  20. Bridging the Gap: Electron Relay and Plasmonic Sensitization of Metal Nanocrystals for Metal Clusters.

    PubMed

    Xiao, Fang-Xing; Zeng, Zhiping; Liu, Bin

    2015-08-26

    In recent years, enormous attention has been paid to the construction of metal cluster-semiconductor nanocomposites because of the fascinating and unique properties of metal clusters; however, investigations on photoelectrochemical (PEC) and photocatalytic properties of metal cluster-semiconductor systems are still rare. Moreover, to date, intrinsic correlation between metal clusters and bulk metal nanocrystals has yet to be elucidated. In this work, a facile layer-by-layer (LbL) self-assembly strategy has been developed to judiciously and intimately integrate gold nanocrystals (Au) within the interface between gold clusters (Au(x)) and hierarchically ordered TiO2 nanotube arrays framework, by which imperative roles of Au nanocrystals as electron relay mediator and plasmonic sensitizer for Aux clusters were revealed. In addition, it was found that synergistic interaction between Au nanocrystals and Aux clusters contributed to promising visible-light-driven photocatalytical and PEC performances. It is anticipated that our work could provide a general way for rationally constructing metal and metal clusters codecorated semiconductor heterostructures and, more significantly, bridge the gap between metal clusters and metal nanocrystals for a diverse range of applications. PMID:26258281

  1. Star Clusters in M31. VII. Global Kinematics and Metallicity Subpopulations of the Globular Clusters

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Romanowsky, Aaron J.

    2016-06-01

    We carry out a joint spatial–kinematical–metallicity analysis of globular clusters (GCs) around the Andromeda Galaxy (M31), using a homogeneous, high-quality spectroscopic data set. In particular, we remove the contaminating young clusters that have plagued many previous analyses. We find that the clusters can be divided into three major metallicity groups based on their radial distributions: (1) an inner metal-rich group ([Fe/H] > -0.4); (2) a group with intermediate metallicity (with median [Fe/H] = ‑1) and (3) a metal-poor group, with [Fe/H] < -1.5. The metal-rich group has kinematics and spatial properties like those of the disk of M31, while the two more metal-poor groups show mild prograde rotation overall, with larger dispersions—in contrast to previous claims of stronger rotation. The metal-poor GCs are the least concentrated group; such clusters occur five times less frequently in the central bulge than do clusters of higher metallicity. Despite some well-known differences between the M31 and Milky Way GC systems, our revised analysis points to remarkable similarities in their chemodynamical properties, which could help elucidate the different formation stages of galaxies and their GCs. In particular, the M31 results motivate further exploration of a metal-rich GC formation mode in situ, within high-redshift, clumpy galactic disks.

  2. Simple and efficient separation of atomically precise noble metal clusters.

    PubMed

    Ghosh, Atanu; Hassinen, Jukka; Pulkkinen, Petri; Tenhu, Heikki; Ras, Robin H A; Pradeep, Thalappil

    2014-12-16

    There is an urgent need for accessible purification and separation strategies of atomically precise metal clusters in order to promote the study of their fundamental properties. Although the separation of mixtures of atomically precise gold clusters Au25L18, where L are thiolates, has been demonstrated by advanced separation techniques, we present here the first separation of metal clusters by thin-layer chromatography (TLC), which is simple yet surprisingly efficient. This method was successfully applied to a binary mixture of Au25L18 with different ligands, as well as to a binary mixture of different cluster cores, Au25 and Au144, protected with the same ligand. Importantly, TLC even enabled the challenging separation of a multicomponent mixture of mixed-monolayer-protected Au25 clusters with closely similar chemical ligand compositions. We anticipate that the realization of such simple yet efficient separation technique will progress the detailed investigation of cluster properties. PMID:25395064

  3. Structure of overheated metal clusters: MD simulation study

    SciTech Connect

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  4. Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives

    NASA Astrophysics Data System (ADS)

    Variola, Fabio; Brunski, John B.; Orsini, Giovanna; Tambasco de Oliveira, Paulo; Wazen, Rima; Nanci, Antonio

    2011-02-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently adopted to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. This review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately, the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, indeed, of all biomaterials.

  5. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes.

    PubMed

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g(-1)) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% 'lithiophilic' layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g(-1) of capacity, exhibits low overpotential (∼80 mV at 3 mA cm(-2)) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles. PMID:26999479

  6. Nanoscale surface modifications of medically-relevant metals: state-of-the art and perspectives

    PubMed Central

    Variola, Fabio; Brunski, John; Orsini, Giovanna; de Oliveira, Paulo Tambasco; Wazen, Rima; Nanci, Antonio

    2011-01-01

    Evidence that nanoscale surface properties stimulate and guide various molecular and biological processes at the implant/tissue interface is fostering a new trend in designing implantable metals. Cutting-edge expertise and techniques drawn from widely separated fields, such as nanotechnology, materials engineering and biology, have been advantageously exploited to nanoengineer surfaces in ways that control and direct these processes in predictable manners. In this review, we present and discuss the state-of-the-art of nanotechnology-based approaches currently used to modify the surface of metals used for orthopedic and dental applications, and also briefly consider their use in the cardiovascular field. The effects of nanoengineered surfaces on various in vitro molecular and cellular events are firstly discussed. Importantly, this review also provides an overview of in vivo and clinical studies with nanostructured metallic implants, and addresses the potential influence of nanotopography on biomechanical events at interfaces. Ultimately the objective of this work is to give the readership a comprehensive picture of the current advances, future developments and challenges in the application of the infinitesimally small to biomedical surface science. We believe that an integrated understanding of the in vitro and particularly of the in vivo behavior is mandatory for the proper exploitation of nanostructured implantable metals and, as a matter of fact, all biomaterials. PMID:20976359

  7. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Lin, Dingchang; Liu, Yayuan; Liang, Zheng; Lee, Hyun-Wook; Sun, Jie; Wang, Haotian; Yan, Kai; Xie, Jin; Cui, Yi

    2016-07-01

    Metallic lithium is a promising anode candidate for future high-energy-density lithium batteries. It is a light-weight material, and has the highest theoretical capacity (3,860 mAh g–1) and the lowest electrochemical potential of all candidates. There are, however, at least three major hurdles before lithium metal anodes can become a viable technology: uneven and dendritic lithium deposition, unstable solid electrolyte interphase and almost infinite relative dimension change during cycling. Previous research has tackled the first two issues, but the last is still mostly unsolved. Here we report a composite lithium metal anode that exhibits low dimension variation (∼20%) during cycling and good mechanical flexibility. The anode is composed of 7 wt% ‘lithiophilic’ layered reduced graphene oxide with nanoscale gaps that can host metallic lithium. The anode retains up to ∼3,390 mAh g–1 of capacity, exhibits low overpotential (∼80 mV at 3 mA cm–2) and a flat voltage profile in a carbonate electrolyte. A full-cell battery with a LiCoO2 cathode shows good rate capability and flat voltage profiles.

  8. Direct observation and quantification of nanoscale spinodal decomposition in super duplex stainless steel weld metals.

    PubMed

    Shariq, Ahmed; Hättestrand, Mats; Nilsson, Jan-Olof; Gregori, Andrea

    2009-06-01

    Three variants of super duplex stainless steel weld metals with the basic composition 29Cr-8Ni-2Mo (wt%) were investigated. The nitrogen content of the three materials was 0.22%, 0.33% and 0.37%, respectively. Isothermal heat treatments were performed at 450 degrees C for times up to 243 h. The hardness evolution of the three materials was found to vary with the overall concentration of the nitrogen. Atom probe field ion microscopy (APFIM) was used to directly detect and quantify the degree of spinodal decomposition in different material conditions. 3-DAP atomic reconstruction clearly illustrate nanoscale variation of iron rich (alpha) and chromium rich (alpha') phases. A longer ageing time produces a coarser microstructure with larger alpha and alpha' domains. Statistical evaluation of APFIM data showed that phase separation was significant already after 1 h of ageing that gradually became more pronounced. Although nanoscale concentration variation was evident, no significant influence of overall nitrogen content on the degree of spinodal decomposition was found. PMID:19504899

  9. Nanoscale Skyrmions in a Nonchiral Metallic Multiferroic: Ni2MnGa.

    PubMed

    Phatak, Charudatta; Heinonen, Olle; De Graef, Marc; Petford-Long, Amanda

    2016-07-13

    Magnetic skyrmions belong to a set of topologically nontrivial spin textures at the nanoscale that have received increased attention due to their emergent behavior and novel potential spintronic applications. Discovering materials systems that can host skyrmions at room temperature in the absence of external magnetic field is of crucial importance not only from a fundamental aspect, but also from a technological point of view. So far, the observations of skyrmions in bulk metallic ferromagnets have been limited to low temperatures and to materials that exhibit strong chiral interactions. Here we show the formation of nanoscale skyrmions in a nonchiral multiferroic material, which is ferromagnetic and ferroelastic, Ni2MnGa at room temperature without the presence of external magnetic fields. By using Lorentz transmission electron microscopy in combination with micromagnetic simulations, we elucidate their formation, behavior, and stability under applied magnetic fields at room temperature. The formation of skyrmions in a multiferroic material with no broken inversion symmetry presents new exciting opportunities for the exploration of the fundamental physics of topologically nontrivial spin textures. PMID:27186990

  10. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  11. Chemical bonding and dynamic fluxionality of a B15(+) cluster: a nanoscale double-axle tank tread.

    PubMed

    Wang, Ying-Jin; You, Xue-Rui; Chen, Qiang; Feng, Lin-Yan; Wang, Kang; Ou, Ting; Zhao, Xiao-Yun; Zhai, Hua-Jin; Li, Si-Dian

    2016-06-21

    A planar, elongated B15(+) cationic cluster is shown to be structurally fluxional and functions as a nanoscale tank tread on the basis of electronic structure calculations, bonding analyses, and molecular dynamics simulations. The outer B11 peripheral ring behaves like a flexible chain gliding around an inner B4 rhombus core, almost freely at the temperature of 500 K. The rotational energy barrier is only 1.37 kcal mol(-1) (0.06 eV) at the PBE0/6-311+G* level, further refined to 1.66 kcal mol(-1) (0.07 eV) at the single-point CCSD(T)/6-311G*//CCSD/6-311G* level. Two soft vibrational modes of 166.3 and 258.3 cm(-1) are associated with the rotation, serving as double engines for the system. Bonding analysis suggests that the "island" electron clouds, both σ and π, between the peripheral ring and inner core flow and shift continuously during the intramolecular rotation, facilitating the dynamic fluxionality of the system with a small rotational barrier. The B15(+) cluster, roughly 0.6 nm in dimension, is the first double-axle nanoscale tank tread equipped with two engines, which expands the concepts of molecular wheels, Wankel motors, and molecular tanks. PMID:27229290

  12. Second harmonic generation in nanoscale films of transition metal chalcogenides: Taking into account multibeam interference

    NASA Astrophysics Data System (ADS)

    Lavrov, S. D.; Kudryavtsev, A. V.; Shestakova, A. P.; Kulyuk, L.; Mishina, E. D.

    2016-05-01

    Second harmonic generation is studied in structures containing nanoscale layers of transition metal chalcogenides that are two-dimensional semiconductors and deposited on a SiO2/Si substrate. The second harmonic generation intensity is calculated with allowance for multibeam interference in layers of dichalcogenide and silicon oxide. The coefficient of reflection from the SiO2-layer-based Fabry-Perot cavity is subsequently calculated for pump wave fields initiating nonlinear polarization at every point of dichalcogenide, which is followed by integration of all second harmonic waves generated by this polarization. Calculated second harmonic intensities are presented as functions of dichalcogenide and silicon oxide layer thicknesses. The dependence of the second harmonic intensity on the MoS2 layer thickness is studied experimentally in the layer of 2-140 nm. A good coincidence of the experimental data and numerical simulation results has been obtained.

  13. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation

    PubMed Central

    Gu, Lin; Xu, Limei; Zhang, Qingsheng; Pan, Deng; Chen, Na; Louzguine-Luzgin, Dmitri V.; Yao, Ke-Fu; Wang, Weihua; Ikuhara, Yuichi

    2015-01-01

    A common understanding of plastic deformation of metallic glasses (MGs) at room temperature is that such deformation occurs via the formation of runaway shear bands that usually lead to catastrophic failure of MGs. Here we demonstrate that inhomogeneous plastic flow at nanoscale can evolve in a well-controlled manner without further developing of shear bands. It is suggested that the sample undergoes an elasto-plastic transition in terms of quasi steady-state localized shearing. During this transition, embryonic shear localization (ESL) propagates with a very slow velocity of order of ~1 nm/s without the formation of a hot matured shear band. This finding further advances our understanding of the microscopic deformation process associated with the elasto-plastic transition and may shed light on the theoretical development of shear deformation in MGs. PMID:25773051

  14. Controlling terahertz radiation with nanoscale metal barriers embedded in nano slot antennas.

    PubMed

    Park, Hyeong-Ryeol; Bahk, Young-Mi; Ahn, Kwang Jun; Park, Q-Han; Kim, Dai-Sik; Martín-Moreno, Luis; García-Vidal, Francisco J; Bravo-Abad, Jorge

    2011-10-25

    Nanoscale metallic barriers embedded in terahertz (THz) slot antennas are shown to provide unprecedented control of the transition state arising at the crossover between the full- and half-wavelength resonant modes of such antennas. We demonstrate strong near-field coupling between two paired THz slot antennas separated by a 5 nm wide nanobarrier, almost fully inducing the shift to the resonance of the double-length slot antenna. This increases by a factor of 50 the length-scale needed to observe similar coupling strengths in conventional air-gap antennas (around 0.1 nm), making the transition state readily accessible to experiment. Our measurements are in good agreement with a quantitative theoretical modeling, which also provides a simple physical picture of our observations. PMID:21961910

  15. A Chlorin-Based Nanoscale Metal-Organic Framework for Photodynamic Therapy of Colon Cancers.

    PubMed

    Lu, Kuangda; He, Chunbai; Lin, Wenbin

    2015-06-24

    We report here the rational design of the first chlorin-based nanoscale metal-organic framework (NMOF), DBC-UiO, with much improved photophysical properties over the previously reported porphyrin-based NMOF, DBP-UiO. Reduction of the DBP ligands in DBP-UiO to the DBC ligands in DBC-UiO led to a 13 nm red shift and an 11-fold increase in the extinction coefficient of the lowest-energy Q band. While inheriting the crystallinity, stability, porosity, and nanoplate morphology of DBP-UiO, DBC-UiO sensitizes more efficient (1)O2 generation and exhibits significantly enhanced photodynamic therapy (PDT) efficacy on two colon cancer mouse models as a result of its improved photophysical properties. Both apoptosis and immunogenic cell death contributed to killing of cancer cells in DBC-UiO-induced PDT. PMID:26068094

  16. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  17. Directed Assembly of Bi Metallic Nanoparticles by Pulsed Laser Induced Dewetting: a Unique Nanoscale Time and Length Scale Regime

    SciTech Connect

    Fowlkes, Jason Davidson; Rack, P. D.; Wu, Yeuyeng

    2010-01-01

    Pulsed laser induced dewetting (PLiD) was used to assemble patterned, nanoscale metallic thin film features into bi metallic nanoparticles. The liquid-phase flow is related to a conventional droplet impact test and in appropriate dimensions have inertial and viscoinertial flow characteristics. The final size, morphology, composition, and inter-diffusion of the nanoparticles is governed by the interplay of capillary, inertial and viscous forces and an appropriate dimensional regime defined by competing Rayleigh-Plateau and spinodal instabilities.

  18. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction.

    PubMed

    Zhao, Shenlong; Yin, Huajie; Du, Lei; He, Liangcan; Zhao, Kun; Chang, Lin; Yin, Geping; Zhao, Huijun; Liu, Shaoqin; Tang, Zhiyong

    2014-12-23

    The oxygen reduction reaction (ORR) is one of the key steps in clean and efficient energy conversion techniques such as in fuel cells and metal-air batteries; however, several disadvantages of current ORRs including the kinetically sluggish process and expensive catalysts hinder mass production of these devices. Herein, we develop carbonized nanoparticles, which are derived from monodisperse nanoscale metal organic frameworks (MIL-88B-NH3), as the high performance ORR catalysts. The onset potential and the half-wave potential for the ORR at these carbonized nanoparticles is up to 1.03 and 0.92 V (vs RHE) in 0.1 M KOH solution, respectively, which represents the best ORR activity of all the non-noble metal catalysts reported so far. Furthermore, when used as the cathode of the alkaline direct fuel cell, the power density obtained with the carbonized nanoparticles reaches 22.7 mW/cm2, 1.7 times higher than the commercial Pt/C catalysts. PMID:25426850

  19. Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal.

    PubMed

    Su, Yiming; Adeleye, Adeyemi S; Keller, Arturo A; Huang, Yuxiong; Dai, Chaomeng; Zhou, Xuefei; Zhang, Yalei

    2015-05-01

    Sulfide-modified nanoscale zerovalent iron (S-nZVI) is attracting a lot of attention due to its ease of production and high reactivity with organic pollutants. However, its structure is still poorly understood and its potential application in heavy metal remediation has not been explored. Herein, the structure of S-nZVI and its cadmium (Cd) removal performance under different aqueous conditions were carefully investigated. Transmission electron microscopy (TEM) with an energy-dispersive X-ray spectroscopy (EDS) analysis suggested that sulfur was incorporated into the zerovalent iron core. Scanning electron microscopy (SEM) with EDS analysis demonstrated that sulfur was also homogeneously distributed within the nanoparticles. When the concentration of Na2S2O4 was increased during synthesis, a flake-like structure (FeSx) increased significantly. S-nZVI had an optimal Cd removal capacity of 85 mg/g, which was >100% higher than for pristine nZVI. Even at pH 5, over 95% removal efficiency was observed, indicating sulfide compounds played a crucial role in metal ion removal and particle chemical stability. Oxygen impaired the structure of S-nZVI but enhanced Cd removal capacity to about 120 mg/g. Particle aging had no negative effect on removal capacity of S-nZVI, and Cd-containing mixtures remained stable in a two months experiment. S-nZVI can efficiently sequester dissolved metal ions from different contaminated water matrices. PMID:25706223

  20. Towards a photometric metallicity scale for open clusters

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.

    2013-09-01

    Context. Open clusters are a useful tool when investigating several topics connected with stellar evolution; for example the age or distance can be more accurately determined than for field stars. However, one important parameter, the metallicity, is only known for a marginal percentage of open clusters. Aims: We aim at a consistent set of parameters for the open clusters investigated in our photometric Δa survey of chemically peculiar stars. Special attention is paid to expanding our knowledge of cluster metallicities and verifying their scale. Methods: Making use of a previously developed method based on normalised evolutionary grids and photometric data, the distance, age, reddening, and metallicity of open clusters were derived. To transform photometric measurements into effective temperatures to use as input for our method, a set of temperature calibrations for the most commonly used colour indices and photometric systems was compiled. Results: We analysed 58 open clusters in total. Our derived metallicity values were in excellent agreement with about 30 spectroscopically studied targets. The mean value of the absolute deviations was found to be 0.03 dex, with no noticeable offset or gradient. The method was also applied using recent evolutionary models based on the currently accepted lower solar abundance value Z ~ 0.014. No significant differences were found compared to grids using the former adopted solar value Z = 0.02. Furthermore, some divergent photometric datasets were identified and discussed. Conclusions: The method provides an accurate way of obtaining properly scaled metallicity values for open clusters. In light of present and future homogeneous photometric sky surveys, the sample of stellar clusters can be extended to the outskirts of the Milky Way, where spectroscopic studies are almost impossible. This will help for determining galactic metallicity gradients in more detail. Figure 7 is available in electronic form at http://www.aanda.org

  1. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  2. Molecular orbital analysis of dicarbido-transition-metal cluster compounds

    SciTech Connect

    Halet, J.; Mingos, D.M.P.

    1988-01-01

    Molecular orbital calculations on dicarbido-transition-metal carbonyl cluster compounds have shown that the bonding between C/sub 2/ and the metal cage results primarily from electron donation from the C/sub 2/ sigma/sub rho/- and ..pi..-bonding molecular orbitals and back donation from filled metallic molecular orbitals to the C/sub 2/ ..pi..* orbitals. The bonding therefore follows closely the Chatt-Dewar-Ducanson model that has been established previously for ethyne and ethene complexes but not for interstitial moieties. The C-C separation in the dicarbido clusters depends critically on the geometric constraints imposed by the metal cage and the extent of forward and back donation. In these clusters where the carbon atoms are in adjacent trigonal-prismatic sites the calculated formal bond order is between 1.0 and 1.5, which agrees well with the observed C-C bond lengths.

  3. Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Smetanina, Evgeniya; Chimier, Benoit; Petit, Yannick; Varkentina, Nadezda; Fargin, Evelyne; Hirsch, Lionel; Cardinal, Thierry; Canioni, Lionel; Duchateau, Guillaume

    2016-01-01

    The formation of silver cluster structures at submicrometer spatial scales under the irradiation by high-power femtosecond laser pulses with high repetition rate was observed in various glasses containing silver ions. In order to account for the formation of these structures in metal-doped glasses, we present a theoretical model for the organization of noble metallic clusters induced by a train of femtosecond laser pulses. The model includes photoionization and laser heating of the sample, diffusion, kinetic reactions, and dissociation of metallic species. This model was applied to reproduce the formation of cluster structures in silver-doped phosphate glass. The parameters of the silver structures were obtained numerically under various incident pulse intensities and number of pulses. Numerical modeling shows that the involved microscopic physical and chemical processes naturally lead to the emergence of a silver cluster organization, together with charge migration and subsequent trapping giving rise to a strong static electric field buried in the irradiated area as experimentally observed. Based on this modeling, a theoretical basis is provided for the design of new metallic cluster structures with nanoscale size.

  4. Experimental studies of the chemistry of metal clusters

    SciTech Connect

    Parks, E.K.; Riley, S.J.

    1988-01-01

    The procedures for studying chemical reactions of metal clusters in a continuous-flow reactor are described, and examples of such studies are given. Experiments to be discussed include kinetics and thermodynamics measurements, and determination of the composition of clusters saturated with various adsorbate reagents. Specific systems to be covered include the reaction of iron clusters with ammonia and with hydrogen, the reaction of nickel clusters with hydrogen and with ammonia, and the reaction of platinum clusters with ethylene. The last two reactions are characterized by complex, multi-step processes that lead to adsorbate decomposition and hydrogen desorption from the clusters. Methods for probing these processes will be discussed. 26 refs., 8 figs.

  5. Term rules for simple metal clusters

    PubMed Central

    Yoshida, Daisuke; Raebiger, Hannes

    2015-01-01

    Hund’s term rules are only valid for isolated atoms, but have no generalization for molecules or clusters of several atoms. We present a benchmark calculation of Al2 and Al3, for which we find the high and low-spin ground states 3Πu and , respectively. We show that the relative stabilities of all the molecular terms of Al2 and Al3 can be described by simple rules pertaining to bonding structures and symmetries, which serve as guiding principles to determine ground state terms of arbitrary multi-atom clusters. PMID:26497089

  6. Term rules for simple metal clusters

    NASA Astrophysics Data System (ADS)

    Yoshida, Daisuke; Raebiger, Hannes

    2015-10-01

    Hund’s term rules are only valid for isolated atoms, but have no generalization for molecules or clusters of several atoms. We present a benchmark calculation of Al2 and Al3, for which we find the high and low-spin ground states 3Πu and , respectively. We show that the relative stabilities of all the molecular terms of Al2 and Al3 can be described by simple rules pertaining to bonding structures and symmetries, which serve as guiding principles to determine ground state terms of arbitrary multi-atom clusters.

  7. Photoionization profiles of metal clusters and the Fowler formula

    NASA Astrophysics Data System (ADS)

    Prem, Abhinav; Kresin, Vitaly V.

    2012-02-01

    Metal-cluster ionization potentials are important characteristics of these “artificial atoms,” but extracting these quantities from cluster photoabsorption spectra, especially in the presence of thermal smearing, remains a big challenge. Here we demonstrate that the classic Fowler theory of surface photoemission does an excellent job of fitting the photoabsorption profile shapes of neutral Inn=3-34 clusters [Wucher , New J. Phys.NJOPFM1367-263010.1088/1367-2630/10/10/103007 10, 103007 (2008)]. The deduced ionization potentials extrapolate precisely to the bulk work function, and the internal cluster temperatures are in close agreement with values expected for an ensemble of freely evaporating clusters. Supplementing an earlier application to potassium clusters, these results suggest that the Fowler formalism, which is straightforward and physical, may be of significant utility in metal-cluster spectroscopy. It is hoped also that the results will encourage a comprehensive theoretical analysis of the applicability of bulk-derived models to cluster photoionization behavior, and of the transition from atomic and molecular-type to surface-type photoemission.

  8. Nanoscale metal-organic frameworks for combined photodynamic & radiation therapy in cancer treatment.

    PubMed

    Liu, Jingjing; Yang, Yu; Zhu, Wenwen; Yi, Xuan; Dong, Ziliang; Xu, Xiaona; Chen, Meiwan; Yang, Kai; Lu, Guang; Jiang, Lixin; Liu, Zhuang

    2016-08-01

    Nanoscale metal organic frameworks (NMOFs) have shown great potential in biomedicine owing to their structural/chemical diversities, high molecular loading capacities, and intrinsic biodegradability. Herein, we report the rational design of a NMOF composed by hafnium (Hf(4+)) and tetrakis (4-carboxyphenyl) porphyrin (TCPP). In such Hf-TCPP NMOFs, while TCPP is a photosensitizer to allow photodynamic therapy (PDT), Hf(4+) with strong X-ray attenuation ability could serve as a radio-sensitizer to enhance radiotherapy (RT). Those NMOFs with polyethylene glycol (PEG) coating show efficient tumor homing upon intravenous injection, and thus could be used for in vivo combined RT & PDT, achieving a remarkable anti-tumor effect. Importantly, Hf-TCPP NMOFs show efficient clearance from the mouse body, minimizing concerns regarding their possible long-term toxicity. Our work thus presents a new concept of developing multifunctional NMOFs as a biodegradable carrier-free system, in which both metal ions and organic ligands are fully utilized to exert their therapeutic functions. PMID:27155362

  9. Nanoscale Twinning and Martensitic Transformation in Shock-Deformed BCC Metals

    SciTech Connect

    Hsiung, L L

    2005-03-22

    Shock-induced twinning and martensitic transformation in BCC-based polycrystalline metals (Ta and U-6wt%Nb) have been observed and studied using transmission electron microscopy (TEM). The length-scale of domain thickness for both twin lamella and martensite phase is found to be smaller than 100 nm. While deformation twinning of {l_brace}112{r_brace}<111>-type is found in Ta when shock-deformed at 15 GPa, both twinning and martensitic transformation are found in Ta when shock-deformed at 45 GPa. Similar phenomena of nanoscale twinning and martensitic transformation are also found in U6Nb shock-deformed at 30 GPa. Since both deformation twinning and martensitic transformation occurred along the {l_brace}211{r_brace}{sub b} planes associated with high resolved shear stresses, it is suggested that both can be regarded as alternative paths for shear transformations to occur in shock-deformed BCC metals. Heterogeneous nucleation mechanisms for shock-induced twinning and martensitic transformation are proposed and discussed.

  10. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  11. Is the Globular Cluster Colour-Metallicity Relation Universal?

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Sluggs Survey Team

    2015-01-01

    Visible at much greater distances than resolved stars, globular clusters are important tools for studying galaxy formation and assembly. Studies of extragalactic globular clusters typically use optical colours to derive metallicites. We use Keck DEIMOS spectroscopy and Subaru Suprime-Cam photometry from the SLUGGS Survey to investigate how the globular cluster colour-metallicity relation varies galaxy to galaxy and with globular cluster luminosity. As in previous studies we see variations in the shape of the relationship between (g - i) colour and the strength of the calcium triplet spectral feature. To measure weaker spectral features in the DEIMOS spectra, we stack the spectra by colour and by magnitude. Comparing spectra with the same colours and luminosities but from different galaxies, we see significant differences in the strengths of several spectral features, including the calcium triplet and weak iron lines. We interpret this as strong evidence that the globular cluster colour-metallicity relation varies galaxy-to-galaxy. We suggest differences in globular cluster ages between galaxies and in the abundances of light elements (helium, carbon, nitrogen and oxygen) between galaxies as possible explanations for the observed variations in the colour-metallicity relation.

  12. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  13. Ionic recoil energies in the Coulomb explosion of metal clusters

    NASA Astrophysics Data System (ADS)

    Teuber, S.; Döppner, T.; Fennel, T.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    The photoionization of metal clusters in intense femtosecond laser fields has been studied. In contrast to an experiment on atoms, the interaction in this case leads to a very efficient and high charging of the particle where tens of electrons per atom are ejected from the cluster. The recoil energy distribution of the atomic fragment ions was measured which in the case of lead clusters exceeds 180 keV. Enhanced charging efficiency which we observed earlier for specific pulse conditions is not reflected in the recoil energy spectra. Both the average and the maximum energies decrease with increasing laser pulse width. This is in good agreement with molecular dynamics calculations.

  14. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  15. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  16. Metal Optics Based nanoLEDs: In Search of a Fast, Efficient, Nanoscale Light Emitter

    NASA Astrophysics Data System (ADS)

    Eggleston, Michael Scott

    Since the invention of the laser, stimulated emission has been the de facto king of optical communication. Lasers can be directly modulated at rates as high as 50GHz, much faster than a typical solid state light-emitting diode (LED) that is limited by spontaneous emission to <1GHz. Unfortunately, lasers have a severe scaling problem; they require large cavities operated at high power to achieve efficient lasing. A properly designed LED can be made arbitrarily small and still operate with high-efficiency. On-chip interconnects is an area that is in desperate need of a high-speed, low-power optical emitter that can enable on-chip links to replace current high-loss metal wires. In this work, I will show that by utilizing proper antenna design, a nanoLED can be created that is faster than a laser while still operating at >50% efficiency. I start by formulating an optical antenna circuit model whose elements are based completely off of antenna geometry. This allows for intuitive antenna design and suggests that rate enhancements up to ~3,000x are possible while keeping antenna efficiency >50%. Such a massive speed-up in spontaneous emission would enable an LED that can be directly modulated at 100's of GHz, much faster than any laser. I then use the circuit model to design an arch-dipole antenna, a dipole antenna with an inductive arch across the feedgap. I experimentally demonstrate a free-standing arch-dipole based nanoLED with rate enhancement of 115x and 66% antenna efficiency. Because the emitter is InGaAsP, a common III-V material, I experimentally show that this device can be easily and efficiently coupled into an InP waveguide. Experimental coupling efficiencies up to 70% are demonstrated and directional antennas are employed that offer front to back emission ratios of 3:1. Finally, I show that a nanoLED can still have high quantum yield by using a transition metal dichalcogenide, WSe2, as the emitter material. By coupling a monolayer of WSe2 to a cavity

  17. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  18. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  19. Theoretical dynamical studies of metal clusters and cluster-ligand systems

    SciTech Connect

    Jellinek, J.

    1995-06-01

    In what follows we use the term cluster to designate a cohesive group of like atoms (molecules), i.e., bare ({open_quotes}neet{close_quotes} {open_quotes}naked{close_quotes}) clusters. More generally, the term is also used for organo- and inorganometallic compounds, i.e., ligated clusters. Although the approaches and techniques used by the various disciplines to study metal-ligand interactions are quite different, many of the central subjects and issues are common for them. The common subjects include possible geometric structures and isomeric forms, structural (isomerization) transitions, stability, fluxionality, structure-reactivity correlation (or lack of it), role of coordination, etc. However, the precise interpretation of these issues and the details emphasized by the different disciplines are dictated by the nature of the objects studied and may not, therefore, be identical. For example, questions regarding structures, isomerization transitions, fluxionality or even melting of metal clusters refer to the state and properties of the metal network itself. The same questions, when asked in connection with organo- and inorganometallic compounds, often refer to the arrangements and rearrangements of the ligands attached to a metal framework of a fixed structure. Of course, when required, the state of and changes in the metal framework are considered as well. The fields of metal-containing molecular compounds, surface science, and physics and chemistry of clusters furnish complementary information on a broad variety of metal-ligand systems. A comprehensive understanding of the nature and properties of these systems, as defined by the type and number of metal atoms and ligands involved, can be achieved only through a mutual awareness of and continuing progress in all of these research areas.

  20. Hitomi observations of the Perseus Cluster / Constant metallicity in the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Werner, Norbert; Simionescu, Aurora; Urban, Ondrej; Allen, Steven

    2016-07-01

    X-ray observations with the Suzaku satellite reveal a remarkably homogeneous distribution of iron out to the virial radii of nearby galaxy clusters. Observations of the Virgo Cluster, that also allow us to measure the abundances of Si, S, and Mg out to the outskirts, show that the chemical composition of the intra-cluster medium is constant on large scales. These observations require that most of the metal enrichment and mixing of the intergalactic medium occurred before clusters formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity. We estimate the ratio between the number of SN Ia and the total number of supernovae enriching the intergalactic medium to be between 15-20%, generally consistent with the metal abundance patterns in our own Galaxy.

  1. Theoretical Investigations into Self-Organized Ordered Metallic Semi-Clusters Arrays on Metallic Substrate

    PubMed Central

    2010-01-01

    Using the energy minimization calculations based on an interfacial potential and a first-principles total energy method, respectively, we show that (2 × 2)/(3 × 3) Pb/Cu(111) system is a stable structure among all the [(n − 1) × (n − 1)]/(n × n) Pb/Cu(111) (n = 2, 3,…, 12) structures. The electronic structure calculations indicate that self-organized ordered Pb semi-clusters arrays are formed on the first Pb monolayer of (2 × 2)/(3 × 3) Pb/Cu(111), which is due to a strain-release effect induced by the inherent misfits. The Pb semi-clusters structure can generate selective adsorption of atoms of semiconductor materials (e.g., Ge) around the semi-clusters, therefore, can be used as a template for the growth of nanoscale structures with a very short periodic length (7.67 Å). PMID:20672088

  2. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  3. Metal Structural Environment in ZnxNi1-xO Macroscale and Nanoscale Solid Solutions

    SciTech Connect

    Peck, Matthea A.; Langell, Marjorie A.

    2014-08-21

    The metal structural environments in macroscale and nanoscale ZnxNi1–xO solid solutions were examined using X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). XRD demonstrates that solid solutions form for both macroscale (bulk) and nanoscale crystallites, and that the lattice parameter increases linearly as the amount of zinc increases, an indication of a homogeneous solid solution. XAS for both the bulk material and the nanoparticles reveals that the zinc atoms are incorporated into the rocksalt lattice and do not form zinc oxide clusters. The X-ray absorption near edge spectroscopy (XANES) of the Zn k-edge region in the solid solution is similar to the Ni k-edge region of NiO, and not the Zn k-edge region of ZnO. XPS confirms that solid solutions are formed; Auger parameters for zinc are consistent with a different geometry than the tetrahedral coordination of wurtzite ZnO. Nanoscaled solid solutions show evidence of a lattice contraction relative to macroscale solutions of the same concentration. While the contraction persists across the entire concentration range, the nanoparticle lattice parameter approaches the bulk ZnxNi1–xO value as the concentration of zinc increases to predict ZnO rocksalt lattice parameters that are in agreement with observed ZnO data.

  4. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces.

    PubMed

    Park, Yeonsang; Roh, Young-Geun; Kim, Un Jeong; Chung, Dae-Young; Suh, Hwansoo; Kim, Jineun; Cheon, Sangmo; Lee, Jaesoong; Kim, Tae-Ho; Cho, Kyung-Sang; Lee, Chang-Won

    2012-09-01

    The patterning of colloidal quantum dots with nanometer resolution is essential for their application in photonics and plasmonics. Several patterning approaches, such as the use of polymer composites, molecular lock-and-key methods, inkjet printing and microcontact printing of quantum dots have been recently developed. Herein, we present a simple method of patterning colloidal quantum dots for photonic nanostructures such as straight lines, rings and dot patterns either on transparent or metallic substrates. Sub-10 nm width of the patterned line could be achieved with a well-defined sidewall profile. Using this method, we demonstrate a surface plasmon launcher from a quantum dot cluster in the visible spectrum. PMID:22895055

  5. Nanoscale spatial organization of the HoxD gene cluster in distinct transcriptional states.

    PubMed

    Fabre, Pierre J; Benke, Alexander; Joye, Elisabeth; Nguyen Huynh, Thi Hanh; Manley, Suliana; Duboule, Denis

    2015-11-10

    Chromatin condensation plays an important role in the regulation of gene expression. Recently, it was shown that the transcriptional activation of Hoxd genes during vertebrate digit development involves modifications in 3D interactions within and around the HoxD gene cluster. This reorganization follows a global transition from one set of regulatory contacts to another, between two topologically associating domains (TADs) located on either side of the HoxD locus. Here, we use 3D DNA FISH to assess the spatial organization of chromatin at and around the HoxD gene cluster and report that although the two TADs are tightly associated, they appear as spatially distinct units. We measured the relative position of genes within the cluster and found that they segregate over long distances, suggesting that a physical elongation of the HoxD cluster can occur. We analyzed this possibility by super-resolution imaging (STORM) and found that tissues with distinct transcriptional activity exhibit differing degrees of elongation. We also observed that the morphological change of the HoxD cluster in developing digits is associated with its position at the boundary between the two TADs. Such variations in the fine-scale architecture of the gene cluster suggest causal links among its spatial configuration, transcriptional activation, and the flanking chromatin context. PMID:26504220

  6. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    DOE PAGESBeta

    Economy, David Ross; Mara, Nathan A.; Schoeppner, R.; Schultz, Bradley M.; Unocic, Raymond R.; Kennedy, Marian S.

    2016-01-13

    In complex loading conditions (e.g. sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed, as-deposited regions. Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 μm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally,more » the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022 respectively) were less than was determined for 100 nm systems (n ≈ 0.041). These results suggest that singledislocation based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.« less

  7. Identifying Deformation and Strain Hardening Behaviors of Nanoscale Metallic Multilayers Through Nano-wear Testing

    NASA Astrophysics Data System (ADS)

    Economy, D. Ross; Mara, N. A.; Schoeppner, R. L.; Schultz, B. M.; Unocic, R. R.; Kennedy, M. S.

    2016-03-01

    In complex loading conditions ( e.g., sliding contact), mechanical properties, such as strain hardening and initial hardness, will dictate the long-term performance of materials systems. With this in mind, the strain hardening behaviors of Cu/Nb nanoscale metallic multilayer systems were examined by performing nanoindentation tests within nanoscratch wear boxes and undeformed regions (as-deposited). Both the architecture and substrate influence were examined by utilizing three different individual layer thicknesses (2, 20, and 100 nm) and two total film thicknesses (1 and 10 µm). After nano-wear deformation, multilayer systems with thinner layers showed less volume loss as measured by laser scanning microscopy. Additionally, the hardness of the deformed regions significantly rose with respect to the as-deposited measurements, which further increased with greater wear loads. Strain hardening exponents for multilayers with thinner layers (2 and 20 nm, n ≈ 0.018 and n ≈ 0.022, respectively) were less than that determined for 100 nm systems ( n ≈ 0.041). These results suggest that single-dislocation-based deformation mechanisms observed for the thinner systems limit the extent of achievable strain hardening. This conclusion indicates that impacts of both architecture strengthening and strain hardening must be considered to accurately predict multilayer performance during sliding contact across varying length scales.

  8. Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery.

    PubMed

    Taylor-Pashow, Kathryn M L; Della Rocca, Joseph; Xie, Zhigang; Tran, Sylvie; Lin, Wenbin

    2009-10-14

    Fe(III)-carboxylate nanoscale metal-organic frameworks (NMOFs) with the MIL-101 structure were synthesized using a solvothermal technique with microwave heating. The approximately 200 nm particles were characterized using a variety of methods, including SEM, PXRD, nitrogen adsorption measurements, TGA, and EDX. By replacing a percentage of the bridging ligand (terephthalic acid) with 2-amino terephthalic acid, amine groups were incorporated into the framework to provide sites for covalent attachment of biologically relevant cargoes while still maintaining the MIL-101 structure. In proof-of-concept experiments, an optical contrast agent (a BODIPY dye) and an ethoxysuccinato-cisplatin anticancer prodrug were successfully incorporated into the Fe(III)-carboxylate NMOFs via postsynthetic modifications of the as-synthesized particles. These cargoes are released upon the degradation of the NMOF frameworks, and the rate of cargo release was controlled by coating the NMOF particles with a silica shell. Potential utility of the new NMOF-based nanodelivery vehicles for optical imaging and anticancer therapy was demonstrated in vitro using HT-29 human colon adenocarcinoma cells. PMID:19807179

  9. Nanoscale size dependence on pulsed laser sintering of hydroxyapatite/titanium particles on metal implants

    NASA Astrophysics Data System (ADS)

    Zhang, Martin Yi; Cheng, Gary J.

    2010-12-01

    Nanoscale size effects on pulsed laser coating of hydroxyapatite/titanium nanoparticles (nanoTi) on metal substrate is discussed in this article. Laser coating method has recently been developed to coat bioceramics material on Ti-6Al-4V substrate. Laser-coated bioceramics implants have several advantages due to the use of nanosized materials: strong interfacial bonding strength, good biocompatibility and potentially longer lifetime cycle. These advantages benefit from intrinsic properties of nanoparticles. Size effects on melting point, heat capacity, thermal, and electrical conductivities have been discussed. Multiphysics model is built to reveal the mechanism of laser coating process. Two submodules are included in the model: electromagnetic module to represent the laser-nanoparticle interactions and heat transfer module to simulate the heat conduction. Both simulation and experimental results showed that nanoTi, functioning as nanoheaters, effectively enhances the laser coating sinterability. For large nanoTi (>100 nm), sinterability enhancement mainly attributes to the stronger laser-particle interactions due to higher plasmon resonance; for small nanoparticles (<100 nm), not only stronger laser-nanoparticle interactions, reduction on melting point also contributes to sinterability enhancement.

  10. Flexible macrocycles as versatile supports for catalytically active metal clusters.

    PubMed

    Ryan, Jason D; Gagnon, Kevin J; Teat, Simon J; McIntosh, Ruaraidh D

    2016-07-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide. PMID:26892948

  11. Theoretical Study on Metal Porphyrin Chain for Use as a Nanoscale Device

    NASA Astrophysics Data System (ADS)

    Mizuseki, Hiroshi; Igarashi, Nobuaki; Belosludov, Rodion; Farajian, Amir; Kawazoe, Yoshiyuki

    2003-03-01

    Recently, the molecular electronics has attracted strong attention as a ``post-silicone technology'' to realize a future nanoscale electronics device. A quarter century ago Aviram and Ratner (1) have first demonstrated how an organic molecule could function as a molecular rectifying diode. Further this has been supported by many experimental results. Aromatic molecules have ¥pi-conjugation systems through which electrons can flow easily. By substituting different functional groups on an aromatic system it is possible to increase or decrease the ¥pi-electron density and thereby creating acceptor (p-type) and donor (n-type) molecular subunits. Therefore, a rectifier could be built by combining these two molecular subunits between two electrodes in which electrons can flow from cathode to the acceptor or from donor to the anode (2-3). Porphyrin possesses good electron-donating properties due to its large easily ionized ¥pi-electron system, and a long molecular wire of fully conjugated porphyrin. In this study, we propose rectifier diode can be created by combining two metal porphyrin molecules with different metal atom. To estimate the electron transport through this molecule, we have analyzed the spatial extent of the frontier orbitals (HOMO and LUMO), providing a strategy by which the rectifying properties of the porphyrin polymer can be understood. This study was performed through Special Coordination Funds for Promoting Science and Technology of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government. (1) A. Aviram and M. A. Ratner, Chem. Phys. Lett. Vol. 29 (1974) 277. (2) C. Majumder, H. Mizuseki, and Y. Kawazoe, J. Phys. Chem. A, Vol. 105 (2001) 9454. (3) H. Mizuseki, K. Niimura, C. Majumder, and Y. Kawazoe, Comput. Mater. Sci., in press.

  12. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses. PMID:26724469

  13. Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra

    SciTech Connect

    Unruh, Daniel K.; Ling, Jie; Qiu, Jie; Pressprich, Laura; Baranay, Melissa; Ward, Matthew; Burns, Peter C.

    2011-06-20

    Five cage clusters that self-assemble in alkaline aqueous solution have been isolated and characterized. Each is built from uranyl hexagonal bipyramids with two or three equatorial edges occupied by peroxide, and three also contain phosphate tetrahedra. These clusters contain 30 uranyl polyhedra; 30 uranyl polyhedra and six pyrophosphate groups; 30 uranyl polyhedra, 12 pyrophosphate groups, and one phosphate tetrahedron; 42 uranyl polyhedra; and 40 uranyl polyhedra and three pyrophosphate groups. These clusters present complex topologies as well as a range of compositions, sizes, and charges. Two adopt fullerene topologies, and the others contain combinations of topological squares, pentagons, and hexagons. An analysis of possible topologies further indicates that higher-symmetry topologies are favored.

  14. Separability Between Valence and Conduction Bands in Transition Metal Clusters

    SciTech Connect

    Apra, Edoardo; Carter, Emily A.; Fortunelli, Alessandro

    2004-07-30

    Simplified theories of transition metal electronic structure have been postulated for many decades. Here we test one such approximation, namely separate treatments of d (valence) and s/p (conduction) electrons in transition metal clusters, within a density functional formalism. Two different basic approaches are considered: (a) an independent-band approximation, in which the d- and s/p-bands interact only via the ?-dependent components of the Kohn-Sham operator; and (b) a more realistic approximation, in which the lowest-energy d- and s/p-orbitals (separately derived) are allowed to interact through explicit off-diagonal coupling matrix elements. Results are presented for the energy differences among three structural forms (icosahedral, cuboctahedral and truncated decahedral) of 13-atom Ni and Pt clusters. We demonstrate that an explicit decoupling of the d- and s/p-bands does not produce accurate results for the clusters considered here, not even for nickel, i.e., the transition metal for which d-s/p mixing should be at its minimum. By contrast, allowing the lowest energy orbitals of the two separate bands to interact improves the results considerably, and assures a fair description of metal-metal bonding. This suggests simplified models that exclude explicit d-s/p coupling should be employed with caution.

  15. Exploring the Formation of Galaxies through Metallicities of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yong Beom; Rey, Soo-Chang; Lee, Young-Wook; Tamura, Naoyuki; Sohn, S. Tony; Arimoto, Nobuo; Kodama, Tadayuki; Yamada, Yoshihiko

    2014-06-01

    Globular clusters (GCs) are among the oldest stellar objects in the universe. They have long served the role of providing constraints on many aspects of galaxy evolution theory. Bimodal color distribution of GC systems in many luminous early-type galaxies is an observationally established phenomenon and has been interpreted as evidence of two GC subgroups with different metallicities. In this study, we use spectroscopic data on the GC systems of two giant galaxies, M31 (the Andromeda) and M87 (NGC 4486), to investigate the GC bimodality and the underlying metallicity distributions. Recent high signal-to-ratio spectroscopic data on M31 GCs revealed a clear bimodality in absorption-line index distributions of old GCs. Given that spectroscopy provides a more robust probe into stellar population than photometry, the reported spectral line index bimodality may indicate the presence of two distinct GC populations. However, here we show that the spectroscopic dichotomy of M31 GCs is due to the nonlinear nature of metallicity-to-index conversion and therefore one does not need two separate GC subsystems. We consider this as an analogy to the recent interpretation in which metallicity-color nonlinearity is the prime cause for observed GC color bimodality. We present spectra of ~130 old globular clusters (GCs) associated with the Virgo giant elliptical galaxy M87, obtained with the Multi-Object Spectrography (MOS) mode of Faint Object Camera and Spectrograph (FOCAS) on the Subaru telescope. The fundamental properties of globular clusters such as age, metallicity and elemental abundance ratio are investigated by comparing with a set of Simple Stellar Population (SSP) models. M87 GCs with reliable metallicity measurements exhibit significant inflection along the color-metallicity relations, through which observed color bimodality is reproduced using a broad, unimodal metallicity distribution. Our findings lend further support to this new interpretation of the GC color

  16. Nanoscale electrochemical metallization memories based on amorphous (La, Sr)MnO3 using ultrathin porous alumina masks

    NASA Astrophysics Data System (ADS)

    Liu, Dongqing; Zhang, Chaoyang; Wang, Guang; Shao, Zhengzheng; Zhu, Xuan; Wang, Nannan; Cheng, Haifeng

    2014-02-01

    Nanoscale electrochemical metallization (ECM) memories based on amorphous La1-xSrxMnO3 (a-LSMO) were fabricated using ultrathin porous alumina masks. The ultrathin alumina masks, with thicknesses of about 200 nm and pore diameters of about 80 nm, were fabricated through a typical two-step anodization electrochemical procedure and transferred onto conductive Pt/Ti/SiO2/Si substrates. Resistive switching (RS) properties of the individual Ag/a-LSMO/Pt ECM cell were directly measured using a conductive atomic force microscope. The cells exhibited typical RS characteristics and the OFF/ON resistance ratio is as high as 102. Reproducible RS behaviours on the same ECM cell and the I-V cycles obtained from different ECM cells ensured that the RS properties in nanoscale Ag/a-LSMO/Pt cells are reproducible and reliable. This work provides an effective approach for the preparation of nanostructured large-scale ordered ECM memories or memristors.

  17. Aggregation of nanoscale iron oxyhydroxides and corresponding effects on metal uptake, retention, and speciation: II. Temperature and time

    NASA Astrophysics Data System (ADS)

    Stegemeier, J. P.; Reinsch, B. C.; Lentini, C. J.; Dale, J. G.; Kim, C. S.

    2015-01-01

    The aggregation and growth of nanosized particles can greatly impact their capacity to sorb and retain dissolved metals, thus affecting metal fate and transport in contaminated systems. Aqueous suspensions of synthesized nanoscale iron oxyhydroxides were exposed to dissolved Zn(II) or Cu(II) and aged at room temperature (∼20 °C), 50 °C, and 75 °C for timeframes ranging from 0 to 96 h before sorbed metal ions were desorbed by lowering the suspension pH. Atomic absorption spectroscopic analysis of supernatants both before and after the desorption step determined how temperature and time affect macroscopic metal uptake and retention capacities. Extended X-ray absorption fine structure (EXAFS) spectroscopy analysis described the local binding environment of the sorbed/retained metals on the solid phase. With increasing aging temperature and time, the initial ∼5-nm oblong nanoparticles formed dense aggregates, lost reactive surface area, and retained progressively larger fractions of the initially-introduced Zn(II) and Cu(II) following the desorption step, with the copper species inhibiting the oriented aggregation of the nanoparticles into nanorods. Based on EXAFS analysis, the speciation of the sorbed metal species evolves with increasing time and temperature from surface-sorbed metal ions, which readily desorb and return to solution, to more strongly-bound, structurally-incorporated metal ions. These retained metals appear to associate intimately with the nanoparticle aggregates by substituting for iron in the nanoparticle lattice or by binding within nanoparticle aggregate pore spaces.

  18. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  19. Deep Mixing and Metallicity in Globular Cluster Red Giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2007-12-01

    We present results from a study of carbon depletion and deep mixing in globular cluster red giants across a wide range of metallicity. CH bandstrengths are measured from low-resolution (R 1000) spectra and converted to [C/Fe] abundances by comparisons with synthetic spectra. Although some models of deep mixing predict that its efficiency will be reduced at high metallicity, no sign of such a cutoff is seen in our data, which span the range -2.29 < [Fe/H] < -1.29.

  20. Unusual Electro-Optic Kerr Response in a Self-Stabilized Amorphous Blue Phase with Nanoscale Smectic Clusters.

    PubMed

    Le, Khoa V; Hafuri, Miho; Ocak, Hale; Bilgin-Eran, Belkız; Tschierske, Carsten; Sasaki, Takeo; Araoka, Fumito

    2016-05-18

    We investigated the electro-optic response in the "foggy" amorphous blue phase (BPIII) as well as in the isotropic phase. To the best of our knowledge, such a study has not yet been performed due to the very limited thermal range of BPIII. In this study, we used a single-component chiral bent-core liquid crystal with a self-stabilized BPIII, which is stable over a wide temperature range. The results show that the response time is on the order of hundreds of microseconds in the isotropic phase and increases to 1-2 ms in the BPIII (at TI-BP -T <1), then drastically increases up to a few tens of milliseconds upon further cooling in BPIII. Such an unusual behavior was explained on the basis of the high rotational viscosity and/or the existence of nanoscale smectic (Sm) clusters. The Kerr constant was also measured and found to be ∼500 pm V(-2) , which is the largest among bent-core BP systems reported so far and comparable with that of polymer-stabilized BPs. PMID:26910727

  1. The old, metal-poor, anticentre open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Donati, P.; Cocozza, G.; Bragaglia, A.; Pancino, E.; Cantat-Gaudin, T.; Carrera, R.; Tosi, M.

    2015-01-01

    As part of a long-term programme, we analyse the evolutionary status and properties of the old and populous open cluster Trumpler 5 (Tr 5), located in the Galactic anticentre direction, almost on the Galactic plane. Tr 5 was observed with Wide Field Imager@MPG/ESO Telescope using the Bessel U, B, and V filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMD with a library of synthetic CMDs generated with different stellar evolution sets (Padova, FRANEC, and FST). Age, reddening, and distance are derived through the synthetic CMD method using stellar evolutionary models with subsolar metallicity (Z = 0.004 or Z = 0.006). Additional spectroscopic observations with Ultraviolet VLT Echelle Spectrograph@Very Large Telescope of three red clump stars of the cluster were used to determine more robustly the chemical properties of the cluster. Our analysis shows that Tr 5 has subsolar metallicity, with [Fe/H] = -0.403 ± 0.006 dex (derived from spectroscopy), age between 2.9 and 4 Gyr (the lower age is found using stellar models without core overshooting), reddening E(B - V) in the range 0.60-0.66 mag complicated by a differential pattern (of the order of ˜±0.1 mag), and distance modulus (m - M)0 = 12.4 ± 0.1 mag.

  2. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    SciTech Connect

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  3. Electronic Principles Governing the Stability and Reactivity of Ligated Metal and Silicon Encapsulated Transition Metal Clusters

    NASA Astrophysics Data System (ADS)

    Abreu, Marissa Baddick

    A thorough understanding of the underlying electronic principles guiding the stability and reactivity of clusters has direct implications for the identification of stable clusters for incorporation into clusters-assembled materials with tunable properties. This work explores the electronic principles governing the stability and reactivity of two types of clusters: ligated metal clusters and silicon encapsulated transition metal clusters. In the first case, the reactivity of iodine-protected aluminum clusters, Al13Ix - (x=0-4) and Al14Iy- (y=0-5), with the protic species methanol was studied. The symmetrical ground states of Al13Ix- showed no reactivity with methanol but reactivity was achieved in a higher energy isomer of Al 13I2- with iodines on adjacent aluminum atoms -- complementary Lewis acid-base active sites were induced on the opposite side of the cluster capable of breaking the O-H bond in methanol. Al 14Iy- (y=2-5) react with methanol, but only at the ligated adatom site. Reaction of methanol with Al14 - and Al14I- showed that ligation of the adatom was necessary for the reaction to occur there -- revealing the concept of a ligand-activated adatom. In the second case, the study focused heavily on CrSi12, a silicon encapsulated transition metal cluster whose stability and the reason for that stability has been debated heavily in the literature. Calculations of the energetic properties of CrSi n (n=6-16) revealed both CrSi12 and CrSi14 to have enhanced stability relative to other clusters; however CrSi12 lacks all the traditional markers of a magic cluster. Molecular orbital analysis of each of these clusters showed the CNFEG model to be inadequate in describing their stability. Because the 3dz2 orbital of Cr is unfilled in CrSi12, this cluster has only 16 effective valence electrons, meaning that the 18-electron rule is not applicable. The moderate stability of CrSi 12 can be accounted for by the crystal-field splitting of the 3d orbitals, which pushes the

  4. The Old, Super-Metal-Rich Open Cluster, NGC 6791

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G. G.; Deliyannis, Constantine P.

    2015-08-01

    Stellar evolution and Galactic evolution have both been greatly advanced by the study of star clusters. In addition the elemental abundance results from clusters have revealed information about Galactic chemical evolution and nucleosynthesis. The cluster, NGC 6791, has a number of bizarre properties that make it especially interesting for comparative cluster studies. It is old (8.3 Gyr) yet metal-rich ([Fe/H] = +0.30). It has a heliocentric distance of 4 kpc and a galactic latitude of +11 degrees which makes it 1 kpc above the galactic plane. Its boxy orbit has a high eccentricity (~0.5) with a perigalactic distance of 3 kpc and an apogalactic distance of 10 kpc. The orbital period of ~130 Myr indicates that it has crossed the Galactic plane several times yet has remained as an intact cluster. We have determined abundances from high-resolution (R = 46,000) Keck/HIRES spectra of turn-off stars in this open cluster NGC 6791. We have a solid determination of [Fe/H] = +0.30 +/-0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 +/-0.02, indicating a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe] and [Ti/Fe] are near solar and compare well with those of old, metal-rich field stars. The Fe-peak elements, Cr and Ni, have values of [Cr/Fe] = +0.05 +/-0.02 and [Ni/Fe] = +0.04 +/-0.01. Determinations of upper limits were found for Li by spectrum synthesis; this is consistent with the upper limits in this temperature range for turn-off/subgiant stars in the relatively old, super-metal-rich cluster NGC 6253. We speculate that no stars in NGC 6791 have retained the Li with which they formed.

  5. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  6. The metal content of the bulge globular cluster NGC 6528

    NASA Astrophysics Data System (ADS)

    Zoccali, M.; Barbuy, B.; Hill, V.; Ortolani, S.; Renzini, A.; Bica, E.; Momany, Y.; Pasquini, L.; Minniti, D.; Rich, R. M.

    2004-08-01

    High resolution spectra of five stars in the bulge globular cluster NGC 6528 were obtained at the 8m VLT UT2-Kueyen telescope with the UVES spectrograph. Out of the five stars, two of them showed evidence of binarity. The target stars belong to the horizontal and red giant branch stages, at 4000 < Tefflt; 4800 K. Multiband V, I, J, H, Ks photometry was used to derive initial effective temperatures and gravities. The main purpose of this study is the determination of metallicity and elemental ratios for this template bulge cluster, as a basis for the fundamental calibration of metal-rich populations. The present analysis provides a metallicity [Fe/H] = -0.1±0.2 and the α-elements O, Mg and Si, show [α/Fe] ≈ +0.1, whereas Ca and Ti are around the solar value or below, resulting in an overall metallicity Z ≈ Z⊙. Observations collected both at the European Southern Observatory, Paranal and La Silla, Chile (ESO programme 65.L-0340) and with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, operated by AURA Inc. under contract to NASA. Tables \\ref{targets}, \\ref{logobs}, \\ref{tablines} and Fig. \\ref{chart} are only available in electronic form at http://www.edpsciences.org

  7. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry E-mail: harris@physics.mcmaster.ca E-mail: whitmore@stsci.edu

    2009-09-15

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z {approx} M {sup 0.30{+-}}{sup 0.05}. No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  8. Metallicity distributions of globular cluster systems in galaxies

    NASA Astrophysics Data System (ADS)

    Eerik, H.; Tenjes, P.

    We collected a sample of 100 galaxies for which different observers have determined colour indices of globular cluster candidates. The sample includes representatives of galaxies of various morphological types and different luminosities. Colour indices (in most cases (V-I), but also (B-I) and (C-T_1)) were transformed into metallicities [Fe/H] according to a relation by Kissler-Patig (1998). These data were analysed with the KMM software in order to estimate similarity of the distribution with uni- or bimodal Gaussian distribution. We found that 45 of 100 systems have bimodal metallicity distributions. Mean metallicity of the metal-poor component for these galaxies is < [Fe/H]> = -1.40 +/- 0.02, of the metal-rich component < [Fe/H]> = -0.69 +/- 0.03. Dispersions of the distributions are 0.15 and 0.18, respectively. Distribution of unimodal metallicities is rather wide. These data will be analysed in a subsequent paper in order to find correlations with parameters of galaxies and galactic environment.

  9. Fabrication of nanoelectrodes and metal clusters by electrodeposition.

    PubMed

    Velmurugan, Jeyavel; Mirkin, Michael V

    2010-09-10

    Most nanometer-sized electrodes reported to date are made from either Pt or Au. For technical reasons, it is difficult to make nanoelectrodes from many other metals (e.g. Hg) by heat-sealing microwires into glass capillaries or by other established techniques. Such nanoelectrodes can be useful for a wide range of analytical and physicochemical applications from high sensitivity stripping analysis (Hg) to pH nano-sensors to studies of electrocatalysis. In this paper, nanometer-sized metal electrodes are prepared by electrodeposition of Hg or Pt on disk-type, polished or recessed nanoelectrodes. The deposition of Hg is monitored chronoamperometrically to produce near-hemispherical electrodes, which are characterized by voltammetry and scanning electrochemical microscopy (SECM). The well-shaped deposits of a solid metal (Pt) at Au nanoelectrodes are prepared and imaged by scanning electron microscopy (SEM). Catalytic metal clusters can also be prepared using this methodology. Electrodes with the metal surface flush with glass insulator, most suitable for quantitative voltammetric and SECM experiments are fabricated by electrodeposition of a metal inside an etched nanocavity. PMID:20645378

  10. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397. PMID:23903747

  11. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  12. Charging dynamics of metal clusters in intense laser fields

    NASA Astrophysics Data System (ADS)

    Döppner, T.; Teuber, S.; Schumacher, M.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    2000-09-01

    Clusters of heavy metal atoms in strong femtosecond laser-light fields undergo multi-ionization with the loss of hundreds of electrons. The cross section largely exceeds that of corresponding isolated atoms, which leads in the case of PbN to a complete ionization of the 4f shell with a light intensity of 1.2×1015 W/cm2. Experimental investigations on Pb and Pt clusters with variable pulse widths and, for the first time, with the pump&probe technique give insight into the dynamics of the coupling of electromagnetic radiation into the clusters. Both approaches support the picture according to which, after an initial charging, the clusters expand due to Coulomb forces. This expansion is accompanied by a reduction of the electron density and at the same time by an increase of the optical sensitivity. Once the plasmon energy of the diluted nanoplasma approaches the photon energy, the charging efficiency increases significantly. The experimental observations are confirmed by random-phase approximation (RPA) calculations of the optical response, including molecular-dynamics simulations of the expanding systems.

  13. Water clusters in mixed ionic complexes with metal dipicolinate anions

    NASA Astrophysics Data System (ADS)

    Das, Babulal; Baruah, Jubaraj B.

    2013-02-01

    Formations of three different types of hydrogen-bonded water clusters in the interstices of mixed ionic complexes with metal dipicolinate anions are reported. In the complex [Co(phen)2(H2O)2][Zn(dpa)2]ṡ7H2O (1) (where phen = 1,10-phenanthroline, dpa = dipicolinate), both the cation and anion is hydrophilic in nature, exhibits an unusual 2D infinite cyclic water decamers (H2O)10 stabilized by four identical zinc dipicolinato complex anions. Modulating the cationic unit to a hydrophobic environment by replacing the aqua ligand with 2,2'-bipyridine ligand the water cluster can be modified. The complex [Ni(phen)2ṡbpy][Co(dpa)2]ṡ8H2O (2) (where bpy = 2,2'-bipyridine) has unprecedented discrete hydrogen bonded hexadecameric (H2O)16 water clusters encapsulated between eight anionic units. A rare wavelike infinite water chain (H2O)n is observed in complex [Co(phen)3][Mn(dpa)2]ṡ12H2O (3), in this case the water chain fills the interstitial space created by packing of large hydrophilic anionic units and hydrophobic cationic units. The reported clusters are indefinitely stable in their respective complex at ambient temperature, but the water loss is irreversible when thermally decomposed.

  14. How chain plasmons govern the optical response in strongly interacting self-assembled metallic clusters of nanoparticles.

    PubMed

    Esteban, Ruben; Taylor, Richard W; Baumberg, Jeremy J; Aizpurua, Javier

    2012-06-19

    Self-assembled clusters of metallic nanoparticles separated by nanometric gaps generate strong plasmonic modes that support both intense and localized near fields. These find use in many ultrasensitive chemical and biological sensing applications through surface enhanced Raman scattering (SERS). The inability to control at the nanoscale the structure of the clusters on which the optical response crucially depends, has led to the development of general descriptions to model the various morphologies fabricated. Here, we use rigorous electrodynamic calculations to study clusters formed by a hundred nanospheres that are separated by ∼1 nm distance, set by the dimensions of the macrocyclic molecular linker employed experimentally. Three-dimensional (3D) cluster structures of moderate compactness are of special interest since they resemble self-assembled clusters grown under typical diffusion-limited aggregation conditions. We find very good agreement between the simulated and measured far-field extinction spectra, supporting the equivalence of the assumed and experimental morphologies. From these results we argue that the main features of the optical response of two- and three-dimensional clusters can be understood in terms of the excitation of simple units composed of different length resonant chains. Notably, we observe a qualitative difference between short- and long-chain modes in both spectral response and spatial distribution: dimer and short-chain modes are observed in the periphery of the cluster at higher energies, whereas inside the structure longer chain excitation occurs at lower energies. We study in detail different configurations of isolated one-dimensional chains as prototypical building blocks for large clusters, showing that the optical response of the chains is robust to disorder. This study provides an intuitive understanding of the behavior of very complex aggregates and may be generalized to other types of aggregates and systems formed by large

  15. Shell structure of magnesium and other divalent metal clusters

    SciTech Connect

    Diederich, Th.; Doeppner, T.; Fennel, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.

    2005-08-15

    Clusters of the divalent metals magnesium, cadmium, and zinc have been grown in ultracold helium nanodroplets and studied by high-resolution mass spectrometry, with a special emphasis on magnesium. The mass spectra of all materials show similar characteristic features independent of the chosen ionization technique - i.e., electron impact ionization as well as nanosecond and femtosecond multiphoton excitation. In the lower-size range the abundance distributions can be explained by an electronic shell structure. The associated electron delocalization - i.e., metallic bonding - is found to set in at about N=20 atoms. For Mg{sub N} we have resolved crossings of electronic levels at the highest-occupied molecular orbital which result in additional magic numbers compared to the alkali metals: e.g., Mg{sub 40} with 80 electrons. This specific electronic shell structure is also present in the intensity pattern of doubly charged Mg{sub N}. For larger clusters (N{>=}92) a coexistence of electronic shell effects and geometrical packing is observed and a clear signature of icosahedral structure is present beyond N{>=}147.

  16. Non-Fourier two-temperature heat conduction model used to analyze ultrashort-pulse laser processing of nanoscale metal film.

    PubMed

    Ho, Ching-Yen; Wen, Mao-Yu; Chen, Bor-Chyuan; Tsai, Yu-Hsiang

    2014-07-01

    This paper utilizes non-Fourier two-temperature heat conduction model to investigate the temperature field in nanometer-sized thin films irradiated by an ultrashort-pulse laser. Ultrashort-pulse laser processing for nanometer-sized devices is usually applied in MEMS and nanotechnology. For ultrashort-pulse laser interaction with metals, the two-temperature model was proposed to describe the heat transport in metals due to a substantial nonequilibrium between the electron and lattice temperature. For heat conduction in nanoscale devices, Fourier law is inadequate for describing the heat conduction in nanoscale due to the boundary scattering and the finite relaxation time of heat carriers. Therefore, in this work, the Non-Fourier two-temperature heat conduction model used to analyze ultrashort-pulse laser processing of nanoscale metal film. The result obtained from non-Fourier heat conduction equations is compared with the available experimental data. The parametric effects are also discussed. PMID:24758069

  17. The electronic structure of free aluminum clusters: Metallicity and plasmons

    SciTech Connect

    Andersson, Tomas; Zhang Chaofan; Svensson, Svante; Maartensson, Nils; Bjoerneholm, Olle; Tchaplyguine, Maxim

    2012-05-28

    The electronic structure of free aluminum clusters with {approx}3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  18. The electronic structure of free aluminum clusters: Metallicity and plasmons

    NASA Astrophysics Data System (ADS)

    Andersson, Tomas; Zhang, Chaofan; Tchaplyguine, Maxim; Svensson, Svante; Mârtensson, Nils; Björneholm, Olle

    2012-05-01

    The electronic structure of free aluminum clusters with ˜3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  19. Properties of Red Giant Branches of Star Clusters in the Magellanic Clouds and Their Relation with Cluster Metallicity

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Černiauskas, A.; Tanabé, T.

    We derive a new calibration that relates the observed cluster RGB slope in the Ks vs. J--Ks color-magnitude diagram with cluster metallicity. The new calibration is derived using a sample of intermediate age (1--8 Gyr) clusters in the Large and Small Magellanic Clouds with precise JHKs photometry available from the SIRIUS photometric survey of the Magellanic Clouds. Cluster metallicities are literature data obtained either from high resolution or infrared calcium triplet spectroscopy of individual cluster RGB stars. We find systematic differences between the RGB slope vs. metallicity relation derived in this work and that of Valenti et al. (2004), the latter obtained using a sample of old Galactic globular clusters. The possible origin of the discrepancies is discussed briefly.

  20. Implementation of nanoscale circuits using dual metal gate engineered nanowire MOSFET with high-k dielectrics for low power applications

    NASA Astrophysics Data System (ADS)

    Charles Pravin, J.; Nirmal, D.; Prajoon, P.; Ajayan, J.

    2016-09-01

    This work covers the impact of dual metal gate engineered Junctionless MOSFET with various high-k dielectric in Nanoscale circuits for low power applications. Due to gate engineering in junctionless MOSFET, graded potential is obtained and results in higher electron velocity of about 31% for HfO2 than SiO2 in the channel region, which in turn improves the carrier transport efficiency. The simulation is done using sentaurus TCAD, ON current, OFF current, ION/IOFF ratio, DIBL, gain, transconductance and transconductance generation factor parameters are analysed. When using HfO2, DIBL shows a reduction of 61.5% over SiO2. The transconductance and transconductance generation factor shows an improvement of 44% and 35% respectively. The gain and output resistance also shows considerable improvement with high-k dielectrics. Using this device, inverter circuit is implemented with different high-k dielectric material and delay have been decreased by 4% with HfO2 when compared to SiO2. In addition, a significant reduction in power dissipation of the inverter circuit is obtained with high-k dielectric Dual Metal Surround Gate Junctionless Transistor than SiO2 based device. From the analysis, it is found that HfO2 will be a better alternative for the future nanoscale device.

  1. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  2. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  3. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  4. Zintl cluster chemistry in the alkali-metal-gallium systems

    SciTech Connect

    Henning, R.

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs{sub 8}Ga{sub 11}. The geometry of the Ga{sub 11}{sup 7{minus}} unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga{sub 11}{sup 13{minus}} to Ga{sub 11}{sup 7{minus}} is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na{sub 10}Ga{sub 10}Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K{sub 2}Ga{sub 3} Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na{sub 30.5}Ga{sub 60{minus}x}Ag{sub x} is nonstoichiometric and needs only a small amount of silver to form (x {approximately} 2--6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa{sub 3{minus}x}Au{sub x} system is also nonstoichiometric with a three-dimensional structure composed of Ga{sub 8} dodecahedra and four-bonded gallium atoms. Unlike Na{sub 30.5}Ga{sub 60{minus}x}Ag{sub x}, the RbGa{sub 3} binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary is discussed but the structure has not been completely

  5. Nearby Spiral Galaxy Globular Cluster Systems. II. Globular Cluster Metallicities in NGC 300

    NASA Astrophysics Data System (ADS)

    Nantais, Julie B.; Huchra, John P.; Barmby, Pauline; Olsen, Knut A. G.

    2010-03-01

    We present new metallicity estimates for globular cluster (GC) candidates in the Sd spiral NGC 300, one of the nearest spiral galaxies outside the Local Group. We have obtained optical spectroscopy for 44 Sculptor Group GC candidates with the Boller and Chivens (B&C) spectrograph on the Baade Telescope at Las Campanas Observatory. There are two GCs in NGC 253 and 12 objects in NGC 300 with globular-cluster-like spectral features, nine of which have radial velocities above 0 km s-1. The remaining three, due to their radial velocities being below the expected 95% confidence limit for velocities of NGC 300 halo objects, are flagged as possible foreground stars. The non-cluster-like candidates included 13 stars, 15 galaxies, and an H II region. One GC, four galaxies, two stars, and the H II region from our sample were identified in archival Hubble Space Telescope images. For the GCs, we measure spectral indices and estimate metallicities using an empirical calibration based on Milky Way GCs. The GCs of NGC 300 appear similar to those of the Milky Way. Excluding possible stars and including clusters from the literature, the GC system (GCS) has a velocity dispersion of 68 km s-1 and has no clear evidence of rotation. The mean metallicity for our full cluster sample plus one literature object is [Fe/H] = -0.94, lying above the relationship between mean GC metallicity and overall galaxy luminosity. Excluding the three low-velocity candidates, we obtain a mean [Fe/H] = -0.98, still higher than expected, raising the possibility of significant foreground star contamination even in this sample. Visual confirmation of genuine GCs using high-resolution space-based imagery could greatly reduce the potential problem of interlopers in small samples of GCSs in low-radial-velocity galaxies. Data for this project were obtained at the Baade 6.5 m telescope, Las Campanas Observatory, Chile. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint

  6. Investigation on the special Smith-Purcell radiation from a nano-scale rectangular metallic grating

    NASA Astrophysics Data System (ADS)

    Li, Weiwei; Liu, Weihao; Jia, Qika

    2016-03-01

    The special Smith-Purcell radiation (S-SPR), which is from the radiating eigen modes of a grating, has remarkable higher intensity than the ordinary Smith-Purcell radiation. Yet in previous studies, the gratings were treated as perfect conductor without considering the surface plasmon polaritons (SPPs) which are of significance for the nano-scale gratings especially in the optical region. In present paper, the rigorous theoretical investigations on the S-SPR from a nano-grating with SPPs taken into consideration are carried out. The dispersion relations and radiation characteristics are obtained, and the results are verified by simulations. According to the analyses, the tunable light radiation can be achieved by the S-SPR from a nano-grating, which offers a new prospect for developing the nano-scale light sources.

  7. Coulomb frustration of the multiphoton ionization of metallic clusters under intense EUV FEL evidenced by ion spectrometry

    NASA Astrophysics Data System (ADS)

    Mazza, T.; Devetta, M.; Milani, P.; Motomura, K.; Liu, X.-J.; Fukuzawa, H.; Yamada, A.; Okunishi, M.; Nagaya, K.; Iwayama, H.; Sugishima, A.; Mizoguchi, Y.; Saito, N.; Coreno, M.; Fennel, Th; Nagasono, M.; Tono, K.; Togashi, T.; Kimura, H.; Senba, Y.; Ohashi, H.; Yabashi, M.; Ishikawa, T.; Yao, M.; Ueda, K.; Piseri, P.

    2015-12-01

    Free electron laser light sources delivering high intensity pulses of short wavelength radiation are opening novel possibilities for the investigation of matter at the nanoscale and for the discovery and understanding of new physical processes occurring at the exotic transient states they make accessible. Strong ionization of atomic constituents of a nano-sized sample is a representative example of such processes and the understanding of ionization dynamics is crucial for a realistic description of the experiments. We report here on multiple ionization experiments on free clusters of titanium, a high cohesive energy metal. The time of flight ion spectra reveal a saturation of the cluster ionization at ∼1016 photons per pulse per cm2. Our results also show a clear lack of any explosion process, opposite to what is observed for a rare-gas cluster under similar conditions. A simple and generalized multi-step ionization model including Coulomb frustration of the photoemission process effectively reproduces with a good agreement the main features of the experimental observation and points to an interpretation of the data involving a substantial energy deposition into the cluster through electronic system heating upon scattering events within photoemission.

  8. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale

    NASA Astrophysics Data System (ADS)

    Bian, Yusheng; Gong, Qihuang

    2015-02-01

    The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures. The closely spaced silicon and metal configurations allow efficient light squeezing within the nanometer, low-index silica gaps between them, enabling deep-subwavelength light transmission with low modal attenuation. Optimizations of key structural parameters unravel the wide-range existence of the high-performance hybrid nanowire plasmon mode, which demonstrates improved guiding properties compared to the conventional hybrid and nanowire plasmon polaritons. The excitation strategy of the guided mode and the feasibility of the waveguide for compact photonic integration as well as active components are also discussed to lay the foundation for its practical implementation. The remarkable properties of these metallic-nanowire-loaded SOI waveguides potentially lend themselves to the implementation of high performance nanophotonic components, and open up promising opportunities for a variety of intriguing applications on the nanoscale.The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced

  9. Radical AdoMet enzymes in complex metal cluster biosynthesis.

    PubMed

    Duffus, Benjamin R; Hamilton, Trinity L; Shepard, Eric M; Boyd, Eric S; Peters, John W; Broderick, Joan B

    2012-11-01

    Radical S-adenosylmethionine (AdoMet) enzymes comprise a large superfamily of proteins that engage in a diverse series of biochemical transformations through generation of the highly reactive 5'-deoxyadenosyl radical intermediate. Recent advances into the biosynthesis of unique iron-sulfur (FeS)-containing cofactors such as the H-cluster in [FeFe]-hydrogenase, the FeMo-co in nitrogenase, as well as the iron-guanylylpyridinol (FeGP) cofactor in [Fe]-hydrogenase have implicated new roles for radical AdoMet enzymes in the biosynthesis of complex inorganic cofactors. Radical AdoMet enzymes in conjunction with scaffold proteins engage in modifying ubiquitous FeS precursors into unique clusters, through novel amino acid decomposition and sulfur insertion reactions. The ability of radical AdoMet enzymes to modify common metal centers to unusual metal cofactors may provide important clues into the stepwise evolution of these and other complex bioinorganic catalysts. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology. PMID:22269887

  10. Properties of Red Giant Branches of Star Clusters in the Magellanic Clouds and Their Relation with Cluster Metallicity. II. Mean Photometric Colors of Cluster RGBs

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Lazauskaitė, R.; Tanabé, T.

    We derive new calibrations that relate the mean J-Ks photometric colors of red giant branch (RGB) stars at MKs=-5.5 and -5.0 with cluster metallicity. The new calibrations are derived using a sample of intermediate age (1--8 Gyr) clusters in the Large and Small Magellanic Clouds, with the JHKs photometry taken from the SIRIUS photometric survey of the Magellanic Clouds. Cluster metallicities are literature data, obtained either from the high resolution or infrared calcium triplet spectroscopy of individual RGB stars. We find systematic differences between the RGB color vs. metallicity relations derived in this work and those determined by Valenti et al. (2004), the latter ones obtained for a sample of old Galactic globular clusters. In terms of age, this discrepancy corresponds to ˜ 5 Gyr and therefore can be attributed to the age difference between the two cluster samples used in the derivation of the corresponding RGB color vs. metallicity relations.

  11. The transformation of organic amines by transition metal cluster compounds. Progress report, 1992--1993

    SciTech Connect

    Adams, R.D.

    1993-01-01

    The paper reports results on the following five studies: (1) The activation of tertiary amines by osmium cluster complexes; (2) Nucleophilic ring opening of thietane ligand in metal carbonyl cluster complexes; (3) Ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; (4) Insertion of an alkynes into a metal-metal bond -- evidence for an intramolecular insertion with a trans-stereochemistry; and (5) Cyclobutyne -- the ligand. Plans for future research are also briefly discussed. Two studies are planned: (1) studies of the synthesis and reactivity of strained ring ligands in metal cluster compounds; and (2) studies of the reactivity of dimetallic complexes with alkynes.

  12. Probing the History of Galaxy Clusters with Metallicity and Entropy Measurements

    NASA Astrophysics Data System (ADS)

    Elkholy, Tamer Yohanna

    Galaxy clusters are the largest gravitationally bound objects found today in our Universe. The gas they contain, the intra-cluster medium (ICM), is heated to temperatures in the approximate range of 1 to 10 keV, and thus emits X-ray radiation. Studying the ICM through the spatial and spectral analysis of its emission returns the richest information about both the overall cosmological context which governs the formation of clusters, as well as the physical processes occurring within. The aim of this thesis is to learn about the history of the physical processes that drive the evolution of galaxy clusters, through careful, spatially resolved measurements of their metallicity and entropy content. A sample of 45 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy and metallicity profiles. The entropy profiles are computed to larger radial extents than in previous Chandra analyses. The results of this analysis are made available to the scientific community in an electronic database. Comparing metallicity and entropy in the outskirts of clusters, we find no signature on the entropy profiles of the ensemble of supernovae that produced the observed metals. In the centers of clusters, we find that the metallicities of high-mass clusters are much less dispersed than those of low-mass clusters. A comparison of metallicity with the regularity of the X-ray emission morphology suggests that metallicities in low-mass clusters are more susceptible to increase from violent events such as mergers. We also find that the variation in the stellar-to-gas mass ratio as a function of cluster mass can explain the variation of central metallicity with cluster mass, only if we assume that there is a constant level of metallicity for clusters of all masses, above which the observed galaxies add more metals in proportion to their mass. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  13. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  14. A complementary metal-oxide-semiconductor compatible monocantilever 12-point probe for conductivity measurements on the nanoscale

    NASA Astrophysics Data System (ADS)

    Gammelgaard, L.; Bøggild, P.; Wells, J. W.; Handrup, K.; Hofmann, Ph.; Balslev, M. B.; Hansen, J. E.; Petersen, P. R. E.

    2008-09-01

    We present a complementary metal-oxide-semiconductor compatible, nanoscale 12-point-probe based on TiW electrodes placed on a SiO2 monocantilever. Probes are mass fabricated on Si wafers by a combination of electron beam and UV lithography, realizing TiW electrode tips with a width down to 250nm and a probe pitch of 500nm. In-air four-point measurements have been performed on indium tin oxide, ruthenium, and titanium-tungsten, showing good agreement with values obtained by other four-point probes. In-vacuum four-point resistance measurements have been performed on clean Bi(111) using different probe spacings. The results show the expected behavior for bulk Bi, indicating that the contribution of electronic surface states to the transport properties is very small.

  15. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    NASA Astrophysics Data System (ADS)

    Lee, M. H.; Kim, B. S.; Kim, D. H.; Ott, R. T.; Sansoz, F.; Eckert, J.

    2014-06-01

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in α-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  16. Effect of geometrical constraint condition on the formation of nanoscale twins in the Ni-based metallic glass composite

    SciTech Connect

    Lee, M H; Kim, B S; Kim, D H; Ott, R T; Sansoz, F; Eckert, J

    2014-04-25

    We investigated the effect of geometrically constrained stress-strain conditions on the formation of nanotwins in alpha-brass phase reinforced Ni59Zr20Ti16Si2Sn3 metallic glass (MG) matrix deformed under macroscopic uniaxial compression. The specific geometrically constrained conditions in the samples lead to a deviation from a simple uniaxial state to a multi-axial stress state, for which nanocrystallization in the MG matrix together with nanoscale twinning of the brass reinforcement is observed in localized regions during plastic flow. The nanocrystals in the MG matrix and the appearance of the twinned structure in the reinforcements indicate that the strain energy is highly confined and the local stress reaches a very high level upon yielding. Both the effective distribution of reinforcements on the strain enhancement of composite and the effects of the complicated stress states on the development of nanotwins in the second-phase brass particles are discussed.

  17. Performance of nanoscale metallic multilayer systems under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Economy, David Ross

    Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser

  18. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  19. Contribution of radiation chemistry to the study of metal clusters.

    PubMed

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development. PMID:9806605

  20. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  1. Permanent excimer superstructures by supramolecular networking of metal quantum clusters.

    PubMed

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications-that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications. PMID:27493181

  2. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  3. Electron-electron scattering-induced channel hot electron injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors with high-k/metal gate stacks

    SciTech Connect

    Tsai, Jyun-Yu; Liu, Kuan-Ju; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Ho, Szu-Han; Tseng, Tseung-Yuen; Cheng, Osbert; Huang, Cheng-Tung; Lu, Ching-Sen

    2014-10-06

    This work investigates electron-electron scattering (EES)-induced channel hot electron (CHE) injection in nanoscale n-channel metal-oxide-semiconductor field-effect-transistors (n-MOSFETs) with high-k/metal gate stacks. Many groups have proposed new models (i.e., single-particle and multiple-particle process) to well explain the hot carrier degradation in nanoscale devices and all mechanisms focused on Si-H bond dissociation at the Si/SiO{sub 2} interface. However, for high-k dielectric devices, experiment results show that the channel hot carrier trapping in the pre-existing high-k bulk defects is the main degradation mechanism. Therefore, we propose a model of EES-induced CHE injection to illustrate the trapping-dominant mechanism in nanoscale n-MOSFETs with high-k/metal gate stacks.

  4. Shapes, Sizes, and Faceting of Nanoscale Metal Particles for Applications in Catalysis

    SciTech Connect

    Strand, M. B.; Leong, G. J.; Dinh, H. N.; Richards, R. M.

    2013-01-01

    In an effort to reduce the world's dependence on fossil fuels, proton exchange membrane fuel cells (PEMFC) are commonly considered as a prime candidate for alternative energy sources. The efficiency of fuel cells is limited by the oxygen reduction reaction (ORR) which is driven by platinum based catalysts. Numerous methods have been developed to synthesize particles which contain more active surfaces by tuning shapes, sizes and facets. Here, we will present a study of a well known wet chemical reduction method targeting specific morphologies and the resulting electrochemical activity. Studying the relationship between Pt facets at the bulk phase single crystal level versus the nanoscale correlates the effects of faceting on activities. Studying the formation of crystals during the course of the synthesis via transmission electron microscopy (TEM) and small angle x-ray scattering (SAXS) provides mechanistic insight on growth, while electrochemical studies correlate physical properties to performance.

  5. Fluid-dynamical approach to collective modes in metal clusters

    NASA Astrophysics Data System (ADS)

    da Providência, João, Jr.; de Haro, Raphael, Jr.

    1994-01-01

    A simple variational method has recently been used to obtain the bulk-plasmon dispersion relation in a metal. In the present work we investigate the eigenmodes of the valence electrons in a metal cluster considering a semiclassical version of the method presented by Andō and Nishizaki. As a variational function we consider the Slater determinant ||φ> which is related to the Slater determinant ||φ0>, describing the ground state, by means of the unitary transformation ||φ>=e(i/ħ)S||φ0>, where S(x,p,t)=χ(x,t)+1/2[p.s(x,t)+s(x,t).p]. We use a polynomial approximation to determine the dynamical fields χ(x,t) and s(x,t). It is shown that the eigensolutions satisfy the energy weighted sum rule and the cubic energy weighted sum rule. The spectrum of excited energies, as well as transition densities and currents are obtained for the sodium, aluminum, and silver.

  6. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  7. Emergence of metallicity in silver clusters in the 150 atom regime: a study of differently sized silver clusters

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indranath; Erusappan, Jayanthi; Govindarajan, Anuradha; Sugi, K. S.; Udayabhaskararao, Thumu; Ghosh, Atanu; Pradeep, Thalappil

    2014-06-01

    We report the systematic appearance of a plasmon-like optical absorption feature in silver clusters protected with 2-phenylethanethiol (PET), 4-flurothiophenol (4-FTP) and (4-(t-butyl)benzenethiol (BBS) as a function of cluster size. A wide range of clusters, namely, Ag44(4-FTP)30, Ag55(PET)31, ~Ag75(PET)40, ~Ag114(PET)46, Ag152(PET)60, ~Ag202(BBS)70, ~Ag423(PET)105, and ~Ag530(PET)100 were prepared. The UV/Vis spectra show multiple features up to ~Ag114 and thereafter, from Ag152 onwards, the plasmonic feature corresponding to a single peak at ~460 nm evolves, which points to the emergence of metallicity in clusters composed of ~150 metal atoms. A minor blue shift in the plasmonic peak was observed as cluster sizes increased and merged with the spectrum of plasmonic nanoparticles of 4.8 nm diameter protected with PET. Clusters with different ligands, such as 4-FTP and BBS, also show this behavior, which suggests that the `emergence of metallicity' is independent of the functionality of the thiol ligand.We report the systematic appearance of a plasmon-like optical absorption feature in silver clusters protected with 2-phenylethanethiol (PET), 4-flurothiophenol (4-FTP) and (4-(t-butyl)benzenethiol (BBS) as a function of cluster size. A wide range of clusters, namely, Ag44(4-FTP)30, Ag55(PET)31, ~Ag75(PET)40, ~Ag114(PET)46, Ag152(PET)60, ~Ag202(BBS)70, ~Ag423(PET)105, and ~Ag530(PET)100 were prepared. The UV/Vis spectra show multiple features up to ~Ag114 and thereafter, from Ag152 onwards, the plasmonic feature corresponding to a single peak at ~460 nm evolves, which points to the emergence of metallicity in clusters composed of ~150 metal atoms. A minor blue shift in the plasmonic peak was observed as cluster sizes increased and merged with the spectrum of plasmonic nanoparticles of 4.8 nm diameter protected with PET. Clusters with different ligands, such as 4-FTP and BBS, also show this behavior, which suggests that the `emergence of metallicity' is independent of

  8. Chiral structures and tunable magnetic moments in 3d transition metal doped Pt6 clusters

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu-Rong; Yang, Xing; Ding, Xun-Lei

    2012-09-01

    The structural, electronic, and magnetic properties of transition metal doped platinum clusters MPt6 (M=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt7 cluster, which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster. The results of the highest occupied molecular orbital (HOMO)—lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt7 cluster. The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt6 clusters is from 0 μB to 7 μB, revealing that the MPt6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.

  9. Bioavailability of nanoscale metal oxides TiO(2), CeO(2), and ZnO to fish.

    PubMed

    Johnston, Blair D; Scown, Tessa M; Moger, Julian; Cumberland, Susan A; Baalousha, Mohamed; Linge, Kathryn; van Aerle, Ronny; Jarvis, Kym; Lead, Jamie R; Tyler, Charles R

    2010-02-01

    Nanoparticles (NPs) are reported to be a potential environmental health hazard. For organisms living in the aquatic environment, there is uncertainty on exposure because of a lack of understanding and data regarding the fate, behavior, and bioavailability of the nanomaterials in the water column. This paper reports on a series of integrative biological and physicochemical studies on the uptake of unmodified commercial nanoscale metal oxides, zinc oxide (ZnO), cerium dioxide (CeO(2)), and titanium dioxide (TiO(2)), from the water and diet to determine their potential ecotoxicological impacts on fish as a function of concentration. Particle characterizations were performed and tissue concentrations were measured by a wide range of analytical methods. Definitive uptake from the water column and localization of TiO(2) NPs in gills was demonstrated for the first time by use of coherent anti-Stokes Raman scattering (CARS) microscopy. Significant uptake of nanomaterials was found only for cerium in the liver of zebrafish exposed via the water and ionic titanium in the gut of trout exposed via the diet. For the aqueous exposures undertaken, formation of large NP aggregates (up to 3 mum) occurred and it is likely that this resulted in limited bioavailability of the unmodified metal oxide NPs in fish. PMID:20050652

  10. Magnetic nanoscale metal organic frameworks for potential targeted anticancer drug delivery, imaging and as an MRI contrast agent.

    PubMed

    Ray Chowdhuri, Angshuman; Bhattacharya, Dipsikha; Sahu, Sumanta Kumar

    2016-02-21

    The development of a novel multifunctional porous nanoplatform for targeted anticancer drug delivery with cell imaging and magnetic resonance imaging has been realised in the current work. Here we have developed a magnetic nanoscale metal organic frameworks (NMOF) for potential targeted drug delivery. These magnetic NMOFs were fabricated by incorporation of Fe3O4 nanoparticles into porous isoreticular metal organic frameworks (IRMOF-3). To achieve targeted drug delivery towards cancer cells specifically, folic acid was conjugated to the NMOF surface. Then, the fluorescent molecule rhodamine B isothiocyanate (RITC) was conjugated to the NMOFs for biological imaging applications. The synthesized magnetic NMOFs were fully characterised by FTIR, powder XRD, XPS, SQUID, TGA, TEM, FESEM, and DLS. The synthesized magnetic NMOFs were observed to be smaller than 100 nm and were found to be nontoxic towards human cervix adenocarcinoma (HeLa) and murine fibroblast (NIH3T3) cells according to cell viability assays. The cancer chemotherapy drug paclitaxel was conjugated to the magnetic NMOFs through hydrophobic interactions with a relatively high loading capacity. Moreover, these folic acid-conjugated magnetic NMOFs showed stronger T2-weighted MRI contrast towards the cancer cells, justifying their possible significance in imaging. PMID:26754449

  11. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    PubMed Central

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239

  12. Metallicity determinations for globular clusters through spectrophotometry of their integrated light

    NASA Astrophysics Data System (ADS)

    Brodie, J. P.; Hanes, D. A.

    1986-01-01

    Using an appropriately weighted combination of 16 indices of absorption line strength measured in low-dispersion spectra of the integrated light of globular clusters, metallicities Fe/H are determined for thirty-six clusters in the Galaxy. The results confirm the suggestion that Zinn's (1980) scale suffers a systematic error in the region of intermediate metallicity and support an explanation in which his metallicity-indicative Q39 index has been diluted by excess ultraviolet light in clusters with anomalously rich blue horizontal branches. The methods, which involve the measurement of spectral features arising from many species, produce estimates of metallicity which are insensitive to this problem. Good agreement is found with several recent studies, but a disagreement is noted for the most metal-rich clusters studied by Frogel, Cohen, and Persson (1983). Finally, a similar method with a modified calibration is used to determine metallicities for the nuclei of six galaxies.

  13. RHAPSODY-G simulations II - Baryonic growth and metal enrichment in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2016-04-01

    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙/h) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of AGN feedback at the sub-grid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low and high resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of two lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple "regulator" model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

  14. RHAPSODY-G simulations - II. Baryonic growth and metal enrichment in massive galaxy clusters

    NASA Astrophysics Data System (ADS)

    Martizzi, Davide; Hahn, Oliver; Wu, Hao-Yi; Evrard, August E.; Teyssier, Romain; Wechsler, Risa H.

    2016-07-01

    We study the evolution of the stellar component and the metallicity of both the intracluster medium and of stars in massive (Mvir ≈ 6 × 1014 M⊙ h-1) simulated galaxy clusters from the RHAPSODY-G suite in detail and compare them to observational results. The simulations were performed with the AMR code RAMSES and include the effect of active galactic nucleus (AGN) feedback at the subgrid level. AGN feedback is required to produce realistic galaxy and cluster properties and plays a role in mixing material in the central regions and regulating star formation in the central galaxy. In both our low- and high-resolution runs with fiducial stellar yields, we find that stellar and ICM metallicities are a factor of 2 lower than in observations. We find that cool core clusters exhibit steeper metallicity gradients than non-cool core clusters, in qualitative agreement with observations. We verify that the ICM metallicities measured in the simulation can be explained by a simple `regulator' model in which the metallicity is set by a balance of stellar yield and gas accretion. It is plausible that a combination of higher resolution and higher metal yield in AMR simulation would allow the metallicity of simulated clusters to match observed values; however, this hypothesis needs to be tested with future simulations. Comparison to recent literature highlights that results concerning the metallicity of clusters and cluster galaxies might depend sensitively on the scheme chosen to solve the hydrodynamics.

  15. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides

    NASA Astrophysics Data System (ADS)

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-07-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq-1), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices.Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus

  16. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.

    PubMed

    Jain, Prashant K; Huang, Xiaohua; El-Sayed, Ivan H; El-Sayed, Mostafa A

    2008-12-01

    result of field coupling. A universal scaling model, relating the plasmon resonance frequency to the interparticle distance in terms of the particle size, becomes potentially useful for measuring nanoscale distances (and their changes) in biological systems. The strong plasmon absorption and photothermal conversion of gold nanoparticles has been exploited in cancer therapy through the selective localized photothermal heating of cancer cells. For nanorods or nanoshells, the LSPR can be tuned to the near-infrared region, making it possible to perform in vivo imaging and therapy. The examples of the applications of noble metal nanostructures provided herein can be readily generalized to other areas of biology and medicine because plasmonic nanomaterials exhibit great range, versatility, and systematic tunability of their optical attributes. PMID:18447366

  17. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  18. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies.

    PubMed

    Werner, Norbert; Urban, Ondrej; Simionescu, Aurora; Allen, Steven W

    2013-10-31

    Most of the metals (elements heavier than helium) produced by stars in the member galaxies of clusters currently reside within the hot, X-ray-emitting intra-cluster gas. Observations of X-ray line emission from this intergalactic medium have suggested a relatively small cluster-to-cluster scatter outside the cluster centres and enrichment with iron out to large radii, leading to the idea that the metal enrichment occurred early in the history of the Universe. Models with early enrichment predict a uniform metal distribution at large radii in clusters, whereas those with late-time enrichment are expected to introduce significant spatial variations of the metallicity. To discriminate clearly between these competing models, it is essential to test for potential inhomogeneities by measuring the abundances out to large radii along multiple directions in clusters, which has not hitherto been done. Here we report a remarkably uniform iron abundance, as a function of radius and azimuth, that is statistically consistent with a constant value of ZFe = 0.306 ± 0.012 in solar units out to the edge of the nearby Perseus cluster. This homogeneous distribution requires that most of the metal enrichment of the intergalactic medium occurred before the cluster formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity. PMID:24172976

  19. Performance enhancement of metal nanowire-based transparent electrodes by electrically driven nanoscale nucleation of metal oxides.

    PubMed

    Shiau, Yu-Jeng; Chiang, Kai-Ming; Lin, Hao-Wu

    2015-08-01

    Solution-processed silver nanowire (AgNW) electrodes have been considered to be promising materials for next-generation flexible transparent conductive electrodes. Despite the fact that a single AgNW has extremely high conductivities, the high junction resistance between nanowires limits the performance of the AgNW matrix. Therefore, post-treatments are usually required to approach better NW-NW contact. Herein, we report a novel linking method that uses joule heating to accumulate sol-gel ZnO near nanowire junctions. The nanoscale ZnO nucleation successfully restrained the thermal instability of the AgNW under current injection and acted as an efficient tightening medium to realize good NW-NW contacts. A low process temperature (<50 °C), and thus low energy consumption, are required for ZnO nucleation. This made the use of substrates with very low operating temperatures, such as PET and PEN, feasible. The optimized AgNW transparent conductive electrodes (TCE) fabricated using this promising linking method exhibited a low sheet resistance (13 Ω sq(-1)), a high transmission (92% at 550 nm), a high figure of merit (FOM; up to σDC/σOp = 340) and can be applied to wide range of next-generation flexible optoelectronic devices. PMID:26152810

  20. Structure, dynamic and energetic of mixed transition metal clusters. A computational study of mixed clusters of silver and nickel

    NASA Astrophysics Data System (ADS)

    Hewage, J. W.; Rupika, W. L.; Amar, F. G.

    2012-11-01

    Classical molecular dynamics simulation (MD) with Sutton-Chen potential has been used to generate the minimum energy and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ag n Ni(13- n) for n ≤ 13. Literature results of thirteen particle clusters of neat silver and nickel atoms were first reproduced before the successive replacement of the silver atom by nickel. Calculation was repeated for both silver-centred and nickel-centred clusters. It was found that the nickel-centred clusters were more stable than the silver-centred clusters. Heat capacities and hence the melting points of silver and nickel-centred clusters were determined by using the Histogram method. Species-centric order parameters developed by Hewage and Amar were used to understand the dynamic behaviour in the transition of silver-centred clusters to more stable nickel-centred clusters. This species-centric order parameter calculation further confirmed the stability of nickel-centred clusters over those of silver-centred species.

  1. Reverse hydrogen spillover on and hydrogenation of supported metal clusters: insights from computational model studies.

    PubMed

    Vayssilov, Georgi N; Petrova, Galina P; Shor, Elena A Ivanova; Nasluzov, Vladimir A; Shor, Alexei M; St Petkov, Petko; Rösch, Notker

    2012-05-01

    "Reverse" spillover of hydrogen from hydroxyl groups of the support onto supported transition metal clusters, forming multiply hydrogenated metal species, is an essential aspect of various catalytic systems which comprise small, highly active transition metal particles on a support with a high surface area. We review and analyze the results of our computational model studies related to reverse hydrogen spillover, interpreting available structural and spectral data for the supported species and examining the relationship between metal-support and metal-hydrogen interactions. On the examples of small clusters of late transition metals, adsorbed in zeolite cavities, we showed with computational model studies that reverse spillover of hydrogen is energetically favorable for late transition metals, except for Au. This preference is crucial for the chemical reactivity of such bifunctional catalytic systems because both functions, of metal species and of acidic sites, are strongly modified, in some cases even suppressed - due to partial oxidation of the metal cluster and the conversion of protons from acidic hydroxyl groups to hydride ligands of the metal moiety. Modeling multiple hydrogen adsorption on metal clusters allowed us to quantify how (i) the support affects the adsorption capacity of the clusters and (ii) structure and oxidation state of the metal moiety changes upon adsorption. In all models of neutral systems we found that the metal atoms are partially positively charged, compensated by a negative charge of the adsorbed hydrogen ligands and of the support. In a case study we demonstrated with calculated thermodynamic parameters how to predict the average hydrogen coverage of the transition metal cluster at a given temperature and hydrogen pressure. PMID:22353996

  2. The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3.

    PubMed

    Sanchez, Sergio I; Menard, Laurent D; Bram, Ariella; Kang, Joo H; Small, Matthew W; Nuzzo, Ralph G; Frenkel, Anatoly I

    2009-05-27

    /C nanoclusters do exhibit, however, both size- and adsorbate-induced trends in bond strain that are similar to those of their Pt/gamma-Al(2)O(3) analogues. Taken together, the data highlight the significant role that electronic effects--specifically charge exchange due to both metal-support and metal-adsorbate interactions--play in mediating the structural dynamics of supported nanoscale metal clusters that are broadly used as heterogeneous catalysts. PMID:19453197

  3. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy.

    PubMed

    Kwon, Sangku; Lee, Seon Joo; Kim, Sun Mi; Lee, Youngkeun; Song, Hyunjoon; Park, Jeong Young

    2015-08-01

    The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 ± 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface. PMID:26136054

  4. Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior

    NASA Astrophysics Data System (ADS)

    Titantah, John T.; Karttunen, Mikko

    2016-05-01

    Electronic and optical properties of silver clusters were calculated using two different ab initio approaches: (1) based on all-electron full-potential linearized-augmented plane-wave method and (2) local basis function pseudopotential approach. Agreement is found between the two methods for small and intermediate sized clusters for which the former method is limited due to its all-electron formulation. The latter, due to non-periodic boundary conditions, is the more natural approach to simulate small clusters. The effect of cluster size is then explored using the local basis function approach. We find that as the cluster size increases, the electronic structure undergoes a transition from molecular behavior to nanoparticle behavior at a cluster size of 140 atoms (diameter ~1.7 nm). Above this cluster size the step-like electronic structure, evident as several features in the imaginary part of the polarizability of all clusters smaller than Ag147, gives way to a dominant plasmon peak localized at wavelengths 350 nm ≤ λ ≤ 600 nm. It is, thus, at this length-scale that the conduction electrons' collective oscillations that are responsible for plasmonic resonances begin to dominate the opto-electronic properties of silver nanoclusters.

  5. Probing the nanoscale Schottky barrier of metal/semiconductor interfaces of Pt/CdSe/Pt nanodumbbells by conductive-probe atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kwon, Sangku; Lee, Seon Joo; Kim, Sun Mi; Lee, Youngkeun; Song, Hyunjoon; Park, Jeong Young

    2015-07-01

    The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 +/- 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface.The electrical nature of the nanoscale contact between metal nanodots and semiconductor rods has drawn significant interest because of potential applications for metal-semiconductor hybrid nanostructures in energy conversion or heterogeneous catalysis. Here, we studied the nanoscale electrical character of the Pt/CdSe junction in Pt/CdSe/Pt nanodumbbells on connected Au islands by conductive-probe atomic force microscopy under ultra-high vacuum. Current-voltage plots measured in contact mode revealed Schottky barrier heights of individual nanojunctions of 0.41 +/- 0.02 eV. The measured value of the Schottky barrier is significantly lower than that of planar thin-film diodes because of a reduction in the barrier width and enhanced tunneling probability at the interface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02285a

  6. Nanoscale Electrical Imaging of Metal-Insulator Transition in Ion-Gel Gated ZnO Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Ren, Yuan; Yuan, Hongtao; Wu, Xiaoyu; Iwasa, Yoshihiro; Cui, Yi; Hwang, Harold; Lai, Keji

    2015-03-01

    Electric double-layer transistors (EDLTs) using ionic liquid as the gate dielectric have demonstrated a remarkably wide range of density modulation, a condition crucial for the study of novel electronic phases in complex quantum materials. Yet little is known microscopically when carriers are modulated in the EDLT structure because of the technical challenge to image the buried electrolyte-semiconductor interface with nanoscale resolution. Using a cryogenic microwave impedance microscope, we demonstrate the real-space conductivity mapping in ZnO EDLTs with a spatial resolution of 100nm. A thin layer of ion gel, which solidifies below the glass transition temperature of 200K, was spin-coated on the ZnO surface to induce the metal-insulator transition. The microwave images acquired at different channel conductance clearly showed the spatial evolution of local conductivity through the transition. In addition, by applying a large source-drain bias, electrical inhomogeneity was also observed across the source and drain electrodes.

  7. Capturing heterogeneous nucleation of nanoscale pits and subsequent crystal shrinkage during Ostwald ripening of a metal phosphate.

    PubMed

    Chung, Sung-Yoon; Kim, Young-Min; Choi, Si-Young; Kim, Jin-Gyu

    2015-01-27

    It has been generally accepted that crystal shrinkage during Ostwald ripening can be understood simply as a reverse process of crystal growth, and as a result, little attention has been paid to shrinkage behavior. The entire microstructure of polycrystalline materials, however, forms as a consequence of both growing and shrinking crystals. Thus, scrutiny of shrinking characteristics in addition to growth aspects is essential for a complete understanding of the evolution of microstructure during Ostwald ripening. By capturing real-time in situ high-resolution electron micrographs at high temperature, we herein demonstrate the shrinkage behavior of nanocrystals embedded in a solid crystalline matrix during the ripening process of a metal phosphate. Unlike typical crystal growth behavior based on two-dimensional homogeneous nucleation, heterogeneous types of nucleation with nanoscale pits at solid-solid interfaces (or crystal edges) are observed to dominantly occur during shrinkage of the crystals. The findings of this study suggest that crystal shrinkage proceeds with a lower activation energy barrier than that of crystal growth, although both crystal growth and shrinkage take place at the same time during Ostwald ripening. PMID:25588182

  8. Nanoscale investigation of the interface situation of plated nickel and thermally formed nickel silicide for silicon solar cell metallization

    NASA Astrophysics Data System (ADS)

    Mondon, A.; Wang, D.; Zuschlag, A.; Bartsch, J.; Glatthaar, M.; Glunz, S. W.

    2014-12-01

    In the context of nickel silicide formation from plated nickel layers for solar cell metallization, there are several open questions regarding contact adhesion and electrical properties. Nanoscale characterization by transmission electron microscopy has been employed to support these investigations. Interfacial oxides and silicide phases were investigated on differently prepared samples by different analytical methods associated with transmission electron microscopy analysis. Processing variations included the pre-treatment of samples before nickel plating, the used plating solution and the thermal budget for the nickel-silicon solid-state reaction. It was shown that interface oxides of only few nm thickness on both silicon and nickel silicide are present on the samples, depending on the chosen process sequence, which have been shown to play an important role in adhesion of nickel on silicide in an earlier publication. From sample pretreatment variations, conclusions about the role of an interfacial oxide in silicide formation and its influence on phase formation were drawn. Such an oxide layer hinders silicide formation except for pinhole sites. This reduces the availability of Ni and causes a silicide with low Ni content to form. Without an interfacial oxide a continuous nickel silicide of greater depth, polycrystalline modification and expected phase according to thermal budget is formed. Information about the nature of silicide growth on typical solar cell surfaces could be obtained from silicide phase and geometric observations, which were supported by FIB tomography. The theory of isotropic NiSi growth and orientation dependent NiSi2 growth was derived. By this, a very well performing low-cost metallization for silicon solar cells has been brought an important step closer to industrial introduction.

  9. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules. PMID:27346242

  10. LITHIUM ABUNDANCES OF THE SUPER-METAL-RICH OPEN CLUSTER NGC 6253

    SciTech Connect

    Cummings, Jeffrey D.; Deliyannis, Constantine P.; Maderak, Ryan M.; Anthony-Twarog, Barbara; Twarog, Bruce E-mail: con@astro.indiana.edu E-mail: bjat@ku.edu

    2012-11-01

    High-resolution CTIO 4 m/HYDRA spectroscopy of the super-metal-rich open cluster NGC 6253 ([Fe/H] = +0.43 {+-} 0.01) has been used to study the stellar lithium (Li) abundances near the cluster's turnoff. NGC 6253 greatly expands the range of [Fe/H] for clusters that have a Li abundance analysis. This is important for studying the complicated effects of, and potential correlations with, stellar Fe abundance on surface Li abundance. Comparisons to the younger and less-metal-rich Hyades and to the similarly aged but solar-metallicity M67 show that NGC 6253's Li abundances are qualitatively consistent with the prediction, from Standard Stellar Evolution Theory, that higher-metallicity stars have a greater Li depletion. Comparison with M67 provides evidence that the more-metal-rich NGC 6253 had a higher initial Li, which is consistent with expectations from models of Galactic Li production. NGC 6253 is also compared to the intermediate-aged NGC 3680, NGC 752, and IC 4651 open clusters. Comparison of the Li-gap positions in all six clusters shows that (1) the gap's position in T{sub eff} is independent of metallicity, but (2) higher-metallicity clusters have their gaps in higher-mass stars. In addition, the Li gap's position is shown not to evolve with age, which provides an important constraint for the non-standard depletion mechanisms that may create the Li gap.

  11. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pd(n) (n=1-6) clusters in mordenite.

    PubMed

    Grybos, Robert; Benco, Lubomir; Bucko, Tomas; Hafner, Jürgen

    2009-03-14

    The adsorption of NO molecules on Pd(n) clusters of varying size (n=1-6) located in the main channel of mordenite and the interaction of the metallic clusters with the zeolitic framework were investigated using ab initio density-functional calculations under periodic boundary conditions. The supported clusters are created by binding Pd(n) (2+) cations to the inner cavity of a deprotonated Al-exchanged zeolite with an Al/Si ratio of 1/11, such that a charge-neutral system is created. Compared to the highly symmetric structures of the gas-phase clusters, the clusters bound to the zeolitic framework undergo appreciable geometric distortions lowering their symmetry. The distortions are induced by strong interactions with "activated" framework oxygens located close to the charge-compensating Al/Si substitution sites, but the cluster forms also weaker bonds to "nonactivated" oxygen atoms. The interaction with the framework also affects the electronic and magnetic properties of the clusters. While in the gas phase all clusters (except the isolated Pd atom with a closed d(10) ground state) have a paramagnetic moment of 2mu(B), in the zeolite clusters with two to four atoms have zero magnetic moment, while the Pd(5) cluster has a magnetic moment of 2mu(B) and for the Pd(6) cluster, it is even enhanced to 4 mu(B) (but the magnetic energy differences relative to low-spin configurations are modest). Analysis of the magnetization densities shows that in all clusters with zero total moment (singlet ground state), there are sites with excess spin densities of opposite sign. The influence of the cluster-support interaction on the chemical properties of the clusters has been tested by the adsorption of NO molecules. The results demonstrate the interplay between the molecule-cluster and cluster-framework interactions, which can lead to an increase or decrease in the adsorption energy compared to NO on a gas-phase cluster. While on the gas-phase cluster adsorption in low

  12. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pdn (n=1-6) clusters in mordenite

    NASA Astrophysics Data System (ADS)

    Grybos, Robert; Benco, Lubomir; Bučko, Tomas; Hafner, Jürgen

    2009-03-01

    The adsorption of NO molecules on Pdn clusters of varying size (n =1-6) located in the main channel of mordenite and the interaction of the metallic clusters with the zeolitic framework were investigated using ab initio density-functional calculations under periodic boundary conditions. The supported clusters are created by binding Pdn2+ cations to the inner cavity of a deprotonated Al-exchanged zeolite with an Al/Si ratio of 1/11, such that a charge-neutral system is created. Compared to the highly symmetric structures of the gas-phase clusters, the clusters bound to the zeolitic framework undergo appreciable geometric distortions lowering their symmetry. The distortions are induced by strong interactions with "activated" framework oxygens located close to the charge-compensating Al/Si substitution sites, but the cluster forms also weaker bonds to "nonactivated" oxygen atoms. The interaction with the framework also affects the electronic and magnetic properties of the clusters. While in the gas phase all clusters (except the isolated Pd atom with a closed d10 ground state) have a paramagnetic moment of 2μB, in the zeolite clusters with two to four atoms have zero magnetic moment, while the Pd5 cluster has a magnetic moment of 2μB and for the Pd6 cluster, it is even enhanced to 4μB (but the magnetic energy differences relative to low-spin configurations are modest). Analysis of the magnetization densities shows that in all clusters with zero total moment (singlet ground state), there are sites with excess spin densities of opposite sign. The influence of the cluster-support interaction on the chemical properties of the clusters has been tested by the adsorption of NO molecules. The results demonstrate the interplay between the molecule-cluster and cluster-framework interactions, which can lead to an increase or decrease in the adsorption energy compared to NO on a gas-phase cluster. While on the gas-phase cluster adsorption in low-coordination sites (vertex or

  13. Electrical properties of nanoscale metallic thin films on dielectric elastomer at various strain rates

    NASA Astrophysics Data System (ADS)

    Faisal, Md. Shahnewaz Sabit; Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan

    2015-04-01

    Dielectric elastomers (DEs) have significant applications in artificial muscle and other biomedical equipment and device fabrications. Metallic thin films by thin film transfer and sputter coating techniques can provide conductive surfaces on the DE samples, and can be used as electrodes for the actuators and other biomedical sensing devices. In the present study, 3M VHB 4910 tape was used as a DE for the coating and electrical characterization tests. A 150 nm thickness of gold was coated on the DE surfaces by sputter coating under vacuum with different pre-strains, ranging from 0 to 100%. Some of the thin films were transferred to the surface of the DEs. Sputter coating, and direct transferring gold leaf coating methods were studied and the results were analyzed in detail in terms of the strain rates and electrical resistivity changes. Initial studies indicated that the metallic surfaces remain conductive even though the DE films were considerably elongated. The coated DEs can be used as artificial muscle by applying electrical stimulation through the conductive surfaces. This study may provide great benefits to the readers, researchers, as well as companies involved in manufacturing of artificial muscles and actuators using smart materials.

  14. Nanoscale magnetic skyrmions in metallic films and multilayers: a new twist for spintronics

    NASA Astrophysics Data System (ADS)

    Wiesendanger, Roland

    2016-07-01

    Magnetic skyrmions are chiral quasiparticles that show promise for the transportation and storage of information. On a fundamental level, skyrmions are model systems for topologically protected spin textures and can be considered as the counterpart of topologically protected electronic states, emphasizing the role of topology in the classification of complex states of condensed matter. Recent impressive demonstrations of the control of individual nanometre-scale skyrmions — including their creation, detection, manipulation and deletion — have raised expectations for their use in future spintronic devices, including magnetic memories and logic gates. From a materials perspective, it is remarkable that skyrmions can be stabilized in ultrathin transition metal films, such as iron — one of the most abundant elements on earth — if in contact with materials that exhibit high spin–orbit coupling. At present, research in this field is focused on the development of transition-metal-based magnetic multilayer structures that support skyrmionic states at room temperature and allow for the precise control of skyrmions by spin-polarized currents and external fields.

  15. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  16. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  17. Nanoscale control of polyoxometalate assembly: a {Mn8W4} cluster within a {W36Si4Mn10} cluster showing a new type of isomerism.

    PubMed

    Winter, Ross S; Yan, Jun; Busche, Christoph; Mathieson, Jennifer S; Prescimone, Alessandro; Brechin, Euan K; Long, De-Liang; Cronin, Leroy

    2013-02-25

    Two near isomeric clusters containing a novel {Mn(8)W(4)} Keggin cluster within a [W(36)Mn(10)Si(4)O(136)(OH)(4)(H(2)O)8](24-) cluster are reported: K(10)Li(14)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8)] (1) and K(10)Li1(3.5)Mn(0.25)[W(36)Si(4)O(136)Mn(II)(10)(OH)(4)(H(2)O)(8) ] (1'). Bulk characterization of the clusters has been carried out by single crystal X-ray structure analysis, ICP-MS, TGA, ESI-MS, CV and SQUID-magnetometer analysis. X-ray analysis revealed that 1' has eight positions within the central Keggin core that were disordered W/Mn whereas 1 contained no such disorder. This subtle difference is due to a differences is how the two clusters assemble and recrystallize from the same mother liquor and represents a new type of isomerism. The rapid recrystallization process was captured via digital microscopy and this uncovered two "intermediate" types of crystal which formed temporarily and provided nucleation sites for the final clusters to assemble. The intermediates were investigated by single crystal X-ray analysis and revealed to be novel clusters K(4)Li(22)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·56H(2)O (2) and Mn(2)K(8)Li(14)[W(36)Si(4)Mn(7)O(136)(H(2)O)(8)]·45H(2)O (3). The intermediate clusters contained different yet related building blocks to the final clusters which allowed for the postulation of a mechanism of assembly. This demonstrates a rare example where the use X-ray crystallography directly facilitated understanding the means by which a POM assembled. PMID:23362186

  18. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    SciTech Connect

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  19. Synthesis Methods, Microscopy Characterization and Device Integration of Nanoscale Metal Oxide Semiconductors for Gas Sensing

    PubMed Central

    Vander Wal, Randy L.; Berger, Gordon M.; Kulis, Michael J.; Hunter, Gary W.; Xu, Jennifer C.; Evans, Laura

    2009-01-01

    A comparison is made between SnO2, ZnO, and TiO2 single-crystal nanowires and SnO2 polycrystalline nanofibers for gas sensing. Both nanostructures possess a one-dimensional morphology. Different synthesis methods are used to produce these materials: thermal evaporation-condensation (TEC), controlled oxidation, and electrospinning. Advantages and limitations of each technique are listed. Practical issues associated with harvesting, purification, and integration of these materials into sensing devices are detailed. For comparison to the nascent form, these sensing materials are surface coated with Pd and Pt nanoparticles. Gas sensing tests, with respect to H2, are conducted at ambient and elevated temperatures. Comparative normalized responses and time constants for the catalyst and noncatalyst systems provide a basis for identification of the superior metal-oxide nanostructure and catalyst combination. With temperature-dependent data, Arrhenius analyses are made to determine activation energies for the catalyst-assisted systems. PMID:22408484

  20. Mixed protein-templated luminescent metal clusters (Au and Pt) for H2O2 sensing

    PubMed Central

    2013-01-01

    A simple and cost-effective method to synthesize the luminescent noble metal clusters (Au and Pt) in chicken egg white aqueous solution at room temperature is reported. The red-emitting Au cluster is used as fluorescent probe for sensitive detection of H2O2. PMID:23601828

  1. Supersonic metal cluster beams of refractory metals: Spectral investigations of ultracold Mo2

    NASA Astrophysics Data System (ADS)

    Hopkins, J. B.; Langridge-Smith, P. R. R.; Morse, M. D.; Smalley, R. E.

    1983-02-01

    A novel technique involving pulsed laser vaporization of the bulk metal within a pulsed supersonic nozzle has been shown to successfully produce ultracold bare metal clusters of even the most refractory of metals, tungsten and molybdenum. Clusters of up to 25 atoms may be readily prepared using this technique. Mass-selective resonant two-photon ionization spectra of Mo2 produced in this fashion show that the dimer is efficiently cooled in the expansion Ttrans<6 K, Trot˜5 K, and Tvib˜325 K. We have rotationally resolved the A 1Σ+u←X 1Σ+g (0-0) band for 92Mo2 and determined the bond length in the ground and excited states to be 1.940±0.009 and 1.937±0.008 Å, respectively. This confirms and extends the analysis of Efremov et al. [J. Mol. Spectrosc. 73, 40 (1970)] who prepared 98Mo2 by flash photolysis of isotopically pure Mo(CO)6. We have also observed the (1-1), (2-2), and (3-3) sequence bands which together with the ground state data of Efremov et al. determine vibrational constants ω'e=449.0±0.2 cm-1 and ωex'e=2.3±0.2 cm-1 for the A 1Σ+u state. The lifetime of the A 1Σ+u v=0 state of Mo2 has been measured to be 18±3 ns by time-delayed two-photon ionization. The ionization potential of Mo2 is found to be less than 6.42 eV (compared to 7.10 eV for atomic Mo) indicating a substantially stronger chemical bond in Mo+2 than in Mo2. A discussion of the electronic structure of Mo2 and the implications of these findings for bonding in other transition metal dimers is also presented.

  2. Nanoscale heat transport from Ge hut, dome, and relaxed clusters on Si(001) measured by ultrafast electron diffraction

    SciTech Connect

    Frigge, T. Hafke, B.; Tinnemann, V.; Krenzer, B.; Horn-von Hoegen, M.

    2015-02-02

    The thermal transport properties of crystalline nanostructures on Si were studied by ultra-fast surface sensitive time-resolved electron diffraction. Self-organized growth of epitaxial Ge hut, dome, and relaxed clusters was achieved by in-situ deposition of 8 monolayers of Ge on Si(001) at 550 °C under UHV conditions. The thermal response of the three different cluster types subsequent to impulsive heating by fs laser pulses was determined through the Debye-Waller effect. Time resolved spot profile analysis and life-time mapping was employed to distinguish between the thermal response of the different cluster types. While dome clusters are cooling with a time constant of τ = 150 ps, which agrees well with numerical simulations, the smaller hut clusters with a height of 2.3 nm exhibit a cooling time constant of τ = 50 ps, which is a factor of 1.4 slower than expected.

  3. Charge Transport and Transfer at the Nanoscale Between Metals and Novel Conjugated Materials

    NASA Astrophysics Data System (ADS)

    Worne, Jeffrey Howard

    Organic semiconductors (OSCs) and graphene are two classes of conjugated materials that hold promise to create flexible electronic displays, high speed transistors, and low-cost solar cells. Crucial to understanding the behavior of these materials is understanding the effects metallic contacts have on the local charge environment. Additionally, characterizing the charge carrier transport behavior within these materials sheds light on the physical mechanisms behind transport. The first part of this thesis examines the origin of the low-temperature, high electric field transport behavior of OSCs. Two chemically distinct OSCs are used, poly-3(hexylthiophene) (P3HT) and 6,13-bis(triisopropyl-silylethynyl) (TIPS) pentacene. Several models explaining the low-temperature behavior are presented, with one using the Tomonaga-Luttinger liquid (TLL) insulator-to-metal transition model and one using a field-emission hopping model. While the TLL model is only valid for 1-dimensional systems, it is shown to work for both P3HT (1D) and TIPS-pentacene (2D), suggesting the TLL model is not an appropriate description of these systems. Instead, a cross-over from thermally-activated hopping to field-emission hopping is shown to explain the data well. The second part of this thesis focuses on the interaction between gold and platinum contacts and graphene using suspended graphene over sub-100 nanometer channels. Contacts to graphene can strongly dominate charge transport and mobility as well as significantly modify the charge environment local to the contacts. Platinum electrodes are discovered to be strong dopants to graphene at short length scales while gold electrodes do not have the same effect. By increasing the separation distance between the electrodes, this discrepancy is shown to disappear, suggesting an upper limit on charge diffusion from the contacts. Finally, this thesis will discuss a novel technique to observe the high-frequency behavior in OSCs using two microwave

  4. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation.

    PubMed

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  5. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging.

    PubMed

    Horcajada, Patricia; Chalati, Tamim; Serre, Christian; Gillet, Brigitte; Sebrie, Catherine; Baati, Tarek; Eubank, Jarrod F; Heurtaux, Daniela; Clayette, Pascal; Kreuz, Christine; Chang, Jong-San; Hwang, Young Kyu; Marsaud, Veronique; Bories, Phuong-Nhi; Cynober, Luc; Gil, Sophie; Férey, Gérard; Couvreur, Patrick; Gref, Ruxandra

    2010-02-01

    In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5 wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments. PMID:20010827

  6. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging

    NASA Astrophysics Data System (ADS)

    Horcajada, Patricia; Chalati, Tamim; Serre, Christian; Gillet, Brigitte; Sebrie, Catherine; Baati, Tarek; Eubank, Jarrod F.; Heurtaux, Daniela; Clayette, Pascal; Kreuz, Christine; Chang, Jong-San; Hwang, Young Kyu; Marsaud, Veronique; Bories, Phuong-Nhi; Cynober, Luc; Gil, Sophie; Férey, Gérard; Couvreur, Patrick; Gref, Ruxandra

    2010-02-01

    In the domain of health, one important challenge is the efficient delivery of drugs in the body using non-toxic nanocarriers. Most of the existing carrier materials show poor drug loading (usually less than 5wt% of the transported drug versus the carrier material) and/or rapid release of the proportion of the drug that is simply adsorbed (or anchored) at the external surface of the nanocarrier. In this context, porous hybrid solids, with the ability to tune their structures and porosities for better drug interactions and high loadings, are well suited to serve as nanocarriers for delivery and imaging applications. Here we show that specific non-toxic porous iron(III)-based metal-organic frameworks with engineered cores and surfaces, as well as imaging properties, function as superior nanocarriers for efficient controlled delivery of challenging antitumoural and retroviral drugs (that is, busulfan, azidothymidine triphosphate, doxorubicin or cidofovir) against cancer and AIDS. In addition to their high loadings, they also potentially associate therapeutics and diagnostics, thus opening the way for theranostics, or personalized patient treatments.

  7. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    PubMed Central

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-01-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands. PMID:27181922

  8. Notch sensitivity in nanoscale metallic glass specimens: Insights from continuum simulations

    NASA Astrophysics Data System (ADS)

    Singh, I.; Narasimhan, R.

    2016-01-01

    Recent experiments have shown that nano-sized metallic glass (MG) specimens subjected to tensile loading exhibit increased ductility and work hardening. Failure occurs by necking as opposed to shear banding which is seen in bulk samples. Also, the necking is generally observed at shallow notches present on the specimen surface. In this work, continuum finite element analysis of tensile loading of nano-sized notched MG specimens is conducted using a thermodynamically consistent non-local plasticity model to clearly understand the deformation behavior from a mechanics perspective. It is found that plastic zone size in front of the notch attains a saturation level at the stage when a dominant shear band forms extending across the specimen. This size scales with an intrinsic material length associated with the interaction stress between flow defects. A transition in deformation behavior from quasi-brittle to ductile becomes possible when this critical plastic zone size is larger than the uncracked ligament length. These observations corroborate with atomistic simulations and experimental results.

  9. Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation

    NASA Astrophysics Data System (ADS)

    He, Jie; Kaban, Ivan; Mattern, Norbert; Song, Kaikai; Sun, Baoan; Zhao, Jiuzhou; Kim, Do Hyang; Eckert, Jürgen; Greer, A. Lindsay

    2016-05-01

    At room temperature, plastic flow of metallic glasses (MGs) is sharply localized in shear bands, which are a key feature of the plastic deformation in MGs. Despite their clear importance and decades of study, the conditions for formation of shear bands, their structural evolution and multiplication mechanism are still under debate. In this work, we investigate the local conditions at shear bands in new phase-separated bulk MGs containing glassy nanospheres and exhibiting exceptional plasticity under compression. It is found that the glassy nanospheres within the shear band dissolve through mechanical mixing driven by the sharp strain localization there, while those nearby in the matrix coarsen by Ostwald ripening due to the increased atomic mobility. The experimental evidence demonstrates that there exists an affected zone around the shear band. This zone may arise from low-strain plastic deformation in the matrix between the bands. These results suggest that measured property changes originate not only from the shear bands themselves, but also from the affected zones in the adjacent matrix. This work sheds light on direct visualization of deformation-related effects, in particular increased atomic mobility, in the region around shear bands.

  10. Particle clustering and dielectric enhancement in percolating metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, William T.

    1995-11-01

    An effective cluster model has been developed [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension of monodisperse metal spheres as a mixture of isolated spheres and close-packed spherical clusters of spheres using the Clausius-Mossotti or Maxwell equations. The effective cluster model is adapted to such suspensions with a random intermingled cluster topology using Bruggemann's symmetrical equation. Model susceptibilities for the two cluster topologies are contrasted with one another and compared with experiments. Guillien's permittivity measurements [Ann. Phys. (Paris) Ser. 11 16, 205 (1941)] and Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] exemplify nonpercolating island topology suspensions. The permittivity measurements of Grannan, Garland, and Tanner [Phys. Rev. Lett. 46, 375 (1981)] exemplify percolating random topology clusters. The models for both cluster topologies are in excellent agreement with experiment over the entire accessible range of volume loading.