Sample records for nanoscale morphologies based

  1. Nanoscale Morphology, Dimensional Control and Electrical Properties of Oligoanilines

    PubMed Central

    Wang, Yue; Tran, Henry D.; Liao, Lei; Duan, Xiangfeng; Kaner, Richard B.

    2010-01-01

    While nanostructures of organic conductors have generated great interest in recent years, their nanoscale size and shape control remains a significant challenge. Here we report a general method for producing a variety of oligoaniline nanostructures with well-defined morphologies and dimensionalities. 1-D nanowires, 2-D nanoribbons, and 3-D rectangular nanoplates and nanoflowers of tetraaniline are produced by a solvent exchange process in which the dopant acid can be used to tune the oligomer morphology. The process appears to be a general route for producing nanostructures for a variety of other aniline oligomers such as the phenyl-capped tetramer. X-ray diffraction of the tetraniline nanostructures reveals that they possess different packing arrangements, which results in different nanoscale morphologies with different electrical properties for the structures. The conductivity of a single tetraaniline nanostructure is up to two orders of magnitude higher than the highest previously reported value and rivals that of pressed pellets of conventional polyaniline doped with acid. Furthermore, these oligomer nanostructures can be easily processed by a number of methods in order to create thin films composed of aligned nanostructures over a macroscopic area. PMID:20662516

  2. Nanoscale morphological analysis of soft matter aggregates with fractal dimension ranging from 1 to 3.

    PubMed

    Valle, Francesco; Brucale, Marco; Chiodini, Stefano; Bystrenova, Eva; Albonetti, Cristiano

    2017-09-01

    While the widespread emergence of nanoscience and nanotechnology can be dated back to the early eighties, the last decade has witnessed a true coming of age of this research field, with novel nanomaterials constantly finding their way into marketed products. The performance of nanomaterials being dominated by their nanoscale morphology, their quantitative characterization with respect to a number of properties is often crucial. In this context, those imaging techniques able to resolve nanometer scale details are clearly key players. In particular, atomic force microscopy can yield a fully quantitative tridimensional (3D) topography at the nanoscale. Herein, we will review a set of morphological analysis based on the scaling approach, which give access to important quantitative parameters for describing nanomaterial samples. To generalize the use of such morphological analysis on all D-dimensions (1D, 2D and 3D), the review will focus on specific soft matter aggregates with fractal dimension ranging from just above 1 to just below 3. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Visualizing nanoscale phase morphology for understanding photovoltaic performance of PTB7: PC71BM solar cell

    NASA Astrophysics Data System (ADS)

    Supasai, Thidarat; Amornkitbamrung, Vittaya; Thanachayanont, Chanchana; Tang, I.-Ming; Sutthibutpong, Thana; Rujisamphan, Nopporn

    2017-11-01

    Visualizing and controlling the phase separation of the donor and acceptor domains in organic bulk-hetero-junction (BHJ) solar devices made with poly([4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethyl-hexyl)carbon-yl]thieno[3,4-bthiophenediyl]) (PTB7) and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) are needed to achieve high power conversion efficiency (PCE). Traditional bright-field (BF) imaging, especially of polymeric materials, produces images of poor contrast when done at the nanoscale level. Clear nanoscale morphologies of the PTB7:PC71BM blends prepared with different 1,8-diiodooctane (DIO) concentrations were seen when using the energy-filtered transmission electron microscopy (EFTEM). The electron energy loss (EELS) spectra of the pure PTB7 and PC71BM samples are centered at 22.7 eV and 24.5 eV, respectively. Using the electrons whose energy losses are in the range of 16-30 eV, detail information of the phase morphology at the nanoscale was obtained. Correlations between the improvement in the photovoltaic performances and the increased electron mobility were seen. These correlations are discussed in terms of the changes (at the nanoscale level) in blending phase morphology when different DIO concentrations are added.

  4. Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

    PubMed Central

    Borghi, Francesca; Vyas, Varun; Podestà, Alessandro; Milani, Paolo

    2013-01-01

    We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces. PMID:23874708

  5. Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films

    DOE PAGES

    Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling; ...

    2016-03-02

    Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.

  6. Utilizing dynamic laser speckle to probe nanoscale morphology evolution in nanoporous gold thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Christopher A. R.; Ly, Sonny; Wang, Ling

    Here we show the use of dynamic laser speckle autocorrelation spectroscopy in conjunction with the photothermal treatment of nanoporous gold (np-Au) thin films to probe nanoscale morphology changes during the photothermal treatment. Utilizing this spectroscopy method, backscattered speckle from the incident laser is tracked during photothermal treatment and both the characteristic feature size and annealing time of the film are determined. These results demonstrate that this method can successfully be used to monitor laser-based surface modification processes without the use of ex-situ characterization.

  7. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armas-Pérez, Julio C.; Li, Xiao; Martínez-González, José A.

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal.more » To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.« less

  8. Property Control of (Perfluorinated Ionomer)/(Inorganic Oxide) Composites by Tailoring the Nanoscale Morphology

    DTIC Science & Technology

    1994-06-10

    RPeport PROPERTY CONTROL OF ( PERFLUORINATED IONOMER)/(INORGANIC OXIDE) COMPOSITES BY TAILORING THE NANOSCALE MORPHOLOGY Kenneth A. Mauritz and Robert...Concept ......................................... 45 B. [Si0 2 -TiO2 (mixed)]/Nafion Nanocomposites: Sorption of Pre-Mixed Alkoxides...Nanocomposites: Sorption of Pre- Mixed Alkoxides ......................................... 49 A. Experimental Procedure ............................. 49 B

  9. Naphtho[2,1-b:3,4-b']dithiophene-based bulk heterojunction solar cells: how molecular structure influences nanoscale morphology and photovoltaic properties.

    PubMed

    Kim, Yu Jin; Cheon, Ye Rim; Back, Jang Yeol; Kim, Yun-Hi; Chung, Dae Sung; Park, Chan Eon

    2014-11-10

    Organic bulk heterojunction photovoltaic devices based on a series of three naphtho[2,1-b:3,4-b']dithiophene (NDT) derivatives blended with phenyl-C71-butyric acid methyl ester were studied. These three derivatives, which have NDT units with various thiophene-chain lengths, were employed as the donor polymers. The influence of their molecular structures on the correlation between their solar-cell performances and their degree of crystallization was assessed. The grazing-incidence angle X-ray diffraction and atomic force microscopy results showed that the three derivatives exhibit three distinct nanoscale morphologies. We correlated these morphologies with the device physics by determining the J-V characteristics and the hole and electron mobilities of the devices. On the basis of our results, we propose new rules for the design of future generations of NDT-based polymers for use in bulk heterojunction solar cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Nanoscale Morphology of Type I Collagen is Altered in the Brtl Mouse Model of Osteogenesis Imperfecta

    PubMed Central

    Wallace, Joseph M.; Orr, Bradford G.; Marini, Joan C.; Banaszak Holl, Mark M.

    2010-01-01

    Bone has a complex hierarchical structure that has evolved to serve structural and metabolic roles in the body. Due to the complexity of bone structure and the number of diseases which affect the ultrastructural constituents of bone, it is important to develop quantitative methods to assess bone nanoscale properties. Autosomal dominant Osteogenesis Imperfecta results predominantly from glycine substitutions (80%) and splice site mutations (20%) in the genes encoding the α1 or α2 chains of Type I collagen. Genotype-phenotype correlations using over 830 collagen mutations have revealed that lethal mutations are located in regions crucial for collagen-ligand binding in the matrix. However, few of these correlations have been extended to collagen structure in bone. Here, an atomic force microscopy-based approach was used to image and quantitatively analyze the D-periodic spacing of Type I collagen fibrils in femora from heterozygous (Brtl/+) mice (α1(I)G349C), compared to wild type (WT) littermates. This disease system has a well-defined change in the col1α1 allele, leading to a well characterized alteration in collagen protein structure, which are directly related to altered Type I collagen nanoscale morphology, as measured by the D-periodic spacing. In Brtl/+ bone, the D-periodic spacing shows significantly greater variability on average and along the length of the bone compared to WT, although the average spacing was unchanged. Brtl/+ bone also had a significant difference in the population distribution of collagen D-period spacings. These changes may be due to the mutant collagen structure, or to the heterogeneity of collagen monomers in the Brtl/+ matrix. These observations at the nanoscale level provide insight into the structural basis for changes present in bone composition, geometry and mechanical integrity in Brtl/+ bones. Further studies are necessary to link these morphological observations to nanoscale mechanical integrity. PMID:20696252

  11. Nano-scale surface morphology, wettability and osteoblast adhesion on nitrogen plasma-implanted NiTi shape memory alloy.

    PubMed

    Liu, X M; Wu, S L; Chu, Paul K; Chung, C Y; Chu, C L; Chan, Y L; Lam, K O; Yeung, K W K; Lu, W W; Cheung, K M C; Luk, K D K

    2009-06-01

    Plasma immersion ion implantation (PIII) is an effective method to increase the corrosion resistance and inhibit nickel release from orthopedic NiTi shape memory alloy. Nitrogen was plasma-implanted into NiTi using different pulsing frequencies to investigate the effects on the nano-scale surface morphology, structure, wettability, as well as biocompatibility. X-ray photoelectron spectroscopy (XPS) results show that the implantation depth of nitrogen increases with higher pulsing frequencies. Atomic force microscopy (AFM) discloses that the nano-scale surface roughness increases and surface features are changed from islands to spiky cones with higher pulsing frequencies. This variation in the nano surface structures leads to different surface free energy (SFE) monitored by contact angle measurements. The adhesion, spreading, and proliferation of osteoblasts on the implanted NiTi surface are assessed by cell culture tests. Our results indicate that the nano-scale surface morphology that is altered by the implantation frequencies impacts the surface free energy and wettability of the NiTi surfaces, and in turn affects the osteoblast adhesion behavior.

  12. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications

    PubMed Central

    Gentile, Antonella; Ruffino, Francesco; Grimaldi, Maria Grazia

    2016-01-01

    Due to their peculiar qualities, metal-based nanostructures have been extensively used in applications such as catalysis, electronics, photography, and information storage, among others. New applications for metals in areas such as photonics, sensing, imaging, and medicine are also being developed. Significantly, most of these applications require the use of metals in the form of nanostructures with specific controlled properties. The properties of nanoscale metals are determined by a set of physical parameters that include size, shape, composition, and structure. In recent years, many research fields have focused on the synthesis of nanoscale-sized metallic materials with complex shape and composition in order to optimize the optical and electrical response of devices containing metallic nanostructures. The present paper aims to overview the most recent results—in terms of fabrication methodologies, characterization of the physico-chemical properties and applications—of complex-morphology metal-based nanostructures. The paper strongly focuses on the correlation between the complex morphology and the structures’ properties, showing how the morphological complexity (and its nanoscale control) can often give access to a wide range of innovative properties exploitable for innovative functional device production. We begin with an overview of the basic concepts on the correlation between structural and optical parameters of nanoscale metallic materials with complex shape and composition, and the possible solutions offered by nanotechnology in a large range of applications (catalysis, electronics, photonics, sensing). The aim is to assess the state of the art, and then show the innovative contributions that can be proposed in this research field. We subsequently report on innovative, versatile and low-cost synthesis techniques, suitable for providing a good control on the size, surface density, composition and geometry of the metallic nanostructures. The main

  13. Facile Fabrication of Binary Nanoscale Interface for No-Loss Microdroplet Transportation.

    PubMed

    Liang, Weitao; Zhu, Liqun; Li, Weiping; Xu, Chang; Liu, Huicong

    2016-06-07

    Binary nanoscale interfacial materials are fundamental issues in many applications for smart surfaces. A binary nanoscale interface with binary surface morphology and binary wetting behaviors has been prepared by a facile wet-chemical method. The prepared surface presents superhydrophobicity and high adhesion with the droplet at the same time. The composition, surface morphology, and wetting behaviors of the prepared surface have been systematic studied. The special wetting behaviors can be contributed to the binary nanoscale effect. The stability of the prepared surface was also investigated. As a primary application, a facile device based on the prepared binary nanoscale interface with superhydrophobicity and high adhesion was constructed for microdroplet transportation.

  14. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

    PubMed Central

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms. PMID:29181287

  15. Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth.

    PubMed

    Brower, Landon J; Gentry, Lauren K; Napier, Amanda L; Anderson, Mary E

    2017-01-01

    Integration of surface-anchored metal-organic frameworks (surMOFs) within hierarchical architectures is necessary for potential sensing, electronic, optical, or separation applications. It is important to understand the fundamentals of film formation for these surMOFs in order to develop strategies for their incorporation with nanoscale control over lateral and vertical dimensions. This research identified processing parameters to control the film morphology for surMOFs of HKUST-1 fabricated by codeposition and seeded deposition. Time and temperature were investigated to observe film formation, to control film thickness, and to tune morphology. Film thickness was investigated by ellipsometry, while film structure and film roughness were characterized by atomic force microscopy. Films formed via codeposition resulted in nanocrystallites anchored to the gold substrate. A dynamic process at the interface was observed with a low density of large particulates (above 100 nm) initially forming on the substrate; and over time these particulates were slowly replaced by the prevalence of smaller crystallites (ca. 10 nm) covering the substrate at a high density. Elevated temperature was found to expedite the growth process to obtain the full range of surface morphologies with reasonable processing times. Seed crystals formed by the codeposition method were stable and nucleated growth throughout a subsequent layer-by-layer deposition process. These seed crystals templated the final film structure and tailor the features in lateral and vertical directions. Using codeposition and seeded growth, different surface morphologies with controllable nanoscale dimensions can be designed and fabricated for integration of MOF systems directly into device architectures and sensor platforms.

  16. Nanoscale Morphology to Macroscopic Performance in Ultra High Molecular Weight Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    McDaniel, Preston B.

    Ultra high molecular weight polyethylene (UHMWPE) fibers are increasingly used in high -performance applications where strength, stiffness, and the ability to dissipate energy are of critical importance. Despite their use in a variety of applications, the influence of morphological features at the meso/nanoscale on the macroscopic performance of the fibers has not been well understood. There is particular interest in gaining a better understanding of the nanoscale structure-property relationships in UHMWPE fibers used in ballistics applications. In order to accurately model and predict failure in the fiber, a more complete understanding of the complex load pathways that dictate the ways in which load is transferred through the fiber, across interfaces and length scales is required. The goal of the work discussed herein is to identify key meso/nanostructural features evolved in high performance fibers and determine how these features influence the performance of the fiber through a variety of different loading mechanisms. The important structural features in high-performance UHMWPE fibers are first identified through examination of the meso/nanostructure of a series of fibers with different processing conditions. This is achieved primarily through the use of wide-angle x-ray diffraction (WAXD) and atomic force microscopy (AFM). Analysis of AFM images and WAXD data allows identification and quantifications of important structural features at these length scales. Key meso/nanostructural features are then examined with respect to their influence on the transverse compression behavior of single fibers. Through post-mortem AFM analysis of samples at incremental compressive strains, the evolution of damage is examined and compared with macroscopic fiber mechanical response. It was found that collapse of mesoscale voids, followed by nanoscale fibrillation and reorganization of a fibrillar network has a significant influence on the mechanical response of the fiber. Through

  17. Ordering of the nanoscale step morphology as a mechanism for droplet self-propulsion.

    PubMed

    Hilner, Emelie; Zakharov, Alexei A; Schulte, Karina; Kratzer, Peter; Andersen, Jesper N; Lundgren, Edvin; Mikkelsen, Anders

    2009-07-01

    We establish a new mechanism for self-propelled motion of droplets, in which ordering of the nanoscale step morphology by sublimation beneath the droplets themselves acts to drive them perpendicular and up the surface steps. The mechanism is demonstrated and explored for Ga droplets on GaP(111)B, using several experimental techniques allowing studies of the structure and dynamics from micrometers to the atomic scale. We argue that the simple assumptions underlying the propulsion mechanism make it relevant for a wide variety of materials systems.

  18. Macroscale and Nanoscale Morphology Evolution during in Situ Spray Coating of Titania Films for Perovskite Solar Cells.

    PubMed

    Su, Bo; Caller-Guzman, Herbert A; Körstgens, Volker; Rui, Yichuan; Yao, Yuan; Saxena, Nitin; Santoro, Gonzalo; Roth, Stephan V; Müller-Buschbaum, Peter

    2017-12-20

    Mesoporous titania is a cheap and widely used material for photovoltaic applications. To enable a large-scale fabrication and a controllable pore size, we combined a block copolymer-assisted sol-gel route with spray coating to fabricate titania films, in which the block copolymer polystyrene-block-poly(ethylene oxide) (PS-b-PEO) is used as a structure-directing template. Both the macroscale and nanoscale are studied. The kinetics and thermodynamics of the spray deposition processes are simulated on a macroscale, which shows a good agreement with the large-scale morphology of the spray-coated films obtained in practice. On the nanoscale, the structure evolution of the titania films is probed with in situ grazing incidence small-angle X-ray scattering (GISAXS) during the spray process. The changes of the PS domain size depend not only on micellization but also on solvent evaporation during the spray coating. Perovskite (CH 3 NH 3 PbI 3 ) solar cells (PSCs) based on sprayed titania film are fabricated, which showcases the suitability of spray-deposited titania films for PSCs.

  19. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  20. Nanoscale Morphology Evolution Under Ion Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, Michael J.

    We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, andmore » upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.« less

  1. A luminescent ratiometric pH sensor based on a nanoscale and biocompatible Eu/Tb-mixed MOF.

    PubMed

    Xia, Tifeng; Zhu, Fengliang; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-06-13

    The precise and real-time monitoring of localized pH changes is of great importance in many engineering and environmental fields, especially for monitoring small pH changes in biological environments and living cells. Metal-organic frameworks (MOFs) with their nanoscale processability show very promising applications in bioimaging and biomonitoring, but the fabrication of nanoscale MOFs is still a challenge. In this study, we synthesized a nanoscale mixed-lanthanide metal-organic framework by a microemulsion method. The morphology and size of the NMOF can be simply adjusted by the addition of different amounts of the CTAB surfactant. This NMOF exhibits significant pH-dependent luminescence emission, which can act as a self-referenced pH sensor based on two emissions of Tb 3+ at 545 nm and Eu 3+ at 618 nm in the pH range from 3.00 to 7.00. The MTT assay and optical microscopy assay demonstrate the low cytotoxicity and good biocompatibility of the nanosensor.

  2. Nanoscale structure and morphology of sulfonated polyphenylenes via atomistic simulations

    DOE PAGES

    Abbott, Lauren J.; Frischknecht, Amalie L.

    2017-01-23

    We performed atomistic simulations on a series of sulfonated polyphenylenes systematically varying the degree of sulfonation and water content to determine their effect on the nanoscale structure, particularly for the hydrophilic domains formed by the ionic groups and water molecules. We found that the local structure around the ionic groups depended on the sulfonation and hydration levels, with the sulfonate groups and hydronium ions less strongly coupled at higher water contents. In addition, we characterized the morphology of the ionic domains employing two complementary clustering algorithms. At low sulfonation and hydration levels, clusters were more elongated in shape and poorlymore » connected throughout the system. As the degree of sulfonation and water content were increased, the clusters became more spherical, and a fully percolated ionic domain was formed. As a result, these structural details have important implications for ion transport.« less

  3. Study of Structural Morphology of Hemp Fiber from the Micro to the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wang, Bei; Sain, Mohini; Oksman, Kristiina

    2007-03-01

    The focus of this work has been to study how high pressure defibrillation and chemical purification affect the hemp fiber morphology from micro to nanoscale. Microscopy techniques, chemical analysis and X-ray diffraction were used to study the structure and properties of the prepared micro and nanofibers. Microscopy studies showed that the used individualization processes lead to a unique morphology of interconnected web-like structure of hemp fibers. The nanofibers are bundles of cellulose fibers of widths ranging between 30 and 100 nm and estimated lengths of several micrometers. The chemical analysis showed that selective chemical treatments increased the α-cellulose content of hemp nanofibers from 75 to 94%. Fourier transform infrared spectroscopy (FTIR) study showed that the pectins were partially removed during the individualization treatments. X-ray analysis showed that the relative crystallinity of the studied fibers increased after each stage of chemical and mechanical treatments. It was also observed that the hemp nanofibers had an increased crystallinity of 71 from 57% of untreated hemp fibers.

  4. Morphological transitions in nanoscale patterns produced by concurrent ion sputtering and impurity co-deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, R. Mark

    2016-04-07

    We modify the theory of nanoscale patterns produced by ion bombardment with concurrent impurity deposition to take into account the effect that the near-surface impurities have on the collision cascades. As the impurity concentration is increased, the resulting theory successively yields a flat surface, a rippled surface with its wavevector along the projected direction of ion incidence, and a rippled surface with its wavevector rotated by 90°. Exactly the same morphological transitions were observed in recent experiments in which silicon was bombarded with an argon ion beam and gold was co-deposited [Moon et al., e-print arXiv:1601.02534].

  5. Understanding the effects of strain on morphological instabilities of a nanoscale island during heteroepitaxial growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Lu; Wang, Jing; Wang, Shibin

    A comprehensive morphological stability analysis of a nanoscale circular island during heteroepitaxial growth is presented based on continuum elasticity theory. The interplay between kinetic and thermodynamic mechanisms is revealed by including strain-related kinetic processes. In the kinetic regime, the Burton-Cabrera-Frank model is adopted to describe the growth front of the island. Together with kinetic boundary conditions, various kinetic processes including deposition flow, adatom diffusion, attachment-detachment kinetics, and the Ehrlich-Schwoebel barrier can be taken into account at the same time. In the thermodynamic regime, line tension, surface energy, and elastic energy are considered. As the strain relief in the early stagesmore » of heteroepitaxy is more complicated than commonly suggested by simple consideration of lattice mismatch, we also investigate the effects of external applied strain and elastic response due to perturbations on the island shape evolution. The analytical expressions for elastic fields induced by mismatch strain, external applied strain, and relaxation strain are presented. A systematic approach is developed to solve the system via a perturbation analysis which yields the conditions of film morphological instabilities. Consistent with previous experimental and theoretical work, parametric studies show the kinetic evolution of elastic relaxation, island morphology, and film composition under various conditions. Our present work offers an effective theoretical approach to get a comprehensive understanding of the interplay between different growth mechanisms and how to tailor the growth mode by controlling the nature of the crucial factors.« less

  6. Treadmill Exercise Improves Fracture Toughness and Indentation Modulus without Altering the Nanoscale Morphology of Collagen in Mice.

    PubMed

    Hammond, Max A; Laine, Tyler J; Berman, Alycia G; Wallace, Joseph M

    The specifics of how the nanoscale properties of collagen (e.g., the crosslinking profile) affect the mechanical integrity of bone at larger length scales is poorly understood despite growing evidence that collagen's nanoscale properties are altered with disease. Additionally, mass independent increases in postyield displacement due to exercise suggest loading-induced improvements in bone quality associated with collagen. To test whether disease-induced reductions in bone quality driven by alterations in collagen can be rescued or prevented via exercise-mediated changes to collagen's nanoscale morphology and mechanical properties, the effects of treadmill exercise and β-aminopropionitrile treatment were investigated. Eight week old female C57BL/6 mice were given a daily subcutaneous injection of either 164 mg/kg β-aminopropionitrile or phosphate buffered saline while experiencing either normal cage activity or 30 min of treadmill exercise for 21 consecutive days. Despite differences in D-spacing distribution (P = 0.003) and increased cortical area (tibial: P = 0.005 and femoral: P = 0.015) due to β-aminopropionitrile treatment, an overt mechanical disease state was not achieved as there were no differences in fracture toughness or 4 point bending due to β-aminopropionitrile treatment. While exercise did not alter (P = 0.058) the D-spacing distribution of collagen or prevent (P < 0.001) the β-aminopropionitrile-induced changes present in the unexercised animals, there were differential effects in the distribution of the reduced elastic modulus due to exercise between control and β-aminopropionitrile-treated animals (P < 0.001). Fracture toughness was increased (P = 0.043) as a main effect of exercise, but no significant differences due to exercise were observed using 4 point bending. Future studies should examine the potential for sex specific differences in the dose of β-aminopropionitrile required to induce mechanical effects in mice and the contributions

  7. Nanoscale characterization of 1D Sn-3.5Ag nanosolders and their application into nanowelding at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Junwei; Lan, Qianqian; Ma, Hongbin; Qu, Ke; Inkson, Beverley J.; Mellors, Nigel J.; Xue, Desheng; Peng, Yong

    2014-10-01

    One-dimensional Sn-3.5Ag alloy nanosolders have been successfully fabricated by a dc electrodeposition technique into nanoporous templates, and their soldering quality has been demonstrated in nanoscale electrical welding for the first time, which indicates that they can easily form remarkably reliable conductive joints. The electrical measurement shows that individual 1D Sn-3.5Ag nanosolders have a resistivity of 28.9 μΩ·cm. The morphology, crystal structure and chemistry of these nanosolders have been characterized at the nanoscale. It is found that individual 1D Sn-3.5Ag alloy nanosolders have a continuous morphology and smooth surface. XPS confirms the presence of tin and silver with a mass ratio of 96.54:3.46, and EDX elemental mappings clearly reveal that the Sn and Ag elements have a uniform distribution. Coveragent beam electron diffractions verify that the crystal phases of individual 1D Sn-3.5Ag alloy nanosolders consist of matrix β-Sn and the intermetallic compound Ag3Sn. The reflow experiments reveal that the eutectic composition of the 1D Sn-Ag alloy nanowire is shifted to the Sn rich corner. This work may contribute one of the most important tin-based alloy nanosolders for future nanoscale welding techniques, which are believed to have broad applications in nanotechnology and the future nano-industry.

  8. A Thermal Diode Based on Nanoscale Thermal Radiation.

    PubMed

    Fiorino, Anthony; Thompson, Dakotah; Zhu, Linxiao; Mittapally, Rohith; Biehs, Svend-Age; Bezencenet, Odile; El-Bondry, Nadia; Bansropun, Shailendra; Ben-Abdallah, Philippe; Meyhofer, Edgar; Reddy, Pramod

    2018-05-23

    In this work we demonstrate thermal rectification at the nanoscale between doped Si and VO 2 surfaces. Specifically, we show that the metal-insulator transition of VO 2 makes it possible to achieve large differences in the heat flow between Si and VO 2 when the direction of the temperature gradient is reversed. We further show that this rectification increases at nanoscale separations, with a maximum rectification coefficient exceeding 50% at ∼140 nm gaps and a temperature difference of 70 K. Our modeling indicates that this high rectification coefficient arises due to broadband enhancement of heat transfer between metallic VO 2 and doped Si surfaces, as compared to narrower-band exchange that occurs when VO 2 is in its insulating state. This work demonstrates the feasibility of accomplishing near-field-based rectification of heat, which is a key component for creating nanoscale radiation-based information processing devices and thermal management approaches.

  9. Influence of polymer coating morphology on microsensor response

    NASA Astrophysics Data System (ADS)

    Levit, Natalia; Pestov, Dmitry; Tepper, Gary C.

    2004-03-01

    Nanoscale polymeric coatings are used in a variety of sensor systems. The influence of polymer coating morphology on sensor response was investigated and it was determined that coating morphology plays a particularly important role in transducers based on optical or acoustic resonance such as surface acoustic wave (SAW) or surface plasmon resonance (SPR) devices. Nanoscale polymeric coatings were deposited onto a number of miniature devices using a "solvent-free" deposition technique known as Rapid Expansion of Supercritical Solutions (RESS). In RESS, the supercritical solvent goes into the vapor phase upon fast depressurization and separates from the polymer. Therefore, dry polymer particles are deposited from the gas phase. The average diameter of RESS precipitates is about two orders of magnitude smaller than the minimum droplet size achievable by the air-brush method. For rubbery polymers, such as PIB and PDMS, the nanoscale solute droplets produced by RESS agglomerate on the surface forming a highly-uniform continuous nanoscale film. For glassy and crstalline polymers, the RESS droplets produce uniform particulate coatings exhibiting high surface-to-volume ratio. The coating morphology can be changed by controlling the RESS processing conditions.

  10. Nanoscale analysis of degradation processes of cellulose fibers.

    PubMed

    Teodonio, Lorenzo; Missori, Mauro; Pawcenis, Dominika; Łojewska, Joanna; Valle, Francesco

    2016-12-01

    Mapping the morphological and nano-mechanical properties of cellulose fibers within paper sheets or textile products at the nano-scale level by using atomic force microscopy is a challenging task due to the huge surface level variation of these materials. However this task is fundamental for applications in forensic or cultural heritage sciences and for the industrial characterization of materials. In order to correlate between nano-mechanical properties and local nanometer scale morphology of different layers of cellulose fibers, a new strategy to prepare samples of isolated cellulose fibers was designed. This approach is based on immobilizing isolated fibers onto glass slides chemically pretreated so as to promote cellulose adhesion. The experiments presented here aim at the nano-scale characterization of fibers in paper samples aged under different external agents (relative humidity, temperature) in such a way as to promote hydrolysis and oxidation of polymers. The observed variability of local mechanical properties of paper fibers was related to varying degrees of cellulose polymerization induced by artificial aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    DOE PAGES

    Roehling, John D.; Baran, Derya; Sit, Joseph; ...

    2016-08-08

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less

  12. Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roehling, John D.; Baran, Derya; Sit, Joseph

    High efficiency polymer:fullerene photovoltaic device layers self-assemble with hierarchical features from ångströms to 100’s of nanometers. The feature size, shape, composition, orientation, and order all contribute to device efficiency and are simultaneously difficult to study due to poor contrast between carbon based materials. This study seeks to increase device efficiency and simplify morphology measurements by replacing the typical fullerene acceptor with endohedral fullerene Lu 3N@PC 80BEH. The metal atoms give excellent scattering contrast for electron beam and x-ray experiments. Additionally, Lu 3N@PC 80BEH has a lower electron affinity than standard fullerenes, which can raise the open circuit voltage of photovoltaicmore » devices. Electron microscopy techniques are used to produce a detailed account of morphology evolution in mixtures of Lu 3N@PC 80BEH with the record breaking donor polymer, PTB7 and coated using solvent mixtures. We demonstrate that common solvent additives like 1,8-diiodooctane or chloronapthalene do not improve the morphology of endohedral fullerene devices as expected. The poor device performance is attributed to the lack of mutual miscibility between this particular polymer:fullerene combination and to co-crystallization of Lu 3N@PC 80BEH with 1,8-diiodooctane. This negative result explains why solvent additives mixtures are not necessarily a morphology cure-all.« less

  13. Reverse micelle synthesis of nanoscale metal containing catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni{sub 3}Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  14. Probing and tuning the size, morphology, chemistry and structure of nanoscale cerium oxide

    NASA Astrophysics Data System (ADS)

    Kuchibhatla, Satyanarayana Vnt

    Cerium oxide (ceria)-based materials in the nanoscale regime are of significant fundamental and technological interest. Nanoceria in pure and doped forms has current and potential use in solid oxide fuel cells, catalysis, UV-screening, chemical mechanical planarization, oxygen sensors, and bio-medical applications. The characteristic feature of Ce to switch between the +3 and +4 oxidation states renders oxygen buffering capability to ceria. The ease of this transformation was expected to be enhanced in the nanoceria. In most the practical scenarios, it is necessary to have a stable suspension of ceria nanoparticles (CNPs) over longer periods of time. However, the existing literature is confined to short term studies pertaining to synthesis and property evaluation. Having understood the need for a comprehensive understanding of the CNP suspensions, this dissertation is primarily aimed at understanding the behavior of CNPs in various chemical and physical environments. We have synthesized CNPs in the absence of any surfactants at room temperature and studied the aging characteristics. After gaining some understanding about the behavior of this functional oxide, the synthesis environment and aging temperature were varied, and their affects were carefully analyzed using various materials analysis techniques such as high resolution transmission electron microscopy (HRTEM), UV-Visible spectroscopy (UV-Vis), and X-ray photoelectron spectroscopy (XPS). When the CNPs were aged at room temperature in as-synthesized condition, they were observed to spontaneously assemble and evolve as fractal superoctahedral structures. The reasons for this unique polycrystalline morphology were attributed to the symmetry driven assembly of the individual truncated octahedral and octahedral seed of the ceria. HRTEM and Fast Fourier Transform (FFT) analyses were used to explain the agglomeration behavior and evolution of the octahedral morphology. Some of the observations were supported by

  15. Reverse micelle synthesis of nanoscale metal containing catalysts. [Nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide nanoscale powders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Fulton, J.L.; Linehan, J.C.

    1993-03-01

    The need for morphological control during the synthesis of catalyst precursor powders is generally accepted to be important. In the liquefaction of coal, for example, iron-bearing catalyst precursor particles containing individual crystallites with diameters in the 1-100 nanometer range are believed to achieve good dispersion through out the coal-solvent slurry during liquefaction 2 runs and to undergo chemical transformations to catalytically active iron sulfide phases. The production of the nanoscale powders described here employs the confining spherical microdomains comprising the aqueous phase of a modified reverse micelle (MRM) microemulsion system as nanoscale reaction vessels in which polymerization, electrochemical reduction andmore » precipitation of solvated salts can occur. The goal is to take advantage of the confining nature of micelles to kinetically hinder transformation processes which readily occur in bulk aqueous solution in order to control the morphology and phase of the resulting powder. We have prepared a variety of metal, alloy, and metal- and mixed metal-oxide nanoscale powders from appropriate MRM systems. Examples of nanoscale powders produced include Co, Mo-Co, Ni[sub 3]Fe, Ni, and various oxides and oxyhydroxides of iron. Here, we discuss the preparation and characterization of nickel metal (with a nickel oxide surface layer) and iron oxyhydroxide MRM nanoscale powders. We have used extended x-ray absorption fine structure (EXAFS) spectroscopy to study the chemical polymerization process in situ, x-ray diffraction (XRD), scanning and transmission electron microcroscopies (SEM and TEM), elemental analysis and structural modelling to characterize the nanoscale powders produced. The catalytic activity of these powders is currently being studied.« less

  16. Nanoscale welding of multi-walled carbon nanotubes by 1064 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Yuan, Yanping; Liu, Zhi; Zhang, Kaihu; Han, Weina; Chen, Jimin

    2018-07-01

    This study proposes an efficient approach which uses 1064 nm continuous fiber laser to achieve nanoscale welding of crossed multi-walled carbon nanotubes (MWCNTs). By changing the irradiation time, different quality of nanoscale welding is obtained. The morphology changes are investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM). The experiments demonstrate that better quality of MWCNTs nanoscale welding after 3 s irradiation can be obtained. It is found that new graphene layers between crossed nanotubes induced by laser make the nanoscale welding achieved due to the absorption of laser energy.

  17. Nanoscale morphological and chemical changes of high voltage lithium-manganese rich NMC composite cathodes with cycling.

    PubMed

    Yang, Feifei; Liu, Yijin; Martha, Surendra K; Wu, Ziyu; Andrews, Joy C; Ice, Gene E; Pianetta, Piero; Nanda, Jagjit

    2014-08-13

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium-manganese rich cathode material of composition Li(1 + x)M(1 - x)O2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼ 30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface.

  18. Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling

    PubMed Central

    2015-01-01

    Understanding the evolution of chemical composition and morphology of battery materials during electrochemical cycling is fundamental to extending battery cycle life and ensuring safety. This is particularly true for the much debated high energy density (high voltage) lithium–manganese rich cathode material of composition Li1 + xM1 – xO2 (M = Mn, Co, Ni). In this study we combine full-field transmission X-ray microscopy (TXM) with X-ray absorption near edge structure (XANES) to spatially resolve changes in chemical phase, oxidation state, and morphology within a high voltage cathode having nominal composition Li1.2Mn0.525Ni0.175Co0.1O2. Nanoscale microscopy with chemical/elemental sensitivity provides direct quantitative visualization of the cathode, and insights into failure. Single-pixel (∼30 nm) TXM XANES revealed changes in Mn chemistry with cycling, possibly to a spinel conformation and likely including some Mn(II), starting at the particle surface and proceeding inward. Morphological analysis of the particles revealed, with high resolution and statistical sampling, that the majority of particles adopted nonspherical shapes after 200 cycles. Multiple-energy tomography showed a more homogeneous association of transition metals in the pristine particle, which segregate significantly with cycling. Depletion of transition metals at the cathode surface occurs after just one cycle, likely driven by electrochemical reactions at the surface. PMID:25054780

  19. Nanoscale Ge fin etching using F- and Cl-based etchants for Ge-based multi-gate devices

    NASA Astrophysics Data System (ADS)

    Zhang, Bingxin; An, Xia; Li, Ming; Hao, Peilin; Zhang, Xing; Huang, Ru

    2018-04-01

    In this paper, nanoscale germanium (Ge) fin etching with inductively coupled plasma equipment with SF6/CHF3/Ar and Cl2/BCl3/Ar gas mixes are experimentally demonstrated. The impact of the gas ratio on etching induced Ge surface flatness, etch rate and sidewall steepness are comprehensively investigated and compared for these two kinds of etchants and the optimized gas ratio is provided. By using silicon oxide as a hard mask, nanoscale Ge fin with a flat surface and sharp sidewall is experimentally illustrated, which indicates great potential for use in nanoscale Ge-based multi-gate MOSFETs.

  20. Tailoring nanoscale morphology of polymer: Fullerene blends using electrostatic field

    DOE PAGES

    Elshobaki, Moneim; Gebhardt, Ryan; Carr, John; ...

    2016-12-05

    In this paper, to tailor the nanoscale phase separation in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC 60BM) bulk heterojunction (BHJ). In addition to untreated sample (control); wet P3HT:PC 60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions – horizontal (H), tilted (T) and vertical (V) – relative to the plane of the substrate. Surface and bulk characterizations of field-treated BHJs affirm that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following themore » E-field. E-field treatment yields thin films with large P3HT- and PCBM-rich domains acting as continuous pathways for efficient charge separation, transport, and collection. We improve; (1) the hole mobility values up to 19.4 × 10 -4 ± 1.6 × 10 -4 cm 2 V -1 s -1 (117% higher than the control), and (2) power conversion efficient (PCE) of conventional and inverted OPVs recording 2.58 ± 0.02% and 4.1 ± 0.4%. This E-field approach can serve as a new morphology-tuning technique, which is generally applicable to other polymer-fullerene systems.« less

  1. Development of nanoscale structure in LAT-based signaling complexes

    PubMed Central

    2016-01-01

    ABSTRACT The adapter molecule linker for activation of T cells (LAT) plays a crucial role in forming signaling complexes induced by stimulation of the T cell receptor (TCR). These multi-molecular complexes are dynamic structures that activate highly regulated signaling pathways. Previously, we have demonstrated nanoscale structure in LAT-based complexes where the adapter SLP-76 (also known as LCP2) localizes to the periphery of LAT clusters. In this study, we show that initially LAT and SLP-76 are randomly dispersed throughout the clusters that form upon TCR engagement. The segregation of LAT and SLP-76 develops near the end of the spreading process. The local concentration of LAT also increases at the same time. Both changes require TCR activation and an intact actin cytoskeleton. These results demonstrate that the nanoscale organization of LAT-based signaling complexes is dynamic and indicates that different kinds of LAT-based complexes appear at different times during T cell activation. PMID:27875277

  2. Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann

    Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti

  3. Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control

    PubMed Central

    Cho, Youngtak; Shin, Narae; Kim, Daesan; Park, Jae Yeol

    2017-01-01

    This paper provides a concise review on the recent development of nanoscale hybrid systems based on carbon nanotubes (CNTs) for biological sensing and control. CNT-based hybrid systems have been intensively studied for versatile applications of biological interfaces such as sensing, cell therapy and tissue regeneration. Recent advances in nanobiotechnology not only enable the fabrication of highly sensitive biosensors at nanoscale but also allow the applications in the controls of cell growth and differentiation. This review describes the fabrication methods of such CNT-based hybrid systems and their applications in biosensing and cell controls. PMID:28188158

  4. DNA-based construction at the nanoscale: emerging trends and applications

    NASA Astrophysics Data System (ADS)

    Lourdu Xavier, P.; Chandrasekaran, Arun Richard

    2018-02-01

    The field of structural DNA nanotechnology has evolved remarkably—from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes—in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.

  5. DNA-based construction at the nanoscale: emerging trends and applications.

    PubMed

    Xavier, P Lourdu; Chandrasekaran, Arun Richard

    2018-02-09

    The field of structural DNA nanotechnology has evolved remarkably-from the creation of artificial immobile junctions to the recent DNA-protein hybrid nanoscale shapes-in a span of about 35 years. It is now possible to create complex DNA-based nanoscale shapes and large hierarchical assemblies with greater stability and predictability, thanks to the development of computational tools and advances in experimental techniques. Although it started with the original goal of DNA-assisted structure determination of difficult-to-crystallize molecules, DNA nanotechnology has found its applications in a myriad of fields. In this review, we cover some of the basic and emerging assembly principles: hybridization, base stacking/shape complementarity, and protein-mediated formation of nanoscale structures. We also review various applications of DNA nanostructures, with special emphasis on some of the biophysical applications that have been reported in recent years. In the outlook, we discuss further improvements in the assembly of such structures, and explore possible future applications involving super-resolved fluorescence, single-particle cryo-electron (cryo-EM) and x-ray free electron laser (XFEL) nanoscopic imaging techniques, and in creating new synergistic designer materials.

  6. Azurin/CdSe-ZnS-Based Bio-Nano Hybrid Structure for Nanoscale Resistive Memory Device.

    PubMed

    Yagati, Ajay Kumar; Lee, Taek; Choi, Jeong-Woo

    2017-07-15

    In the present study, we propose a method for bio-nano hybrid formation by coupling a redox metalloprotein, Azurin, with CdSe-ZnS quantum dot for the development of a nanoscale resistive memory device. The covalent interaction between the two nanomaterials enables a strong and effective binding to form an azurin/CdSe-ZnS hybrid, and also enabled better controllability to couple with electrodes to examine the memory function properties. Morphological and optical properties were performed to confirm both hybrid formations and also their individual components. Current-Voltage (I-V) measurements on the hybrid nanostructures exhibited bistable current levels towards the memory function device, that and those characteristics were unnoticeable on individual nanomaterials. The hybrids showed good retention characteristics with high stability and durability, which is a promising feature for future nanoscale memory devices.

  7. An evaluation method for nanoscale wrinkle

    NASA Astrophysics Data System (ADS)

    Liu, Y. P.; Wang, C. G.; Zhang, L. M.; Tan, H. F.

    2016-06-01

    In this paper, a spectrum-based wrinkling analysis method via two-dimensional Fourier transformation is proposed aiming to solve the difficulty of nanoscale wrinkle evaluation. It evaluates the wrinkle characteristics including wrinkling wavelength and direction simply using a single wrinkling image. Based on this method, the evaluation results of nanoscale wrinkle characteristics show agreement with the open experimental results within an error of 6%. It is also verified to be appropriate for the macro wrinkle evaluation without scale limitations. The spectrum-based wrinkling analysis is an effective method for nanoscale evaluation, which contributes to reveal the mechanism of nanoscale wrinkling.

  8. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo

  9. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo

  10. Engineering Platinum Alloy Electrocatalysts in Nanoscale for PEMFC Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Ting

    2016-03-01

    Fuel cells are expected to be a key next-generation energy source used for vehicles and homes, offering high energy conversion efficiency and minimal pollutant emissions. However, due to large overpotentials on anode and cathode, the efficiency is still much lower than theoretically predicted. During the past decades, considerable efforts have been made to investigate synergy effect of platinum alloyed with base metals. But, engineering the alloy particles in nanoscale has been a challenge. Most important challenges in developing nanostructured materials are the abilities to control size, monodispersity, microcomposition, and even morphology or self-assembly capability, so called Nanomaterials-by-Design, which requires interdisciplinarymore » collaborations among computational modeling, chemical synthesis, nanoscale characterization as well as manufacturing processing. Electrocatalysts, particularly fuel cell catalysts, are dramatically different from heterogeneous catalysts because the surface area in micropores cannot be electrochemically controlled on the same time scale as more transport accessible surfaces. Therefore, electrocatalytic architectures need minimal microporous surface area while maximizing surfaces accessible through mesopores or macropores, and to "pin" the most active, highest performance physicochemical state of the materials even when exposed to thermodynamic forces, which would otherwise drive restructuring, crystallization, or densification of the nanoscale materials. In this presentation, results of engineering nanoscale platinum alloy particles down to 2 ~ 4 nm will be discussed. Based on nature of alloyed base metals, various synthesis technologies have been studied and developed to achieve capabilities of controlling particle size and particle microcomposition, namely, core-shell synthesis, microemulsion technique, thermal decomposition process, surface organometallic chemical method, etc. The results show that by careful engineering

  11. Nanoscale morphology of Ni{sub 50}Ti{sub 45}Cu{sub 5} nanoglass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Śniadecki, Z., E-mail: sniadecki@ifmpan.poznan.pl; Institute of Nanotechnology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen; Wang, D.

    2016-03-15

    Nanoglasses are noncrystalline solids with a granular nano-/microstructure. In contrast to their nanocrystalline analogs, typically constituted of grains and grain boundaries, nanoglasses consist of glassy regions with a structure corresponding to melt-quenched glasses and amorphous interfaces characterized by a reduced density. Their unique properties can be controlled by modifying size and chemical composition of the granular and interfacial regions. Ni{sub 50}Ti{sub 45}Cu{sub 5} amorphous films were obtained by magnetron sputtering and analyzed to determine their nanoscale morphology and the formation mechanisms. The nanoglasses were noted to have a hierarchical nano-columnar structure with the smallest Ni-rich (Ni:Ti ratio of ca. 5:3)more » amorphous columns with diameters of about 8 nm and Ti-rich glassy interfacial regions with a substantially lower density. The results were obtained utilizing X-ray diffraction and different microscopic methods, e.g., atomic force microscopy and transmission electron microscopy. A detailed analysis indicates the complexity of the formation mechanisms of topologically and chemically distinguishable structural units with curvature driven surface diffusion, surface mobility, self-shadowing and internal stresses as the most important parameters. Common and simple synthesis method and the possibility for easy modification of the morphology and, consequently, the physical properties offer an opportunity for intensive studies of this new class of materials, opening the way towards possible applications. - Highlights: • Ni{sub 50}Ti{sub 45}Cu{sub 5} thin film nanoglasses were synthesized by magnetron sputtering. • Ti amorphous interfacial phase with reduced density is observed. • Stabilization of interfaces by specific local thermodynamic conditions.« less

  12. GaN-Based Light-Emitting Diodes Grown on Nanoscale Patterned Sapphire Substrates with Void-Embedded Cortex-Like Nanostructures

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Yeh, J. Andrew

    2011-09-01

    High-efficiency GaN-based light-emitting diodes (LEDs) with an emitting wavelength of 438 nm were demonstrated utilizing nanoscale patterned sapphire substrates with void-embedded cortex-like nanostructures (NPSS-VECN). Unlike the previous nanopatterned sapphire substrates, the presented substrate has a new morphology that can not only improve the crystalline quality of GaN epilayers but also generate a void-embedded nanostructural layer to enhance light extraction. Under a driving current of 20 mA, the external quantum efficiency of an LED with NPSS-VECN is enhanced by 2.4-fold compared with that of the conventional LED. Moreover, the output powers of two devices respectively are 33.1 and 13.9 mW.

  13. Novel multiform morphologies of hydroxyapatite: Synthesis and growth mechanism

    NASA Astrophysics Data System (ADS)

    Mary, I. Reeta; Sonia, S.; Viji, S.; Mangalaraj, D.; Viswanathan, C.; Ponpandian, N.

    2016-01-01

    Morphological evolution of materials becomes a prodigious challenge due to their key role in defining their functional properties and desired applications. Herein, we report the synthesis of hydroxyapatite (HAp) microstructures with multiform morphologies, such as spheres, cubes, hexagonal rods and nested bundles constructed from their respective nanoscale building blocks via a simple cost effective hydro/solvothermal method. A possible formation mechanism of diverse morphologies of HAp has been presented. Structural analysis based on X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy confirms the purity of the HAp microstructures. The multiform morphologies of HAp were corroborated by using Field emission scanning electron microscope (FESEM).

  14. Nanoscale Ionic Liquids

    DTIC Science & Technology

    2006-11-01

    Technical Report 11 December 2005 - 30 November 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Nanoscale Ionic Liquids 5b. GRANT NUMBER FA9550-06-1-0012...Title: Nanoscale Ionic Liquids Principal Investigator: Emmanuel P. Giannelis Address: Materials Science and Engineering, Bard Hall, Cornell University...based fluids exhibit high ionic conductivity. The NFs are typically synthesized by grafting a charged, oligomeric corona onto the nanoparticle cores

  15. Supramolecular Approaches to Nanoscale Morphological Control in Organic Solar Cells

    PubMed Central

    Haruk, Alexander M.; Mativetsky, Jeffrey M.

    2015-01-01

    Having recently surpassed 10% efficiency, solar cells based on organic molecules are poised to become a viable low-cost clean energy source with the added advantages of mechanical flexibility and light weight. The best-performing organic solar cells rely on a nanostructured active layer morphology consisting of a complex organization of electron donating and electron accepting molecules. Although much progress has been made in designing new donor and acceptor molecules, rational control over active layer morphology remains a central challenge. Long-term device stability is another important consideration that needs to be addressed. This review highlights supramolecular strategies for generating highly stable nanostructured organic photovoltaic active materials by design. PMID:26110382

  16. On the origin of enhanced sensitivity in nanoscale FET-based biosensors

    PubMed Central

    Shoorideh, Kaveh; Chui, Chi On

    2014-01-01

    Electrostatic counter ion screening is a phenomenon that is detrimental to the sensitivity of charge detection in electrolytic environments, such as in field-effect transistor-based biosensors. Using simple analytical arguments, we show that electrostatic screening is weaker in the vicinity of concave curved surfaces, and stronger in the vicinity of convex surfaces. We use this insight to show, using numerical simulations, that the enhanced sensitivity observed in nanoscale biosensors is due to binding of biomolecules in concave corners where screening is reduced. We show that the traditional argument, that increased surface area-to-volume ratio for nanoscale sensors is responsible for their increased sensitivity, is incorrect. PMID:24706861

  17. Phase aggregation and morphology effects on nanocarbon optoelectronics.

    PubMed

    Xie, Yu; Lohrman, Jessica; Ren, Shenqiang

    2014-12-05

    Controllable morphology and interfacial interactions within bulk heterojunction nanostructures show significant effects on optoelectronic device applications. In this study, a nanocarbon heterojunction, consisting of single-walled carbon nanotubes (s-SWCNTs) and fullerene derivatives, is reported by assembling/blending its structures through solution-based processes. A uniform and dense graphene oxide hole transport layer is used to facilitate the photoconversion at a near infrared (NIR) wavelength. Effective interfacial interaction between the s-SWCNTs and fullerene is suggested by the redshifted photoabsorption and nanoscale/micron-scale fluorescence, which is associated with self-assembled nanocarbon morphology.

  18. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Klapetek, P.; Koenders, L.

    2011-09-01

    properties of nanoparticles, nanotubes, quantum dots and similar fascinating objects. Currently there is a high level of interest in characterization of nanoparticles since they are increasingly encountered in science, technology, life sciences and even everyday life. Quantitative characterization of nanoparticles has been the subject of many discussions and some recent work over the last couple of years, and both scanning probe microscopy and scanning or transmission electron microscopy characterization of nanoparticles are presented here. There is also a continuous need for improvement of scanning probe microscopy that is a basic tool for nanometrology. Increasing thermal stability, scanning speed and tip stability, improving traceability and reducing uncertainty are all areas being addressed. As scanning probe microscopy is essentially based on force measurements in the nano- and piconewton range, we take notice of large developments, both theoretical and experimental, in the field of traceable measurements of nanoscale forces. This will greatly increase the understanding and quantification of many basic phenomena in scanning probe microscopy. Finally, we observe that high resolution techniques for acquiring more than just morphology are slowly shifting from purely qualitative tools to well defined quantitative methods. Lack of simple and reliable chemical identification in scanning probe microscopy is compensated by many other local probing methods seen in commercial microscopes, like scanning thermal microscopy or the Kelvin probe technique. All these methods still require underpinning with theoretical and experimental work before they can become traceable analytical methods; however, the increased interest in the metrology community gives rise to optimism in this field. The production of this issue involved considerable effort from many contributors. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the

  19. Fluorescent nanoscale zinc(II)-carboxylate coordination polymers for explosive sensing.

    PubMed

    Zhang, Chengyi; Che, Yanke; Zhang, Zengxing; Yang, Xiaomei; Zang, Ling

    2011-02-28

    Fluorescent nanoscale coordination polymers with cubic morphology and long range ordered structure were fabricated and exhibited efficient sensing for both nitroaromatic explosive and nitromethane due to large surface area to volume ratio and strong binding affinity to explosive molecules.

  20. Electrical and structural investigations, and ferroelectric domains in nanoscale structures

    NASA Astrophysics Data System (ADS)

    Alexe, Marin

    2005-03-01

    Generally speaking material properties are expected to change as the characteristic dimension of a system approaches at the nanometer scale. In the case of ferroelectric materials fundamental problems such as the super-paraelectric limit, influence of the free surface and/or of the interface and bulk defects on ferroelectric switching, etc. arise when scaling the systems into the sub-100 nm range. In order to study these size effects, fabrication methods of high quality nanoscale ferroelectric crystals as well as AFM-based investigations methods have been developed in the last few years. The present talk will briefly review self-patterning and self- assembly fabrication methods, including chemical routes, morphological instability of ultrathin films, and self-assembly lift-off, employed up to the date to fabricate ferroelectric nanoscale structures with lateral size in the range of few tens of nanometers. Moreover, in depth structural and electrical investigations of interfaces performed to differentiate between intrinsic and extrinsic size effects will be also presented.

  1. Impact of the morphology and reactivity of nanoscale zero-valent iron (NZVI) on dechlorinating bacteria.

    PubMed

    Rónavári, Andrea; Balázs, Margit; Tolmacsov, Péter; Molnár, Csaba; Kiss, István; Kukovecz, Ákos; Kónya, Zoltán

    2016-05-15

    Nanoscale zero-valent iron (NZVI) is increasingly used for reducing chlorinated organic contaminants in soil or groundwater. However, little is known about what impact the particles will have on the biochemical processes and the indigenous microbial communities. Nanoiron reactivity is affected by the structure and morphology of nanoparticles that complicates the applicability in bioremediation. In this study, the effect of precursors (ferrous sulfate and ferric chloride) and reducing agents (sodium dithionite and sodium borohydride) on the morphology and the reactivity of NZVIs was investigated. We also studied the impact of differently synthesized NZVIs on microbial community, which take part in reductive dechlorination. We demonstrated that both the applied iron precursor and the reducing agent had influence on the structure of the nanoparticles. Spherical nanoparticles with higher Fe(0) content (>90%) was observed by using sodium borohydride as reducing agent, while application of sodium dithionite as reducing agent resulted nanostructures with lower Fe(0) content (between 68,7 and 85,5%). To determine the influence of differently synthesized NZVIs on cell viability anaerobic enriched microcosm were used. NVZI was used in 0.1 g/L concentration in all batch experiments. Relative amount of Dehalococcoides, sulfate reducers (SRBs) and methanogens were measured by quantitative PCR. We found that the relative amount of Dehalococcoides slowly decreased in all experiments independently from the precursor and reducing agent, whereas the total amount of microbes increased. The only clear distinction was in relative amount of sulfate reducers which were higher in the presence of NZVIs synthesized from sodium dithionite. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Crystal morphology variation in inkjet-printed organic materials

    NASA Astrophysics Data System (ADS)

    Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.

    2011-11-01

    The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.

  3. Identification of Characteristic Macromolecules of Escherichia coli Genotypes by Atomic Force Microscope Nanoscale Mechanical Mapping

    NASA Astrophysics Data System (ADS)

    Chang, Alice Chinghsuan; Liu, Bernard Haochih

    2018-02-01

    The categorization of microbial strains is conventionally based on the molecular method, and seldom are the morphological characteristics in the bacterial strains studied. In this research, we revealed the macromolecular structures of the bacterial surface via AFM mechanical mapping, whose resolution was not only determined by the nanoscale tip size but also the mechanical properties of the specimen. This technique enabled the nanoscale study of membranous structures of microbial strains with simple specimen preparation and flexible working environments, which overcame the multiple restrictions in electron microscopy and label-enable biochemical analytical methods. The characteristic macromolecules located among cellular surface were considered as surface layer proteins and were found to be specific to the Escherichia coli genotypes, from which the averaged molecular sizes were characterized with diameters ranging from 38 to 66 nm, and the molecular shapes were kidney-like or round. In conclusion, the surface macromolecular structures have unique characteristics that link to the E. coli genotype, which suggests that the genomic effects on cellular morphologies can be rapidly identified using AFM mechanical mapping. [Figure not available: see fulltext.

  4. A Proximity-Based Programmable DNA Nanoscale Assembly Line

    PubMed Central

    Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun; Seeman, Nadrian C.

    2010-01-01

    Our ability to synthesize nanometer-scale particles with desired shapes and compositions offers the exciting prospect of generating new functional materials and devices by combining the particles in a controlled fashion into larger structures. Self-assembly can achieve this task efficiently, but may be subject to thermodynamic and kinetic limitations: Reactants, intermediates and products may collide with each other throughout the assembly timecourse to produce non-target instead of target species. An alternative approach to nanoscale assembly uses information-containing molecules such as DNA1 to control interactions and thereby minimize unwanted crosstalk between different components. In principle, this method should allow the stepwise and programmed construction of target products by fastening individually selected nanoscale components – much as an automobile is built on an assembly line. Here, we demonstrate that a nanoscale assembly line can indeed be realized by the judicious combination of three known DNA-based modules: a DNA origami2 tile that provides a framework and track for the assembly process, cassettes containing three distinct two-state DNA machines that serve as programmable cargo-donating devices3,4 and are attached4,5 in series to the tile, and a DNA walker that can move on the track from device to device and collect cargo. As the walker traverses the pathway prescribed by the origami tile track, it encounters sequentially the three DNA devices that can be independently switched between an ‘ON’ state allowing its cargo to be transferred to the walker, and an ‘OFF’ state where no transfer occurs. We use three different types of gold nanoparticles as cargo and show that the experimental system does indeed allow the controlled fabrication of the eight different products that can be obtained with three two-state devices. PMID:20463734

  5. Morphological Characterization of Silicone Hydrogels

    NASA Astrophysics Data System (ADS)

    Gido, Samuel

    2007-03-01

    Silicone hydrogel materials are used in the latest generation of extended wear soft contact lenses. To ensure comfort and eye health, these materials must simultaneously exhibit high oxygen permeability and high water permeability / hydrophilicity. The materials achieve these opposing requirements based on bicontinuous composite of nanoscale domains of oxygen permeable (silicones) and hydrophilic (water soluble polymer) materials. The microphase separated morphology of silicone hydrogel contact lens materials was imaged using field emission gun scanning transmission electron microscopy (FEGSTEM), and atomic force microscopy (AFM). Additional morphological information was provided by small angle X-ray scattering (SAXS). These results all indicate a nanophase separated structure of silicone rich (oxygen permeable) and carbon rich (water soluble polymer) domains separated on a length scale of about 10 nm.

  6. Investigation of graphene-based nanoscale radiation sensitive materials

    NASA Astrophysics Data System (ADS)

    Robinson, Joshua A.; Wetherington, Maxwell; Hughes, Zachary; LaBella, Michael, III; Bresnehan, Michael

    2012-06-01

    Current state-of-the-art nanotechnology offers multiple benefits for radiation sensing applications. These include the ability to incorporate nano-sized radiation indicators into widely used materials such as paint, corrosion-resistant coatings, and ceramics to create nano-composite materials that can be widely used in everyday life. Additionally, nanotechnology may lead to the development of ultra-low power, flexible detection systems that can be embedded in clothing or other systems. Graphene, a single layer of graphite, exhibits exceptional electronic and structural properties, and is being investigated for high-frequency devices and sensors. Previous work indicates that graphene-oxide (GO) - a derivative of graphene - exhibits luminescent properties that can be tailored based on chemistry; however, exploration of graphene-oxide's ability to provide a sufficient change in luminescent properties when exposed to gamma or neutron radiation has not been carried out. We investigate the mechanisms of radiation-induced chemical modifications and radiation damage induced shifts in luminescence in graphene-oxide materials to provide a fundamental foundation for further development of radiation sensitive detection architectures. Additionally, we investigate the integration of hexagonal boron nitride (hBN) with graphene-based devices to evaluate radiation induced conductivity in nanoscale devices. Importantly, we demonstrate the sensitivity of graphene transport properties to the presence of alpha particles, and discuss the successful integration of hBN with large area graphene electrodes as a means to provide the foundation for large-area nanoscale radiation sensors.

  7. Model Mismatch Paradigm for Probe based Nanoscale Imaging

    NASA Astrophysics Data System (ADS)

    Agarwal, Pranav

    Scanning Probe Microscopes (SPMs) are widely used for investigation of material properties and manipulation of matter at the nanoscale. These instruments are considered critical enablers of nanotechnology by providing the only technique for direct observation of dynamics at the nanoscale and affecting it with sub Angstrom resolution. Current SPMs are limited by low throughput and lack of quantitative measurements of material properties. Various applications like the high density data storage, sub-20 nm lithography, fault detection and functional probing of semiconductor circuits, direct observation of dynamical processes involved in biological samples viz. motor proteins and transport phenomena in various materials demand high throughput operation. Researchers involved in material characterization at nanoscale are interested in getting quantitative measurements of stiffness and dissipative properties of various materials in a least invasive manner. In this thesis, system theoretic concepts are used to address these limitations. The central tenet of the thesis is to model, the known information about the system and then focus on perturbations of these known dynamics or model, to sense the effects due to changes in the environment such as changes in material properties or surface topography. Thus a model mismatch paradigm for probe based nanoscale imaging is developed. The topic is developed by presenting physics based modeling of a particular mode of operation of SPMs called the dynamic mode operation. This mode is modeled as a forced Lure system where a linear time invariant system is in feedback with an unknown static memoryless nonlinearity. Tools from averaging theory are used to tame this complex nonlinear system by approximating it as a linear system with time varying parameters. Material properties are thus transformed from being parameters of unknown nonlinear functions to being unknown coefficients of a linear plant. The first contribution of this thesis

  8. Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device.

    PubMed

    Park, Sangsu; Noh, Jinwoo; Choo, Myung-Lae; Sheri, Ahmad Muqeem; Chang, Man; Kim, Young-Bae; Kim, Chang Jung; Jeon, Moongu; Lee, Byung-Geun; Lee, Byoung Hun; Hwang, Hyunsang

    2013-09-27

    Efforts to develop scalable learning algorithms for implementation of networks of spiking neurons in silicon have been hindered by the considerable footprints of learning circuits, which grow as the number of synapses increases. Recent developments in nanotechnologies provide an extremely compact device with low-power consumption.In particular, nanoscale resistive switching devices (resistive random-access memory (RRAM)) are regarded as a promising solution for implementation of biological synapses due to their nanoscale dimensions, capacity to store multiple bits and the low energy required to operate distinct states. In this paper, we report the fabrication, modeling and implementation of nanoscale RRAM with multi-level storage capability for an electronic synapse device. In addition, we first experimentally demonstrate the learning capabilities and predictable performance by a neuromorphic circuit composed of a nanoscale 1 kbit RRAM cross-point array of synapses and complementary metal-oxide-semiconductor neuron circuits. These developments open up possibilities for the development of ubiquitous ultra-dense, ultra-low-power cognitive computers.

  9. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    DOE PAGES

    Egle, Tobias; Barroo, Cédric; Janvelyan, Nare; ...

    2017-07-11

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less

  10. Multiscale Morphology of Nanoporous Copper Made from Intermetallic Phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Egle, Tobias; Barroo, Cédric; Janvelyan, Nare

    Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. Here, in this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn–Cu precursor alloys. Using a combination of X-ray diffraction, electron backscatter diffraction, and focused ion beam cross-sectional analysis, our results reveal thatmore » the macroscopic grain structure of the starting alloy surprisingly survives the dealloying process, despite a change in crystal structure from body-centered cubic (Zn–Cu starting alloy) to face-centered cubic (Cu). The nanoscale structure can be controlled by the acid used for dealloying with HCl leading to a larger and more faceted ligament morphology compared to that of H 3PO 4. Finally, anhydrous ethanol dehydrogenation was used as a probe reaction to test the effect of the nanoscale ligament morphology on the apparent activation energy of the reaction.« less

  11. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  12. Nanoscale structure, dynamics and power conversion efficiency correlations in small molecule and oligomer-based photovoltaic devices

    PubMed Central

    Szarko, Jodi M.; Guo, Jianchang; Rolczynski, Brian S.; Chen, Lin X.

    2011-01-01

    Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems. PMID:22110870

  13. An Optimized Table-Top Small-Angle X-ray Scattering Set-up for the Nanoscale Structural Analysis of Soft Matter

    NASA Astrophysics Data System (ADS)

    Sibillano, T.; de Caro, L.; Altamura, D.; Siliqi, D.; Ramella, M.; Boccafoschi, F.; Ciasca, G.; Campi, G.; Tirinato, L.; di Fabrizio, E.; Giannini, C.

    2014-11-01

    The paper shows how a table top superbright microfocus laboratory X-ray source and an innovative restoring-data algorithm, used in combination, allow to analyze the super molecular structure of soft matter by means of Small Angle X-ray Scattering ex-situ experiments. The proposed theoretical approach is aimed to restore diffraction features from SAXS profiles collected from low scattering biomaterials or soft tissues, and therefore to deal with extremely noisy diffraction SAXS profiles/maps. As biological test cases we inspected: i) residues of exosomes' drops from healthy epithelial colon cell line and colorectal cancer cells; ii) collagen/human elastin artificial scaffolds developed for vascular tissue engineering applications; iii) apoferritin protein in solution. Our results show how this combination can provide morphological/structural nanoscale information to characterize new artificial biomaterials and/or to get insight into the transition between healthy and pathological tissues during the progression of a disease, or to morphologically characterize nanoscale proteins, based on SAXS data collected in a room-sized laboratory.

  14. Improving device performance of perovskite solar cells by micro-nanoscale composite mesoporous TiO2

    NASA Astrophysics Data System (ADS)

    Ting, Hungkit; Zhang, Danfei; He, Yihao; Wei, Shiyuan; Li, Tieyi; Sun, Weihai; Wu, Cuncun; Chen, Zhijian; Wang, Qi; Zhang, Guoyi; Xiao, Lixin

    2018-02-01

    In perovskite solar cells, the morphology of the porous TiO2 electron transport layer (ETL) largely determines the quality of the perovskites. Here, we chose micro-scale TiO2 (0.2 µm) and compared it with the conventional nanoscale TiO2 (20 nm) in relation to the crystallinity of perovskites. The results show that the micro-scale TiO2 is favorable for increasing the grain size of the perovskites and enhancing the light scattering. However, the oversized TiO2 results in an uneven surface. The evenness of the perovskites can be improved by nanoscale TiO2, while the crystallinity and compactness are not as good as those of the films based on micro-scale TiO2. To combine the advantages of both micro-scale and nanoscale TiO2, by mixing 0.2 µm/20 nm TiO2 with a ratio of 1:2 as the composite ETL, the device average power conversion efficiency was increased to 11.2% from 9.9% in the case of only 20 nm TiO2.

  15. Controlling nested wrinkle morphology through the boundary effect on narrow-band thin films

    NASA Astrophysics Data System (ADS)

    Xu, Hanyang; Shi, Tielin; Liao, Guanglan; Xia, Qi

    2017-07-01

    We describe the formation of nested wrinkles created by the thermal mismatch between a narrow-band thin film and a compliant substrate. When a film is described as "narrow-band", it literally means that the film band width is much shorter than its length; more precisely, it means that the width is comparable with the wavelength of the wrinkles. A silicon mask was used during film sputtering to create narrow-band films on poly (dimethylsiloxane) substrate, thus creating regular boundaries to steer local stresses and control wrinkle morphology. Disordered nano-scale wrinkles were found nested within highly ordered micro-scale sinusoidal wrinkles. The formation of nested wrinkles was explained through the amplitude and wavelength saturation of nano-scale wrinkles. The disordered morphology of nano-scale wrinkles and the highly ordered morphology of micro-scale wrinkles were explained by using the boundary effect.

  16. Understanding the Vapor-Liquid-Solid and Vapor-Solid-Solid Mechanisms of Si Nanowire Growth to Synthetically Encode Precise Nanoscale Morphology

    NASA Astrophysics Data System (ADS)

    Pinion, Christopher William

    Precise patterning of semiconductor materials utilizing top-down lithographic techniques is integral to the advanced electronics we use on a daily basis. However, continuing development of these lithographic technologies often results in the trade-off of either high cost or low throughput, and three-dimensional (3D) patterning can be difficult to achieve. Bottom-up, chemical methods to control the 3D nanoscale morphology of semiconductor nanostructures have received significant attention as a complementary technique. Semiconductor nanowires, nanoscale filaments of semiconductor material 10-500 nm in diameter and 1-50 microns in length, are an especially promising platform because the wire composition can be modulated during growth and the high aspect ratio, one-dimensional structure enables integration in a range of devices. In this thesis, we first report a bottom-up method to break the conventional "wire" symmetry and synthetically encode a high-resolution array of arbitrary shapes along the nanowire growth axis. Rapid modulation of phosphorus doping combined with selective wet-chemical etching enables morphological features as small as 10 nm to be patterned over wires more than 50 ?m in length. Next, our focus shifts to more fundamental studies of the nanowire synthetic mechanisms. We presented comprehensive experimental measurements on the growth rate of Au catalyzed Si nanowires and developed a kinetic model of vapor-liquid-solid growth. Our analysis revealed an abrupt transition from a diameter-independent growth rate that is limited by incorporation to a diameter-dependent growth rate that is limited by crystallization. While investigating the vapor-liquid-solid mechanism, we noticed instances of unique catalyst behavior. Upon further study, we showed that it is possible to instantaneously and reversibly switch the phase of the catalyst between a liquid and superheated solid state under isothermal conditions above the eutectic temperature. The solid catalyst

  17. Identification of nanoscale ingredients in commercial food products and their induction of mitochondrially mediated cytotoxic effects on human mesenchymal stem cells.

    PubMed

    Athinarayanan, Jegan; Alshatwi, Ali A; Periasamy, Vaiyapuri S; Al-Warthan, Abdulrahman A

    2015-02-01

    Titanium dioxide (E171) and silicon dioxide (E551) are common additives found in food products, personal-care products, and many other consumer products used in daily life. Recent studies have reported that these food additives (manufactured E171 and E551) contain nanosized particles of less than 100 nm. However, the particle size distribution and morphology of added TiO2 and SiO2 particles are not typically stated on the package label. Furthermore, there is an increasing debate regarding health and safety concerns related to the use of synthetic food additives containing nanosized ingredients in consumer products. In this study, we identified the size and morphology of TiO2 and SiO2 particles in commercially available food products by using transmission electron microscope (TEM). In addition, the in vitro toxicological effects of E171 and E551 on human mesenchymal stem cells (hMSCs), an adult stem cell-based model, were assessed using the MTT assay and a flow cytometry-based JC-1 assay. Our TEM results confirmed the presence of nanoscale ingredients in food products, and the in vitro toxicology results indicated that the nanoscale E171 and E551 ingredients induced dose-dependent cytotoxicity, changes in cellular morphology, and the loss of mitochondrial trans-membrane potential in hMSCs. These preliminary results clearly demonstrated that the nanoscale E171 and E551 particles had adverse effects on hMSCs by inducing oxidative stress-mediated cell death. Accordingly, further studies are needed to identify the specific pathway involved, with an emphasis on differential gene expression in hMSCs. © 2015 Institute of Food Technologists®

  18. Nanoscale platforms for messenger RNA delivery.

    PubMed

    Li, Bin; Zhang, Xinfu; Dong, Yizhou

    2018-05-04

    Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures. © 2018 Wiley Periodicals, Inc.

  19. EDITORIAL: Nanoscale metrology Nanoscale metrology

    NASA Astrophysics Data System (ADS)

    Picotto, G. B.; Koenders, L.; Wilkening, G.

    2009-08-01

    characterization. The papers in the first part report on new or improved instrumentation, details of developments of metrology SFM, improvements to SFM, probes and scanning methods in the direction of nanoscale coordinate measuring machines and true 3D measurements as well as of progress of a 2D encoder based on a regular crystalline lattice. To ensure traceability to the SI unit of length many highly sophisticated instruments are equipped with laser interferometers to measure small displacements in the nanometre range very accurately. Improving these techniques is still a challenge and therefore new interferometric techniques are considered in several papers as well as improved sensors for nanodisplacement measurements or the development of a deep UV microscope for micro- and nanostructures. The tactile measurement of small structures also calls for a better control of forces in the nano- and piconewton range. A nanoforce facility, based on a disk-pendulum with electrostatic stiffness reduction and electrostatic force compensation, is presented for the measurement of small forces. In the second part the contributions are related to calibration and correction strategies and standards such as the development of test objects based on 3D silicon structures, and of samples with irregular surface profiles, and their use for calibration. The shape of the tip and its influence on measurements is still a contentious issue and addressed in several papers: use of nanospheres for tip characterization, a geometrical approach for reconstruction errors by tactile probing. Molecular dynamical calculations, classical as well as ab initio (based on density functional theory), are used to discuss effects of tip-sample relaxation on the topography and to have a better base from which to estimate uncertainties in measurements of small particles or features. Some papers report about measurements of air refractivity fluctuations by phase modulation interferometry, angle-scale traceability by laser

  20. Physical controls on directed virus assembly at nanoscale chemical templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, C L; Chung, S; Chatterji, A

    2006-05-10

    Viruses are attractive building blocks for nanoscale heterostructures, but little is understood about the physical principles governing their directed assembly. In-situ force microscopy was used to investigate organization of Cowpea Mosaic Virus engineered to bind specifically and reversibly at nanoscale chemical templates with sub-30nm features. Morphological evolution and assembly kinetics were measured as virus flux and inter-viral potential were varied. The resulting morphologies were similar to those of atomic-scale epitaxial systems, but the underlying thermodynamics was analogous to that of colloidal systems in confined geometries. The 1D templates biased the location of initial cluster formation, introduced asymmetric sticking probabilities, andmore » drove 1D and 2D condensation at subcritical volume fractions. The growth kinetics followed a t{sup 1/2} law controlled by the slow diffusion of viruses. The lateral expansion of virus clusters that initially form on the 1D templates following introduction of polyethylene glycol (PEG) into the solution suggests a significant role for weak interaction.« less

  1. Orienting Periodic Organic-Inorganic Nanoscale Domains Through One-Step Electrodeposition

    PubMed Central

    Herman, David J.; Goldberger, Joshua E.; Chao, Stephen; Martin, Daniel T.; Stupp, Samuel I

    2011-01-01

    One of the challenges in the synthesis of hybrid materials with nanoscale structure is to precisely control morphology across length scales. Using a one-step electrodeposition process on indium tin oxide (ITO) substrates followed by annealing, we report here the preparation of materials with preferentially oriented lamellar domains of electron donor surfactants and the semiconductor ZnO. We found that either increasing the concentration of surfactant or the water to dimethyl sulfoxide ratio of solutions used resulted in the suppression of bloom-like morphologies and enhanced the density of periodic domains on ITO substrates. Furthermore, by modifying the surface of the ITO substrate with the conductive polymer blend poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), we were able to alter the orientation of these electrodeposited lamellar domains to be perpendicular to the substrate. The long-range orientation achieved was characterized by 2D grazing incidence small angle X-ray scattering. This high degree of orientation in electronically active hybrids with alternating nanoscale p-type and n-type domains is of potential interest in photovoltaics or thermoelectric materials. PMID:21142087

  2. Tin doped indium oxide anodes with artificially controlled nano-scale roughness using segregated Ag nanoparticles for organic solar cells

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Joong; Ko, Eun-Hye; Noh, Yong-Jin; Na, Seok-In; Kim, Han-Ki

    2016-09-01

    Nano-scale surface roughness in transparent ITO films was artificially formed by sputtering a mixed Ag and ITO layer and wet etching of segregated Ag nanoparticles from the surface of the ITO film. Effective removal of self-segregated Ag particles from the grain boundaries and surface of the crystalline ITO film led to a change in only the nano-scale surface morphology of ITO film without changes in the sheet resistance and optical transmittance. A nano-scale rough surface of the ITO film led to an increase in contact area between the hole transport layer and the ITO anode, and eventually increased the hole extraction efficiency in the organic solar cells (OSCs). The heterojunction OSCs fabricated on the ITO anode with a nano-scale surface roughness exhibited a higher power conversion efficiency of 3.320%, than that (2.938%) of OSCs made with the reference ITO/glass. The results here introduce a new method to improve the performance of OSCs by simply modifying the surface morphology of the ITO anodes.

  3. Morphology engineering of high performance binary oxide electrodes.

    PubMed

    Chen, Kunfeng; Sun, Congting; Xue, Dongfeng

    2015-01-14

    Advances in materials have preceded almost every major technological leap since the beginning of civilization. On the nanoscale and microscale, mastery over the morphology, size, and structure of a material enables control of its properties and enhancement of its usefulness for a given application, such as energy storage. In this review paper, our aim is to present a review of morphology engineering of high performance oxide electrode materials for electrochemical energy storage. We begin with the chemical bonding theory of single crystal growth to direct the growth of morphology-controllable materials. We then focus on the growth of various morphologies of binary oxides and their electrochemical performances for lithium ion batteries and supercapacitors. The morphology-performance relationships are elaborated by selecting examples in which there is already reasonable understanding for this relationship. Based on these comprehensive analyses, we proposed colloidal supercapacitor systems beyond morphology control on the basis of system- and ion-level design. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  4. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; Zheng, Lu; Jiang, Zhanzhi; Ganesan, Vishal; Wang, Yayu; Lai, Keji

    2018-04-01

    We report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-field microwave imaging with small distance modulation.

  5. Nanoscale size effect in in situ titanium based composites with cell viability and cytocompatibility studies.

    PubMed

    Miklaszewski, Andrzej; Jurczyk, Mieczysława U; Kaczmarek, Mariusz; Paszel-Jaworska, Anna; Romaniuk, Aleksandra; Lipińska, Natalia; Żurawski, Jakub; Urbaniak, Paulina; Jurczyk, Mieczyslaw

    2017-04-01

    Novel in situ Metal Matrix Nanocomposite (MMNC) materials based on titanium and boron, revealed their new properties in the nanoscale range. In situ nanocomposites, obtained through mechanical alloying and traditional powder metallurgy compaction and sintering, show obvious differences to their microstructural analogue. A unique microstructure connected with good mechanical properties reliant on the processing conditions favour the nanoscale range of results of the Ti-TiB in situ MMNC example. The data summarised in this work, support and extend the knowledge boundaries of the nanoscale size effect that influence not only the mechanical properties but also the studies on the cell viability and cytocompatibility. Prepared in the same bulk, in situ MMNC, based on titanium and boron, could be considered as a possible candidate for dental implants and other medical applications. The observed relations and research conclusions are transferable to the in situ MMNC material group. Aside from all the discussed relations, the increasing share of these composites in the ever-growing material markets, heavily depends on the attractiveness and a possible wider application of these composites as well as their operational simplicity presented in this work. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Assessment of Crystal Morphology on Uptake, Particle Dissolution, and Toxicity of Nanoscale Titanium Dioxide on Artemia salina

    PubMed Central

    Johnson, Martha; Ates, Mehmet; Arslan, Zikri; Farah, Ibrahim; Bogatu, Coneliu

    2017-01-01

    Knowledge of nanomaterial toxicity is critical to avoid adverse effects on human and environment health. In this study, the influences of crystal morphology on physico-chemical and toxic properties of nanoscale TiO2 (n-TiO2) were investigated. Artemia salina were exposed to anatase, rutile and mixture polymorphs of n-TiO2 in seawater. Short-term (24 h) and long-term (96 h) exposures were conducted in 1, 10 and 100 mg/L suspensions of n-TiO2 in the presence and absence of food. Anatase form had highest accumulation followed by mixture and rutile. Presence of food greatly reduced accumulation. n-TiO2 dissolution was not significant in seawater (p<0.05) nor was influenced from crystal structure. Highest toxic effects occurred in 96h exposure in the order of anatase > mixture > rutile. Mortality and oxidative stress levels increased with increasing n-TiO2 concentration and exposure time (p<0.05). Presence of food in the exposure medium alleviated the oxidative stress, indicating that deprivation from food could promote toxic effects of n-TiO2 under long-term exposure. PMID:29333492

  7. Scanning superlens microscopy for non-invasive large field-of-view visible light nanoscale imaging

    NASA Astrophysics Data System (ADS)

    Wang, Feifei; Liu, Lianqing; Yu, Haibo; Wen, Yangdong; Yu, Peng; Liu, Zhu; Wang, Yuechao; Li, Wen Jung

    2016-12-01

    Nanoscale correlation of structural information acquisition with specific-molecule identification provides new insight for studying rare subcellular events. To achieve this correlation, scanning electron microscopy has been combined with super-resolution fluorescent microscopy, despite its destructivity when acquiring biological structure information. Here we propose time-efficient non-invasive microsphere-based scanning superlens microscopy that enables the large-area observation of live-cell morphology or sub-membrane structures with sub-diffraction-limited resolution and is demonstrated by observing biological and non-biological objects. This microscopy operates in both non-invasive and contact modes with ~200 times the acquisition efficiency of atomic force microscopy, which is achieved by replacing the point of an atomic force microscope tip with an imaging area of microspheres and stitching the areas recorded during scanning, enabling sub-diffraction-limited resolution. Our method marks a possible path to non-invasive cell imaging and simultaneous tracking of specific molecules with nanoscale resolution, facilitating the study of subcellular events over a total cell period.

  8. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE PAGES

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.; ...

    2017-09-14

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  9. Probing Novel Microstructural Evolution Mechanisms in Aluminum Alloys Using 4D Nanoscale Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaira, C. Shashank; De Andrade, V.; Singh, Sudhanshu S.

    Dispersions of nanoscale precipitates in metallic alloys have been known to play a key role in strengthening, by increasing their strain hardenability and providing resistance to deformation. Although these phenomena have been extensively investigated in the last century, the traditional approaches employed in the past have not rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their 3D spatial distribution on evolution and deformation behavior have often been precluded. This study reports, for the first time, implementation of synchrotron-based hard X-ray nanotomography in Al–Cu alloys to measure kinetics of different nanoscale phasesmore » in 3D, and reveals insights behind some of the observed novel phase transformation reactions. The experimental results of the present study reconcile with coarsening models from the Lifshitz–Slyozov–Wagner theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. Lastly, this study sheds light on the possibilities for establishing new theories for dislocation–particle interactions, based on the limitations of using the Orowan equation in estimating precipitation strengthening.« less

  10. Nanoscale Surface Characterization of Aqueous Copper Corrosion: Effects of Immersion Interval and Orthophosphate Concentration

    EPA Science Inventory

    Morphology changes for copper surfaces exposed to different water parameters were investigated at the nanoscale with atomic force microscopy (AFM), as influenced by changes in pH and the levels of orthophosphate ions. Synthetic water samples were designed to mimic physiological c...

  11. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  12. Quantitative measurements of nanoscale permittivity and conductivity using tuning-fork-based microwave impedance microscopy

    DOE PAGES

    Wu, Xiaoyu; Hao, Zhenqi; Wu, Di; ...

    2018-04-01

    Here, we report quantitative measurements of nanoscale permittivity and conductivity using tuning-fork (TF) based microwave impedance microscopy (MIM). The system is operated under the driving amplitude modulation mode, which ensures satisfactory feedback stability on samples with rough surfaces. The demodulated MIM signals on a series of bulk dielectrics are in good agreement with results simulated by finite-element analysis. Using the TF-MIM, we have visualized the evolution of nanoscale conductance on back-gated MoS 2 field effect transistors, and the results are consistent with the transport data. Our work suggests that quantitative analysis of mesoscopic electrical properties can be achieved by near-fieldmore » microwave imaging with small distance modulation.« less

  13. Traceable nanoscale measurement at NML-SIRIM

    NASA Astrophysics Data System (ADS)

    Dahlan, Ahmad M.; Abdul Hapip, A. I.

    2012-06-01

    The role of national metrology institute (NMI) has always been very crucial in national technology development. One of the key activities of the NMI is to provide traceable measurement in all parameters under the International System of Units (SI). Dimensional measurement where size and shape are two important features investigated, is one of the important area covered by NMIs. To support the national technology development, particularly in manufacturing sectors and emerging technology such nanotechnology, the National Metrology Laboratory, SIRIM Berhad (NML-SIRIM), has embarked on a project to equip Malaysia with state-of-the-art nanoscale measurement facility with the aims of providing traceability of measurement at nanoscale. This paper will look into some of the results from current activities at NML-SIRIM related to measurement at nanoscale particularly on application of atomic force microscope (AFM) and laser based sensor in dimensional measurement. Step height standards of different sizes were measured using AFM and laser-based sensors. These probes are integrated into a long-range nanoscale measuring machine traceable to the international definition of the meter thus ensuring their traceability. Consistency of results obtained by these two methods will be discussed and presented. Factors affecting their measurements as well as their related uncertainty of measurements will also be presented.

  14. Fracture behavior of nano-scale rubber-modified epoxies

    NASA Astrophysics Data System (ADS)

    Bacigalupo, Lauren N.

    The primary focus of the first portion of this study is to compare physical and mechanical properties of a model epoxy that has been toughened with one of three different types of rubber-based modifier: a traditional telechelic oligomer (phase separates into micro-size particles), a core-shell latex particle (preformed nano-scale particles) and a triblock copolymer (self-assembles into nano-scale particles). The effect of modifier content on the physical properties of the matrix was determined using several thermal analysis methods, which provided insight into any inherent alterations of the epoxy matrix. Although the primary objective is to study the role of particle size on the fracture toughness, stiffness and strength were also determined since these properties are often reduced in rubber-toughened epoxies. It was found that since the CSR- and SBM-modified epoxies are composed of less rubber, thermal and mechanical properties of the epoxy were better maintained. In order to better understand the fracture behavior and mechanisms of the three types of rubber particles utilized in this study, extensive microscopy analysis was conducted. Scanning transmission electron microscopy (STEM) was used to quantify the volume fraction of particles, transmission optical microscopy (TOM) was used to determine plastic damage zone size, and scanning electron microscopy (SEM) was used to assess void growth in the plastic zone after fracture. By quantifying these characteristics, it was then possible to model the plastic damage zone size as well as the fracture toughness to elucidate the behavior of the rubber-modified epoxies. It was found that localized shear yielding and matrix void growth are the active toughening mechanisms in all rubber-modified epoxies in this study, however, matrix void growth was more prevalent. The second portion of this study investigated the use of three acrylate-based triblocks and four acrylate-based diblocks to modify a model epoxy system. By

  15. In-situ observation of switchable nanoscale topography for y-shaped binary brushes in fluids.

    PubMed

    Lin, Yen-Hsi; Teng, Jing; Zubarev, Eugene R; Shulha, Hennady; Tsukruk, Vladimir V

    2005-03-01

    Direct, in-fluid observation of the surface morphology and nanomechanical properties of the mixed brushes composed of Y-shaped binary molecules PS-PAA revealed nanoscale network-like surface topography formed by coexisting stretched soluble PAA arms and collapsed insoluble PS chains in water. Placement of Y-shaped brushes in different fluids resulted in dramatic reorganization ranging from soft repellent layer covered by swollen PS arms in toluene to an adhesive, mixed layer composed of coexisting swollen PAA and collapsed PS arms in water. These binary layers with the overall nanoscale thickness can serve as adaptive nanocoatings with stimuli-responsive properties.

  16. Design of surface modifications for nanoscale sensor applications.

    PubMed

    Reimhult, Erik; Höök, Fredrik

    2015-01-14

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges.

  17. Nanoscale chemical imaging by photoinduced force microscopy

    PubMed Central

    Nowak, Derek; Morrison, William; Wickramasinghe, H. Kumar; Jahng, Junghoon; Potma, Eric; Wan, Lei; Ruiz, Ricardo; Albrecht, Thomas R.; Schmidt, Kristin; Frommer, Jane; Sanders, Daniel P.; Park, Sung

    2016-01-01

    Correlating spatial chemical information with the morphology of closely packed nanostructures remains a challenge for the scientific community. For example, supramolecular self-assembly, which provides a powerful and low-cost way to create nanoscale patterns and engineered nanostructures, is not easily interrogated in real space via existing nondestructive techniques based on optics or electrons. A novel scanning probe technique called infrared photoinduced force microscopy (IR PiFM) directly measures the photoinduced polarizability of the sample in the near field by detecting the time-integrated force between the tip and the sample. By imaging at multiple IR wavelengths corresponding to absorption peaks of different chemical species, PiFM has demonstrated the ability to spatially map nm-scale patterns of the individual chemical components of two different types of self-assembled block copolymer films. With chemical-specific nanometer-scale imaging, PiFM provides a powerful new analytical method for deepening our understanding of nanomaterials. PMID:27051870

  18. Mixed electrochemical–ferroelectric states in nanoscale ferroelectrics

    DOE PAGES

    Yang, Sang Mo; Morozovska, Anna N.; Kumar, Rajeev; ...

    2017-05-01

    Ferroelectricity on the nanoscale has been the subject of much fascination in condensed-matter physics for over half a century. In recent years, multiple reports claiming ferroelectricity in ultrathin ferroelectric films based on the formation of remnant polarization states, local electromechanical hysteresis loops, and pressure-induced switching were made. But, similar phenomena were reported for traditionally non-ferroelectric materials, creating a significant level of uncertainty in the field. We show that in nanoscale systems the ferroelectric state is fundamentally inseparable from the electrochemical state of the surface, leading to the emergence of a mixed electrochemical–ferroelectric state. We explore the nature, thermodynamics, and thicknessmore » evolution of such states, and demonstrate the experimental pathway to establish its presence. Our analysis reconciles multiple prior studies, provides guidelines for studies of ferroelectric materials on the nanoscale, and establishes the design paradigm for new generations of ferroelectric-based devices.« less

  19. Creating nanoscale emulsions using condensation.

    PubMed

    Guha, Ingrid F; Anand, Sushant; Varanasi, Kripa K

    2017-11-08

    Nanoscale emulsions are essential components in numerous products, ranging from processed foods to novel drug delivery systems. Existing emulsification methods rely either on the breakup of larger droplets or solvent exchange/inversion. Here we report a simple, scalable method of creating nanoscale water-in-oil emulsions by condensing water vapor onto a subcooled oil-surfactant solution. Our technique enables a bottom-up approach to forming small-scale emulsions. Nanoscale water droplets nucleate at the oil/air interface and spontaneously disperse within the oil, due to the spreading dynamics of oil on water. Oil-soluble surfactants stabilize the resulting emulsions. We find that the oil-surfactant concentration controls the spreading behavior of oil on water, as well as the peak size, polydispersity, and stability of the resulting emulsions. Using condensation, we form emulsions with peak radii around 100 nm and polydispersities around 10%. This emulsion formation technique may open different routes to creating emulsions, colloidal systems, and emulsion-based materials.

  20. Sensor-based monitoring and inspection of surface morphology in ultraprecision manufacturing processes

    NASA Astrophysics Data System (ADS)

    Rao, Prahalad Krishna

    measures (e.g., Fiedler number, Kirchoff index) extracted from these matrices are shown to be sensitive to evolving nano-surface morphology. For instance, we observed that prominent nanoscale morphological changes on CMP processed Cu wafers, although discernible visually, could not be tractably quantified using statistical metrology parameters, such as arithmetic average roughness (Sa), root mean square roughness (Sq), etc. In contrast, CMP induced nanoscale surface variations were captured on invoking graph theoretic topological invariants. Consequently, the graph theoretic approach can enable timely, non-contact, and in situ metrology of semiconductor wafers by obviating the need for reticent profile mapping techniques (e.g., AFM, SEM, etc.), and thereby prevent the propagation of yield losses over long production runs.

  1. The Effect of Nano-Scale Topography on Keratinocyte Phenotype and Wound Healing Following Burn Injury

    PubMed Central

    Rea, Suzanne M.; Stevenson, Andrew W.; Wood, Fiona M.; Fear, Mark W.

    2012-01-01

    Topographic modulation of tissue response is an important consideration in the design and manufacture of a biomaterial. In developing new tissue therapies for skin, all levels of architecture, including the nanoscale need to be considered. Here we show that keratinocyte phenotype is affected by nanoscale changes in topography with cell morphology, proliferation, and migration influenced by the pore size in anodic aluminum oxide membranes. A membrane with a pore size of 300 nm, which enhanced cell phenotype in vitro, was used as a dressing to cover a partial thickness burn injury in the pig. Wounds dressed with the membrane showed evidence of advanced healing with significantly less organizing granulation tissue and more mature epidermal layers than control wounds dressed with a standard burns dressing. The results demonstrate the importance of nanoscale topography in modulating keratinocyte phenotype and skin wound healing. PMID:21988618

  2. Detection and Identification: Instrumentation and Calibration for Air/Liquid/Surface-borne Nanoscale Particles

    NASA Astrophysics Data System (ADS)

    Ling, Tsz Yan; Zuo, Zhili; Pui, David Y. H.

    2013-04-01

    Nanoscale particles can be found in the air-borne, liquid-borne and surface-borne dispersed phases. Measurement techniques for nanoscale particles in all three dispersed phases are needed for the environmental, health and safety studies of nanomaterials. We present our studies on connecting the nanoparticle measurements in different phases to enhance the characterization capability. Microscopy analysis for particle morphology can be performed by depositing air-borne or liquid-borne nanoparticles on surfaces. Detection limit and measurement resolution of the liquid-borne nanoparticles can be enhanced by aerosolizing them and taking advantage of the well-developed air-borne particle analyzers. Sampling electrically classified air-borne virus particles with a gelatin filter provides higher collection efficiency than a liquid impinger.

  3. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D.

    PubMed

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-05-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent.

  4. Time-resolved atomic force microscopy imaging studies of asymmetric PS-b-PMMA ultrathin films: Dislocation and disclination transformations, defect mobility, and evolution of nanoscale morphology

    NASA Astrophysics Data System (ADS)

    Hahm, J.; Sibener, S. J.

    2001-03-01

    Time-sequenced atomic force microscopy (AFM) studies of ultrathin films of cylinder-forming polystyrene-block-polymethylmethacrylate (PS-b-PMMA) copolymer are presented which delineate thin film mobility kinetics and the morphological changes which occur in microphase-separated films as a function of annealing temperature. Of particular interest are defect mobilities in the single layer (L thick) region, as well as the interfacial morphological changes which occur between L thick and adjacent 3L/2 thick layers, i.e., structural changes which occur during multilayer evolution. These measurements have revealed the dominant pathways by which disclinations and dislocations transform, annihilate, and topologically evolve during thermal annealing of such films. Mathematical combining equations are given to better explain such defect transformations and show the topological outcomes which result from defect-defect encounters. We also report a collective, Arrhenius-type flow of defects in localized L thick regions of the film; these are characterized by an activation energy of 377 kJ/mol. These measurements represent the first direct investigation of time-lapse interfacial morphological changes including associated defect evolution pathways for polymeric ultrathin films. Such observations will facilitate a more thorough and predictive understanding of diblock copolymer thin film dynamics, which in turn will further enable the utilization of these nanoscale phase-separated materials in a range of physical and chemical applications.

  5. Design of Surface Modifications for Nanoscale Sensor Applications

    PubMed Central

    Reimhult, Erik; Höök, Fredrik

    2015-01-01

    Nanoscale biosensors provide the possibility to miniaturize optic, acoustic and electric sensors to the dimensions of biomolecules. This enables approaching single-molecule detection and new sensing modalities that probe molecular conformation. Nanoscale sensors are predominantly surface-based and label-free to exploit inherent advantages of physical phenomena allowing high sensitivity without distortive labeling. There are three main criteria to be optimized in the design of surface-based and label-free biosensors: (i) the biomolecules of interest must bind with high affinity and selectively to the sensitive area; (ii) the biomolecules must be efficiently transported from the bulk solution to the sensor; and (iii) the transducer concept must be sufficiently sensitive to detect low coverage of captured biomolecules within reasonable time scales. The majority of literature on nanoscale biosensors deals with the third criterion while implicitly assuming that solutions developed for macroscale biosensors to the first two, equally important, criteria are applicable also to nanoscale sensors. We focus on providing an introduction to and perspectives on the advanced concepts for surface functionalization of biosensors with nanosized sensor elements that have been developed over the past decades (criterion (iii)). We review in detail how patterning of molecular films designed to control interactions of biomolecules with nanoscale biosensor surfaces creates new possibilities as well as new challenges. PMID:25594599

  6. Nanoscale Biosensors Based on Self-Propelled Objects.

    PubMed

    Jurado-Sánchez, Beatriz

    2018-06-25

    This review provides a comprehensive overview of the latest developments (2016⁻2018 period) in the nano and micromotors field for biosensing applications. Nano and micromotor designs, functionalization, propulsion modes and transduction mechanism are described. A second important part of the review is devoted to novel in vitro and in vivo biosensing schemes. The potential and future prospect of such moving nanoscale biosensors are given in the conclusions.

  7. Nanoscale Surface Modification of Polycrystalline Tin Sulphide Films during Plasma Treatment

    NASA Astrophysics Data System (ADS)

    Zimin, S. P.; Gorlachev, E. S.; Dubov, G. A.; Amirov, I. I.; Naumov, V. V.; Gremenok, V. F.; Ivanov, V. A.; Seidi, H. G.

    2013-05-01

    In this paper, we present a comparative research of the nanoscale modification of the surface morphology of polycrystalline SnS films on glass substrates with two different preferred growth orientations processed in inductively coupled argon plasma. We report a new effect of polycrystalline SnS film surface smoothing during plasma treatment, which can be advantageous for the fabrication of multilayer solar cell devices with SnS absorption layers.

  8. Full three-dimensional morphology evolution of amorphous thin films for atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Jin, Lingpeng; Li, Yawei; Hu, Zhigao; Chu, Junhao

    2018-04-01

    We introduce a Monte Carlo model based on random deposition and diffusion limited aggregation in order to study the morphological evolution of deposition of nanofilm, which is difficult to carry out by the experimental methods. The instantaneous evolution of morphology and the corresponding parameters are observed when employing a novel perspective, modeling the aggregation of nanoscale units. Despite simplifying the chemical details, the simulation results qualitatively describe experiments with bulky precursors, and the strong dependence of growth rate on steric hindrance is obtained. Moreover, the well know behavior that the delay before steady growth is accurately predicted and analyzed based solely on modeling. Through this work, the great influence of steric hindrance on the initial stage of ALD is described.

  9. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films

    PubMed Central

    Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.

    2013-01-01

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617

  10. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.

    PubMed

    Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S

    2013-12-03

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.

  11. Nanoscale neuroelectronic interface based on open-ended nanocoax arrays

    NASA Astrophysics Data System (ADS)

    Naughton, Jeffrey R.; Rizal, Binod; Burns, Michael J.; Yeom, Jee; Heyse, Shannon; Archibald, Michelle; Shepard, Stephen; McMahon, Gregory; Chiles, Thomas C.; Naughton, Michael J.

    2012-02-01

    We describe the development of a nanoscale neuroelectronic array with submicron pixelation for recording and stimulation with high spatial resolution. The device is composed of an array of nanoscale coaxial electrodes, either network- or individually-configured. As a neuroelectronic interface, it will employ noninvasive real-time capacitive coupling to the plasma membrane with potential for extracellular recording of intra- and interneural synaptic activity, with one target being precision measurement of electrical signals associated with induced and spontaneous synapse firing in pre- and post-synaptic somata. Subarrays or even individual pixels can also be actuated for precisely-localized stimulation. We report initial results from measurements using the rat adrenal pheochromocytoma PC12 cell line, which terminally differentiates in response to nerve growth factor, as well as SH-SY5Y neuroblastoma cells in response to retinoic acid, characterizing the basic performance of the fabricated device.

  12. Optical Antenna-Based Fluorescence Correlation Spectroscopy to Probe the Nanoscale Dynamics of Biological Membranes.

    PubMed

    Winkler, Pamina M; Regmi, Raju; Flauraud, Valentin; Brugger, Jürgen; Rigneault, Hervé; Wenger, Jérôme; García-Parajo, María F

    2018-01-04

    The plasma membrane of living cells is compartmentalized at multiple spatial scales ranging from the nano- to the mesoscale. This nonrandom organization is crucial for a large number of cellular functions. At the nanoscale, cell membranes organize into dynamic nanoassemblies enriched by cholesterol, sphingolipids, and certain types of proteins. Investigating these nanoassemblies known as lipid rafts is of paramount interest in fundamental cell biology. However, this goal requires simultaneous nanometer spatial precision and microsecond temporal resolution, which is beyond the reach of common microscopes. Optical antennas based on metallic nanostructures efficiently enhance and confine light into nanometer dimensions, breaching the diffraction limit of light. In this Perspective, we discuss recent progress combining optical antennas with fluorescence correlation spectroscopy (FCS) to monitor microsecond dynamics at nanoscale spatial dimensions. These new developments offer numerous opportunities to investigate lipid and protein dynamics in both mimetic and native biological membranes.

  13. Nanoscale Analysis of a Hierarchical Hybrid Solar Cell in 3D

    PubMed Central

    Divitini, Giorgio; Stenzel, Ole; Ghadirzadeh, Ali; Guarnera, Simone; Russo, Valeria; Casari, Carlo S; Bassi, Andrea Li; Petrozza, Annamaria; Di Fonzo, Fabio; Schmidt, Volker; Ducati, Caterina

    2014-01-01

    A quantitative method for the characterization of nanoscale 3D morphology is applied to the investigation of a hybrid solar cell based on a novel hierarchical nanostructured photoanode. A cross section of the solar cell device is prepared by focused ion beam milling in a micropillar geometry, which allows a detailed 3D reconstruction of the titania photoanode by electron tomography. It is found that the hierarchical titania nanostructure facilitates polymer infiltration, thus favoring intermixing of the two semiconducting phases, essential for charge separation. The 3D nanoparticle network is analyzed with tools from stochastic geometry to extract information related to the charge transport in the hierarchical solar cell. In particular, the experimental dataset allows direct visualization of the percolation pathways that contribute to the photocurrent. PMID:25834481

  14. Neuromorphic computing with nanoscale spintronic oscillators.

    PubMed

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Yakushiji, Kay; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, Mark D; Grollier, Julie

    2017-07-26

    Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 10 8 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

  15. Understanding Cooperative Chirality at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Yu, Shangjie; Wang, Pengpeng; Govorov, Alexander; Ouyang, Min

    Controlling chirality of organic and inorganic structures plays a key role in many physical, chemical and biochemical processes, and may offer new opportunity to create technology applications based on chiroptical effect. In this talk, we will present a theoretical model and simulation to demonstrate how to engineer nanoscale chirality in inorganic nanostructures via synergistic control of electromagnetic response of both lattice and geometry, leading to rich tunability of chirality at the nanoscale. Our model has also been applied to understand recent materials advancement of related control with excellent agreement, and can elucidate physical origins of circular dichroism features in the experiment.

  16. Nanoscale nuclear architecture for cancer diagnosis beyond pathology via spatial-domain low-coherence quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Bista, Rajan K.; Khalbuss, Walid E.; Qiu, Wei; Uttam, Shikhar; Staton, Kevin; Zhang, Lin; Brentnall, Teresa A.; Brand, Randall E.; Liu, Yang

    2010-11-01

    Definitive diagnosis of malignancy is often challenging due to limited availability of human cell or tissue samples and morphological similarity with certain benign conditions. Our recently developed novel technology-spatial-domain low-coherence quantitative phase microscopy (SL-QPM)-overcomes the technical difficulties and enables us to obtain quantitative information about cell nuclear architectural characteristics with nanoscale sensitivity. We explore its ability to improve the identification of malignancy, especially in cytopathologically non-cancerous-appearing cells. We perform proof-of-concept experiments with an animal model of colorectal carcinogenesis-APCMin mouse model and human cytology specimens of colorectal cancer. We show the ability of in situ nanoscale nuclear architectural characteristics in identifying cancerous cells, especially in those labeled as ``indeterminate or normal'' by expert cytopathologists. Our approach is based on the quantitative analysis of the cell nucleus on the original cytology slides without additional processing, which can be readily applied in a conventional clinical setting. Our simple and practical optical microscopy technique may lead to the development of novel methods for early detection of cancer.

  17. Morphology and electronic structure of nanoscale powders of calcium hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Kurgan, Nataly; Karbivskyy, Volodymyr; Kasyanenko, Vasyl

    2015-02-01

    Atomic force microscopy, infrared spectroscopy and NMR studied morphological and physicochemical properties of calcium hydroxyapatite powders produced by changing the temperature parameters of synthesis. Features of morphology formation of calcium hydroxyapatite nanoparticles with an annealing temperature within 200°C to 1,100°C were determined. It is shown that the particle size of the apatite obtained that annealed 700°C is 40 nm corresponding to the particle size of apatite in native bone. The effect of dimension factor on structural parameters of calcium hydroxyapatite is manifested in a more local symmetry of the PO4 3- tetrahedra at nanodispersed calcium hydroxyapatite.

  18. Rocket Science at the Nanoscale.

    PubMed

    Li, Jinxing; Rozen, Isaac; Wang, Joseph

    2016-06-28

    Autonomous propulsion at the nanoscale represents one of the most challenging and demanding goals in nanotechnology. Over the past decade, numerous important advances in nanotechnology and material science have contributed to the creation of powerful self-propelled micro/nanomotors. In particular, micro- and nanoscale rockets (MNRs) offer impressive capabilities, including remarkable speeds, large cargo-towing forces, precise motion controls, and dynamic self-assembly, which have paved the way for designing multifunctional and intelligent nanoscale machines. These multipurpose nanoscale shuttles can propel and function in complex real-life media, actively transporting and releasing therapeutic payloads and remediation agents for diverse biomedical and environmental applications. This review discusses the challenges of designing efficient MNRs and presents an overview of their propulsion behavior, fabrication methods, potential rocket fuels, navigation strategies, practical applications, and the future prospects of rocket science and technology at the nanoscale.

  19. Dopant atoms as quantum components in silicon nanoscale devices

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaosong; Han, Weihua; Wang, Hao; Ma, Liuhong; Li, Xiaoming; Zhang, Wang; Yan, Wei; Yang, Fuhua

    2018-06-01

    Recent progress in nanoscale fabrication allows many fundamental studies of the few dopant atoms in various semiconductor nanostructures. Since the size of nanoscale devices has touched the limit of the nature, a single dopant atom may dominate the performance of the device. Besides, the quantum computing considered as a future choice beyond Moore's law also utilizes dopant atoms as functional units. Therefore, the dopant atoms will play a significant role in the future novel nanoscale devices. This review focuses on the study of few dopant atoms as quantum components in silicon nanoscale device. The control of the number of dopant atoms and unique quantum transport characteristics induced by dopant atoms are presented. It can be predicted that the development of nanoelectronics based on dopant atoms will pave the way for new possibilities in quantum electronics. Project supported by National Key R&D Program of China (No. 2016YFA0200503).

  20. Geometric rectification for nanoscale vibrational energy harvesting

    NASA Astrophysics Data System (ADS)

    Bustos-Marún, Raúl A.

    2018-02-01

    In this work, we present a mechanism that, based on quantum-mechanical principles, allows one to recover kinetic energy at the nanoscale. Our premise is that very small mechanical excitations, such as those arising from sound waves propagating through a nanoscale system or similar phenomena, can be quite generally converted into useful electrical work by applying the same principles behind conventional adiabatic quantum pumping. The proposal is potentially useful for nanoscale vibrational energy harvesting where it can have several advantages. The most important one is that it avoids the use of classical rectification mechanisms as it is based on what we call geometric rectification. We show that this geometric rectification results from applying appropriate but quite general initial conditions to damped harmonic systems coupled to electronic reservoirs. We analyze an analytically solvable example consisting of a wire suspended over permanent charges where we find the condition for maximizing the pumped charge. We also studied the effects of coupling the system to a capacitor including the effect of current-induced forces and analyzing the steady-state voltage of operation. Finally, we show how quantum effects can be used to boost the performance of the proposed device.

  1. Non-native three-dimensional block copolymer morphologies

    DOE PAGES

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory; ...

    2016-12-22

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  2. Non-native three-dimensional block copolymer morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahman, Atikur; Majewski, Pawel W.; Doerk, Gregory

    Self-assembly is a powerful paradigm, wherein molecules spontaneously form ordered phases exhibiting well-defined nanoscale periodicity and shapes. However, the inherent energy-minimization aspect of self-assembly yields a very limited set of morphologies, such as lamellae or hexagonally packed cylinders. Here, we show how soft self-assembling materials—block copolymer thin films—can be manipulated to form a diverse library of previously unreported morphologies. In this iterative assembly process, each polymer layer acts as both a structural component of the final morphology and a template for directing the order of subsequent layers. Specifically, block copolymer films are immobilized on surfaces, and template successive layers throughmore » subtle surface topography. As a result, this strategy generates an enormous variety of three-dimensional morphologies that are absent in the native block copolymer phase diagram.« less

  3. Friction laws at the nanoscale.

    PubMed

    Mo, Yifei; Turner, Kevin T; Szlufarska, Izabela

    2009-02-26

    Macroscopic laws of friction do not generally apply to nanoscale contacts. Although continuum mechanics models have been predicted to break down at the nanoscale, they continue to be applied for lack of a better theory. An understanding of how friction force depends on applied load and contact area at these scales is essential for the design of miniaturized devices with optimal mechanical performance. Here we use large-scale molecular dynamics simulations with realistic force fields to establish friction laws in dry nanoscale contacts. We show that friction force depends linearly on the number of atoms that chemically interact across the contact. By defining the contact area as being proportional to this number of interacting atoms, we show that the macroscopically observed linear relationship between friction force and contact area can be extended to the nanoscale. Our model predicts that as the adhesion between the contacting surfaces is reduced, a transition takes place from nonlinear to linear dependence of friction force on load. This transition is consistent with the results of several nanoscale friction experiments. We demonstrate that the breakdown of continuum mechanics can be understood as a result of the rough (multi-asperity) nature of the contact, and show that roughness theories of friction can be applied at the nanoscale.

  4. Exploring Chondrule and CAI Rims Using Micro- and Nano-Scale Petrological and Compositional Analysis

    NASA Astrophysics Data System (ADS)

    Cartwright, J. A.; Perez-Huerta, A.; Leitner, J.; Vollmer, C.

    2017-12-01

    As the major components within chondrites, chondrules (mm-sized droplets of quenched silicate melt) and calcium-aluminum-rich inclusions (CAI, refractory) represent the most abundant and the earliest materials that solidified from the solar nebula. However, the exact formation mechanisms of these clasts, and whether these processes are related, remains unconstrained, despite extensive petrological and compositional study. By taking advantage of recent advances in nano-scale tomographical techniques, we have undertaken a combined micro- and nano-scale study of CAI and chondrule rim morphologies, to investigate their formation mechanisms. The target lithologies for this research are Wark-Lovering rims (WLR), and fine-grained rims (FGR) around CAIs and chondrules respectively, present within many chondrites. The FGRs, which are up to 100 µm thick, are of particular interest as recent studies have identified presolar grains within them. These grains predate the formation of our Solar System, suggesting FGR formation under nebular conditions. By contrast, WLRs are 10-20 µm thick, made of different compositional layers, and likely formed by flash-heating shortly after CAI formation, thus recording nebular conditions. A detailed multi-scale study of these respective rims will enable us to better understand their formation histories and determine the potential for commonality between these two phases, despite reports of an observed formation age difference of up to 2-3 Myr. We are using a combination of complimentary techniques on our selected target areas: 1) Micro-scale characterization using standard microscopic and compositional techniques (SEM-EBSD, EMPA); 2) Nano-scale characterization of structures using transmission electron microscopy (TEM) and elemental, isotopic and tomographic analysis with NanoSIMS and atom probe tomography (APT). Preliminary nano-scale APT analysis of FGR morphologies within the Allende carbonaceous chondrite has successfully discerned

  5. Understanding Solvent Manipulation of Morphology in Bulk-Heterojunction Organic Solar Cells.

    PubMed

    Chen, Yuxia; Zhan, Chuanlang; Yao, Jiannian

    2016-10-06

    Film morphology greatly influences the performance of bulk-heterojunction (BHJ)-structure-based solar cells. It is known that an interpenetrating bicontinuous network with nanoscale-separated donor and acceptor phases for charge transfer, an ordered molecular packing for exciton diffusion and charge transport, and a vertical compositionally graded structure for charge collection are prerequisites for achieving highly efficient BHJ organic solar cells (OSCs). Therefore, control of the morphology to obtain an ideal structure is a key problem. For this solution-processing BHJ system, the solvent participates fully in film processing. Its involvement is critical in modifying the nanostructure of BHJ films. In this review, we discuss the effects of solvent-related methods on the morphology of BHJ films, including selection of the casting solvent, solvent mixture, solvent vapor annealing, and solvent soaking. On the basis of a discussion on interaction strength and time between solvent and active materials, we believe that the solvent-morphology-performance relationship will be clearer and that solvent selection as a means to manipulate the morphology of BHJ films will be more rational. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics

    PubMed Central

    2015-01-01

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future. PMID:26068279

  7. Democratization of Nanoscale Imaging and Sensing Tools Using Photonics.

    PubMed

    McLeod, Euan; Wei, Qingshan; Ozcan, Aydogan

    2015-07-07

    Providing means for researchers and citizen scientists in the developing world to perform advanced measurements with nanoscale precision can help to accelerate the rate of discovery and invention as well as improve higher education and the training of the next generation of scientists and engineers worldwide. Here, we review some of the recent progress toward making optical nanoscale measurement tools more cost-effective, field-portable, and accessible to a significantly larger group of researchers and educators. We divide our review into two main sections: label-based nanoscale imaging and sensing tools, which primarily involve fluorescent approaches, and label-free nanoscale measurement tools, which include light scattering sensors, interferometric methods, photonic crystal sensors, and plasmonic sensors. For each of these areas, we have primarily focused on approaches that have either demonstrated operation outside of a traditional laboratory setting, including for example integration with mobile phones, or exhibited the potential for such operation in the near future.

  8. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy

    PubMed Central

    Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao

    2015-01-01

    Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658

  9. Nanoscale devices based on plasmonic coaxial waveguide resonators

    NASA Astrophysics Data System (ADS)

    Mahigir, A.; Dastmalchi, P.; Shin, W.; Fan, S.; Veronis, G.

    2015-02-01

    Waveguide-resonator systems are particularly useful for the development of several integrated photonic devices, such as tunable filters, optical switches, channel drop filters, reflectors, and impedance matching elements. In this paper, we introduce nanoscale devices based on plasmonic coaxial waveguide resonators. In particular, we investigate threedimensional nanostructures consisting of plasmonic coaxial stub resonators side-coupled to a plasmonic coaxial waveguide. We use coaxial waveguides with square cross sections, which can be fabricated using lithography-based techniques. The waveguides are placed on top of a silicon substrate, and the space between inner and outer coaxial metals is filled with silica. We use silver as the metal. We investigate structures consisting of a single plasmonic coaxial resonator, which is terminated either in a short or an open circuit, side-coupled to a coaxial waveguide. We show that the incident waveguide mode is almost completely reflected on resonance, while far from the resonance the waveguide mode is almost completely transmitted. We also show that the properties of the waveguide systems can be accurately described using a single-mode scattering matrix theory. The transmission and reflection coefficients at waveguide junctions are either calculated using the concept of the characteristic impedance or are directly numerically extracted using full-wave three-dimensional finite-difference frequency-domain simulations.

  10. Dynamic structural disorder in supported nanoscale catalysts

    NASA Astrophysics Data System (ADS)

    Rehr, J. J.; Vila, F. D.

    2014-04-01

    We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  11. Effect of nano-scale morphology on micro-channel wall surface and electrical characterization in lead silicate glass micro-channel plate

    NASA Astrophysics Data System (ADS)

    Cai, Hua; Li, Fangjun; Xu, Yanglei; Bo, Tiezhu; Zhou, Dongzhan; Lian, Jiao; Li, Qing; Cao, Zhenbo; Xu, Tao; Wang, Caili; Liu, Hui; Li, Guoen; Jia, Jinsheng

    2017-10-01

    Micro-channel plate (MCP) is a two dimensional arrays of microscopic channel charge particle multiplier. Silicate composition and hydrogen reduction are keys to determine surface morphology of micro-channel wall in MCP. In this paper, lead silicate glass micro-channel plates in two different cesium contents (0at%, 0.5at%) and two different hydrogen reduction temperatures (400°C,450°C) were present. The nano-scale morphology, elements content and chemical states of microporous wall surface treated under different alkaline compositions and reduction conditions was investigated by Atomic Force Microscopy (AFM) and X-ray Photoelectron Spectroscopy (XPS), respectively. Meanwhile, the electrical characterizations of MCP, including the bulk resistance, electron gain and the density of dark current, were measured in a Vacuum Photoelectron Imaging Test Facility (VPIT).The results indicated that the granular phase occurred on the surface of microporous wall and diffuses in bulk glass is an aggregate of Pb atom derived from the reduction of Pb2+. In micro-channel plate, the electron gain and bulk resistance were mainly correlated to particle size and distribution, the density of dark current (DDC) went up with the increasing root-mean-square roughness (RMS) on the microporous wall surface. Adding cesiums improved the size of Pb atomic aggregation, lowered the relative concentration of [Pb] reduced from Pb2+ and decreased the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a less dark current. Increasing hydrogen reduction temperature also improved the size of Pb atomic aggregation, but enhanced the relative concentration of [Pb] and enlarged the total roughness of micro-channel wall surface, leading a higher bulk resistance, a lower electron gain and a larger dark current. The reasons for the difference of electrical characteristics were discussed.

  12. Nanoporous-Gold-Based Electrode Morphology Libraries for Investigating Structure-Property Relationships in Nucleic Acid Based Electrochemical Biosensors.

    PubMed

    Matharu, Zimple; Daggumati, Pallavi; Wang, Ling; Dorofeeva, Tatiana S; Li, Zidong; Seker, Erkin

    2017-04-19

    Nanoporous gold (np-Au) electrode coatings significantly enhance the performance of electrochemical nucleic acid biosensors because of their three-dimensional nanoscale network, high electrical conductivity, facile surface functionalization, and biocompatibility. Contrary to planar electrodes, the np-Au electrodes also exhibit sensitive detection in the presence of common biofouling media due to their porous structure. However, the pore size of the nanomatrix plays a critical role in dictating the extent of biomolecular capture and transport. Small pores perform better in the case of target detection in complex samples by filtering out the large nonspecific proteins. On the other hand, larger pores increase the accessibility of target nucleic acids in the nanoporous structure, enhancing the detection limits of the sensor at the expense of more interference from biofouling molecules. Here, we report a microfabricated np-Au multiple electrode array that displays a range of electrode morphologies on the same chip for identifying feature sizes that reduce the nonspecific adsorption of proteins but facilitate the permeation of target DNA molecules into the pores. We demonstrate the utility of the electrode morphology library in studying DNA functionalization and target detection in complex biological media with a special emphasis on revealing ranges of electrode morphologies that mutually enhance the limit of detection and biofouling resilience. We expect this technique to assist in the development of high-performance biosensors for point-of-care diagnostics and facilitate studies on the electrode structure-property relationships in potential applications ranging from neural electrodes to catalysts.

  13. Biosafe Nanoscale Pharmaceutical Adjuvant Materials

    PubMed Central

    Jin, Shubin; Li, Shengliang; Wang, Chongxi; Liu, Juan; Yang, Xiaolong; Wang, Paul C.; Zhang, Xin; Liang, Xing-Jie

    2014-01-01

    Thanks to developments in the field of nanotechnology over the past decades, more and more biosafe nanoscale materials have become available for use as pharmaceutical adjuvants in medical research. Nanomaterials possess unique properties which could be employed to develop drug carriers with longer circulation time, higher loading capacity, better stability in physiological conditions, controlled drug release, and targeted drug delivery. In this review article, we will review recent progress in the application of representative organic, inorganic and hybrid biosafe nanoscale materials in pharmaceutical research, especially focusing on nanomaterial-based novel drug delivery systems. In addition, we briefly discuss the advantages and notable functions that make these nanomaterials suitable for the design of new medicines; the biosafety of each material discussed in this article is also highlighted to provide a comprehensive understanding of their adjuvant attributes. PMID:25429253

  14. Charge separation at nanoscale interfaces: energy-level alignment including two-quasiparticle interactions.

    PubMed

    Li, Huashan; Lin, Zhibin; Lusk, Mark T; Wu, Zhigang

    2014-10-21

    The universal and fundamental criteria for charge separation at interfaces involving nanoscale materials are investigated. In addition to the single-quasiparticle excitation, all the two-quasiparticle effects including exciton binding, Coulomb stabilization, and exciton transfer are considered, which play critical roles on nanoscale interfaces for optoelectronic applications. We propose a scheme allowing adding these two-quasiparticle interactions on top of the single-quasiparticle energy level alignment for determining and illuminating charge separation at nanoscale interfaces. Employing the many-body perturbation theory based on Green's functions, we quantitatively demonstrate that neglecting or simplifying these crucial two-quasiparticle interactions using less accurate methods is likely to predict qualitatively incorrect charge separation behaviors at nanoscale interfaces where quantum confinement dominates.

  15. Controlling Film Morphology in Conjugated Polymer

    PubMed Central

    Park, Lee Y.; Munro, Andrea M.; Ginger, David S.

    2009-01-01

    We study the effects of patterned surface chemistry on the microscale and nanoscale morphology of solution-processed donor/acceptor polymer-blend films. Focusing on combinations of interest in polymer solar cells, we demonstrate that patterned surface chemistry can be used to tailor the film morphology of blends of semiconducting polymers such as poly-[2-(3,7-dimethyloctyloxy)-5-methoxy-p-phenylenevinylene] (MDMO-PPV), poly-3-hexylthiophene (P3HT), poly[(9,9-dioctylflorenyl-2,7-diyl)-co-benzothiadiazole)] (F8BT), and poly(9,9-dioctylfluorene-co-bis-N,N’-(4-butylphenyl)-bis-N,N’-phenyl-1,4-phenylendiamine) (PFB) with the fullerene derivative, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). We present a method for generating patterned, fullerene-terminated monolayers on gold surfaces, and use microcontact printing and Dip-Pen Nanolithography (DPN) to pattern alkanethiols with both micro- and nanoscale features. After patterning with fullerenes and other functional groups, we backfill the rest of the surface with a variety of thiols to prepare substrates with periodic variations in surface chemistry. Spin coating polymer:PCBM films onto these substrates, followed by thermal annealing under nitrogen, leads to the formation of structured polymer films. We characterize these films with Atomic Force Microscopy (AFM), Raman spectroscopy, and fluorescence microscopy. The surface patterns are effective in guiding phase separation in all of the polymer:PCBM systems investigated, and lead to a rich variety of film morphologies that are inaccessible with unpatterned substrates. We demonstrate our ability to guide pattern formation in films thick enough of be of interest for actual device applications (up to 200 nm in thickness) using feature sizes as small as 100 nm. Finally, we show that the surface chemistry can lead to variations in film morphology on length scales significantly smaller than those used in generating the original surface patterns. The variety of

  16. Endocytosis of Nanoscale Systems for Cancer Treatments.

    PubMed

    Chen, Kai; Li, Xue; Zhu, Hongyan; Gong, Qiyong; Luo, Kui

    2017-04-28

    Advances of nanoscale systems for cancer treatment have been involved in enabling highly regulated site-specific localization to sub cellular organelles hidden beneath cell membranes. Thus far, the cellular entry of these nanoscale systems has been not fully understood. Endocytosisis a form of active transport in which cell transports elected extracellular molecules (such as proteins, viruses, micro-organisms and nanoscale systems) are allowed into cell interiors by engulfing them in an energy-dependent process. This process appears at the plasma membrane surface and contains internalization of the cell membrane as well as the membrane proteins and lipids of cell. There are multiform pathways of endocytosis for nanoscale systems. Further comprehension for the mechanisms of endocytosis is achieved with a combination of efficient genetic manipulations, cell dynamic imaging, and chemical endocytosis inhibitors. This review provides an account of various endocytic pathways, itemizes current methods to study endocytosis of nanoscale systems, discusses some factors associated with cellular uptake for nanoscale systems and introduces the trafficking behavior for nanoscale systems with active targeting. An insight into the endocytosis mechanism is urgent and significant for developing safe and efficient nanoscale systems for cancer diagnosis and therapy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Talin determines the nanoscale architecture of focal adhesions.

    PubMed

    Liu, Jaron; Wang, Yilin; Goh, Wah Ing; Goh, Honzhen; Baird, Michelle A; Ruehland, Svenja; Teo, Shijia; Bate, Neil; Critchley, David R; Davidson, Michael W; Kanchanawong, Pakorn

    2015-09-01

    Insight into how molecular machines perform their biological functions depends on knowledge of the spatial organization of the components, their connectivity, geometry, and organizational hierarchy. However, these parameters are difficult to determine in multicomponent assemblies such as integrin-based focal adhesions (FAs). We have previously applied 3D superresolution fluorescence microscopy to probe the spatial organization of major FA components, observing a nanoscale stratification of proteins between integrins and the actin cytoskeleton. Here we combine superresolution imaging techniques with a protein engineering approach to investigate how such nanoscale architecture arises. We demonstrate that talin plays a key structural role in regulating the nanoscale architecture of FAs, akin to a molecular ruler. Talin diagonally spans the FA core, with its N terminus at the membrane and C terminus demarcating the FA/stress fiber interface. In contrast, vinculin is found to be dispensable for specification of FA nanoscale architecture. Recombinant analogs of talin with modified lengths recapitulated its polarized orientation but altered the FA/stress fiber interface in a linear manner, consistent with its modular structure, and implicating the integrin-talin-actin complex as the primary mechanical linkage in FAs. Talin was found to be ∼97 nm in length and oriented at ∼15° relative to the plasma membrane. Our results identify talin as the primary determinant of FA nanoscale organization and suggest how multiple cellular forces may be integrated at adhesion sites.

  18. Phonological bases for L2 morphological learning.

    PubMed

    Hu, Chieh-Fang

    2010-08-01

    Two experiments examined the hypothesis that L1 phonological awareness plays a role in children's ability to extract morphological patterns of English as L2 from the auditory input. In Experiment 1, 84 Chinese-speaking third graders were tested on whether they extracted the alternation pattern between the base and the derived form (e.g., inflate - inflation) from multiple exposures. Experiment 2 further assessed children's ability to use morphological cues for syntactic categorization through exposures to novel morphologically varying forms (e.g., lutate vs. lutant) presented in the corresponding sentential positions (noun vs. verb). The third-grade EFL learners revealed emergent sensitivity to the morphological cues in the input but failed in fully processing intraword variations. The learners with poorer L1 PA were likely to encounter difficulties in identifying morphological alternation rules and in discovering the syntactic properties of L2 morphology. In addition to L1 PA, L2 vocabulary knowledge also contributed significantly to L2 morphological learning.

  19. Benchtop Nanoscale Patterning Using Soft Lithography

    ERIC Educational Resources Information Center

    Meenakshi, Viswanathan; Babayan, Yelizaveta; Odom, Teri W.

    2007-01-01

    This paper outlines several benchtop nanoscale patterning experiments that can be incorporated into undergraduate laboratories or advanced high school chemistry curricula. The experiments, supplemented by an online video lab manual, are based on soft lithographic techniques such as replica molding, micro-molding in capillaries, and micro-contact…

  20. Plasmon-mediated chemical surface functionalization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin

    2016-04-01

    Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing

  1. Morphology Control of Multicomponent Polymeric Surfactants Using Pressure

    NASA Astrophysics Data System (ADS)

    Cho, Junhan

    The development of nanoscale morphologies for a molten polymeric surfactant under pressure is investigated by using a recently formulated self-consistent field theory. A linear ABC block copolymer is taken as our model system that allows a disparity in the propensities for curved interfaces and pressure responses of ij-pairs. The interplay of those features lead the copolymer to new morphologies at a moderate segregation level and at ambient condition such as networks and pillars of 2-dimensional array. It is shown that pressure is an effective means of morphology control and identification for those new structures. The role of volume fluctuations in the development of those structures is discussed. J.C. acknowledges the support from Center for Photofunctional Energy Materials through Gyeonggi Regional Research Program.

  2. Center for Nanoscale Science and Technology

    National Institute of Standards and Technology Data Gateway

    NIST Center for Nanoscale Science and Technology (Program website, free access)   Currently there is no database matching your keyword search, but the NIST Center for Nanoscale Science and Technology website may be of interest. The Center for Nanoscale Science and Technology enables science and industry by providing essential measurement methods, instrumentation, and standards to support all phases of nanotechnology development, from discovery to production.

  3. A Theoretical Review on Interfacial Thermal Transport at the Nanoscale.

    PubMed

    Zhang, Ping; Yuan, Peng; Jiang, Xiong; Zhai, Siping; Zeng, Jianhua; Xian, Yaoqi; Qin, Hongbo; Yang, Daoguo

    2018-01-01

    With the development of energy science and electronic technology, interfacial thermal transport has become a key issue for nanoelectronics, nanocomposites, energy transmission, and conservation, etc. The application of thermal interfacial materials and other physical methods can reliably improve the contact between joined surfaces and enhance interfacial thermal transport at the macroscale. With the growing importance of thermal management in micro/nanoscale devices, controlling and tuning the interfacial thermal resistance (ITR) at the nanoscale is an urgent task. This Review examines nanoscale interfacial thermal transport mainly from a theoretical perspective. Traditional theoretical models, multiscale models, and atomistic methodologies for predicting ITR are introduced. Based on the analysis and summary of the factors that influence ITR, new methods to control and reduce ITR at the nanoscale are described in detail. Furthermore, the challenges facing interfacial thermal management and the further progress required in this field are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Extremely flexible nanoscale ultrathin body silicon integrated circuits on plastic.

    PubMed

    Shahrjerdi, Davood; Bedell, Stephen W

    2013-01-09

    In recent years, flexible devices based on nanoscale materials and structures have begun to emerge, exploiting semiconductor nanowires, graphene, and carbon nanotubes. This is primarily to circumvent the existing shortcomings of the conventional flexible electronics based on organic and amorphous semiconductors. The aim of this new class of flexible nanoelectronics is to attain high-performance devices with increased packing density. However, highly integrated flexible circuits with nanoscale transistors have not yet been demonstrated. Here, we show nanoscale flexible circuits on 60 Å thick silicon, including functional ring oscillators and memory cells. The 100-stage ring oscillators exhibit the stage delay of ~16 ps at a power supply voltage of 0.9 V, the best reported for any flexible circuits to date. The mechanical flexibility is achieved by employing the controlled spalling technology, enabling the large-area transfer of the ultrathin body silicon devices to a plastic substrate at room temperature. These results provide a simple and cost-effective pathway to enable ultralight flexible nanoelectronics with unprecedented level of system complexity based on mainstream silicon technology.

  5. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media.

    PubMed

    Zhang, Qimei; Morgan, Stephen P; Mather, Melissa L

    2017-09-01

    A new approach for fluorescence imaging in optically turbid media centered on the use of nanoscale ultrasound-switchable FRET-based liposome contrast agents is reported. Liposomes containing lipophilic carbocyanine dyes as FRET pairs with emission wavelengths located in the near-infrared window are prepared. The efficacy of FRET and self-quenching for liposomes with a range of fluorophore concentrations is first calculated from measurement of the liposome emission spectra. Exposure of the liposomes to ultrasound results in changes in the detected fluorescent signal, the nature of which depends on the fluorophores used, detection wavelength, and the fluorophore concentration. Line scanning of a tube containing the contrast agents with 1 mm inner diameter buried at a depth of 1 cm in a heavily scattering tissue phantom demonstrates an improvement in image spatial resolution by a factor of 6.3 as compared with images obtained in the absence of ultrasound. Improvements are also seen in image contrast with the highest obtained being 9% for a liposome system containing FRET pairs. Overall the results obtained provide evidence of the potential the nanoscale ultrasound-switchable FRET-based liposomes studied here have for in vivo fluorescence imaging. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Systems engineering at the nanoscale

    NASA Astrophysics Data System (ADS)

    Benkoski, Jason J.; Breidenich, Jennifer L.; Wei, Michael C.; Clatterbaughi, Guy V.; Keng, Pei Yuin; Pyun, Jeffrey

    2012-06-01

    Nanomaterials have provided some of the greatest leaps in technology over the past twenty years, but their relatively early stage of maturity presents challenges for their incorporation into engineered systems. Perhaps even more challenging is the fact that the underlying physics at the nanoscale often run counter to our physical intuition. The current state of nanotechnology today includes nanoscale materials and devices developed to function as components of systems, as well as theoretical visions for "nanosystems," which are systems in which all components are based on nanotechnology. Although examples will be given to show that nanomaterials have indeed matured into applications in medical, space, and military systems, no complete nanosystem has yet been realized. This discussion will therefore focus on systems in which nanotechnology plays a central role. Using self-assembled magnetic artificial cilia as an example, we will discuss how systems engineering concepts apply to nanotechnology.

  7. Nanoscale interfacial mixing of Au/Bi layers using MeV ion beams

    NASA Astrophysics Data System (ADS)

    Prusty, Sudakshina; Siva, V.; Ojha, S.; Kabiraj, D.; Sahoo, P. K.

    2017-05-01

    We have studied nanoscale mixing of thermally deposited double bilayer films of Au/Bi after irradiating them by 1.5 MeV Au2+ ions. Post irradiation effects on the morphology and elemental identification in these films are studied by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). Glancing angle X-ray diffraction (GAXRD) of the samples indicate marginal changes in the irradiated samples due to combined effect of nuclear and electronic energy loss. The interfacial mixing is studied by Rutherford backscattering (RBS).

  8. Single molecule-level study of donor-acceptor interactions and nanoscale environment in blends

    NASA Astrophysics Data System (ADS)

    Quist, Nicole; Grollman, Rebecca; Rath, Jeremy; Robertson, Alex; Haley, Michael; Anthony, John; Ostroverkhova, Oksana

    2017-02-01

    Organic semiconductors have attracted considerable attention due to their applications in low-cost (opto)electronic devices. The most successful organic materials for applications that rely on charge carrier generation, such as solar cells, utilize blends of several types of molecules. In blends, the local environment strongly influences exciton and charge carrier dynamics. However, relationship between nanoscale features and photophysics is difficult to establish due to the lack of necessary spatial resolution. We use functionalized fluorinated pentacene (Pn) molecule as single molecule probes of intermolecular interactions and of the nanoscale environment in blends containing donor and acceptor molecules. Single Pn donor (D) molecules were imaged in PMMA in the presence of acceptor (A) molecules using wide-field fluorescence microscopy. Two sample configurations were realized: (i) a fixed concentration of Pn donor molecules, with increasing concentration of acceptor molecules (functionalized indenflouorene or PCBM) and (ii) a fixed concentration of acceptor molecules with an increased concentration of the Pn donor. The D-A energy transfer and changes in the donor emission due to those in the acceptor- modified polymer morphology were quantified. The increase in the acceptor concentration was accompanied by enhanced photobleaching and blinking of the Pn donor molecules. To better understand the underlying physics of these processes, we modeled photoexcited electron dynamics using Monte Carlo simulations. The simulated blinking dynamics were then compared to our experimental data, and the changes in the transition rates were related to the changes in the nanoscale environment. Our study provides insight into evolution of nanoscale environment during the formation of bulk heterojunctions.

  9. Manipulating and Visualizing Molecular Interactions in Customized Nanoscale Spaces

    NASA Astrophysics Data System (ADS)

    Stabile, Francis; Henkin, Gil; Berard, Daniel; Shayegan, Marjan; Leith, Jason; Leslie, Sabrina

    We present a dynamically adjustable nanofluidic platform for formatting the conformations of and visualizing the interaction kinetics between biomolecules in solution, offering new time resolution and control of the reaction processes. This platform extends convex lens-induced confinement (CLiC), a technique for imaging molecules under confinement, by introducing a system for in situ modification of the chemical environment; this system uses a deep microchannel to diffusively exchange reagents within the nanoscale imaging region, whose height is fixed by a nanopost array. To illustrate, we visualize and manipulate salt-induced, surfactant-induced, and enzyme-induced reactions between small-molecule reagents and DNA molecules, where the conformations of the DNA molecules are formatted by the imposed nanoscale confinement. By using nanofabricated, nonabsorbing, low-background glass walls to confine biomolecules, our nanofluidic platform facilitates quantitative exploration of physiologically and biotechnologically relevant processes at the nanoscale. This device provides new kinetic information about dynamic chemical processes at the single-molecule level, using advancements in the CLiC design including a microchannel-based diffuser and postarray-based dialysis slit.

  10. Tuning ligament shape in dealloyed nanoporous tin and the impact of nanoscale morphology on its applications in Na-ion alloy battery anodes

    NASA Astrophysics Data System (ADS)

    Detsi, Eric; Petrissans, Xavier; Yan, Yan; Cook, John B.; Deng, Ziling; Liang, Yu-Lun; Dunn, Bruce; Tolbert, Sarah H.

    2018-05-01

    Control over the morphology of nanostructured materials is of primary importance in structure-property relationship studies. Although the size of ligaments and pores in dealloyed nanoporous metals can be controlled by thermal and/or (electro)chemical treatments, tuning the shape of those ligaments is much harder. In the present work, we use corroding media with different reactivity to effectively tailor the ligament shape in nanoporous tin (NP-Sn) during dealloying by free corrosion. NP-Sn architectures with nanowire and granular ligament shapes were made by controlling the pH of the corroding solution, and thus the rate of Sn oxidation relative to the etching rate of the sacrificial component. The standard nanowire structure was formed under acidic conditions where oxidation was slow, but a hierarchical granular structure was formed when fusion of the Sn nanocrystals was inhibited by surface oxidation. To demonstrate the advantages of this architectural control, these two materials systems were investigated as electrodes for Na-ion battery anodes. Similar initial Na storage capacities of ˜500 and 550 mAh/g were achieved in the nanowire and granular materials, respectively, but the cycle life of the two materials was quite different. NP-Sn with a granular ligament shape showed enhanced stability with a capacity retention of ˜55 % over 95 cycles at a specific current of 40 mA/g. By contrast, NP-Sn with a nanowire ligament shape showed very fast capacity fading within the first 10 cycles. This work thus demonstrates the dramatic impact of the nanoscale morphology on the electrochemical performance of nanoporous materials and highlights the need for both shape and size control in dealloyed nanoporous metals.

  11. Exploring Ultimate Water Capillary Evaporation in Nanoscale Conduits.

    PubMed

    Li, Yinxiao; Alibakhshi, Mohammad Amin; Zhao, Yihong; Duan, Chuanhua

    2017-08-09

    Capillary evaporation in nanoscale conduits is an efficient heat/mass transfer strategy that has been widely utilized by both nature and mankind. Despite its broad impact, the ultimate transport limits of capillary evaporation in nanoscale conduits, governed by the evaporation/condensation kinetics at the liquid-vapor interface, have remained poorly understood. Here we report experimental study of the kinetic limits of water capillary evaporation in two dimensional nanochannels using a novel hybrid channel design. Our results show that the kinetic-limited evaporation fluxes break down the limits predicated by the classical Hertz-Knudsen equation by an order of magnitude, reaching values up to 37.5 mm/s with corresponding heat fluxes up to 8500 W/cm 2 . The measured evaporation flux increases with decreasing channel height and relative humidity but decreases as the channel temperature decreases. Our findings have implications for further understanding evaporation at the nanoscale and developing capillary evaporation-based technologies for both energy- and bio-related applications.

  12. Nanoscale tailor-made membranes for precise and rapid molecular sieve separation.

    PubMed

    Wang, Jing; Zhu, Junyong; Zhang, Yatao; Liu, Jindun; Van der Bruggen, Bart

    2017-03-02

    The precise and rapid separation of different molecules from aqueous, organic solutions and gas mixtures is critical to many technologies in the context of resource-saving and sustainable development. The strength of membrane-based technologies is well recognized and they are extensively applied as cost-effective, highly efficient separation techniques. Currently, empirical-based approaches, lacking an accurate nanoscale control, are used to prepare the most advanced membranes. In contrast, nanoscale control renders the membrane molecular specificity (sub-2 nm) necessary for efficient and rapid molecular separation. Therefore, as a growing trend in membrane technology, the field of nanoscale tailor-made membranes is highlighted in this review. An in-depth analysis of the latest advances in tailor-made membranes for precise and rapid molecule sieving is given, along with an outlook to future perspectives of such membranes. Special attention is paid to the established processing strategies, as well as the application of molecular dynamics (MD) simulation in nanoporous membrane design. This review will provide useful guidelines for future research in the development of nanoscale tailor-made membranes with a precise and rapid molecular sieve separation property.

  13. Nanoscale potentiometry.

    PubMed

    Bakker, Eric; Pretsch, Ernö

    2008-01-01

    Potentiometric sensors share unique characteristics that set them apart from other electrochemical sensors. Potentiometric nanoelectrodes have been reported and successfully used for many decades, and we review these developments. Current research chiefly focuses on nanoscale films at the outer or the inner side of the membrane, with outer layers for increasing biocompatibility, expanding the sensor response, or improving the limit of detection (LOD). Inner layers are mainly used for stabilizing the response and eliminating inner aqueous contacts or undesired nanoscale layers of water. We also discuss the ultimate detectability of ions with such sensors and the power of coupling the ultra-low LODs of ion-selective electrodes with nanoparticle labels to give attractive bioassays that can compete with state-of-the-art electrochemical detection.

  14. Understanding and Controlling Nanoscale Morphology in Self-Assembled Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Kang, Hyeyeon

    Self-assembled semiconducting materials have been rapidly developed for a range of applications. This work aims to control the morphology of nanostructured semiconductors to understand how their functions arise from the structural properties. The first part of this dissertation focuses on the formation of a bulk-heterojunction (BHJ) in the active layer of organic photovoltaics (OPV). A BHJ is a bicontinuous interpenetrating network of organic components. The phase separation of the electron donor and the acceptor is required to achieve a BHJ structure in the nanostructured morphology, which promotes an efficient charge transportation. The use of solvent additive is one of the strategies to control the spontaneous phase separation during the film formation. Low vapor pressure solvent additives are introduced to a polymer casting solution in a sequentially processed OPV system, to study the swelling effect on the phase separation. In particular, the change in crystallinity and vertical mixing will be intensively studied upon polymer swelling. As another strategy, we introduce a molecular structure change to fullerene derivatives. A small structural variation leads to a large enough contrast of their surface energy, which is attributed to different vertical phase separation in the active layer. It eventually allows us to examine photovoltaic performance and device physics. In the second part, mesoporous inorganic films are investigated by preparation from a nanocrystal solution or sol-gel precursors for solar energy applications. Mesoporous nanocrystal-based titania is synthesized for inorganic/organic hybrid solar cells. The effect of surface modification is examined by anchoring a fullerene derivative on to titania surface. 3D interconnected mesoporous tantalum nitride films are prepared via sol-gel method as photoanodes in solar water splitting. The simple synthetic method using polymer template enables us to successfully prepare nitride films with excellent pore

  15. Peculiarity of two thermodynamically-stable morphologies and their impact on the efficiency of small molecule bulk heterojunction solar cells

    DOE PAGES

    Herath, Nuradhika; Das, Sanjib; Keum, Jong K.; ...

    2015-08-28

    Structural characteristics of the active layers in organic photovoltaic (OPV) devices play a critical role in charge generation, separation and transport. Here we report on morphology and structural control of p-DTS(FBTTh 2) 2:PC 71BM films by means of thermal annealing and 1,8-diiodooctane (DIO) solvent additive processing, and correlate it to the device performance. By combining surface imaging with nanoscale depth-sensitive neutron reflectometry (NR) and X-ray diffraction, three-dimensional morphologies of the films are reconstituted with information extending length scales from nanometers to microns. DIO promotes the formation of a well-mixed donor-acceptor vertical phase morphology with a large population of small p-DTS(FBTTh2)2more » nanocrystals arranged in an elongated domain network of the film, thereby enhancing the device performance. In contrast, films without DIO exhibit three-sublayer vertical phase morphology with phase separation in agglomerated domains. Our findings are supported by thermodynamic description based on the Flory-Huggins theory with quantitative evaluation of pairwise interaction parameters that explain the morphological changes resulting from thermal and solvent treatments. Our study reveals that vertical phase morphology of small-molecule based OPVs is significantly different from polymer-based systems. Lastly, the significant enhancement of morphology and information obtained from theoretical modeling may aid in developing an optimized morphology to enhance device performance for OPVs.« less

  16. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    NASA Astrophysics Data System (ADS)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  17. Neuromorphic computing with nanoscale spintronic oscillators

    PubMed Central

    Torrejon, Jacob; Riou, Mathieu; Araujo, Flavio Abreu; Tsunegi, Sumito; Khalsa, Guru; Querlioz, Damien; Bortolotti, Paolo; Cros, Vincent; Fukushima, Akio; Kubota, Hitoshi; Yuasa, Shinji; Stiles, M. D.; Grollier, Julie

    2017-01-01

    Neurons in the brain behave as non-linear oscillators, which develop rhythmic activity and interact to process information1. Taking inspiration from this behavior to realize high density, low power neuromorphic computing will require huge numbers of nanoscale non-linear oscillators. Indeed, a simple estimation indicates that, in order to fit a hundred million oscillators organized in a two-dimensional array inside a chip the size of a thumb, their lateral dimensions must be smaller than one micrometer. However, despite multiple theoretical proposals2–5, and several candidates such as memristive6 or superconducting7 oscillators, there is no proof of concept today of neuromorphic computing with nano-oscillators. Indeed, nanoscale devices tend to be noisy and to lack the stability required to process data in a reliable way. Here, we show experimentally that a nanoscale spintronic oscillator8,9 can achieve spoken digit recognition with accuracies similar to state of the art neural networks. We pinpoint the regime of magnetization dynamics leading to highest performance. These results, combined with the exceptional ability of these spintronic oscillators to interact together, their long lifetime, and low energy consumption, open the path to fast, parallel, on-chip computation based on networks of oscillators. PMID:28748930

  18. Nanoscale Biosensor Based on Silicon Photonic Cavity for Home Healthcare Diagnostic Application

    NASA Astrophysics Data System (ADS)

    Ebrahimy, Mehdi N.; Moghaddam, Aydin B.; Andalib, Alireza; Naziri, Mohammad; Ronagh, Nazli

    2015-09-01

    In this paper, a new ultra-compact optical biosensor based on photonic crystal (phc) resonant cavity is proposed. This sensor has ability to work in chemical optical processes for the determination and analysis of liquid material. Here, we used an optical filter based on two-dimensional phc resonant cavity on a silicon layer and an active area is created in center of cavity. According to results, with increasing the refractive index of cavity, resonant wavelengths shift so that this phenomenon provides the ability to measure the properties of materials. This novel designed biosensor has more advantage to operate in the biochemical process for example sensing protein and DNA molecule refractive index. This nanoscale biosensor has quality factor higher than 1.5 × 104 and it is suitable to be used in the home healthcare diagnostic applications.

  19. Stripe-like nanoscale structural phase separation in superconducting BaPb 1-xBi xO 3

    DOE PAGES

    Giraldo-Gallo, P.; Zhang, Y.; Parra, C.; ...

    2015-09-16

    The phase diagram of BaPb 1-xBi xO 3 exhibits a superconducting “dome” in the proximity of a charge density wave phase. For the superconducting compositions, the material coexists as two structural polymorphs. Here we show, via high resolution transmission electron microscopy, that the structural dimorphism is accommodated in the form of partially disordered nanoscale stripes. Identification of the morphology of the nanoscale structural phase separation enables determination of the associated length scales, which we compare to the Ginzburg-Landau coherence length. Thus, we find that the maximum T c occurs when the superconducting coherence length matches the width of the partiallymore » disordered stripes, implying a connection between the structural phase separation and the shape of the superconducting dome.« less

  20. Nanoscale Chemical Processes Affecting Storage Capacities and Seals during Geologic CO2 Sequestration.

    PubMed

    Jun, Young-Shin; Zhang, Lijie; Min, Yujia; Li, Qingyun

    2017-07-18

    surface morphology changes. Third, the hydrogeological responses (using wettability alteration as an example) of clay minerals to chemical reactions are discussed, which connects the nanoscale findings to the transport and capillary trapping of CO 2 in the reservoirs. Fourth, the interplay between chemical and mechanical alterations of geomedia, using wellbore cement as a model geomedium, is examined, which provides helpful insights into wellbore and caprock integrities and CO 2 mineralization. Combining these four aspects, our group has answered questions related to nanoscale chemical reactions in subsurface GCS sites regarding the types of reactions and the property alterations of reservoirs and caprocks. Ultimately, the findings can shed light on the influences of nanoscale chemical reactions on storage capacities and seals during geologic CO 2 sequestration.

  1. Tunable all-optical plasmonic rectifier in nanoscale metal-insulator-metal waveguides.

    PubMed

    Xu, Yi; Wang, Xiaomeng; Deng, Haidong; Guo, Kangxian

    2014-10-15

    We propose a tunable all-optical plasmonic rectifier based on the nonlinear Fano resonance in a metal-insulator-metal plasmonic waveguide and cavities coupling system. We develop a theoretical model based on the temporal coupled-mode theory to study the device physics of the nanoscale rectifier. We further demonstrate via the finite difference time domain numerical experiment that our idea can be realized in a plasmonic system with an ultracompact size of ~120×800  nm². The tunable plasmonic rectifier could facilitate the all-optical signal processing in nanoscale.

  2. Localized temperature and chemical reaction control in nanoscale space by nanowire array.

    PubMed

    Jin, C Yan; Li, Zhiyong; Williams, R Stanley; Lee, K-Cheol; Park, Inkyu

    2011-11-09

    We introduce a novel method for chemical reaction control with nanoscale spatial resolution based on localized heating by using a well-aligned nanowire array. Numerical and experimental analysis shows that each individual nanowire could be selectively and rapidly Joule heated for local and ultrafast temperature modulation in nanoscale space (e.g., maximum temperature gradient 2.2 K/nm at the nanowire edge; heating/cooling time < 2 μs). By taking advantage of this capability, several nanoscale chemical reactions such as polymer decomposition/cross-linking and direct and localized hydrothermal synthesis of metal oxide nanowires were demonstrated.

  3. Characterizing Nanoscale Transient Communication.

    PubMed

    Chen, Yifan; Anwar, Putri Santi; Huang, Limin; Asvial, Muhamad

    2016-04-01

    We consider the novel paradigm of nanoscale transient communication (NTC), where certain components of the small-scale communication link are physically transient. As such, the transmitter and the receiver may change their properties over a prescribed lifespan due to their time-varying structures. The NTC systems may find important applications in the biomedical, environmental, and military fields, where system degradability allows for benign integration into life and environment. In this paper, we analyze the NTC systems from the channel-modeling and capacity-analysis perspectives and focus on the stochastically meaningful slow transience scenario, where the coherence time of degeneration Td is much longer than the coding delay Tc. We first develop novel and parsimonious models to characterize the NTC channels, where three types of physical layers are considered: electromagnetism-based terahertz (THz) communication, diffusion-based molecular communication (DMC), and nanobots-assisted touchable communication (TouchCom). We then revisit the classical performance measure of ϵ-outage channel capacity and take a fresh look at its formulations in the NTC context. Next, we present the notion of capacity degeneration profile (CDP), which describes the reduction of channel capacity with respect to the degeneration time. Finally, we provide numerical examples to demonstrate the features of CDP. To the best of our knowledge, the current work represents a first attempt to systematically evaluate the quality of nanoscale communication systems deteriorating with time.

  4. Rotaxanes and Photovoltaic Materials Based on Pi-Conjugated Donors and Acceptors: Toward Energy Transduction on the Nanoscale

    NASA Astrophysics Data System (ADS)

    Bruns, Carson J.

    that the muscle-like contractile-extensile motions of the daisy chains can be controlled by redox or thermal stimuli. It is concluded that donor-acceptor daisy chains and oligorotaxanes of unprecendented complexity can be readily prepared using click chemistry and actuated in solution. Motivated by the global demand for low-cost renewable energy, novel pi-donor molecules based on thiophene and diketopyrrolopyrrole (DPP) moieties are investigated in the context of thin-film materials for OPV technologies in Part II. Homologous families of small-molecule donors have been synthesized to investigate the effects of various molecular design principles on the morphological, optical, electronic, and photovoltaic properties of the corresponding thin-film materials. This strategy has been executed in the context of inorganic-organic hybrid OPVs and also more conventional bulk heterojunction (BHJ) OPVs. In the former case, a series of terthiophene surfactants with systematic variations in valency, geometry, and flexibility are electrodeposited on transparent electrodes from aqueous solutions to yield lamellar Zn(OH)2 materials with nanoscale periodicity, which are characterized by scanning electron miscroscopy and two-dimensional grazing incidence X-ray scattering. It is concluded that monovalent, flexible, linear surfactants yield the most dense and anisotropic nanostructures that are ideal for OPVs. For BHJ OPVs, the family of compounds under investigation are small molecule (SM) donors based on electron-rich heterocyclic acenes (benzodithiophene, benzodifuran, naphtho-dithiophene) and electron-poor thiophene-flanked DPP units. Single crystal X-ray structures of the SM donors are compared with morphological, hole mobility, photovoltaic efficiency data on their blends with a common fullerene acceptor to elucidate the optimal molecular design principles for this class of OPVs. It is concluded that the best-performing molecules have a symmetric architecture in which the central

  5. Atomistic insights on the nanoscale single grain scratching mechanism of silicon carbide ceramic based on molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Liu, Yao; Li, Beizhi; Kong, Lingfei

    2018-03-01

    The precision and crack-free surface of brittle silicon carbide (SiC) ceramic was achieved in the nanoscale ductile grinding. However, the nanoscale scratching mechanism and the root causes of SiC ductile response, especially in the atomistic aspects, have not been fully understood yet. In this study, the SiC atomistic scale scratching mechanism was investigated by single diamond grain scratching simulation based on molecular dynamics. The results indicated that the ductile scratching process of SiC could be achieved in the nanoscale depth of cut through the phase transition to an amorphous structure with few hexagonal diamond structure. Furthermore, the silicon atoms in SiC could penetrate into diamond grain which may cause wear of diamond grain. It was further found out that the chip material in the front of grain flowed along the grain side surface to form the groove protrusion as the scratching speed increases. The higher scratching speed promoted more atoms to transfer into the amorphous structure and reduced the hexagonal diamond and dislocation atoms number, which resulted in higher temperature, smaller scratching force, smaller normal stress, and thinner subsurface damage thickness, due to larger speed impaction causing more bonds broken which makes the SiC more ductile.

  6. NANOSCALE BIOSENSORS IN ECOSYSTEM EXPOSURE RESEARCH

    EPA Science Inventory

    This powerpoint presentation presented information on nanoscale biosensors in ecosystem exposure research. The outline of the presentation is as follows: nanomaterials environmental exposure research; US agencies involved in nanosensor research; nanoscale LEDs in biosensors; nano...

  7. Nanoscale inhomogeneity and photoacid generation dynamics in extreme ultraviolet resist materials

    NASA Astrophysics Data System (ADS)

    Wu, Ping-Jui; Wang, Yu-Fu; Chen, Wei-Chi; Wang, Chien-Wei; Cheng, Joy; Chang, Vencent; Chang, Ching-Yu; Lin, John; Cheng, Yuan-Chung

    2018-03-01

    The development of extreme ultraviolet (EUV) lithography towards the 22 nm node and beyond depends critically on the availability of resist materials that meet stringent control requirements in resolution, line edge roughness, and sensitivity. However, the molecular mechanisms that govern the structure-function relationships in current EUV resist systems are not well understood. In particular, the nanoscale structures of the polymer base and the distributions of photoacid generators (PAGs) should play a critical roles in the performance of a resist system, yet currently available models for photochemical reactions in EUV resist systems are exclusively based on homogeneous bulk models that ignore molecular-level details of solid resist films. In this work, we investigate how microscopic molecular organizations in EUV resist affect photoacid generations in a bottom-up approach that describes structure-dependent electron-transfer dynamics in a solid film model. To this end, molecular dynamics simulations and stimulated annealing are used to obtain structures of a large simulation box containing poly(4-hydroxystyrene) (PHS) base polymers and triphenylsulfonium based PAGs. Our calculations reveal that ion-pair interactions govern the microscopic distributions of the polymer base and PAG molecules, resulting in a highly inhomogeneous system with nonuniform nanoscale chemical domains. Furthermore, the theoretical structures were used in combination of quantum chemical calculations and the Marcus theory to evaluate electron transfer rates between molecular sites, and then kinetic Monte Carlo simulations were carried out to model electron transfer dynamics with molecular structure details taken into consideration. As a result, the portion of thermalized electrons that are absorbed by the PAGs and the nanoscale spatial distribution of generated acids can be estimated. Our data reveal that the nanoscale inhomogeneous distributions of base polymers and PAGs strongly affect the

  8. Nanoscale Footprints of Self-Running Gallium Droplets on GaAs Surface

    PubMed Central

    Wu, Jiang; Wang, Zhiming M.; Li, Alvason Z.; Benamara, Mourad; Li, Shibin; Salamo, Gregory J.

    2011-01-01

    In this work, the nanoscale footprints of self-driven liquid gallium droplet movement on a GaAs (001) surface will be presented and analyzed. The nanoscale footprints of a primary droplet trail and ordered secondary droplets along primary droplet trails are observed on the GaAs surface. A well ordered nanoterrace from the trail is left behind by a running droplet. In addition, collision events between two running droplets are investigated. The exposed fresh surface after a collision demonstrates a superior evaporation property. Based on the observation of droplet evolution at different stages as well as nanoscale footprints, a schematic diagram of droplet evolution is outlined in an attempt to understand the phenomenon of stick-slip droplet motion on the GaAs surface. The present study adds another piece of work to obtain the physical picture of a stick-slip self-driven mechanism in nanoscale, bridging nano and micro systems. PMID:21673965

  9. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block

    PubMed Central

    Yang, Ming; Cao, Keqin; Sui, Lang; Qi, Ying; Zhu, Jian; Waas, Anthony; Arruda, Ellen M.; Kieffer, John; Thouless, M. D.; Kotov, Nicholas A.

    2011-01-01

    Stable dispersions of nanofibers are virtually unknown for synthetic polymers. They can complement analogous dispersions of inorganic components, such as nanoparticles, nanowires, nanosheets, etc as a fundamental component of a toolset for design of nanostructures and metamaterials via numerous solvent-based processing methods. As such, strong flexible polymeric nanofibers are very desirable for the effective utilization within composites of nanoscale inorganic components such as nanowires, carbon nanotubes, graphene, and others. Here stable dispersions of uniform high-aspect-ratio aramid nanofibers (ANFs) with diameters between 3 and 30 nm and up to 10 μm in length were successfully obtained. Unlike the traditional approaches based on polymerization of monomers, they are made by controlled dissolution of standard macroscale form of the aramid polymer, i.e. well known Kevlar threads, and revealed distinct morphological features similar to carbon nanotubes. ANFs are successfully processed into films using layer-by-layer (LBL) assembly as one of the potential methods of preparation of composites from ANFs. The resultant films are transparent and highly temperature resilient. They also display enhanced mechanical characteristics making ANF films highly desirable as protective coatings, ultrastrong membranes, as well as building blocks of other high performance materials in place of or in combination with carbon nanotubes. PMID:21800822

  10. Current nanoscience and nanoengineering at the Center for Nanoscale Science and Engineering

    NASA Astrophysics Data System (ADS)

    Hermann, A. M.; Singh, R. S.; Singh, V. P.

    2006-07-01

    The Center for Nanoscale Science and Engineering (CeNSE) at the University of Kentucky is a multidisciplinary group of faculty, students, and staff, with a shared vision and cutting-edge research facilities to study and develop materials and devices at the nanoscale. Current research projects at CeNSE span a number of diverse nanoscience thrusts in bio- engineering and medicine (nanosensors and nanoelectrodes, nanoparticle-based drug delivery), electronics (nanolithography, molecular electronics, nanotube FETs), nanotemplates for electronics and gas sensors (functionalization of carbon nanotubes, aligned carbon nanotube structures for gate-keeping, e-beam lithography with nanoscale precision), and nano--optoelectronics (nanoscale photonics for laser communications, quantum confinement in photovoltaic devices, and nanostructured displays). This paper provides glimpses of this research and future directions.

  11. Direct Probing of Polarization Charge at Nanoscale Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Owoong; Seol, Daehee; Lee, Dongkyu

    Ferroelectric materials possess spontaneous polarization that can be used for multiple applications. Owing to a long-term development of reducing the sizes of devices, the preparation of ferroelectric materials and devices is entering the nanometer-scale regime. In order to evaluate the ferroelectricity, there is a need to investigate the polarization charge at the nanoscale. Nonetheless, it is generally accepted that the detection of polarization charges using a conventional conductive atomic force microscopy (CAFM) without a top electrode is not feasible because the nanometer-scale radius of an atomic force microscopy (AFM) tip yields a very low signal-to-noise ratio. But, the detection ismore » unrelated to the radius of an AFM tip and, in fact, a matter of the switched area. In this work, the direct probing of the polarization charge at the nanoscale is demonstrated using the positive-up-negative-down method based on the conventional CAFM approach without additional corrections or circuits to reduce the parasitic capacitance. The polarization charge densities of 73.7 and 119.0 µC cm -2 are successfully probed in ferroelectric nanocapacitors and thin films, respectively. The results we obtained show the feasibility of the evaluation of polarization charge at the nanoscale and provide a new guideline for evaluating the ferroelectricity at the nanoscale.« less

  12. Nanoscale platinum printing on insulating substrates.

    PubMed

    O'Connell, C D; Higgins, M J; Sullivan, R P; Jamali, S S; Moulton, S E; Wallace, G G

    2013-12-20

    The deposition of noble metals on soft and/or flexible substrates is vital for several emerging applications including flexible electronics and the fabrication of soft bionic implants. In this paper, we describe a new strategy for the deposition of platinum electrodes on a range of materials, including insulators and flexible polymers. The strategy is enabled by two principle advances: (1) the introduction of a novel, low temperature strategy for reducing chloroplatinic acid to platinum using nitrogen plasma; (2) the development of a chloroplatinic acid based liquid ink formulation, utilizing ethylene glycol as both ink carrier and reducing agent, for versatile printing at nanoscale resolution using dip-pen nanolithography (DPN). The ink formulation has been printed and reduced upon Si, glass, ITO, Ge, PDMS, and Parylene C. The plasma treatment effects reduction of the precursor patterns in situ without subjecting the substrate to destructively high temperatures. Feature size is controlled via dwell time and degree of ink loading, and platinum features with 60 nm dimensions could be routinely achieved on Si. Reduction of the ink to platinum was confirmed by energy dispersive x-ray spectroscopy (EDS) elemental analysis and x-ray diffraction (XRD) measurements. Feature morphology was characterized by optical microscopy, SEM and AFM. The high electrochemical activity of individually printed Pt features was characterized using scanning electrochemical microscopy (SECM).

  13. Tunable nano-scale graphene-based devices in mid-infrared wavelengths composed of cylindrical resonators

    NASA Astrophysics Data System (ADS)

    Asgari, Somayyeh; Ghattan Kashani, Zahra; Granpayeh, Nosrat

    2018-04-01

    The performances of three optical devices including a refractive index sensor, a power splitter, and a 4-channel multi/demultiplexer based on graphene cylindrical resonators are proposed, analyzed, and simulated numerically by using the finite-difference time-domain method. The proposed sensor operates on the principle of the shift in resonance wavelength with a change in the refractive index of dielectric materials. The sensor sensitivity has been numerically derived. In addition, the performances of the power splitter and the multi/demultiplexer based on the variation of the resonance wavelengths of cylindrical resonator have been thoroughly investigated. The simulation results are in good agreement with the theoretical ones. Our studies demonstrate that the graphene based ultra-compact, nano-scale devices can be improved to be used as photonic integrated devices, optical switching, and logic gates.

  14. Synthesis, dynamics and photophysics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Mirkovic, Tihana

    The emerging field of nanotechnology, which spans diverse areas such as nanoelectronics, medicine, chemical and pharmaceutical industries, biotechnology and computation, focuses on the development of devices whose improved performance is based on the utilization of self-assembled nanoscale components exhibiting unique properties owing to their miniaturized dimensions. The first phase in the conception of such multifunctional devices based on integrated technologies requires the study of basic principles behind the functional mechanism of nanoscale components, which could originate from individual nanoobjects or result as a collective behaviour of miniaturized unit structures. The comprehensive studies presented in this thesis encompass the mechanical, dynamical and photophysical aspects of three nanoscale systems. A newly developed europium sulfide nanocrystalline material is introduced. Advances in synthetic methods allowed for shape control of surface-functionalized EuS nanocrystals and the fabrication of multifunctional EuS-CdSe hybrid particles, whose unique structural and optical properties hold promise as useful attributes of integrated materials in developing technologies. A comprehensive study based on a new class of multifunctional nanomaterials, derived from the basic unit of barcoded metal nanorods is presented. Their chemical composition affords them the ability to undergo autonomous motion in the presence of a suitable fuel. The nature of their chemically powered self-propulsion locomotion was investigated, and plausible mechanisms for various motility modes were presented. Furthermore functionalization of striped metallic nanorods has been realized through the incorporation of chemically controlled flexible hinges displaying bendable properties. The structural aspect of the light harvesting machinery of a photosynthetic cryptophyte alga, Rhodomonas CS24, and the mobility of the antenna protein, PE545, in vivo were investigated. Information obtained

  15. Nanoscale chemical mapping of laser-solubilized silk

    NASA Astrophysics Data System (ADS)

    Ryu, Meguya; Kobayashi, Hanae; Balčytis, Armandas; Wang, Xuewen; Vongsvivut, Jitraporn; Li, Jingliang; Urayama, Norio; Mizeikis, Vygantas; Tobin, Mark; Juodkazis, Saulius; Morikawa, Junko

    2017-11-01

    A water soluble amorphous form of silk was made by ultra-short laser pulse irradiation and detected by nanoscale IR mapping. An optical absorption-induced nanoscale surface expansion was probed to yield the spectral response of silk at IR molecular fingerprinting wavelengths with a high  ˜ 20 nm spatial resolution defined by the tip of the probe. Silk microtomed sections of 1-5 μm in thickness were prepared for nanoscale spectroscopy and a laser was used to induce amorphisation. Comparison of silk absorbance measurements carried out by table-top and synchrotron Fourier transform IR spectroscopy proved that chemical imaging obtained at high spatial resolution and specificity (able to discriminate between amorphous and crystalline silk) is reliably achieved by nanoscale IR. Differences in absorbance and spectral line-shapes of the bands are related to the different sensitivity of the applied methods to real and imaginary parts of permittivity. A nanoscale material characterization by combining synchrotron IR radiation and nano-IR is discussed.

  16. Linear arrangements of nano-scale ferromagnetic particles spontaneously formed in a copper-base Cu-Ni-Co alloy

    NASA Astrophysics Data System (ADS)

    Sakakura, Hibiki; Kim, Jun-Seop; Takeda, Mahoto

    2018-03-01

    We have investigated the influence of magnetic interactions on the microstructural evolution of nano-scale granular precipitates formed spontaneously in an annealed Cu-20at%Ni-5at%Co alloy and the associated changes of magnetic properties. The techniques used included transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry, magneto-thermogravimetry (MTG), and first-principles calculations based on the method of Koster-Korringa-Rostker with the coherent potential approximation. Our work has revealed that the nano-scale spherical and cubic precipitates which formed on annealing at 873 K and 973 K comprise mainly cobalt and nickel with a small amount of copper, and are arranged in the 〈1 0 0〉 direction of the copper matrix. The SQUID and MTG measurements suggest that magnetic properties such as coercivity and Curie temperature are closely correlated with the microstructure. The combination of results suggests that magnetic interactions between precipitates during annealing can explain consistently the observed precipitation phenomena.

  17. Nanoscale phase change memory materials.

    PubMed

    Caldwell, Marissa A; Jeyasingh, Rakesh Gnana David; Wong, H-S Philip; Milliron, Delia J

    2012-08-07

    Phase change memory materials store information through their reversible transitions between crystalline and amorphous states. For typical metal chalcogenide compounds, their phase transition properties directly impact critical memory characteristics and the manipulation of these is a major focus in the field. Here, we discuss recent work that explores the tuning of such properties by scaling the materials to nanoscale dimensions, including fabrication and synthetic strategies used to produce nanoscale phase change memory materials. The trends that emerge are relevant to understanding how such memory technologies will function as they scale to ever smaller dimensions and also suggest new approaches to designing materials for phase change applications. Finally, the challenges and opportunities raised by integrating nanoscale phase change materials into switching devices are discussed.

  18. Inverse spin-valve effect in nanoscale Si-based spin-valve devices

    NASA Astrophysics Data System (ADS)

    Hiep, Duong Dinh; Tanaka, Masaaki; Hai, Pham Nam

    2017-12-01

    We investigated the spin-valve effect in nano-scale silicon (Si)-based spin-valve devices using a Fe/MgO/Ge spin injector/detector deposited on Si by molecular beam epitaxy. For a device with a 20 nm Si channel, we observed clear magnetoresistance up to 3% at low temperature when a magnetic field was applied in the film plane along the Si channel transport direction. A large spin-dependent output voltage of 20 mV was observed at a bias voltage of 0.9 V at 15 K, which is among the highest values in lateral spin-valve devices reported so far. Furthermore, we observed that the sign of the spin-valve effect is reversed at low temperatures, suggesting the possibility of a spin-blockade effect of defect states in the MgO/Ge tunneling barrier.

  19. Nanoscale hotspots due to nonequilibrium thermal transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sinha, Sanjiv; Goodson, Kenneth E.

    2004-01-01

    Recent experimental and modeling efforts have been directed towards the issue of temperature localization and hotspot formation in the vicinity of nanoscale heat generating devices. The nonequilibrium transport conditions which develop around these nanoscale devices results in elevated temperatures near the heat source which can not be predicted by continuum diffusion theory. Efforts to determine the severity of this temperature localization phenomena in silicon devices near and above room temperature are of technological importance to the development of microelectronics and other nanotechnologies. In this work, we have developed a new modeling tool in order to explore the magnitude of themore » additional thermal resistance which forms around nanoscale hotspots from temperatures of 100-1000K. The models are based on a two fluid approximation in which thermal energy is transferred between ''stationary'' optical phonons and fast propagating acoustic phonon modes. The results of the model have shown excellent agreement with experimental results of localized hotspots in silicon at lower temperatures. The model predicts that the effect of added thermal resistance due to the nonequilibrium phonon distribution is greatest at lower temperatures, but is maintained out to temperatures of 1000K. The resistance predicted by the numerical code can be easily integrated with continuum models in order to predict the temperature distribution around nanoscale heat sources with improved accuracy. Additional research efforts also focused on the measurements of the thermal resistance of silicon thin films at higher temperatures, with a focus on polycrystalline silicon. This work was intended to provide much needed experimental data on the thermal transport properties for micro and nanoscale devices built with this material. Initial experiments have shown that the exposure of polycrystalline silicon to high temperatures may induce recrystallization and radically increase the thermal

  20. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    DOE PAGES

    Han, Lili; Meng, Qingping; Wang, Deli; ...

    2016-12-08

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-inducedmore » chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. As a result, this work characterizes the pathways that can control the morphology in binary oxide materials.« less

  1. Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale

    PubMed Central

    Han, Lili; Meng, Qingping; Wang, Deli; Zhu, Yimei; Wang, Jie; Du, Xiwen; Stach, Eric A.; Xin, Huolin L.

    2016-01-01

    An understanding of bimetallic alloy oxidation is key to the design of hollow-structured binary oxides and the optimization of their catalytic performance. However, one roadblock encountered in studying these binary oxide systems is the difficulty in describing the heterogeneities that occur in both structure and chemistry as a function of reaction coordinate. This is due to the complexity of the three-dimensional mosaic patterns that occur in these heterogeneous binary systems. By combining real-time imaging and chemical-sensitive electron tomography, we show that it is possible to characterize these systems with simultaneous nanoscale and chemical detail. We find that there is oxidation-induced chemical segregation occurring on both external and internal surfaces. Additionally, there is another layer of complexity that occurs during the oxidation, namely that the morphology of the initial oxide surface can change the oxidation modality. This work characterizes the pathways that can control the morphology in binary oxide materials. PMID:27928998

  2. The influence of thermal and conductive temperatures in a nanoscale resonator

    NASA Astrophysics Data System (ADS)

    Hobiny, Aatef; Abbas, Ibrahim A.

    2018-06-01

    In this work, the thermoelastic interaction in a nano-scale resonator based on two-temperature Green-Naghdi model is established. The nanoscale resonator ends were simply supported. In the Laplace's domain, the analytical solution of conductivity temperature and thermodynamic temperature, the displacement and the stress components are obtained. The eigenvalue approach resorted to for solutions. In the vector-matrix differential equations form, the essential equations were written. The numerical results for all variables are presented and are illustrated graphically.

  3. Master curve captures the effect of domain morphology on ethanol pervaporation through block copolymer membranes

    USDA-ARS?s Scientific Manuscript database

    We report on the effect of changing nanoscale morphology on pervaporation of ethanol/water mixtures through block copolymer membranes. Experiments were conducted using polystyrene-b-polybutadiene-b-polystyrene (SBS) copolymers with polybutadiene (PB) as the ethanol transporting block, using an 8 wt%...

  4. Atomistic Design and Simulations of Nanoscale Machines and Assembly

    NASA Technical Reports Server (NTRS)

    Goddard, William A., III; Cagin, Tahir; Walch, Stephen P.

    2000-01-01

    Over the three years of this project, we made significant progress on critical theoretical and computational issues in nanoscale science and technology, particularly in:(1) Fullerenes and nanotubes, (2) Characterization of surfaces of diamond and silicon for NEMS applications, (3) Nanoscale machine and assemblies, (4) Organic nanostructures and dendrimers, (5) Nanoscale confinement and nanotribology, (6) Dynamic response of nanoscale structures nanowires (metals, tubes, fullerenes), (7) Thermal transport in nanostructures.

  5. Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications

    PubMed Central

    Wilcock, Caroline J.; Gentile, Piergiorgio; Hatton, Paul V.; Miller, Cheryl A.

    2017-01-01

    Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health

  6. Rapid Mix Preparation of Bioinspired Nanoscale Hydroxyapatite for Biomedical Applications.

    PubMed

    Wilcock, Caroline J; Gentile, Piergiorgio; Hatton, Paul V; Miller, Cheryl A

    2017-02-23

    Hydroxyapatite (HA) has been widely used as a medical ceramic due to its good biocompatibility and osteoconductivity. Recently there has been interest regarding the use of bioinspired nanoscale hydroxyapatite (nHA). However, biological apatite is known to be calcium-deficient and carbonate-substituted with a nanoscale platelet-like morphology. Bioinspired nHA has the potential to stimulate optimal bone tissue regeneration due to its similarity to bone and tooth enamel mineral. Many of the methods currently used to fabricate nHA both in the laboratory and commercially, involve lengthy processes and complex equipment. Therefore, the aim of this study was to develop a rapid and reliable method to prepare high quality bioinspired nHA. The rapid mixing method developed was based upon an acid-base reaction involving calcium hydroxide and phosphoric acid. Briefly, a phosphoric acid solution was poured into a calcium hydroxide solution followed by stirring, washing and drying stages. Part of the batch was sintered at 1,000 °C for 2 h in order to investigate the products' high temperature stability. X-ray diffraction analysis showed the successful formation of HA, which showed thermal decomposition to β-tricalcium phosphate after high temperature processing, which is typical for calcium-deficient HA. Fourier transform infrared spectroscopy showed the presence of carbonate groups in the precipitated product. The nHA particles had a low aspect ratio with approximate dimensions of 50 x 30 nm, close to the dimensions of biological apatite. The material was also calcium deficient with a Ca:P molar ratio of 1.63, which like biological apatite is lower than the stoichiometric HA ratio of 1.67. This new method is therefore a reliable and far more convenient process for the manufacture of bioinspired nHA, overcoming the need for lengthy titrations and complex equipment. The resulting bioinspired HA product is suitable for use in a wide variety of medical and consumer health

  7. EXAFS and XANES analysis of oxides at the nanoscale.

    PubMed

    Kuzmin, Alexei; Chaboy, Jesús

    2014-11-01

    Worldwide research activity at the nanoscale is triggering the appearance of new, and frequently surprising, materials properties in which the increasing importance of surface and interface effects plays a fundamental role. This opens further possibilities in the development of new multifunctional materials with tuned physical properties that do not arise together at the bulk scale. Unfortunately, the standard methods currently available for solving the atomic structure of bulk crystals fail for nanomaterials due to nanoscale effects (very small crystallite sizes, large surface-to-volume ratio, near-surface relaxation, local lattice distortions etc.). As a consequence, a critical reexamination of the available local-structure characterization methods is needed. This work discusses the real possibilities and limits of X-ray absorption spectroscopy (XAS) analysis at the nanoscale. To this end, the present state of the art for the interpretation of extended X-ray absorption fine structure (EXAFS) is described, including an advanced approach based on the use of classical molecular dynamics and its application to nickel oxide nanoparticles. The limits and possibilities of X-ray absorption near-edge spectroscopy (XANES) to determine several effects associated with the nanocrystalline nature of materials are discussed in connection with the development of ZnO-based dilute magnetic semiconductors (DMSs) and iron oxide nanoparticles.

  8. SEM method for direct visual tracking of nanoscale morphological changes of platinum based electrocatalysts on fixed locations upon electrochemical or thermal treatments.

    PubMed

    Zorko, Milena; Jozinović, Barbara; Bele, Marjan; Hodnik, Nejc; Gaberšček, Miran

    2014-05-01

    A general method for tracking morphological surface changes on a nanometer scale with scanning electron microscopy (SEM) is introduced. We exemplify the usefulness of the method by showing consecutive SEM images of an identical location before and after the electrochemical and thermal treatments of platinum-based nanoparticles deposited on a high surface area carbon. Observations reveal an insight into platinum based catalyst degradation occurring during potential cycling treatment. The presence of chloride clearly increases the rate of degradation. At these conditions the dominant degradation mechanism seems to be the platinum dissolution with some subsequent redeposition on the top of the catalyst film. By contrast, at the temperature of 60°C, under potentiostatic conditions some carbon corrosion and particle aggregation was observed. Temperature treatment simulating the annealing step of the synthesis reveals sintering of small platinum based composite aggregates into uniform spherical particles. The method provides a direct proof of induced surface phenomena occurring on a chosen location without the usual statistical uncertainty in usual, random SEM observations across relatively large surface areas. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Dynamics of systems on the nanoscale

    NASA Astrophysics Data System (ADS)

    Korol, Andrei V.; Solov'yov, Andrey V.

    2017-12-01

    Various aspects of the structure formation and dynamics of animate and inanimate matter on the nanoscale is a highly interdisciplinary field of rapidly emerging research interest by both experimentalists and theorists. The International Conference on Dynamics of Systems on the Nanoscale (DySoN) is the premier forum to present cutting-edge research in this field. It was established in 2010 and the most recent conference was held in Bad Ems, Germany in October of 2016. This Topical Issue presents original research results from some of the participants, who attended this conference. Contribution to the Topical Issue "Dynamics of Systems at the Nanoscale", edited by Andrey Solov'yov and Andrei Korol.

  10. Molecular-Scale Structural Controls on Nanoscale Growth Processes: Step-Specific Regulation of Biomineral Morphology

    NASA Astrophysics Data System (ADS)

    Dove, P. M.; Davis, K. J.; De Yoreo, J. J.; Orme, C. A.

    2001-12-01

    Deciphering the complex strategies by which organisms produce nanocrystalline materials with exquisite morphologies is central to understanding biomineralizing systems. One control on the morphology of biogenic nanoparticles is the specific interactions of their surfaces with the organic functional groups provided by the organism and the various inorganic species present in the ambient environment. It is now possible to directly probe the microscopic structural controls on crystal morphology by making quantitative measurements of the dynamic processes occurring at the mineral-water interface. These observations can provide crucial information concerning the actual mechanisms of growth that is otherwise unobtainable through macroscopic techniques. Here we use in situ molecular-scale observations of step dynamics and growth hillock morphology to directly resolve roles of principal impurities in regulating calcite surface morphologies. We show that the interactions of certain inorganic as well as organic impurities with the calcite surface are dependent upon the molecular-scale structures of step-edges. These interactions can assume a primary role in directing crystal morphology. In calcite growth experiments containing magnesium, we show that growth hillock structures become modified owing to the preferential inhibition of step motion along directions approximately parallel to the [010]. Compositional analyses have shown that Mg incorporates at different levels into the two types of nonequivalent steps, which meet at the hillock corner parallel to [010]. A simple calculation of the strain caused by this difference indicates that we should expect a significant retardation at this corner, in agreement with the observed development of [010] steps. If the low-energy step-risers produced by these [010] steps is perpendicular to the c-axis as seems likely from crystallographic considerations, this effect provides a plausible mechanism for the elongated calcite crystal

  11. Three-Dimensional Morphology Control Yielding Enhanced Hole Mobility in Air-Processed Organic Photovoltaics: Demonstration with Grazing-Incidence Wide-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Levi M. J.; Bhattacharya, Mithun; Wu, Qi

    Polymer organic photovoltaic (OPV) device performance is defined by the three-dimensional morphology of the phase-separated domains in the active layer. Here, we determine the evolution of morphology through different stages of tailored solvent vapor and thermal annealing techniques in air-processed poly(3-hexylthiophene-2,5-diyl)/phenyl-C61-butyric acid methyl ester-based OPV blends. A comparative evaluation of the effect of solvent type used for vapor annealing was performed using grazing-incidence wide-angle X-ray scattering, atomic force microscopy, and UV–vis spectroscopy to probe the active-layer morphology. A nonhalogenated orthogonal solvent was found to impart controlled morphological features within the exciton diffusion length scales, enhanced absorbance, greater crystallinity, increased paracrystallinemore » disorder, and improved charge-carrier mobility. Low-boiling, fast-diffusing isopropanol allowed the greatest control over the nanoscale structure of the solvents evaluated and yielded a cocontinuous morphology with narrowed domains and enhanced paths for the charge carrier to reach the anode.« less

  12. Nanoscale piezoelectric vibration energy harvester design

    NASA Astrophysics Data System (ADS)

    Foruzande, Hamid Reza; Hajnayeb, Ali; Yaghootian, Amin

    2017-09-01

    Development of new nanoscale devices has increased the demand for new types of small-scale energy resources such as ambient vibrations energy harvesters. Among the vibration energy harvesters, piezoelectric energy harvesters (PEHs) can be easily miniaturized and fabricated in micro and nano scales. This change in the dimensions of a PEH leads to a change in its governing equations of motion, and consequently, the predicted harvested energy comparing to a macroscale PEH. In this research, effects of small scale dimensions on the nonlinear vibration and harvested voltage of a nanoscale PEH is studied. The PEH is modeled as a cantilever piezoelectric bimorph nanobeam with a tip mass, using the Euler-Bernoulli beam theory in conjunction with Hamilton's principle. A harmonic base excitation is applied as a model of the ambient vibrations. The nonlocal elasticity theory is used to consider the size effects in the developed model. The derived equations of motion are discretized using the assumed-modes method and solved using the method of multiple scales. Sensitivity analysis for the effect of different parameters of the system in addition to size effects is conducted. The results show the significance of nonlocal elasticity theory in the prediction of system dynamic nonlinear behavior. It is also observed that neglecting the size effects results in lower estimates of the PEH vibration amplitudes. The results pave the way for designing new nanoscale sensors in addition to PEHs.

  13. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  14. ABC triblock copolymer vesicles with mesh-like morphology.

    PubMed

    Zhao, Wei; Chen, Dian; Hu, Yunxia; Grason, Gregory M; Russell, Thomas P

    2011-01-25

    Polymer vesicles made from poly(isoprene-b-styrene-b-2-vinyl pyridine) (PI-b-PS-b-P2VP) triblock copolymer confined within the nanopores of an anodic aluminum oxide (AAO) membrane are studied. It was found that these vesicles have well-defined, nanoscopic size, and complex microphase-separated hydrophobic membranes, comprised of the PS and PI blocks, while the coronas are formed by the P2VP block. Vesicle formation was tracked using both transmission and scanning electron microscopy. A mesh-like morphology formed in the membrane at a well-defined composition of the three blocks that can be tuned by changing the copolymer composition. The nanoscale confinement, copolymer composition, and subtle molecular interactions contribute to the generation of these vesicles with such unusual morphologies.

  15. Breakthrough and future: nanoscale controls of compositions, morphologies, and mesochannel orientations toward advanced mesoporous materials.

    PubMed

    Yamauchi, Yusuke; Suzuki, Norihiro; Radhakrishnan, Logudurai; Wang, Liang

    2009-01-01

    Currently, ordered mesoporous materials prepared through the self-assembly of surfactants have attracted growing interests owing to their special properties, including uniform mesopores and a high specific surface area. Here we focus on fine controls of compositions, morphologies, mesochannel orientations which are important factors for design of mesoporous materials with new functionalities. This Review describes our recent progress toward advanced mesoporous materials. Mesoporous materials now include a variety of inorganic-based materials, for example, transition-metal oxides, carbons, inorganic-organic hybrid materials, polymers, and even metals. Mesoporous metals with metallic frameworks can be produced by using surfactant-based synthesis with electrochemical methods. Owing to their metallic frameworks, mesoporous metals with high electroconductivity and high surface areas hold promise for a wide range of potential applications, such as electronic devices, magnetic recording media, and metal catalysts. Fabrication of mesoporous materials with controllable morphologies is also one of the main subjects in this rapidly developing research field. Mesoporous materials in the form of films, spheres, fibers, and tubes have been obtained by various synthetic processes such as evaporation-mediated direct templating (EDIT), spray-dried techniques, and collaboration with hard-templates such as porous anodic alumina and polymer membranes. Furthermore, we have developed several approaches for orientation controls of 1D mesochannels. The macroscopic-scale controls of mesochannels are important for innovative applications such as molecular-scale devices and electrodes with enhanced diffusions of guest species. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  16. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy

    NASA Astrophysics Data System (ADS)

    Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo

    2018-05-01

    A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.

  17. Nanoscale linear permittivity imaging based on scanning nonlinear dielectric microscopy.

    PubMed

    Hiranaga, Yoshiomi; Chinone, Norimichi; Cho, Yasuo

    2018-05-18

    A nanoscale linear permittivity imaging method based on scanning nonlinear dielectric microscopy (SNDM) was developed. The ∂C/∂z-mode SNDM (∂C/∂z-SNDM) technique described herein employs probe-height modulation to suppress disturbances originating from stray capacitance and to improve measurement stability. This method allows local permittivity distributions to be examined with extremely low noise levels (approximately 0.01 aF) by virtue of the highly sensitive probe. A cross-section of a multilayer oxide film was visualized using ∂C/∂z-SNDM as a demonstration, and numerical simulations of the response signals were conducted to gain additional insights. The experimental signal intensities were found to be in a good agreement with the theoretical values, with the exception of the background components, demonstrating that absolute sample permittivity values could be determined. The signal profiles near the boundaries between different dielectrics were calculated using various vibration amplitudes and the boundary transition widths were obtained. The beneficial aspects of higher-harmonic response imaging are discussed herein, taking into account assessments of spatial resolution and quantitation.

  18. Nanoscale welding aerosol sensing based on whispering gallery modes in a cylindrical silica resonator.

    PubMed

    Lee, Aram; Mills, Thomas; Xu, Yong

    2015-03-23

    We report an experimental technique where one uses a standard silica fiber as a cylindrical whispering gallery mode (WGM) resonator to sense airborne nanoscale aerosols produced by electric arc welding. We find that the accumulation of aerosols on the resonator surface induces a measurable red-shift in resonance frequency, and establish an empirical relation that links the magnitude of resonance shift with the amount of aerosol deposition. The WGM quality factors, by contrast, do not decrease significantly, even for samples with a large percentage of surface area covered by aerosols. Our experimental results are discussed and compared with existing literature on WGM-based nanoparticle sensing.

  19. New directions for nanoscale thermoelectric materials research

    NASA Technical Reports Server (NTRS)

    Dresselhaus, M. S.; Chen, G.; Tang, M. Y.; Yang, R. G.; Lee, H.; Wang, D. Z.; Ren, F.; Fleurial, J. P.; Gogna, P.

    2005-01-01

    Many of the recent advances in enhancing the thermoelectric figure of merit are linked to nanoscale phenomena with both bulk samples containing nanoscale constituents and nanoscale materials exhibiting enhanced thermoelectric performance in their own right. Prior theoretical and experimental proof of principle studies on isolated quantum well and quantum wire samples have now evolved into studies on bulk samples containing nanostructured constituents. In this review, nanostructural composites are shown to exhibit nanostructures and properties that show promise for thermoelectric applications. A review of some of the results obtained to date are presented.

  20. Nanoscale Probing of Thermal, Stress, and Optical Fields under Near-Field Laser Heating

    PubMed Central

    Tang, Xiaoduan; Xu, Shen; Wang, Xinwei

    2013-01-01

    Micro/nanoparticle induced near-field laser ultra-focusing and heating has been widely used in laser-assisted nanopatterning and nanolithography to pattern nanoscale features on a large-area substrate. Knowledge of the temperature and stress in the nanoscale near-field heating region is critical for process control and optimization. At present, probing of the nanoscale temperature, stress, and optical fields remains a great challenge since the heating area is very small (∼100 nm or less) and not immediately accessible for sensing. In this work, we report the first experimental study on nanoscale mapping of particle-induced thermal, stress, and optical fields by using a single laser for both near-field excitation and Raman probing. The mapping results based on Raman intensity variation, wavenumber shift, and linewidth broadening all give consistent conjugated thermal, stress, and near-field focusing effects at a 20 nm resolution (<λ/26, λ = 32 nm). Nanoscale mapping of near-field effects of particles from 1210 down to 160 nm demonstrates the strong capacity of such a technique. By developing a new strategy for physical analysis, we have de-conjugated the effects of temperature, stress, and near-field focusing from the Raman mapping. The temperature rise and stress in the nanoscale heating region is evaluated at different energy levels. High-fidelity electromagnetic and temperature field simulation is conducted to accurately interpret the experimental results. PMID:23555566

  1. Nanoscale size effects on the mechanical properties of platinum thin films and cross-sectional grain morphology

    NASA Astrophysics Data System (ADS)

    Abbas, K.; Alaie, S.; Ghasemi Baboly, M.; Elahi, M. M. M.; Anjum, D. H.; Chaieb, S.; Leseman, Z. C.

    2016-01-01

    The mechanical behavior of polycrystalline Pt thin films is reported for thicknesses of 75 nm, 100 nm, 250 nm, and 400 nm. These thicknesses correspond to transitions between nanocrystalline grain morphology types as found in TEM studies. Thinner samples display a brittle behavior, but as thickness increases the grain morphology evolves, leading to a ductile behavior. During evolution of the morphology, dramatic differences in elastic moduli (105-160 GPa) and strengths (560-1700 MPa) are recorded and explained by the variable morphology. This work suggests that in addition to the in-plane grain size of thin films, the transitions in cross-sectional morphologies of the Pt films significantly affect their mechanical behavior.

  2. Designing nanoscale constructs from atomic thin sheets of graphene, boron nitride and gold nanoparticles for advanced material applications

    NASA Astrophysics Data System (ADS)

    Jasuja, Kabeer

    2011-12-01

    Nanoscale materials invite immense interest from diverse scientific disciplines as these provide access to precisely understand the physical world at their most fundamental atomic level. In concert with this aim of enhancing our understanding of the fundamental behavior at nanoscale, this dissertation presents research on three nanomaterials: Gold nanoparticles (GNPs), Graphene and ultra-thin Boron Nitride sheets (UTBNSs). The three-fold goals which drive this research are: incorporating mobility in nanoparticle based single-electron junction constructs, developing effective strategies to functionalize graphene with nano-forms of metal, and exfoliating ultrathin sheets of Boron Nitride. Gold nanoparticle based electronic constructs can achieve a new degree of operational freedom if nanoscale mobility is incorporated in their design. We achieved such a nano-electromechanical construct by incorporating elastic polymer molecules between GNPs to form 2-dimensional (2-D) molecular junctions which show a nanoscale reversible motion on applying macro scale forces. This GNP-polymer assembly works like a molecular spring opening avenues to maneuver nano components and store energy at nano-scale. Graphene is the first isolated nanomaterial that displays single-atom thickness. It exhibits quantum confinement that enables it to possess a unique combination of fascinating electronic, optical, and mechanical properties. Modifying the surface of graphene is extremely significant to enable its incorporation into applications of interest. We demonstrated the ability of chemically modified graphene sheets to act as GNP stabilizing templates in solution, and utilized this to process GNP composites of graphene. We discovered that GNPs synthesized by chemical or microwave reduction stabilize on graphene-oxide sheets to form snow-flake morphologies and bare-surfaces respectively. These hybrid nano constructs were extensively studied to understand the effect and nature of GNPs

  3. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar; Santala, Melissa K.; Campbell, Geoffrey; van Benthem, Klaus

    2016-08-01

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO3 substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisition during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.

  4. High-speed nanoscale characterization of dewetting via dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hihath, Sahar; Department of Physics, University of California, Davis, 1 Shields Ave., Davis, California 95616; Santala, Melissa K.

    The dewetting of thin films can occur in either the solid or the liquid state for which different mass transport mechanisms are expected to control morphological changes. Traditionally, dewetting dynamics have been examined on time scales between several seconds to hours, and length scales ranging between nanometers and millimeters. The determination of mass transport mechanisms on the nanoscale, however, requires nanoscale spatial resolution and much shorter time scales. This study reports the high-speed observation of dewetting phenomena for kinetically constrained Ni thin films on crystalline SrTiO{sub 3} substrates. Movie-mode Dynamic Transmission Electron Microscopy (DTEM) was used for high-speed image acquisitionmore » during thin film dewetting at different temperatures. DTEM imaging confirmed that the initial stages of film agglomeration include edge retraction, hole formation, and growth. Finite element modeling was used to simulate temperature distributions within the DTEM samples after laser irradiation with different energies. For pulsed laser irradiation at 18 μJ, experimentally observed hole growth suggests that Marangoni flow dominates hole formation in the liquid nickel film. After irradiation with 13.8 μJ, however, the observations suggest that dewetting was initiated by nucleation of voids followed by hole growth through solid-state surface diffusion.« less

  5. Modeling of nanoscale liquid mixture transport by density functional hydrodynamics

    NASA Astrophysics Data System (ADS)

    Dinariev, Oleg Yu.; Evseev, Nikolay V.

    2017-06-01

    Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.

  6. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  7. Synthetic Biology in Aqueous Compartments at the Micro- and Nanoscale

    DOE PAGES

    Boreyko, Jonathan; Caveney, Patrick M.; Norred, Sarah L.; ...

    2017-07-10

    ABSTRACT Aqueous two-phase systems and related emulsion-based structures defined within micro- and nanoscale environments enable a bottom-up synthetic biological approach to mimicking the dynamic compartmentation of biomaterial that naturally occurs within cells. Model systems we have developed to aid in understanding these phenomena include on-demand generation and triggering of reversible phase transitions in ATPS confined in microscale droplets, morpho-logical changes in networks of femtoliter-volume aqueous droplet interface bilayers (DIBs) formulated in microfluidic channels, and temperature-driven phase transitions in interfacial lipid bilayer systems supported on micro and nanostructured substrates. For each of these cases, the dynamics were intimately linked to changesmore » in the chemical potential of water, which becomes increasingly susceptible to confinement and crowding. At these length scales, where interfacial and surface areas predominate over compartment volumes, both evaporation and osmotic forces become enhanced relative to ideal dilute solutions. Finally, consequences of confinement and crowding in cell-sized microcompartments for increasingly complex scenarios will be discussed, from single-molecule mobility measurements with fluorescence correlation spectroscopy to spatio-temporal modulation of resource sharing in cell-free gene expression bursting.« less

  8. Structural Modification and Self-Assembly of Nanoscale Magnetite Synthesised in the Presence of an Anionic Surfactant

    NASA Astrophysics Data System (ADS)

    Malik, S.; Hewitt, I. J.; Powell, A. K.

    2014-07-01

    The earliest reported medical use of magnetite powder for internal applications was in the 10th century A.D. by the Persian physician and philosopher Avicenna of Bokhara [1,2]. Today magnetic nanoparticles are used for magnetic resonance imaging (MRI) and are potential colloidal mediators for cancer magnetic hyperthermia [3]. Twenty years ago magnetite (Fe3O4) was found to be present in the human brain [4] and more recently it has been reported that nanoscale biogenic magnetite (origin and formation uncertain) is associated with neurodegenerative diseases such as Parkinson's, Huntington's and Alzheimer's [5]. Here we show that the synthesis of magnetite in the presence of the surfactant sodium dodecyl sulphate (SDS) gives rise to a variety of nanoscale morphologies, some of which look remarkably similar to magnetite found in organisms, suggesting that similar processes may be involved. Furthermore, these 1D materials with diameters of quantum confined size are of interest in the areas of biosensors [6] and biomedical imaging [7].

  9. Essential Concepts of Nanoscale Science and Technology for High School Students Based on a Delphi Study by the Expert Community

    ERIC Educational Resources Information Center

    Sakhnini, Sohair; Blonder, Ron

    2015-01-01

    Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: "What are the essential concepts of NST that should be taught in high school"? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science…

  10. Nanoscale thermal transport: Theoretical method and application

    NASA Astrophysics Data System (ADS)

    Zeng, Yu-Jia; Liu, Yue-Yang; Zhou, Wu-Xing; Chen, Ke-Qiu

    2018-03-01

    With the size reduction of nanoscale electronic devices, the heat generated by the unit area in integrated circuits will be increasing exponentially, and consequently the thermal management in these devices is a very important issue. In addition, the heat generated by the electronic devices mostly diffuses to the air in the form of waste heat, which makes the thermoelectric energy conversion also an important issue for nowadays. In recent years, the thermal transport properties in nanoscale systems have attracted increasing attention in both experiments and theoretical calculations. In this review, we will discuss various theoretical simulation methods for investigating thermal transport properties and take a glance at several interesting thermal transport phenomena in nanoscale systems. Our emphasizes will lie on the advantage and limitation of calculational method, and the application of nanoscale thermal transport and thermoelectric property. Project supported by the Nation Key Research and Development Program of China (Grant No. 2017YFB0701602) and the National Natural Science Foundation of China (Grant No. 11674092).

  11. Regular and reverse nanoscale stick-slip behavior: Modeling and experiments

    NASA Astrophysics Data System (ADS)

    Landolsi, Fakhreddine; Sun, Yuekai; Lu, Hao; Ghorbel, Fathi H.; Lou, Jun

    2010-02-01

    We recently proposed a new nanoscale friction model based on the bristle interpretation of single asperity contacts. The model is mathematically continuous and dynamic which makes it suitable for implementation in nanomanipulation and nanorobotic modeling. In the present paper, friction force microscope (FFM) scans of muscovite mica samples and vertically aligned multi-wall carbon nanotubes (VAMWCNTs) arrays are conducted. The choice of these materials is motivated by the fact that they exibit different stick-slip behaviors. The corresponding experimental and simulation results are compared. Our nanoscale friction model is shown to represent both the regular and reverse frictional sawtooth characteristics of the muscovite mica and the VAMWCNTs, respectively.

  12. Brain Bases of Morphological Processing in Young Children

    PubMed Central

    Arredondo, Maria M.; Ip, Ka I; Hsu, Lucy Shih-Ju; Tardif, Twila; Kovelman, Ioulia

    2017-01-01

    How does the developing brain support the transition from spoken language to print? Two spoken language abilities form the initial base of child literacy across languages: knowledge of language sounds (phonology) and knowledge of the smallest units that carry meaning (morphology). While phonology has received much attention from the field, the brain mechanisms that support morphological competence for learning to read remain largely unknown. In the present study, young English-speaking children completed an auditory morphological awareness task behaviorally (n = 69, ages 6–12) and in fMRI (n = 16). The data revealed two findings: First, children with better morphological abilities showed greater activation in left temporo-parietal regions previously thought to be important for supporting phonological reading skills, suggesting that this region supports multiple language abilities for successful reading acquisition. Second, children showed activation in left frontal regions previously found active in young Chinese readers, suggesting morphological processes for reading acquisition might be similar across languages. These findings offer new insights for developing a comprehensive model of how spoken language abilities support children’s reading acquisition across languages. PMID:25930011

  13. Development and evaluation of a novel VEGFR2-targeted nanoscale ultrasound contrast agents

    NASA Astrophysics Data System (ADS)

    Yu, Houqiang; Li, Chunfang; He, Xiaoling; Zhou, Qibing; Ding, Mingyue

    2016-04-01

    Recent literatures have reported that the targeted nanoscale ultrasound contrast agents are becoming more and more important in medical application, like ultrasound imaging, detection of perfusion, drug delivery and molecular imaging and so on. In this study, we fabricated an uniform nanoscale bubbles (257 nm with the polydispersity index of 0.458) by incorporation of antibody targeted to vascular endothelial growth factor receptor 2 (VEGFR2) into the nanobubbles membrane by using avidin-biotin interaction. Some fundamental characterizations such as nanobubble suspension, surface morphology, particle size distribution and zeta potential were investigated. The concentration and time-intensity curves (TICs) were obtained with a self-made ultrasound experimental setup in vitro evaluation. In addition, in order to evaluate the contrast enhancement ability and the potential tumor-targeted ability in vivo, normal Wistar rats and nude female BALB/c mice were intravascular administration of the nanobubbles via tail vein injection, respectively. Significant contrast enhancement of ultrasound imaging within liver and tumor were visualized. These experiments demonstrated that the targeted nanobubbles is efficient in ultrasound molecular imaging by enhancement of the contrast effect and have potential capacity for targeted tumor diagnosis and therapy in the future.

  14. Roughness evolution in dewetted Ag and Pt nanoscale films

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Grimaldi, M. G.

    2018-01-01

    The surface roughness of nanoscale metal systems plays a key role in determining the systems properties and, therefore, the electrical, optical, etc. response of nanodevices based on them. In this work, we experimentally analyze the roughness evolution in dewetting Ag and Pt films deposited on SiO2 substrate. In particular, after depositing 15 nm-thick Ag or Pt films on the SiO2 substrate, standard annealing processes were performed below the melting temperatures of the metals so to induce the solid-state dewetting of the films. The surface morphology evolution of the Ag and Pt films was studied by means of Atomic Force Microscopy analysis as a function of the annealing temperature T and of the annealing time t. In particular, these analysis allowed to quantify the roughness σ of the Ag and Pt films versus the annealing temperature T and the annealing time t. The analysis of these plots allowed us to draw combined insights on the dewetting process characteristics, on the dewetting-induced roughening properties, and on the material-dependent parameters by the comparison of the results obtained for the Ag film and the Pt film. These analysis, in addition, open perspectives towards the development of a method to produce supported metal films with controlled surface roughness for designed applications.

  15. Nanoscale tissue engineering: spatial control over cell-materials interactions

    PubMed Central

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G.; Jabbari, Esmaiel; Khademhosseini, Ali

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness the interactions through nanoscale biomaterials engineering in order to study and direct cellular behaviors. Here, we review the nanoscale tissue engineering technologies for both two- and three-dimensional studies (2- and 3D), and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffolds technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D, however, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and the temporal changes in cellular microenvironment. PMID:21451238

  16. Bench-scale synthesis of nanoscale materials

    NASA Technical Reports Server (NTRS)

    Buehler, M. F.; Darab, J. G.; Matson, D. W.; Linehan, J. C.

    1994-01-01

    A novel flow-through hydrothermal method used to synthesize nanoscale powders is introduced by Pacific Northwest Laboratory. The process, Rapid Thermal Decomposition of precursors in Solution (RTDS), uniquely combines high-pressure and high-temperature conditions to rapidly form nanoscale particles. The RTDS process was initially demonstrated on a laboratory scale and was subsequently scaled up to accommodate production rates attractive to industry. The process is able to produce a wide variety of metal oxides and oxyhydroxides. The powders are characterized by scanning and transmission electron microscopic methods, surface-area measurements, and x-ray diffraction. Typical crystallite sizes are less than 20 nanometers, with BET surface areas ranging from 100 to 400 sq m/g. A description of the RTDS process is presented along with powder characterization results. In addition, data on the sintering of nanoscale ZrO2 produced by RTDS are included.

  17. Role of valence changes and nanoscale atomic displacements in BiS2-based superconductors.

    PubMed

    Cheng, Jie; Zhai, Huifei; Wang, Yu; Xu, Wei; Liu, Shengli; Cao, Guanghan

    2016-11-22

    Superconductivity within layered crystal structures has attracted sustained interest among condensed matter community, primarily due to their exotic superconducting properties. EuBiS 2 F is a newly discovered member in the BiS 2 -based superconducting family, which shows superconductivity at 0.3 K without extrinsic doping. With 50 at.% Ce substitution for Eu, superconductivity is enhanced with Tc increased up to 2.2 K. However, the mechanisms for the T c enhancement have not yet been elucidated. In this study, the Ce-doping effect on the self-electron-doped superconductor EuBiS 2 F was investigated by X-ray absorption spectroscopy (XAS). We have established a relationship between Ce-doping and the T c enhancement in terms of Eu valence changes and nanoscale atomic displacements. The new finding sheds light on the interplay among superconductivity, charge and local structure in BiS 2 -based superconductors.

  18. Controlling the Morphology of BDTT-DPP-Based Small Molecules via End-Group Functionalization for Highly Efficient Single and Tandem Organic Photovoltaic Cells.

    PubMed

    Kim, Ji-Hoon; Park, Jong Baek; Yang, Hoichang; Jung, In Hwan; Yoon, Sung Cheol; Kim, Dongwook; Hwang, Do-Hoon

    2015-11-04

    A series of narrow-band gap, π-conjugated small molecules based on diketopyrrolopyrrole (DPP) electron acceptor units coupled with alkylthienyl-substituted-benzodithiophene (BDTT) electron donors were designed and synthesized for use as donor materials in solution-processed organic photovoltaic cells. In particular, by end-group functionalization of the small molecules with fluorine derivatives, the nanoscale morphologies of the photoactive layers of the photovoltaic cells were successfully controlled. The influences of different fluorine-based end-groups on the optoelectronic and morphological properties, carrier mobilities, and the photovoltaic performances of these materials were investigated. A high power conversion efficiency (PCE) of 6.00% under simulated solar light (AM 1.5G) illumination has been achieved for organic photovoltaic cells based on a small-molecule bulk heterojunction system consisting of a trifluoromethylbenzene (CF3) end-group-containing oligomer (BDTT-(DPP)2-CF3) as the donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as the acceptor. As a result, the introduction of CF3 end-groups has been found to enhance both the short circuit current density (JSC) and fill factor (FF). A tandem photovoltaic device comprising an inverted BDTT-(DPP)2-CF3:PC71BM cell and a poly(3-hexylthiophene) (P3HT):indene-C60-bisadduct (IC60BA)-based cell as the top and bottom cell components, respectively, showed a maximum PCE of 8.30%. These results provide valuable guidelines for the rational design of conjugated small molecules for applications in high-performance organic photovoltaic cells. Furthermore, to the best of our knowledge, this is the first report on the design of fluorine-functionalized BDTT-DPP-based small molecules, which have been shown to be a viable candidate for use in inverted tandem cells.

  19. Morphological properties of collagen fibers in porcine lamina propria

    PubMed Central

    Johanes, Iecun; Mihelc, Elaine; Sivasankar, Mahalakshmi; Ivanisevic, Albena

    2009-01-01

    Objectives Collagen influences the biomechanical properties of vocal folds. Altered collagen morphology has been implicated in dysphonia associated with aging and scarring. Documenting the morphological properties of native collagen in healthy vocal folds is essential to understand the structural and functional alterations to collagen with aging and disease. Our primary objective was to quantify the morphological properties of collagen in the vocal fold lamina propria. Our secondary exploratory objective was to investigate the effects of pepsin exposure on the morphological properties of collagen in the lamina propria. Design Experimental, in vitro study with porcine model. Methods Lamina propria was dissected from 26 vocal folds and imaged with Atomic Force Microscopy (AFM). Morphological data on d-periodicity, diameter, and roughness of collagen fibers were obtained. To investigate the effects of pepsin exposure on collagen morphology, vocal fold surface was exposed to pepsin or sham challenge prior to lamina propria dissection and AFM imaging. Results The d-periodicity, diameter, and roughness values for native vocal fold collagen are consistent with literature reports for collagen fibers in other body tissue. Pepsin exposure on vocal fold surface did not appear to change the morphological properties of collagen fibers in the lamina propria. Conclusions Quantitative data on collagen morphology were obtained at nanoscale resolution. Documenting collagen morphology in healthy vocal folds is critical for understanding the physiological changes to collagen with aging and scarring, and for designing biomaterials that match the native topography of lamina propria. PMID:20171830

  20. Video rate morphological processor based on a redundant number representation

    NASA Astrophysics Data System (ADS)

    Kuczborski, Wojciech; Attikiouzel, Yianni; Crebbin, Gregory A.

    1992-03-01

    This paper presents a video rate morphological processor for automated visual inspection of printed circuit boards, integrated circuit masks, and other complex objects. Inspection algorithms are based on gray-scale mathematical morphology. Hardware complexity of the known methods of real-time implementation of gray-scale morphology--the umbra transform and the threshold decomposition--has prompted us to propose a novel technique which applied an arithmetic system without carrying propagation. After considering several arithmetic systems, a redundant number representation has been selected for implementation. Two options are analyzed here. The first is a pure signed digit number representation (SDNR) with the base of 4. The second option is a combination of the base-2 SDNR (to represent gray levels of images) and the conventional twos complement code (to represent gray levels of structuring elements). Operation principle of the morphological processor is based on the concept of the digit level systolic array. Individual processing units and small memory elements create a pipeline. The memory elements store current image windows (kernels). All operation primitives of processing units apply a unified direction of digit processing: most significant digit first (MSDF). The implementation technology is based on the field programmable gate arrays by Xilinx. This paper justified the rationality of a new approach to logic design, which is the decomposition of Boolean functions instead of Boolean minimization.

  1. Designing a Double-Pole Nanoscale Relay Based on a Carbon Nanotube: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Ou-Yang, Zhong-can; Dresselhaus, Mildred S.

    2017-08-01

    We theoretically investigate a novel and powerful double-pole nanoscale relay based on a carbon nanotube, which is one of the nanoelectromechanical switches being able to work under the strong nuclear radiation, and analyze the physical mechanism of the operating stages in the operation, including "pull in," "connection," and "pull back," as well as the key factors influencing the efficiency of the devices. We explicitly provide the analytical expression of the two important operation voltages, Vpull in and Vpull back , therefore clearly showing the dependence of the material properties and geometry of the present devices by the analytical method from basic physics, avoiding complex numerical calculations. Our method is easy to use in preparing the design guide for fabricating the present device and other nanoelectromechanical devices.

  2. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology.

    PubMed

    Schirhagl, Romana; Chang, Kevin; Loretz, Michael; Degen, Christian L

    2014-01-01

    Crystal defects in diamond have emerged as unique objects for a variety of applications, both because they are very stable and because they have interesting optical properties. Embedded in nanocrystals, they can serve, for example, as robust single-photon sources or as fluorescent biomarkers of unlimited photostability and low cytotoxicity. The most fascinating aspect, however, is the ability of some crystal defects, most prominently the nitrogen-vacancy (NV) center, to locally detect and measure a number of physical quantities, such as magnetic and electric fields. This metrology capacity is based on the quantum mechanical interactions of the defect's spin state. In this review, we introduce the new and rapidly evolving field of nanoscale sensing based on single NV centers in diamond. We give a concise overview of the basic properties of diamond, from synthesis to electronic and magnetic properties of embedded NV centers. We describe in detail how single NV centers can be harnessed for nanoscale sensing, including the physical quantities that may be detected, expected sensitivities, and the most common measurement protocols. We conclude by highlighting a number of the diverse and exciting applications that may be enabled by these novel sensors, ranging from measurements of ion concentrations and membrane potentials to nanoscale thermometry and single-spin nuclear magnetic resonance.

  3. Real-Time Nanoscale Open-Circuit Voltage Dynamics of Perovskite Solar Cells.

    PubMed

    Garrett, Joseph L; Tennyson, Elizabeth M; Hu, Miao; Huang, Jinsong; Munday, Jeremy N; Leite, Marina S

    2017-04-12

    Hybrid organic-inorganic perovskites based on methylammonium lead (MAPbI 3 ) are an emerging material with great potential for high-performance and low-cost photovoltaics. However, for perovskites to become a competitive and reliable solar cell technology their instability and spatial variation must be understood and controlled. While the macroscopic characterization of the devices as a function of time is very informative, a nanoscale identification of their real-time local optoelectronic response is still missing. Here, we implement a four-dimensional imaging method through illuminated heterodyne Kelvin probe force microscopy to spatially (<50 nm) and temporally (16 s/scan) resolve the voltage of perovskite solar cells in a low relative humidity environment. Local open-circuit voltage (V oc ) images show nanoscale sites with voltage variation >300 mV under 1-sun illumination. Surprisingly, regions of voltage that relax in seconds and after several minutes consistently coexist. Time-dependent changes of the local V oc are likely due to intragrain ion migration and are reversible at low injection level. These results show for the first time the real-time transient behavior of the V oc in perovskite solar cells at the nanoscale. Understanding and controlling the light-induced electrical changes that affect device performance are critical to the further development of stable perovskite-based solar technologies.

  4. Nanoscale Structure of Type I Collagen Fibrils: Quantitative Measurement of D-spacing

    PubMed Central

    Erickson, Blake; Fang, Ming; Wallace, Joseph M.; Orr, Bradford G.; Les, Clifford M.; Holl, Mark M. Banaszak

    2012-01-01

    This paper details a quantitative method to measure the D-periodic spacing of Type I collagen fibrils using Atomic Force Microscopy coupled with analysis using a 2D Fast Fourier Transform approach. Instrument calibration, data sampling and data analysis are all discussed and comparisons of the data to the complementary methods of electron microscopy and X-ray scattering are made. Examples of the application of this new approach to the analysis of Type I collagen morphology in disease models of estrogen depletion and Osteogenesis Imperfecta are provided. We demonstrate that it is the D-spacing distribution, not the D-spacing mean, that showed statistically significant differences in estrogen depletion associated with early stage Osteoporosis and Osteogenesis Imperfecta. The ability to quantitatively characterize nanoscale morphological features of Type I collagen fibrils will provide important structural information regarding Type I collagen in many research areas, including tissue aging and disease, tissue engineering, and gene knock out studies. Furthermore, we also envision potential clinical applications including evaluation of tissue collagen integrity under the impact of diseases or drug treatments. PMID:23027700

  5. Tuning compliance of nanoscale polyelectrolyte multilayers to modulate cell adhesion.

    PubMed

    Thompson, Michael T; Berg, Michael C; Tobias, Irene S; Rubner, Michael F; Van Vliet, Krystyn J

    2005-12-01

    It is well known that mechanical stimuli induce cellular responses ranging from morphological reorganization to mineral secretion, and that mechanical stimulation through modulation of the mechanical properties of cell substrata affects cell function in vitro and in vivo. However, there are few approaches by which the mechanical compliance of the substrata to which cells adhere and grow can be determined quantitatively and varied independent of substrata chemical composition. General methods by which mechanical state can be quantified and modulated at the cell population level are critical to understanding and engineering materials that promote and maintain cell phenotype for applications such as vascular tissue constructs. Here, we apply contact mechanics of nanoindentation to measure the mechanical compliance of weak polyelectrolyte multilayers (PEMs) of nanoscale thickness, and explore the effects of this tunable compliance for cell substrata applications. We show that the nominal elastic moduli E(s) of these substrata depend directly on the pH at which the PEMs are assembled, and can be varied over several orders of magnitude for given polycation/polyanion pairs. Further, we demonstrate that the attachment and proliferation of human microvascular endothelial cells (MVECs) can be regulated through independent changes in the compliance and terminal polyion layer of these PEM substrata. These data indicate that substrate mechanical compliance is a strong determinant of cell fate, and that PEMs of nanoscale thickness provide a valuable tool to vary the external mechanical environment of cells independently of chemical stimuli.

  6. Optical and electrical properties of GaN-based light emitting diodes grown on micro- and nano-scale patterned Si substrate

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Hsueh; Lin, Chien-Chung; Deng, Dongmei; Kuo, Hao-Chung; Lau, Kei-May

    2011-10-01

    We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission electron microscopy (TEM) images reveal the suppression of threading dislocation density in InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more homogeneous active quantum well region growth on nano-porous substrates. From temperature dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power LEDs on Si substrates.

  7. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples.

    PubMed

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-08

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  8. Symmetry Breaking by Surface Blocking: Synthesis of Bimorphic Silver Nanoparticles, Nanoscale Fishes and Apples

    NASA Astrophysics Data System (ADS)

    Cathcart, Nicole; Kitaev, Vladimir

    2016-09-01

    A powerful approach to augment the diversity of well-defined metal nanoparticle (MNP) morphologies, essential for MNP advanced applications, is symmetry breaking combined with seeded growth. Utilizing this approach enabled the formation of bimorphic silver nanoparticles (bi-AgNPs) consisting of two shapes linked by one regrowth point. Bi-AgNPs were formed by using an adsorbing polymer, poly(acrylic acid), PAA, to block the surface of a decahedral AgNP seed and restricting growth of new silver to a single nucleation point. First, we have realized 2-D growth of platelets attached to decahedra producing nanoscale shapes reminiscent of apples, fishes, mushrooms and kites. 1-D bimorphic growth of rods (with chloride) and 3-D bimorphic growth of cubes and bipyramids (with bromide) were achieved by using halides to induce preferential (100) stabilization over (111) of platelets. Furthermore, the universality of the formation of bimorphic nanoparticles was demonstrated by using different seeds. Bi-AgNPs exhibit strong SERS enhancement due to regular cavities at the necks. Overall, the reported approach to symmetry breaking and bimorphic nanoparticle growth offers a powerful methodology for nanoscale shape design.

  9. Nanoscale hydroxyapatite particles for bone tissue engineering.

    PubMed

    Zhou, Hongjian; Lee, Jaebeom

    2011-07-01

    Hydroxyapatite (HAp) exhibits excellent biocompatibility with soft tissues such as skin, muscle and gums, making it an ideal candidate for orthopedic and dental implants or components of implants. Synthetic HAp has been widely used in repair of hard tissues, and common uses include bone repair, bone augmentation, as well as coating of implants or acting as fillers in bone or teeth. However, the low mechanical strength of normal HAp ceramics generally restricts its use to low load-bearing applications. Recent advancements in nanoscience and nanotechnology have reignited investigation of nanoscale HAp formation in order to clearly define the small-scale properties of HAp. It has been suggested that nano-HAp may be an ideal biomaterial due to its good biocompatibility and bone integration ability. HAp biomedical material development has benefited significantly from advancements in nanotechnology. This feature article looks afresh at nano-HAp particles, highlighting the importance of size, crystal morphology control, and composites with other inorganic particles for biomedical material development. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Control of nanoscale atomic arrangement in multicomponent thin films by temporally modulated vapour fluxes

    NASA Astrophysics Data System (ADS)

    Sarakinos, Kostas

    2016-09-01

    Synthesis of multicomponent thin films using vapor fluxes with a modulated deposition pattern is a potential route for accessing a wide gamut of atomic arrangements and morphologies for property tuning. In the current study, we present a research concept that allows for understanding the combined effect of flux modulation, kinetics and thermodynamics on the growth of multinary thin films. This concept entails the combined use of thin film synthesis by means of multiatomic vapor fluxes modulated with sub-monolayer resolution, deterministic growth simulations and nanoscale microstructure probes. Using this research concept we study structure formation within the archetype immiscible Ag-Cu binary system showing that atomic arrangement and morphology at different length scales is governed by diffusion of near-surface Ag atoms to encapsulate 3D Cu islands growing on 2D Ag layers. Moreover, we explore the relevance of the mechanism outlined above for morphology evolution and structure formation within the miscible Ag-Au binary system. The knowledge generated and the methodology presented herein provides the scientific foundation for tailoring atomic arrangement and physical properties in a wide range of miscible and immiscible multinary systems.

  11. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  12. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.; ...

    2018-03-01

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  13. Nanoscale Materials for Human Space Exploration: Regenerable CO2 Removal

    NASA Technical Reports Server (NTRS)

    Arepalli, Sivaram; Nikolaev, Pasha; Gorelik, Olga; Huffman, Chad; Moloney, Padraig; Allada, Ram; Yowell, Leonard

    2005-01-01

    This viewgraph presentation reviews the use of Nanoscale materials in CO2 removal. It presented the background and review work on regenerable CO2 removal for spaceflight application. It demonstrated a new strategy for developing solid-supported amine absorbents based on carbon nanotube materials.

  14. Neutron scattering studies of nano-scale wood-water interactions

    Treesearch

    Nayomi Z. Plaza Rodriguez

    2017-01-01

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding of the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My...

  15. Trajectory-based morphological operators: a model for efficient image processing.

    PubMed

    Jimeno-Morenilla, Antonio; Pujol, Francisco A; Molina-Carmona, Rafael; Sánchez-Romero, José L; Pujol, Mar

    2014-01-01

    Mathematical morphology has been an area of intensive research over the last few years. Although many remarkable advances have been achieved throughout these years, there is still a great interest in accelerating morphological operations in order for them to be implemented in real-time systems. In this work, we present a new model for computing mathematical morphology operations, the so-called morphological trajectory model (MTM), in which a morphological filter will be divided into a sequence of basic operations. Then, a trajectory-based morphological operation (such as dilation, and erosion) is defined as the set of points resulting from the ordered application of the instant basic operations. The MTM approach allows working with different structuring elements, such as disks, and from the experiments, it can be extracted that our method is independent of the structuring element size and can be easily applied to industrial systems and high-resolution images.

  16. Electrophoretic Separation of Single Particles Using Nanoscale Thermoplastic Columns.

    PubMed

    Weerakoon-Ratnayake, Kumuditha M; Uba, Franklin I; Oliver-Calixte, Nyoté J; Soper, Steven A

    2016-04-05

    Phenomena associated with microscale electrophoresis separations cannot, in many cases, be applied to the nanoscale. Thus, understanding the electrophoretic characteristics associated with the nanoscale will help formulate relevant strategies that can optimize the performance of separations carried out on columns with at least one dimension below 150 nm. Electric double layer (EDL) overlap, diffusion, and adsorption/desorption properties and/or dielectrophoretic effects giving rise to stick/slip motion are some of the processes that can play a role in determining the efficiency of nanoscale electrophoretic separations. We investigated the performance characteristics of electrophoretic separations carried out in nanoslits fabricated in poly(methyl methacrylate), PMMA, devices. Silver nanoparticles (AgNPs) were used as the model system with tracking of their transport via dark field microscopy and localized surface plasmon resonance. AgNPs capped with citrate groups and the negatively charged PMMA walls (induced by O2 plasma modification of the nanoslit walls) enabled separations that were not apparent when these particles were electrophoresed in microscale columns. The separation of AgNPs based on their size without the need for buffer additives using PMMA nanoslit devices is demonstrated herein. Operational parameters such as the electric field strength, nanoslit dimensions, and buffer composition were evaluated as to their effects on the electrophoretic performance, both in terms of efficiency (plate numbers) and resolution. Electrophoretic separations performed at high electric field strengths (>200 V/cm) resulted in higher plate numbers compared to lower fields due to the absence of stick/slip motion at the higher electric field strengths. Indeed, 60 nm AgNPs could be separated from 100 nm particles in free solution using nanoscale electrophoresis with 100 μm long columns.

  17. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  18. Nanoscale plasmonic waveguides for filtering and demultiplexing devices

    NASA Astrophysics Data System (ADS)

    Akjouj, A.; Noual, A.; Pennec, Y.; Bjafari-Rouhani, B.

    2010-05-01

    Numerical simulations, based on a FDTD (finite-difference-time-domain) method, of infrared light propagation for add/drop filtering in two-dimensional (2D) Ag-SiO2-Ag resonators are reported to design 2D Y-bent plasmonic waveguides with possible applications in telecommunication WDM (wavelength demultiplexing). First, we study optical transmission and reflection of a nanoscale SiO2 waveguide coupled to a nanocavity of the same insulator located either inside or on the side of a linear waveguide sandwiched between Ag. According to the inside or outside positioning of the nanocavity with respect to the waveguide, the transmission spectrum displays peaks or dips, respectively, which occur at the same central frequency. A fundamental study of the possible cavity modes in the near-infrared frequency band is also given. These filtering properties are then exploited to propose a nanoscale demultiplexer based on a Y-shaped plasmonic waveguide for separation of two different wavelengths, in selection or rejection, from an input broadband signal around 1550 nm. We detail coupling of the 2D add/drop Y connector to two cavities inserted on each of its branches.

  19. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale

    NASA Astrophysics Data System (ADS)

    Deng, Zhao; Smolyanitsky, Alex; Li, Qunyang; Feng, Xi-Qiao; Cannara, Rachel J.

    2012-12-01

    From the early tribological studies of Leonardo da Vinci to Amontons’ law, friction has been shown to increase with increasing normal load. This trend continues to hold at the nanoscale, where friction can vary nonlinearly with normal load. Here we present nanoscale friction force microscopy (FFM) experiments for a nanoscale probe tip sliding on a chemically modified graphite surface in an atomic force microscope (AFM). Our results demonstrate that, when adhesion between the AFM tip and surface is enhanced relative to the exfoliation energy of graphite, friction can increase as the load decreases under tip retraction. This leads to the emergence of an effectively negative coefficient of friction in the low-load regime. We show that the magnitude of this coefficient depends on the ratio of tip-sample adhesion to the exfoliation energy of graphite. Through both atomistic- and continuum-based simulations, we attribute this unusual phenomenon to a reversible partial delamination of the topmost atomic layers, which then mimic few- to single-layer graphene. Lifting of these layers with the AFM tip leads to greater deformability of the surface with decreasing applied load. This discovery suggests that the lamellar nature of graphite yields nanoscale tribological properties outside the predictive capacity of existing continuum mechanical models.

  20. Breaking the GaN material limits with nanoscale vertical polarisation super junction structures: A simulation analysis

    NASA Astrophysics Data System (ADS)

    Unni, Vineet; Sankara Narayanan, E. M.

    2017-04-01

    This is the first report on the numerical analysis of the performance of nanoscale vertical superjunction structures based on impurity doping and an innovative approach that utilizes the polarisation properties inherent in III-V nitride semiconductors. Such nanoscale vertical polarisation super junction structures can be realized by employing a combination of epitaxial growth along the non-polar crystallographic axes of Wurtzite GaN and nanolithography-based processing techniques. Detailed numerical simulations clearly highlight the limitations of a doping based approach and the advantages of the proposed solution for breaking the unipolar one-dimensional material limits of GaN by orders of magnitude.

  1. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity

    PubMed Central

    Evans, Benjamin A.; Fiser, Briana L.; Prins, Willem J.; Rapp, Daniel J.; Shields, Adam R.; Glass, Daniel R.; Superfine, R.

    2011-01-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. PMID:22184482

  2. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity.

    PubMed

    Evans, Benjamin A; Fiser, Briana L; Prins, Willem J; Rapp, Daniel J; Shields, Adam R; Glass, Daniel R; Superfine, R

    2012-02-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe(2)0(3)) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.

  3. NeuroLines: A Subway Map Metaphor for Visualizing Nanoscale Neuronal Connectivity.

    PubMed

    Al-Awami, Ali K; Beyer, Johanna; Strobelt, Hendrik; Kasthuri, Narayanan; Lichtman, Jeff W; Pfister, Hanspeter; Hadwiger, Markus

    2014-12-01

    We present NeuroLines, a novel visualization technique designed for scalable detailed analysis of neuronal connectivity at the nanoscale level. The topology of 3D brain tissue data is abstracted into a multi-scale, relative distance-preserving subway map visualization that allows domain scientists to conduct an interactive analysis of neurons and their connectivity. Nanoscale connectomics aims at reverse-engineering the wiring of the brain. Reconstructing and analyzing the detailed connectivity of neurons and neurites (axons, dendrites) will be crucial for understanding the brain and its development and diseases. However, the enormous scale and complexity of nanoscale neuronal connectivity pose big challenges to existing visualization techniques in terms of scalability. NeuroLines offers a scalable visualization framework that can interactively render thousands of neurites, and that supports the detailed analysis of neuronal structures and their connectivity. We describe and analyze the design of NeuroLines based on two real-world use-cases of our collaborators in developmental neuroscience, and investigate its scalability to large-scale neuronal connectivity data.

  4. Atomic layer deposition: an enabling technology for the growth of functional nanoscale semiconductors

    NASA Astrophysics Data System (ADS)

    Biyikli, Necmi; Haider, Ali

    2017-09-01

    In this paper, we present the progress in the growth of nanoscale semiconductors grown via atomic layer deposition (ALD). After the adoption by semiconductor chip industry, ALD became a widespread tool to grow functional films and conformal ultra-thin coatings for various applications. Based on self-limiting and ligand-exchange-based surface reactions, ALD enabled the low-temperature growth of nanoscale dielectric, metal, and semiconductor materials. Being able to deposit wafer-scale uniform semiconductor films at relatively low-temperatures, with sub-monolayer thickness control and ultimate conformality, makes ALD attractive for semiconductor device applications. Towards this end, precursors and low-temperature growth recipes are developed to deposit crystalline thin films for compound and elemental semiconductors. Conventional thermal ALD as well as plasma-assisted and radical-enhanced techniques have been exploited to achieve device-compatible film quality. Metal-oxides, III-nitrides, sulfides, and selenides are among the most popular semiconductor material families studied via ALD technology. Besides thin films, ALD can grow nanostructured semiconductors as well using either template-assisted growth methods or bottom-up controlled nucleation mechanisms. Among the demonstrated semiconductor nanostructures are nanoparticles, nano/quantum-dots, nanowires, nanotubes, nanofibers, nanopillars, hollow and core-shell versions of the afore-mentioned nanostructures, and 2D materials including transition metal dichalcogenides and graphene. ALD-grown nanoscale semiconductor materials find applications in a vast amount of applications including functional coatings, catalysis and photocatalysis, renewable energy conversion and storage, chemical sensing, opto-electronics, and flexible electronics. In this review, we give an overview of the current state-of-the-art in ALD-based nanoscale semiconductor research including the already demonstrated and future applications.

  5. Nano-scale processes behind ion-beam cancer therapy

    NASA Astrophysics Data System (ADS)

    Surdutovich, Eugene; Garcia, Gustavo; Mason, Nigel; Solov'yov, Andrey V.

    2016-04-01

    This topical issue collates a series of papers based on new data reported at the third Nano-IBCT Conference of the COST Action MP1002: Nanoscale Insights into Ion Beam Cancer Therapy, held in Boppard, Germany, from October 27th to October 31st, 2014. The Nano-IBCT COST Action was launched in December 2010 and brought together more than 300 experts from different disciplines (physics, chemistry, biology) with specialists in radiation damage of biological matter from hadron-therapy centres, and medical institutions. This meeting followed the first and the second conferences of the Action held in October 2011 in Caen, France and in May 2013 in Sopot, Poland respectively. This conference series provided a focus for the European research community and has highlighted the pioneering research into the fundamental processes underpinning ion beam cancer therapy. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.

  6. Chaotic oscillation and random-number generation based on nanoscale optical-energy transfer.

    PubMed

    Naruse, Makoto; Kim, Song-Ju; Aono, Masashi; Hori, Hirokazu; Ohtsu, Motoichi

    2014-08-12

    By using nanoscale energy-transfer dynamics and density matrix formalism, we demonstrate theoretically and numerically that chaotic oscillation and random-number generation occur in a nanoscale system. The physical system consists of a pair of quantum dots (QDs), with one QD smaller than the other, between which energy transfers via optical near-field interactions. When the system is pumped by continuous-wave radiation and incorporates a timing delay between two energy transfers within the system, it emits optical pulses. We refer to such QD pairs as nano-optical pulsers (NOPs). Irradiating an NOP with external periodic optical pulses causes the oscillating frequency of the NOP to synchronize with the external stimulus. We find that chaotic oscillation occurs in the NOP population when they are connected by an external time delay. Moreover, by evaluating the time-domain signals by statistical-test suites, we confirm that the signals are sufficiently random to qualify the system as a random-number generator (RNG). This study reveals that even relatively simple nanodevices that interact locally with each other through optical energy transfer at scales far below the wavelength of irradiating light can exhibit complex oscillatory dynamics. These findings are significant for applications such as ultrasmall RNGs.

  7. Stencil Nano Lithography Based on a Nanoscale Polymer Shadow Mask: Towards Organic Nanoelectronics

    PubMed Central

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E. B.; Hyoung Lee, Wi; Wook Lee, Sang

    2015-01-01

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices. PMID:25959389

  8. Stencil nano lithography based on a nanoscale polymer shadow mask: towards organic nanoelectronics.

    PubMed

    Yun, Hoyeol; Kim, Sangwook; Kim, Hakseong; Lee, Junghyun; McAllister, Kirstie; Kim, Junhyung; Pyo, Sengmoon; Sung Kim, Jun; Campbell, Eleanor E B; Hyoung Lee, Wi; Wook Lee, Sang

    2015-05-11

    A stencil lithography technique has been developed to fabricate organic-material-based electronic devices with sub-micron resolution. Suspended polymethylmethacrylate (PMMA) membranes were used as shadow masks for defining organic channels and top electrodes. Arrays of pentacene field effect transistors (FETs) with various channel lengths from 50 μm down to 500 nm were successfully produced from the same batch using this technique. Electrical transport measurements showed that the electrical contacts of all devices were stable and the normalized contact resistances were much lower than previously studied organic FETs. Scaling effects, originating from the bulk space charge current, were investigated by analyzing the channel-length-dependent mobility and hysteresis behaviors. This novel lithography method provides a reliable means for studying the fundamental transport properties of organic materials at the nanoscale as well as enabling potential applications requiring the fabrication of integrated organic nanoelectronic devices.

  9. Removal of water contaminants by nanoscale zero-valent iron immobilized in PAN-based oxidized membrane

    NASA Astrophysics Data System (ADS)

    Liu, Chunyi; Li, Xiang; Ma, Bomou; Qin, Aiwen; He, Chunju

    2014-12-01

    The functionalizing nanoporous polyacrylonitrile-based oxidized membrane (PAN-OM) firmly immobilized with highly reactive nanoscale zero-valent iron (NZVI) are successfully prepared via an innovative in situ synthesis method. Due to the formation of ladder structure, the PAN-OM present excellent thermal and chemical stabilities as a new carrier for the in-situ growth of NZVI via firm chelation and reduction action, respectively, which prevent the aggregation and release of NZVI. The developed NZVI-immobilized membrane present effective decolorizing efficiency to both anionic methyl blue and cationic methylene blue with a pseudo-first-order decay and degrading efficiency to trichloroethylene (TCE). The regeneration and stability results show that NZVI-immobilized membrane system can be regenerated without obvious performance reduction, which remain the reactivity after half a year storage period. These results suggest that PAN-based oxidized membrane immobilized with NZVI exhibit significant potential for environmental applications.

  10. Simulations of Metallic Nanoscale Structures

    NASA Astrophysics Data System (ADS)

    Jacobsen, Karsten W.

    2003-03-01

    Density-functional-theory calculations can be used to understand and predict materials properties based on their nanoscale composition and structure. In combination with efficient search algorithms DFT can furthermore be applied in the nanoscale design of optimized materials. The first part of the talk will focus on two different types of nanostructures with an interesting interplay between chemical activity and conducting states. MoS2 nanoclusters are known for their catalyzing effect in the hydrodesulfurization process which removes sulfur-containing molecules from oil products. MoS2 is a layered material which is insulating. However, DFT calculations indicates the exsistence of metallic states at some of the edges of MoS2 nanoclusters, and the calculations show that the conducting states are not passivated by for example the presence of hydrogen gas. The edge states may play an important role for the chemical activity of MoS_2. Metallic nanocontacts can be formed during the breaking of a piece of metal, and atomically thin structures with conductance of only a single quantum unit may be formed. Such open metallic structures are chemically very active and susceptible to restructuring through interactions with molecular gases. DFT calculations show for example that atomically thin gold wires may incorporate oxygen atoms forming a new type of metallic nanowire. Adsorbates like hydrogen may also affect the conductance. In the last part of the talk I shall discuss the possibilities for designing alloys with optimal mechanical properties based on a combination of DFT calculations with genetic search algorithms. Simulaneous optimization of several parameters (stability, price, compressibility) is addressed through the determination of Pareto optimal alloy compositions within a large database of more than 64000 alloys.

  11. Promoting Morphology with a Favorable Density of States Using Diiodooctane to Improve Organic Photovoltaic Device Efficiency and Charge Carrier Lifetimes

    DOE PAGES

    Garner, Logan E.; Bera, Abhijit; Larson, Bryon W.; ...

    2017-06-06

    Due to the inherent challenges in probing nanoscale properties within bulk heterojunction (BHJ) active layers of organic photovoltaic (OPV) devices, the relationship between morphology and nanoscale electronic structure is not well understood. Here, we employ scanning tunneling microscopy (STM) dI/dV imaging and localized density of states (DOS) spectra to investigate the influence of additives on morphology in a high-performance OPV system. In short, we are able to correlate the use of diiodooctane (DIO) additive with significant changes to the distribution of the localized DOS, most notably a broader distribution of PCE10 polymer HOMO levels and PC70BM fullerene LUMO levels, asmore » well as significantly smaller domain sizes and significantly higher overall device efficiencies. We further correlate this data with a nearly 3-fold increase in charge carrier lifetimes in the active layer when DIO is employed, determined by time-resolved microwave conductivity (TRMC) measurements. In conclusion, the results are consistent with the growing body of literature evidence that DIO promotes the formation of a polymer/fullerene mixed phase and therefore highlight the unique information that this combination of techniques can provide when investigating OPV active layer morphology.« less

  12. Promoting Morphology with a Favorable Density of States Using Diiodooctane to Improve Organic Photovoltaic Device Efficiency and Charge Carrier Lifetimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garner, Logan E.; Bera, Abhijit; Larson, Bryon W.

    Due to the inherent challenges in probing nanoscale properties within bulk heterojunction (BHJ) active layers of organic photovoltaic (OPV) devices, the relationship between morphology and nanoscale electronic structure is not well understood. Here, we employ scanning tunneling microscopy (STM) dI/dV imaging and localized density of states (DOS) spectra to investigate the influence of additives on morphology in a high-performance OPV system. In short, we are able to correlate the use of diiodooctane (DIO) additive with significant changes to the distribution of the localized DOS, most notably a broader distribution of PCE10 polymer HOMO levels and PC70BM fullerene LUMO levels, asmore » well as significantly smaller domain sizes and significantly higher overall device efficiencies. We further correlate this data with a nearly 3-fold increase in charge carrier lifetimes in the active layer when DIO is employed, determined by time-resolved microwave conductivity (TRMC) measurements. In conclusion, the results are consistent with the growing body of literature evidence that DIO promotes the formation of a polymer/fullerene mixed phase and therefore highlight the unique information that this combination of techniques can provide when investigating OPV active layer morphology.« less

  13. A microfluidic device for real-time monitoring of Bacillus subtilis bacterial spores during germination based on non-specific physicochemical interactions on the nanoscale level.

    PubMed

    Zabrocka, L; Langer, K; Michalski, A; Kocik, J; Langer, J J

    2015-01-07

    A microfluidic device for studies on the germination of bacterial spores (e.g. Bacillus subtilis) based on non-specific interactions on the nanoscale is presented. A decrease in the population of spores during germination followed by the appearance of transition forms and an increase in the number of vegetative cells can be registered directly and simultaneously by using the microfluidic device, which is equipped with a conductive polymer layer (polyaniline) in the form of a nano-network. The lab-on-a-chip-type device, operating in a continuous flow regime, allows monitoring of germination of bacterial spores and analysis of the process in detail. The procedure is fast and accurate enough for quantitative real-time monitoring of the main steps of germination, including final transformation of the spores into vegetative cells. All of this is done without the use of biomarkers or any bio-specific materials, such as enzymes, antibodies and aptamers, and is simply based on an analysis of physicochemical interactions on the nanoscale level.

  14. Probing and manipulating magnetization at the nanoscale

    NASA Astrophysics Data System (ADS)

    Samarth, Nitin

    2012-02-01

    Combining semiconductors with magnetism in hetero- and nano-structured geometries provides a powerful means of exploring the interplay between spin-dependent transport and nanoscale magnetism. We describe two recent studies in this context. First, we use spin-dependent transport in ferromagnetic semiconductor thin films to provide a new window into nanoscale magnetism [1]: here, we exploit the large anomalous Hall effect in a ferromagnetic semiconductor as a nanoscale probe of the reversible elastic behavior of magnetic domain walls and gain insight into regimes of domain wall behavior inaccessible to more conventional optical techniques. Next, we describe novel ways to create self-assembled hybrid semiconductor/ferromagnet core-shell nanowires [2] and show how magnetoresistance measurements in single nanowires, coupled with micromagnetic simulations, can provide detailed insights into the magnetization reversal process in nanoscale ferromagnets [3]. The work described here was carried out in collaboration with Andrew Balk, Jing Liang, Nicholas Dellas, Mark Nowakowski, David Rench, Mark Wilson, Roman Engel-Herbert, Suzanne Mohney, Peter Schiffer and David Awschalom. This work is supported by ONR, NSF and the NSF-MRSEC program.[4pt] [1] A. L. Balk et al., Phys. Rev.Lett. 107, 077205 (2011).[0pt] [2] N. J. Dellas et al., Appl. Phys. Lett. 97, 072505 (2010).[0pt] [3] J. Liang et al., in preparation.

  15. Bio-inspired routes for synthesizing efficient nanoscale platinum electrocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cha, Jennifer N.; Wang, Joseph

    2014-08-31

    The overall objective of the proposed research is to use fundamental advances in bionanotechnology to design powerful platinum nanocrystal electrocatalysts for fuel cell applications. The new economically-viable, environmentally-friendly, bottom-up biochemical synthetic strategy will produce platinum nanocrystals with tailored size, shape and crystal orientation, hence leading to a maximum electrochemical reactivity. There are five specific aims to the proposed bio-inspired strategy for synthesizing efficient electrocatalytic platinum nanocrystals: (1) isolate peptides that both selectively bind particular crystal faces of platinum and promote the nucleation and growth of particular nanocrystal morphologies, (2) pattern nanoscale 2-dimensional arrays of platinum nucleating peptides from DNA scaffolds,more » (3) investigate the combined use of substrate patterned peptides and soluble peptides on nanocrystal morphology and growth (4) synthesize platinum crystals on planar and large-area carbon electrode supports, and (5) perform detailed characterization of the electrocatalytic behavior as a function of catalyst size, shape and morphology. Project Description and Impact: This bio-inspired collaborative research effort will address key challenges in designing powerful electrocatalysts for fuel cell applications by employing nucleic acid scaffolds in combination with peptides to perform specific, environmentally-friendly, simultaneous bottom-up biochemical synthesis and patterned assembly of highly uniform and efficient platinum nanocrystal catalysts. Bulk synthesis of nanoparticles usually produces a range of sizes, accessible catalytic sites, crystal morphologies, and orientations, all of which lead to inconsistent catalytic activities. In contrast, biological systems routinely demonstrate exquisite control over inorganic syntheses at neutral pH and ambient temperature and pressures. Because the orientation and arrangement of the templating biomolecules can be

  16. Microscopic morphology evolution during ion beam smoothing of Zerodur® surfaces.

    PubMed

    Liao, Wenlin; Dai, Yifan; Xie, Xuhui; Zhou, Lin

    2014-01-13

    Ion sputtering of Zerodur material often results in the formation of nanoscale microstructures on the surfaces, which seriously influences optical surface quality. In this paper, we describe the microscopic morphology evolution during ion sputtering of Zerodur surfaces through experimental researches and theoretical analysis, which shows that preferential sputtering together with curvature-dependent sputtering overcomes ion-induced smoothing mechanisms leading to granular nanopatterns formation in morphology and the coarsening of the surface. Consequently, we propose a new method for ion beam smoothing (IBS) of Zerodur optics assisted by deterministic ion beam material adding (IBA) technology. With this method, Zerodur optics with surface roughness down to 0.15 nm root mean square (RMS) level is obtained through the experimental investigation, which demonstrates the feasibility of our proposed method.

  17. Method to determine thermal profiles of nanoscale circuitry

    DOEpatents

    Zettl, Alexander K; Begtrup, Gavi E

    2013-04-30

    A platform that can measure the thermal profiles of devices with nanoscale resolution has been developed. The system measures the local temperature by using an array of nanoscale thermometers. This process can be observed in real time using a high resolution imagining technique such as electron microscopy. The platform can operate at extremely high temperatures.

  18. Nanoscale Membrane Curvature detected by Polarized Localization Microscopy

    NASA Astrophysics Data System (ADS)

    Kelly, Christopher; Maarouf, Abir; Woodward, Xinxin

    Nanoscale membrane curvature is a necessary component of countless cellular processes. Here we present Polarized Localization Microscopy (PLM), a super-resolution optical imaging technique that enables the detection of nanoscale membrane curvature with order-of-magnitude improvements over comparable optical techniques. PLM combines the advantages of polarized total internal reflection fluorescence microscopy and fluorescence localization microscopy to reveal single-fluorophore locations and orientations without reducing localization precision by point spread function manipulation. PLM resolved nanoscale membrane curvature of a supported lipid bilayer draped over polystyrene nanoparticles on a glass coverslip, thus creating a model membrane with coexisting flat and curved regions and membrane radii of curvature as small as 20 nm. Further, PLM provides single-molecule trajectories and the aggregation of curvature-inducing proteins with super-resolution to reveal the correlated effects of membrane curvature, dynamics, and molecular sorting. For example, cholera toxin subunit B has been observed to induce nanoscale membrane budding and concentrate at the bud neck. PLM reveals a previously hidden and critical information of membrane topology.

  19. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    PubMed

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA

  20. Highly repeatable nanoscale phase coexistence in vanadium dioxide films

    NASA Astrophysics Data System (ADS)

    Huffman, T. J.; Lahneman, D. J.; Wang, S. L.; Slusar, T.; Kim, Bong-Jun; Kim, Hyun-Tak; Qazilbash, M. M.

    2018-02-01

    It is generally believed that in first-order phase transitions in materials with imperfections, the formation of phase domains must be affected to some extent by stochastic (probabilistic) processes. The stochasticity would lead to unreliable performance in nanoscale devices that have the potential to exploit the transformation of physical properties in a phase transition. Here we show that stochasticity at nanometer length scales is completely suppressed in the thermally driven metal-insulator transition (MIT) in sputtered vanadium dioxide (V O2 ) films. The nucleation and growth of domain patterns of metallic and insulating phases occur in a strikingly reproducible way. The completely deterministic nature of domain formation and growth in films with imperfections is a fundamental and unexpected finding about the kinetics of this material. Moreover, it opens the door for realizing reliable nanoscale devices based on the MIT in V O2 and similar phase-change materials.

  1. Improving proton therapy by metal-containing nanoparticles: nanoscale insights

    PubMed Central

    Schlathölter, Thomas; Eustache, Pierre; Porcel, Erika; Salado, Daniela; Stefancikova, Lenka; Tillement, Olivier; Lux, Francois; Mowat, Pierre; Biegun, Aleksandra K; van Goethem, Marc-Jan; Remita, Hynd; Lacombe, Sandrine

    2016-01-01

    The use of nanoparticles to enhance the effect of radiation-based cancer treatments is a growing field of study and recently, even nanoparticle-induced improvement of proton therapy performance has been investigated. Aiming at a clinical implementation of this approach, it is essential to characterize the mechanisms underlying the synergistic effects of nanoparticles combined with proton irradiation. In this study, we investigated the effect of platinum- and gadolinium-based nanoparticles on the nanoscale damage induced by a proton beam of therapeutically relevant energy (150 MeV) using plasmid DNA molecular probe. Two conditions of irradiation (0.44 and 3.6 keV/μm) were considered to mimic the beam properties at the entrance and at the end of the proton track. We demonstrate that the two metal-containing nanoparticles amplify, in particular, the induction of nanosize damages (>2 nm) which are most lethal for cells. More importantly, this effect is even more pronounced at the end of the proton track. This work gives a new insight into the underlying mechanisms on the nanoscale and indicates that the addition of metal-based nanoparticles is a promising strategy not only to increase the cell killing action of fast protons, but also to improve tumor targeting. PMID:27143877

  2. Nanoscale investigation of the piezoelectric properties of perovskite ferroelectrics and III-nitrides

    NASA Astrophysics Data System (ADS)

    Rodriguez, Brian Joseph

    Nanoscale characterization of the piezoelectric and polarization related properties of III-Nitrides by piezoresponse force microscopy (PFM), electrostatic force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) resulted in the measurement of piezoelectric constants, surface charge and surface potential. Photo-electron emission microscopy (PEEM) was used to determine the local electronic band structure of a GaN-based lateral polarity heterostructure (GaN-LPH). Nanoscale characterization of the imprint and switching behavior of ferroelectric thin films by PFM resulted in the observation of domain pinning, while nanoscale characterization of the spatial variations in the imprint and switching behavior of integrated (111)-oriented PZT-based ferroelectric random access memory (FRAM) capacitors by PFM have revealed a significant difference in imprint and switching behavior between the inner and outer parts of capacitors. The inner regions of the capacitors are typically negatively imprinted and consequently tend to switch back after being poled by a positive bias, while regions at the edge of the capacitors tend to exhibit more symmetric hysteresis behavior. Evidence was obtained indicating that mechanical stress conditions in the central regions of the capacitors can lead to incomplete switching. A combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively) has been used to map the out-of-plane and in-plane polarization distribution, respectively, of integrated (111)-oriented PZT-based capacitors, which revealed poled capacitors are in a polydomain state.

  3. Modelling of nanoscale quantum tunnelling structures using algebraic topology method

    NASA Astrophysics Data System (ADS)

    Sankaran, Krishnaswamy; Sairam, B.

    2018-05-01

    We have modelled nanoscale quantum tunnelling structures using Algebraic Topology Method (ATM). The accuracy of ATM is compared to the analytical solution derived based on the wave nature of tunnelling electrons. ATM provides a versatile, fast, and simple model to simulate complex structures. We are currently expanding the method for modelling electrodynamic systems.

  4. Nanoscale β-nuclear magnetic resonance depth imaging of topological insulators

    PubMed Central

    Koumoulis, Dimitrios; Morris, Gerald D.; He, Liang; Kou, Xufeng; King, Danny; Wang, Dong; Hossain, Masrur D.; Wang, Kang L.; Fiete, Gregory A.; Kanatzidis, Mercouri G.; Bouchard, Louis-S.

    2015-01-01

    Considerable evidence suggests that variations in the properties of topological insulators (TIs) at the nanoscale and at interfaces can strongly affect the physics of topological materials. Therefore, a detailed understanding of surface states and interface coupling is crucial to the search for and applications of new topological phases of matter. Currently, no methods can provide depth profiling near surfaces or at interfaces of topologically inequivalent materials. Such a method could advance the study of interactions. Herein, we present a noninvasive depth-profiling technique based on β-detected NMR (β-NMR) spectroscopy of radioactive 8Li+ ions that can provide “one-dimensional imaging” in films of fixed thickness and generates nanoscale views of the electronic wavefunctions and magnetic order at topological surfaces and interfaces. By mapping the 8Li nuclear resonance near the surface and 10-nm deep into the bulk of pure and Cr-doped bismuth antimony telluride films, we provide signatures related to the TI properties and their topological nontrivial characteristics that affect the electron–nuclear hyperfine field, the metallic shift, and magnetic order. These nanoscale variations in β-NMR parameters reflect the unconventional properties of the topological materials under study, and understanding the role of heterogeneities is expected to lead to the discovery of novel phenomena involving quantum materials. PMID:26124141

  5. Phonological Bases for L2 Morphological Learning

    ERIC Educational Resources Information Center

    Hu, Chieh-Fang

    2010-01-01

    Two experiments examined the hypothesis that L1 phonological awareness plays a role in children's ability to extract morphological patterns of English as L2 from the auditory input. In Experiment 1, 84 Chinese-speaking third graders were tested on whether they extracted the alternation pattern between the base and the derived form (e.g.,…

  6. Fabrication of two-dimensional visible wavelength nanoscale plasmonic structures using hydrogen silsesquioxane based resist

    NASA Astrophysics Data System (ADS)

    Smith, Kyle Z.; Gadde, Akshitha; Kadiyala, Anand; Dawson, Jeremy M.

    2016-03-01

    In recent years, the global market for biosensors has continued to increase in combination with their expanding use in areas such as biodefense/detection, home diagnostics, biometric identification, etc. A constant necessity for inexpensive, portable bio-sensing methods, while still remaining simple to understand and operate, is the motivation behind novel concepts and designs. Labeled visible spectrum bio-sensing systems provide instant feedback that is both simple and easy to work with, but are limited by the light intensity thresholds required by the imaging systems. In comparison, label-free bio-sensing systems and other detection modalities like electrochemical, frequency resonance, thermal change, etc., can require additional technical processing steps to convey the final result, increasing the system's complexity and possibly the time required for analysis. Further decrease in the detection limit can be achieved through the addition of plasmonic structures into labeled bio-sensing systems. Nano-structures that operate in the visible spectrum have feature sizes typically in the order of the operating wavelength, calling for high aspect ratio nanoscale fabrication capabilities. In order to achieve these dimensions, electron beam lithography (EBL) is used due to its accurate feature production. Hydrogen silsesquioxane (HSQ) based electron beam resist is chosen for one of its benefits, which is after exposure to oxygen plasma, the patterned resist cures into silicon dioxide (SiO2). These cured features in conjunction with nanoscale gold particles help in producing a high electric field through dipole generation. In this work, a detailed process flow of the fabrication of square lattice of plasmonic structures comprising of gold coated silicon dioxide pillars designed to operate at 560 nm wavelength and produce an intensity increase of roughly 100 percent will be presented.

  7. Nanoscale fabrication using single-ion impacts

    NASA Astrophysics Data System (ADS)

    Millar, Victoria; Pakes, Chris I.; Cimmino, Alberto; Brett, David; Jamieson, David N.; Prawer, Steven D.; Yang, Changyi; Rout, Bidhudutta; McKinnon, Rita P.; Dzurak, Andrew S.; Clark, Robert G.

    2001-11-01

    We describe a novel technique for the fabrication of nanoscale structures, based on the development of localized chemical modification caused in a PMMA resist by the implantation of single ions. The implantation of 2 MeV He ions through a thin layer of PMMA into an underlying silicon substrate causes latent damage in the resist. On development of the resist we demonstrate the formation within the PMMA layer of clearly defined etched holes, of typical diameter 30 nm, observed using an atomic force microscope employing a carbon nanotube SPM probe in intermittent-contact mode. This technique has significant potential applications. Used purely to register the passage of an ion, it may be a useful verification of the impact sites in an ion-beam modification process operating at the single-ion level. Furthermore, making use of the hole in the PMMA layer to perform subsequent fabrication steps, it may be applied to the fabrication of self-aligned structures in which surface features are fabricated directly above regions of an underlying substrate that are locally doped by the implanted ion. Our primary interest in single-ion resists relates to the development of a solid-state quantum computer based on an array of 31P atoms (which act as qubits) embedded with nanoscale precision in a silicon matrix. One proposal for the fabrication of such an array is by phosphorous-ion implantation. A single-ion resist would permit an accurate verification of 31P implantation sites. Subsequent metalisation of the latent damage may allow the fabrication of self-aligned metal gates above buried phosphorous atoms.

  8. Interactive models of communication at the nanoscale using nanoparticles that talk to one another

    PubMed Central

    Llopis-Lorente, Antoni; Díez, Paula; Sánchez, Alfredo; Marcos, María D.; Sancenón, Félix; Martínez-Ruiz, Paloma; Villalonga, Reynaldo; Martínez-Máñez, Ramón

    2017-01-01

    ‘Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating. PMID:28556828

  9. Bio-Organic Nanotechnology: Using Proteins and Synthetic Polymers for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Molnar, Linda K.; Xu, Ting; Trent, Jonathan D.; Russell, Thomas P.

    2003-01-01

    While the ability of proteins to self-assemble makes them powerful tools in nanotechnology, in biological systems protein-based structures ultimately depend on the context in which they form. We combine the self-assembling properties of synthetic diblock copolymers and proteins to construct intricately ordered, three-dimensional polymer protein structures with the ultimate goal of forming nano-scale devices. This hybrid approach takes advantage of the capabilities of organic polymer chemistry to build ordered structures and the capabilities of genetic engineering to create proteins that are selective for inorganic or organic substrates. Here, microphase-separated block copolymers coupled with genetically engineered heat shock proteins are used to produce nano-scale patterning that maximizes the potential for both increased structural complexity and integrity.

  10. Morphology-dependent low-frequency Raman scattering in ultrathin spherical, cubic, and cuboid SnO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, L. Z.; Wu, X. L.; Li, T. H.; Xiong, S. J.; Chen, H. T.; Chu, Paul K.

    2011-12-01

    Nanoscale spherical, cubic, and cuboid SnO2 nanocrystals (NCs) are used to investigate morphology-dependent low-frequency Raman scattering. A double-peak structure in which the linewidths and energy separation between two subpeaks decrease with increasing sizes of cuboid NCs is observed and attributed to the surface acoustic phonon modes confined in three dimensional directions and determined by the surface/interface compositions. The decrease in energy separation is due to weaker coupling between the acoustic modes in different vibration directions. Our experimental and theoretical studies clearly disclose the morphology-dependent surface vibrational behavior in self-assembled NCs.

  11. Channeling technique to make nanoscale ion beams

    NASA Astrophysics Data System (ADS)

    Biryukov, V. M.; Bellucci, S.; Guidi, V.

    2005-04-01

    Particle channeling in a bent crystal lattice has led to an efficient instrument for beam steering at accelerators [Biryukov et al., Crystal Channeling and its Application at High Energy Accelerators, Springer, Berlin, 1997], demonstrated from MeV to TeV energies. In particular, crystal focusing of high-energy protons to micron size has been demonstrated at IHEP with the results well in match with Lindhard (critical angle) prediction. Channeling in crystal microstructures has been proposed as a unique source of a microbeam of high-energy particles [Bellucci et al., Phys. Rev. ST Accel. Beams 6 (2003) 033502]. Channeling in nanostructures (single-wall and multi-wall nanotubes) offers the opportunities to produce ion beams on nanoscale. Particles channeled in a nanotube (with typical diameter of about 1 nm) are trapped in two dimensions and can be steered (deflected, focused) with the efficiency similar to that of crystal channeling or better. This technique has been a subject of computer simulations, with experimental efforts under way in several high-energy labs, including IHEP. We present the theoretical outlook for making channeling-based nanoscale ion beams and report the experience with crystal-focused microscale proton beams.

  12. Identification Male Fertility Through Abnormalities Sperm Based Morphology (Teratospermia) using Invariant Moment Method

    NASA Astrophysics Data System (ADS)

    Syahputra, M. F.; Chairani, R.; Seniman; Rahmat, R. F.; Abdullah, D.; Napitupulu, D.; Setiawan, M. I.; Albra, W.; Erliana, C. I.; Andayani, U.

    2018-03-01

    Sperm morphology is still a standard laboratory analysis in diagnosing infertility in men. Manually identification of sperm form is still not accurate, the difficulty in seeing the form of the invisible sperm from the digital microscope image is often a weakness in the process of identification and takes a long time. Therefore, male fertility identification application system is needed Through sperm abnormalities based on sperm morphology (teratospermia). The method used is invariant moment method. This study uses 15 data testing and 20 data training sperm image. That the process of male fertility identification through sperm abnormalities based on sperm morphology (teratospermia) has an accuracy rate of 80.77%. Use of time to process Identification of male fertility through sperm abnormalities Based on sperm morphology (teratospermia) during 0.4369 seconds.

  13. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  14. An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques

    DTIC Science & Technology

    2018-01-09

    ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological and...is no longer needed. Do not return it to the originator. ARL-TR-8272 ● JAN 2018 US Army Research Laboratory An Automated Energy ...4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological and Statistical Processing Techniques 5a. CONTRACT NUMBER

  15. A novel nanoscale-dispersed eye ointment for the treatment of dry eye disease

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjian; Wang, Yan; Lee, Benjamin Tak Kwong; Liu, Chang; Wei, Gang; Lu, Weiyue

    2014-03-01

    A novel nanoscale-dispersed eye ointment (NDEO) for the treatment of severe evaporative dry eye has been successfully developed. The excipients used as semisolid lipids were petrolatum and lanolin, as used in conventional eye ointment, which were coupled with medium-chain triglycerides (MCT) as a liquid lipid; both phases were then dispersed in polyvinyl pyrrolidone solution to form a nanodispersion. Single-factor experiments were conducted to optimize the formulations. A transmission electron micrograph showed that the ointment matrix was entrapped in the nanoemulsion of MCT, with a mean particle size of about 100 nm. The optimized formulation of NDEO was stable when stored for six months at 4 °C, and demonstrated no cytotoxicity to human corneal epithelial cells when compared with commercial polymer-based artificial tears (Tears Natural® Forte). The therapeutic effects of NDEO were evaluated on a mouse model with ‘dry eye’. Both the tear break-up time and fluorescein staining demonstrated therapeutic improvement, displaying a trend of positive correlation with higher concentrations of ointment matrix in the NDEO formulations compared to a marketed product. Histological evaluation demonstrated that the NDEO restored the normal corneal and conjunctival morphology and is safe for ophthalmic application.

  16. Dielectric Metasurface as a Platform for Spatial Mode Conversion in Nanoscale Waveguides.

    PubMed

    Ohana, David; Desiatov, Boris; Mazurski, Noa; Levy, Uriel

    2016-12-14

    We experimentally demonstrate a nanoscale mode converter that performs coupling between the first two transverse electric-like modes of a silicon-on-insulator waveguide. The device operates by introducing a nanoscale periodic perturbation in its effective refractive index along the propagation direction and a graded effective index profile along its transverse direction. The periodic perturbation provides phase matching between the modes, while the graded index profile, which is realized by the implementation of nanoscale dielectric metasurface consisting of silicon features that are etched into the waveguide taking advantage of the effective medium concept, provides the overlap between the modes. Following the device design and numerical analysis using three-dimensional finite difference time domain simulations, we have fabricated the device and characterized it by directly measuring the modal content using optical imaging microscopy. From these measurements, the mode purity is estimated to be 95% and the transmission relative to an unperturbed strip waveguide is as high as 88%. Finally, we extend this approach to accommodate for the coupling between photonic and plasmonic modes. Specifically, we design and numerically demonstrate photonic to plasmonic mode conversion in a hybrid waveguide in which photonic and surface plasmon polariton modes can be guided in the silicon core and in the silicon/metal interface, respectively. The same method can also be used for coupling between symmetric and antisymmetric plasmonic modes in metal-insulator-metal or insulator-metal-insulator structures. On the basis of the current demonstration, we believe that such nanoscale dielectric metasurface-based mode converters can now be realized and become an important building block in future nanoscale photonic and plasmonic devices. Furthermore, the demonstrated platform can be used for the implementation of other chip scale components such as splitters, combiners couplers, and more.

  17. An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a

  18. Observation of conducting filament growth in nanoscale resistive memories

    NASA Astrophysics Data System (ADS)

    Yang, Yuchao; Gao, Peng; Gaba, Siddharth; Chang, Ting; Pan, Xiaoqing; Lu, Wei

    2012-03-01

    Nanoscale resistive switching devices, sometimes termed memristors, have recently generated significant interest for memory, logic and neuromorphic applications. Resistive switching effects in dielectric-based devices are normally assumed to be caused by conducting filament formation across the electrodes, but the nature of the filaments and their growth dynamics remain controversial. Here we report direct transmission electron microscopy imaging, and structural and compositional analysis of the nanoscale conducting filaments. Through systematic ex-situ and in-situ transmission electron microscopy studies on devices under different programming conditions, we found that the filament growth can be dominated by cation transport in the dielectric film. Unexpectedly, two different growth modes were observed for the first time in materials with different microstructures. Regardless of the growth direction, the narrowest region of the filament was found to be near the dielectric/inert-electrode interface in these devices, suggesting that this region deserves particular attention for continued device optimization.

  19. Magnetization switching schemes for nanoscale three-terminal spintronics devices

    NASA Astrophysics Data System (ADS)

    Fukami, Shunsuke; Ohno, Hideo

    2017-08-01

    Utilizing spintronics-based nonvolatile memories in integrated circuits offers a promising approach to realize ultralow-power and high-performance electronics. While two-terminal devices with spin-transfer torque switching have been extensively developed nowadays, there has been a growing interest in devices with a three-terminal structure. Of primary importance for applications is the efficient manipulation of magnetization, corresponding to information writing, in nanoscale devices. Here we review the studies of current-induced domain wall motion and spin-orbit torque-induced switching, which can be applied to the write operation of nanoscale three-terminal spintronics devices. For domain wall motion, the size dependence of device properties down to less than 20 nm will be shown and the underlying mechanism behind the results will be discussed. For spin-orbit torque-induced switching, factors governing the threshold current density and strategies to reduce it will be discussed. A proof-of-concept demonstration of artificial intelligence using an analog spin-orbit torque device will also be reviewed.

  20. Control of Nanoscale Materials under the Toxic Substances Control Act

    EPA Pesticide Factsheets

    Many nanoscale materials are regarded as chemical substances, but they may have different properties than their larger counterparts. EPA is working to ensure that nanoscale materials are manufactured and used in ways that prevent risk to health.

  1. Nanoscale electro-structural characterisation of ohmic contacts formed on p-type implanted 4H-SiC

    NASA Astrophysics Data System (ADS)

    Frazzetto, Alessia; Giannazzo, Filippo; Lo Nigro, Raffaella; di Franco, Salvatore; Bongiorno, Corrado; Saggio, Mario; Zanetti, Edoardo; Raineri, Vito; Roccaforte, Fabrizio

    2011-12-01

    This work reports a nanoscale electro-structural characterisation of Ti/Al ohmic contacts formed on p-type Al-implanted silicon carbide (4H-SiC). The morphological and the electrical properties of the Al-implanted layer, annealed at 1700°C with or without a protective capping layer, and of the ohmic contacts were studied using atomic force microscopy [AFM], transmission line model measurements and local current measurements performed with conductive AFM. The characteristics of the contacts were significantly affected by the roughness of the underlying SiC. In particular, the surface roughness of the Al-implanted SiC regions annealed at 1700°C could be strongly reduced using a protective carbon capping layer during annealing. This latter resulted in an improved surface morphology and specific contact resistance of the Ti/Al ohmic contacts formed on these regions. The microstructure of the contacts was monitored by X-ray diffraction analysis and a cross-sectional transmission electron microscopy, and correlated with the electrical results.

  2. Modeling Self-Heating Effects in Nanoscale Devices

    NASA Astrophysics Data System (ADS)

    Raleva, K.; Shaik, A. R.; Vasileska, D.; Goodnick, S. M.

    2017-08-01

    Accurate thermal modeling and the design of microelectronic devices and thin film structures at the micro- and nanoscales poses a challenge to electrical engineers who are less familiar with the basic concepts and ideas in sub-continuum heat transport. This book aims to bridge that gap. Efficient heat removal methods are necessary to increase device performance and device reliability. The authors provide readers with a combination of nanoscale experimental techniques and accurate modeling methods that must be employed in order to determine a device's temperature profile.

  3. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2014-07-22

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  4. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C.; Miles, Robin; Davidson, James C.; Liu, Gang Logan

    2015-07-14

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  5. Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

    DOEpatents

    Bond, Tiziana C; Miles, Robin; Davidson, James; Liu, Gang Logan

    2015-11-03

    Methods for fabricating nanoscale array structures suitable for surface enhanced Raman scattering, structures thus obtained, and methods to characterize the nanoscale array structures suitable for surface enhanced Raman scattering. Nanoscale array structures may comprise nanotrees, nanorecesses and tapered nanopillars.

  6. 75 FR 49487 - Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... Study: Nanoscale Silver in Disinfectant Spray AGENCY: Environmental Protection Agency (EPA). ACTION... document ``Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray'' (EPA/600/R-10/081). The... 49488

  7. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tip-enhanced ablation and ionization mass spectrometry for nanoscale chemical analysis

    PubMed Central

    Liang, Zhisen; Zhang, Shudi; Li, Xiaoping; Wang, Tongtong; Huang, Yaping; Hang, Wei; Yang, Zhilin; Li, Jianfeng; Tian, Zhongqun

    2017-01-01

    Spectroscopic methods with nanoscale lateral resolution are becoming essential in the fields of physics, chemistry, geology, biology, and materials science. However, the lateral resolution of laser-based mass spectrometry imaging (MSI) techniques has so far been limited to the microscale. This report presents the development of tip-enhanced ablation and ionization time-of-flight mass spectrometry (TEAI-TOFMS), using a shell-isolated apertureless silver tip. The TEAI-TOFMS results indicate the capability and reproducibility of the system for generating nanosized craters and for acquiring the corresponding mass spectral signals. Multi-elemental analysis of nine inorganic salt residues and MSI of a potassium salt residue pattern at a 50-nm lateral resolution were achieved. These results demonstrate the opportunity for the distribution of chemical compositions at the nanoscale to be visualized. PMID:29226250

  9. Preparation of nearly monodisperse nanoscale inorganic pigments.

    PubMed

    Wang, Dingsheng; Liang, Xin; Li, Yadong

    2006-07-17

    Many different important commercial pigments have been synthesized based on the liquid-solid-solution (LSS) phase-transfer and separation process. Transmission electron microscopy (TEM) measurement results show that they are very small in size and have a narrow size distribution. Visible absorption spectra were taken to examine the very pure and brilliant colors of the pigments. They can be well-dispersed in cyclohexane and remain non-agglomerated, even over several months. These nearly monodisperse nanoscale inorganic pigments may have wide applications in many important fields and could bring about new developments in the pigment industry.

  10. Investigation of the shape transferability of nanoscale multi-tip diamond tools in the diamond turning of nanostructures

    NASA Astrophysics Data System (ADS)

    Luo, Xichun; Tong, Zhen; Liang, Yingchun

    2014-12-01

    In this article, the shape transferability of using nanoscale multi-tip diamond tools in the diamond turning for scale-up manufacturing of nanostructures has been demonstrated. Atomistic multi-tip diamond tool models were built with different tool geometries in terms of the difference in the tip cross-sectional shape, tip angle, and the feature of tool tip configuration, to determine their effect on the applied forces and the machined nano-groove geometries. The quality of machined nanostructures was characterized by the thickness of the deformed layers and the dimensional accuracy achieved. Simulation results show that diamond turning using nanoscale multi-tip tools offers tremendous shape transferability in machining nanostructures. Both periodic and non-periodic nano-grooves with different cross-sectional shapes can be successfully fabricated using the multi-tip tools. A hypothesis of minimum designed ratio of tool tip distance to tip base width (L/Wf) of the nanoscale multi-tip diamond tool for the high precision machining of nanostructures was proposed based on the analytical study of the quality of the nanostructures fabricated using different types of the multi-tip tools. Nanometric cutting trials using nanoscale multi-tip diamond tools (different in L/Wf) fabricated by focused ion beam (FIB) were then conducted to verify the hypothesis. The investigations done in this work imply the potential of using the nanoscale multi-tip diamond tool for the deterministic fabrication of period and non-periodic nanostructures, which opens up the feasibility of using the process as a versatile manufacturing technique in nanotechnology.

  11. 3D morphology-based clustering and simulation of human pyramidal cell dendritic spines.

    PubMed

    Luengo-Sanchez, Sergio; Fernaud-Espinosa, Isabel; Bielza, Concha; Benavides-Piccione, Ruth; Larrañaga, Pedro; DeFelipe, Javier

    2018-06-13

    The dendritic spines of pyramidal neurons are the targets of most excitatory synapses in the cerebral cortex. They have a wide variety of morphologies, and their morphology appears to be critical from the functional point of view. To further characterize dendritic spine geometry, we used in this paper over 7,000 individually 3D reconstructed dendritic spines from human cortical pyramidal neurons to group dendritic spines using model-based clustering. This approach uncovered six separate groups of human dendritic spines. To better understand the differences between these groups, the discriminative characteristics of each group were identified as a set of rules. Model-based clustering was also useful for simulating accurate 3D virtual representations of spines that matched the morphological definitions of each cluster. This mathematical approach could provide a useful tool for theoretical predictions on the functional features of human pyramidal neurons based on the morphology of dendritic spines.

  12. Modelling nanoscale objects in order to conduct an empirical research into their properties as part of an engineering system designed

    NASA Astrophysics Data System (ADS)

    Makarov, M.; Shchanikov, S.; Trantina, N.

    2017-01-01

    We have conducted a research into the major, in terms of their future application, properties of nanoscale objects, based on modelling these objects as free-standing physical elements beyond the structure of an engineering system designed for their integration as well as a part of a system that operates under the influence of the external environment. For the empirical research suggested within the scope of this work, we have chosen a nanoscale electronic element intended to be used while designing information processing systems with the parallel architecture - a memristor. The target function of the research was to provide the maximum fault-tolerance index of a memristor-based system when affected by all possible impacts of the internal destabilizing factors and external environment. The research results have enabled us to receive and classify all the factors predetermining the fault-tolerance index of the hardware implementation of a computing system based on the nanoscale electronic element base.

  13. Unprecedented Synergistic Effects of Nanoscale Nutrients on Growth, Productivity of Sweet Sorghum [Sorghum bicolor (L.) Moench], and Nutrient Biofortification.

    PubMed

    Naseeruddin, Ramapuram; Sumathi, Vupprucherla; Prasad, Tollamadugu N V K V; Sudhakar, Palagiri; Chandrika, Velaga; Ravindra Reddy, Balam

    2018-02-07

    Evidence-based synergistic effects of nanoscale materials (size of <100 nm in at least one dimension) were scantly documented in agriculture at field scale. Herein, we report for the first time on effects of nanoscale zinc oxide (n-ZnO), calcium oxide (n-CaO), and magnesium oxide (n-MgO) on growth and productivity of sweet sorghum [Sorghum bicolor (L.) Moench]. A modified sol-gel method was used to prepare nanoscale materials under study. Characterization was performed using transmission and scanning electron microscopies, X-ray diffraction, and dynamic light scattering. Average sizes (25, 53.7, and 53.5 nm) and ζ potentials (-10.9, -28.2, and -16.2 mV) of n-ZnO, n-CaO, and n-MgO were measured, respectively. The significant grain yield (17.8 and 14.2%), cane yield (7.2 and 8.0%), juice yield (10 and 12%), and higher sucrose yield (21.8 and 20.9%) were recorded with the application of nanoscale materials in the years 2014 and 2015, respectively. Nutrient uptake was significant with foliar application of nanoscale nutrients.

  14. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    DTIC Science & Technology

    2016-07-25

    mounting on silicon. The nanoscale VCSELs can achieve small optical modes and present a compact laser diode that is also robust. In this work we have used...Distribution Unlimited UU UU UU UU 25-07-2016 1-Feb-2012 31-Dec-2015 Final Report: WDM Nanoscale Laser Diodes for Si Photonic Interconnects The views...P.O. Box 12211 Research Triangle Park, NC 27709-2211 VCSEL, optical interconnect, laser diode , semiconductor laser, microcavity REPORT DOCUMENTATION

  15. Nanoscale thermal imaging of dissipation in quantum systems

    NASA Astrophysics Data System (ADS)

    Halbertal, D.; Cuppens, J.; Shalom, M. Ben; Embon, L.; Shadmi, N.; Anahory, Y.; Naren, H. R.; Sarkar, J.; Uri, A.; Ronen, Y.; Myasoedov, Y.; Levitov, L. S.; Joselevich, E.; Geim, A. K.; Zeldov, E.

    2016-11-01

    Energy dissipation is a fundamental process governing the dynamics of physical, chemical and biological systems. It is also one of the main characteristics that distinguish quantum from classical phenomena. In particular, in condensed matter physics, scattering mechanisms, loss of quantum information or breakdown of topological protection are deeply rooted in the intricate details of how and where the dissipation occurs. Yet the microscopic behaviour of a system is usually not formulated in terms of dissipation because energy dissipation is not a readily measurable quantity on the micrometre scale. Although nanoscale thermometry has gained much recent interest, existing thermal imaging methods are not sensitive enough for the study of quantum systems and are also unsuitable for the low-temperature operation that is required. Here we report a nano-thermometer based on a superconducting quantum interference device with a diameter of less than 50 nanometres that resides at the apex of a sharp pipette: it provides scanning cryogenic thermal sensing that is four orders of magnitude more sensitive than previous devices—below 1 μK Hz-1/2. This non-contact, non-invasive thermometry allows thermal imaging of very low intensity, nanoscale energy dissipation down to the fundamental Landauer limit of 40 femtowatts for continuous readout of a single qubit at one gigahertz at 4.2 kelvin. These advances enable the observation of changes in dissipation due to single-electron charging of individual quantum dots in carbon nanotubes. They also reveal a dissipation mechanism attributable to resonant localized states in graphene encapsulated within hexagonal boron nitride, opening the door to direct thermal imaging of nanoscale dissipation processes in quantum matter.

  16. Nanoscale integration is the next frontier for nanotechnology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picraux, Samuel T

    2009-01-01

    Nanoscale integration of materials and structures is the next critical step to exploit the promise of nanomaterials. Many novel and fascinating properties have been revealed for nanostructured materials. But if nanotechnology is to live up to its promise we must incorporate these nanoscale building blocks into functional systems that connect to the micro- and macroscale world. To do this we will inevitably need to understand and exploit the resulting combined unique properties of these integrated nanosystems. Much science waits to be discovered in the process. Nanoscale integration extends from the synthesis and fabrication of individual nanoscale building blocks, to themore » assembly of these building blocks into composite structures, and finally to the formation of complex functional systems. As illustrated in Figure 1, the building blocks may be homogeneous or heterogeneous, the composite materials may be nanocomposite or patterned structures, and the functional systems will involve additional combinations of materials. Nanoscale integration involves assembling diverse nanoscale materials across length scales to design and achieve new properties and functionality. At each stage size-dependent properties, the influence of surfaces in close proximity, and a multitude of interfaces all come into play. Whether the final system involves coherent electrons in a quantum computing approach, the combined flow of phonons and electrons for a high efficiency thermoelectric micro-generator, or a molecular recognition structure for bio-sensing, the combined effects of size, surface, and interface will be critical. In essence, one wants to combine the novel functions available through nanoscale science to achieve unique multi-functionalities not available in bulk materials. Perhaps the best-known example of integration is that of combining electronic components together into very large scale integrated circuits (VLSI). The integrated circuit has revolutionized electronics

  17. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell Migration Inhibition of Human Breast Cancer Cells.

    PubMed

    Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi

    2017-04-27

    Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique

    NASA Astrophysics Data System (ADS)

    Deepa, Manchala; Sudhakar, Palagiri; Nagamadhuri, Kandula Venkata; Balakrishna Reddy, Kota; Giridhara Krishna, Thimmavajjula; Prasad, Tollamadugu Naga Venkata Krishna Vara

    2015-06-01

    Nanoscale materials, whose size typically falls below 100 nm, exhibit novel chemical, physical and biological properties which are different from their bulk counterparts. In the present investigation, we demonstrated that nanoscale calcium oxide particles (n-CaO) could transport through phloem tissue of groundnut unlike the corresponding bulk materials. n-CaO particles are prepared using sol-gel method. The size of the as prepared n-CaO measured (69.9 nm) using transmission electron microscopic technique (TEM). Results of the hydroponics experiment using solution culture technique revealed that foliar application of n-CaO at different concentrations (10, 50, 100, 500, 1,000 ppm) on groundnut plants confirmed the entry of calcium into leaves and stems through phloem compared to bulk source of calcium sprayed (CaO and CaNO3). After spraying of n-CaO, calcium content in roots, shoots and leaves significantly increased. Based on visual scoring of calcium deficiency correction and calcium content in plant parts, we may establish the fact that nanoscale calcium oxide particles (size 69.9 nm) could move through phloem tissue in groundnut. This is the first report on phloem transport of nanoscale calcium oxide particles in plants and this result points to the use of nanoscale calcium oxide particles as calcium source to the plants through foliar application, agricultural crops in particular, as bulk calcium application through foliar nutrition is restricted due to its non-mobility in phloem.

  19. Nanoscale Inhomogeneous Superconductivity in Fe(Te1-xSex) Probed by Nanostructure Transport.

    PubMed

    Yue, Chunlei; Hu, Jin; Liu, Xue; Sanchez, Ana M; Mao, Zhiqiang; Wei, Jiang

    2016-01-26

    Among iron-based superconductors, the layered iron chalcogenide Fe(Te1-xSex) is structurally the simplest and has attracted considerable attention. It has been speculated from bulk studies that nanoscale inhomogeneous superconductivity may inherently exist in this system. However, this has not been directly observed from nanoscale transport measurements. In this work, through simple micromechanical exfoliation and high-precision low-energy ion milling thinning, we prepared Fe(Te0.5Se0.5) nanoflakes with various thicknesses and systematically studied the correlation between the thickness and superconducting phase transition. Our result revealed a systematic thickness-dependent evolution of superconducting transition. When the thickness of the Fe(Te0.5Se0.5) flake is reduced to less than the characteristic inhomogeneity length (around 12 nm), both the superconducting current path and the metallicity of the normal state in Fe(Te0.5Se0.5) atomic sheets are suppressed. This observation provides the first transport evidence for the nanoscale inhomogeneous nature of superconductivity in Fe(Te1-xSex).

  20. Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray (Final Report)

    EPA Science Inventory

    EPA announced the release of the final report, Nanomaterial Case Study: Nanoscale Silver in Disinfectant Spray. This report represents a case study of engineered nanoscale silver (nano-Ag), focusing on the specific example of nano-Ag as possibly used in disinfectant spr...

  1. Nanoscale relaxation oscillator

    DOEpatents

    Zettl, Alexander K.; Regan, Brian C.; Aloni, Shaul

    2009-04-07

    A nanoscale oscillation device is disclosed, wherein two nanoscale droplets are altered in size by mass transport, then contact each other and merge through surface tension. The device may also comprise a channel having an actuator responsive to mechanical oscillation caused by expansion and contraction of the droplets. It further has a structure for delivering atoms between droplets, wherein the droplets are nanoparticles. Provided are a first particle and a second particle on the channel member, both being made of a chargeable material, the second particle contacting the actuator portion; and electrodes connected to the channel member for delivering a potential gradient across the channel and traversing the first and second particles. The particles are spaced apart a specified distance so that atoms from one particle are delivered to the other particle by mass transport in response to the potential (e.g. voltage potential) and the first and second particles are liquid and touch at a predetermined point of growth, thereby causing merging of the second particle into the first particle by surface tension forces and reverse movement of the actuator. In a preferred embodiment, the channel comprises a carbon nanotube and the droplets comprise metal nanoparticles, e.g. indium, which is readily made liquid.

  2. Enhancement of Local Piezoresponse in Polymer Ferroelectrics via Nanoscale Control of Microstructure

    DOE PAGES

    Choi, Yoon-Young; Sharma, Pankaj; Phatak, Charudatta; ...

    2015-02-01

    Polymer ferroelectrics are flexible and lightweight electromechanical materials that are widely studied due to their potential application as sensors, actuators, and energy harvesters. However, one of the biggest challenges is their low piezoelectric coefficient. Here, we report a mechanical annealing effect based on local pressure induced by a nanoscale tip that enhances the local piezoresponse. This process can control the nanoscale material properties over a microscale area at room temperature. We attribute this improvement to the formation and growth of beta-phase extended chain crystals via sliding diffusion and crystal alignment along the scan axis under high mechanical stress. We believemore » that this technique can be useful for local enhancement of piezoresponse in ferroelectric polymer thin films.« less

  3. Investigating Nanoscale Electrochemistry with Surface- and Tip-Enhanced Raman Spectroscopy.

    PubMed

    Zaleski, Stephanie; Wilson, Andrew J; Mattei, Michael; Chen, Xu; Goubert, Guillaume; Cardinal, M Fernanda; Willets, Katherine A; Van Duyne, Richard P

    2016-09-20

    The chemical sensitivity of surface-enhanced Raman spectroscopy (SERS) methodologies allows for the investigation of heterogeneous chemical reactions with high sensitivity. Specifically, SERS methodologies are well-suited to study electron transfer (ET) reactions, which lie at the heart of numerous fundamental processes: electrocatalysis, solar energy conversion, energy storage in batteries, and biological events such as photosynthesis. Heterogeneous ET reactions are commonly monitored by electrochemical methods such as cyclic voltammetry, observing billions of electrochemical events per second. Since the first proof of detecting single molecules by redox cycling, there has been growing interest in examining electrochemistry at the nanoscale and single-molecule levels. Doing so unravels details that would otherwise be obscured by an ensemble experiment. The use of optical spectroscopies, such as SERS, to elucidate nanoscale electrochemical behavior is an attractive alternative to traditional approaches such as scanning electrochemical microscopy (SECM). While techniques such as single-molecule fluorescence or electrogenerated chemiluminescence have been used to optically monitor electrochemical events, SERS methodologies, in particular, have shown great promise for exploring electrochemistry at the nanoscale. SERS is ideally suited to study nanoscale electrochemistry because the Raman-enhancing metallic, nanoscale substrate duly serves as the working electrode material. Moreover, SERS has the ability to directly probe single molecules without redox cycling and can achieve nanoscale spatial resolution in combination with super-resolution or scanning probe microscopies. This Account summarizes the latest progress from the Van Duyne and Willets groups toward understanding nanoelectrochemistry using Raman spectroscopic methodologies. The first half of this Account highlights three techniques that have been recently used to probe few- or single-molecule electrochemical

  4. Nanoscale materials for hyperthermal theranostics

    DOE PAGES

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; ...

    2015-03-18

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. Our mini review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reducemore » angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.« less

  5. Nanoscale materials for hyperthermal theranostics

    NASA Astrophysics Data System (ADS)

    Smith, Bennett E.; Roder, Paden B.; Zhou, Xuezhe; Pauzauskie, Peter J.

    2015-04-01

    Recently, the use of nanoscale materials has attracted considerable attention with the aim of designing personalized therapeutic approaches that can enhance both spatial and temporal control over drug release, permeability, and uptake. Potential benefits to patients include the reduction of overall drug dosages, enabling the parallel delivery of different pharmaceuticals, and the possibility of enabling additional functionalities such as hyperthermia or deep-tissue imaging (LIF, PET, etc.) that complement and extend the efficacy of traditional chemotherapy and surgery. This mini-review is focused on an emerging class of nanometer-scale materials that can be used both to heat malignant tissue to reduce angiogenesis and DNA-repair while simultaneously offering complementary imaging capabilities based on radioemission, optical fluorescence, magnetic resonance, and photoacoustic methods.

  6. New Windows based Color Morphological Operators for Biomedical Image Processing

    NASA Astrophysics Data System (ADS)

    Pastore, Juan; Bouchet, Agustina; Brun, Marcel; Ballarin, Virginia

    2016-04-01

    Morphological image processing is well known as an efficient methodology for image processing and computer vision. With the wide use of color in many areas, the interest on the color perception and processing has been growing rapidly. Many models have been proposed to extend morphological operators to the field of color images, dealing with some new problems not present previously in the binary and gray level contexts. These solutions usually deal with the lattice structure of the color space, or provide it with total orders, to be able to define basic operators with required properties. In this work we propose a new locally defined ordering, in the context of window based morphological operators, for the definition of erosions-like and dilation-like operators, which provides the same desired properties expected from color morphology, avoiding some of the drawbacks of the prior approaches. Experimental results show that the proposed color operators can be efficiently used for color image processing.

  7. An RNAi Screen for Genes Involved in Nanoscale Protrusion Formation on Corneal Lens in Drosophila melanogaster.

    PubMed

    Minami, Ryunosuke; Sato, Chiaki; Yamahama, Yumi; Kubo, Hideo; Hariyama, Takahiko; Kimura, Ken-Ichi

    2016-12-01

    The "moth-eye" structure, which is observed on the surface of corneal lens in several insects, supports anti-reflective and self-cleaning functions due to nanoscale protrusions known as corneal nipples. Although the morphology and function of the "moth-eye" structure, are relatively well studied, the mechanism of protrusion formation from cell-secreted substances is unknown. In Drosophila melanogaster, a compound eye consists of approximately 800 facets, the surface of which is formed by the corneal lens with nanoscale protrusions. In the present study, we sought to identify genes involved in "moth-eye" structure, formation in order to elucidate the developmental mechanism of the protrusions in Drosophila. We re-examined the aberrant patterns in classical glossy-eye mutants by scanning electron microscope and classified the aberrant patterns into groups. Next, we screened genes encoding putative structural cuticular proteins and genes involved in cuticular formation using eye specific RNAi silencing methods combined with the Gal4/UAS expression system. We identified 12 of 100 candidate genes, such as cuticular proteins family genes (Cuticular protein 23B and Cuticular protein 49Ah), cuticle secretion-related genes (Syntaxin 1A and Sec61 ββ subunit), ecdysone signaling and biosynthesis-related genes (Ecdysone receptor, Blimp-1, and shroud), and genes involved in cell polarity/cell architecture (Actin 5C, shotgun, armadillo, discs large1, and coracle). Although some of the genes we identified may affect corneal protrusion formation indirectly through general patterning defects in eye formation, these initial findings have encouraged us to more systematically explore the precise mechanisms underlying the formation of nanoscale protrusions in Drosophila.

  8. Mercury based drug in ancient India: The red sulfide of mercury in nanoscale.

    PubMed

    Mukhi, Priyabrata; Mohapatra, Swapna Sarita; Bhattacharjee, M; Ray, K K; Muraleedharan, T S; Arun, A; Sathyavathi, R; Juluri, R R; Satyam, P V; Panda, Alok K; Biswas, Ashis; Nayak, S; Bojja, Sreedhar; Pratihar, S; Roy, Sujit

    Mercury is one of the elements which had attracted the attention of the chemists and physicians of ancient India and China. Among the various metal based drugs which utilize mercury, we became interested in the red sulfide of mercury which is known in ancient Indian literature as rasasindur (alias rasasindura, rasasindoor, rasasinduram, sindur, or sindoor) and is used extensively in various ailments and diseases. Following various physico-chemical characterizations it is concluded that rasasindur is chemically pure α-HgS with Hg:S ratio as 1:1. Analysis of rasasindur vide Transmission Electron Microscopy (TEM) showed that the particles are in nanoscale. Bio-chemical studies of rasasindur were also demonstrated. It interacts with Bovine Serum Albumin (BSA) with an association constant of (9.76 ± 0.56) × 10 3 M -1 and behaves as a protease inhibitor by inhibiting the proteolysis of BSA by trypsin. It also showed mild antioxidant properties. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.

  9. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.

    PubMed

    Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin

    2015-07-08

    Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Charge transport in nanoscale junctions.

    PubMed

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-03

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  11. Phylogeny of kemenyan (Styrax sp.) from North Sumatra based on morphological characters

    NASA Astrophysics Data System (ADS)

    Susilowati, A.; Kholibrina, C. R.; Rachmat, H. H.; Munthe, M. A.

    2018-02-01

    Kemenyan is the most famous local tree species from North Sumatra. Kemenyan is known as rosin producer that very valuable for pharmacheutical, cosmetic, food preservatives and vernis. Based on its history, there were only two species of kemenyan those were kemenyan durame and toba, but in its the natural distribution we also found others species showing different characteristics with previously known ones. The objectives of this research were:The objectives of this research were: (1). To determine the morphological diversity of kemenyan in North Sumatra and (2). To determine phylogeny clustering based on the morphological characters. Data was collected from direct observation and morphological characterization, based on purposive sampling technique to those samples trees atPakpak Bharat, North Sumatra. Morphological characters were examined using descriptive analysis, phenotypic variability using standard deviation, and cluster analysis. The result showed that there was a difference between 4 species kemenyen (batak, minyak, durame and toba) according to 75 observed characters including flower, fruits, leaf, stem, bark, crown type, wood and the resin. Analysis and both quantitative and qualitative characters kemenyan clustered into two groups. In which, kemenyan toba separated with other clusters.

  12. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  13. Nanoscale Substances on the TSCA Inventory

    EPA Pesticide Factsheets

    This document is to help the regulated community comply with the requirements of the Toxic Substances Control Act (TSCA) Section 5 Premanufacturing Notice (PMN) Program for nanoscale chemical substances.

  14. Quantification of metallic nanoparticle morphology with tilt series imaging by transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Clukay, Christopher J.; Grabill, Christopher N.; Heinrich, Helge; Bhattacharya, Aniket; Kuebler, Stephen M.

    2012-02-01

    We report on the quantitative analysis of electrolessly deposited Au and Ag nanoparticles (NPs) on SU8 polymer with the help of High-Angle Annular Dark-Field Scanning Transmission Electron Microscopy (HAADF-STEM) in tilt series. Au NPs act as nucleating agents for the electroless deposition of silver. Au NPs were prepared by attachingAu^3+cations to amine functionalized SU8 polymeric surfaces and then reducing it with aqueous NaBH4. The nanoscale morphology of the deposited NPs on the surface of polymer has been studied from the dark field TEM cross sectional images. Ag NPs were deposited on the cross-linked polymeric surface from a silver citrate solution reduced by hydroquinone. HAADF-STEM enables us to determine the distances between the NPs and their exact locations at and near the surface. The particle distribution, sizes and densities provide us with the data necessary to control the parameters for the development of the electroless deposition technique for emerging nanoscale technologies.

  15. From Lab to Fab: Developing a Nanoscale Delivery Tool for Scalable Nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Safi, Asmahan A.

    The emergence of nanomaterials with unique properties at the nanoscale over the past two decades carries a capacity to impact society and transform or create new industries ranging from nanoelectronics to nanomedicine. However, a gap in nanomanufacturing technologies has prevented the translation of nanomaterial into real-world commercialized products. Bridging this gap requires a paradigm shift in methods for fabricating structured devices with a nanoscale resolution in a repeatable fashion. This thesis explores the new paradigms for fabricating nanoscale structures devices and systems for high throughput high registration applications. We present a robust and scalable nanoscale delivery platform, the Nanofountain Probe (NFP), for parallel direct-write of functional materials. The design and microfabrication of NFP is presented. The new generation addresses the challenges of throughput, resolution and ink replenishment characterizing tip-based nanomanufacturing. To achieve these goals, optimized probe geometry is integrated to the process along with channel sealing and cantilever bending. The capabilities of the newly fabricated probes are demonstrated through two type of delivery: protein nanopatterning and single cell nanoinjection. The broad applications of the NFP for single cell delivery are investigated. An external microfluidic packaging is developed to enable delivery in liquid environment. The system is integrated to a combined atomic force microscope and inverted fluorescence microscope. Intracellular delivery is demonstrated by injecting a fluorescent dextran into Hela cells in vitro while monitoring the injection forces. Such developments enable in vitro cellular delivery for single cell studies and high throughput gene expression. The nanomanufacturing capabilities of NFPs are explored. Nanofabrication of carbon nanotube-based electronics presents all the manufacturing challenges characterizing of assembling nanomaterials precisely onto devices. The

  16. Evolution of nanodot morphology on polycarbonate (PC) surfaces by 40 keV Ar{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyal, Meetika, E-mail: meetika89@gmail.com; Chawla, Mahak; Gupta, Divya

    In the present paper we have discussed the effect of 40 keV Ar{sup +} ions irradiation on nanoscale surface morphology of Polycarbonate (PC) substrate. Specimens were sputtered at off normal incidences of 30°, 40° and 50° with the fluence of 1 × 10{sup 16} Ar{sup +}cm{sup −2}. The topographical behaviour of specimens was studied by using Atomic Force Microscopy (AFM) technique. AFM study demonstrates the evolution of nano dot morphology on PC specimens on irradiating with 1 × 10{sup 16} Ar{sup +}cm{sup −2}. Average size of dots varied from 37-95 nm in this specified range of incidence while density of dotsmore » varied from 0.17-3.0 × 107 dotscm{sup −2}. Such variations in morphological features have been supported by estimation of ion range and sputtering yield through SRIM simulations.« less

  17. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are

  18. Novel Methods of Determining Urinary Calculi Composition: Petrographic Thin Sectioning of Calculi and Nanoscale Flow Cytometry Urinalysis

    PubMed Central

    Gavin, Carson T; Ali, Sohrab N; Tailly, Thomas; Olvera-Posada, Daniel; Alenezi, Husain; Power, Nicholas E; Hou, Jinqiang; St. Amant, Andre H; Luyt, Leonard G; Wood, Stephen; Wu, Charles; Razvi, Hassan; Leong, Hon S

    2016-01-01

    Accurate determination of urinary stone composition has significant bearing on understanding pathophysiology, choosing treatment modalities and preventing recurrence. A need exists for improved methods to determine stone composition. Urine of 31 patients with known renal calculi was examined with nanoscale flow cytometry and the calculi collected during surgery subsequently underwent petrographic thin sectioning with polarized and fluorescent microscopy. Fluorescently labeled bisphosphonate probes (Alendronate-fluorescein/Alendronate-Cy5) were developed for nanoscale flow cytometry to enumerate nanocrystals that bound the fluorescent probes. Petrographic sections of stones were also imaged by fluorescent and polarized light microscopy with composition analysis correlated to alendronate +ve nanocrystal counts in corresponding urine samples. Urine samples from patients with Ca2+ and Mg2+ based calculi exhibited the highest alendronate +ve nanocrystal counts, ranging from 100–1000 nm in diameter. This novel urine based assay was in agreement with composition determined by petrographic thin sections with Alendronate probes. In some cases, high alendronate +ve nanocrystal counts indicated a Ca2+ or Mg2+ composition, as confirmed by petrographic analysis, overturning initial spectrophotometric diagnosis of stone composition. The combination of nanoscale flow cytometry and petrographic thin sections offer an alternative means for determining stone composition. Nanoscale flow cytometry of alendronate +ve nanocrystals alone may provide a high-throughput means of evaluating stone burden. PMID:26771074

  19. Unravelling the biodiversity of nanoscale signatures of spider silk fibres

    NASA Astrophysics Data System (ADS)

    Silva, Luciano P.; Rech, Elibio L.

    2013-12-01

    Living organisms are masters at designing outstanding self-assembled nanostructures through a hierarchical organization of modular proteins. Protein-based biopolymers improved and selected by the driving forces of molecular evolution are among the most impressive archetypes of nanomaterials. One of these biomacromolecules is the myriad of compound fibroins of spider silks, which combine surprisingly high tensile strength with great elasticity. However, no consensus on the nano-organization of spider silk fibres has been reached. Here we explore the biodiversity of spider silk fibres, focusing on nanoscale characterization with high-resolution atomic force microscopy. Our results reveal an evolution of the nanoroughness, nanostiffness, nanoviscoelastic, nanotribological and nanoelectric organization of microfibres, even when they share similar sizes and shapes. These features are related to unique aspects of their molecular structures. The results show that combined nanoscale analyses of spider silks may enable the screening of appropriate motifs for bioengineering synthetic fibres from recombinant proteins.

  20. Quantifying Nanoscale Order in Amorphous Materials via Fluctuation Electron Microscopy

    ERIC Educational Resources Information Center

    Bogle, Stephanie Nicole

    2009-01-01

    Fluctuation electron microscopy (FEM) has been used to study the nanoscale order in various amorphous materials. The method is explicitly sensitive to 3- and 4-body atomic correlation functions in amorphous materials; this is sufficient to establish the existence of structural order on the nanoscale, even when the radial distribution function…

  1. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  2. Exploring Carbon Nanotubes for Nanoscale Devices

    NASA Technical Reports Server (NTRS)

    Han, Jie; Dai; Anantram; Jaffe; Saini, Subhash (Technical Monitor)

    1998-01-01

    Carbon nanotubes (CNTs) are shown to promise great opportunities in nanoelectronic devices and nanoelectromechanical systems (NEMS) because of their inherent nanoscale sizes, intrinsic electric conductivities, and seamless hexagonal network architectures. I present our collaborative work with Stanford on exploring CNTs for nanodevices in this talk. The electrical property measurements suggest that metallic tubes are quantum wires. Furthermore, two and three terminal CNT junctions have been observed experimentally. We have proposed and studied CNT-based molecular switches and logic devices for future digital electronics. We also have studied CNTs based NEMS inclusing gears, cantilevers, and scanning probe microscopy tips. We investigate both chemistry and physics based aspects of the CNT NEMS. Our results suggest that CNT have ideal stiffness, vibrational frequencies, Q-factors, geometry-dependent electric conductivities, and the highest chemical and mechanical stabilities for the NEMS. The use of CNT SPM tips for nanolithography is presented for demonstration of the advantages of the CNT NEMS.

  3. Individual Morphological Brain Network Construction Based on Multivariate Euclidean Distances Between Brain Regions.

    PubMed

    Yu, Kaixin; Wang, Xuetong; Li, Qiongling; Zhang, Xiaohui; Li, Xinwei; Li, Shuyu

    2018-01-01

    Morphological brain network plays a key role in investigating abnormalities in neurological diseases such as mild cognitive impairment (MCI) and Alzheimer's disease (AD). However, most of the morphological brain network construction methods only considered a single morphological feature. Each type of morphological feature has specific neurological and genetic underpinnings. A combination of morphological features has been proven to have better diagnostic performance compared with a single feature, which suggests that an individual morphological brain network based on multiple morphological features would be beneficial in disease diagnosis. Here, we proposed a novel method to construct individual morphological brain networks for two datasets by calculating the exponential function of multivariate Euclidean distance as the evaluation of similarity between two regions. The first dataset included 24 healthy subjects who were scanned twice within a 3-month period. The topological properties of these brain networks were analyzed and compared with previous studies that used different methods and modalities. Small world property was observed in all of the subjects, and the high reproducibility indicated the robustness of our method. The second dataset included 170 patients with MCI (86 stable MCI and 84 progressive MCI cases) and 169 normal controls (NC). The edge features extracted from the individual morphological brain networks were used to distinguish MCI from NC and separate MCI subgroups (progressive vs. stable) through the support vector machine in order to validate our method. The results showed that our method achieved an accuracy of 79.65% (MCI vs. NC) and 70.59% (stable MCI vs. progressive MCI) in a one-dimension situation. In a multiple-dimension situation, our method improved the classification performance with an accuracy of 80.53% (MCI vs. NC) and 77.06% (stable MCI vs. progressive MCI) compared with the method using a single feature. The results indicated

  4. Mapping photovoltaic performance with nanoscale resolution

    DOE PAGES

    Kutes, Yasemin; Aguirre, Brandon A.; Bosse, James L.; ...

    2015-10-16

    Photo-conductive AFM spectroscopy (‘pcAFMs’) is proposed as a high-resolution approach for investigating nanostructured photovoltaics, uniquely providing nanoscale maps of photovoltaic (PV) performance parameters such as the short circuit current, open circuit voltage, maximum power, or fill factor. The method is demonstrated with a stack of 21 images acquired during in situ illumination of micropatterned polycrystalline CdTe/CdS, providing more than 42,000 I/V curves spatially separated by ~5 nm. For these CdTe/CdS microcells, the calculated photoconduction ranges from 0 to 700 picoSiemens (pS) upon illumination with ~1.6 suns, depending on location and biasing conditions. Mean short circuit currents of 2 pA, maximummore » powers of 0.5 pW, and fill factors of 30% are determined. The mean voltage at which the detected photocurrent is zero is determined to be 0.7 V. Significantly, enhancements and reductions in these more commonly macroscopic PV performance metrics are observed to correlate with certain grains and grain boundaries, and are confirmed to be independent of topography. Furthermore, these results demonstrate the benefits of nanoscale resolved PV functional measurements, reiterate the importance of microstructural control down to the nanoscale for 'PV devices, and provide a widely applicable new approach for directly investigating PV materials.« less

  5. A Look Inside Argonne's Center for Nanoscale Materials

    ScienceCinema

    Divan, Ralu; Rosenthal, Dan; Rose, Volker; Wai Hla

    2018-05-23

    At a very small, or "nano" scale, materials behave differently. The study of nanomaterials is much more than miniaturization - scientists are discovering how changes in size change a material's properties. From sunscreen to computer memory, the applications of nanoscale materials research are all around us. Researchers at Argonne's Center for Nanoscale Materials are creating new materials, methods and technologies to address some of the world's greatest challenges in energy security, lightweight but durable materials, high-efficiency lighting, information storage, environmental stewardship and advanced medical devices.

  6. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects.

    PubMed

    Pascal, Tod A; Villaluenga, Irune; Wujcik, Kevin H; Devaux, Didier; Jiang, Xi; Wang, Dunyang Rita; Balsara, Nitash; Prendergast, David

    2017-04-12

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ∼30° below the expected freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.

  7. Groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Li, Shuguang; Liu, Qiang; Feng, Xinxing; Zhang, Shuhuan; Wang, Yujun; Wu, Junjun

    2018-07-01

    A groove micro-structure optical fiber refractive index sensor with nanoscale gold film based on surface plasmon resonance (SPR) is proposed and analyzed by the finite element method (FEM). Numerical results show that the average sensitivity is 15,933 nm/refractive index unit (RIU) with the refractive index of analyte ranging from 1.40 to 1.43 and the maximum sensitivity is 28,600 nm/RIU and the resolution of the sensor is 3.50 × 10-8 RIU. The groove micro-structure optical fiber refractive index sensor do some changes on the D-shaped fiber sensor, compared with conventional D-shaped fiber sensor, it has a higher sensitivity and it is easier to produce than the traditional SPR sensor.

  8. Nanoscale chirality in metal and semiconductor nanoparticles

    PubMed Central

    Thomas, K. George

    2016-01-01

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided. PMID:27752651

  9. Nanoscale chirality in metal and semiconductor nanoparticles.

    PubMed

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  10. Manufacturing at the Nanoscale. Report of the National Nanotechnology Initiative Workshops, 2002-2004

    DTIC Science & Technology

    2007-01-01

    positioning and assembling? • Do nanoscale properties remain once the nanostructures are integrated up to the microscale? • How do we measure...viii Manufacturing at the Nanoscale 1 1. VISION Employing the novel properties and processes that are associated with the nanoscale—in the...Theory, modeling, and simulation software are being developed to investigate nanoscale material properties and synthesis of macromolecular systems with

  11. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  12. Nanoscale thermal transport. II. 2003-2012

    NASA Astrophysics Data System (ADS)

    Cahill, David G.; Braun, Paul V.; Chen, Gang; Clarke, David R.; Fan, Shanhui; Goodson, Kenneth E.; Keblinski, Pawel; King, William P.; Mahan, Gerald D.; Majumdar, Arun; Maris, Humphrey J.; Phillpot, Simon R.; Pop, Eric; Shi, Li

    2014-03-01

    A diverse spectrum of technology drivers such as improved thermal barriers, higher efficiency thermoelectric energy conversion, phase-change memory, heat-assisted magnetic recording, thermal management of nanoscale electronics, and nanoparticles for thermal medical therapies are motivating studies of the applied physics of thermal transport at the nanoscale. This review emphasizes developments in experiment, theory, and computation in the past ten years and summarizes the present status of the field. Interfaces become increasingly important on small length scales. Research during the past decade has extended studies of interfaces between simple metals and inorganic crystals to interfaces with molecular materials and liquids with systematic control of interface chemistry and physics. At separations on the order of ˜ 1 nm , the science of radiative transport through nanoscale gaps overlaps with thermal conduction by the coupling of electronic and vibrational excitations across weakly bonded or rough interfaces between materials. Major advances in the physics of phonons include first principles calculation of the phonon lifetimes of simple crystals and application of the predicted scattering rates in parameter-free calculations of the thermal conductivity. Progress in the control of thermal transport at the nanoscale is critical to continued advances in the density of information that can be stored in phase change memory devices and new generations of magnetic storage that will use highly localized heat sources to reduce the coercivity of magnetic media. Ultralow thermal conductivity—thermal conductivity below the conventionally predicted minimum thermal conductivity—has been observed in nanolaminates and disordered crystals with strong anisotropy. Advances in metrology by time-domain thermoreflectance have made measurements of the thermal conductivity of a thin layer with micron-scale spatial resolution relatively routine. Scanning thermal microscopy and thermal

  13. The Influence of Fluorination on Nano-Scale Phase Separation and Photovoltaic Performance of Small Molecular/PC71BM Blends

    PubMed Central

    Lu, Zhen; Liu, Wen; Li, Jingjing; Fang, Tao; Li, Wanning; Zhang, Jicheng; Feng, Feng; Li, Wenhua

    2016-01-01

    To investigate the fluorination influence on the photovoltaic performance of small molecular based organic solar cells (OSCs), six small molecules based on 2,1,3-benzothiadiazole (BT), and diketopyrrolopyrrole (DPP) as core and fluorinated phenyl (DFP) and triphenyl amine (TPA) as different terminal units (DFP-BT-DFP, DFP-BT-TPA, TPA-BT-TPA, DFP-DPP-DFP, DFP-DPP-TPA, and TPA-DPP-TPA) were synthesized. With one or two fluorinated phenyl as the end group(s), HOMO level of BT and DPP based small molecular donors were gradually decreased, inducing high open circuit voltage for fluorinated phenyl based OSCs. DFP-BT-TPA and DFP-DPP-TPA based blend films both displayed stronger nano-scale aggregation in comparison to TPA-BT-TPA and TPA-DPP-TPA, respectively, which would also lead to higher hole motilities in devices. Ultimately, improved power conversion efficiency (PCE) of 2.17% and 1.22% was acquired for DFP-BT-TPA and DFP-DPP-TPA based devices, respectively. These results demonstrated that the nano-scale aggregation size of small molecules in photovoltaic devices could be significantly enhanced by introducing a fluorine atom at the donor unit of small molecules, which will provide understanding about the relationship of chemical structure and nano-scale phase separation in OSCs. PMID:28335208

  14. Nanoscale NMR spectroscopy and imaging of multiple nuclear species.

    PubMed

    DeVience, Stephen J; Pham, Linh M; Lovchinsky, Igor; Sushkov, Alexander O; Bar-Gill, Nir; Belthangady, Chinmay; Casola, Francesco; Corbett, Madeleine; Zhang, Huiliang; Lukin, Mikhail; Park, Hongkun; Yacoby, Amir; Walsworth, Ronald L

    2015-02-01

    Nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) provide non-invasive information about multiple nuclear species in bulk matter, with wide-ranging applications from basic physics and chemistry to biomedical imaging. However, the spatial resolution of conventional NMR and MRI is limited to several micrometres even at large magnetic fields (>1 T), which is inadequate for many frontier scientific applications such as single-molecule NMR spectroscopy and in vivo MRI of individual biological cells. A promising approach for nanoscale NMR and MRI exploits optical measurements of nitrogen-vacancy (NV) colour centres in diamond, which provide a combination of magnetic field sensitivity and nanoscale spatial resolution unmatched by any existing technology, while operating under ambient conditions in a robust, solid-state system. Recently, single, shallow NV centres were used to demonstrate NMR of nanoscale ensembles of proton spins, consisting of a statistical polarization equivalent to ∼100-1,000 spins in uniform samples covering the surface of a bulk diamond chip. Here, we realize nanoscale NMR spectroscopy and MRI of multiple nuclear species ((1)H, (19)F, (31)P) in non-uniform (spatially structured) samples under ambient conditions and at moderate magnetic fields (∼20 mT) using two complementary sensor modalities.

  15. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    NASA Astrophysics Data System (ADS)

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-07-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3-6 mmol/L in temperature range of 30-40 °C, 6-10 mmol/L in temperature range of 15-30 °C and 10-14 mmol/L in temperature range of 5-15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency.

  16. Evaluation on the Nanoscale Zero Valent Iron Based Microbial Denitrification for Nitrate Removal from Groundwater

    PubMed Central

    Peng, Lai; Liu, Yiwen; Gao, Shu-Hong; Chen, Xueming; Xin, Pei; Dai, Xiaohu; Ni, Bing-Jie

    2015-01-01

    Nanoscale zero valent iron (NZVI) based microbial denitrification has been demonstrated to be a promising technology for nitrate removal from groundwater. In this work, a mathematical model is developed to evaluate the performance of this new technology and to provide insights into the chemical and microbial interactions in the system in terms of nitrate reduction, ammonium accumulation and hydrogen turnover. The developed model integrates NZVI-based abiotic reduction of nitrate, NZVI corrosion for hydrogen production and hydrogen-based microbial denitrification and satisfactorily describes all of the nitrate and ammonium dynamics from two systems with highly different conditions. The high NZVI corrosion rate revealed by the model indicates the high reaction rate of NZVI with water due to their large specific surface area and high surface reactivity, leading to an effective microbial nitrate reduction by utilizing the produced hydrogen. The simulation results further suggest a NZVI dosing strategy (3–6 mmol/L in temperature range of 30–40 °C, 6–10 mmol/L in temperature range of 15–30 °C and 10–14 mmol/L in temperature range of 5–15 °C) during groundwater remediation to make sure a low ammonium yield and a high nitrogen removal efficiency. PMID:26199053

  17. Multimodal Nanoscale Characterization of Transformation and Deformation Mechanisms in Several Nickel Titanium Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Casalena, Lee

    The development of viable high-temperature shape memory alloys (HTSMAs) demands a coordinated multimodal characterization effort linking nanoscale crystal structure to macroscale thermomechanical properties. In this work, several high performance NiTi-based shape memory alloys are comprehensively explored with the goal of gaining insight into the complex transformation and deformation mechanisms responsible for their remarkable behavior. Through precise control of alloying and aging parameters, microstructures are optimized to enhance properties such as high-temperature strength and stability. These are crucial requirements for the development of advanced applications such as actuators and adaptive components that operate in demanding automotive and aerospace environments. An array of NiTiHf and NiTiAu alloys are at the core of this effort, offering the possibility of increased capability over traditional pneumatic and hydraulic systems, while simultaneously reducing weight and energy requirements. NiTi-20Hf alloys exhibit a favorable balance of properties, including high strength, stability, and work output at temperatures in excess of 150 °C. The raw material cost of Hf is also much lower compared with Pt, Pd, and Au containing counterparts. Advanced scanning transmission electron microscopy (STEM) and synchrotron X-ray characterization techniques are used to explore unusual nanoscale effects of precipitate-matrix interactions, coherency strain, and dislocation activity in these alloys. Novel use of the 4D STEM strain mapping technique is used to quantify strain fields associated with precipitates, which are being coupled with new phase field modeling approaches to particle/defect interactions. Volume fractions of nanoscale precipitates are measured using STEM-based tomography techniques, atom probe tomography, and synchrotron diffraction of bulk samples. Plastic deformation of the HTSMA austenite phase is shown to occur through B2 type slip for the first time

  18. Ag films deposited on Si and Ti: How the film-substrate interaction influences the nanoscale film morphology

    NASA Astrophysics Data System (ADS)

    Ruffino, F.; Torrisi, V.

    2017-11-01

    Submicron-thick Ag films were sputter deposited, at room temperature, on Si, covered by the native SiO2 layer, and on Ti, covered by the native TiO2 layer, under normal and oblique deposition angle. The aim of this work was to study the morphological differences in the grown Ag films on the two substrates when fixed all the other deposition parameters. In fact, the surface diffusivity of the Ag adatoms is different on the two substrates (higher on the SiO2 surface) due to the different Ag-SiO2 and Ag-TiO2 atomic interactions. So, the effect of the adatoms surface diffusivity, as determined by the adatoms-substrate interaction, on the final film morphology was analyzed. To this end, microscopic analyses were used to study the morphology of the grown Ag films. Even if the homologous temperature prescribes that the Ag film grows on both substrates in the zone I described by the structure zone model some significant differences are observed on the basis of the supporting substrate. In the normal incidence condition, on the SiO2/Si surface a dense close-packed Ag film exhibiting a smooth surface is obtained, while on the TiO2/Ti surface a more columnar film morphology is formed. In the oblique incidence condition the columnar morphology for the Ag film occurs both on SiO2/Si and TiO2/Ti but a higher porous columnar film is obtained on TiO2/Ti due to the lower Ag diffusivity. These results indicate that the adatoms diffusivity on the substrate as determined by the adatom-surface interaction (in addition to the substrate temperature) strongly determines the final film nanostructure.

  19. Direct-write nanoscale printing of nanogranular tunnelling strain sensors for sub-micrometre cantilevers

    PubMed Central

    Dukic, Maja; Winhold, Marcel; Schwalb, Christian H.; Adams, Jonathan D.; Stavrov, Vladimir; Huth, Michael; Fantner, Georg E.

    2016-01-01

    The sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed. Here we report a nanomechanical sensor readout based on electron co-tunnelling through a nanogranular metal. The sensors can be deposited with lateral dimensions down to tens of nm, allowing the readout of nanoscale cantilevers without constraints on their size, geometry or material. By modifying the inter-granular tunnel-coupling strength, the sensors' conductivity can be tuned by up to four orders of magnitude, to optimize their performance. We show that the nanoscale printed sensors are functional on 500 nm wide cantilevers and that their sensitivity is suited even for demanding applications such as atomic force microscopy. PMID:27666316

  20. Bottom-up nanoconstruction by the welding of individual metallic nanoobjects using nanoscale solder.

    PubMed

    Peng, Yong; Cullis, Tony; Inkson, Beverley

    2009-01-01

    We report that individual metallic nanowires and nanoobjects can be assembled and welded together into complex nanostructures and conductive circuits by a new nanoscale electrical welding technique using nanovolumes of metal solder. At the weld sites, nanoscale volumes of a chosen metal are deposited using a sacrificial nanowire, which ensures that the nanoobjects to be bonded retain their structural integrity. We demonstrate by welding both similar and dissimilar materials that the use of nanoscale solder is clean, controllable, and reliable and ensures both mechanically strong and electrically conductive contacts. Nanoscale weld resistances of just 20Omega are achieved by using Sn solder. Precise engineering of nanowelds by this technique, including the chemical flexibility of the nanowire solder, and high spatial resolution of the nanowelding method, should result in research applications including fabrication of nanosensors and nanoelectronics constructed from a small number of nanoobjects, and repair of interconnects and failed nanoscale electronics.

  1. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    PubMed

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  2. Enhanced reactivity of nanoscale iron particles through a vacuum annealing process

    NASA Astrophysics Data System (ADS)

    Riba, Olga; Barnes, Robert J.; Scott, Thomas B.; Gardner, Murray N.; Jackman, Simon A.; Thompson, Ian P.

    2011-10-01

    A reactivity study was undertaken to compare and assess the rate of dechlorination of chlorinated aliphatic hydrocarbons (CAHs) by annealed and non-annealed nanoscale iron particles. The current study aims to resolve the uncertainties in recently published work studying the effect of the annealing process on the reduction capability of nanoscale Fe particles. Comparison of the normalized rate constants (m2/h/L) obtained for dechlorination reactions of trichloroethene (TCE) and cis-1,2-dichloroethene (cis-1,2-DCE) indicated that annealing nanoscale Fe particles increases their reactivity 30-fold. An electron transfer reaction mechanism for both types of nanoscale particles was found to be responsible for CAH dechlorination, rather than a reduction reaction by activated H2 on the particle surface (i.e., hydrogenation, hydrogenolysis). Surface analysis of the particulate material using X-ray diffraction (XRD) and transmission electron microscopy (TEM) together with surface area measurement by Brunauer, Emmett, Teller (BET) indicate that the vacuum annealing process decreases the surface area and increases crystallinity. BET surface area analysis recorded a decrease in nanoscale Fe particle surface area from 19.0 to 4.8 m2/g and crystallite dimensions inside the particle increased from 8.7 to 18.2 nm as a result of annealing.

  3. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  4. Phototoxicity and Dosimetry of Nano-scale Titanium Dioxide in Aquatic Organisms

    EPA Science Inventory

    We have been testing nanoscale TiO2 (primarily Evonik P25) in acute exposures to identify and quantify its phototoxicity under solar simulated radiation (SSR), and to develop dose metrics reflective of both nano-scale properties and the photon component of its potency. Several e...

  5. Reconsideration of Plant Morphological Traits: From a Structure-Based Perspective to a Function-Based Evolutionary Perspective

    PubMed Central

    Bai, Shu-Nong

    2017-01-01

    This opinion article proposes a novel alignment of traits in plant morphogenesis from a function-based evolutionary perspective. As a member species of the ecosystem on Earth, we human beings view our neighbor organisms from our own sensing system. We tend to distinguish forms and structures (i.e., “morphological traits”) mainly through vision. Traditionally, a plant was considered to be consisted of three parts, i.e., the shoot, the leaves, and the root. Based on such a “structure-based perspective,” evolutionary analyses or comparisons across species were made on particular parts or their derived structures. So far no conceptual framework has been established to incorporate the morphological traits of all three land plant phyta, i.e., bryophyta, pteridophyta and spermatophyta, for evolutionary developmental analysis. Using the tenets of the recently proposed concept of sexual reproduction cycle, the major morphological traits of land plants can be aligned into five categories from a function-based evolutionary perspective. From this perspective, and the resulting alignment, a new conceptual framework emerges, called “Plant Morphogenesis 123.” This framework views a plant as a colony of integrated plant developmental units that are each produced via one life cycle. This view provided an alternative perspective for evolutionary developmental investigation in plants. PMID:28360919

  6. Characteristics for electrochemical machining with nanoscale voltage pulses.

    PubMed

    Lee, E S; Back, S Y; Lee, J T

    2009-06-01

    Electrochemical machining has traditionally been used in highly specialized fields, such as those of the aerospace and defense industries. It is now increasingly being applied in other industries, where parts with difficult-to-cut material, complex geometry and tribology, and devices of nanoscale and microscale are required. Electric characteristic plays a principal function role in and chemical characteristic plays an assistant function role in electrochemical machining. Therefore, essential parameters in electrochemical machining can be described current density, machining time, inter-electrode gap size, electrolyte, electrode shape etc. Electrochemical machining provides an economical and effective method for machining high strength, high tension and heat-resistant materials into complex shapes such as turbine blades of titanium and aluminum alloys. The application of nanoscale voltage pulses between a tool electrode and a workpiece in an electrochemical environment allows the three-dimensional machining of conducting materials with sub-micrometer precision. In this study, micro probe are developed by electrochemical etching and micro holes are manufactured using these micro probe as tool electrodes. Micro holes and microgroove can be accurately achieved by using nanoscale voltages pulses.

  7. The nanoscale organization of the B lymphocyte membrane☆

    PubMed Central

    Maity, Palash Chandra; Yang, Jianying; Klaesener, Kathrin; Reth, Michael

    2015-01-01

    The fluid mosaic model of Singer and Nicolson correctly predicted that the plasma membrane (PM) forms a lipid bi-layer containing many integral trans-membrane proteins. This model also suggested that most of these proteins were randomly dispersed and freely diffusing moieties. Initially, this view of a dynamic and rather unorganized membrane was supported by early observations of the cell surfaces using the light microscope. However, recent studies on the PM below the diffraction limit of visible light (~ 250 nm) revealed that, at nanoscale dimensions, membranes are highly organized and compartmentalized structures. Lymphocytes are particularly useful to study this nanoscale membrane organization because they grow as single cells and are not permanently engaged in cell:cell contacts within a tissue that can influence membrane organization. In this review, we describe the methods that can be used to better study the protein:protein interaction and nanoscale organization of lymphocyte membrane proteins, with a focus on the B cell antigen receptor (BCR). Furthermore, we discuss the factors that may generate and maintain these membrane structures. PMID:25450974

  8. Plasmonic Nanostructures for Nano-Scale Bio-Sensing

    PubMed Central

    Chung, Taerin; Lee, Seung-Yeol; Song, Eui Young; Chun, Honggu; Lee, Byoungho

    2011-01-01

    The optical properties of various nanostructures have been widely adopted for biological detection, from DNA sequencing to nano-scale single molecule biological function measurements. In particular, by employing localized surface plasmon resonance (LSPR), we can expect distinguished sensing performance with high sensitivity and resolution. This indicates that nano-scale detections can be realized by using the shift of resonance wavelength of LSPR in response to the refractive index change. In this paper, we overview various plasmonic nanostructures as potential sensing components. The qualitative descriptions of plasmonic nanostructures are supported by the physical phenomena such as plasmonic hybridization and Fano resonance. We present guidelines for designing specific nanostructures with regard to wavelength range and target sensing materials. PMID:22346679

  9. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology

    PubMed Central

    Di Ruberto, Cecilia; Kocher, Michel

    2018-01-01

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images. PMID:29419781

  10. Recent Advances of Malaria Parasites Detection Systems Based on Mathematical Morphology.

    PubMed

    Loddo, Andrea; Di Ruberto, Cecilia; Kocher, Michel

    2018-02-08

    Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.

  11. Morphology-based Query for Galaxy Image Databases

    NASA Astrophysics Data System (ADS)

    Shamir, Lior

    2017-02-01

    Galaxies of rare morphology are of paramount scientific interest, as they carry important information about the past, present, and future Universe. Once a rare galaxy is identified, studying it more effectively requires a set of galaxies of similar morphology, allowing generalization and statistical analysis that cannot be done when N=1. Databases generated by digital sky surveys can contain a very large number of galaxy images, and therefore once a rare galaxy of interest is identified it is possible that more instances of the same morphology are also present in the database. However, when a researcher identifies a certain galaxy of rare morphology in the database, it is virtually impossible to mine the database manually in the search for galaxies of similar morphology. Here we propose a computer method that can automatically search databases of galaxy images and identify galaxies that are morphologically similar to a certain user-defined query galaxy. That is, the researcher provides an image of a galaxy of interest, and the pattern recognition system automatically returns a list of galaxies that are visually similar to the target galaxy. The algorithm uses a comprehensive set of descriptors, allowing it to support different types of galaxies, and it is not limited to a finite set of known morphologies. While the list of returned galaxies is neither clean nor complete, it contains a far higher frequency of galaxies of the morphology of interest, providing a substantial reduction of the data. Such algorithms can be integrated into data management systems of autonomous digital sky surveys such as the Large Synoptic Survey Telescope (LSST), where the number of galaxies in the database is extremely large. The source code of the method is available at http://vfacstaff.ltu.edu/lshamir/downloads/udat.

  12. Thermoelectric efficiency of nanoscale devices in the linear regime

    NASA Astrophysics Data System (ADS)

    Bevilacqua, G.; Grosso, G.; Menichetti, G.; Pastori Parravicini, G.

    2016-12-01

    We study quantum transport through two-terminal nanoscale devices in contact with two particle reservoirs at different temperatures and chemical potentials. We discuss the general expressions controlling the electric charge current, heat currents, and the efficiency of energy transmutation in steady conditions in the linear regime. With focus in the parameter domain where the electron system acts as a power generator, we elaborate workable expressions for optimal efficiency and thermoelectric parameters of nanoscale devices. The general concepts are set at work in the paradigmatic cases of Lorentzian resonances and antiresonances, and the encompassing Fano transmission function: the treatments are fully analytic, in terms of the trigamma functions and Bernoulli numbers. From the general curves here reported describing transport through the above model transmission functions, useful guidelines for optimal efficiency and thermopower can be inferred for engineering nanoscale devices in energy regions where they show similar transmission functions.

  13. Enabling complex nanoscale pattern customization using directed self-assembly.

    PubMed

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  14. Investigating the Mobility of Trilayer Graphene Nanoribbon in Nanoscale FETs

    NASA Astrophysics Data System (ADS)

    Rahmani, Meisam; Ghafoori Fard, Hassan; Ahmadi, Mohammad Taghi; Rahbarpour, Saeideh; Habibiyan, Hamidreza; Varmazyari, Vali; Rahmani, Komeil

    2017-10-01

    The aim of the present paper is to investigate the scaling behaviors of charge carrier mobility as one of the most remarkable characteristics for modeling of nanoscale field-effect transistors (FETs). Many research groups in academia and industry are contributing to the model development and experimental identification of multi-layer graphene FET-based devices. The approach in the present work is to provide an analytical model for carrier mobility of tri-layer graphene nanoribbon (TGN) FET. In order to do so, one starts by identifying the analytical modeling of TGN carrier velocity and ballistic conductance. At the end, a model of charge carrier mobility with numerical solution is analytically derived for TGN FET, in which the carrier concentration, temperature and channel length characteristics dependence are highlighted. Moreover, variation of band gap and gate voltage during the proposed device operation and its effect on carrier mobility is investigated. To evaluate the nanoscale FET performance, the carrier mobility model is also adopted to obtain the I-V characteristics of the device. In order to verify the accuracy of the proposed analytical model for TGN mobility, it is compared to the existing experimental data, and a satisfactory agreement is reported for analogous ambient conditions. Moreover, the proposed model is compared with the published data of single-layer graphene and bi-layer graphene, in which the obtained results demonstrate significant insights into the importance of charge carrier mobility impact in high-performance TGN FET. The work presented here is one step towards an applicable model for real-world nanoscale FETs.

  15. A new technique based on current measurement for nanoscale ferroelectricity assessment: Nano-positive up negative down

    NASA Astrophysics Data System (ADS)

    Martin, Simon; Baboux, Nicolas; Albertini, David; Gautier, Brice

    2017-02-01

    In this paper, we propose a new procedure which aims at measuring the polarisation switching current at the nanoscale on ferroelectric thin films with the atomic force microscope tip used as a top electrode. Our technique is an adaptation of the so-called positive up negative down method commonly operated on large electrodes. The main obstacle that must be overcome to implement such measurement is the enhancement of the signal to noise ratio, in a context where the stray capacitance of the sample/tip/lever/lever holder system generates a dielectric displacement current several orders of magnitude higher than the current to be measured. This problem is solved by the subtraction of the displacement current through a reference capacitance. For the first time, we show an example of nanoscale positive up negative down measurement of the polarisation charge on a PbZrTiO3 thin film and compare the measured value with paraelectric samples. From the comparison with macroscopic measurement, we deduce the effective area of contact between the tip and the sample.

  16. Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon

    NASA Astrophysics Data System (ADS)

    Bhaskaran, Harish; Gotsmann, Bernd; Sebastian, Abu; Drechsler, Ute; Lantz, Mark A.; Despont, Michel; Jaroenapibal, Papot; Carpick, Robert W.; Chen, Yun; Sridharan, Kumar

    2010-03-01

    Understanding friction and wear at the nanoscale is important for many applications that involve nanoscale components sliding on a surface, such as nanolithography, nanometrology and nanomanufacturing. Defects, cracks and other phenomena that influence material strength and wear at macroscopic scales are less important at the nanoscale, which is why nanowires can, for example, show higher strengths than bulk samples. The contact area between the materials must also be described differently at the nanoscale. Diamond-like carbon is routinely used as a surface coating in applications that require low friction and wear because it is resistant to wear at the macroscale, but there has been considerable debate about the wear mechanisms of diamond-like carbon at the nanoscale because it is difficult to fabricate diamond-like carbon structures with nanoscale fidelity. Here, we demonstrate the batch fabrication of ultrasharp diamond-like carbon tips that contain significant amounts of silicon on silicon microcantilevers for use in atomic force microscopy. This material is known to possess low friction in humid conditions, and we find that, at the nanoscale, it is three orders of magnitude more wear-resistant than silicon under ambient conditions. A wear rate of one atom per micrometre of sliding on SiO2 is demonstrated. We find that the classical wear law of Archard does not hold at the nanoscale; instead, atom-by-atom attrition dominates the wear mechanisms at these length scales. We estimate that the effective energy barrier for the removal of a single atom is ~1 eV, with an effective activation volume of ~1 × 10-28 m.

  17. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    DOE PAGES

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; ...

    2015-03-23

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier’s law for heat conduction dramatically overpredicts the rate ofmore » heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. In conclusion, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.« less

  18. A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency

    NASA Astrophysics Data System (ADS)

    Hoogeboom-Pot, Kathleen M.; Hernandez-Charpak, Jorge N.; Gu, Xiaokun; Frazer, Travis D.; Anderson, Erik H.; Chao, Weilun; Falcone, Roger W.; Yang, Ronggui; Murnane, Margaret M.; Kapteyn, Henry C.; Nardi, Damiano

    2015-04-01

    Understanding thermal transport from nanoscale heat sources is important for a fundamental description of energy flow in materials, as well as for many technological applications including thermal management in nanoelectronics and optoelectronics, thermoelectric devices, nanoenhanced photovoltaics, and nanoparticle-mediated thermal therapies. Thermal transport at the nanoscale is fundamentally different from that at the macroscale and is determined by the distribution of carrier mean free paths and energy dispersion in a material, the length scales of the heat sources, and the distance over which heat is transported. Past work has shown that Fourier's law for heat conduction dramatically overpredicts the rate of heat dissipation from heat sources with dimensions smaller than the mean free path of the dominant heat-carrying phonons. In this work, we uncover a new regime of nanoscale thermal transport that dominates when the separation between nanoscale heat sources is small compared with the dominant phonon mean free paths. Surprisingly, the interaction of phonons originating from neighboring heat sources enables more efficient diffusive-like heat dissipation, even from nanoscale heat sources much smaller than the dominant phonon mean free paths. This finding suggests that thermal management in nanoscale systems including integrated circuits might not be as challenging as previously projected. Finally, we demonstrate a unique capability to extract differential conductivity as a function of phonon mean free path in materials, allowing the first (to our knowledge) experimental validation of predictions from the recently developed first-principles calculations.

  19. A nanoscale vacuum-tube diode triggered by few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Higuchi, Takuya; Maisenbacher, Lothar; Liehl, Andreas; Dombi, Péter; Hommelhoff, Peter

    2015-02-01

    We propose and demonstrate a nanoscale vacuum-tube diode triggered by few-cycle near-infrared laser pulses. It represents an ultrafast electronic device based on light fields, exploiting near-field optical enhancement at surfaces of two metal nanotips. The sharper of the two tips displays a stronger field-enhancement, resulting in larger photoemission yields at its surface. One laser pulse with a peak intensity of 4.7 × 1011 W/cm2 triggers photoemission of ˜16 electrons from the sharper cathode tip, while emission from the blunter anode tip is suppressed by 19 dB to ˜0.2 electrons per pulse. Thus, the laser-triggered current between two tips exhibit a rectifying behavior, in analogy to classical vacuum-tube diodes. According to the kinetic energy of the emitted electrons and the distance between the tips, the total operation time of this laser-triggered nanoscale diode is estimated to be below 1 ps.

  20. Preparation, Microstructure and Performance of Nanoscale Ceramics Reinforced Hard Composite Coating

    NASA Astrophysics Data System (ADS)

    Li, Peng

    2014-11-01

    This paper is based on the dry sliding wear of Stellite SF12-B4C-TiN-Mo composite coating deposited on a pure Ti using a laser cladding technique, the parameters of which provide almost crack-free composites with low porosity. To the best of our knowledge, it is the first time that Stellite SF12-B4C-TiN-Mo mixed powders are deposited as the hard composites by a laser cladding technique. Scanning electron microscope images indicate that the nanoscale particles are produced in such coating. The fact that due to the sufficiently rapid heating and cooling rates of the laser cladding technique, the ceramics, such as TiC or TiB2 did not have enough time to grow up, resulting in the formation of the nanoscale particles. Compared with a pure Ti substrate, the increments of the micro-hardness and wear resistance are obtained for such composite coating.

  1. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Capaz, Rodrigo; Menezes, Marcos; Almeida, Clara; de Cicco, Marcelo; Achete, Carlos; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas; Prioli, Rodrigo

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction coefficient of graphene is highly dependent on the scanning direction: Under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  2. Giant and Tunable Anisotropy of Nanoscale Friction in Graphene

    NASA Astrophysics Data System (ADS)

    Almeida, Clara M.; Prioli, Rodrigo; Fragneaud, Benjamin; Cançado, Luiz Gustavo; Paupitz, Ricardo; Galvão, Douglas S.; de Cicco, Marcelo; Menezes, Marcos G.; Achete, Carlos A.; Capaz, Rodrigo B.

    2016-08-01

    The nanoscale friction between an atomic force microscopy tip and graphene is investigated using friction force microscopy (FFM). During the tip movement, friction forces are observed to increase and then saturate in a highly anisotropic manner. As a result, the friction forces in graphene are highly dependent on the scanning direction: under some conditions, the energy dissipated along the armchair direction can be 80% higher than along the zigzag direction. In comparison, for highly-oriented pyrolitic graphite (HOPG), the friction anisotropy between armchair and zigzag directions is only 15%. This giant friction anisotropy in graphene results from anisotropies in the amplitudes of flexural deformations of the graphene sheet driven by the tip movement, not present in HOPG. The effect can be seen as a novel manifestation of the classical phenomenon of Euler buckling at the nanoscale, which provides the non-linear ingredients that amplify friction anisotropy. Simulations based on a novel version of the 2D Tomlinson model (modified to include the effects of flexural deformations), as well as fully atomistic molecular dynamics simulations and first-principles density-functional theory (DFT) calculations, are able to reproduce and explain the experimental observations.

  3. 76 FR 41178 - Pesticides; Policies Concerning Products Containing Nanoscale Materials; Opportunity for Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... 17, 2011, concerning possible approaches for obtaining information about what nanoscale materials are... information about what nanoscale materials are present in registered pesticide products. Four requests for a...

  4. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses

    NASA Astrophysics Data System (ADS)

    Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; Berntsen, Peter; Bielecki, Johan; Daurer, Benedikt J.; DeMirci, Hasan; Fromme, Petra; Hantke, Max Felix; Maia, Filipe R. N. C.; Munke, Anna; Nettelblad, Carl; Pande, Kanupriya; Reddy, Hemanth K. N.; Sellberg, Jonas A.; Sierra, Raymond G.; Svenda, Martin; van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu; Aquila, Andrew; Zwart, Peter H.; Mancuso, Adrian P.

    2017-10-01

    We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates from the expected perfect icosahedral symmetry. Our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.

  5. Quantum mechanical modeling the emission pattern and polarization of nanoscale light emitting diodes.

    PubMed

    Wang, Rulin; Zhang, Yu; Bi, Fuzhen; Frauenheim, Thomas; Chen, GuanHua; Yam, ChiYung

    2016-07-21

    Understanding of the electroluminescence (EL) mechanism in optoelectronic devices is imperative for further optimization of their efficiency and effectiveness. Here, a quantum mechanical approach is formulated for modeling the EL processes in nanoscale light emitting diodes (LED). Based on non-equilibrium Green's function quantum transport equations, interactions with the electromagnetic vacuum environment are included to describe electrically driven light emission in the devices. The presented framework is illustrated by numerical simulations of a silicon nanowire LED device. EL spectra of the nanowire device under different bias voltages are obtained and, more importantly, the radiation pattern and polarization of optical emission can be determined using the current approach. This work is an important step forward towards atomistic quantum mechanical modeling of the electrically induced optical response in nanoscale systems.

  6. Voltage control of nanoscale magnetoelastic elements: theory and experiments (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Carman, Gregory P.

    2015-09-01

    Electromagnetic devices rely on electrical currents to generate magnetic fields. While extremely useful this approach has limitations in the small-scale. To overcome the scaling problem, researchers have tried to use electric fields to manipulate a magnetic material's intrinsic magnetization (i.e. multiferroic). The strain mediated class of multiferroics offers up to 70% of energy transduction using available piezoelectric and magnetoelastic materials. While strain mediated multiferroic is promising, few studies exist on modeling/testing of nanoscale magnetic structures. This talk presents motivation, analytical models, and experimental data on electrical control of nanoscale single magnetic domain structures. This research is conducted in a NSF Engineering Research Center entitled Translational Applications for Nanoscale Multiferroics TANMS. The models combine micromagnetics (Landau-Lifshitz-Gilbert) with elastodynamics using the electrostatic approximation producing eight fully coupled nonlinear partial differential equations. Qualitative and quantitative verification is achieved with direct comparison to experimental data. The modeling effort guides fabrication and testing on three elements, i.e. nanoscale rings (onion states), ellipses (single domain reorientation), and superparamagnetic elements. Experimental results demonstrate electrical and deterministic control of the magnetic states in the 5-500 nm structures as measured with Photoemission Electron Microscopy PEEM, Magnetic Force Microscopy MFM, or Lorentz Transmission Electron Microscopy TEM. These data strongly suggests efficient control of nanoscale magnetic spin states is possible with voltage.

  7. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    PubMed

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  8. Towards a Holistic Cortical Thickness Descriptor: Heat Kernel-Based Grey Matter Morphology Signatures.

    PubMed

    Wang, Gang; Wang, Yalin

    2017-02-15

    In this paper, we propose a heat kernel based regional shape descriptor that may be capable of better exploiting volumetric morphological information than other available methods, thereby improving statistical power on brain magnetic resonance imaging (MRI) analysis. The mechanism of our analysis is driven by the graph spectrum and the heat kernel theory, to capture the volumetric geometry information in the constructed tetrahedral meshes. In order to capture profound brain grey matter shape changes, we first use the volumetric Laplace-Beltrami operator to determine the point pair correspondence between white-grey matter and CSF-grey matter boundary surfaces by computing the streamlines in a tetrahedral mesh. Secondly, we propose multi-scale grey matter morphology signatures to describe the transition probability by random walk between the point pairs, which reflects the inherent geometric characteristics. Thirdly, a point distribution model is applied to reduce the dimensionality of the grey matter morphology signatures and generate the internal structure features. With the sparse linear discriminant analysis, we select a concise morphology feature set with improved classification accuracies. In our experiments, the proposed work outperformed the cortical thickness features computed by FreeSurfer software in the classification of Alzheimer's disease and its prodromal stage, i.e., mild cognitive impairment, on publicly available data from the Alzheimer's Disease Neuroimaging Initiative. The multi-scale and physics based volumetric structure feature may bring stronger statistical power than some traditional methods for MRI-based grey matter morphology analysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Crystallization, Crystal Orientation and Morphology of Poly(ethylene oxide) under 1D Defect-Free Nanoscale Confinement

    NASA Astrophysics Data System (ADS)

    Hsiao, Ming-Siao; Zheng, Joseph X.; van Horn, Ryan M.; Quirk, Roderic P.; Thomas, Edwin L.; Lotz, Bernard; Cheng, Stephen Z. D.

    2009-03-01

    One-dimensional (1-D) defect-free nanoscale confinement is created by growing single crystals of PS-b-PEO block copolymers in dilute solution. Those defect-free, 1-D confined lamellae having different PEO layer thicknesses in PS-b-PEO lamellar single crystals (or crystal mats) were used to study the polymer recrystallization and crystal orientation evolution as a function of recrystallization temperature (Trx) because the Tg^PS is larger than Tm^PEO in the PS-b-PEO single crystal. The results are summarized as follows. First, by the combination of electron diffraction and known PEO crystallography, the crystallization of PEO only takes place at Trx<-5^oC. Meanwhile a unique tilted PEO orientation is formed at Trx >-5^oC after self-seeding. The origin of the formation of tilted chains in the PEO crystal will be addressed. Second, from the analysis of 2D WAXD patterns of crystal mats, it is shown that the change in PEO c-axis orientation from homogeneous at low Trx to homeotropic at higher Trx transitions sharply, within 1^oC. The mechanism inducing this dramatic change in crystal orientation will be investigated in detail.

  10. Oxidation of nanoscale zero-valent iron under sufficient and limited dissolved oxygen: Influences on aggregation behaviors.

    PubMed

    Jiang, Danlie; Hu, Xialin; Wang, Rui; Yin, Daqiang

    2015-03-01

    Oxidations of nanoscale zero-valent iron (nZVI) under aerobic (dissolved oxygen≈8mgL(-1)) and anaerobic (dissolved oxygen <3mgL(-1)) conditions were simulated, and their influences on aggregation behaviors of nZVI were investigated. The two oxidation products were noted as HO-nZVI (nZVI oxidized in highly oxygenated water) and LO-nZVI (nZVI oxidized in lowly oxygenated water) respectively. The metallic iron of the oxidized nZVI was almost exhausted (Fe(0)≈8±5%), thus magnetization mainly depended on magnetite content. Since sufficient dissolved oxygen led to the much less magnetite (∼15%) in HO-nZVI than that in LO-nZVI (>90%), HO-nZVI was far less magnetic (Ms=88kAm(-1)) than LO-nZVI (Ms=365kAm(-1)). Consequently, HO-nZVI formed small agglomerates (228±10nm), while LO-nZVI tended to form chain-like aggregations (>1μm) which precipitated rapidly. Based on the EDLVO theory, we suggested that dissolved oxygen level determined aggregation morphologies by controlling the degree of oxidation and the magnitude of magnetization. Then the chain-like alignment of LO-nZVI would promote further aggregation, but the agglomerate morphology of HO-nZVI would eliminate magnetic forces and inhibit the aggregation while HO-nZVI remained magnetic. Our results indicated the fine colloidal stability of HO-nZVI, which might lead to the great mobility in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Preface: Charge transport in nanoscale junctions

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Kornyshev, Alexei; Bjørnholm, Thomas

    2008-09-01

    Understanding the fundamentals of nanoscale charge transfer is pivotal for designing future nano-electronic devices. Such devices could be based on individual or groups of molecular bridges, nanotubes, nanoparticles, biomolecules and other 'active' components, mimicking wire, diode and transistor functions. These have operated in various environments including vacuum, air and condensed matter, in two- or three-electrode configurations, at ultra-low and room temperatures. Interest in charge transport in ultra-small device components has a long history and can be dated back to Aviram and Ratner's letter in 1974 (Chem. Phys. Lett. 29 277-83). So why is there a necessity for a special issue on this subject? The area has reached some degree of maturity, and even subtle geometric effects in the nanojunction and noise features can now be resolved and rationalized based on existing theoretical concepts. One purpose of this special issue is thus to showcase various aspects of nanoscale and single-molecule charge transport from experimental and theoretical perspectives. The main principles have 'crystallized' in our minds, but there is still a long way to go before true single-molecule electronics can be implemented. Major obstacles include the stability of electronic nanojunctions, reliable operation at room temperature, speed of operation and, last but not least, integration into large networks. A gradual transition from traditional silicon-based electronics to devices involving a single (or a few) molecule(s) therefore appears to be more viable from technologic and economic perspectives than a 'quantum leap'. As research in this area progresses, new applications emerge, e.g. with a view to characterizing interfacial charge transfer at the single-molecule level in general. For example, electrochemical experiments with individual enzyme molecules demonstrate that catalytic processes can be studied with nanometre resolution, offering a route towards optimizing biosensors at

  12. Imaging cell picker: A morphology-based automated cell separation system on a photodegradable hydrogel culture platform.

    PubMed

    Shibuta, Mayu; Tamura, Masato; Kanie, Kei; Yanagisawa, Masumi; Matsui, Hirofumi; Satoh, Taku; Takagi, Toshiyuki; Kanamori, Toshiyuki; Sugiura, Shinji; Kato, Ryuji

    2018-06-09

    Cellular morphology on and in a scaffold composed of extracellular matrix generally represents the cellular phenotype. Therefore, morphology-based cell separation should be interesting method that is applicable to cell separation without staining surface markers in contrast to conventional cell separation methods (e.g., fluorescence activated cell sorting and magnetic activated cell sorting). In our previous study, we have proposed a cloning technology using a photodegradable gelatin hydrogel to separate the individual cells on and in hydrogels. To further expand the applicability of this photodegradable hydrogel culture platform, we here report an image-based cell separation system imaging cell picker for the morphology-based cell separation on a photodegradable hydrogel. We have developed the platform which enables the automated workflow of image acquisition, image processing and morphology analysis, and collection of a target cells. We have shown the performance of the morphology-based cell separation through the optimization of the critical parameters that determine the system's performance, such as (i) culture conditions, (ii) imaging conditions, and (iii) the image analysis scheme, to actually clone the cells of interest. Furthermore, we demonstrated the morphology-based cloning performance of cancer cells in the mixture of cells by automated hydrogel degradation by light irradiation and pipetting. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    PubMed

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  14. The Morphology of Silver Layers on SU8 polymers prepared by Electroless Deposition

    NASA Astrophysics Data System (ADS)

    Dutta, Aniruddha; Yuan, Biao; Heinrich, Helge; Grabill, Chris; Williams, Henry; Kuebler, Stephen; Bhattacharya, Aniket

    2010-03-01

    Silver was deposited onto the functionalized surface of polymeric SU-8 where gold nanoparticles (Au-NPs) act as nucleation sites using electroless metallization chemistry. Here we report on the evolution of the nanoscale morphology of deposited Ag studied by Transmission Electron Microscopy (TEM). In TEM of sample cross sections correlations between the original gold and the silver nanoparticles were obtained while plan-view TEM results showed the distribution of nanoparticles on the surface. Scanning TEM with a high-angle annular dark field detector was used to obtain atomic number contrast. The morphology of the deposited Ag was controlled through the presence and absence of gum Arabic. The thickness and height fluctuations of the Ag layer were determined as a function of time and a statistical analysis of the growth process was conducted for the initial deposition periods.

  15. Impact of nanoscale topography on genomics and proteomics of adherent bacteria.

    PubMed

    Rizzello, Loris; Sorce, Barbara; Sabella, Stefania; Vecchio, Giuseppe; Galeone, Antonio; Brunetti, Virgilio; Cingolani, Roberto; Pompa, Pier Paolo

    2011-03-22

    Bacterial adhesion onto inorganic/nanoengineered surfaces is a key issue in biotechnology and medicine, because it is one of the first necessary steps to determine a general pathogenic event. Understanding the molecular mechanisms of bacteria-surface interaction represents a milestone for planning a new generation of devices with unanimously certified antibacterial characteristics. Here, we show how highly controlled nanostructured substrates impact the bacterial behavior in terms of morphological, genomic, and proteomic response. We observed by atomic force microscopy (AFM) and scanning electron microscopy (SEM) that type-1 fimbriae typically disappear in Escherichia coli adherent onto nanostructured substrates, as opposed to bacteria onto reference glass or flat gold surfaces. A genetic variation of the fimbrial operon regulation was consistently identified by real time qPCR in bacteria interacting with the nanorough substrates. To gain a deeper insight into the molecular basis of the interaction mechanisms, we explored the entire proteomic profile of E. coli by 2D-DIGE, finding significant changes in the bacteria adherent onto the nanorough substrates, such as regulations of proteins involved in stress processes and defense mechanisms. We thus demonstrated that a pure physical stimulus, that is, a nanoscale variation of surface topography, may play per se a significant role in determining the morphological, genetic, and proteomic profile of bacteria. These data suggest that in depth investigations of the molecular processes of microorganisms adhering to surfaces are of great importance for the design of innovative biomaterials with active biological functionalities.

  16. Morphological operation based dense houses extraction from DSM

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zhu, L.; Tachibana, K.; Shimamura, H.

    2014-08-01

    This paper presents a method of reshaping and extraction of markers and masks of the dense houses from the DSM based on mathematical morphology (MM). Houses in a digital surface model (DSM) are almost joined together in high-density housing areas, and most segmentation methods cannot completely separate them. We propose to label the markers of the buildings firstly and segment them into masks by watershed then. To avoid detecting more than one marker for a house or no marker at all due to its higher neighbour, the DSM is morphologically reshaped. It is carried out by a MM operation using the certain disk shape SE of the similar size to the houses. The sizes of the houses need to be estimated before reshaping. A granulometry generated by opening-by-reconstruction to the NDSM is proposed to detect the scales of the off-terrain objects. It is a histogram of the global volume of the top hats of the convex objects in the continuous scales. The obvious step change in the profile means that there are many objects of similar sizes occur at this scale. In reshaping procedure, the slices of the object are derived by morphological filtering at the detected continuous scales and reconstructed in pile as the dome. The markers are detected on the basis of the domes.

  17. Effect of geometric configuration on the electrocaloric properties of nanoscale ferroelectric materials

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Li, Huiyu; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2018-03-01

    The electrocaloric properties of ferroelectrics are highly dependent on the domain structure in the materials. For nanoscale ferroelectric materials, the domain structure is greatly influenced by the geometric configuration of the system. Using a real-space phase field model based on the Ginzburg-Landau theory, we investigate the effect of geometric configurations on the electrocaloric properties of nanoscale ferroelectric materials. The ferroelectric hysteresis loops under different temperatures are simulated for the ferroelectric nano-metamaterials with square, honeycomb, and triangular Archimedean geometric configurations. The adiabatic temperature changes (ATCs) for three ferroelectric nano-metamaterials under different electric fields are calculated from the Maxwell relationship based on the hysteresis loops. It is found that the honeycomb specimen exhibits the largest ATC of Δ T = 4.3 °C under a field of 391.8 kV/cm among three geometric configurations, whereas the square specimen has the smallest ATC of Δ T = 2.7 °C under the same electric field. The different electrocaloric properties for three geometric configurations stem from the different domain structures. There are more free surfaces perpendicular to the electric field in the square specimen than the other two specimens, which restrict more polarizations perpendicular to the electric field, resulting in a small ATC. Due to the absence of free surfaces perpendicular to the electric field in the honeycomb specimen, the change of polarization with temperature in the direction of the electric field is more easy and thus leads to a large ATC. The present work suggests a novel approach to obtain the tunable electrocaloric properties in nanoscale ferroelectric materials by designing their geometric configurations.

  18. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Bradley M.; Stuckelberger, Michael; Guthrey, Harvey

    Statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilar behavior and variabilitymore » throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In(1-x)Gax)Se2Cu(In(1-x)Gax)Se2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. These results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells.« less

  19. Grain engineering: How nanoscale inhomogeneities can control charge collection in solar cells

    DOE PAGES

    West, Bradley M.; Stuckelberger, Michael; Guthrey, Harvey; ...

    2016-12-16

    We present that statistical and correlative analysis are increasingly important in the design and study of new materials, from semiconductors to metals. Non-destructive measurement techniques, with high spatial resolution, capable of correlating composition and/or structure with device properties, are few and far between. For the case of polycrystalline and inhomogeneous materials, the added challenge is that nanoscale resolution is in general not compatible with the large sampling areas necessary to have a statistical representation of the specimen under study. For the study of grain cores and grain boundaries in polycrystalline solar absorbers this is of particular importance since their dissimilarmore » behavior and variability throughout the samples makes it difficult to draw conclusions and ultimately optimize the material. In this study, we present a nanoscale in-operando approach based on the multimodal utilization of synchrotron nano x-ray fluorescence and x-ray beam induced current collected for grain core and grain boundary areas and correlated pixel-by-pixel in fully operational Cu(In (1-x)Ga x)Se 2 solar cells. We observe that low gallium cells have grain boundaries that over perform compared to the grain cores and high gallium cells have boundaries that under perform. In conclusion, these results demonstrate how nanoscale correlative X-ray microscopy can guide research pathways towards grain engineering low cost, high efficiency solar cells.« less

  20. On the relationship between the dynamic behavior and nanoscale staggered structure of the bone

    NASA Astrophysics Data System (ADS)

    Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei

    2015-05-01

    Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.

  1. A burnout prediction model based around char morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao Wu; Edward Lester; Michael Cloke

    Several combustion models have been developed that can make predictions about coal burnout and burnout potential. Most of these kinetic models require standard parameters such as volatile content and particle size to make a burnout prediction. This article presents a new model called the char burnout (ChB) model, which also uses detailed information about char morphology in its prediction. The input data to the model is based on information derived from two different image analysis techniques. One technique generates characterization data from real char samples, and the other predicts char types based on characterization data from image analysis of coalmore » particles. The pyrolyzed chars in this study were created in a drop tube furnace operating at 1300{sup o}C, 200 ms, and 1% oxygen. Modeling results were compared with a different carbon burnout kinetic model as well as the actual burnout data from refiring the same chars in a drop tube furnace operating at 1300{sup o}C, 5% oxygen, and residence times of 200, 400, and 600 ms. A good agreement between ChB model and experimental data indicates that the inclusion of char morphology in combustion models could well improve model predictions. 38 refs., 5 figs., 6 tabs.« less

  2. Study of degradation processes kinetics in ohmic contacts of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures under influence of temperature

    NASA Astrophysics Data System (ADS)

    Makeev, M. O.; Meshkov, S. A.

    2017-07-01

    The artificial aging of resonant tunneling diodes based on nanoscale AlAs/GaAs heterostructures was conducted. As a result of the thermal influence resonant tunneling diodes IV curves degrade firstly due to ohmic contacts' degradation. To assess AlAs/GaAs resonant tunneling diodes degradation level and to predict their reliability, a functional dependence of the contact resistance of resonant tunneling diode AuGeNi ohmic contacts on time and temperature was offered.

  3. Fabrication of complex nanoscale structures on various substrates

    NASA Astrophysics Data System (ADS)

    Han, Kang-Soo; Hong, Sung-Hoon; Lee, Heon

    2007-09-01

    Polymer based complex nanoscale structures were fabricated and transferred to various substrates using reverse nanoimprint lithography. To facilitate the fabrication and transference of the large area of the nanostructured layer to the substrates, a water-soluble polyvinyl alcohol mold was used. After generation and transference of the nanostructured layer, the polyvinyl alcohol mold was removed by dissolving in water. A residue-free, UV-curable, glue layer was formulated and used to bond the nanostructured layer onto the substrates. As a result, nanometer scale patterned polymer layers were bonded to various substrates and three-dimensional nanostructures were also fabricated by stacking of the layers.

  4. Nanoparticle titanium dioxide aqueous interfacial energy can be modified to control phase stability, coarsening, and morphology

    NASA Astrophysics Data System (ADS)

    Finnegan, Michael Patrick

    The effect of solution chemistry on the phase stability, coarsening kinetics and morphology of titanium dioxide (TiO2) nanoparticles is investigated in order to attain efficient production pathways to desired nano-structures with optimal properties. To obtain sample, TiO2 was synthesized via hydrolysis of titanium isopropoxide producing an 85% anatase/15% brookite mixture. The titania was hydrothermally heated in an array of temperatures and pH values for various times. There are distinct phase stability fields for nanoscale titania based on pH alone due to slight interface charging behavior differences among the polymorphs. The mixture transforms to rutile below the pH of zero point of charge (ZPC) and remains anatase above the ZPC. This phenomenon is partially reversible. The solution chemistry also dictates the hydrothermal coarsening mechanism of the anatase polymorph. Ostwald ripening (OR) takes place in basic pH where titania solubility is elevated relative to neutral pH where lower solubility prevents rapid OR but allows for coarsening via oriented attachment (OA) of nanoparticles. This OA event can alter the symmetry of anatase causing unexpected and perhaps technically useful morphologies such as straight and curved nanorods during coarsening.

  5. Reconfigurable nanoscale spin-wave directional coupler

    PubMed Central

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V.

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices. PMID:29376117

  6. Reconfigurable nanoscale spin-wave directional coupler.

    PubMed

    Wang, Qi; Pirro, Philipp; Verba, Roman; Slavin, Andrei; Hillebrands, Burkard; Chumak, Andrii V

    2018-01-01

    Spin waves, and their quanta magnons, are prospective data carriers in future signal processing systems because Gilbert damping associated with the spin-wave propagation can be made substantially lower than the Joule heat losses in electronic devices. Although individual spin-wave signal processing devices have been successfully developed, the challenging contemporary problem is the formation of two-dimensional planar integrated spin-wave circuits. Using both micromagnetic modeling and analytical theory, we present an effective solution of this problem based on the dipolar interaction between two laterally adjacent nanoscale spin-wave waveguides. The developed device based on this principle can work as a multifunctional and dynamically reconfigurable signal directional coupler performing the functions of a waveguide crossing element, tunable power splitter, frequency separator, or multiplexer. The proposed design of a spin-wave directional coupler can be used both in digital logic circuits intended for spin-wave computing and in analog microwave signal processing devices.

  7. Nanoscale simultaneous chemical and mechanical imaging via peak force infrared microscopy

    PubMed Central

    Wang, Le; Wang, Haomin; Wagner, Martin; Yan, Yong; Jakob, Devon S.; Xu, Xiaoji G.

    2017-01-01

    Nondestructive chemical and mechanical measurements of materials with ~10-nm spatial resolution together with topography provide rich information on the compositions and organizations of heterogeneous materials and nanoscale objects. However, multimodal nanoscale correlations are difficult to achieve because of the limitation on spatial resolution of optical microscopy and constraints from instrumental complexities. We report a novel noninvasive spectroscopic scanning probe microscopy method—peak force infrared (PFIR) microscopy—that allows chemical imaging, collection of broadband infrared spectra, and mechanical mapping at a spatial resolution of 10 nm. In our technique, chemical absorption information is directly encoded in the withdraw curve of the peak force tapping cycle after illumination with synchronized infrared laser pulses in a simple apparatus. Nanoscale phase separation in block copolymers and inhomogeneity in CH3NH3PbBr3 perovskite crystals are studied with correlative infrared/mechanical nanoimaging. Furthermore, we show that the PFIR method is sensitive to the presence of surface phonon polaritons in boron nitride nanotubes. PFIR microscopy will provide a powerful analytical tool for explorations at the nanoscale across wide disciplines. PMID:28691096

  8. Nanoscale wicking methods and devices

    NASA Technical Reports Server (NTRS)

    Zhou, Jijie (Inventor); Bronikowski, Michael (Inventor); Noca, Flavio (Inventor); Sansom, Elijah B. (Inventor)

    2011-01-01

    A fluid transport method and fluid transport device are disclosed. Nanoscale fibers disposed in a patterned configuration allow transport of a fluid in absence of an external power source. The device may include two or more fluid transport components having different fluid transport efficiencies. The components may be separated by additional fluid transport components, to control fluid flow.

  9. Morphology and conductivity of PEO-based polymers having various end functional groups

    NASA Astrophysics Data System (ADS)

    Jung, Ha Young; Mandal, Prithwiraj; Park, Moon Jeong

    Poly(ethylene oxide) (PEO)-based polymers have been considered most promising candidates of polymer electrolytes for lithium batteries owing to the high ionic conductivity of PEO/lithium salt complexes. This positive aspect prompted researchers to investigate PEO-containing block copolymers prepared by linking mechanically robust block to PEO covalently. Given that the microphase separation of block copolymers can affect both mechanical properties and ion transport properties, various strategies have been reported to tune the morphology of PEO-containing block copolymers. In the present study, we describe a simple means for modulating the morphologies of PEO-based block copolymers with an aim to improve ion transport properties. By varying terminal groups of PEO in block copolymers, the disordered morphology can be readily transformed into ordered lamellae or gyroid phases, depending on the type and number density of end group. In particular, the existence of terminal groups resulted in a large reduction in crystallinity of PEO chains and thereby increasing room temperature ionic conductivity.

  10. Nanoscale octahedral molecular sieves: Syntheses, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Liu, Jia

    The major part of this research consists of studies on novel synthesis methods, characterization, and catalytic applications of nanoscale manganese oxide octahedral molecular sieves. The second part involves studies of new applications of bulk porous molecular sieve and layered materials (MSLM), zeolites, and inorganic powder materials for diminishing wound bleeding. Manganese oxide octahedral molecular sieves (OMS) are very important microporous materials. They have been used widely as bulk materials in catalysis, separations, chemical sensors, and batteries, due to their unique tunnel structures and useful properties. Novel methods have been developed to synthesize novel nanoscale octahedral molecular sieve manganese oxides (OMS) and metal-substituted OMS materials in order to modify their physical and chemical properties and to improve their catalytic applications. Different synthetic routes were investigated to find better, faster, and cheaper pathways to produce nanoscale or metal-substituted OMS materials. In the synthetic study of nanosize OMS materials, a combination of sol-gel synthesis and hydrothermal reaction was used to prepare pure crystalline nanofibrous todorokite-type (OMS-1) and cryptomelane-typed (OMS-2) manganese oxides using four alkali cations (Li+, K+, Na +, Rb+) and NH4+ cations. In the synthesis study of nanoscale and metal-substituted OMS materials, a combination of sol-gel synthesis and solid-state reaction was used to prepare transition metal-substituted OMS-2 nanorods, nanoneedles, and nanowires. Preparative parameters of syntheses, such as cation templates, heating temperature and time, were investigated in these syntheses of OMS-1 and OMS-2 materials. The catalytic activities of the novel synthetic nanoscale OMS materials has been evaluated on green oxidation of alcohols and toluene and were found to be much higher than their correspondent bulk materials. New applications of bulk manganese oxide molecular sieve and layered materials

  11. Phylogeny of Kinorhyncha Based on Morphology and Two Molecular Loci

    PubMed Central

    Sørensen, Martin V.; Dal Zotto, Matteo; Rho, Hyun Soo; Herranz, Maria; Sánchez, Nuria; Pardos, Fernando; Yamasaki, Hiroshi

    2015-01-01

    rRNA had been omitted. Analysis of the morphological data produced results that were similar with those from the combined molecular and morphological analysis. E.g., the morphological data also supported exclusion of Dracoderes from Cyclorhagida. The main differences between the morphological analysis and analyses based on the combined datasets include: 1) Homalorhagida appears as monophyletic in the morphological tree only, 2) the morphological analyses position Franciscideres and the new genus within Cyclorhagida near Zelinkaderidae and Cateriidae, whereas analyses including molecular data place the two genera inside Allomalorhagida, and 3) species of Campyloderes appear in a basal trichotomy within Kentrorhagata in the morphological tree, whereas analysis of the combined datasets places species of Campyloderes as a sister clade to Echinoderidae and Kentrorhagata. PMID:26200115

  12. Adsorption energy as a metric for wettability at the nanoscale

    PubMed Central

    Giro, Ronaldo; Bryant, Peter W.; Engel, Michael; Neumann, Rodrigo F.; Steiner, Mathias B.

    2017-01-01

    Wettability is the affinity of a liquid for a solid surface. For energetic reasons, macroscopic drops of liquid form nearly spherical caps. The degree of wettability is then captured by the contact angle where the liquid-vapor interface meets the solid-liquid interface. As droplet volumes shrink to the scale of attoliters, however, surface interactions become significant, and droplets assume distorted shapes. In this regime, the contact angle becomes ambiguous, and a scalable metric for quantifying wettability is needed, especially given the emergence of technologies exploiting liquid-solid interactions at the nanoscale. Here we combine nanoscale experiments with molecular-level simulation to study the breakdown of spherical droplet shapes at small length scales. We demonstrate how measured droplet topographies increasingly reveal non-spherical features as volumes shrink. Ultimately, the nanoscale droplets flatten out to form layer-like molecular assemblies at the solid surface. For the lack of an identifiable contact angle at small scales, we introduce a droplet’s adsorption energy density as a new metric for a liquid’s affinity for a surface. We discover that extrapolating the macroscopic idealization of a drop to the nanoscale, though it does not geometrically resemble a realistic droplet, can nonetheless recover its adsorption energy if line tension is included. PMID:28397869

  13. Genetic Variability among Lucerne Cultivars Based on Biochemical (SDS-PAGE) and Morphological Markers

    NASA Astrophysics Data System (ADS)

    Farshadfar, M.; Farshadfar, E.

    The present research was conducted to determine the genetic variability of 18 Lucerne cultivars, based on morphological and biochemical markers. The traits studied were plant height, tiller number, biomass, dry yield, dry yield/biomass, dry leaf/dry yield, macro and micro elements, crude protein, dry matter, crude fiber and ash percentage and SDS- PAGE in seed and leaf samples. Field experiments included 18 plots of two meter rows. Data based on morphological, chemical and SDS-PAGE markers were analyzed using SPSSWIN soft ware and the multivariate statistical procedures: cluster analysis (UPGMA), principal component. Analysis of analysis of variance and mean comparison for morphological traits reflected significant differences among genotypes. Genotype 13 and 15 had the greatest values for most traits. The Genotypic Coefficient of Variation (GCV), Phenotypic Coefficient of Variation (PCV) and Heritability (Hb) parameters for different characters raged from 12.49 to 26.58% for PCV, hence the GCV ranged from 6.84 to 18.84%. The greatest value of Hb was 0.94 for stem number. Lucerne genotypes could be classified, based on morphological traits, into four clusters and 94% of the variance among the genotypes was explained by two PCAs: Based on chemical traits they were classified into five groups and 73.492% of variance was explained by four principal components: Dry matter, protein, fiber, P, K, Na, Mg and Zn had higher variance. Genotypes based on the SDS-PAGE patterns all genotypes were classified into three clusters. The greatest genetic distance was between cultivar 10 and others, therefore they would be suitable parent in a breeding program.

  14. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  15. Synchrotron-based transmission x-ray microscopy for improved extraction in shale during hydraulic fracturing

    NASA Astrophysics Data System (ADS)

    Kiss, Andrew M.; Jew, Adam D.; Joe-Wong, Claresta; Maher, Kate M.; Liu, Yijin; Brown, Gordon E.; Bargar, John

    2015-09-01

    Engineering topics which span a range of length and time scales present a unique challenge to researchers. Hydraulic fracturing (fracking) of oil shales is one of these challenges and provides an opportunity to use multiple research tools to thoroughly investigate a topic. Currently, the extraction efficiency from the shale is low but can be improved by carefully studying the processes at the micro- and nano-scale. Fracking fluid induces chemical changes in the shale which can have significant effects on the microstructure morphology, permeability, and chemical composition. These phenomena occur at different length and time scales which require different instrumentation to properly study. Using synchrotron-based techniques such as fluorescence tomography provide high sensitivity elemental mapping and an in situ micro-tomography system records morphological changes with time. In addition, the transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource (SSRL) beamline 6-2 is utilized to collect a nano-scale three-dimensional representation of the sample morphology with elemental and chemical sensitivity. We present the study of a simplified model system, in which pyrite and quartz particles are mixed and exposed to oxidizing solution, to establish the basic understanding of the more complex geology-relevant oxidation reaction. The spatial distribution of the production of the oxidation reaction, ferrihydrite, is retrieved via full-field XANES tomography showing the reaction pathway. Further correlation between the high resolution TXM data and the high sensitivity micro-probe data provides insight into potential morphology changes which can decrease permeability and limit hydrocarbon recovery.

  16. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Treesearch

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  17. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    NASA Astrophysics Data System (ADS)

    Sekkal, W.; Zaoui, A.

    2013-04-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  18. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  19. Correlations in Scattered X-Ray Laser Pulses Reveal Nanoscale Structural Features of Viruses

    DOE PAGES

    Kurta, Ruslan P.; Donatelli, Jeffrey J.; Yoon, Chun Hong; ...

    2017-10-12

    We use extremely bright and ultrashort pulses from an x-ray free-electron laser (XFEL) to measure correlations in x rays scattered from individual bioparticles. This allows us to go beyond the traditional crystallography and single-particle imaging approaches for structure investigations. We employ angular correlations to recover the three-dimensional (3D) structure of nanoscale viruses from x-ray diffraction data measured at the Linac Coherent Light Source. Correlations provide us with a comprehensive structural fingerprint of a 3D virus, which we use both for model-based and ab initio structure recovery. The analyses reveal a clear indication that the structure of the viruses deviates frommore » the expected perfect icosahedral symmetry. Lastly, our results anticipate exciting opportunities for XFEL studies of the structure and dynamics of nanoscale objects by means of angular correlations.« less

  20. Morphological Decomposition Based on the Analysis of Orthography

    ERIC Educational Resources Information Center

    Rastle, Kathleen; Davis, Matthew H.

    2008-01-01

    Recent theories of morphological processing have been dominated by the notion that morphologically complex words are decomposed into their constituents on the basis of their semantic properties. In this article we argue that the weight of evidence now suggests that the recognition of morphologically complex words begins with a rapid morphemic…

  1. Nanostructured protic ionic liquids retain nanoscale features in aqueous solution while precursor Brønsted acids and bases exhibit different behavior.

    PubMed

    Greaves, Tamar L; Kennedy, Danielle F; Weerawardena, Asoka; Tse, Nicholas M K; Kirby, Nigel; Drummond, Calum J

    2011-03-10

    Small- and wide-angle X-ray scattering (SWAXS) has been used to investigate the effect that water has on the nanoscale structure of protic ionic liquids (PILs) along with their precursor Brønsted acids and bases. The series of PILs consisted of primary, secondary, and tertiary alkylammonium cations in conjunction with formate, nitrate, or glycolate anions. Significant differences were observed for these systems. The nanoscale aggregates present in neat protic ionic liquids were shown to be stable in size on dilution to high concentrations of water, indicating that the water is localized in the ionic region and has little effect on the nonpolar domains. The Brønsted acid-water solutions did not display nanostructure at any water concentration. Primary amine Brønsted bases formed aggregates in water, which generally displayed characteristics of poorly structured microemulsions or a form of bicontinuous phase. Exceptions were butyl- and pentylamine with high water concentrations, for which the SWAXS patterns fitted well to the Teubner-Strey model for microemulsions. Brønsted base amines containing multiple alkyl chains or hydroxyl groups did not display nanostructure at any water concentration. IR spectroscopy was used to investigate the nature of water in the various solutions. For low PIL concentrations, the water was predominately present as bulk water for PIL molar fractions less than 0.4-0.5. At high PIL concentrations, in addition to the bulk water, there was a significant proportion of perturbed water, which is water influenced in some way by the cations and anions. The molecular state of the water in the studied amines was predominately present as bulk water, with smaller contributions from perturbed water than was seen in the PILs. © 2011 American Chemical Society

  2. Liquid Sulfur Impregnation of Microporous Carbon Accelerated by Nanoscale Interfacial Effects

    DOE PAGES

    Pascal, Tod A.; Villaluenga, Irune; Wujcik, Kevin H.; ...

    2017-03-14

    Impregnation of porous carbon matrices with liquid sulfur has been exploited to fabricate composite cathodes for lithium-sulfur batteries, aimed at confining soluble sulfur species near conducting carbon to prevent both loss of active material into the electrolyte and parasitic reactions at the lithium metal anode. Here, through extensive computer simulations, we uncover the strongly favorable interfacial free energy between liquid sulfur and graphitic surfaces that underlies this phenomenon. Previously unexplored curvature-dependent enhancements are shown to favor the filling of smaller pores first and effect a quasi-liquid sulfur phase in microporous domains (diameters <2 nm) that persists ~30° below the expectedmore » freezing point. Evidence of interfacial sulfur on carbon is shown to be a 0.3 eV red shift in the simulated and measured interfacial X-ray absorption spectra. Our results elucidate the critical morphology and thermodynamic properties necessary for future cathode design and highlight the importance of molecular-scale details in defining emergent properties of functional nanoscale interfaces.« less

  3. Word-based Morphology: Some Problems from a Polysynthetic Language.

    ERIC Educational Resources Information Center

    Axelrod, Melissa

    Some of the problems inherent in a word-based hypothesis asserting that the word/stem is taken as the minimal sign not only for syntax but also for morphology are examined in an analysis of a polysynthetic language, Koyukon, an Athabaskan language of Alaska. Data from the Central dialect is considered in the analysis. A brief sketch of the verbal…

  4. Nanoscale probing of electron-regulated structural transitions in silk proteins by near-field IR imaging and nano-spectroscopy

    PubMed Central

    Qin, Nan; Zhang, Shaoqing; Jiang, Jianjuan; Corder, Stephanie Gilbert; Qian, Zhigang; Zhou, Zhitao; Lee, Woonsoo; Liu, Keyin; Wang, Xiaohan; Li, Xinxin; Shi, Zhifeng; Mao, Ying; Bechtel, Hans A.; Martin, Michael C.; Xia, Xiaoxia; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.; Liu, Mengkun; Tao, Tiger H.

    2016-01-01

    Silk protein fibres produced by silkworms and spiders are renowned for their unparalleled mechanical strength and extensibility arising from their high-β-sheet crystal contents as natural materials. Investigation of β-sheet-oriented conformational transitions in silk proteins at the nanoscale remains a challenge using conventional imaging techniques given their limitations in chemical sensitivity or limited spatial resolution. Here, we report on electron-regulated nanoscale polymorphic transitions in silk proteins revealed by near-field infrared imaging and nano-spectroscopy at resolutions approaching the molecular level. The ability to locally probe nanoscale protein structural transitions combined with nanometre-precision electron-beam lithography offers us the capability to finely control the structure of silk proteins in two and three dimensions. Our work paves the way for unlocking essential nanoscopic protein structures and critical conditions for electron-induced conformational transitions, offering new rules to design protein-based nanoarchitectures. PMID:27713412

  5. Nanoscale Heat Conduction in Crystalline Solids

    NASA Astrophysics Data System (ADS)

    Christenson, Joel; Phillips, Ronald

    Heat conduction in crystalline solids occurs through the motion of molecular-scale vibrations, or phonons. In continuum scale problems, there are sufficient phonon-phonon interactions for local equilibrium to be established, and heat conduction is accurately described by Fourier's law. However, at length scales comparable to the phonon mean free path, Fourier's law becomes inaccurate, and more fundamental descriptions of heat transfer are required. We are investigating the viability of the phonon Boltzmann Transport Equation (BTE) to describe heat conduction in nanoscale simulations of the high-explosive material β-HMX. By using a combination of numerical and analytic solutions of the BTE, we demonstrate the existence of physical behavior that is not qualitatively captured by the classical Fourier's law in the nanoscale regime. The results are interpreted in terms of continuum-scale simulations of shock-induced collapse of air-filled pores in β-HMX, which is believed to be a precursory step towards complete detonation of the material.

  6. Electrum, the Gold-Silver Alloy, from the Bulk Scale to the Nanoscale: Synthesis, Properties, and Segregation Rules.

    PubMed

    Guisbiers, Grégory; Mendoza-Cruz, Rubén; Bazán-Díaz, Lourdes; Velázquez-Salazar, J Jesús; Mendoza-Perez, Rafael; Robledo-Torres, José Antonio; Rodriguez-Lopez, José-Luis; Montejano-Carrizales, Juan Martín; Whetten, Robert L; José-Yacamán, Miguel

    2016-01-26

    The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment.

  7. Developing an Effective Model for Shale Gas Flow in Nano-scale Pore Clusters based on FIB-SEM Images

    NASA Astrophysics Data System (ADS)

    Jiang, W. B.; Lin, M.; Yi, Z. X.; Li, H. S.

    2016-12-01

    Nano-scale pores existed in the form of clusters are the controlling void space in shale gas reservoir. Gas transport in nanopores which has a significant influence on shale gas' recoverability displays multiple transport regimes, including viscous, slippage flow and Knudsen diffusion. In addition, it is also influenced by pore space characteristics. For convenience and efficiency consideration, it is necessary to develop an upscaling model from nano pore to pore cluster scale. Existing models are more like framework functions that provide a format, because the parameters that represent pore space characteristics are underdetermined and may have multiple possibilities. Therefore, it is urgent to make them clear and obtained a model that is closer to reality. FIB-SEM imaging technology is able to acquire three dimensional images with nanometer resolution that nano pores can be visible. Based on the images of two shale samples, we used a high-precision pore network extraction algorithm to generate equivalent pore networks and simulate multiple regime (non-Darcy) flow in it. Several structural parameters can be obtained through pore network modelling. It is found that although the throat-radius distributions are very close, throat flux-radius distributions of different samples can be divided into two categories. The variation of tortuosity with pressure and the overall trend of throat-flux distribution changes with pressure are disclosed. A deeper understanding of shale gas flow in nano-scale pore clusters is obtained. After all, an upscaling model that connects absolute permeability, apparent permeability and other characteristic parameters is proposed, and the best parameter scheme considering throat number-radius distribution and flowing porosity for this model is selected out of three schemes based on pore scale results, and it can avoid multiple-solution problem and is useful in reservoir modelling and experiment result analysis, etc. This work is supported by

  8. Clavicle anatomical osteosynthesis plate breakage - failure analysis report based on patient morphological parameters.

    PubMed

    Marinescu, Rodica; Antoniac, Vasile Iulian; Stoia, Dan Ioan; Lăptoiu, Dan Constantin

    2017-01-01

    Clavicle fracture reported incidence is about 5% of fractures in adult; among them, those located in the middle third of the shaft represent more than 80% from the total of cases. Due to the special morphological and biomechanical constraints of the clavicle, several methods for restoring morphological integrity in these fractures are described, including conservative, non-surgical treatment. The last 10 years of clinical studies in the field have favored the surgical treatment for selected cases; several osteosynthesis implants are in use - mostly anatomical plates with specific advantages and documented complications. A failed anatomical clavicle plate was explanted and analyzed after a protocol using stereomicroscopy, scanning electron microscopy and energy dispersive spectrometry. Based on the computed tomography (CT) scan determination of patient morphological parameters, a finite elements analysis of the failure scenario was completed. The failure analysis has proved that the plate breakage had occurred in the point of maximal elastic stress and minor deformation. The clinical implication is that no hole should remain free of screw during clavicle plate fixation and the implant should be chosen based on patient morphological parameters. In comminuted clavicle fracture, anatomic bridging with locked plate technique may lead to implant failure due to increase of the stress in the midshaft area. Thorough knowledge of anatomy and morphology of complex bones like the clavicle is necessary. Modern osteosynthesis anatomical implants are still to be improved.

  9. Generating atomically sharp p -n junctions in graphene and testing quantum electron optics on the nanoscale

    NASA Astrophysics Data System (ADS)

    Bai, Ke-Ke; Zhou, Jiao-Jiao; Wei, Yi-Cong; Qiao, Jia-Bin; Liu, Yi-Wen; Liu, Hai-Wen; Jiang, Hua; He, Lin

    2018-01-01

    Creation of high-quality p -n junctions in graphene monolayer is vital in studying many exotic phenomena of massless Dirac fermions. However, even with the fast progress of graphene technology for more than ten years, it remains conspicuously difficult to generate nanoscale and atomically sharp p -n junctions in graphene. Here, we realized nanoscale p -n junctions with atomically sharp boundaries in graphene monolayer by using monolayer vacancy island of Cu surface. The generated sharp p -n junctions with the height as high as 660 meV isolate the graphene above the Cu monolayer vacancy island as nanoscale graphene quantum dots (GQDs) in a continuous graphene sheet. Massless Dirac fermions are confined by the p -n junctions for a finite time to form quasibound states in the GQDs. By using scanning tunneling microscopy, we observe resonances of quasibound states in the GQDs with various sizes and directly visualize effects of geometries of the GQDs on the quantum interference patterns of the quasibound states, which allow us to test the quantum electron optics based on graphene in atomic scale.

  10. Single molecules and single nanoparticles as windows to the nanoscale

    NASA Astrophysics Data System (ADS)

    Caldarola, Martín; Orrit, Michel

    2018-05-01

    Since the first optical detection of single molecules, they have been used as nanometersized optical sensors to explore the physical properties of materials and light-matter interaction at the nanoscale. Understanding nanoscale properties of materials is fundamental for the development of new technology that requires precise control of atoms and molecules when the quantum nature of matter cannot be ignored. In the following lines, we illustrate this journey into nanoscience with some experiments from our group.

  11. Polycystic ovary morphology: age-based ultrasound criteria.

    PubMed

    Kim, Hyun-Jun; Adams, Judith M; Gudmundsson, Jens A; Arason, Gudmundur; Pau, Cindy T; Welt, Corrine K

    2017-09-01

    To determine age-based criteria for polycystic ovary morphology. Cross-sectional, case-control design. Outpatient setting. Women with polycystic ovary syndrome (PCOS) defined by hyperandrogenism and irregular menses (n = 544) and controls with regular menses and no evidence of hyperandrogenism (n = 666) participated. Parameters were tested in a second cohort of women with PCOS (n = 105) and controls (n = 32) meeting the same criteria. Subjects underwent a pelvic ultrasound documenting ovarian volume and maximum follicle number in a single plane. A receiver operating characteristic curve was constructed to determine the ovarian volume and follicle number with the best sensitivity and specificity to define PCOS for age groups at approximately 5-year intervals from age 18 to >44 years. The best sensitivity and specificity were obtained using a threshold volume of 12 mL and 13 follicles for ages ≤24 years, 10 mL and 14 follicles for ages 25-29 years, 9 mL and 10 follicles for ages 30-34 years, 8 mL and 10 follicles for ages 35-39 years, 10 mL and 9 follicles for ages 40-44 years, and 6 mL and 7 follicles for ages >44 years. Data from a second cohort confirmed the need to decrease volume and follicle number with increasing age to diagnose PCOS. Polycystic ovary morphology was most accurate at predicting the PCOS diagnosis for women ages 30-39 years. The ovarian volume and follicle number threshold to define polycystic ovary morphology should be lowered starting at age 30. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs

    PubMed Central

    Sekkal, W.; Zaoui, A.

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m2) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m2, i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images. PMID:23545842

  13. Nanoscale analysis of the morphology and surface stability of calcium carbonate polymorphs.

    PubMed

    Sekkal, W; Zaoui, A

    2013-01-01

    Under earth surface conditions, in ocean and natural water, calcium carbonate is ubiquitous, forming anhydrous and hydrous minerals. These hydrous phases are of considerable interest for their role as precursors to stable carbonate minerals. Atomistic simulation techniques have been employed here to perform a comprehensive and quantitative study of the structural and energetic stability of dry and hydrous surfaces of calcium carbonate polymorphs using two recently developed forcefields. Results show that the dry forms are prone to ductility; while hydrous phases are found to be brittle. The (001) surface of monohydrocalcite appears to be the most stable (0.99 J/m(2)) whereas for the ikaite phase, the (001) surface is the most stable. The corresponding value is 0.2 J/m(2), i.e. even lower than the surface energy of the Beautiful computed morphology pictures are obtained with Xiao's model and are very similar to the observed SEM images.

  14. Cranial base morphology and temporal bone pneumatization in Asian Homo erectus.

    PubMed

    Balzeau, Antoine; Grimaud-Hervé, Dominique

    2006-10-01

    The external morphological features of the temporal bone are used frequently to determine taxonomic affinities of fossils of the genus Homo. Temporal bone pneumatization has been widely studied in great apes and in early hominids. However, this feature is rarely examined in the later hominids, particularly in Asian Homo erectus. We provide a comparative morphological and quantitative analysis of Asian Homo erectus from the sites of Ngandong, Sambungmacan, and Zhoukoudian, and of Neandertals and anatomically modern Homo sapiens in order to discuss causes and modalities of temporal bone pneumatization during hominid evolution. The evolution of temporal bone pneumatization in the genus Homo is more complex than previously described. Indeed, the Zhoukoudian fossils have a unique pattern of temporal bone pneumatization, whereas Ngandong and Sambungmacan fossils, as well as the Neandertals, more closely resemble the modern human pattern. Moreover, these Chinese fossils are characterized by a wide midvault and a relatively narrow occipital bone. Our results support the point of view that cell development does not play an active role in determining cranial base morphology. Instead, pneumatization is related to available space and to temporal bone morphology, and its development is related to correlated morphology and the relative disposition of the bones and cerebral lobes. Because variation in pneumatization is extensive within the same species, the phyletic implications of pneumatization are limited in the taxa considered here.

  15. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution.

    PubMed

    Sarkar, Biplab; Daware, Akshay Vishnu; Gupta, Priya; Krishnani, Kishore Kumar; Baruah, Sunandan; Bhattacharjee, Surajit

    2017-11-01

    Water pollution is a serious challenge to the public health. Among different forms of aquatic pollutants, chemical and biological agents create paramount threat to water quality when the safety standards are surpassed. There are many conventional remediatory strategies that are practiced such as resin-based exchanger and activated charcoal/carbon andreverse osmosis. Newer technologies using plants, microorganisms, genetic engineering, and enzyme-based approaches are also proposed for aquatic pollution management. However, the conventional technologies have shown impending inadequacies. On the other hand, new bio-based techniques have failed to exhibit reproducibility, wide specificity, and fidelity in field conditions. Hence, to solve these shortcomings, nanotechnology ushered a ray of hope by applying nanoscale zinc oxide (ZnO), titanium dioxide (TiO 2 ), and tungsten oxide (WO 3 ) particles for the remediation of water pollution. These nanophotocatalysts are active, cost-effective, quicker in action, and can be implemented at a larger scale. These nanoparticles are climate-independent, assist in complete mineralization of pollutants, and can act non-specifically against chemically and biologically based aquatic pollutants. Photocatalysis for environmental remediation depends on the availability of solar light. The mechanism of photocatalysis involves the formation of electron-hole pairs upon light irradiations at intensities higher than their band gap energies. In the present review, different methods of synthesis of nanoscale ZnO, TiO 2 , and WO 3 as well as their structural characterizations have been discussed. Photodegradation of organic pollutants through mentioned nanoparticles has been reviewed with recent advancements. Enhancing the efficacy of photocatalysis through doping of TiO 2 and ZnO nanoparticles with non-metals, metals, and metal ions has also been documented in this report.

  16. A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces

    PubMed Central

    2012-01-01

    Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices. PMID:22315969

  17. Effects of particle composition and environmental parameters on catalytic hydrodechlorination of trichloroethylene by nanoscale bimetallic Ni-Fe.

    PubMed

    Wei, Jianjun; Qian, Yajing; Liu, Wenjuan; Wang, Lutao; Ge, Yijie; Zhang, Jianghao; Yu, Jiang; Ma, Xingmao

    2014-05-01

    Catalytic nickel was successfully incorporated into nanoscale iron to enhance its dechlorination efficiency for trichloroethylene (TCE), one of the most commonly detected chlorinated organic compounds in groundwater. Ethane was the predominant product. The greatest dechlorination efficiency was achieved at 22 molar percent of nickel. This nanoscale Ni-Fe is poorly ordered and inhomogeneous; iron dissolution occurred whereas nickel was relatively stable during the 24-hr reaction. The morphological characterization provided significant new insights on the mechanism of catalytic hydrodechlorination by bimetallic nanoparticles. TCE degradation and ethane production rates were greatly affected by environmental parameters such as solution pH, temperature and common groundwater ions. Both rate constants decreased and then increased over the pH range of 6.5 to 8.0, with the minimum value occurring at pH 7.5. TCE degradation rate constant showed an increasing trend over the temperature range of 10 to 25°C. However, ethane production rate constant increased and then decreased over the range, with the maximum value occurring at 20°C. Most salts in the solution appeared to enhance the reaction in the first half hour but overall they displayed an inhibitory effect. Combined ions showed a similar effect as individual salts. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Nanoscale Catalysts for NMR Signal Enhancement by Reversible Exchange

    PubMed Central

    2015-01-01

    Two types of nanoscale catalysts were created to explore NMR signal enhancement via reversible exchange (SABRE) at the interface between heterogeneous and homogeneous conditions. Nanoparticle and polymer comb variants were synthesized by covalently tethering Ir-based organometallic catalysts to support materials composed of TiO2/PMAA (poly(methacrylic acid)) and PVP (polyvinylpyridine), respectively, and characterized by AAS, NMR, and DLS. Following parahydrogen (pH2) gas delivery to mixtures containing one type of “nano-SABRE” catalyst particle, a target substrate, and ethanol, up to ∼(−)40-fold and ∼(−)7-fold 1H NMR signal enhancements were observed for pyridine substrates using the nanoparticle and polymer comb catalysts, respectively, following transfer to high field (9.4 T). These enhancements appear to result from intact particles and not from any catalyst molecules leaching from their supports; unlike the case with homogeneous SABRE catalysts, high-field (in situ) SABRE effects were generally not observed with the nanoscale catalysts. The potential for separation and reuse of such catalyst particles is also demonstrated. Taken together, these results support the potential utility of rational design at molecular, mesoscopic, and macroscopic/engineering levels for improving SABRE and HET-SABRE (heterogeneous-SABRE) for applications varying from fundamental studies of catalysis to biomedical imaging. PMID:26185545

  19. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting.

    PubMed

    Ye, Jongpil

    2015-05-08

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes.

  20. Fabrication of ordered arrays of micro- and nanoscale features with control over their shape and size via templated solid-state dewetting

    PubMed Central

    Ye, Jongpil

    2015-01-01

    Templated solid-state dewetting of single-crystal films has been shown to be used to produce regular patterns of various shapes. However, the materials for which this patterning method is applicable, and the size range of the patterns produced are still limited. Here, it is shown that ordered arrays of micro- and nanoscale features can be produced with control over their shape and size via solid-state dewetting of patches patterned from single-crystal palladium and nickel films of different thicknesses and orientations. The shape and size characteristics of the patterns are found to be widely controllable with varying the shape, width, thickness, and orientation of the initial patches. The morphological evolution of the patches is also dependent on the film material, with different dewetting behaviors observed in palladium and nickel films. The mechanisms underlying the pattern formation are explained in terms of the influence on Rayleigh-like instability of the patch geometry and the surface energy anisotropy of the film material. This mechanistic understanding of pattern formation can be used to design patches for the precise fabrication of micro- and nanoscale structures with the desired shapes and feature sizes. PMID:25951816

  1. Magnetic superlattices and their nanoscale phase transition effects

    PubMed Central

    Cheon, Jinwoo; Park, Jong-Il; Choi, Jin-sil; Jun, Young-wook; Kim, Sehun; Kim, Min Gyu; Kim, Young-Min; Kim, Youn Joong

    2006-01-01

    The systematic assembly of nanoscale constituents into highly ordered superlattices is of significant interest because of the potential of their multifunctionalities and the discovery of new collective properties. However, successful observations of such superlattice-associated nanoscale phenomena are still elusive. Here, we present magnetic superlattices of Co and Fe3O4 nanoparticles with multidimensional symmetry of either AB (NaCl) or AB2 (AlB2). The discovery of significant enhancement (≈25 times) of ferrimagnetism is further revealed by forming previously undescribed superlattices of magnetically soft–hard Fe3O4@CoFe2O4 through the confined geometrical effect of thermally driven intrasuperlattice phase transition between the nanoparticulate components. PMID:16492783

  2. Nanoscale roughness contact in a slider-disk interface.

    PubMed

    Hua, Wei; Liu, Bo; Yu, Shengkai; Zhou, Weidong

    2009-07-15

    The nanoscale roughness contact between molecularly smooth surfaces of a slider-disk interface in a hard disk drive is analyzed, and the lubricant behavior at very high shear rate is presented. A new contact model is developed to study the nanoscale roughness contact behavior by classifying various forms of contact into slider-lubricant contact, slider-disk elastic contact and plastic contact. The contact pressure and the contact probabilities of the three types of contact are investigated. The new contact model is employed to explain and provide insight to an interesting experimental result found in a thermal protrusion slider. The protrusion budget for head surfing in the lubricant, which is the ideal state for contact recording, is also discussed.

  3. Brillouin gain enhancement in nano-scale photonic waveguide

    NASA Astrophysics Data System (ADS)

    Nouri Jouybari, Soodabeh

    2018-05-01

    The enhancement of stimulated Brillouin scattering in nano-scale waveguides has a great contribution in the improvement of the photonic devices technology. The key factors in Brillouin gain are the electrostriction force and radiation pressure generated by optical waves in the waveguide. In this article, we have proposed a new scheme of nano-scale waveguide in which the Brillouin gain is considerably improved compared to the previously-reported schemes. The role of radiation pressure in the Brillouin gain was much higher than the role of the electrostriction force. The Brillouin gain strongly depends on the structural parameters of the waveguide and the maximum value of 12127 W-1 m-1 is obtained for the Brillouin gain.

  4. Cationic nanoparticles induce nanoscale disruption in living cell plasma membranes.

    PubMed

    Chen, Jiumei; Hessler, Jessica A; Putchakayala, Krishna; Panama, Brian K; Khan, Damian P; Hong, Seungpyo; Mullen, Douglas G; Dimaggio, Stassi C; Som, Abhigyan; Tew, Gregory N; Lopatin, Anatoli N; Baker, James R; Holl, Mark M Banaszak; Orr, Bradford G

    2009-08-13

    It has long been recognized that cationic nanoparticles induce cell membrane permeability. Recently, it has been found that cationic nanoparticles induce the formation and/or growth of nanoscale holes in supported lipid bilayers. In this paper, we show that noncytotoxic concentrations of cationic nanoparticles induce 30-2000 pA currents in 293A (human embryonic kidney) and KB (human epidermoid carcinoma) cells, consistent with a nanoscale defect such as a single hole or group of holes in the cell membrane ranging from 1 to 350 nm(2) in total area. Other forms of nanoscale defects, including the nanoparticle porating agents adsorbing onto or intercalating into the lipid bilayer, are also consistent; although the size of the defect must increase to account for any reduction in ion conduction, as compared to a water channel. An individual defect forming event takes 1-100 ms, while membrane resealing may occur over tens of seconds. Patch-clamp data provide direct evidence for the formation of nanoscale defects in living cell membranes. The cationic polymer data are compared and contrasted with patch-clamp data obtained for an amphiphilic phenylene ethynylene antimicrobial oligomer (AMO-3), a small molecule that is proposed to make well-defined 3.4 nm holes in lipid bilayers. Here, we observe data that are consistent with AMO-3 making approximately 3 nm holes in living cell membranes.

  5. Electron tunneling in nanoscale electrodes for battery applications

    NASA Astrophysics Data System (ADS)

    Yamada, Hidenori; Narayanan, Rajaram; Bandaru, Prabhakar R.

    2018-03-01

    It is shown that the electrical current that may be obtained from a nanoscale electrochemical system is sensitive to the dimensionality of the electrode and the density of states (DOS). Considering the DOS of lower dimensional systems, such as two-dimensional graphene, one-dimensional nanotubes, or zero-dimensional quantum dots, yields a distinct variation of the current-voltage characteristics. Such aspects go beyond conventional Arrhenius theory based kinetics which are often used in experimental interpretation. The obtained insights may be adapted to other devices, such as solid-state batteries. It is also indicated that electron transport in such devices may be considered through electron tunneling.

  6. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure.

    PubMed

    Campi, Gaetano; Di Gioacchino, Michael; Poccia, Nicola; Ricci, Alessandro; Burghammer, Manfred; Ciasca, Gabriele; Bianconi, Antonio

    2018-01-23

    Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.

  7. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  8. Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity.

    PubMed

    Yan, Weile; Herzing, Andrew A; Li, Xiao-qin; Kiely, Christopher J; Zhang, Wei-xian

    2010-06-01

    Palladized zero-valent iron nanoparticles have been frequently employed to achieve enhanced treatment of halogenated organic compounds; however, no detailed study has been published on their structures, especially the location and distribution of palladium within the nanoparticles. In this work, the structural evolution of palladized nanoscale iron particles (Pd-nZVI, with 1.5 wt % Pd) was examined using X-ray photoelectron spectroscopy (XPS), scanning transmission electron microscopy (STEM), and X-ray energy dispersive spectroscopy (XEDS) techniques. The STEM-XEDS technique enables direct visualization of the nanoscale structural and compositional changes of the bimetallic particles. For a freshly made Pd-nZVI sample, the particles consist of a metallic iron core and a thin amorphous oxide shell, and Pd is observed to form 2-5 nm islands decorating the outer surface of the nanoparticles. Upon exposure to water, Pd-nZVI undergoes substantial morphological and structural changes. STEM-XEDS elemental maps show that Pd infiltrates through the oxide layer to the metallic iron interface, which is accompanied by oxidation and outward diffusion of the iron species. Within a 24 h period, Pd is completely buried underneath an extensive iron oxide matrix, and a fraction of the nanoparticles exhibits a hollowed-out morphology with no metallic iron remaining. The microstructural variations observed concur with the reactivity data, which shows that the aged bimetallic particles display an 80% decrease in dechlorination rate of trichloroethene (TCE) compared to that of the fresh particles. These findings shed new light on the function of palladium in hydrodechlorination reactions, nZVI aging and deactivation, and the longevity of Pd-nZVI nanoparticles for in situ remediation.

  9. Development of Self-Assembled Nanoscale Templates via Microphase Separation Induced by Polymer Brushes

    NASA Astrophysics Data System (ADS)

    Chu, Elza

    Phase separation in soft matter has been the crucial element in generating hybrid materials, such as polymer blends and mixed polymer brushes. This dissertation discusses two methods of developing self-assembled nanoscale templates via microphase separation induced by polymer brush synthesis. This work introduces a novel soft substrate approach with renewable grafting sites where polyacrylamide is "grafted through" chitosan soft substrates. The mechanism of grafting leads to ordered arrays of filament-like nanostructures spanning the chitosan-air interface. Additionally, the chemical composition of the filaments allows for post-chemical modification to change the physical properties of the filaments, and subsequently tailor surfaces for specific application. Unlike traditional materials, multi-functional or "smart" materials, such as binary polymer brushes (BPB) are capable of spontaneously changing the spatial distribution of functional groups and morphology at the surface upon external stimuli. Although promising in principle, the limited range of available complementary polymers with common non-selective solvents confines the diversity of usable materials and restricts any further advancement in the field. This dissertation also covers the fabrication and characterization of responsive nanoscale polystyrene templates or "mosaic" brushes that are capable of changing interfacial composition upon exposure to varying solvent qualities. Using a "mosaic" brush template is a unique approach that allows the fabrication of strongly immiscible polymer BPB without the need for a common solvent. The synthesis of such BPB is exemplified by two strongly immiscible polymers, i.e. polystyrene (polar) and polyacrylamide (non-polar), where polyacrylamide brush is "graft through" a Si-substrate modified with the polystyrene collapsed "mosaic" brush. The surface exhibits solvent-triggered responses, as well as application potential for anti-biofouling.

  10. Nonlinear dynamics of nanoscale systems

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan Oken

    This work builds theoretical tools to better understand nanoscale systems, and it ex- plores experimental techniques to probe nanoscale dynamics using nonlinear optical microscopy. In both the theory and experiment, this work harnesses nonlinearity to explore new boundaries in the ongoing attempts to understand the amazing world that is much smaller than we can see. In particular, the first part of this work proves the upper-bounds on the number and quality of oscillations when the sys- tem in question is homogeneously driven and has discrete states, a common way of describing nanoscale motors and chemical systems, although it has application to networked systems in general. The consequences of this limit are explored in the context of chemical clocks and limit cycles. This leads to the analysis of sponta- neous oscillations in GFPmut2, where we postulate that the oscillations must be due to coordinated rearrangement of the beta-barrel. Next, we utilize nonlinear optics to probe the constituent structures of zebrafish muscle. By comparing experimental observations with computational models, we show how second harmonic generation differs from fluorescence for confocal imaging. We use the wavelength dependence of the second harmonic generation conversion efficiency to extract information about the microscopic organization of muscle fibers, using the coherent nature of second ix harmonic generation as an analytical probe. Finally, existing experiments have used a related technique, sum-frequency generation, to directly probe the dynamics of free OH bonds at the water-vapor boundary. Using molecular dynamic simulations of the water surface and by designating surface-sensitive free OH bonds on the water surface, many aspects of the sum-frequency generation measurements were calcu- lated and compared with those inferred from experiment. The method utilizes results available from independent IR and Raman experiments to obtain some of the needed quantities, rather than

  11. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  12. Nanoscale Dewetting Transition in Protein Complex Folding

    PubMed Central

    Hua, Lan; Huang, Xuhui; Liu, Pu; Zhou, Ruhong; Berne, Bruce J.

    2011-01-01

    In a previous study, a surprising drying transition was observed to take place inside the nanoscale hydrophobic channel in the tetramer of the protein melittin. The goal of this paper is to determine if there are other protein complexes capable of displaying a dewetting transition during their final stage of folding. We searched the entire protein data bank (PDB) for all possible candidates, including protein tetramers, dimers, and two-domain proteins, and then performed the molecular dynamics (MD) simulations on the top candidates identified by a simple hydrophobic scoring function based on aligned hydrophobic surface areas. Our large scale MD simulations found several more proteins, including three tetramers, six dimers, and two two-domain proteins, which display a nanoscale dewetting transition in their final stage of folding. Even though the scoring function alone is not sufficient (i.e., a high score is necessary but not sufficient) in identifying the dewetting candidates, it does provide useful insights into the features of complex interfaces needed for dewetting. All top candidates have two features in common: (1) large aligned (matched) hydrophobic areas between two corresponding surfaces, and (2) large connected hydrophobic areas on the same surface. We have also studied the effect on dewetting of different water models and different treatments of the long-range electrostatic interactions (cutoff vs PME), and found the dewetting phenomena is fairly robust. This work presents a few proteins other than melittin tetramer for further experimental studies of the role of dewetting in the end stages of protein folding. PMID:17608515

  13. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE PAGES

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.; ...

    2014-12-26

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  14. Impact of rail pressure and biodiesel fueling on the particulate morphology and soot nanostructures from a common-rail turbocharged direct injection diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Peng; Vander Wal, Randy; Boehman, Andre L.

    The effect of rail pressure and biodiesel fueling on the morphology of exhaust particulate agglomerates and the nanostructure of primary particles (soot) was investigated with a common-rail turbocharged direct injection diesel engine. The engine was operated at steady state on a dynamometer running at moderate speed with both low (30%) and medium–high (60%) fixed loads, and exhaust particulate was sampled for analysis. Ultra-low sulfur diesel and its 20% v/v blends with soybean methyl ester biodiesel were used. Fuel injection occurred in a single event around top dead center at three different injection pressures. Exhaust particulate samples were characterized with TEMmore » imaging, scanning mobility particle sizing, thermogravimetric analysis, Raman spectroscopy, and XRD analysis. Particulate morphology and oxidative reactivity were found to vary significantly with rail pressure and with biodiesel blend level. Higher biodiesel content led to increases in the primary particle size and oxidative reactivity but did not affect nanoscale disorder in the as-received samples. For particulates generated with higher injection pressures, the initial oxidative reactivity increased, but there was no detectable correlation with primary particle size or nanoscale disorder.« less

  15. Morphology based scoring of chromosomal instability and its correlation with cell viability.

    PubMed

    Yadav, Shubhlata; Bhatia, Alka

    2017-09-01

    The aim of this study was to devise the quantitative scoring system for Chromosomal instability (CIN) based on morphological indicators like MPM, NB, NPB, CS, La and MN in cancer cell line and to correlate it with cell viability and death. Human hepatocellular carcinoma (HepG2) cells were treated with drugs like Diethylstilbestrol 0-100μM, Griseofulvin 0-40μg/ml, Vincristine sulphate 0-25μg/ml, Mitomycin C 0-600ng/ml, Bleomycin 0-10μg/ml, Doxorubicin 0-30μg/ml for 24h. Following this, the CIN was assessed by counting the morphological indicators like Micronuclei (MN), Nuclear Buds (NB), Nucleoplasmic bridges, Laggards, Multipolar mitosis and chromatin strings/1000 cells in Giemsa stained smears by light microscopy and by determining the percentage of aneuploid cells by flow cytometry. The cell viability was assessed by MTT assay and percentage of apoptotic cells was determined by flow cytometry. The MN and NB were most frequently seen indicators and main determinants of morphological CIN. However, the morphological CIN score did not show any correlation with cell viability and apoptosis. Aneuploidy however was found to correlate positively with cell viability and NB score in our study (P-value <0.05). The study for the 1st time attempted to develop a scoring system for CIN based on morphological parameters. However, a no correlation was observed between the later and cell viability or apoptosis. More robust techniques to quantify CIN may perhaps be more helpful in exploring the true link between CIN and cell viability in future. Copyright © 2017 Elsevier GmbH. All rights reserved.

  16. Nanoscale Surface Modifications of Medical Implants for Cartilage Tissue Repair and Regeneration

    PubMed Central

    Griffin, MF; Szarko, M; Seifailan, A; Butler, PE

    2016-01-01

    Background: Natural cartilage regeneration is limited after trauma or degenerative processes. Due to the clinical challenge of reconstruction of articular cartilage, research into developing biomaterials to support cartilage regeneration have evolved. The structural architecture of composition of the cartilage extracellular matrix (ECM) is vital in guiding cell adhesion, migration and formation of cartilage. Current technologies have tried to mimic the cell’s nanoscale microenvironment to improve implants to improve cartilage tissue repair. Methods: This review evaluates nanoscale techniques used to modify the implant surface for cartilage regeneration. Results: The surface of biomaterial is a vital parameter to guide cell adhesion and consequently allow for the formation of ECM and allow for tissue repair. By providing nanosized cues on the surface in the form of a nanotopography or nanosized molecules, allows for better control of cell behaviour and regeneration of cartilage. Chemical, physical and lithography techniques have all been explored for modifying the nanoscale surface of implants to promote chondrocyte adhesion and ECM formation. Conclusion: Future studies are needed to further establish the optimal nanoscale modification of implants for cartilage tissue regeneration. PMID:28217208

  17. Direct manufacturing of ultrathin graphite on three-dimensional nanoscale features

    PubMed Central

    Pacios, Mercè; Hosseini, Peiman; Fan, Ye; He, Zhengyu; Krause, Oliver; Hutchison, John; Warner, Jamie H.; Bhaskaran, Harish

    2016-01-01

    There have been many successful attempts to grow high-quality large-area graphene on flat substrates. Doing so at the nanoscale has thus far been plagued by significant scalability problems, particularly because of the need for delicate transfer processes onto predefined features, which are necessarily low-yield processes and which can introduce undesirable residues. Herein we describe a highly scalable, clean and effective, in-situ method that uses thin film deposition techniques to directly grow on a continuous basis ultrathin graphite (uG) on uneven nanoscale surfaces. We then demonstrate that this is possible on a model system of atomic force probe tips of various radii. Further, we characterize the growth characteristics of this technique as well as the film’s superior conduction and lower adhesion at these scales. This sets the stage for such a process to allow the use of highly functional graphite in high-aspect-ratio nanoscale components. PMID:26939862

  18. Study of nanoscale structural biology using advanced particle beam microscopy

    NASA Astrophysics Data System (ADS)

    Boseman, Adam J.

    This work investigates developmental and structural biology at the nanoscale using current advancements in particle beam microscopy. Typically the examination of micro- and nanoscale features is performed using scanning electron microscopy (SEM), but in order to decrease surface charging, and increase resolution, an obscuring conductive layer is applied to the sample surface. As magnification increases, this layer begins to limit the ability to identify nanoscale surface structures. A new technology, Helium Ion Microscopy (HIM), is used to examine uncoated surface structures on the cuticle of wild type and mutant fruit flies. Corneal nanostructures observed with HIM are further investigated by FIB/SEM to provide detailed three dimensional information about internal events occurring during early structural development. These techniques are also used to reconstruct a mosquito germarium in order to characterize unknown events in early oogenesis. Findings from these studies, and many more like them, will soon unravel many of the mysteries surrounding the world of developmental biology.

  19. Brain Bases of Morphological Processing in Chinese-English Bilingual Children

    ERIC Educational Resources Information Center

    Ip, Ka I; Hsu, Lucy Shih-Ju; Arredondo, Maria M.; Tardif, Twila; Kovelman, Ioulia

    2017-01-01

    Can bilingual exposure impact children's neural circuitry for learning to read? To answer this question, we investigated the brain bases of morphological awareness, one of the key spoken language abilities for learning to read in English and Chinese. Bilingual Chinese-English and monolingual English children (N = 22, ages 7-12) completed…

  20. Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches (474th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gang, Oleg

    2012-01-18

    In the field of nanoscience, if you can control how nanoparticles self-assemble in particular structures — joining each other, for example, as molecules can form, atom-by-atom — you can design new materials that have unique properties that industry needs. Nature already uses the DNA genetic code to instruct the building of specific proteins and whole organisms in both plants and people. Taking a cue from nature, scientists at BNL devised a way of using strands of synthetic DNA attached to the surface of nanoparticles to instruct them to self-assemble into specific nanoscale structures, clusters, and three-dimensional organizations. Novel materials designedmore » and fabricated this way promise use in photovoltaics, energy storage, catalysis, cell-targeted systems for more effective medical treatments, and biomolecular sensing for environmental monitoring and medical applications. To find out more about the rapid evolution of this nanoassembly method and its applications, join Physicist Oleg Gang of the Center for Functional Nanomaterials (CFN) as he gives the 474th Brookhaven Lecture, titled “Self-Assembly by Instruction: Designing Nanoscale Systems Using DNA-Based Approaches." Gang, who has led this work at the CFN, will explain the rapid evolution of this nanoassembly method, and discuss its present and future applications in highly specific biosensors, optically active nano-materials, and new ways to fabricate complex architectures in a rational manner via self-assembly. Gang and his colleagues used the CFN and the National Synchrotron Light Source (NSLS) facilities to perform their groundbreaking research. At the CFN, the scientists used electron microscopes and optical methods to visualize the clusters that they fabricated. At the NSLS, they applied x-rays to study a particles-assembly process in solution, DNA’s natural environment. Gang earned a Ph.D. in soft matter physics from Bar-Ilan University in 2000, and he was a Rothschild Fellow at Harvard

  1. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight.

    PubMed

    Loh, N D; Hampton, C Y; Martin, A V; Starodub, D; Sierra, R G; Barty, A; Aquila, A; Schulz, J; Lomb, L; Steinbrener, J; Shoeman, R L; Kassemeyer, S; Bostedt, C; Bozek, J; Epp, S W; Erk, B; Hartmann, R; Rolles, D; Rudenko, A; Rudek, B; Foucar, L; Kimmel, N; Weidenspointner, G; Hauser, G; Holl, P; Pedersoli, E; Liang, M; Hunter, M S; Hunter, M M; Gumprecht, L; Coppola, N; Wunderer, C; Graafsma, H; Maia, F R N C; Ekeberg, T; Hantke, M; Fleckenstein, H; Hirsemann, H; Nass, K; White, T A; Tobias, H J; Farquar, G R; Benner, W H; Hau-Riege, S P; Reich, C; Hartmann, A; Soltau, H; Marchesini, S; Bajt, S; Barthelmess, M; Bucksbaum, P; Hodgson, K O; Strüder, L; Ullrich, J; Frank, M; Schlichting, I; Chapman, H N; Bogan, M J

    2012-06-27

    The morphology of micrometre-size particulate matter is of critical importance in fields ranging from toxicology to climate science, yet these properties are surprisingly difficult to measure in the particles' native environment. Electron microscopy requires collection of particles on a substrate; visible light scattering provides insufficient resolution; and X-ray synchrotron studies have been limited to ensembles of particles. Here we demonstrate an in situ method for imaging individual sub-micrometre particles to nanometre resolution in their native environment, using intense, coherent X-ray pulses from the Linac Coherent Light Source free-electron laser. We introduced individual aerosol particles into the pulsed X-ray beam, which is sufficiently intense that diffraction from individual particles can be measured for morphological analysis. At the same time, ion fragments ejected from the beam were analysed using mass spectrometry, to determine the composition of single aerosol particles. Our results show the extent of internal dilation symmetry of individual soot particles subject to non-equilibrium aggregation, and the surprisingly large variability in their fractal dimensions. More broadly, our methods can be extended to resolve both static and dynamic morphology of general ensembles of disordered particles. Such general morphology has implications in topics such as solvent accessibilities in proteins, vibrational energy transfer by the hydrodynamic interaction of amino acids, and large-scale production of nanoscale structures by flame synthesis.

  2. Research strategies for safety evaluation of nanomaterials, part VII: evaluating consumer exposure to nanoscale materials.

    PubMed

    Thomas, Treye; Thomas, Karluss; Sadrieh, Nakissa; Savage, Nora; Adair, Patricia; Bronaugh, Robert

    2006-05-01

    Considerable media attention has recently been given to novel applications for products that contain nanoscale materials. These products could have utility in several industries that market consumer products, including textiles, sporting equipment, cosmetics, consumer electronics, and household cleaners. Some of the purported benefits of these products include improved performance, convenience, lower cost, as well as other desirable features, when compared to the conventional products that do not contain nanoscale materials. Although there are numerous likely consumer advantages from products containing nanoscale materials, there is very little information available regarding consumer exposure to the nanoscale materials in these products or any associated risks from these exposures. This paper seeks to review a limited subset of products that contain nanoscale materials, assess the available data for evaluating the consumer exposures and potential hazards associated with these products, and discuss the capacity of U.S. regulatory agencies to address the potential risks associated with these products.

  3. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  4. Force-detected nanoscale absorption spectroscopy in water at room temperature using an optical trap

    NASA Astrophysics Data System (ADS)

    Parobek, Alexander; Black, Jacob W.; Kamenetska, Maria; Ganim, Ziad

    2018-04-01

    Measuring absorption spectra of single molecules presents a fundamental challenge for standard transmission-based instruments because of the inherently low signal relative to the large background of the excitation source. Here we demonstrate a new approach for performing absorption spectroscopy in solution using a force measurement to read out optical excitation at the nanoscale. The photoinduced force between model chromophores and an optically trapped gold nanoshell has been measured in water at room temperature. This photoinduced force is characterized as a function of wavelength to yield the force spectrum, which is shown to be correlated to the absorption spectrum for four model systems. The instrument constructed for these measurements combines an optical tweezer with frequency domain absorption spectroscopy over the 400-800 nm range. These measurements provide proof-of-principle experiments for force-detected nanoscale spectroscopies that operate under ambient chemical conditions.

  5. Morphology Formation in PC/ABS Blends during Thermal Processing and the Effect of the Viscosity Ratio of Blend Partners

    PubMed Central

    Bärwinkel, Stefanie; Seidel, Andreas; Hobeika, Sven; Hufen, Ralf; Mörl, Michaela; Altstädt, Volker

    2016-01-01

    Morphology formation during compounding, as well as injection molding of blends containing 60 wt % polycarbonate (PC) and 40 wt % polybutadiene rubber-modified styrene-acrylonitrile copolymers (ABS), has been investigated by transmission electron microscopy (TEM). Profiles of the blend morphology have been recorded in injection-molded specimens and significant morphology gradients observed between their skin and core. A <10 µm thick surface layer with strongly dispersed and elongated nano-scale (streak-like) styrene acrylonitrile (SAN) phases and well-dispersed, isolated SAN-grafted polybutadiene rubber particles is followed by a 50–150 µm thick skin layer in which polymer morphology is characterized by lamellar SAN/ABS phases. Thickness of these lamellae increases with the distance from the specimen’s surface. In the core of the specimens the SAN-grafted polybutadiene rubber particles are exclusively present within the SAN phases, which exhibit a much coarser and less oriented, dispersed morphology compared to the skin. The effects of the viscosity of the SAN in the PC/ABS blends on phase morphologies and correlations with fracture mechanics in tensile and impact tests were investigated, including scanning electron microscopy (SEM) assessment of the fracture surfaces. A model explaining the mechanisms of morphology formation during injection molding of PC/ABS blends is discussed. PMID:28773780

  6. The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esqueda, I. S., E-mail: isanchez@isi.edu; Fritze, M.; Cress, C. D.

    2015-02-28

    Using the Landauer approach for carrier transport, we analyze the impact of defects induced by ion irradiation on the transport properties of nanoscale conductors that operate in the quasi-ballistic regime. Degradation of conductance results from a reduction of carrier mean free path due to the introduction of defects in the conducting channel. We incorporate scattering mechanisms from radiation-induced defects into calculations of the transmission coefficient and present a technique for extracting modeling parameters from near-equilibrium transport measurements. These parameters are used to describe degradation in the transport properties of nanoscale devices using a formalism that is valid under quasi-ballistic operation.more » The analysis includes the effects of bandstructure and dimensionality on the impact of defect scattering and discusses transport properties of nanoscale devices from the diffusive to the ballistic limit. We compare calculations with recently published measurements of irradiated nanoscale devices such as single-walled carbon nanotubes, graphene, and deep-submicron Si metal-oxide-semiconductor field-effect transistors.« less

  7. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    PubMed

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  8. Isolation of nanoscale exosomes using viscoelastic effect

    NASA Astrophysics Data System (ADS)

    Hu, Guoqing; Liu, Chao

    2017-11-01

    Exosomes, molecular cargos secreted by almost all mammalian cells, are considered as promising biomarkers to identify many diseases including cancers. However, the small size of exosomes (30-200 nm) poses serious challenges on their isolation from the complex media containing a variety of extracellular vesicles (EVs) of different sizes, especially in small sample volumes. Here we develop a viscoelasticity-based microfluidic system to directly separate exosomes from cell culture media or serum in a continuous, size-dependent, and label-free manner. Using a small amount of biocompatible polymer as the additive into the media to control the viscoelastic forces exerted on EVs, we are able to achieve a high separation purity (>90%) and recovery (>80%) of exosomes. The size cutoff in viscoelasticity-based microfluidics can be easily controlled using different PEO concentrations. Based on this size-dependent viscoelastic separation strategy, we envision the handling of diverse nanoscale objects, such as gold nanoparticles, DNA origami structures, and quantum dots. This work was supported financially by National Natural Science Foundation of China (11572334, 91543125).

  9. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  10. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al

  11. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  12. How the morphology of dusts influences packing density in small solar system bodies

    NASA Astrophysics Data System (ADS)

    Zangmeister, C.; Radney, J. G.; Zachariah, M. R.

    2014-12-01

    Large planetary seedlings, comets, and nanoscale soot particles are made from rigid, aggregated subunits that are compacted under low compression into larger structures spanning over 10 orders of magnitude in dimensional space. Here, we demonstrate that the packing density (Φf) of compacted rigid aggregates is independent of spatial scale for systems under weak compaction, a regime that includes small solar system bodies. The Φf of rigid aggregated structures across 6 orders of magnitude were measured using nanoscale spherical soot aerosol composed of aggregates with ≈ 17 nm monomeric subunits and aggregates made from uniform monomeric 6 mm spherical subunits at the macroscale. We find Φf = 0.36 ± 0.02 at both the nano- and macroscale. These values are remarkably similar to qf observed for comet nuclei and measured values of other rigid aggregated systems across a wide variety of spatial and formative conditions. We present a packing model that incorporates the aggregate morphology and show that Φf is independent of both monomer and aggregate size. These observations suggest thatqf of rigid aggregates is independent of spatial dimension across varied formative conditions ranging from interstellar space to pharmaceutical manufacturing.

  13. Nanoscale deicing by molecular dynamics simulation.

    PubMed

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-08-14

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.

  14. Dechlorination of disinfection by-product monochloroacetic acid in drinking water by nanoscale palladized iron bimetallic particle.

    PubMed

    Chen, Chao; Wang, Xiangyu; Chang, Ying; Liu, Huiling

    2008-01-01

    Nanoscale palladized iron (Pd/Fe) bimetallic particles were prepared by reductive deposition method. The particles were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscope (SEM), transmission electron microscope (TEM), and Brunauer-Emmett-Teller-nitrogen (BET-N2) method. Data obtained from those methods indicated that nanoscale Pd/Fe bimetallic particles contained alpha-Fe0. Detected Pd to Fe ratio by weight (Pd/Fe ratio) was close to theoretical value. Spherical granules with diameter of 47 +/- 11.5 nm connected with one another to form chains and the chains composed nanoscale Pd/Fe bimetallic particles. Specific surface area of particles was 51 m2/g. The factors, such as species of reductants, Pd/Fe ratio, dose of nanoscale Pd/Fe bimetallic particles added into solutions, solution initial pH, and a variety of solvents were studied. Dechlorination effect of monochloroacetic acid by different reductants followed the trend: nanoscale Pd/Fe bimetallic particles of 0.182% Pd/Fe > nanoscale Fe > reductive Fe. When the Pd/Fe ratio was lower than 0.083%, increasing Pd/Fe ratio would increase dechlorination efficiency (DE) of MCAA. When the Pd/Fe ratio was higher than 0.083%, increasing Pd/Fe ratio caused a decrease in DE. Adding more nanoscale Pd/Fe bimetallic particles to solution would enhance DE. The DE of MCAA decreased as initial pH of solution increased.

  15. Template-guided highly aligned, nano-scale wrinkle structure on a large-area

    NASA Astrophysics Data System (ADS)

    Lim, Jongcheon; Kim, Pilnam

    This study presents a novel technique to induce aligned, nano-scale wrinkle on a polysiloxane-based UV curable resin. There have been studies on generating randomized sub-micron wrinkle using oxygen plasma treatment which causes equibiaxial compressive stress on the film surface. Few works have been reported on how to control the surface wrinkle orientation. Currently available approaches for regulating the wrinkle pattern typically require polydimethylsiloxane (PDMS)-based bilayer system under uniaxial stress condition which hampers various technological applications. Here, we demonstrate a method to generate aligned wrinkle with UV curable polymers. Highly regular array of nanoscale wrinkles were formed by elastic buckling of bilayered UV curable resin, resulting from a combination of confinement effect and anchor-guided propagation of structure. The wrinkle tends to align uniformly lateral to the template pattern as the resin filled in the pattern forms more convex meniscus. The wavelength of the wrinkle was controlled by UV exposure time yielding as small as 170nm. From our results, we suggest the confinement provided by the template pattern may have affected the direction of thin film's expansion yielding unidirectional compressive stress. This work was supported by Samsung Research Funding Center of Samsung Electronics under Project Number SRFC-IT1402-02.

  16. Morphology evolution in strain-compensated multiple quantum well structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ledentsov, N. N., E-mail: nikolay.ledentsov@v-i-systems.com; Shchukin, V. A.; Rouvimov, S.

    2014-01-20

    Morphology evolution in (In,Ga)As-Ga(As,P) strain-compensated multilayer structures is studied. The effects of nanoscale interface corrugation and phase separation are evident after the third period of the multilayer structure and become more pronounced with each new stack until the sixth period. Then, the interface stabilizes pointing to the formation of strain-balanced equilibrium interface structure. The epitaxial structure remains defect-free up to the maximum number (twenty) of periods studied. In a structure with a high lattice mismatch between the neighboring layers, In{sub 0.40}Ga{sub 0.60}As/GaAs{sub 0.85}P{sub 0.15}, clusters of dislocations are revealed already in the third period. The observed phenomena are critical formore » proper engineering of optoelectronic devices.« less

  17. Origin and evolution of Petrocosmea (Gesneriaceae) inferred from both DNA sequence and novel findings in morphology with a test of morphology-based hypotheses.

    PubMed

    Qiu, Zhi-Jing; Lu, Yuan-Xue; Li, Chao-Qun; Dong, Yang; Smith, James F; Wang, Yin-Zheng

    2015-07-03

    Petrocosmea Oliver (Gesneriaceae) currently comprises 38 species with four non-nominate varieties, nearly all of which have been described solely from herbarium specimens. However, the dried specimens have obscured the full range of extremely diverse morphological variation that exists in the genus and has resulted in a poor subgeneric classification system that does not reflect the evolutionary history of this group. It is important to develop innovative methods to find new morphological traits and reexamine and reevaluate the traditionally used morphological data based on new hypothesis. In addition, Petrocosmea is a mid-sized genus but exhibits extreme diverse floral variants. This makes the genus of particular interest in addressing the question whether there are any key factors that is specifically associated with their evolution and diversification. Here we present the first phylogenetic analyses of the genus based on dense taxonomic sampling and multiple genes combined with a comprehensive morphological investigation. Maximum-parsimony, maximum likelihood and Bayesian analyses of molecular data from two nuclear DNA and six cpDNA regions support the monophyly of Petrocosmea and recover five major clades within the genus, which is strongly corroborated by the reconstruction of ancestral states for twelve new morphological characters directly observed from living material. Ancestral area reconstruction shows that its most common ancestor was likely located east and southeast of the Himalaya-Tibetan plateau. The origin of Petrocosmea from a potentially Raphiocarpus-like ancestor might have involved a series of morphological modifications from caulescent to acaulescent habit as well as from a tetrandrous flower with a long corolla-tube to a diandrous flower with a short corolla-tube, also evident in the vestigial caulescent habit and transitional floral form in clade A that is sister to the remainder of the genus. Among the five clades in Petrocosmea, the

  18. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    PubMed

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  19. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ([alpha]-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  20. Characterization of nanoscale oxide and oxyhydroxide powders using EXAFS spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darab, J.G.; Linehan, J.C.; Matson, D.W.

    1993-06-01

    Extended x-ray absorption fine structure (EXAFS) spectroscopy has been used to determine the structural environment local to iron(HI) and zircorium(IV) cations in respectively, nanoscale iron oxyhydroxide and nanoscale zirconium oxide powders. The iron oxyhydroxide powder, produced by the modified reverse micelle (MRM) technology, was found to have a short-range structure most similar to that of goethite ({alpha}-FeOOH). The short-range structure of the zirconium oxide powder, produced using the rapid thermal decomposition of solutes (RTDS) technology, was found to be a mixture of monoclinic zirconia and cubic zirconia environments.

  1. Box 6: Nanoscale Defects

    NASA Astrophysics Data System (ADS)

    Alves, Eduardo; Breese, Mark

    Defects affect virtually all properties of crystalline materials, and their role is magnified in nanoscale structures. In this box we describe the different type of defects with particular emphasis on point and linear defects. Above zero Kelvin all real materials have a defect population within their structure, which affects either their crystalline, electronic or optical properties. It is common to attribute a negative connotation to the presence of defects. However, a perfect silicon crystal or any other defect-free semiconductor would have a limited functionality and might even be useless.

  2. 77 FR 13159 - Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY Nanoscale Science, Engineering, and Technology Subcommittee of the Committee on Technology, National Science and Technology Council Workshop ACTION: Notice of... Nanoscale Science, Engineering, and Technology (NSET) Subcommittee of the Committee on Technology, National...

  3. Delimiting species of Protaphorura (Collembola: Onychiuridae): integrative evidence based on morphology, DNA sequences and geography.

    PubMed

    Sun, Xin; Zhang, Feng; Ding, Yinhuan; Davies, Thomas W; Li, Yu; Wu, Donghui

    2017-08-15

    Species delimitation remains a significant challenge when the diagnostic morphological characters are limited. Integrative taxonomy was applied to the genus Protaphorura (Collembola: Onychiuridae), which is one of most difficult soil animals to distinguish taxonomically. Three delimitation approaches (morphology, molecular markers and geography) were applied providing rigorous species validation criteria with an acceptably low error rate. Multiple molecular approaches, including distance- and evolutionary model-based methods, were used to determine species boundaries based on 144 standard barcode sequences. Twenty-two molecular putative species were consistently recovered across molecular and geographical analyses. Geographic criteria were was proved to be an efficient delimitation method for onychiurids. Further morphological examination, based on the combination of the number of pseudocelli, parapseudocelli and ventral mesothoracic chaetae, confirmed 18 taxa of 22 molecular units, with six of them described as new species. These characters were found to be of high taxonomical value. This study highlights the potential benefits of integrative taxonomy, particularly simultaneous use of molecular/geographical tools, as a powerful way of ascertaining the true diversity of the Onychiuridae. Our study also highlights that discovering new morphological characters remains central to achieving a full understanding of collembolan taxonomy.

  4. Nanoscale wear as a stress-assisted chemical reaction

    NASA Astrophysics Data System (ADS)

    Jacobs, Tevis D. B.; Carpick, Robert W.

    2013-02-01

    Wear of sliding contacts leads to energy dissipation and device failure, resulting in massive economic and environmental costs. Typically, wear phenomena are described empirically, because physical and chemical interactions at sliding interfaces are not fully understood at any length scale. Fundamental insights from individual nanoscale contacts are crucial for understanding wear at larger length scales, and to enable reliable nanoscale devices, manufacturing and microscopy. Observable nanoscale wear mechanisms include fracture and plastic deformation, but recent experiments and models propose another mechanism: wear via atom-by-atom removal (`atomic attrition'), which can be modelled using stress-assisted chemical reaction kinetics. Experimental evidence for this has so far been inferential. Here, we quantitatively measure the wear of silicon--a material relevant to small-scale devices--using in situ transmission electron microscopy. We resolve worn volumes as small as 25 +/- 5 nm3, a factor of 103 lower than is achievable using alternative techniques. Wear of silicon against diamond is consistent with atomic attrition, and inconsistent with fracture or plastic deformation, as shown using direct imaging. The rate of atom removal depends exponentially on stress in the contact, as predicted by chemical rate kinetics. Measured activation parameters are consistent with an atom-by-atom process. These results, by direct observation, establish atomic attrition as the primary wear mechanism of silicon in vacuum at low loads.

  5. Nanoscale Plasmonic V-Groove Waveguides for the Interrogation of Single Fluorescent Bacterial Cells.

    PubMed

    Lotan, Oren; Bar-David, Jonathan; Smith, Cameron L C; Yagur-Kroll, Sharon; Belkin, Shimshon; Kristensen, Anders; Levy, Uriel

    2017-09-13

    We experimentally demonstrate the interrogation of an individual Escherichia coli cell using a nanoscale plasmonic V-groove waveguide. Several different configurations were studied. The first involved the excitation of the cell in a liquid environment because it flows on top of the waveguide nanocoupler, while the obtained fluorescence is coupled into the waveguide and collected at the other nanocoupler. The other two configurations involved the positioning of the bacterium within the nanoscale waveguide and its excitation in a dry environment either directly from the top or through waveguide modes. This is achieved by taking advantage of the waveguide properties not only for light guiding but also as a mechanical tool for trapping the bacteria within the V-grooves. The obtained results are supported by a set of numerical simulations, shedding more light on the mechanism of excitation. This demonstration paves the way for the construction of an efficient bioplasmonic chip for diverse cell-based sensing applications.

  6. Nonlocally sensing the magnetic states of nanoscale antiferromagnets with an atomic spin sensor

    PubMed Central

    Yan, Shichao; Malavolti, Luigi; Burgess, Jacob A. J.; Droghetti, Andrea; Rubio, Angel; Loth, Sebastian

    2017-01-01

    The ability to sense the magnetic state of individual magnetic nano-objects is a key capability for powerful applications ranging from readout of ultradense magnetic memory to the measurement of spins in complex structures with nanometer precision. Magnetic nano-objects require extremely sensitive sensors and detection methods. We create an atomic spin sensor consisting of three Fe atoms and show that it can detect nanoscale antiferromagnets through minute, surface-mediated magnetic interaction. Coupling, even to an object with no net spin and having vanishing dipolar stray field, modifies the transition matrix element between two spin states of the Fe atom–based spin sensor that changes the sensor’s spin relaxation time. The sensor can detect nanoscale antiferromagnets at up to a 3-nm distance and achieves an energy resolution of 10 μeV, surpassing the thermal limit of conventional scanning probe spectroscopy. This scheme permits simultaneous sensing of multiple antiferromagnets with a single-spin sensor integrated onto the surface. PMID:28560346

  7. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  8. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE PAGES

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...

    2017-03-08

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  9. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure.

    PubMed

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-15

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  10. Evaluating nanoscale ultra-thin metal films by means of lateral photovoltaic effect in metal-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zheng, Diyuan; Yu, Chongqi; Zhang, Qian; Wang, Hui

    2017-12-01

    Nanoscale metal-semiconductor (MS) structure materials occupy an important position in semiconductor and microelectronic field due to their abundant physical phenomena and effects. The thickness of metal films is a critical factor in determining characteristics of MS devices. How to detect or evaluate the metal thickness is always a key issue for realizing high performance MS devices. In this work, we propose a direct surface detection by use of the lateral photovoltaic effect (LPE) in MS structure, which can not only measure nanoscale thickness, but also detect the fluctuation of metal films. This method is based on the fact that the output of lateral photovoltaic voltage (LPV) is closely linked with the metal thickness at the laser spot. We believe this laser-based contact-free detection is a useful supplement to the traditional methods, such as AFM, SEM, TEM or step profiler. This is because these traditional methods are always incapable of directly detecting ultra-thin metal films in MS structure materials.

  11. Interplay between morphology and frequency in lexical access: The case of the base frequency effect

    PubMed Central

    Vannest, Jennifer; Newport, Elissa L.; Newman, Aaron J.; Bavelier, Daphne

    2011-01-01

    A major issue in lexical processing concerns storage and access of lexical items. Here we make use of the base frequency effect to examine this. Specifically, reaction time to morphologically complex words (words made up of base and suffix, e.g., agree+able) typically reflects frequency of the base element (i.e., total frequency of all words in which agree appears) rather than surface word frequency (i.e., frequency of agreeable itself). We term these complex words decomposable. However, a class of words termed whole-word do not show such sensitivity to base frequency (e.g., serenity). Using an event-related MRI design, we exploited the fact that processing low-frequency words increases BOLD activity relative to high frequency ones, and examined effects of base frequency on brain activity for decomposable and whole-word items. Morphologically complex words, half high and half low base frequency, were compared to matched high and low frequency simple monomorphemic words using a lexical decision task. Morphologically complex words increased activation in left inferior frontal and left superior temporal cortices versus simple words. The only area to mirror the behavioral distinction between decomposable and whole-word types was the thalamus. Surprisingly, most frequency-sensitive areas failed to show base frequency effects. This variety of responses to frequency and word type across brain areas supports an integrative view of multiple variables during lexical access, rather than a dichotomy between memory-based access and on-line computation. Lexical access appears best captured as interplay of several neural processes with different sensitivities to various linguistic factors including frequency and morphological complexity. PMID:21167136

  12. Barrier inhomogeneities limited current and 1/f noise transport in GaN based nanoscale Schottky barrier diodes

    PubMed Central

    Kumar, Ashutosh; Heilmann, M.; Latzel, Michael; Kapoor, Raman; Sharma, Intu; Göbelt, M.; Christiansen, Silke H.; Kumar, Vikram; Singh, Rajendra

    2016-01-01

    The electrical behaviour of Schottky barrier diodes realized on vertically standing individual GaN nanorods and array of nanorods is investigated. The Schottky diodes on individual nanorod show highest barrier height in comparison with large area diodes on nanorods array and epitaxial film which is in contrast with previously published work. The discrepancy between the electrical behaviour of nanoscale Schottky diodes and large area diodes is explained using cathodoluminescence measurements, surface potential analysis using Kelvin probe force microscopy and 1ow frequency noise measurements. The noise measurements on large area diodes on nanorods array and epitaxial film suggest the presence of barrier inhomogeneities at the metal/semiconductor interface which deviate the noise spectra from Lorentzian to 1/f type. These barrier inhomogeneities in large area diodes resulted in reduced barrier height whereas due to the limited role of barrier inhomogeneities in individual nanorod based Schottky diode, a higher barrier height is obtained. PMID:27282258

  13. Nanoparticle Addition to Enhance the Mechanical Response of Magnesium Alloys Including Nanoscale Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Paramsothy, Muralidharan; Gupta, Manoj

    In this study, various magnesium alloy nanocomposites derived from AZ (Aluminium-Zinc) or ZK (Zinc-Zirconium) series matrices and containing Al2O3, Si3N4, TiC or carbon nanotube (CNT) nanoparticle reinforcement (representative oxide, nitride, carbide or carbon nanoparticle reinforcement, respectively) were fabricated using solidification processing followed by hot extrusion. The main aim here was to simultaneously enhance tensile strength and ductility of each alloy using nanoparticles. The magnesium-oxygen strong affinity and magnesium-carbon weak affinity (comparison of extremes in affinity) are both well known in the context of magnesium composite processing. However, an approach to possibly quantify this affinity in magnesium nanocomposite processing is not clear. In this study accordingly, Nanoscale Electro Negative Interface Density or NENID quantifies the nanoparticle-alloy matrix interfacial area per unit volume in the magnesium alloy nanocomposite taking into consideration the electronegativity of the nanoparticle reinforcement. The beneficial (as well as comparative) effect of the nanoparticles on each alloy is discussed in this article. Regarding the mechanical performance of the nanocomposites, it is important to understand the experimentally observed nanoparticle-matrix interactions during plastic deformation (nanoscale deformation mechanisms). Little is known in this area based on direct observations for metal matrix nanocomposites. Here, relevant multiple nanoscale phenomena includes the emanation of high strain zones (HSZs) from nanoparticle surfaces.

  14. Nanoscale decomposition of Nb-Ru-O

    NASA Astrophysics Data System (ADS)

    Music, Denis; Geyer, Richard W.; Chen, Yen-Ting

    2016-11-01

    A correlative theoretical and experimental methodology has been employed to explore the decomposition of amorphous Nb-Ru-O at elevated temperatures. Density functional theory based molecular dynamics simulations reveal that amorphous Nb-Ru-O is structurally modified within 10 ps at 800 K giving rise to an increase in the planar metal - oxygen and metal - metal population and hence formation of large clusters, which signifies atomic segregation. The driving force for this atomic segregation process is 0.5 eV/atom. This is validated by diffraction experiments and transmission electron microscopy of sputter-synthesized Nb-Ru-O thin films. Room temperature samples are amorphous, while at 800 K nanoscale rutile RuO2 grains, self-organized in an amorphous Nb-O matrix, are observed, which is consistent with our theoretical predictions. This amorphous/crystalline interplay may be of importance for next generation of thermoelectric devices.

  15. Classical emergence of intrinsic spin-orbit interaction of light at the nanoscale

    NASA Astrophysics Data System (ADS)

    Vázquez-Lozano, J. Enrique; Martínez, Alejandro

    2018-03-01

    Traditionally, in macroscopic geometrical optics intrinsic polarization and spatial degrees of freedom of light can be treated independently. However, at the subwavelength scale these properties appear to be coupled together, giving rise to the spin-orbit interaction (SOI) of light. In this work we address theoretically the classical emergence of the optical SOI at the nanoscale. By means of a full-vector analysis involving spherical vector waves we show that the spin-orbit factorizability condition, accounting for the mutual influence between the amplitude (spin) and phase (orbit), is fulfilled only in the far-field limit. On the other side, in the near-field region, an additional relative phase introduces an extra term that hinders the factorization and reveals an intricate dynamical behavior according to the SOI regime. As a result, we find a suitable theoretical framework able to capture analytically the main features of intrinsic SOI of light. Besides allowing for a better understanding into the mechanism leading to its classical emergence at the nanoscale, our approach may be useful to design experimental setups that enhance the response of SOI-based effects.

  16. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  17. Common Principles of Molecular Electronics and Nanoscale Electrochemistry.

    PubMed

    Bueno, Paulo Roberto

    2018-05-24

    The merging of nanoscale electronics and electrochemistry can potentially modernize the way electronic devices are currently engineered or constructed. It is well known that the greatest challenges will involve not only miniaturizing and improving the performance of mobile devices, but also manufacturing reliable electrical vehicles, and engineering more efficient solar panels and energy storage systems. These are just a few examples of how technological innovation is dependent on both electrochemical and electronic elements. This paper offers a conceptual discussion of this central topic, with particular focus on the impact that uniting physical and chemical concepts at a nanoscale could have on the future development of electroanalytical devices. The specific example to which this article refers pertains to molecular diagnostics, i.e., devices that employ physical and electrochemical concepts to diagnose diseases.

  18. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  19. Ion concentration in micro and nanoscale electrospray emitters.

    PubMed

    Yuill, Elizabeth M; Baker, Lane A

    2018-06-01

    Solution-phase ion transport during electrospray has been characterized for nanopipettes, or glass capillaries pulled to nanoscale tip dimensions, and micron-sized electrospray ionization emitters. Direct visualization of charged fluorophores during the electrospray process is used to evaluate impacts of emitter size, ionic strength, analyte size, and pressure-driven flow on heterogeneous ion transport during electrospray. Mass spectrometric measurements of positively- and negatively-charged proteins were taken for micron-sized and nanopipette emitters under low ionic strength conditions to further illustrate a discrepancy in solution-driven transport of charged analytes. A fundamental understanding of analyte electromigration during electrospray, which is not always considered, is expected to provide control over selective analyte depletion and enrichment, and can be harnessed for sample cleanup. Graphical abstract Fluorescence micrographs of ion migration in nanoscale pipettes while solution is electrosprayed.

  20. Nanoscale current uniformity and injection efficiency of nanowire light emitting diodes

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Selcu, Camelia M.; Sarwar, A. T. M. G.; Myers, Roberto C.

    2018-02-01

    As an alternative to light emitting diodes (LEDs) based on thin films, nanowire based LEDs are the focus of recent development efforts in solid state lighting as they offer distinct photonic advantages and enable direct integration on a variety of different substrates. However, for practical nanowire LEDs to be realized, uniform electrical injection must be achieved through large numbers of nanowire LEDs. Here, we investigate the effect of the integration of a III-Nitride polarization engineered tunnel junction (TJ) in nanowire LEDs on Si on both the overall injection efficiency and nanoscale current uniformity. By using conductive atomic force microscopy (cAFM) and current-voltage (IV) analysis, we explore the link between the nanoscale nonuniformities and the ensemble devices which consist of many diodes wired in parallel. Nanometer resolved current maps reveal that the integration of a TJ on n-Si increases the amount of current a single nanowire can pass at a given applied bias by up to an order of magnitude, with the top 10% of wires passing more than ×3.5 the current of nanowires without a TJ. This manifests at the macroscopic level as a reduction in threshold voltage by more than 3 V and an increase in differential conductance as a direct consequence of the integration of the TJ. These results show the utility of cAFM to quantitatively probe the electrical inhomogeneities in as-grown nanowire ensembles without introducing uncertainty due to additional device processing steps, opening the door to more rapid development of nanowire ensemble based photonics.

  1. A nanoscale Zr-based fluorescent metal-organic framework for selective and sensitive detection of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Li, Yanping; Zhang, Xin; Zhang, Ling; Jiang, Ke; Cui, Yuanjing; Yang, Yu; Qian, Guodong

    2017-11-01

    Hydrogen sulfide (H2S) has been commonly viewed as a gas signaling molecule in various physiological and pathological processes. However, the highly efficient H2S detection still remains challenging. Herein, we designed a new robust nano metal-organic framework (MOF) UiO-66-CH=CH2 as a fluorescent probe for rapid, sensitive and selective detection of biological H2S. UiO-66-CH=CH2 was prepared by heating ZrCl4 and 2-vinylterephthalic acid via a simple method. UiO-66-CH=CH2 displayed fluorescence quenching to H2S and kept excellent selectivity in the presence of biological relevant analytes especially the cysteine and glutathione. This MOF-based probe also exhibited fast response (10 s) and high sensitivity with a detection limit of 6.46 μM which was within the concentration range of biological H2S in living system. Moreover, this constructed MOF featured water-stability, nanoscale (20-30 nm) and low toxicity, which made it a promising candidate for biological H2S sensing.

  2. 3D positioning scheme exploiting nano-scale IR-UWB orthogonal pulses.

    PubMed

    Kim, Nammoon; Kim, Youngok

    2011-10-04

    In these days, the development of positioning technology for realizing ubiquitous environments has become one of the most important issues. The Global Positioning System (GPS) is a well-known positioning scheme, but it is not suitable for positioning in in-door/building environments because it is difficult to maintain line-of-sight condition between satellites and a GPS receiver. To such problem, various positioning methods such as RFID, WLAN, ZigBee, and Bluetooth have been developed for indoor positioning scheme. However, the majority of positioning schemes are focused on the two-dimension positioning even though three-dimension (3D) positioning information is more useful especially in indoor applications, such as smart space, U-health service, context aware service, etc. In this paper, a 3D positioning system based on mutually orthogonal nano-scale impulse radio ultra-wideband (IR-UWB) signals and cross array antenna is proposed. The proposed scheme uses nano-scale IR-UWB signals providing fine time resolution and high-resolution multiple signal specification algorithm for the time-of-arrival and the angle-of-arrival estimation. The performance is evaluated over various IEEE 802.15.4a channel models, and simulation results show the effectiveness of proposed scheme.

  3. Crystallization of high-strength nano-scale leucite glass-ceramics.

    PubMed

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p<0.05) higher mean BFS and characteristic strength values than the commercial materials. Attritor milled and planetary milled (2h) materials showed no significant (p>0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (p<0.05) to each other. The mean (SD) MPa strengths measured were: Attritor milled: 252.4 (38.7), Planetary milled: 225.4 (41.8) [4h milling] 255.0 (35.0) [2h milling], Ceramco-3: 75.7 (6.8) and IPS Empress: 165.5 (30.6). Planetary milling enabled synthesis of nano-scale leucite glass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  4. [Study on preparation of composite nano-scale Fe3O4 for phosphorus control].

    PubMed

    Li, Lei; Pan, Gang; Chen, Hao

    2010-03-01

    Composite nano-scale Fe3O4 particles were prepared in sodium carboxymethyl cellulose (CMC) solution by the oxidation deposition method. The adsorptions of phosphorus by micro-scale Fe3O4 and composite nano-scale Fe3O4 were investigated in water and soil, and the role of cellulase in the adsorption of composite nano-scale Fe3O4 was studied. Kinetic tests indicated that the equilibrium adsorption capacity of phosphorous on the composite nano-scale Fe3O4 (2.1 mg/g) was less than that of micro-scale Fe3O4 (3.2 mg/g). When cellulase was added to the solution of composite nano-scale Fe3O4 to degrade CMC, the removal rate of P by the nanoparticles (86%) was enhanced to the same level as the microparticles (90%). In the column tests, when the composite nano-scale Fe3O4 suspension was introduced in the downflow mode through the soil column, 72% of Fe3O4 penetrated through the soil bed under gravity. In contrast, the micro-scale Fe3O4 failed to pass through the soil column. The retention rate of P was 45% in the soil column when treated by the CMC-stabilized nanoparticles, in comparison with only 30% for the untreated soil column, however it could be improved to 74% in the soil column when treated by both the CMC-stabilized nanoparticles and cellulase, which degraded CMC after the nanoparticles were delivered into the soil.

  5. Residual stress within nanoscale metallic multilayer systems during thermal cycling

    DOE PAGES

    Economy, David Ross; Cordill, Megan Jo; Payzant, E. Andrew; ...

    2015-09-21

    Projected applications for nanoscale metallic multilayers will include wide temperature ranges. Since film residual stress has been known to alter system reliability, stress development within new film structures with high interfacial densities should be characterized to identify potential long-term performance barriers. To understand factors contributing to thermal stress evolution within nanoscale metallic multilayers, stress in Cu/Nb systems adhered to Si substrates was calculated from curvature measurements collected during cycling between 25 °C and 400 °C. Additionally, stress within each type of component layers was calculated from shifts in the primary peak position from in-situ heated X-ray diffraction. The effects ofmore » both film architecture (layer thickness) and layer order in metallic multilayers were tracked and compared with monolithic Cu and Nb films. Analysis indicated that the thermoelastic slope of nanoscale metallic multilayer films depends on thermal expansion mismatch, elastic modulus of the components, and also interfacial density. The layer thickness (i.e. interfacial density) affected thermoelastic slope magnitude while layer order had minimal impact on stress responses after the initial thermal cycle. When comparing stress responses of monolithic Cu and Nb films to those of the Cu/Nb systems, the nanoscale metallic multilayers show a similar increase in stress above 200 °C to the Nb monolithic films, indicating that Nb components play a larger role in stress development than Cu. Local stress calculations from X-ray diffraction peak shifts collected during heating reveal that the component layers within a multilayer film respond similarly to their monolithic counterparts.« less

  6. Lithographically Patterned Nanoscale Electrodeposition of Plasmonic, Bimetallic, Semiconductor, Magnetic, and Polymer Nanoring Arrays

    PubMed Central

    2015-01-01

    Large area arrays of magnetic, semiconducting, and insulating nanorings were created by coupling colloidal lithography with nanoscale electrodeposition. This versatile nanoscale fabrication process allows for the independent tuning of the spacing, diameter, and width of the nanorings with typical values of 1.0 μm, 750 nm, and 100 nm, respectively, and was used to form nanorings from a host of materials: Ni, Co, bimetallic Ni/Au, CdSe, and polydopamine. These nanoring arrays have potential applications in memory storage, optical materials, and biosensing. A modified version of this nanoscale electrodeposition process was also used to create arrays of split gold nanorings. The size of the split nanoring opening was controlled by the angle of photoresist exposure during the fabrication process and could be varied from 50% down to 10% of the ring circumference. The large area (cm2 scale) gold split nanoring array surfaces exhibited strong polarization-dependent plasmonic absorption bands for wavelengths from 1 to 5 μm. Plasmonic nanoscale split ring arrays are potentially useful as tunable dichroic materials throughout the infrared and near-infrared spectral regions. PMID:25553204

  7. Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy

    PubMed Central

    Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing

    2017-01-01

    In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1–2 × 109 cm−2, which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 109 cm−2). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices. PMID:28772961

  8. Reduction of Defects in AlGaN Grown on Nanoscale-Patterned Sapphire Substrates by Hydride Vapor Phase Epitaxy.

    PubMed

    Tasi, Chi-Tsung; Wang, Wei-Kai; Tsai, Tsung-Yen; Huang, Shih-Yung; Horng, Ray-Hua; Wuu, Dong-Sing

    2017-05-31

    In this study, a 3-μm-thick AlGaN film with an Al mole fraction of 10% was grown on a nanoscale-patterned sapphire substrate (NPSS) using hydride vapor phase epitaxy (HVPE). The growth mechanism, crystallization, and surface morphology of the epilayers were examined using X-ray diffraction, transmission electron microscopy (TEM), and scanning electron microscopy at various times in the growth process. The screw threading dislocation (TD) density of AlGaN-on-NPSS can improve to 1-2 × 10⁸ cm -2 , which is significantly lower than that of the sample grown on a conventional planar sapphire substrate (7 × 10⁸ cm -2 ). TEM analysis indicated that these TDs do not subsequently propagate to the surface of the overgrown AlGaN layer, but bend or change directions in the region above the voids within the side faces of the patterned substrates, possibly because of the internal stress-relaxed morphologies of the AlGaN film. Hence, the laterally overgrown AlGaN films were obtained by HVPE, which can serve as a template for the growth of ultraviolet III-nitride optoelectronic devices.

  9. High extraction efficiency GaN-based light-emitting diodes on embedded SiO2 nanorod array and nanoscale patterned sapphire substrate

    NASA Astrophysics Data System (ADS)

    Huang, Hung-Wen; Huang, Jhi-Kai; Kuo, Shou-Yi; Lee, Kang-Yuan; Kuo, Hao-Chung

    2010-06-01

    In this paper, GaN-based LEDs with a nanoscale patterned sapphire substrate (NPSS) and a SiO2 photonic quasicrystal (PQC) structure on an n-GaN layer using nanoimprint lithography are fabricated and investigated. The light output power of LED with a NPSS and a SiO2 PQC structure on an n-GaN layer was 48% greater than that of conventional LED. Strong enhancement in output power is attributed to better epitaxial quality and higher reflectance resulted from NPSS and PQC structures. Transmission electron microscopy images reveal that threading dislocations are blocked or bended in the vicinities of NPSS layer. These results provide promising potential to increase output power for commercial light emitting devices.

  10. Weak nanoscale chaos and anomalous relaxation in DNA

    NASA Astrophysics Data System (ADS)

    Mazur, Alexey K.

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  11. Weak nanoscale chaos and anomalous relaxation in DNA.

    PubMed

    Mazur, Alexey K

    2017-06-01

    Anomalous nonexponential relaxation in hydrated biomolecules is commonly attributed to the complexity of the free-energy landscapes, similarly to polymers and glasses. It was found recently that the hydrogen-bond breathing of terminal DNA base pairs exhibits a slow power-law relaxation attributable to weak Hamiltonian chaos, with parameters similar to experimental data. Here, the relationship is studied between this motion and spectroscopic signals measured in DNA with a small molecular photoprobe inserted into the base-pair stack. To this end, the earlier computational approach in combination with an analytical theory is applied to the experimental DNA fragment. It is found that the intensity of breathing dynamics is strongly increased in the internal base pairs that flank the photoprobe, with anomalous relaxation quantitatively close to that in terminal base pairs. A physical mechanism is proposed to explain the coupling between the relaxation of base-pair breathing and the experimental response signal. It is concluded that the algebraic relaxation observed experimentally is very likely a manifestation of weakly chaotic dynamics of hydrogen-bond breathing in the base pairs stacked to the photoprobe and that the weak nanoscale chaos can represent an ubiquitous hidden source of nonexponential relaxation in ultrafast spectroscopy.

  12. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm

    NASA Astrophysics Data System (ADS)

    Austin, Robert; Wunsch, Benjamin; Smith, Joshua; Gifford, Stacey; Wang, Chao; Brink, Markus; Bruce, Robert; Stolovitzky, Gustavo; Astier, Yann

    Deterministic lateral displacement (DLD) pillar arrays are an efficient technology to sort, separate and enrich micrometre-scale particles, which include parasites1, bacteria2, blood cells3 and circulating tumour cells in blood4. However, this technology has not been translated to the true nanoscale, where it could function on biocolloids, such as exosomes. Exosomes, a key target of liquid biopsies, are secreted by cells and contain nucleic acid and protein information about their originating tissue5. One challenge in the study of exosome biology is to sort exosomes by size and surface markers6, 7. We use manufacturable silicon processes to produce nanoscale DLD (nano-DLD) arrays of uniform gap sizes ranging from 25 to 235 nm. We show that at low Péclet (Pe) numbers, at which diffusion and deterministic displacement compete, nano-DLD arrays separate particles between 20 to 110 nm based on size with sharp resolution. Further, we demonstrate the size-based displacement of exosomes, and so open up the potential for on-chip sorting and quantification of these important biocolloids.

  13. Quantification of nanoscale density fluctuations by electron microscopy: probing cellular alterations in early carcinogenesis

    NASA Astrophysics Data System (ADS)

    Pradhan, Prabhakar; Damania, Dhwanil; Joshi, Hrushikesh M.; Turzhitsky, Vladimir; Subramanian, Hariharan; Roy, Hemant K.; Taflove, Allen; Dravid, Vinayak P.; Backman, Vadim

    2011-04-01

    Most cancers are curable if they are diagnosed and treated at an early stage. Recent studies suggest that nanoarchitectural changes occur within cells during early carcinogenesis and that such changes precede microscopically evident tissue alterations. It follows that the ability to comprehensively interrogate cell nanoarchitecture (e.g., macromolecular complexes, DNA, RNA, proteins and lipid membranes) could be critical to the diagnosis of early carcinogenesis. We present a study of the nanoscale mass-density fluctuations of biological tissues by quantifying their degree of disorder at the nanoscale. Transmission electron microscopy images of human tissues are used to construct corresponding effective disordered optical lattices. The properties of nanoscale disorder are then studied by statistical analysis of the inverse participation ratio (IPR) of the spatially localized eigenfunctions of these optical lattices at the nanoscale. Our results show an increase in the disorder of human colonic epithelial cells in subjects harboring early stages of colon neoplasia. Furthermore, our findings strongly suggest that increased nanoscale disorder correlates with the degree of tumorigenicity. Therefore, the IPR technique provides a practicable tool for the detection of nanoarchitectural alterations in the earliest stages of carcinogenesis. Potential applications of the technique for early cancer screening and detection are also discussed. Originally submitted for the special focus issue on physical oncology.

  14. Two-colour live-cell nanoscale imaging of intracellular targets

    NASA Astrophysics Data System (ADS)

    Bottanelli, Francesca; Kromann, Emil B.; Allgeyer, Edward S.; Erdmann, Roman S.; Wood Baguley, Stephanie; Sirinakis, George; Schepartz, Alanna; Baddeley, David; Toomre, Derek K.; Rothman, James E.; Bewersdorf, Joerg

    2016-03-01

    Stimulated emission depletion (STED) nanoscopy allows observations of subcellular dynamics at the nanoscale. Applications have, however, been severely limited by the lack of a versatile STED-compatible two-colour labelling strategy for intracellular targets in living cells. Here we demonstrate a universal labelling method based on the organic, membrane-permeable dyes SiR and ATTO590 as Halo and SNAP substrates. SiR and ATTO590 constitute the first suitable dye pair for two-colour STED imaging in living cells below 50 nm resolution. We show applications with mitochondria, endoplasmic reticulum, plasma membrane and Golgi-localized proteins, and demonstrate continuous acquisition for up to 3 min at 2-s time resolution.

  15. An algorithm for verifying biventricular capture based on evoked-response morphology.

    PubMed

    Diotallevi, Paolo; Ravazzi, Pier Antonio; Gostoli, Enrico; De Marchi, Giuseppe; Militello, Carmelo; Kraetschmer, Hannes

    2005-01-01

    Cardiac resynchronization therapy relies on consistent beat-by-beat myocardial capture in both ventricles. A pacemaker ensuring right (RV) and left ventricular (LV) capture through reliable capture verification and automatic output adjustment would contribute to patients' safety and quality of life. We studied the feasibility of an algorithm based on evoked-response (ER) morphology for capture verification in both the ventricles. RV and LV ER signals were recorded in 20 patients (mean age 72.5 years, range 64.3-80.4 years, 4 females and 16 males) during implantation of biventricular (BiV) pacing systems. Leads of several manufacturers were tested. Pacing and intracardiac electrogram (IEGM) recording were performed using an external pulse generator. IEGM and surface-lead electrocardiogram (ECG) signals were recorded under different pacing conditions for 10 seconds each: RV pacing only, LV pacing only, and BiV pacing with several interventricular delays. Based on morphology characteristics, ERs were classified manually for capture and failure to capture, and the validity of the classification was assessed by reference to the ECG. A total of 3,401 LV- and 3,345 RV-paced events were examined. In the RV and LV, the sensitivities of the algorithm were 95.6% and 96.1% in the RV and LV, respectively, and the corresponding specificities were 91.4% and 95.2%, respectively. The lower sensitivity in the RV was attributed to signal blanking in both channels during BiV pacing with a nonzero interventricular delay. The analysis revealed that the algorithm for identifying capture and failure to capture based on the ER-signal morphology was safe and effective in each ventricle with all leads tested in the study.

  16. Synthesis of Nanoscale TiO2 and Study of the Effect of Their Crystal Structure on Single Cell Response

    PubMed Central

    Ismagilov, Z. R.; Shikina, N. V.; Mazurkova, N. A.; Tsikoza, L. T.; Tuzikov, F. V.; Ushakov, V. A.; Ishchenko, A. V.; Rudina, N. A.; Korneev, D. V.; Ryabchikova, E. I.

    2012-01-01

    To study the effect of nanoscale titanium dioxide (TiO2) on cell responses, we synthesized four modifications of the TiO2 (amorphous, anatase, brookite, and rutile) capable of keeping their physicochemical characteristics in a cell culture medium. The modifications of nanoscale TiO2 were obtained by hydrolysis of TiCl4 and Ti(i-OC3H7)4 (TIP) upon variation of the synthesis conditions; their textural, morphological, structural, and dispersion characteristics were examined by a set of physicochemical methods: XRD, BET, SAXS, DLS, AFM, SEM, and HR-TEM. The effect of synthesis conditions (nature of precursor, pH, temperature, and addition of a complexing agent) on the structural-dispersion properties of TiO2 nanoparticles was studied. The hydrolysis methods providing the preparation of amorphous, anatase, brookite, and rutile modifications of TiO2 nanoparticles 3–5 nm in size were selected. Examination of different forms of TiO2 nanoparticles interaction with MDCK cells by transmission electron microscopy of ultrathin sections revealed different cell responses after treatment with different crystalline modifications and amorphous form of TiO2. The obtained results allowed us to conclude that direct contact of the nanoparticles with cell plasma membrane is the primary and critical step of their interaction and defines a subsequent response of the cell. PMID:22623903

  17. Modeling of Stiffness and Strength of Bone at Nanoscale.

    PubMed

    Abueidda, Diab W; Sabet, Fereshteh A; Jasiuk, Iwona M

    2017-05-01

    Two distinct geometrical models of bone at the nanoscale (collagen fibril and mineral platelets) are analyzed computationally. In the first model (model I), minerals are periodically distributed in a staggered manner in a collagen matrix while in the second model (model II), minerals form continuous layers outside the collagen fibril. Elastic modulus and strength of bone at the nanoscale, represented by these two models under longitudinal tensile loading, are studied using a finite element (FE) software abaqus. The analysis employs a traction-separation law (cohesive surface modeling) at various interfaces in the models to account for interfacial delaminations. Plane stress, plane strain, and axisymmetric versions of the two models are considered. Model II is found to have a higher stiffness than model I for all cases. For strength, the two models alternate the superiority of performance depending on the inputs and assumptions used. For model II, the axisymmetric case gives higher results than the plane stress and plane strain cases while an opposite trend is observed for model I. For axisymmetric case, model II shows greater strength and stiffness compared to model I. The collagen-mineral arrangement of bone at nanoscale forms a basic building block of bone. Thus, knowledge of its mechanical properties is of high scientific and clinical interests.

  18. Processing Solvent Dependent Morphology of Diketopyrrolopyrrole (DPP) based Low Band Gap Polymer and PCBM Blends

    NASA Astrophysics Data System (ADS)

    Ferdous, Sunzida; Liu, Feng; Russell, Thomas

    2013-03-01

    Solution processing of polymer semiconductors is widely used for fabrication of low cost organic solar cells. Recently, mixed solvent systems or additive based systems for fabricating polymer solar cells have proven to be beneficial for obtaining high performance devices with multi-length scale morphologies. To control the morphology during the processing step, one needs to understand the effect of solvent as it evaporates to form the final thin film structure. In this study, we used diketopyrrolopyrrole (DPP) based low band gap polymer and phenyl-C71-butyric acid methyl ester (PCBM) blend in a series of mixed solvent systems consisting of a good solvent for both of the active material components, as well as different solvents that are good solvents for PCBM, but poor solvents for the polymer. Different evaporation times of the poor solvents during the drying process, and different solubility of the polymer in these poor solvents as well as their interaction with the substrate play an important role in the final morphology. In-situ GIWAXS studies were performed to observe the evolution of the structure as the solvent evaporates. The final morphologies of the thin film devices were also characterized by AFM, TEM, and various x-ray scattering techniques to correlate the morphology with the obtained device performances.

  19. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    PubMed Central

    Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2014-01-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care. PMID:23860639

  20. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Chen, Fei; Mozhi, Anbu; Zhang, Xu; Zhao, Yuanyuan; Xue, Xiangdong; Hao, Yanli; Zhang, Xiaoning; Wang, Paul C.; Liang, Xing-Jie

    2013-08-01

    The advent of nanotechnology has reignited interest in the field of pharmaceutical science for the development of nanomedicine. Nanomedicinal formulations are nanometer-sized carrier materials designed for increasing the drug tissue bioavailability, thereby improving the treatment of systemically applied chemotherapeutic drugs. Nanomedicine is a new approach to deliver the pharmaceuticals through different routes of administration with safer and more effective therapies compared to conventional methods. To date, various kinds of nanomaterials have been developed over the years to make delivery systems more effective for the treatment of various diseases. Even though nanomaterials have significant advantages due to their unique nanoscale properties, there are still significant challenges in the improvement and development of nanoformulations with composites and other materials. Here in this review, we highlight the nanomedicinal formulations aiming to improve the balance between the efficacy and the toxicity of therapeutic interventions through different routes of administration and how to design nanomedicine for safer and more effective ways to improve the treatment quality. We also emphasize the environmental and health prospects of nanomaterials for human health care.