Sample records for nanosecond discharge plasma

  1. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  2. Introduction of Nano-seconds Pulsed Discharge Plasma and its Applications

    NASA Astrophysics Data System (ADS)

    Namihira, Takao; Wang, Douyan; Matsumoto, Takao; Okada, Sho; Akiyama, Hidenori

    During the decades, the developments of high power semiconductor switch, magnetic core and etc have allowed us to manufacture the pulsed power source having higher energy transfer efficiency. As the results, the pulsed discharge has been recognized as one of the promised non-thermal plasma to practical use. In this paper, a generation process, electron energy, impedance and a temperature of the pulsed discharge plasma would be explained. In addition, a nano-seconds pulsed discharge plasma would be introduced as the non-thermal plasma processing giving us the highest energy efficiency and be demonstrated it.

  3. Control of Reactive Species Generated by Low-frequency Biased Nanosecond Pulse Discharge in Atmospheric Pressure Plasma Effluent

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2016-09-01

    The control of hydroxyl radical and the other gas phase species generation in the ejected gas through air plasma (air plasma effluent) has been experimentally studied, which is a key to extend the range of plasma treatment. Nanosecond pulse discharge is known to produce high reduced electric field (E/N) discharge that leads to efficient generation of the reactive species than conventional low frequency discharge, while the charge-voltage cycle in the low frequency discharge is known to be well-controlled. In this study, the nanosecond pulse discharge biased with AC low frequency high voltage is used to take advantages of these discharges, which allows us to modulate the reactive species composition in the air plasma effluent. The utilization of the gas-liquid interface and the liquid phase chemical reactions between the modulated long-lived reactive species delivered from the air plasma effluent could realize efficient liquid phase chemical reactions leading to short-lived reactive species production far from the air plasma, which is crucial for some plasma agricultural applications.

  4. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  5. Recent studies on nanosecond-timescale pressurized gas discharges

    DOE PAGES

    Yatom, S.; Shlapakovski, A.; Beilin, L.; ...

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less

  6. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    PubMed

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  7. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  8. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  9. Modeling of plasma chemical processes in the artificial ionized layer in the upper atmosphere by the nanosecond corona discharge

    NASA Astrophysics Data System (ADS)

    Vikharev, A. L.; Gorbachev, A. M.; Ivanov, O. A.; Kolisko, A. L.; Litvak, A. G.

    1993-08-01

    The plasma chemical processes in the corona discharge formed in air by a series of high voltage pulses of nanosecond duration are investigated experimentally. The experimental conditions (reduced electric field, duration and repetition frequency of the pulses, gas pressure in the chamber) modeled the regime of creation of the artificial ionized layer (AIL) in the upper atmosphere by a nanosecond microwave discharge. It was found that in a nanosecond microwave discharge predominantly generation of ozone occurs, and that the production of nitrogen dioxide is not large. The energy expenditures for the generation of one O 3 molecule were about 15 eV. On the basis of the experimental results the prognosis of the efficiency of ozone generation in AIL was made.

  10. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  11. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  12. On the boundary flow using pulsed nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Jie; Cui, Y. D.; Li, Jiun-Ming; Zheng, Jian-Guo; Khoo, B. C.

    2018-05-01

    Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.

  13. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  14. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    NASA Astrophysics Data System (ADS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  15. Nanosecond barrier discharge in a krypton/helium mixture containing mercury dibromide: Optical emission and plasma parameters

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Starikovskaya, S. M.; Malinin, A. N.

    2015-01-01

    Spectral and electrical characteristics of atmospheric-pressure nanosecond barrier discharge plasma in a HgBr2/Kr/He mixture have been investigated. The discharge was initiated by positive 10-kV voltage pulses with a rise time of 4 ns and a half-amplitude duration of 28 ns. Emission from exciplex HgBr ( B 2Σ{1/2/+} - X 2Σ{1/2/+}) and KrBr ( B 2Σ{1/2/+} - X 2Σ{1/2/+}, C3/2-AΠ1/2, D1/2-AΠ1/2) molecules have been studied. From the time evolution of the B-X transition spectra of the HgBr molecule (502 nm) and KrBr molecule (207 nm), a mechanism of the formation of the exciplex molecules in the nanosecond discharge has been deduced. The distributions of the energies and rates of the processes responsible for emission from HgBr and KrBr molecules have been analyzed by numerically solving the Boltzmann equation for the electron distribution function. Experiments have confirmed the possibility of optimizing the voltage supply pulse for maximizing the efficiency of simultaneous emission in the UV and visible (green) spectral ranges from atmospheric-pressure discharge in the HgBr2/Kr/He mixture.

  16. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  17. Influence of ion transport on discharge propagation of nanosecond dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Hua, Weizhuo; Koji, Fukagata

    2017-11-01

    A numerical study has been conducted to understand the streamer formation and propagation of nanosecond pulsed surface dielectric barrier discharge of positive polarity. First we compared the result of different grid configuration to investigate the influence of x and y direction grid spacing on the streamer propagation. The streamer propagation is sensitive to y grid spacing especially at the dielectric surface. The streamer propagation velocity can reach 0.2 cm/ns when the voltage magnitude is 12 kV. A narrow gap was found between the streamer and dielectric barrier, where the plasma density is several orders of magnitude smaller than the streamer region. Analyses on the ion transport in the gap and streamer regions show the different ion transport mechanisms in the two different region. In the gap region, the diffusion of electron toward the dielectric layer decreases the seed electron in the beginning of voltage pulse, resulting that ionization avalanche does not occur. The streamer region is not significantly affected by the diffusion flux toward the dielectric layer, so that ionization avalanche takes place and leads to dramatic increase of plasma density.

  18. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  19. Plasma density enhancement in atmospheric-pressure dielectric-barrier discharges by high-voltage nanosecond pulse in the pulse-on period: a PIC simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Wang, Dezhen

    2010-02-01

    A particle-in-cell (PIC) plus Monte Carlo collision simulation is employed to investigate how a sustainable atmospheric pressure single dielectric-barrier discharge responds to a high-voltage nanosecond pulse (HVNP) further applied to the metal electrode. The results show that the HVNP can significantly increase the plasma density in the pulse-on period. The ion-induced secondary electrons can give rise to avalanche ionization in the positive sheath, which widens the discharge region and enhances the plasma density drastically. However, the plasma density stops increasing as the applied pulse lasts over certain time; therefore, lengthening the pulse duration alone cannot improve the discharge efficiency further. Physical reasons for these phenomena are then discussed.

  20. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  1. Plasma discharge self-cleaning filtration system

    DOEpatents

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  2. Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge

    NASA Astrophysics Data System (ADS)

    Burnette, David Dean

    This dissertation presents studies of NO kinetics in a plasma afterglow using various nanosecond pulse discharges across a sphere gap. The discharge platform is developed to produce a diffuse plasma volume large enough to allow for laser diagnostics in a plasma that is rich in vibrationally-excited molecules. This plasma is characterized by current and voltage traces as well as ICCD and NO PLIF images that are used to monitor the plasma dimensions and uniformity. Temperature and vibrational loading measurements are performed via coherent anti-Stokes Raman spectroscopy (CARS). Absolute NO concentrations are obtained by laser-induce fluorescence (LIF) measurements, and N and O densities are found using two photon absorption laser-induced fluorescence (TALIF). For all dry air conditions studied, the NO behavior is characterized by a rapid rate of formation consistent with an enhanced Zeldovich process involving electronically-excited nitrogen species that are generated within the plasma. After several microseconds, the NO evolution is entirely controlled by the reverse Zeldovich process. These results show that under the chosen range of conditions and even in extreme instances of vibrational loading, there is no formation channel beyond ~2 musec. Both the NO formation and consumption mechanisms are strongly affected by the addition of fuel species, producing much greater NO concentrations in the afterglow.

  3. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A note on supersonic flow control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Li, J.; Khoo, B. C.

    2018-04-01

    A concept study on supersonic flow control using nanosecond pulsed plasma actuator is conducted by means of numerical simulation. The nanosecond plasma discharge is characterized by the generation of a micro-shock wave in ambient air and a residual heat in the discharge volume arising from the rapid heating of near-surface gas by the quick discharge. The residual heat has been found to be essential for the flow separation control over aerodynamic bodies like airfoil and backward-facing step. In this study, novel experiment is designed to utilize the other flow feature from discharge, i.e., instant shock wave, to control supersonic flow through shock-shock interaction. Both bow shock in front of a blunt body and attached shock anchored at the tip of supersonic projectile are manipulated via the discharged-induced shock wave in an appropriate manner. It is observed that drag on the blunt body is reduced appreciably. Meanwhile, a lateral force on sharp-edged projectile is produced, which can steer the body and give it an effective angle of attack. This opens a promising possibility for extending the applicability of this flow control technique in supersonic flow regime.

  5. Influence of grid resolution in fluid-model simulation of nanosecond dielectric barrier discharge plasma actuator

    NASA Astrophysics Data System (ADS)

    Hua, Weizhuo; Fukagata, Koji

    2018-04-01

    Two-dimensional numerical simulation of a surface dielectric barrier discharge (SDBD) plasma actuator, driven by a nanosecond voltage pulse, is conducted. A special focus is laid upon the influence of grid resolution on the computational result. It is found that the computational result is not very sensitive to the streamwise grid spacing, whereas the wall-normal grid spacing has a critical influence. In particular, the computed propagation velocity changes discontinuously around the wall-normal grid spacing about 2 μm due to a qualitative change of discharge structure. The present result suggests that a computational grid finer than that was used in most of previous studies is required to correctly capture the structure and dynamics of streamer: when a positive nanosecond voltage pulse is applied to the upper electrode, a streamer forms in the vicinity of upper electrode and propagates along the dielectric surface with a maximum propagation velocity of 2 × 108 cm/s, and a gap with low electron and ion density (i.e., plasma sheath) exists between the streamer and dielectric surface. Difference between the results obtained using the finer and the coarser grid is discussed in detail in terms of the electron transport at a position near the surface. When the finer grid is used, the low electron density near the surface is caused by the absence of ionization avalanche: in that region, the electrons generated by ionization is compensated by drift-diffusion flux. In contrast, when the coarser grid is used, underestimated drift-diffusion flux cannot compensate the electrons generated by ionization, and it leads to an incorrect increase of electron density.

  6. Multiple current peaks in room-temperature atmospheric pressure homogenous dielectric barrier discharge plasma excited by high-voltage tunable nanosecond pulse in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai

    2013-05-13

    Room temperature homogenous dielectric barrier discharge plasma with high instantaneous energy efficiency is acquired by using nanosecond pulse voltage with 20-200 ns tunable pulse width. Increasing the voltage pulse width can lead to the generation of regular and stable multiple current peaks in each discharge sequence. When the voltage pulse width is 200 ns, more than 5 organized current peaks can be observed under 26 kV peak voltage. Investigation also shows that the organized multiple current peaks only appear in homogenous discharge mode. When the discharge is filament mode, organized multiple current peaks are replaced by chaotic filament current peaks.

  7. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    DTIC Science & Technology

    2013-01-01

    Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow Jonathan Poggie∗and Nicholas J. Bisek† Air Force Research Laboratory, Wright...was developed for nanosecond- pulse discharges , including real- istic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced...shock waves originating near the sheath edge, consistent with experimental observations. I. Introduction In a nanosecond- pulse discharge , the input

  8. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  9. Kinetic Studies of Plasma Chemical Fuel Oxidation in Nanosecond Pulsed Discharges by Single and Two Photon Laser Induced Fluorescence

    DTIC Science & Technology

    2013-07-01

    31st ICPIG, July 14-19, 2013, Granada , Spain Kinetic Studies of Plasma Chemical Fuel Oxidation in Nanosecond Pulsed Discharges by Single and...31st) (ICPIG) Held in Granada , Spain on 14-19 July 2013 14. ABSTRACT Single and two photon Laser Induced Fluorescence (LIF) spectroscopy is used for...Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 31st ICPIG, July 14-19, 2013, Granada , Spain preheat the fuel-air mixture to the furnace

  10. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    NASA Astrophysics Data System (ADS)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  11. Nanosecond Pulsed Discharge in Water without Bubbles: A Fundamental Study of Initiation, Propagation and Plasma Characteristics

    NASA Astrophysics Data System (ADS)

    Seepersad, Yohan

    The state of plasma is widely known as a gas-phase phenomenon, but plasma in liquids have also received significant attention over the last century. Generating plasma in liquids however is theoretically challenging, and this problem is often overcome via liquid-gas phase transition preceding the actual plasma formation. In this sense, plasma forms in gas bubbles in the liquid. Recent work at the Drexel Plasma Institute has shown that nanosecond pulsed electric fields can initiate plasma in liquids without any initial cavitation phase, at voltages below theoretical direct-ionization thresholds. This unique regime is poorly understood and does not fit into any current descriptive mechanisms. As with all new phenomena, a complete fundamental description is paramount to understanding its usefulness to practical applications. The primary goals of this research were to qualitatively and quantitatively understand the phenomenon of nanosecond pulsed discharge in liquids as a means to characterizing properties that may open up niche application possibilities. Analysis of the plasma was based on experimental results from non-invasive, sub-nanosecond time-resolved optical diagnostics, including direct imaging, transmission imaging (Schlieren and shadow), and optical emission spectroscopy. The physical characteristics of the plasma were studied as a function of variations in the electric field amplitude and polarity, liquid permittivity, and pulse duration. It was found that the plasma size and emission intensity was dependent on the permittivity of the liquid, as well as the voltage polarity, and the structure and dynamics were explained by a 'cold-lightning' mechanism. The under-breakdown dynamics at the liquid-electrode interface were investigated by transmission imaging to provide evidence for a novel mechanism for initiation based on the electrostriction. This mechanism was proposed by collaborators on the project and developed alongside the experimental work in this

  12. Electric field in a plasma channel in a high-pressure nanosecond discharge in hydrogen: a coherent anti-stokes Raman scattering study.

    PubMed

    Yatom, S; Tskhai, S; Krasik, Ya E

    2013-12-20

    Experimental results of a study of the electric field in a plasma channel produced during nanosecond discharge at a H2 gas pressure of (2-3)×10(5)  Pa by the coherent anti-Stokes scattering method are reported. The discharge was ignited by applying a voltage pulse with an amplitude of ∼100  kV and a duration of ∼5  ns to a blade cathode placed at a distance of 10 and 20 mm from the anode. It was shown that this type of gas discharge is characterized by the presence of an electric field in the plasma channel with root-mean-square intensities of up to 30  kV/cm. Using polarization measurements, it was found that the direction of the electric field is along the cathode-anode axis.

  13. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  14. Study of nanosecond discharges in H2-air mixtures at atmospheric pressure for plasma assisted combustion applications

    NASA Astrophysics Data System (ADS)

    Kobayashi, Sumire; Bonaventura, Zdeněk; Tholin, Fabien; Popov, Nikolay A.; Bourdon, Anne

    2017-07-01

    This paper presents 2D simulations of nanosecond discharges between two point electrodes for four different H2-air mixtures defined by their equivalence ratios ϕ (i.e. φ =0, air, φ =0.3, lean mixture, φ =1, stoichiometric mixture and φ =1.5, rich mixture) at atmospheric pressure and at an initial temperature of 1000 K. In a first step, we have shown that the mixture composition has only a very small influence on the discharge dynamics and structure during the streamer phase and up to the formation of the plasma channel between the two point electrodes in H2-air mixtures with φ \\in [0,1.5]. However, as the plasma channel is formed slightly earlier as the equivalence ratio increases, for a given voltage pulse, the duration of the nanosecond spark phase increases as the equivalence ratio increases. As expected, we have shown that excited states of N2 (and in particular N2(A)) and radicals (and in particular O(D), O(P), H and OH) are very efficiently produced during the voltage pulse after the start of the spark phase. After the voltage pulse, and up to 100 ns, the densities of excited states of N2 and of O(D) decrease. Conversely, most of the O(P), H and OH radicals are produced after the voltage pulse due to the dissociative quenching of electronically excited N2. As for radicals, the gas temperature starts increasing after the start of the spark phase. For all studied mixtures, the density of O(P) atoms and the gas temperature reach their maxima after the end of the voltage pulse and the densities of O(P), H and OH radicals and the maximal gas temperature increase as the equivalence ratio increases. We have shown that the production of radicals is the highest on the discharge axis and the distribution of species after the voltage pulse and up to 100 ns has a larger diameter between the electrodes than close to both electrode tips. As for species, the temperature distribution presents two hot spots close to the point electrode tips. The non

  15. Schlieren Imaging and Pulsed Detonation Engine Testing of Ignition by a Nanosecond Repetitively Pulsed Discharge

    DTIC Science & Technology

    2016-05-16

    in ethylene–air and aviation gasoline (avgas)–air mixtures. Testing of NRP discharges in the glow and corona regimes in PDE engines has been...in further detail in Refs. [17,21–23]. NRP discharges in the pin-to-pin configuration have been shown to operate in three regimes: corona , glow, and...assisted combustion Plasma assisted ignition Aircraft propulsionA nanosecond repetitively pulsed (NRP) discharge in the spark regime has been investigated

  16. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma

    PubMed Central

    Hoon Park, Ji; Kumar, Naresh; Hoon Park, Dae; Yusupov, Maksudbek; Neyts, Erik C.; Verlackt, Christof C. W.; Bogaerts, Annemie; Ho Kang, Min; Sup Uhm, Han; Ha Choi, Eun; Attri, Pankaj

    2015-01-01

    Bacteria can be inactivated through various physical and chemical means, and these have always been the focus of extensive research. To further improve the methodology for these ends, two types of plasma systems were investigated: nano-second pulsed plasma (NPP) as liquid discharge plasma and an Argon gas-feeding dielectric barrier discharge (Ar-DBD) as a form of surface plasma. To understand the sterilizing action of these two different plasma sources, we performed experiments with Staphylococcus aureus (S. aureus) bacteria (wild type) and multidrug resistant bacteria (Penicillum-resistant, Methicillin-resistant and Gentamicin-resistant). We observed that both plasma sources can inactivate both the wild type and multidrug-resistant bacteria to a good extent. Moreover, we observed a change in the surface morphology, gene expression and β-lactamase activity. Furthermore, we used X-ray photoelectron spectroscopy to investigate the variation in functional groups (C-H/C-C, C-OH and C=O) of the peptidoglycan (PG) resulting from exposure to plasma species. To obtain atomic scale insight in the plasma-cell interactions and support our experimental observations, we have performed molecular dynamics simulations to study the effects of plasma species, such as OH, H2O2, O, O3, as well as O2 and H2O, on the dissociation/formation of above mentioned functional groups in PG. PMID:26351132

  17. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  18. Physical and biological mechanisms of nanosecond- and microsecond-pulsed FE-DBD plasma interaction with biological objects

    NASA Astrophysics Data System (ADS)

    Dobrynin, Danil

    2013-09-01

    Mechanisms of plasma interaction with living tissues and cells can be quite complex, owing to the complexity of both the plasma and the tissue. Thus, unification of all the mechanisms under one umbrella might not be possible. Here, analysis of interaction of floating electrode dielectric barrier discharge (FE-DBD) with living tissues and cells is presented and biological and physical mechanisms are discussed. In physical mechanisms, charged species are identified as the major contributors to the desired effect and a mechanism of this interaction is proposed. Biological mechanisms are also addressed and a hypothesis of plasma selectivity and its effects is offered. Spatially uniform nanosecond and sub-nanosecond short-pulsed dielectric barrier discharge plasmas are gaining popularity in biological and medical applications due to their increased uniformity, lower plasma temperature, lower surface power density, and higher concentration of the active species produced. In this presentation we will compare microsecond pulsed plasmas with nanosecond driven systems and their applications in biology and medicine with specific focus on wound healing and tissue regeneration. Transition from negative to positive streamer will be discussed with proposed hypothesis of uniformity mechanisms of positive streamer and the reduced dependence on morphology and surface chemistry of the second electrode (human body) being treated. Uniform plasma offers a more uniform delivery of active species to the tissue/surface being treated thus leading to better control over the biological results.

  19. Anti-tumor immune response induced by nanosecond pulsed streamer discharge in mice

    NASA Astrophysics Data System (ADS)

    Mizuno, Kazue; Yonetamari, Kenta; Shirakawa, Yuki; Akiyama, Taketoshi; Ono, Ryo

    2017-03-01

    Plasma is known to activate immune cells in vitro; however, its effect on cancer immunotherapy is not well understood in vivo. In this study, we report B16-F10 tumor growth suppression at a non-irradiated site on a mouse leg after a nanosecond pulsed streamer discharge was applied to the tumor on the other leg. The tumor growth suppression at non-irradiated remote sites was observed from the day next to that of plasma irradiation: the rapid abscopal effect suggests innate immune response activation. Additionally, the production of inflammatory cytokines from splenocytes was enhanced after plasma irradiation. This suggests the activation of adaptive immune response specific to B16-F10 melanoma by plasma irradiation.

  20. Simulations of nanosecond-pulsed dielectric barrier discharges in atmospheric pressure air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soo Bak, Moon; Cappelli, Mark A.

    2013-03-21

    This paper describes simulations of nanosecond pulse plasma formation between planer electrodes covered by dielectric barriers in air at atmospheric pressure and 340 K. The plasma formation process starts as electrons detach from negative ions of molecular oxygen that are produced from the previous discharge pulse. An ionization front is found to form close to the positively biased electrode and then strengthens and propagates towards the grounded electrode with increasing gap voltage. Charge accumulation and secondary emission from the grounded electrode eventually lead to sheath collapse. One interesting feature is a predicted reversal in gap potential due to the accumulatedmore » charge, even when there is no reversal in applied potential. The simulation results are compared to recent measurement of mid-gap electric field under the same discharge conditions [Ito et al., Phys. Rev. Lett. 107, 065002 (2011)].« less

  1. Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon

    NASA Astrophysics Data System (ADS)

    Sen, WANG; Dezheng, YANG; Feng, LIU; Wenchun, WANG; Zhi, FANG

    2018-07-01

    Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of {{{N}}}2({{C}}{}3{{\\Pi }}{{g}}\\to {{B}}{}3{{\\Pi }}{{g}},{{Δ }}{{ν }}=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm‑3 according to the Stark broadening effect of the H α line.

  2. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    NASA Astrophysics Data System (ADS)

    Yang, De-zheng; Wang, Wen-chun; Jia, Li; Nie, Dong-xia; Shi, Heng-chao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  3. Guiding of Long-Distance Electric Discharges by Combined Femtosecond and Nanosecond Pulses Emitted by Hybrid KrF Laser System

    DTIC Science & Technology

    2014-01-30

    AFRL-AFOSR-UK-TR-2014-0040 Guiding of long-distance electric discharges by combined femtosecond and nanosecond pulses emitted by...To) 27 September 2010 – 31 December 2013 4. TITLE AND SUBTITLE Guiding of long-distance electric discharges by combined femtosecond and...plasma channels in the atmosphere and laser guiding of high-voltage electric discharges . 15. SUBJECT TERMS EOARD, triggering

  4. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictatedmore » by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.« less

  5. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  6. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  7. Measurements of Electric Field in a Nanosecond Pulse Discharge by 4-WAVE Mixing

    NASA Astrophysics Data System (ADS)

    Baratte, Edmond; Adamovich, Igor V.; Simeni Simeni, Marien; Frederickson, Kraig

    2017-06-01

    Picosecond four-wave mixing is used to measure temporally and Picosecond four-wave mixing is used to measure temporally and spatially resolved electric field in a nanosecond pulse dielectric discharge sustained in room air and in an atmospheric pressure hydrogen diffusion flame. Measurements of the electric field, and more precisely the reduced electric field (E/N) in the plasma is critical for determination rate coefficients of electron impact processes in the plasma, as well as for quantifying energy partition in the electric discharge among different molecular energy modes. The four-wave mixing measurements are performed using a collinear phase matching geometry, with nitrogen used as the probe species, at temporal resolution of about 2 ns . Absolute calibration is performed by measurement of a known electrostatic electric field. In the present experiments, the discharge is sustained between two stainless steel plate electrodes, each placed in a quartz sleeve, which greatly improves plasma uniformity. Our previous measurements of electric field in a nanosecond pulse dielectric barrier discharge by picosecond 4-wave mixing have been done in air at room temperature, in a discharge sustained between a razor edge high-voltage electrode and a plane grounded electrode (a quartz plate or a layer of distilled water). Electric field measurements in a flame, which is a high-temperature environment, are more challenging because the four-wave mixing signal is proportional to the to square root of the difference betwen the populations of N2 ground vibrational level (v=0) and first excited vibrational level (v=1). At high temperatures, the total number density is reduced, thus reducing absolute vibrational level populations of N2. Also, the signal is reduced further due to a wider distribution of N2 molecules over multiple rotational levels at higher temperatures, while the present four-wave mixing diagnostics is using spectrally narrow output of a ps laser and a high

  8. Characterization of a dielectric barrier discharge in contact with liquid and producing a plasma activated water

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Taglioli, M.; Colonna, G.; Borghi, C. A.

    2017-01-01

    In this work a low-temperature plasma source for the generation of plasma activated water (PAW) is developed and characterized. The plasma reactor was operated by means of an atmospheric-pressure air dielectric barrier discharge (DBD). The plasma generated is in contact with the water surface and is able to chemically activate the liquid medium. Electrodes were supplied by both sinusoidal and nanosecond-pulsed voltage waveforms. Treatment times were varied from 2 to 12 min to increase the energy dose released to the water by the DBD plasma. The physics of the discharge was studied by means of electrical, spectroscopic and imaging diagnostics. The interaction between the plasma and the liquid was investigated as well. Temperature and composition of the treated water were detected. Images of the discharges showed a filamentary behaviour in the sinusoidal case and a more homogeneous behaviour in the nanosecond-pulsed one. The images and the electrical measurements allowed to evaluate an average electron number density of about 4  ×  1019 and 6  ×  1017 m-3 for the sinusoidal and nanosecond-pulsed discharges respectively. Electron temperatures in the range of 2.1÷2.6 eV were measured by using spectroscopic diagnostics. Rotational temperatures in the range of 318-475 K were estimated by fitting synthetic spectra with the measured ones. Water temperature and pH level did not change significantly after the exposure to the DBD plasma. The production of ozone and hydrogen peroxide within the water was enhanced by increasing the plasma treatment time and the energy dose. Numerical simulations of the nanosecond-pulsed discharge were performed by using a self-consistent coupling of state-to-state kinetics of the air mixture with the Boltzmann equation of free electron kinetics. Temporal evolution of the electron energy distribution function shows departure from the Maxwellian distribution especially during the afterglow phase of the discharge. When

  9. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Study of emission of a volume nanosecond discharge plasma in xenon, krypton and argon at high pressures

    NASA Astrophysics Data System (ADS)

    Baksht, E. Kh; Lomaev, Mikhail I.; Rybka, D. V.; Tarasenko, Viktor F.

    2006-06-01

    The emission properties of a volume nanosecond discharge plasma produced in xenon, krypton and argon at high pressures in a discharge gap with a cathode having a small radius of curvature are studied. Spectra in the range 120-850 nm and amplitude—time characteristics of xenon emission at different regimes and excitation techniques are recorded and analysed. It is shown that upon excitation of the volume discharge initiated by a beam of avalanche electrons, at least 90% of the energy in the spectral range 120-850 nm is emitted by xenon dimers. For xenon at a pressure of 1.2 atm, ~45 mJ of the spontaneous emission energy was obtained in the full solid angle in a pulse with the full width at half-maximum ~130 ns.

  10. Particle-in-cell modeling of the nanosecond field emission driven discharge in pressurized hydrogen

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Yatom, Shurik; Krasik, Yakov E.

    2018-02-01

    The high-voltage field-emission driven nanosecond discharge in pressurized hydrogen is studied using the one-dimensional Particle-in-Cell Monte Carlo collision model. It is obtained that the main part of the field-emitted electrons becomes runaway in the thin cathode sheath. These runaway electrons propagate the entire cathode-anode gap, creating rather dense (˜1012 cm-3) seeding plasma electrons. In addition, these electrons initiate a streamer propagating through this background plasma with a speed ˜30% of the speed of light. Such a high streamer speed allows the self-acceleration mechanism of runaway electrons present between the streamer head and the anode to be realized. As a consequence, the energy of runaway electrons exceeds the cathode-anode gap voltage. In addition, the influence of the field emission switching-off time is analyzed. It is obtained that this time significantly influences the discharge dynamics.

  11. The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussiahn, R.; Brandenburg, R.; Gerling, T.

    2010-04-05

    A cold atmospheric pressure plasma source, called hairline plasma, for biological and medical applications has been developed. Using the physical effect of the negative dc corona discharge, a nanosecond pulsed microplasma has been created. The device produces a very thin (dapprox30 mum) plasma filament with a length of up to 1.5 cm. Due to this geometrical parameters this plasma is particularly suitable for the treatment of microscopic cavities. The low plasma temperature allows to treat the human skin without any heating or painful irritation.

  12. Nanosecond plasma-mediated electrosurgery with elongated electrodes

    NASA Astrophysics Data System (ADS)

    Vankov, Alexander; Palanker, Daniel

    2007-06-01

    Progress in interventional medicine is associated with the development of more delicate and less invasive surgical procedures, which requires more precise and less traumatic, yet affordable, surgical instruments. Previously we reported on the development of the pulsed electron avalanche knife for dissection of soft tissue in liquid media using the 100 ns plasma-mediated electric discharges applied via a 25 μm disk microelectrode. Cavitation bubbles accompanying explosive vaporization of the liquid medium in front of such a pointed electrode produced a series of craters that did not always merge into a continuous cut. In addition, this approach of surface ablation provided a limited depth of cutting. Application of an elongated electrode capable of cutting with its edge rather than just with its pointed apex faces a problem of nonuniformity of the electric field on a nonspherical electrode. In this article we explore dynamics of the plasma-mediated nanosecond discharges in liquid medium in positive and negative polarities and describe the geometry of an electrode that provides a sufficiently uniform electric field along an extended edge of a surgical probe. A highly enhanced and uniform electric field was obtained on very sharp (2.5 μm) exposed edges of a planar electrode insulated on its flat sides. Uniform ionization and simultaneous vaporization was obtained along the whole edge of such a blade with 100 ns pulses at 4-6 kV. A continuous cutting rate of 1 mm/s in the retina and in soft membranes was achieved at a pulse repetition rate of 100 Hz. The collateral damage zone at the edges of incision did not exceed 80 μm. Negative polarity was found advantageous due to the lower rate of electrode erosion and due to better spatial confinement of the plasma-mediated discharge in liquid.

  13. Species and temperature measurements of methane oxidation in a nanosecond repetitively pulsed discharge

    PubMed Central

    Lefkowitz, Joseph K; Guo, Peng; Rousso, Aric; Ju, Yiguang

    2015-01-01

    Speciation and temperature measurements of methane oxidation during a nanosecond repetitively pulsed discharge in a low-temperature flow reactor have been performed. Measurements of temperature and formaldehyde during a burst of pulses were made on a time-dependent basis using tunable diode laser absorption spectroscopy, and measurements of all other major stable species were made downstream of a continuously pulsed discharge using gas chromatography. The major species for a stoichiometric methane/oxygen/helium mixture with 75% dilution are H2O, CO, CO2, H2, CH2O, CH3OH, C2H6, C2H4 and C2H2. A modelling tool to simulate homogeneous plasma combustion kinetics is assembled by combining the ZDPlasKin and CHEMKIN codes. In addition, a kinetic model for plasma-assisted combustion (HP-Mech/plasma) of methane, oxygen and helium mixtures has been assembled to simulate the measurements. Predictions can accurately capture reactant consumption as well as production of the major product species. However, significant disagreement is found for minor species, particularly CH2O and CH3OH. Further analysis revealed that the plasma-activated low-temperature oxidation pathways, particularly those involving CH3O2 radical reactions and methane reactions with O(1D), are responsible for this disagreement. PMID:26170433

  14. Investigation of nanosecond pulse dielectric barrier discharges in still air and in transonic flow by optical methods

    NASA Astrophysics Data System (ADS)

    Peschke, P.; Goekce, S.; Leyland, P.; Ott, P.

    2016-01-01

    In the present study the interaction of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators with aerodynamic flow up to transonic velocities was investigated. The primary focus was on the influence of the flow on the discharge and the effects of the discharge itself. In addition, the influence of the ns-DBD on a shock-wave was studied. The aim was to improve the understanding of the plasma-flow interaction, a topic that is not yet fully understood, in particular for ns-DBD. The actuator was integrated in two different models, a NACA 3506 compressor blade profile and a bump geometry at the bottom of the wind tunnel. The effect of the rapid energy deposition close to the discharge was examined with the phase-locked schlieren visualisation technique. Images of the plasma acquired with short exposure times revealed information on the discharge evolution. The results show a significant effect of the flow on the discharge characteristics, in particular due to the drop of static pressure. On the other hand, no significant effect of the ns-DBD on the flow was observed due to unfavourable flow conditions, which underlines the importance of the actuator’s placement.

  15. Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water

    NASA Astrophysics Data System (ADS)

    Sava, Ion; Kruth, Angela; Kolb, Juergen F.; Miron, Camelia

    2018-01-01

    Fluorinated polyimide films containing cobalt chloride based on hexafluoroisopropylidenediphthalic dianhydride and 4,4‧-diamino-3,3‧-dimethyl diphenylmethane were treated by nanosecond pulsed electrical discharges generated in distilled water. The polyimide films have been characterized by Fourier transform infrared (FTIR) spectra and contact angle measurements, optical transmission spectroscopy, and fluorescence spectroscopy. Significant changes in some intrinsic fluorescence features, such as the intensity and position of the emission peak, have been observed during exposure to water plasma. These effects have been considered to correlate with the development of specific chemical interactions between the liquid and the macromolecules, including the formation of hydrogen bridges. A slight increase in surface hydrophobicity was observed after plasma treatment. FTIR spectra showed a decrease in the intensity of the absorption band and an opening of the imide ring, depending on the treatment time.

  16. Carbon-based nanomaterial synthesis using nanosecond electrical discharges in immiscible layered liquids: n-heptane and water

    NASA Astrophysics Data System (ADS)

    Hamdan, Ahmad; Cha, Min Suk

    2018-06-01

    Plasmas in- or in-contact with liquids have been extensively investigated due to their high potential for a wide range of applications including, but not limited to, water treatment, material synthesis and functionalization, bio-medical applications, and liquid fuel reformation. Recently, we successfully developed a discharge using two immiscible liquids, having very different electrical permittivities, which could significantly intensify the electric field intensity. Here, we establish nanosecond discharges at the interface n-heptane-water (with respective relative dielectric permittivities of 2 and 80) to enable the synthesis of carbon-based nanomaterials. A characterization of the as-synthesized material and the annealed (500 °C) material, using various techniques (Fourier-transform, infra-red, scanning and transmission electron microscopes, etc), shows that the as-synthesized material is a mixture of two carbon-based phases: a crystalline phase (graphite like) embedded into a phase of hydrogenated amorphous carbon. The existence of two-phases may be explained by the non-homogeneity of the discharge that induces various chemical reactions in the plasma channel.

  17. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  18. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  19. Influence of nanosecond repetitively pulsed discharges on the stability of a swirled propane/air burner representative of an aeronautical combustor

    PubMed Central

    Barbosa, S.; Pilla, G.; Lacoste, D. A.; Scouflaire, P.; Ducruix, S.; Laux, C. O.; Veynante, D.

    2015-01-01

    This paper reports on an experimental study of the influence of a nanosecond repetitively pulsed spark discharge on the stability domain of a propane/air flame. This flame is produced in a lean premixed swirled combustor representative of an aeronautical combustion chamber. The lean extinction limits of the flame produced without and with plasma are determined and compared. It appears that only a low mean discharge power is necessary to increase the flame stability domain. Lastly, the effects of several parameters (pulse repetition frequency, global flowrate, electrode location) are studied. PMID:26170424

  20. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    NASA Astrophysics Data System (ADS)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  1. Investigation of capillary nanosecond discharges in air at moderate pressure: comparison of experiments and 2D numerical modelling

    NASA Astrophysics Data System (ADS)

    Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.

    2014-09-01

    Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.

  2. Experimental investigation of lift enhancement for flying wing aircraft using nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Yao, Junkai; Zhou, Danjie; He, Haibo; He, Chengjun; Shi, Zhiwei; Du, Hai

    2017-04-01

    The effects of the arrangement position and control parameters of nanosecond dielectric barrier discharge (NS-DBD) plasma actuators on lift enhancement for flying wing aircraft were investigated through wind tunnel experiments at a flow speed of 25 m s-1. The aerodynamic forces and moments were obtained by a six-component balance at angles of attack ranging from -4° to 28°. The lift, drag and pitching moment coefficients were compared for the cases with and without plasma control. The results revealed that the maximum control effect was achieved by placing the actuator at the leading edge of the inner and middle wing, for which the maximum lift coefficient increased by 37.8% and the stall angle of attack was postponed by 8° compared with the plasma-off case. The effects of modulation frequency and discharge voltage were also investigated. The results revealed that the lift enhancement effect of the NS-DBD plasma actuators was strongly influenced by the modulation frequency. Significant control effects were obtained at f = 70 Hz, corresponding to F + ≈ 1. The result for the pitching moment coefficient demonstrated that the plasma actuator can induce the reattachment of the separation flows when it is actuated. However, the results indicated that the discharge voltage had a negligible influence on the lift enhancement effect.

  3. Plasma instability in fast spherical discharge induced by a preionization

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-01

    As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  4. Development of a Lumped Element Circuit Model for Approximation of Dielectric Barrier Discharges

    DTIC Science & Technology

    2011-08-01

    dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond pulsed DBDs, which have been proposed...species for pulsed direct current (DC) dielectric barrier discharge (DBD) plasmas. Based on experimental observations, it is assumed that nanosecond...momentum-based approaches. Given the fundamental differences between the novel pulsed discharge approach and the more conventional momentum-based

  5. Recombination of electrons with water cluster ions in the afterglow of a high-voltage nanosecond discharge

    NASA Astrophysics Data System (ADS)

    Popov, M. A.; Kochetov, I. V.; Starikovskiy, A. Yu; Aleksandrov, N. L.

    2018-07-01

    The results of the experimental and numerical study of high-voltage nanosecond discharge afterglow in H2O:N2 and H2O:O2 mixtures are presented for room temperature and at pressures from 2 to 5 Torr. Time-resolved electron density during the plasma decay was measured with a microwave interferometer for initial electron densities in the range between 1  ×  1012 and 2  ×  1012 cm‑3. Calculations showed that the plasma decay was controlled by recombination of thermalized electrons with H3O+(H2O) n ions for n from 0 to 4. Agreement between calculated and measured electron density histories was obtained only when using the recombination coefficients measured in the pulsed plasma afterglow experiments. The electron densities calculated using the data from the storage ring experiments were consistently greater than the values measured in this work for all conditions. It was concluded that the measurements of recombination coefficients for H3O+(H2O) n ions in the pulsed plasma afterglow were more appropriate for simulating the properties of high-density plasmas with high fractions of H2O, O2 and N2, such as discharge plasmas in water vapor and in humid air instead of the measurements in the storage ring experiments.

  6. Electric field measurements in nanosecond pulse discharges in air over liquid water surface

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Baratte, Edmond; Zhang, Cheng; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field in nanosecond pulse discharges in ambient air is measured by picosecond four-wave mixing, with absolute calibration by a known electrostatic field. The measurements are done in two geometries, (a) the discharge between two parallel cylinder electrodes placed inside quartz tubes, and (b) the discharge between a razor edge electrode and distilled water surface. In the first case, breakdown field exceeds DC breakdown threshold by approximately a factor of four, 140 ± 10 kV cm-1. In the second case, electric field is measured for both positive and negative pulse polarities, with pulse durations of ˜10 ns and ˜100 ns, respectively. In the short duration, positive polarity pulse, breakdown occurs at 85 kV cm-1, after which the electric field decreases over several ns due to charge separation in the plasma, with no field reversal detected when the applied voltage is reduced. In a long duration, negative polarity pulse, breakdown occurs at a lower electric field, 30 kV cm-1, after which the field decays over several tens of ns and reverses direction when the applied voltage is reduced at the end of the pulse. For both pulse polarities, electric field after the pulse decays on a microsecond time scale, due to residual surface charge neutralization by transport of opposite polarity charges from the plasma. Measurements 1 mm away from the discharge center plane, ˜100 μm from the water surface, show that during the voltage rise, horizontal field component (Ex ) lags in time behind the vertical component (Ey ). After breakdown, Ey is reduced to near zero and reverses direction. Further away from the water surface (≈0.9 mm), Ex is much higher compared to Ey during the entire voltage pulse. The results provide insight into air plasma kinetics and charge transport processes near plasma-liquid interface, over a wide range of time scales.

  7. Spatial and temporal evolutions of ozone in a nanosecond pulse corona discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Duten, X.; Redolfi, M.; Aggadi, N.; Vega, A.; Hassouni, K.

    2011-10-01

    This paper deals with the experimental determination of the spatial and temporal evolutions of the ozone concentration in an atmospheric pressure pulsed plasma, working in the nanosecond regime. We observed that ozone was produced in the localized region of the streamer. The ozone transport requires a characteristic time well above the millisecond. The numerical modelling of the streamer expansion confirms that the hydrodynamic expansion of the filamentary discharge region during the streamer propagation does not lead to a significant transport of atomic oxygen and ozone. It appears therefore that only diffusional transport can take place, which requires a characteristic time of the order of 50 ms.

  8. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  9. Self-consistent evolution of plasma discharge and electromagnetic fields in a microwave pulse compressor

    NASA Astrophysics Data System (ADS)

    Shlapakovski, A. S.; Beilin, L.; Hadas, Y.; Schamiloglu, E.; Krasik, Ya. E.

    2015-07-01

    Nanosecond-scale evolution of plasma and RF electromagnetic fields during the release of energy from a microwave pulse compressor with a plasma interference switch was investigated numerically using the code MAGIC. The plasma was simulated in the scope of the gas conductivity model in MAGIC. The compressor embodied an S-band cavity and H-plane waveguide tee with a shorted side arm filled with pressurized gas. In a simplified approach, the gas discharge was initiated by setting an external ionization rate in a layer crossing the side arm waveguide in the location of the electric field antinode. It was found that with increasing ionization rate, the microwave energy absorbed by the plasma in the first few nanoseconds increases, but the absorption for the whole duration of energy release, on the contrary, decreases. In a hybrid approach modeling laser ignition of the discharge, seed electrons were set around the electric field antinode. In this case, the plasma extends along the field forming a filament and the plasma density increases up to the level at which the electric field within the plasma decreases due to the skin effect. Then, the avalanche rate decreases but the density still rises until the microwave energy release begins and the electric field becomes insufficient to support the avalanche process. The extraction of the microwave pulse limits its own power by terminating the rise of the plasma density and filament length. For efficient extraction, a sufficiently long filament of dense plasma must have sufficient time to be formed.

  10. Investigation of nanosecond pulsed dielectric barrier discharge using plate-to-plate electrode with asymmetric dielectric arrangement in airflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Haicheng; School of Physics Science and Technology, Anshan Normal University, Anshan 114005; Fan, Zhihui

    Atmospheric pressure dielectric barrier discharge plasma is produced in airflow by applying nanosecond high voltage pulses with peak voltage about 35 kV and rising time about 40 ns on a plate-to-plate electrode arrangement. The effects of airflow rate (0–50 m/s) on the discharge characteristics are investigated under different barrier conditions (the bare anode case and the bare cathode case). For both cases, the breakdown voltage and the time lag increase distinctly and the discharge intensity decreases sharply when the airflow rate increases from 0 to 30 m/s, and then keep almost constant until the airflow rate is further increased to 50 m/s. For the baremore » anode case (the cathode is covered by dielectric plate), the discharge mode transforms gradually from filamentary to diffuse discharge with the increasing airflow rate. While for the bare cathode case, some micro-discharge channels are still excited, though the discharge becomes more diffuse when the airflow rate is higher than 30 m/s. By acquiring the time-resolved images of the discharge, it is proved that it is the primary discharge which becomes diffuse when airflow is introduced and the following two discharges of the same voltage pulse occur principally at the positions where the primary discharge is more intense. And in both cases, the plasma temperatures are reduced, but the degree is different. All the phenomena can be explained mainly by the variation of the space charge distribution when the airflow is introduced into the discharge gap. And it is indicated that the bare anode case has an advantage in obtaining diffuse discharge.« less

  11. PIC simulations of post-pulse field reversal and secondary ionization in nanosecond argon discharges

    NASA Astrophysics Data System (ADS)

    Kim, H. Y.; Gołkowski, M.; Gołkowski, C.; Stoltz, P.; Cohen, M. B.; Walker, M.

    2018-05-01

    Post-pulse electric field reversal and secondary ionization are investigated with a full kinetic treatment in argon discharges between planar electrodes on nanosecond time scales. The secondary ionization, which occurs at the falling edge of the voltage pulse, is induced by charge separation in the bulk plasma region. This process is driven by a reverse in the electric field from the cathode sheath to the formerly driven anode. Under the influence of the reverse electric field, electrons in the bulk plasma and sheath regions are accelerated toward the cathode. The electron movement manifests itself as a strong electron current generating high electron energies with significant electron dissipated power. Accelerated electrons collide with Ar molecules and an increased ionization rate is achieved even though the driving voltage is no longer applied. With this secondary ionization, in a single pulse (SP), the maximum electron density achieved is 1.5 times higher and takes a shorter time to reach using 1 kV 2 ns pulse as compared to a 1 kV direct current voltage at 1 Torr. A bipolar dual pulse excitation can increase maximum density another 50%–70% above a SP excitation and in half the time of RF sinusoidal excitation of the same period. The first field reversal is most prominent but subsequent field reversals also occur and correspond to electron temperature increases. Targeted pulse designs can be used to condition plasma density as required for fast discharge applications.

  12. Measurements and kinetic modeling of atomic species in fuel-oxidizer mixtures excited by a repetitive nanosecond pulse discharge

    NASA Astrophysics Data System (ADS)

    Winters, C.; Eckert, Z.; Yin, Z.; Frederickson, K.; Adamovich, I. V.

    2018-01-01

    This work presents the results of number density measurements of metastable Ar atoms and ground state H atoms in diluted mixtures of H2 and O2 with Ar, as well as ground state O atoms in diluted H2-O2-Ar, CH4-O2-Ar, C3H8-O2-Ar, and C2H4-O2-Ar mixtures excited by a repetitive nanosecond pulse discharge. The measurements have been made in a nanosecond pulse, double dielectric barrier discharge plasma sustained in a flow reactor between two plane electrodes encapsulated within dielectric material, at an initial temperature of 500 K and pressures ranging from 300 Torr to 700 Torr. Metastable Ar atom number density distribution in the afterglow is measured by tunable diode laser absorption spectroscopy, and used to characterize plasma uniformity. Temperature rise in the reacting flow is measured by Rayleigh scattering. H atom and O atom number densities are measured by two-photon absorption laser induced fluorescence. The results are compared with kinetic model predictions, showing good agreement, with the exception of extremely lean mixtures. O atoms and H atoms in the plasma are produced mainly during quenching of electronically excited Ar atoms generated by electron impact. In H2-Ar and O2-Ar mixtures, the atoms decay by three-body recombination. In H2-O2-Ar, CH4-O2-Ar, and C3H8-O2-Ar mixtures, O atoms decay in a reaction with OH, generated during H atom reaction with HO2, with the latter produced by three-body H atom recombination with O2. The net process of O atom decay is O  +  H  →  OH, such that the decay rate is controlled by the amount of H atoms produced in the discharge. In extra lean mixtures of propane and ethylene with O2-Ar the model underpredicts the O atom decay rate. At these conditions, when fuel is completely oxidized by the end of the discharge burst, the net process of O atom decay, O  +  O  →  O2, becomes nearly independent of H atom number density. Lack of agreement with the data at these conditions is

  13. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  14. Effect of electronegative additives on physical properties and chemical activity of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Kuznetsov, D. L.; Filatov, I. E.; Uvarin, V. V.

    2018-01-01

    Effect of electronegative additives (oxygen O2, sulfur dioxide SO2, carbon disulfide CS2, and carbon tetrachloride CCl4) on physical properties and chemical activity of plasma formed by pulsed corona discharge and by non-self-sustained discharge supported by pulsed electron beam in atmospheric pressure gas mixtures was investigated. It is shown that a decrease in discharge current depends on a sort of the additive and on its concentration. The reason is the difference in rate constants of electron attachment processes for the above molecules. In experiments on volatile organic compounds (VOCs) conversion in air by streamer corona it is obtained that an addition of CCl4 both decreases the discharge current amplitude and increases the VOCs conversion degree. An installation for investigation of electron attachment processes and for study of toxic impurities conversion in plasma formed by non-self-sustained discharge initiated by pulsed nanosecond electron beam is created.

  15. Probe Measurements of Parameters of Streamers of Nanosecond Frequency Crown Discharge

    NASA Astrophysics Data System (ADS)

    Ponizovskiy, A. Z.; Gosteev, S. G.

    2017-12-01

    Investigations of the parameters of single streamers of nanosecond frequency corona discharge, creating a voluminous low-temperature plasma in extended coaxial electrode systems, are performed. Measurements of the parameters of streamers were made by an isolated probe situated on the outer grounded electrode. Streamers were generated under the action of voltage pulses with a front of 50-300 ns, duration of 100-600 ns, and amplitude up to 100 kV at the frequency of 50-1000 Hz. The pulse voltage, the total current of the corona, current per probe, and glow in the discharge gap were recorded in the experiments. It was established that, at these parameters of pulse voltage, streamers propagate at an average strength of the electric field of 4-10 kV/cm. Increasing the pulse amplitude leads to an increase in the number of streamers hitting the probe, an increase in the average charge of the head of a streamer, and, as a consequence, an increase in the total streamer current and the energy introduced into the gas. In the intervals up to 3 cm, streamer breakdown at an average field strength of 5-10 kV/cm is possible. In longer intervals, during the buildup of voltage after generation of the main pulse, RF breakdown is observed at E av ≈ 4 kV/cm.

  16. Reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Yuefeng; Wang, Chao; Li, Li; Wang, Lijuan; Pan, Jie

    2018-03-01

    In this work, a two-dimensional fluid model is built up to numerically investigate the reaction pathways of producing and losing particles in atmospheric pressure methane nanosecond pulsed needle-plane discharge plasma. The calculation results indicate that the electron collisions with CH4 are the key pathways to produce the neutral particles CH2 and CH as well as the charged particles e and CH3+. CH3, H2, H, C2H2, and C2H4 primarily result from the reactions between the neutral particles and CH4. The charge transfer reactions are the significant pathways to produce CH4+, C2H2+, and C2H4+. As to the neutral species CH and H and the charged species CH3+, the reactions between themselves and CH4 contribute to substantial losses of these particles. The ways responsible for losing CH3, H2, C2H2, and C2H4 are CH3 + H → CH4, H2 + CH → CH2 + H, CH4+ + C2H2 → C2H2+ + CH4, and CH4+ + C2H4 → C2H4+ + CH4, respectively. Both electrons and C2H4+ are consumed by the dissociative electron-ion recombination reactions. The essential reaction pathways of losing CH4+ and C2H2+ are the charge transfer reactions.

  17. Hydrogen and Ethene Plasma Assisted Ignition by NS discharge at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey

    2015-09-01

    The kinetics of ignition in lean H2:O2:Ar and C2H4:O2:Ar mixtures has been studied experimentally and numerically after a high-voltage nanosecond discharge. The ignition delay time behind a reflected shock wave was measured with and without the discharge. It was shown that the initiation of the discharge with a specific deposited energy of 10 - 30 mJ/cm3 leads to an order of magnitude decrease in the ignition delay time. Discharge processes and following chain chemical reactions with energy release were simulated. The generation of atoms, radicals and excited and charged particles was numerically simulated using the measured time - resolved discharge current and electric field in the discharge phase. The calculated densities of the active particles were used as input data to simulate plasma-assisted ignition. Good agreement was obtained between the calculated ignition delay times and the experimental data. It follows from the analysis of the calculated results that the main mechanism of the effect of gas discharge on the ignition of hydrocarbons is the electron impact dissociation of O2 molecules in the discharge phase. Detailed kinetic mechanism for plasma assisted ignition of hydrogen and ethene is elaborated and verified.

  18. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    PubMed

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  19. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  20. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  1. The formation of diffuse discharge by short-front nanosecond voltage pulses and the modification of dielectrics in this discharge

    NASA Astrophysics Data System (ADS)

    Orlovskii, V. M.; Panarin, V. A.; Shulepov, M. A.

    2014-07-01

    The dynamics of diffuse discharge formation under the action of nanosecond voltage pulses with short fronts (below 1 ns) in the absence of a source of additional preionization and the influence of a dielectric film on this process have been studied. It is established that the diffuse discharge is induced by the avalanche multiplication of charge initiated by high-energy electrons and then maintained due to secondary breakdowns propagating via ionized gas channels. If a dielectric film (polyethylene, Lavsan, etc.) is placed on the anode, then multiply repeated discharge will lead to surface and bulk modification of the film material. Discharge-treated polyethylene film exhibits a change in the optical absorption spectrum in the near-IR range.

  2. Nanosecond Surface Microdischarges in Multilayer Structures

    NASA Astrophysics Data System (ADS)

    Dubinov, A. E.; Lyubimtseva, V. A.

    2018-05-01

    Multilayer structures in which nanosecond surface microdischarges are generated have been developed, fabricated, and investigated. In these structures, layers are made in the form of thin transparent films, and a plasma discharge channel is formed in thin spacings between the layers. Passage of the discharge channel from one layer into the neighboring layer is implemented via pre-fabricated microholes. Images of microdischarges were obtained which confirmed that their plasma channels are formed according to the route assigned by the holes. The route may follow a fairly complex scheme and have self-intersection points and portions in which the electrons are bound to move in opposition to the electric field. In studying the shape of channels in multilayer strictures, the authors have found a new physical effect which lies in the azimuthal self-orientation of the discharge channel as it passes from one microhole to another.

  3. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  4. Multi-dimensional optical and laser-based diagnostics of low-temperature ionized plasma discharges

    DOE PAGES

    Barnat, Edward V.

    2011-09-15

    In this paper, a review of work centered on the utilization of multi-dimensional optical diagnostics to study phenomena arising in radiofrequency plasma discharges is given. The diagnostics range from passive techniques such as optical emission to more active techniques utilizing nanosecond lasers capable of both high temporal and spatial resolution. In this review, emphasis is placed on observations that would have been more difficult, if not impossible, to make without the use of such diagnostic techniques. Examples include the sheath structure around an electrode consisting of two different metals, double layers that arise in magnetized hydrogen discharges, or a largemore » region of depleted argon 1s 4 levels around a biased probe in an rf discharge.« less

  5. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Wei, Wenfu; Li, Xingwen

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less

  6. Fluid modeling of a high-voltage nanosecond pulsed xenon microdischarge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-07-15

    A computational modeling study of high-voltage nanosecond pulsed microdischarge in xenon gas at 10 atm is presented. The discharge is observed to develop as two streamers originating from the cathode and the anode, and propagating toward each other until they merge to form a single continuous discharge channel. The peak plasma density obtained in the simulations is ∼10{sup 24 }m{sup −3}, i.e., the ionization degree of plasma does not exceed 1%. The influence of the initial gas pre-ionization is established. It is seen that an increase in the seeded plasma density results in an increase in the streamer propagation velocity andmore » an increase in the plasma density obtained after the merging of two streamers.« less

  7. Comparison of femtosecond- and nanosecond-two-photon-absorption laser-induced fluorescence (TALIF) of atomic oxygen in atmospheric-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob B.; Sands, Brian; Scofield, James; Gord, James R.; Roy, Sukesh

    2017-05-01

    Absolute number densities of atomic species produced by nanosecond (ns)-duration, repetitively pulsed electric discharges are measured by two-photon-absorption laser-induced fluorescence (TALIF). Unique to this work is the development of femtosecond-laser-based TALIF (fs-TALIF) that offers a number of advantages over more conventional nanosecond (ns)-pulse-duration laser techniques, such as higher-fidelity quenching rate measurements over a wide pressure range, significantly reduced photolytic interference (including photo-dissociation and photo-ionization), ability to collect two-dimensional images of atomic-species number densities with high spatial resolution aided by higher signal level, and efficient and accurate measurements of atomic-species number densities due to the higher repetition rates of the laser. For full quantification of these advantages, atomic-oxygen TALIF signals are collected from an atmospheric-pressure plasma jet employing both ns- and fs-duration laser-excitation pulses and the results are compared and contrasted.

  8. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  9. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  10. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  11. Changes in the electro-physical properties of MCT epitaxial films affected by a plasma volume discharge induced by an avalanche beam in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Grigoryev, D. V.; Voitsekhovskii, A. V.; Lozovoy, K. A.; Tarasenko, V. F.; Shulepov, M. A.

    2015-11-01

    In this paper the influence of the plasma volume discharge of nanosecond duration formed in a non-uniform electric field at atmospheric pressure on samples of epitaxial films HgCdTe (MCT) films are discussed. The experimental data show that the action of pulses of nanosecond volume discharge in air at atmospheric pressure leads to changes in the electrophysical properties of MCT epitaxial films due to formation of a near-surface high- conductivity layer of the n-type conduction. The preliminary results show that it is possible to use such actions in the development of technologies for the controlled change of the properties of MCT.

  12. Plasma Assisted Ignition and Combustion at Low Initial Gas Temperatures: Development of Kinetic Mechanism

    DTIC Science & Technology

    2016-10-05

    describes physics of a nanosecond surface dielectric barrier discharge (SDBD) at ambient gas temperature and high pressures (1-6 bar) in air. Details about...the ignition by a nanosecond discharge. Chapter 7 presents the high pressure high temperature reactor built recently at Laboratory for Plasma Physics ...livelink.ebs.afrl.af.mil/livelink/llisapi.dll Laboratory for Physics of Plasma, Ecole Polytechnique Plasma Assisted Ignition and Combustion at Low Initial Gas

  13. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  14. The study of low temperature plasma of pulse discharge in relation to air cleaning units.

    NASA Astrophysics Data System (ADS)

    Ponizovskiy, A.; Gosteev, S.; Kuzhel, O.

    2017-11-01

    In paper it studied parameters of low-temperature plasma (LTP) used in systems for cleaning waste gas. LTP created by positive nanosecond corona discharges, generated by high voltage pulses with a rise time of 50 ns, duration up to 400 ns, an amplitude up to 90 kV and pulses repetition 50-1000 Hz. in coaxial electrode system with gap space 3-10 cm through which moving air with linear velocity v = 0.01 to 10 m/s.

  15. Peculiarities of Efficient Plasma Generation in Air and Water by Short Duration Laser Pulses

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Floyd, Bertram M.

    2017-01-01

    We have conducted experiments to demonstrate an efficient generation of plasma discharges by focused nanosecond pulsed laser beams in air and provided recommendations on the design of optical systems to implement such plasma generation. We have also demonstrated generation of the secondary plasma discharge using the unused energy from the primary one. Focused nanosecond pulsed laser beams have also been utilized to generate plasma in water where we observed self-focusing and filamentation. Furthermore, we applied the laser generated plasma to the decomposition of methylene blue dye diluted in water.

  16. Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode

    NASA Astrophysics Data System (ADS)

    Ming, SUN; Zhan, TAO; Zhipeng, ZHU; Dong, WANG; Wenjun, PAN

    2018-05-01

    The plasma characteristics of a gas-liquid phase discharge reactor were investigated by optical and electrical methods. The nozzle-cylinder electrode in the discharge reactor was supplied with a negative nanosecond pulsed generator. The optical emission spectrum diagnosis revealed that OH (A2∑+ → X2Π, 306–309 nm), N2 (C3Π→B3Πg, 337 nm), O (3p5p→3s5s0, 777.2 nm) and O (3p3p→3s3s0, 844.6 nm) were produced in the discharge plasma channels. The electron temperature (T e) was calculated from the emission relative intensity ratio between the atomic O 777.2 nm and 844.6 nm, and it increased with the applied voltage and the pulsed frequency and fell within the range of 0.5–0.8 eV. The gas temperature (T g) that was measured by Lifbase was in a range from 400 K to 600 K.

  17. Challenges in Understanding and Development of Predictive Models of Plasma Assisted Combustion

    DTIC Science & Technology

    2014-01-01

    and electron temperature in transient plasmas sustained by nanosecond pulse duration discharges, and their comparison with modeling predictions, are...in nanosecond pulse discharge in nitrogen at 0.25 bar, using the kinetic model developed in Ref. [11]. Rapid electric field reduction during...discharge pulses with kinetic modeling calculations, using conventional hydrocarbon-air combustion mechanisms. Although modeling predictions for H2-air

  18. Modeling and Simulation of Plasma-Assisted Ignition and Combustion

    DTIC Science & Technology

    2013-10-01

    local plasma chemistry effects over heat transport in achieving “volumetric” ignition using pulse nanosecond discharges. •detailed parametric studies...electrical breakdown • cathode sheath formation • electron impact dynamics PLASMA DISCHARGE DYNAMICS Plasma Chemistry Ionization, Excitation...quenching of excited species nonequilibrium plasma chemistry low temperature radical chemistry high temperature combustion chemistry School of

  19. Low charge state heavy ion production with sub-nanosecond laser.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  20. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  1. Low charge state heavy ion production with sub-nanosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M.; Kumaki, M.

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the differencemore » of generated plasma using the Zirconium target.« less

  2. Measurement of OH, O, and NO densities and their correlations with mouse melanoma cell death rate treated by a nanosecond pulsed streamer discharge

    NASA Astrophysics Data System (ADS)

    Yagi, Ippei; Shirakawa, Yuki; Hirakata, Kenta; Akiyama, Taketoshi; Yonemori, Seiya; Mizuno, Kazue; Ono, Ryo; Oda, Tetsuji

    2015-10-01

    Mouse melanoma cells in a culture medium are treated using a nanosecond pulsed streamer discharge plasma and the correlations between the rate of cell death and the densities of reactive species (OH, O, and NO) in the plasma are measured. The plasma is irradiated onto the culture medium surface with a vertical gas flow of an O2/N2 mixture from a glass tube at various gas flow rates and O2 concentrations. The densities of the reactive species are measured very close to the culture medium surface, where the reactive species interact with the culture medium, using laser-induced fluorescence. In the case of the N2 discharge (O2 = 0%), an increase in gas flow rate decreases OH density because it lowers the water vapor concentration by diluting the vapor, which is required for OH production. The increase in gas flow rate also leads to a decreased cell death rate. In the case of the O2/N2 discharge, on the other hand, an increase in O2 concentration at a fixed flow rate does not affect the rate of cell death, although it considerably changes the O and NO densities. These findings indicate that some reactive species derived from water vapor such as OH are responsible for the melanoma cell death, whereas those from O2, such as O and NO, are less likely responsible. They also indicate the importance of water evaporation from the culture medium surface in cell treatment.

  3. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry andmore » humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.« less

  4. Fast plasma discharge capillary design as a high power throughput soft x-ray emission source.

    PubMed

    Wyndham, E S; Favre, M; Valdivia, M P; Valenzuela, J C; Chuaqui, H; Bhuyan, H

    2010-09-01

    We present the experimental details and results from a low energy but high repetition rate compact plasma capillary source for extreme ultraviolet and soft x-ray research and applications. Two lengths of capillary are mounted in two versions of a closely related design. The discharge operates in 1.6 and 3.2 mm inner diameter alumina capillaries of lengths 21 and 36 mm. The use of water both as dielectric and as coolant simplifies the compact low inductance design with nanosecond discharge periods. The stored electrical energy of the discharge is approximately 0.5 J and is provided by directly charging the capacitor plates from an inexpensive insulated-gate bipolar transistor in 1 μs or less. We present characteristic argon spectra from plasma between 30 and 300 Å as well as temporally resolved x-ray energy fluence in discrete bands on axis. The spectra also allow the level of ablated wall material to be gauged and associated with useful capillary lifetime according to the chosen configuration and energy storage. The connection between the electron beams associated with the transient hollow cathode mechanism, soft x-ray output, capillary geometry, and capillary lifetime is reported. The role of these e-beams and the plasma as measured on-axis is discussed. The relation of the electron temperature and the ionization stages observed is discussed in the context of some model results of ionization in a non-Maxwellian plasma.

  5. Evolution of streamer groups in nonthermal plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okubo, M., E-mail: mokubo@me.osakafu-u.ac.jp

    2015-12-15

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In thismore » study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.« less

  6. Evolution of streamer groups in nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Okubo, M.

    2015-12-01

    Nonthermal plasmas (NTPs) induced by atmospheric nanosecond pulsed corona discharge have been studied for controlling pollution from combustors, such as boilers, incinerators, and diesel engines. In high-speed short-width high-voltage pulsed corona discharge-induced plasmas, primary streamer evolution is followed by secondary streamer evolution. Though this phenomenon is known experimentally, the details of the structures of the streamers and their evolution mechanisms have not been fully clarified. In this letter, we perform quasi two-dimensional numerical analysis of nonequilibrium NTP induced by a nanosecond positive pulsed corona discharge. The continuum fluid equations for two-temperature nonequilibrium NTP are used as governing equations. In this study, 197 gas phase reactions for 25 chemical species and 21 surface reactions on the inner glass wall surface are considered in an air plasma under atmospheric pressure. The simulated behavior of the streamer groups agrees with experimental observations. Soon after the voltage increases on the reactor, primary streamers are formed, which may transit the complete gap, disappearing near the peak voltage. Next, second streamers appear, disappearing at the end of the applied voltage pulse. The streamer wavelength and the distance between the streamers in the axial direction are determined. Moreover, ozone generation is shown to be more significant in the secondary streamer. This simulation will allow better predictions for nanosecond positive pulsed plasma systems.

  7. Dynamics of apokamp-type atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Panarin, Victor A.; Skakun, Victor S.; Baksht, Evgeny Kh.; Tarasenko, Victor F.

    2017-02-01

    The paper describes a new discharge source of atmospheric pressure plasma jets (APPJs) in air with no gas supply through the discharge region. In this discharge mode, plasma jets develop from the bending point of a bright current channel between two electrodes and are therefore termed an apokamp (from Greek `off' and `bend'). The apokamp can represent single plasma jets of length up 6 cm or several jets, and the temperature of such jets can range from more than 1000 °C at their base to 100-250 °C at their tip. Apokamps are formed at maximum applied voltage of positive polarity, provided that the second electrode is capacitively decoupled with ground. According to high-speed photography with time resolution from several nanoseconds to several tens of nanoseconds, the apokamp consists of a set of plasma bullets moving with a velocity of 100-220 km/s, which excludes the convective mechanism of plasma decay. Estimates on a 100-ns scale show that the near-electrode zones and the zones from which apokamps develop are close in temperature.

  8. Interaction of nanosecond ultraviolet laser pulses with reactive dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wetering, F. M. J. H. van de; Oosterbeek, W.; Beckers, J.

    2016-05-23

    Even though UV laser pulses that irradiate a gas discharge are small compared to the plasma volume (≲3%) and plasma-on time (≲6 × 10{sup −6}%), they are found to dramatically change the discharge characteristics on a global scale. The reactive argon–acetylene plasma allows the growth of nanoparticles with diameters up to 1 μm, which are formed inside the discharge volume due to spontaneous polymerization reactions. It is found that the laser pulses predominantly accelerate and enhance the coagulation phase and are able to suppress the formation of a dust void.

  9. International Workshop on Magneto-Plasma Aerodynamics (8th)

    DTIC Science & Technology

    2010-05-14

    outer conductor of coaxial waveguide. (b) (1 − 3) − different positions of a plasma channel in nonsteady-state plasmatron. The microwave power is...out at MIPT. Nanosecond DBD discharge in a special coaxial geometry of electrodes was used to produce a thin layer of quasi-uniform plasma in the...discharge cell, diagnostics means, high-voltage sources and commutation units. Cell commutation was effected by a plasma gun actuated by a start unit

  10. Ionization processes in combined high-voltage nanosecond - laser discharges in inert gas

    NASA Astrophysics Data System (ADS)

    Starikovskiy, Andrey; Shneider, Mikhail; PU Team

    2016-09-01

    Remote control of plasmas induced by laser radiation in the atmosphere is one of the challenging issues of free space communication, long-distance energy transmission, remote sensing of the atmosphere, and standoff detection of trace gases and bio-threat species. Sequences of laser pulses, as demonstrated by an extensive earlier work, offer an advantageous tool providing access to the control of air-plasma dynamics and optical interactions. The avalanche ionization induced in a pre-ionized region by infrared laser pulses where investigated. Pre-ionization was created by an ionization wave, initiated by high-voltage nanosecond pulse. Then, behind the front of ionization wave extra avalanche ionization was initiated by the focused infrared laser pulse. The experiment was carried out in argon. It is shown that the gas pre-ionization inhibits the laser spark generation under low pressure conditions.

  11. Simulation of proton-boron nuclear burning in the potential well of virtual cathode at nanosecond vacuum discharge

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Tarakanov, V. P.; Gus'kov, S. Yu

    2016-11-01

    The neutron-free reaction of proton-boron nuclear burning accompanied with the yield of three alpha particles (p + 11B → α + 8Be* → 3α) is of great fundamental and applied interest. However, the implementation of the synthesis of p +11B requires such extreme plasma parameters that are difficult to achieve at well-known schemes of controlled thermonuclear fusion. Earlier, the yield of DD neutrons in a compact nanosecond vacuum discharge (NVD) of low energy with deuterated Pd anode have been observed. Further detailed particle-in-cell simulation by the electrodynamic code have recognized that this experiment represents the realization of rather old scheme of inertial electrostatic confinement (IEC). This IEC scheme is one of the few where the energies of ions needed for p + 11B reaction are quite possible. The purpose of this work on simulation of proton-boron reaction is studying the features of possible p + 11B burning at the IEC scheme based on NVD, thus, to look forward and planning the real experiment.

  12. Production of simplex RNS and ROS by nanosecond pulse N2/O2 plasma jets with homogeneous shielding gas for inducing myeloma cell apoptosis

    NASA Astrophysics Data System (ADS)

    Liu, Zhijie; Xu, Dehui; Liu, Dingxin; Cui, Qingjie; Cai, Haifeng; Li, Qiaosong; Chen, Hailan; Kong, Michael G.

    2017-05-01

    In this paper, atmospheric pressure N2/O2 plasma jets with homogeneous shielding gas excited by nanosecond pulse are obtained to generate simplex reactive nitrogen species (RNS) and reactive oxygen species (ROS), respectively, for the purpose of studying the simplex RNS and ROS to induce the myeloma cell apoptosis with the same discharge power. The results reveal that the cell death rate by the N2 plasma jet with N2 shielding gas is about two times that of the O2 plasma jet with O2 shielding gas for the equivalent treatment time. By diagnosing the reactive species of ONOO-, H2O2, OH and \\text{O}2- in medium, our findings suggest the cell death rate after plasma jets treatment has a positive correlation with the concentration of ONOO-. Therefore, the ONOO- in medium is thought to play an important role in the process of inducing myeloma cell apoptosis.

  13. Low-density plasma formation in aqueous biological media using sub-nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Genc, Suzanne L.; Ma, Huan; Venugopalan, Vasan

    2014-08-01

    We demonstrate the formation of low- and high-density plasmas in aqueous media using sub-nanosecond laser pulses delivered at low numerical aperture (NA = 0.25). We observe two distinct regimes of plasma formation in deionized water, phosphate buffered saline, Minimum Essential Medium (MEM), and MEM supplemented with phenol red. Optical breakdown is first initiated in a low-energy regime and characterized by bubble formation without plasma luminescence with threshold pulse energies in the range of Ep ≈ 4-5 μJ, depending on media formulation. The onset of this regime occurs over a very narrow interval of pulse energies and produces small bubbles (Rmax = 2-20 μm) due to a tiny conversion (η < 0.01%) of laser energy to bubble energy EB. The lack of visible plasma luminescence, sharp energy onset, and low bubble energy conversion are all hallmarks of low-density plasma (LDP) formation. At higher pulse energies (Ep = 11-20 μJ), the process transitions to a second regime characterized by plasma luminescence and large bubble formation. Bubbles formed in this regime are 1-2 orders of magnitude larger in size ( R max ≳ 100 μ m ) due to a roughly two-order-of-magnitude increase in bubble energy conversion (η ≳ 3%). These characteristics are consistent with high-density plasma formation produced by avalanche ionization and thermal runaway. Additionally, we show that supplementation of MEM with fetal bovine serum (FBS) limits optical breakdown to this high-energy regime. The ability to produce LDPs using sub-nanosecond pulses focused at low NA in a variety of cell culture media formulations without FBS can provide for cellular manipulation at high throughput with precision approaching that of femtosecond pulses delivered at high NA.

  14. Laser induced fluorescence in nanosecond repetitively pulsed discharges for CO2 conversion

    NASA Astrophysics Data System (ADS)

    Martini, L. M.; Gatti, N.; Dilecce, G.; Scotoni, M.; Tosi, P.

    2018-01-01

    A CO2 nanosecond repetitively pulsed discharge (NRP) is a harsh environment for laser induced fluorescence (LIF) diagnostics. The difficulties arise from it being a strongly collisional system in which the gas composition, pressure and temperature, have quick and strong variations. The relevant diagnostic problems are described and illustrated through the application of LIF to the measurement of the OH radical in three different discharge configurations, with gas mixtures containing CO2 + H2O. These range from a dielectric barrier NRP with He buffer gas, a less hostile case in which absolute OH density measurement is possible, to an NRP in CO2+H2O, where the full set of drawbacks is at work. In the last case, the OH density measurement is not possible with laser pulses and detector time resolution in the ns time scale. Nevertheless, it is shown that with a proper knowledge of the collisional rate constants involved in the LIF process, a collisional energy transfer-LIF methodology is still applicable to deduce the gas composition from the analysis of LIF spectra.

  15. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  16. Dose-current discharge correlation analysis in a Mather type Plasma Focus device for medical applications

    NASA Astrophysics Data System (ADS)

    Sumini, M.; Mostacci, D.; Tartari, A.; Mazza, A.; Cucchi, G.; Isolan, L.; Buontempo, F.; Zironi, I.; Castellani, G.

    2017-11-01

    In a Plasma Focus device the plasma collapses into the pinch where it reaches thermonuclear conditions for a few tens of nanoseconds, becoming a multi-radiation source. The nature of the radiation generated depends on the gas filling the chamber and the device working parameters. The self-collimated electron beam generated in the backward direction with respect to the plasma motion is one of the main radiation sources of interest also for medical applications. The electron beam may be guided against a high Z material target to produce an X-ray beam. This technique offers an ultra-high dose rate source of X-rays, able to deliver during the pinch a massive dose (up to 1 Gy per discharge for the PFMA-3 test device), as measured with EBT3 GafchromicⒸfilm tissue equivalent dosimeters. Given the stochastic behavior of the discharge process, a reliable on-line estimate of the dose-delivered is a very challenging task, in some way preventing a systematic application as a potentially interesting therapy device. This work presents an approach to linking the dose registered by the EBT3 GafchromicⒸfilms with the information contained in the signal recorded during the current discharge process. Processing the signal with the Wigner-Ville distribution, a spectrogram was obtained, displaying the information on intensity at various frequency scales, identifying the band of frequencies representative of the pinch events and define some patterns correlated with the dose.

  17. On nuclear DD synthesis at the initial stage of nanosecond vacuum discharge with deuterium-loaded Pd anode

    NASA Astrophysics Data System (ADS)

    Kurilenkov, Yu K.; Gus'kov, S. Yu; Karpukhin, V. T.; Oginov, A. V.; Samoylov, I. S.

    2018-01-01

    Earlier, there was demonstrated generation of DD neutrons in an interelectrode medium of a low-energy (˜ 1 J) nanosecond vacuum discharge with a hollow cathode and a deuterium-loaded Pd anode. There was revealed essential role of formation of a virtual cathode and a potential well corresponding thereto in the processes of collisional DD synthesis in the interelectrode space. In this work, we have obtained as a result of an experiment and discussed the neutron yield at the very initial stage of the discharge, when the beam of auto-electrons just starts to irradiate the non-ideal surface of the deuterium-loaded Pd anode.

  18. Helicon plasma thruster discharge model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lafleur, T., E-mail: trevor.lafleur@lpp.polytechnique.fr

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density andmore » hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.« less

  19. Control of vortex on a non-slender delta wing by a nanosecond pulse surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Zhao, Guang-yin; Li, Ying-hong; Liang, Hua; Han, Meng-hu; Hua, Wei-zhuo

    2015-01-01

    Wind tunnel experiments are conducted for improving the aerodynamic performance of delta wing using a leading-edge pulsed nanosecond dielectric barrier discharge (NS-DBD). The whole effects of pulsed NS-DBD on the aerodynamic performance of the delta wing are studied by balanced force measurements. Pressure measurements and particle image velocimetry (PIV) measurements are conducted to investigate the formation of leading-edge vortices affected by the pulsed NS-DBD, compared to completely stalled flow without actuation. Various pulsed actuation frequencies of the plasma actuator are examined with the freestream velocity up to 50 m/s. Stall has been delayed substantially and significant shifts in the aerodynamic forces can be achieved at the post-stall regions when the actuator works at the optimum reduced frequency of F + = 2. The upper surface pressure measurements show that the largest change of static pressure occurs at the forward part of the wing at the stall region. The time-averaged flow pattern obtained from the PIV measurement shows that flow reattachment is promoted with excitation, and a vortex flow pattern develops. The time-averaged locations of the secondary separation line and the center of the vortical region both move outboard with excitation.

  20. Two discharge modes of a repetitive nanosecond pulsed helium glow discharge under sub-atmospheric pressure in the repetition frequency range of 20 to 600 kHz

    NASA Astrophysics Data System (ADS)

    Kikuchi, Yusuke; Maegawa, Takuya; Otsubo, Akira; Nishimura, Yoshimi; Nagata, Masayoshi; Yatsuzuka, Mitsuyasu

    2018-05-01

    Two discharge modes, α and γ, of a repetitive nanosecond pulsed helium glow discharge at a gas pressure of 10 kPa in the repetition frequency range from 20 to 600 kHz are reported for the first time. The pulsed glow discharge is produced in a pair of parallel plate metal electrodes without insertion of dielectrics. The α mode discharge is volumetrically produced in the electrode gap at a low-repetition frequency, whereas the γ mode discharge is localized at the cathode surface at a high-repetition frequency. At high-repetition frequency, the time interval between voltage pulses is shorter than the lifetime of the afterglow produced by the preceding discharge. Then, the γ mode discharge is maintained by a large number of secondary electrons emitted from the cathode exposed to high-density ions and metastable helium atoms in the afterglow. In the α mode discharge with a low-repetition frequency operation, primary electrons due to gas ionization dominate the ionization process. Thus, a large discharge voltage is needed for the excitation of the α mode discharge. It is established that the bifurcation of α-γ discharge mode, accompanied by a decrease in the discharge voltage, occurs at the high-repetition frequency of ∼120 kHz.

  1. Characteristics of nanosecond pulse needle-to-plane discharges at high pressure: a particle-in-cell Monte Carlo collision simulation

    NASA Astrophysics Data System (ADS)

    Sang, Chaofeng; Sun, Jizhong; Ren, Chunsheng; Wang, Dezhen

    2009-02-01

    A model of one dimensional in position and three dimensional in velocity space self-consistent particle in cell with Monte Carlo collision technique was employed to simulate the argon discharge between the needle and plane electrodes at high pressure, in which a nanosecond rectangular pulse was applied to the needle electrode. The work focused on the investigation of the spatiotemporal evolution of the discharge versus the needle tip size and working gas pressure. The simulation results showed that the discharge occurred mainly in the region near the needle tip at atmospheric pressure, and that the small radius of the needle tip led to easy discharge. Reducing the gas pressure gave rise to a transition from a corona discharge to a glowlike discharge along the needle-to-plane direction. The microscopic mechanism for the transition can arguably be attributed to the peak of high-energy electrons occurring before the breakdown; the magnitude of the number of these electrons determined whether the breakdown can take place.

  2. Plasma discharge elemental detector for a mass spectrometer

    NASA Astrophysics Data System (ADS)

    Heppner, R. A.

    1983-06-01

    A material to be analyzed is injected into a mirowave-induced plasma discharge unit, in which the material is carried with a flow of buffer gas through an intense microwave energy field which produces a plasma discharge in the buffer gas. As the material exits from the plasma discharge, the material is sampled and conveyed along a capillary transfer tube to a mass spectrometer where it is analyzed. The plasma discharge causes dissociation of complex organic molecules into simpler molecules which return to the neutral ground state before they are analyzed in the mass spectrometer. The buffer gas is supplied to one end portion of the discharge tube and is withdrawn from the other end portion by a vacuum pump which maintains a subatmospheric pressure in the discharge tube. The sample material is injected by a capillary injection tube into the buffer gas flow as it enters the plasma discharge zone. The dissociated materials are sampled by an axial sampling tube having an entrance where the buffer gas exits from the plasma discharge zone. The sample material may be supplied by a gas chromatography having a capillary effluent line connected to the capillary injection tube, so that the effluent material is injected into the microwave induced plasma discharge. The microwave field is produced by a cavity resonator through which the discharge tube passes.

  3. The discharge characteristics in nitrogen helicon plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Gao; Wang, Huihui; Si, Xinlu; Ouyang, Jiting; Chen, Qiang; Tan, Chang

    2017-12-01

    Discharge characteristics of helicon plasma in nitrogen and argon-nitrogen mixtures were investigated experimentally by using a Langmuir probe, a B-dot probe, and an optical emission spectrum. Helicon wave discharge is confirmed by the changes of electron density and electromagnetic signal amplitude with the increasing RF power, which shows three discharge stages in nitrogen, corresponding to E-mode, H-mode, and W-mode discharges in helicon plasma, respectively. Discharge images in the radial cross section at different discharge modes through an intensified charge coupled device (ICCD) show a rapid increase in luminous intensity along with the RF power. When the nitrogen discharge is in the W-mode, the images show that the strongest luminance locates near the plasma boundary and no blue core appears in the axial center of tube, which is always observed in argon W-mode discharge. The "big blue" or blue core is a special character in helicon plasma, but it has not been observed in nitrogen helicon plasma. In nitrogen-argon mixtures, a weak blue core is observed in ICCD images since the nitrogen content is increased. The electric field turns to the periphery in the distribution of the radial field and the electron temperature decreases with the increasing nitrogen content, especially when the blue core disappears. The different behaviors of the electron impact and the energy consumption in nitrogen helicon plasma are suggested to be responsible for the decrease in electron energy and the change in the electric field distribution.

  4. Plasma spark discharge reactor and durable electrode

    DOEpatents

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  5. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    NASA Astrophysics Data System (ADS)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  6. High-speed imaging system for observation of discharge phenomena

    NASA Astrophysics Data System (ADS)

    Tanabe, R.; Kusano, H.; Ito, Y.

    2008-11-01

    A thin metal electrode tip instantly changes its shape into a sphere or a needlelike shape in a single electrical discharge of high current. These changes occur within several hundred microseconds. To observe these high-speed phenomena in a single discharge, an imaging system using a high-speed video camera and a high repetition rate pulse laser was constructed. A nanosecond laser, the wavelength of which was 532 nm, was used as the illuminating source of a newly developed high-speed video camera, HPV-1. The time resolution of our system was determined by the laser pulse width and was about 80 nanoseconds. The system can take one hundred pictures at 16- or 64-microsecond intervals in a single discharge event. A band-pass filter at 532 nm was placed in front of the camera to block the emission of the discharge arc at other wavelengths. Therefore, clear images of the electrode were recorded even during the discharge. If the laser was not used, only images of plasma during discharge and thermal radiation from the electrode after discharge were observed. These results demonstrate that the combination of a high repetition rate and a short pulse laser with a high speed video camera provides a unique and powerful method for high speed imaging.

  7. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  8. Effects of Non-Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH

    DTIC Science & Technology

    2018-01-16

    1    Effects of Non -Equilibrium Plasmas on Low-Pressure, Premixed Flames. Part 1: CH* Chemiluminescence, Temperature, and OH Ting Li, Igor V...investigate the effects of nanosecond, repetitively-pulsed, non -equilibrium plasma discharges on laminar, low-pressure, premixed burner-stabilized hydrogen/O2...sources, both of which generate uniform, low-temperature, volumetric, non -equilibrium plasma discharges, are used to study changes in

  9. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  10. Third harmonic from air breakdown plasma induced by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Stafe, M.; Negutu, C.; Puscas, N. N.

    2018-06-01

    Harmonic generation is a nonlinear optical effect consisting in frequency up-conversion of intense laser radiation when phase-matching conditions are fulfilled. Here, we study the mechanisms involved in the third harmonic (TH) generation process, the conversion efficiency, and the properties of TH radiation generated in air by focusing infrared linearly polarized nanosecond laser pulses at intensities of the order of TW/cm2. By analyzing the emission from the air breakdown plasma, we demonstrate that filamentary breakdown plasma containing molecular nitrogen ions acts as an optical nonlinear medium enabling generation of TH radiation in the axial direction. The data reveal important properties of the TH radiation: maximum conversion efficiency of 0.04%, sinc2 dependence of the TH intensity on the square root of the pump intensity, and three times smaller divergence and pulse duration of TH as compared to the pump radiation.

  11. Plasma in a Pulsed Discharge Environment

    NASA Technical Reports Server (NTRS)

    Remy, J.; Bienier, L.; Salama, F.

    2005-01-01

    The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.

  12. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  13. Radio frequency discharge with control of plasma potential distribution.

    PubMed

    Dudnikov, Vadim; Dudnikov, A

    2012-02-01

    A RF discharge plasma generator with additional electrodes for independent control of plasma potential distribution is proposed. With positive biasing of this ring electrode relative end flanges and longitudinal magnetic field a confinement of fast electrons in the discharge will be improved for reliable triggering of pulsed RF discharge at low gas density and rate of ion generation will be enhanced. In the proposed discharge combination, the electron energy is enhanced by RF field and the fast electron confinement is improved by enhanced positive plasma potential which improves the efficiency of plasma generation significantly. This combination creates a synergetic effect with a significantly improving the plasma generation performance at low gas density. The discharge parameters can be optimized for enhance plasma generation with acceptable electrode sputtering.

  14. AC Glow Discharge Plasma in N2O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yousif, F. B.; Martinez, H.; Robledo-Martinez, A.

    2006-12-04

    This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emissionmore » range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O{sub 2}{sup +} are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen.« less

  15. Kinetic Studies of Nonequilibrium Plasma-Assisted Combustion

    DTIC Science & Technology

    2010-02-25

    resolved air plasma temperatures inferred from both N2 second positive emission spectroscopy and CARS, along with plasma chemistry model predictions...nanosecond discharge in air and in ethylene-air (O=0.1 and 0=1.0) at P=40 torr with the plasma chemistry model prediction. Figure 5 compares the CARS...1 1 .(1 j. a-IH ) 1 ’ 1 ’ 1 ’ 5 10 15 Time, msec 1 20 1 25 Figure 6: Plasma chemistry model predictions for O

  16. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  17. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  18. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  19. Modeling electronegative plasma discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lichtenberg, A.J.; Lieberman, M.A.

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}=more » 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.« less

  20. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    PubMed

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  1. Transition Control with Dielectric Barrier Discharge Plasmas

    DTIC Science & Technology

    2010-10-01

    AFRL-AFOSR-UK-TR-2011-0007 Transition Control with Dielectric Barrier Discharge Plasmas Cameron Tropea Technische...Discharge Plasmas 5a. CONTRACT NUMBER FA8655-08-1-3032 5b. GRANT NUMBER Grant 08-3032 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...is to control natural boundary-layer transition through the use of plasma actuators. Transition delay or even suppression has its merits not only in

  2. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  3. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    2016-09-01

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  4. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  5. TOPICAL REVIEW: Plasma assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Starikovskaia, S. M.

    2006-08-01

    In recent decades particular interest in applications of nonequilibrium plasma for the problems of plasma-assisted ignition and plasma-assisted combustion has been observed. A great amount of experimental data has been accumulated during this period which provided the grounds for using low temperature plasma of nonequilibrium gas discharges for a number of applications at conditions of high speed flows and also at conditions similar to automotive engines. The paper is aimed at reviewing the data obtained and discusses their treatment. Basic possibilities of low temperature plasma to ignite gas mixtures are evaluated and historical references highlighting pioneering works in the area are presented. The first part of the review discusses plasmas applied to plasma-assisted ignition and combustion. The paper pays special attention to experimental and theoretical analysis of some plasma parameters, such as reduced electric field, electron density and energy branching for different gas discharges. Streamers, pulsed nanosecond discharges, dielectric barrier discharges, radio frequency discharges and atmospheric pressure glow discharges are considered. The second part depicts applications of discharges to reduce the ignition delay time of combustible mixtures, to ignite transonic and supersonic flows, to intensify ignition and to sustain combustion of lean mixtures. The results obtained by different authors are cited, and ways of numerical modelling are discussed. Finally, the paper draws some conclusions on the main achievements and prospects of future investigations in the field.

  6. Evolution of metastable state molecules N2(A3 Σu+) in a nanosecond pulsed discharge: A particle-in-cell/Monte Carlo collisions simulation

    NASA Astrophysics Data System (ADS)

    Gao, Liang; Sun, Jizhong; Feng, Chunlei; Bai, Jing; Ding, Hongbin

    2012-01-01

    A particle-in-cell plus Monte Carlo collisions method has been employed to investigate the nitrogen discharge driven by a nanosecond pulse power source. To assess whether the production of the metastable state N2(A3 Σu+) can be efficiently enhanced in a nanosecond pulsed discharge, the evolutions of metastable state N2(A3 Σu+) density and electron energy distribution function have been examined in detail. The simulation results indicate that the ultra short pulse can modulate the electron energy effectively: during the early pulse-on time, high energy electrons give rise to quick electron avalanche and rapid growth of the metastable state N2(A3 Σu+) density. It is estimated that for a single pulse with amplitude of -9 kV and pulse width 30 ns, the metastable state N2(A3 Σu+) density can achieve a value in the order of 109 cm-3. The N2(A3 Σu+) density at such a value could be easily detected by laser-based experimental methods.

  7. Characterization of microwave discharge plasmas for surface processing

    NASA Astrophysics Data System (ADS)

    Nikolic, Milka

    We have developed several diagnostic techniques to characterize two types of microwave (MW) discharge plasmas: a supersonic flowing argon MW discharge maintained in a cylindrical quartz cavity at frequency ƒ = 2.45 GHz and a pulse repetitive MW discharge in air at ƒ = 9.5 GHz. Low temperature MW discharges have been proven to posses attractive properties for plasma cleaning and etching of niobium surfaces of superconductive radio frequency (SRF) cavities. Plasma based surface modification technologies offer a promising alternative for etching and cleaning of SRF cavities. These technologies are low cost, environmentally friendly and easily controllable, and present a possible alternative to currently used acid based wet technologies, such as buffered chemical polishing (BCP), or electrochemical polishing (EP). In fact, weakly ionized. non-equilibrium, and low temperature gas discharges represent a powerful tool for surface processing due to the strong chemical reactivity of plasma radicals. Therefore, characterizing these discharges by applying non-perturbing, in situ measurement techniques is of vital importance. Optical emission spectroscopy has been employed to analyze the molecular structure and evaluate rotational and vibrational temperatures in these discharges. The internal plasma structure was studied by applying a tomographic numerical method based on the two-dimensional Radon formula. An automated optical measurement system has been developed for reconstruction of local plasma parameters. It was found that excited argon states are concentrated near the tube walls, thus confirming the assumption that the post discharge plasma is dominantly sustained by a travelling surface wave. Employing a laser induced fluorescence technique in combination with the time synchronization device allowed us to obtain time-resolved population densities of some excited atomic levels in argon. We have developed a technique for absolute measurements of electron density based

  8. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Yinchang, E-mail: ycdu@mail.ustc.edu.cn; Max-Planck Institute for Extraterrestrial Physics, D-85748 Garching; Li, Yangfang

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last,more » the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.« less

  9. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  10. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vinogradov, V. P.; Krauz, V. I., E-mail: krauz-vi@nrcki.ru; Mokeev, A. N.

    2016-12-15

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  11. Investigation of the helicon discharge plasma parameters in a hybrid RF plasma system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aleksandrov, A. F.; Petrov, A. K., E-mail: alpetrov57@gmail.com; Vavilin, K. V.

    2016-03-15

    Results of an experimental study of the helicon discharge plasma parameters in a prototype of a hybrid RF plasma system equipped with a solenoidal antenna are described. It is shown that an increase in the external magnetic field leads to the formation of a plasma column and a shift of the maximum ion current along the discharge axis toward the bottom flange of the system. The shape of the plasma column can be controlled via varying the configuration of the magnetic field.

  12. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge.

    PubMed

    Julák, J; Soušková, H; Scholtz, V; Kvasničková, E; Savická, D; Kříha, V

    2018-01-01

    The inactivation of four micromycete species by action of non-thermal plasma was followed. Two sources of plasma were compared, namely, positive corona discharge and dielectric barrier discharge. The corona discharge appeared as suitable for fungal spore inactivation in water suspension, whereas the barrier discharge inactivated spores on the surface of cultivation agar. Cladosporium sphaerospermum was the most sensitive, being inactivated within 10 min of exposure to plasma, whereas Aspergillus oryzae displayed decrease in viable cell count only, the complete inactivation was not achieved even after 40 min of exposure. Intermediate sensitivity was found for Alternaria sp. and Byssochlamys nivea. The significant delay of growth was observed for all fungi after exposure to sublethal dose of plasma, but we failed to express this effect quantitatively.

  13. Regimes of an atmospheric pressure nanosecond repetitively pulsed discharge for methane partial oxidation

    NASA Astrophysics Data System (ADS)

    Maqueo, P. D. G.; Maier, M.; Evans, M. D. G.; Coulombe, S.; Bergthorson, J. M.

    2018-04-01

    The operation of a nanosecond repetitively pulsed discharge for partial oxidation of CH4 is characterized at atmospheric pressure and room temperature. Two regimes are observed: diffuse and filamentary. The first is a low power regime, characterized by low rotational temperatures around 400 K. The second is much more energetic with rotational temperatures close to 600 K. Both have vibrational temperatures of at least 10 times their rotational temperatures. The average electron number density was determined to be 8.9×1015 and 4.0×1017 cm-3, respectively, showing an increase in the ionization fraction in the more powerful filamentary regime. Results of CH4 conversion to H2, CO, CO2 and C2H6 are presented for the filamentary regime, while the diffuse regime shows no measurable conversion ability. As expected, oxidative mixtures show higher conversion ability than pure CH4. A maximum conversion efficiency of 26.3% and a maximum energy efficiency of 19.7% were reached for the oxidative mixtures.

  14. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  15. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  16. Plasma Structure and Behavior of Miniature Ring-Cusp Discharges

    NASA Astrophysics Data System (ADS)

    Mao, Hann-Shin

    Miniature ring-cusp ion thrusters provide a unique blend of high efficiencies and millinewton level thrust for future spacecraft. These thrusters are attractive as a primary propulsion for small satellites that require a high delta V, and as a secondary propulsion for larger spacecraft that require precision formation flying, disturbance rejection, or attitude control. To ensure desirable performance throughout the life of such missions, an advancement in the understanding of the plasma structure and behavior of miniature ring-cusp discharges is required. A research model was fabricated to provide a simplified experimental test bed for the analysis of the plasma discharge chamber of a miniature ion thruster. The plasma source allowed for spatially resolved measurements with a Langmuir probe along a meridian plane. Probe measurements yielded plasma density, electron temperature, and plasma potential data. The magnetic field strength was varied along with the discharge current to determine the plasma behavior under various conditions. The structure of the plasma properties were found to be independent of the discharge power under the proper scaling. It was concluded that weaker magnetic fields can improve the overall performance for ion thruster operation. To further analyze the experimental measurements, a framework was developed based on the magnetic field. A flux aligned coordinate system was developed to decouple the perpendicular and parallel plasma motion with respect to the magnetic field. This was done using the stream function and magnetic scalar potential. Magnetic formulae provided intuition on the field profiles dependence on magnet dimensions. The flux aligned coordinate system showed that the plasma was isopycnic along constant stream function values. This was used to develop an empirical relation suitable for estimating the spatial behavior and to determine the plasma volume and loss areas. The plasma geometry estimates were applied to a control volume

  17. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  18. Schlieren visualization of flow-field modification over an airfoil by near-surface gas-density perturbations generated by a nanosecond-pulse-driven plasma actuator

    NASA Astrophysics Data System (ADS)

    Komuro, Atsushi; Takashima, Keisuke; Konno, Kaiki; Tanaka, Naoki; Nonomura, Taku; Kaneko, Toshiro; Ando, Akira; Asai, Keisuke

    2017-06-01

    Gas-density perturbations near an airfoil surface generated by a nanosecond dielectric-barrier-discharge plasma actuator (ns-DBDPA) are visualized using a high-speed Schlieren imaging method. Wind-tunnel experiments are conducted for a wind speed of 20 m s-1 with an NACA0015 airfoil whose chord length is 100 mm. The results show that the ns-DBDPA first generates a pressure wave and then stochastic perturbations of the gas density near the leading edge of the airfoil. Two structures with different characteristics are observed in the stochastic perturbations. One structure propagates along the boundary between the shear layer and the main flow at a speed close to that of the main flow. The other propagates more slowly on the surface of the airfoil and causes mixing between the main and shear flows. It is observed that these two heated structures interact with each other, resulting in a recovery in the negative pressure coefficient at the leading edge of the airfoil.

  19. Theoretical study on some plasma parameters and thermophysical properties of various gas mixtures in gas-discharge lasers

    NASA Astrophysics Data System (ADS)

    Temelkov, K. A.; Slaveeva, S. I.; Fedchenko, Yu I.; Chernogorova, T. P.

    2018-03-01

    Using the well-known Wassiljewa equation and a new simple method, the thermal conductivities of various 2- and 3-component gas mixtures were calculated and compared under gas-discharge conditions optimal for two prospective lasers excited in a nanosecond pulsed longitudinal discharge. By solving the non-stationary heat-conduction equation for electrons, a 2D numerical model was also developed for determination of the radial and temporal dependences of the electron temperature Te (r, t).

  20. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  1. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  2. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli ( E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  3. Role of plasma electrons in the generation of a gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Gruzdev, V. A.; Zalesski, V. G.; Rusetski, I. S.

    2012-12-01

    The role of different ionization mechanisms in penning-type gas discharges used to generate an emitting plasma in plasma electron sources is considered. It is shown that, under certain conditions, a substantial contribution to the process of gas ionization is provided by plasma electrons.

  4. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, S.; Pei, X.; Hasnain, Q.; Nie, L.; Lu, X.

    2016-02-01

    In this paper, we investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6 mm discharge gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using dry air and its components oxygen and nitrogen. It is found that the pressures are very different when the mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-Streamer, which is dominant in the traditional alternating-voltage DBD. The pulsed DBD in a uniform mode develops in the form of plane ionization wave due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and discharge develops in streamer, corresponding to the filamentary mode. Increasing the initial electron density by pre-ionization may contribute to discharge uniformity at higher pressures. We also found that the dependence of homogeneity upon PRF is a non-monotonic one.

  5. Parallel 3-D numerical simulation of dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Houba, Tomas

    Dielectric barrier discharge plasma actuators have shown promise in a range of applications including flow control, sterilization and ozone generation. Developing numerical models of plasma actuators is of great importance, because a high-fidelity parallel numerical model allows new design configurations to be tested rapidly. Additionally, it provides a better understanding of the plasma actuator physics which is useful for further innovation. The physics of plasma actuators is studied numerically. A loosely coupled approach is utilized for the coupling of the plasma to the neutral fluid. The state of the art in numerical plasma modeling is advanced by the development of a parallel, three-dimensional, first-principles model with detailed air chemistry. The model incorporates 7 charged species and 18 reactions, along with a solution of the electron energy equation. To the author's knowledge, a parallel three-dimensional model of a gas discharge with a detailed air chemistry model and the solution of electron energy is unique. Three representative geometries are studied using the gas discharge model. The discharge of gas between two parallel electrodes is used to validate the air chemistry model developed for the gas discharge code. The gas discharge model is then applied to the discharge produced by placing a dc powered wire and grounded plate electrodes in a channel. Finally, a three-dimensional simulation of gas discharge produced by electrodes placed inside a riblet is carried out. The body force calculated with the gas discharge model is loosely coupled with a fluid model to predict the induced flow inside the riblet.

  6. Portable rotating discharge plasma device

    NASA Astrophysics Data System (ADS)

    Dwyer, B. L.; Brooks, N. H.; Lee, R. L.

    2011-10-01

    We constructed two devices for the purpose of educational demonstration: a rotating tube containing media of two densities to demonstrate axial confinement and a similar device that uses pressure variation to convert a long plasma glow discharge into a long straight arc. In the first device, the buoyant force is countered by the centripetal force, which confines less dense materials to the center of the column. Similarly, a plasma arc heats the gas through which it passes, creating a hot gaseous bubble that is less dense than the surrounding medium. Rotating its containment envelope stabilizes this gas bubble in an analogous manner to an air bubble in a rotating tube of water. In addition to stabilization, the rotating discharge also exhibits a decrease in buoyancy-driven convection currents. This limits the power loss to the walls, which decreases the field strength requirement for maintaining the arc. These devices demonstrate principles of electrodynamics, plasma physics, and fluid mechanics. They are portable and safe for classroom use. Work supported by US DOE under DE-FC02-04ER54698 and the National Undergraduate Fellowship in Fusion Science and Engineering.

  7. High-frequency underwater plasma discharge application in antibacterial activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O{sub 2}) injected and hydrogen peroxide (H{sub 2}O{sub 2}) added discharge in water was achieved. The effect of H{sub 2}O{sub 2} dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H{sub 2}O{sub 2} addition with O{sub 2} injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population onmore » the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH{sup •}, H, and O). Interestingly, the results demonstrated that O{sub 2} injected and H{sub 2}O{sub 2} added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.« less

  8. Rydberg gas theory of a glow discharge plasma: I. Application to the electrical behaviour of a fast flowing glow discharge plasma.

    PubMed

    Mason, Rod S; Mitchell, David J; Dickinson, Paul M

    2010-04-21

    Current-voltage (I-V) curves have been measured, independent of the main discharge, for electricity passing through the steady state fast flowing 'afterglow' plasma of a low power dc glow discharge in Ar. Voltage profiles along the axial line of conduction have been mapped using fixed probes and potentiometry, and the mass spectra of cations emerging from the downstream sampling Cone, also acting as a probe anode, were recorded simultaneously. Floating double probe experiments were also carried out. The electrical behavior is consistent with the well established I-V characteristics of such discharges, but does not comply with classical plasma theory predictions. The plasma decays along the line of conduction, with a lifetime of approximately 1 ms, despite carrying a steady state current, and its potential is below that of the large surface area anode voltage; a situation which cannot exist in the presence of a conventional free ion-electron plasma, unless the electron temperature is super cold. Currents, large by comparison with the main discharge current, and independent of it, are induced to flow through the downstream plasma, from the Anode (acting as a cathode) to the anodic ion exit Cone, induced by electron impact ionisation at the anode, but without necessarily increasing the plasma density. It appears to be conducted by direct charge transfer between a part of the anode surface (acting as cathode to the auxiliary circuit) and the plasma, without secondary electron emission or heating, which suggests the direct involvement of Rydberg atom intermediates. The reaction energy defect (= the work function of the electrode surface) fits with the plasma potential threshold observed for the cathodic reaction to occur. A true free ion-electron plasma is readily detected by the observation of cations at the anode surface, when induced at the downstream anode, at high bias voltages, by the electron impact ionisation in the boundary region. In contrast to the classical

  9. Interaction of UV laser pulses with reactive dusty plasmas

    NASA Astrophysics Data System (ADS)

    van de Wetering, Ferdi; Beckers, Job; Nijdam, Sander; Oosterbeek, Wouter; Kovacevic, Eva; Berndt, Johannes

    2016-09-01

    This contribution deals with the effects of UV photons on the synthesis and transport of nanoparticles in reactive complex plasmas (capacitively coupled RF discharge). First measurements showed that the irradiation of a reactive acetylene-argon plasma with high-energy, ns UV laser pulses (355 nm, 75 mJ pulse energy, repetition frequency 10Hz) can have a large effect on the global discharge characteristics. One particular example concerns the formation of a dust void in the center of the discharge. At sufficiently high pulse energies, this formation of a dust free region - which occurs without laser irradiation-is totally suppressed. Moreover the experiments indicate that the laser pulses influence the early stages of the particle formation. Although the interaction between the laser and the plasma is not yet fully understood, it is remarkable that these localized nanosecond laser pulses can influence the plasma on a global scale. Besides new insights into fundamental problems, this phenomenon opens also new possibilities for the controlled manipulation of particle growth and particle transport in reactive plasmas.

  10. Mode transition of a Hall thruster discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hara, Kentaro, E-mail: kenhara@umich.edu; Sekerak, Michael J., E-mail: msekerak@umich.edu; Boyd, Iain D.

    2014-05-28

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulationmore » that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.« less

  11. Dynamics of the spatial structure of pulsed discharges in dense gases in point cathode−plane anode gaps and their erosion effect on the plane electrode surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baksht, E. Kh.; Blinova, O. M.; Erofeev, M. V., E-mail: mve@loi.hcei.tsc.ru

    2016-09-15

    The dynamics of the spatial structure of the plasma of pulsed discharges in air and nitrogen in a nonuniform electric field and their erosion effect on the plane anode surface were studied experimentally. It is established that, at a nanosecond front of the voltage pulse, a diffuse discharge forms in the point cathode–plane anode gap due to the ionization wave propagating from the cathode. As the gap length decreases, the diffuse discharge transforms into a spark. A bright spot on the anode appears during the diffuse discharge, while the spark channel forms in the later discharge stage. The microstructure ofmore » autographs of anode spots and spark channels in discharges with durations of several nanoseconds is revealed. The autographs consist of up to 100 and more microcraters 5–100 μm in diameter. It is shown that, due to the short duration of the voltage pulse, a diffuse discharge can be implemented, several pulses of which do not produce appreciable erosion on the plane anode or the soot coating deposited on it.« less

  12. Characteristics of a nanosecond-barrier-discharge-pumped multiwave UV – VUV lamp on a mixture of argon, krypton and vapours of freon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shuaibov, A K; Minya, A I; Hrytsak, R V

    2015-02-28

    We present the results of investigation of the characteristics of a nanosecond-barrier-discharge-pumped multiwave lamp based on a gas mixture of Ar – Kr – CCl{sub 4}, which emits in the spectral range of 170 – 260 nm. The main emission bands in the lamp spectrum are ArCl (B → X) near 175 nm, KrCl (B → X) near 222 nm and Cl{sub 2} (D' → A') near 258 nm. The lamp intensity with respect to pressure, working mixture composition and pump regime is optimised. (uv - vuv emitters)

  13. Atomic oxygen production scaling in a nanosecond-pulsed externally grounded dielectric barrier plasma jet

    NASA Astrophysics Data System (ADS)

    Sands, Brian; Schmidt, Jacob; Ganguly, Biswa; Scofield, James

    2014-10-01

    Atomic oxygen production is studied in a capillary dielectric barrier plasma jet that is externally grounded and driven with a 20-ns risetime positive unipolar pulsed voltage at pulse repetition rates up to 25 kHz. The power coupled to the discharge can be easily increased by increasing the pulse repetition rate. At a critical turnover frequency, determined by the net energy density coupled to the discharge, the plasma chemistry abruptly changes. This is indicated by increased plasma conductance and a transition in reactive oxygen species production from an ozone-dominated production regime below the turnover frequency to atomic-oxygen-dominated production at higher pulse rates. Here, we characterize atomic oxygen production scaling using spatially- and temporally-resolved two-photon absorption laser-induced-fluorescence (TALIF). Quantitative results are obtained via calibration with xenon using a similar laser excitation and collection system. These results are compared with quantitative ozone and discharge power measurements using a helium gas flow with oxygen admixtures up to 3%.

  14. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  15. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges

    NASA Astrophysics Data System (ADS)

    Sobral, H.; Robledo-Martinez, A.

    2016-10-01

    A fast, high voltage square-shaped electrical pulse initiated by laser ablation was investigated as a means to enhance the analytical capabilities of laser Induced breakdown spectroscopy (LIBS). The electrical pulse is generated by the discharge of a charged coaxial cable into a matching impedance. The pulse duration and the stored charge are determined by the length of the cable. The ablation plasma was produced by hitting an aluminum target with a nanosecond 532-nm Nd:YAG laser beam under variable fluence 1.8-900 J cm- 2. An enhancement of up to one order of magnitude on the emission signal-to-noise ratio can be achieved with the spark discharge assisted laser ablation. Besides, this increment is larger for ionized species than for neutrals. LIBS signal is also increased with the discharge voltage with a tendency to saturate for high laser fluences. Electron density and temperature evolutions were determined from time delays of 100 ns after laser ablation plasma onset. Results suggest that the spark discharge mainly re-excites the laser produced plume.

  16. Theory of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1982-01-01

    The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.

  17. Dusty waves and vortices in rf magnetron discharge plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Shugaev, F. V.

    2018-01-01

    The appearance and subsequent growth of metallic particles in plasma of planar rf magnetron sputter were observed. The origin of the particles is sputtering of the rf electrode by ion flux from the plasma. In some regions of formed dust cloud the particles were involved in the horizontal or vertical circular movement. The horizontal rotation along the sputtered track in the cyclotron drift direction was observed close to the main magnetron plasma. The torus-shaped dust vortex ring engirdled the secondary plasma of the discharge at height of a few centimeters over the electrode. Close to this region particle density waves propagated through the cloud. The possible role of discharge plasma azimuthal inhomogeneity and gas dynamics effects in the forming the observed structures was considered.

  18. Plasma discharge and time-dependence of its effect to bacteria.

    PubMed

    Justan, I; Cernohorska, L; Dvorak, Z; Slavicek, P

    2014-07-01

    Several types of plasma discharge have been proven to have a capacity for sterilization. Our goal is to introduce new nonthermal plasma pencil. We used it to sterilize different microbial populations with differing ages. We used a plasma discharge of the following characteristics: radio frequency barrier discharger at atmospheric pressure with a working frequency of 13.56 MHz, and the working gas used was argon. We performed 110 tests with the following microbial populations: Pseudomonas aeruginosa, Staphylococcus aureus, Proteus species, and Klebsiella pneumoniae. All populations were inoculated on the previous day and also on the day of our experiment. We made our evaluations the following day and also after 5 days, with all our microbial populations. Eradication of microbial populations is dependent on the plasma discharge exposure time in all cases. With regard to freshly inoculated microbes, we were able to sterilize agar with intensive exposure lasting for 10 s of colonies Pseudomonas, Proteus, and Klebsiella. The most resistant microbe seems to be S. aureus, which survives 5 s of coherent exposure in half of the cases. Using the lightest plasma discharge exposure, we achieved a maximum of 10(4)-10(5) CFU/mL (colony-forming unit - CFU). Regarding older microbial populations inoculated the day before the experiment, we can only decrease population growth to 10(5) CFU/mL approximately, but never completely sterilize. The plasma discharge with our characteristics could be used for the sterilization of the aforementioned superficially growing microbes, but does not sufficiently affect deeper layers and thus seems to be a limitation for eradication of the already erupted colonies.

  19. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  20. Exploration to generate atmospheric pressure glow discharge plasma in air

    NASA Astrophysics Data System (ADS)

    Wenzheng, LIU; Chuanlong, MA; Shuai, ZHAO; Xiaozhong, CHEN; Tahan, WANG; Luxiang, ZHAO; Zhiyi, LI; Jiangqi, NIU; Liying, ZHU; Maolin, CHAI

    2018-03-01

    Atmospheric pressure glow discharge (APGD) plasma in air has high application value. In this paper, the methods of generating APGD plasma in air are discussed, and the characteristics of dielectric barrier discharge (DBD) in non-uniform electric field are studied. It makes sure that APGD in air is formed by DBD in alternating current electric field with using the absorbing electron capacity of electret materials to provide initial electrons and to end the discharge progress. Through designing electric field to form two-dimensional space varying electric field and three-dimensional space varying electric field, the development of electron avalanches in air-gap is suppressed effectively and a large space of APGD plasma in air is generated. Further, through combining electrode structures, a large area of APGD plasma in air is generated. On the other hand, by using the method of increasing the density of initial electrons, millimeter-gap glow discharge in atmospheric pressure air is formed, and a maximum gap distance between electrodes is 8 mm. By using the APGD plasma surface treatment device composed of contact electrodes, the surface modification of high polymer materials such as aramid fiber and polyester are studied and good effect of modifications is obtained. The present paper provides references for the researchers of industrial applications of plasma.

  1. Enhanced Discharge Performance in a Ring Cusp Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2000-01-01

    There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster, a thruster discharge chamber with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Characteristics of this ring cusp ion discharge were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the magnetic cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.

  2. Nitric oxide kinetics in the afterglow of a diffuse plasma filament

    NASA Astrophysics Data System (ADS)

    Burnette, D.; Montello, A.; Adamovich, I. V.; Lempert, W. R.

    2014-08-01

    A suite of laser diagnostics is used to study kinetics of vibrational energy transfer and plasma chemical reactions in a nanosecond pulse, diffuse filament electric discharge and afterglow in N2 and dry air at 100 Torr. Laser-induced fluorescence of NO and two-photon absorption laser-induced fluorescence of O and N atoms are used to measure absolute, time-resolved number densities of these species after the discharge pulse, and picosecond coherent anti-Stokes Raman spectroscopy is used to measure time-resolved rotational temperature and ground electronic state N2(v = 0-4) vibrational level populations. The plasma filament diameter, determined from plasma emission and NO planar laser-induced fluorescence images, remains nearly constant after the discharge pulse, over a few hundred microseconds, and does not exhibit expansion on microsecond time scale. Peak temperature in the discharge and the afterglow is low, T ≈ 370 K, in spite of significant vibrational nonequilibrium, with peak N2 vibrational temperature of Tv ≈ 2000 K. Significant vibrational temperature rise in the afterglow is likely caused by the downward N2-N2 vibration-vibration (V-V) energy transfer. Simple kinetic modeling of time-resolved N, O, and NO number densities in the afterglow, on the time scale longer compared to relaxation and quenching time of excited species generated in the plasma, is in good agreement with the data. In nitrogen, the N atom density after the discharge pulse is controlled by three-body recombination and radial diffusion. In air, N, NO and O concentrations are dominated by the reverse Zel'dovich reaction, N + NO → N2 + O, and ozone formation reaction, O + O2 + M → O3 + M, respectively. The effect of vibrationally excited nitrogen molecules and excited N atoms on NO formation kinetics is estimated to be negligible. The results suggest that NO formation in the nanosecond pulse discharge is dominated by reactions of excited electronic states of nitrogen, occurring on

  3. Note: Design and investigation of a multichannel plasma-jet triggered gas switch.

    PubMed

    Tie, Weihao; Liu, Xuandong; Zhang, Qiaogen; Liu, Shanhong

    2014-07-01

    We described the fabrication and testing of a multichannel plasma-jet triggered gas switch (MPJTGS). A novel six-channel annular micro-plasma-gun was embedded in the trigger electrode to generate multichannel plasma jets as a nanosecond trigger pulse arrived. The gas breakdown in multiple sites of the spark gap was induced and fixed around jet orifices by the plasma jets. We tested the multichannel discharge characteristics of the MPJTGS in two working modes with charge voltage of 50 kV, trigger voltage of +40 kV (25 ns rise time), and trigger energy of 240 J, 32 J, and 2 J, respectively, at different working coefficients. Results show that the average number of discharge channels increased as the trigger energy increased, and decreased as the working coefficient decreased. At a working coefficient of 87.1% and trigger energy of 240 J, the average number of discharge channels in Mode II could reach 4.1.

  4. Discharge Characteristics of DC Arc Water Plasma for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Li, Tianming; Sooseok, Choi; Takayuki, Watanabe

    2012-12-01

    A water plasma was generated by DC arc discharge with a hafnium embedded rod-type cathode and a nozzle-type anode. The discharge characteristics were examined by changing the operation parameter of the arc current. The dynamic behavior of the arc discharge led to significant fluctuations in the arc voltage and its frequency. Analyses of the high speed image and the arc voltage waveform showed that the arc discharge was in the restrike mode and its frequency varied within several tens of kilohertz according to the operating conditions. The larger thermal plasma volume was generated by the higher flow from the forming steam with a higher restrike frequency in the higher arc current conditions. In addition, the characteristics of the water plasma jet were investigated by means of optical emission spectroscopy to identify the abundant radicals required in an efficient waste treatment process.

  5. Plasma Discharge with Different Electrode Diameters for Reducing Methylene Blue Concentration

    NASA Astrophysics Data System (ADS)

    Rasyidah, H.; Kusumandari; Saraswati, T. E.; Anwar, M.

    2018-03-01

    Recently, plasma technology has gained attention since it overcomes the shortcomings of water treatment. This research studies the effect of electrode diameter of plasma discharge reactors on the concentration reduction of methylene blue as an organic solution. The plasma discharge reactor was built from a pair of stainless needle electrodes connected with high-AC voltage. The electrodes were placed approximately 2 mm above the solution and stirred at 5.5 rpm. The diameters of the electrodes were 2, 3.2 and 4 mm. The times for plasma treatment were set at 2, 4, 6, 8 and 10 min. Absorbance, temperature and pH of the solution were measured to know the effects of electrode diameter of the plasma reactor. Absorbance and pH significantly decreased after plasma treatment. The best of the absorbance reduction were obtained when the sample was treated under plasma discharge using the smallest diameter electrodes for 8-10 min.

  6. Flush-mounted probe diagnostics for argon glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liang, E-mail: xld02345@mail.ustc.edu.cn; Cao, Jinxiang; Liu, Yu

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges.more » These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.« less

  7. How does a probe inserted into the discharge influence the plasma structure?

    NASA Astrophysics Data System (ADS)

    Yordanov, D.; Lishev, St.; Shivarova, A.

    2016-05-01

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by the results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.

  8. Plasma processes in water under effect of short duration pulse discharges

    NASA Astrophysics Data System (ADS)

    Gurbanov, Elchin

    2013-09-01

    It is very important to get a clear water without any impurities and bacteria by methods, that don't change the physical and chemical indicators of water now. In this article the plasma processes during the water treatment by strong electric fields and short duration pulse discharges are considered. The crown discharge around an electrode with a small radius of curvature consists of plasma leader channels with a high conductivity, where the thermo ionization processes and UV-radiation are taken place. Simultaneously the partial discharges around potential electrode lead to formation of atomic oxygen and ozone. The spark discharge arises, when plasma leader channels cross the all interelectrode gap, where the temperature and pressure are strongly grown. As a result the shock waves and dispersing liquid streams in all discharge gap are formed. The plasma channels extend, pressure inside it becomes less than hydrostatic one and the collapse and UV-radiation processes are started. The considered physical processes can be successfully used as a basis for development of pilot-industrial installations for conditioning of drinking water and to disinfecting of sewage.

  9. Plasma rotation by electric and magnetic fields in a discharge cylinder

    NASA Technical Reports Server (NTRS)

    Wilhelm, H. E.; Hong, S. H.

    1977-01-01

    A theoretical model for an electric discharge consisting of a spatially diverging plasma sustained electrically between a small ring cathode and a larger ring anode in a cylindrical chamber with an axial magnetic field is developed to study the rotation of the discharge plasma in the crossed electric and magnetic fields. The associated boundary-value problem for the coupled partial differential equations which describe the electric potential and the plasma velocity fields is solved in closed form. The electric field, current density, and velocity distributions are discussed in terms of the Hartmann number and the Hall coefficient. As a result of Lorentz forces, the plasma rotates with speeds as high as 1 million cm/sec around its axis of symmetry at typical conditions. As an application, it is noted that rotating discharges of this type could be used to develop a high-density plasma-ultracentrifuge driven by j x B forces, in which the lighter (heavier) ion and atom components would be enriched in (off) the center of the discharge cylinder.

  10. Discharge reliability in ablative pulsed plasma thrusters

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwen; Sun, Guorui; Yuan, Shiyue; Huang, Tiankun; Liu, Xiangyang; Xie, Kan; Wang, Ningfei

    2017-08-01

    Discharge reliability is typically neglected in low-ignition-cycle ablative pulsed plasma thrusters (APPTs). In this study, the discharge reliability of an APPT is assessed analytically and experimentally. The goals of this study are to better understand the ignition characteristics and to assess the accuracy of the analytical method. For each of six sets of operating conditions, 500 tests of a parallel-plate APPT with a coaxial semiconductor spark plug are conducted. The discharge voltage and current are measured with a high-voltage probe and a Rogowski coil, respectively, to determine whether the discharge is successful. Generally, the discharge success rate increases as the discharge voltage increases, and it decreases as the electrode gap and the number of ignitions increases. The theoretical analysis and the experimental results are reasonably consistent. This approach provides a reference for designing APPTs and improving their stability.

  11. Luminescent Characteristics of a Pulsed Discharge Plasma in Xe-KBr Mixture

    NASA Astrophysics Data System (ADS)

    Heneral, A. A.; Zhmenyak, Y. V.

    2018-03-01

    A mixture of xenon with a nontoxic halogen carrier Xe-KBr is used to create a plasma radiation source at the 282-nm transition of the XeBr* molecule excited by a high-voltage pulsed-periodic discharge. The luminescence spectra of the plasma of a longitudinal pulsed-periodic discharge in the Xe-KBr mixture at low pressures are studied experimentally. The most intense UV bands of exciplex XeBr* molecules are recorded in the spectral range of 250-350 nm. The spectral, temporal, and energetic characteristics of the radiation source are presented, as well as the dependence of the XeBr* exciplex molecule formation efficiency on the discharge excitation conditions. The optimal conditions for the excitation of UV radiation in the pulsed-periodic discharge plasma are determined.

  12. Extreme degree of ionization in homogenous micro-capillary plasma columns heated by ultrafast current pulses.

    PubMed

    Avaria, G; Grisham, M; Li, J; Tomasel, F G; Shlyaptsev, V N; Busquet, M; Woolston, M; Rocca, J J

    2015-03-06

    Homogeneous plasma columns with ionization levels typical of megaampere discharges are created by rapidly heating gas-filled 520-μm-diameter channels with nanosecond rise time current pulses of 40 kA. Current densities of up to 0.3  GA cm^{-2} greatly increase Joule heating with respect to conventional capillary discharge Z pinches, reaching unprecedented degrees of ionization for a high-Z plasma column heated by a current pulse of remarkably low amplitude. Dense xenon plasmas are ionized to Xe^{28+}, while xenon impurities in hydrogen discharges reach Xe^{30+}. The unique characteristics of these hot, ∼300:1 length-to-diameter aspect ratio plasmas allow the observation of unexpected spectroscopic phenomena. Axial spectra show the unusual dominance of the intercombination line over the resonance line of He-like Al by nearly an order of magnitude, caused by differences in opacities in the axial and radial directions. These plasma columns could enable the development of sub-10-nm x-ray lasers.

  13. Magnetic tearing of plasma discharges due to nonuniform resistivity

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1988-01-01

    The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.

  14. Kinetics and Chemistry of Ionization Wave Discharges Propagating Over Dielectric Surfaces

    NASA Astrophysics Data System (ADS)

    Petrishchev, Vitaly

    Experimental studies of near-surface ionization wave electric discharges generated by high peak voltage (20-30 kV), nanosecond duration pulses (full width at half-maximum 50-100 ns) of positive and negative polarity and propagating over dielectric surfaces have been performed. A novel way to sustain diffuse, reproducible, ns pulse surface plasmas at a liquid-vapor interface is demonstrated at buffer gas pressures ranging from 10 to 200 Torr. Generation of surface ionization waves well reproduced shot-to-shot and sustaining diffuse near-surface plasmas is one of the principal advantages of the use of ns pulse discharge waveforms. This makes possible characterization of these plasmas in repetitively pulsed experiments. Numerous applications of these plasmas include low-temperature plasma assisted combustion, plasma fuel reforming, plasma flow control, plasma materials processing, agriculture, biology, and medicine. The objectives of the present work are (i) to demonstrate that surface ionization wave discharge plasmas sustained at a liquid-vapor interface can be used as an experimental platform for studies of near-surface plasma chemical reaction kinetics, at the conditions when the interface acts as a high-yield source of radical species, and (ii) to obtain quantitative insight into dynamics, kinetics and chemistry of surface ionization wave discharges and provide experimental data for validation of kinetic models, to assess their predictive capability. Generation of the initial radical pool may trigger a number of plasma chemical processes leading to formation of a variety of stable product species, depending on the initial composition of the liquid and the buffer gas flow. One of the products formed and detected during surface plasma / liquid water interaction is hydroxyl radical, which is closely relevant to applications of plasmas for biology and medicine. The present work includes detailed studies of surface ionization wave discharges sustained in different

  15. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    NASA Astrophysics Data System (ADS)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  16. Water Treatment Using Plasma Discharge with Variation of Electrode Materials

    NASA Astrophysics Data System (ADS)

    Chanan, N.; Kusumandari; Saraswati, T. E.

    2018-03-01

    This research studied water treatment using plasma discharge. Plasma generated in this study produced active species that played a role in organic compound decomposition. The plasma reactor consisted of two needle electrodes made from stainless steel, tungsten, aluminium and grafit. It placed approximately 2 mm above the solution and connected with high-AC voltage. A solution of methylene blue used as an organic solution model. Plasma treatment times were 2, 4, 6, 8 and 10 min. The absorbance, temperature and pH of the solution were measured before and after treatment using various electrodes. The best electrode used in plasma discharging for methylene blue absorbance reduction was the graphite electrode, which provided the highest degradation efficiency of 98% at 6 min of treatment time.

  17. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Namihira, T.; Sakai, S.; Matsuda, M.; D., Wang; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-12-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.

  18. Pulsed plasma thruster by applied a high current hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Watanabe, Masayuki; N. Nogera Team; T. Kamada Team

    2013-09-01

    The pulsed plasma thruster applied by a high current hollow cathode discharge has been investigated. In this research, the pseudo-spark discharge (PSD), which is a one of a pulsed high current hollow cathode discharge, is applied to the plasma thruster. In PSD, the opposite surfaces of the anode and cathode have a small circular hole and the cathode has a cylindrical cavity behind the circular hole. To generate the high speed plasma flow, the diameter of the anode hole is enlarged as compared with that of the cathode hole. As a result, the plasma is accelerated by a combination of an electro-magnetic force and a thermo-dynamic force inside a cathode cavity. For the improvement of the plasma jet characteristic, the magnetic field is also applied to the plasma jet. To magnetize the plasma jet, the external magnetic field is directly induced nearby the electrode holes. Consequently, the plasma jet is accelerated with the self-azimuthal magnetic field. With the magnetic field, the temperature and the density of the plasma jet were around 5 eV and in the order of 10 19 m-3. The density increased several times as compared with that without the magnetic field.

  19. HV discharge acceleration by sequences of UV laser filaments with visible and near-infrared pulses

    NASA Astrophysics Data System (ADS)

    Schubert, Elise; Rastegari, Ali; Feng, Chengyong; Mongin, Denis; Kamer, Brian; Kasparian, Jérôme; Wolf, Jean-Pierre; Arissian, Ladan; Diels, Jean-Claude

    2017-12-01

    We investigate the triggering and guiding of DC high-voltage discharges over a distance of 37 cm by filaments produced by ultraviolet (266 nm) laser pulses of 200 ps duration. The latter reduce the breakdown electric field by half and allow up to 80% discharge probability in an electric field of 920 kV m–1. This high efficiency is not further increased by adding nanosecond pulses in the Joule range at 532 and at 1064 nm. However, the latter statistically increases the guiding length, thereby accelerating the discharge by a factor of 2. This effect is due both to photodetachment and to the heating of the plasma channel, that increases the efficiency of avalanche ionization and reduces electron attachment and recombination.

  20. Study on the mode-transition of nanosecond-pulsed dielectric barrier discharge between uniform and filamentary by controlling pressures and pulse repetition frequencies

    NASA Astrophysics Data System (ADS)

    Yu, Sizhe; Lu, Xinpei

    2016-09-01

    We investigate the temporally resolved evolution of the nanosecond pulsed dielectric barrier discharge (DBD) in a moderate 6mm gap under various pressures and pulse repetition frequencies (PRFs) by intensified charge-coupled device (ICCD) images, using synthetic air and its components oxygen and nitrogen. It is found that the pressures are very different when the DBD mode transits between uniform and filamentary in air, oxygen, and nitrogen. The PRFs can also obviously affect the mode-transition. The transition mechanism in the pulsed DBD is not Townsend-to-streamer, which is dominant in the traditional alternating-voltage DBDs. The pulsed DBD in a uniform mode develops in the form of plane ionization wave, due to overlap of primary avalanches, while the increase in pressure disturbs the overlap and DBD develops in streamer instead, corresponding to the filamentary mode. Increasing the initiatory electron density by pre-ionization methods may contribute to discharge uniformity at higher pressures. We also find that the dependence of uniformity upon PRF is non-monotonic.

  1. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  2. The effect of ethanol gas impurity on the discharge mode and discharge products of argon plasma jet at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Xia, Wenjie; Liu, Dingxin; Xu, Han; Wang, Xiaohua; Liu, Zhijie; Rong, Mingzhe; Kong, Michael G.

    2018-05-01

    Argon is a widely used working gas of plasmas, which is much cheaper than helium but on the other hand much more difficult to generate diffuse discharge at atmospheric pressure. In order to meet the application requirements, plenty of researches have been reported to facilitate the diffuse discharge happening for argon plasmas, and in this paper an approach of using ethanol gas (EtOH) impurity is investigated. The discharge characteristics of Ar + EtOH plasma jet are studied as a function of the applied voltage and the concentration of EtOH, from which the concentration of EtOH between ∼200 and ∼3300 parts per million (ppm) is determined necessary for the generation of diffuse discharge. Compared with the helium plasma jet in literature, it is deduced that the diffuse discharge is probably caused by the Penning ionization happening between the metastable argon and EtOH. The discharge products of Ar + EtOH (672 ppm) plasma jet are measured and the corresponding chemistry pathways are analyzed. About 20% of EtOH is decomposed via complex chemical reactions to form more than a dozen of neutral species, such as CH3CHO, CH3COOH, CO, H2O, and C n H2n+2 (n ≥ 3), and various kinds of ionic species, including C+, CH+, ArH+, {{{{O}}}2}-, CH3CH2O‑, etc.

  3. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  4. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  5. Note: Characterization of the plasma parameters of a capillary discharge-produced plasma channel waveguide to guide an intense laser pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Higashiguchi, Takeshi; Yugami, Noboru; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kanagawa, Saitama 332-0012

    2010-04-15

    We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  6. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  7. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  8. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  9. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  10. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  11. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  12. Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion

    NASA Astrophysics Data System (ADS)

    Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor

    2017-11-01

    A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.

  13. Characterization of pulsed metallic hydride vacuum arc discharge plasmas by optical emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Tang, Jian; Deng, Chunfeng; Wu, Chunlei; Lu, Biao; Hu, Yonghong

    2017-12-01

    The characteristics of plasmas in a titanium hydride vacuum arc ion source were experimentally investigated by a temporally- and spatially-integrated optical emission spectroscopy method. A plasma emission spectral fitting model was developed to calculate the plasmas temperature and relative density of each particle component, assuming plasmas were in local thermodynamic equilibrium state and optical thin in this study. The good agreement was founded between the predicted and measured spectra in the interesting regions of 330-340 nm and 498-503 nm for Ti+ ion and Ti atom respectively, while varying the plasma temperature and density. Compared with conventional Boltzmann plot method, this method, therefore, made a significant improvement on the plasma diagnosis in dealing with the spectral profile with many lines overlapped. At the same time, to understand the mechanism of the occluded-gas vacuum arc discharge plasmas, the plasmas emission spectra, ion relative density, and temperature with different discharge conditions were studied. The results indicated that the rate of Ti metal evaporation and H desorption from the electrode would be enhanced with arc current, and the ionization temperature increased with the feed-in power of arc discharge, leading more H+ and Ti+ ions, but reducing the H+ proportion in arc discharged plasmas.

  14. 2D model of plasma current sheath propagation in a Mather type plasma focus device

    NASA Astrophysics Data System (ADS)

    Mohamad, Saiful Najmee; Rashid, Natashah Abdul; Halim, Mohd Mahadi; Ali, Jalil

    2018-06-01

    Plasma focus device is initially developed by two known researchers back in the 1960s, Mather and Filippov. The interest on the research built due to its capability to produce high energetic neutron from a fusion reaction. The relevance of the research in Plasma Focus device remain after decade is because of its competence to produce multi radiation yield and its known physics during nanosecond of plasma compression remain open for discussed. In the recent years, the direction of the plasma research is in device optimisation, where many possible configurations have been present, discuss and highlighting its performance for differences conditions. The significant difference between the electrode configuration is the profile of the dynamics inductance. In this context, this paper comparatively discusses the 1D dynamics model of the plasma current sheath (PSC) propagation axially and radially with the 2D model. The 2D model algorithm for the PSC propagation is developed using macro (Excel) by incorporating a drag force to solve the momentum exchange of the PCS with neutral gas. The discharge current profile of both model successfully calibrated to agree with each other with 2% difference at 1.83 µs after discharge but with an expense of different assumption.

  15. Reproducing continuous radio blackout using glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Kai; Li, Xiaoping; Liu, Donglin

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  16. Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Pan, CHEN; Jun, SHEN; Tangchun, RAN; Tao, YANG; Yongxiang, YIN

    2017-12-01

    Experiments of CO2 splitting by dielectric barrier discharge (DBD) plasma were carried out, and the influence of CO2 flow rate, plasma power, discharge voltage, discharge frequency on CO2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO2 decomposed was only proportional to the amount of conductive electrons across the discharge gap, and the electron amount was proportional to the discharge power; the energy efficiency of CO2 conversion was almost a constant at a lower level, which was limited by CO2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO2 conversion rate decreased as the CO2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve.

  17. Rotating plasma structures in the cross-field discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin

    2016-09-01

    Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.

  18. Irregular-regular mode oscillations inside plasma bubble and its fractal analysis in glow discharge magnetized plasma

    NASA Astrophysics Data System (ADS)

    Megalingam, Mariammal; Hari Prakash, N.; Solomon, Infant; Sarma, Arun; Sarma, Bornali

    2017-04-01

    Experimental evidence of different kinds of oscillations in floating potential fluctuations of glow discharge magnetized plasma is being reported. A spherical gridded cage is inserted into the ambient plasma volume for creating plasma bubbles. Plasma is produced between a spherical mesh grid and chamber. The spherical mesh grid of 80% optical transparency is connected to the positive terminal of power supply and considered as anode. Two Langmuir probes are kept in the ambient plasma to measure the floating potential fluctuations in different positions within the system, viz., inside and outside the spherical mesh grid. At certain conditions of discharge voltage (Vd) and magnetic field, irregular to regular mode appears, and it shows chronological changes with respect to magnetic field. Further various nonlinear analyses such as Recurrence Plot, Hurst exponent, and Lyapunov exponent have been carried out to investigate the dynamics of oscillation at a range of discharge voltages and external magnetic fields. Determinism, entropy, and Lmax are important measures of Recurrence Quantification Analysis which indicate an irregular to regular transition in the dynamics of the fluctuations. Furthermore, behavior of the plasma oscillation is characterized by the technique called multifractal detrended fluctuation analysis to explore the nature of the fluctuations. It reveals that it has a multifractal nature and behaves as a long range correlated process.

  19. Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane

    NASA Astrophysics Data System (ADS)

    Camerotto, Elisabeth; De Schepper, Peter; Nikiforov, Anton Y.; Brems, Steven; Shamiryan, Denis; Boullart, Werner; Leys, Christophe; De Gendt, Stefan

    2012-10-01

    This paper investigates the generation of a stable plasma phase in a liquid hydrocarbon (n-dodecane) by means of ultrasound (US) and radio-frequency (RF) or electromagnetic radiation. It is demonstrated for the first time that ultrasonic aided RF plasma discharges can be generated in a liquid. Plasma discharges are obtained for different gas mixtures at a pressure of 12 kPa and at low ignition powers (100 W for RF and 2.4 W cm-2 for US). Direct carbon deposition from the liquid precursor on Cu, Ni, SiO2 and Si substrates has been obtained and no apparent compositional or structural difference among the substrate materials was observed. Characterization of the deposited solid phase revealed an amorphous structure. In addition, structural changes in the liquid precursor after plasma treatment have been analysed. Optical emission spectroscopy (OES) allowed the estimation of several plasma characteristic temperatures. The plasma excitation temperature was estimated to be about 2.3-2.4 eV. The rotational and vibrational temperatures of the discharge in n-dodecane with Ar as a feed gas were 1400 K and 6500 K, respectively. In Ar/O2 plasma, an increased rotational (1630 K) and vibrational temperature (7200 K) were obtained.

  20. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  1. A Self Consistent RF Discharge, Plasma Chemistry and Surface Model for Plasma Enhanced Chemical Vapor Deposition

    DTIC Science & Technology

    1988-06-30

    consists of three submodels for the electron kinetics, plasma chemistry , and surface deposition kinetics for a-Si:H deposited from radio frequency...properties. Plasma enhanced, Chemical vapor deposition, amorphous silicon, Modeling, Electron kinetics, Plasma chemistry , Deposition kinetics, Rf discharge, Silane, Film properties, Silicon.

  2. Comparative Shock-Tube Study of Autoignition and Plasma-Assisted Ignition of C2-Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Kindysheva, Svetlana; Plastinin, Eugeny; Aleksandrov, Nikolay; Starikovskiy, Andrey

    2015-09-01

    The dynamics of pulsed picosecond and nanosecond discharge development in liquid water, ethanol and hexane Using a shock tube with a discharge cell, ignition delay time was measured in a lean (φ = 0.5) C2H6:O2:Ar mixture and in lean (φ = 0.5) and stoichiometric C2H4:O2:Ar mixtures with a high-voltage nanosecond discharge and without it. The measured results were compared with the measurements made previously with the same setup for C2H6-, C2H5OH- and C2H2-containing mixtures. It was shown that the effect of plasma on ignition is almost the same for C2H6, C2H4 and C2H5OH. The reduction in time is smaller for C2H2, the fuel that is well ignited even without the discharge. Autoignition delay time was independent of the stoichiometric ratio for C2H6 and C2H4, whereas this time in stoichiometric C2H2- and C2H5OH-containing mixtures was noticeably shorter than that in the lean mixtures. Ignition after the discharge was not affected by a change in the stoichiometric ratio for C2H2 and C2H4, whereas the plasma-assisted ignition delay time for C2H6 and C2H5OH decreased as the equivalence ratio changed from 1 to 0.5. Ignition delay time was calculated in C2-hydrocarbon-containing mixtures under study by simulating separately discharge and ignition processes. Good agreement was obtained between new measurements and calculated ignition delay times.

  3. Control of plasma-liquid interaction of atmospheric DC glow discharge using liquid electrode

    NASA Astrophysics Data System (ADS)

    Shirai, Naoki; Aoki, Ryuta; Nito, Aihito; Aoki, Takuya; Uchida, Satoshi; Tochikubo, Fumiyoshi

    2014-10-01

    Atmospheric plasma in contact with liquid have a variety of interesting phenomena and applications. Previously, we investigated the fundamental characteristics of an atmospheric dc glow discharge using a liquid electrode with a miniature helium flow. We tried to control the plasma-liquid interaction by changing the plasma parameter such as gas species, liquid, and applied voltage. Sheath flow system enables another gas (N2, O2, Ar) flow to around the helium core flow. It can control the gas species around the discharge. When liquid (NaCl aq.) cathode DC discharge is generated, Na emission (588 nm) can be observed from liquid surface with increasing discharge current. Na emission strongly depends on the discharge current and liquid temperature. However, when Ar sheath flow is used, the intensity of Na becomes weak. When liquid anode DC discharge is generated, self-organized luminous pattern formation can be observed at the liquid surface. The pattern depends on existence of oxygen gas in gap. By changing the oxygen gas ratio in the gap, variety of pattern formation can be observed. The discharge in contact with liquid also can be used for synthesis of metal nanoparticles at plasma-liquid interface. Size and shape of nanoparticles depend on discharge gases. This work was supported financially in part by a Grant-in-Aid for Scientific Research on Innovative Areas (No 21110007) from MEXT, Japan.

  4. Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources

    NASA Astrophysics Data System (ADS)

    Qian, WANG; Feng, LIU; Chuanrun, MIAO; Bing, YAN; Zhi, FANG

    2018-03-01

    A coaxial dielectric barrier discharge (DBD) reactor with double layer dielectric barriers has been developed for exhaust gas treatment and excited either by AC power or nanosecond (ns) pulse to generate atmospheric pressure plasma. The comparative study on the discharge characteristics of the discharge uniformity, power deposition, energy efficiency, and operation temperature between AC and ns pulsed coaxial DBD is carried out in terms of optical and electrical characteristics and operation temperature for optimizing the coaxial DBD reactor performance. The voltages across the air gap and dielectric layer and the conduction and displacement currents are extracted from the applied voltages and measured currents of AC and ns pulsed coaxial DBDs for the calculation of the power depositions and energy efficiencies through an equivalent electrical model. The discharge uniformity and operating temperature of the coaxial DBD reactor are monitored and analyzed by optical images and infrared camera. A heat conduction model is used to calculate the temperature of the internal quartz tube. It is found that the ns pulsed coaxial DBD has a much higher instantaneous power deposition in plasma, a lower total power consumption, and a higher energy efficiency compared with that excited by AC power and is more homogeneous and stable. The temperature of the outside wall of the AC and ns pulse excited coaxial DBD reaches 158 °C and 64.3 °C after 900 s operation, respectively. The experimental results on the comparison of the discharge characteristics of coaxial DBDs excited by different powers are significant for understanding of the mechanism of DBDs, reducing energy loss, and optimizing the performance of coaxial DBD in industrial applications.

  5. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  6. First-principles modeling of laser-matter interaction and plasma dynamics in nanosecond pulsed laser shock processing

    NASA Astrophysics Data System (ADS)

    Zhang, Zhongyang; Nian, Qiong; Doumanidis, Charalabos C.; Liao, Yiliang

    2018-02-01

    Nanosecond pulsed laser shock processing (LSP) techniques, including laser shock peening, laser peen forming, and laser shock imprinting, have been employed for widespread industrial applications. In these processes, the main beneficial characteristic is the laser-induced shockwave with a high pressure (in the order of GPa), which leads to the plastic deformation with an ultrahigh strain rate (105-106/s) on the surface of target materials. Although LSP processes have been extensively studied by experiments, few efforts have been put on elucidating underlying process mechanisms through developing a physics-based process model. In particular, development of a first-principles model is critical for process optimization and novel process design. This work aims at introducing such a theoretical model for a fundamental understanding of process mechanisms in LSP. Emphasis is placed on the laser-matter interaction and plasma dynamics. This model is found to offer capabilities in predicting key parameters including electron and ion temperatures, plasma state variables (temperature, density, and pressure), and the propagation of the laser shockwave. The modeling results were validated by experimental data.

  7. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  8. OH density measured by PLIF in a nanosecond atmospheric pressure diffuse discharge in humid air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Ouaras, K.; Magne, L.; Pasquiers, S.; Tardiveau, P.; Jeanney, P.; Bournonville, B.

    2018-04-01

    The spatiotemporal distributions of the OH radical density are measured using planar laser induced fluorescence in the afterglow of a nanosecond diffuse discharge at atmospheric pressure in humid air. The diffuse discharge is generated between a pin and a grounded plate electrodes within a gap of 18 mm. The high voltage pulse applied to the pin ranges from 65 to 85 kV with a rise time of 2 ns. The specific electrical energy transferred to the gas ranges from 5 to 40 J l‑1. The influence of H2O concentration is studied from 0.5% to 1.5%. An absolute calibration of OH density is performed using a six-level transient rate equation model to simulate the dynamics of OH excitation by the laser, taking into account collisional processes during the optical pumping and the fluorescence. Rayleigh scattering measurements are used to achieve the geometrical part of the calibration. A local maximum of OH density is found in the pin area whatever the operating conditions. For 85 kV and 1% of H2O, this peak reaches a value of 2.0 × 1016 cm‑3 corresponding to 8% of H2O dissociation. The temporal decay of the spatially averaged OH density is found to be similar as in the afterglow of a homogeneous photo-triggered discharge for which a self-consistent modeling is done. These tools are then used to bring discussion elements on OH kinetics.

  9. Edge-to-center plasma density ratios in two-dimensional plasma discharges

    NASA Astrophysics Data System (ADS)

    Lucken, R.; Croes, V.; Lafleur, T.; Raimbault, J.-L.; Bourdon, A.; Chabert, P.

    2018-03-01

    Edge-to-center plasma density ratios—so-called h factors—are important parameters for global models of plasma discharges as they are used to calculate the plasma losses at the reactor walls. There are well-established theories for h factors in the one-dimensional (1D) case. The purpose of this paper is to establish h factors in two-dimensional (2D) systems, with guidance from a 2D particle-in-cell (PIC) simulation. We derive analytical solutions of a 2D fluid theory that includes the effect of ion inertia, but assumes a constant (independent of space) ion collision frequency (using an average ion velocity) across the discharge. Predicted h factors from this 2D fluid theory have the same order of magnitude and the same trends as the PIC simulations when the average ion velocity used in the collision frequency is set equal to the ion thermal velocity. The best agreement is obtained when the average ion velocity varies with pressure (but remains independent of space), going from half the Bohm velocity at low pressure, to the thermal velocity at high pressure. The analysis also shows that a simple correction of the widely-used 1D heuristic formula may be proposed to accurately incorporate 2D effects.

  10. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  11. Fast gas heating and radial distribution of active species in nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures

    NASA Astrophysics Data System (ADS)

    Lepikhin, N. D.; Popov, N. A.; Starikovskaia, S. M.

    2018-05-01

    Fast gas heating is studied experimentally and numerically using pulsed nanosecond capillary discharge in pure nitrogen and N2:O2 mixtures under the conditions of high specific deposited energy (up to 1 eV/molecule) and high reduced electric fields (100–300 Td). Deposited energy, electric field and gas temperature are measured as functions of time. The radial distribution of active species is analyzed experimentally. The roles of processes involving {{{N}}}2({{B}}) ={{{N}}}2({{{B}}}3{{{\\Pi }}}{{g}},{{{W}}}3{{{Δ }}}{{u}},{{B}}{{\\prime} }3{{{Σ }}}{{u}}-), {{{N}}}2({{{A}}}3{{{Σ }}}{{u}}+) and N(2D) excited nitrogen species leading to heat release are analyzed using numerical modeling in the framework of 1D axial approximation.

  12. Characteristics and time evolution of a hollow cathode produced glow discharge plasma in air

    NASA Astrophysics Data System (ADS)

    Gregor, Joseph Atilla

    Current radar systems use mechanical directors and phased array technology for beam steering. Use of a sheet plasma as a microwave reflector promises several advantages over these methods. Operation is inherently broad-band, since all frequencies below the plasma frequency are reflected. The orientation and shape of the reflector may be changed directly through electronic control without resort to moving parts or expensive RF switches. The relatively fast plasma formation and extinction times ([/approx]10/ /mus) allow for rapid redirection of the microwave beam. An experimental system, dubbed the Agile Mirror, has been constructed using a cylindrical LexanTM vacuum chamber suspended within a water cooled Helmholtz coil pair capable of producing a uniform 500 Gauss field. Using this system we have created plasmas capable of reflecting 10 GHz microwaves with characteristics comparable to that of a plane metallic reflector. Most previous glow discharge work has concentrated either on the DC characteristics, or on the very early evolution (<1-2 μs), of the discharge. To create a practical agile mirror direction, we must be able to produce a stable, flat, homogeneous plasma sheet with predictable characteristics timescales from 5 μs to 1 ms-a regime where little pertinent quantitative data exists. This work concentrates on diagnosing the time resolved behavior of the agile mirror plasma during the mid-time, from t = 5-300 μs, in a regime which accentuates observed changes in the discharge circuit characteristics. Measurements on an air discharge produced using VD/approx2.2 kV, p ≈ 208 mTorr, and B ≈ 250 G reveal an ne=1011/ cm-3,/ Te=1[-]3 eV plasma with distinct negative glow, Faraday dark space, and positive column regions. Analysis of time resolved potential, temperature, and spectroscopic data reveal that this discharge transitions-on time scales of [/approx]100/ /mus-into a pure negative glow discharge. The characteristics and evolution of the discharge are

  13. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R.F.; Moore, C.I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approximately}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported. {copyright} {ital 1999 American Institute of Physics.}« less

  14. Intense laser pulse propagation in capillary discharge plasma channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubbard, R. F.; Moore, C. I.; Sprangle, P.

    Optical guiding of intense laser pulses is required for plasma-based accelerator concepts such as the laser wakefield accelerator. Reported experiments have successfully transported intense laser pulses in the hollow plasma column produced by a capillary discharge. The hollow plasma has an index of refraction which peaks on-axis, thus providing optical guiding which overcomes beam expansion due to diffraction. In more recent experiments at Hebrew University, 800 nm wavelength, 0.1 mJ, 100 fs pulses have been guided in {approx}300 micron radius capillaries over distances as long as 6.6 cm. Simulations of these experiments using a 2-D nonlinear laser propagation model producemore » the expected optical guiding, with the laser pulse radius r{sub L} exhibiting oscillations about the equilibrium value predicted by an analytical envelope equation model. The oscillations are damped at the front of the pulse and grow in amplitude in the back of the pulse. This growth and damping is attributed to finite pulse length effects. Simulations also show that further ionization of the discharge plasma by the laser pulse may hollow the laser pulse and introduce modulations in the spot size. This ionization-defocusing effect is expected to be significant at the high intensities required for accelerator application. Capillary discharge experiments at much higher intensities are in progress on the Naval Research Laboratory T{sup 3} laser, and preliminary results are reported.« less

  15. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, Lal A.

    1999-01-01

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission.

  16. Characteristics of cold atmospheric plasma source based on low-current pulsed discharge with coaxial electrodes

    NASA Astrophysics Data System (ADS)

    Bureyev, O. A.; Surkov, Yu S.; Spirina, A. V.

    2017-05-01

    This work investigates the characteristics of the gas discharge system used to create an atmospheric pressure plasma flow. The plasma jet design with a cylindrical graphite cathode and an anode rod located on the axis of the system allows to realize regularly reproducible spark breakdowns mode with a frequency ∼ 5 kHz and a duration ∼ 40 μs. The device generates a cold atmospheric plasma flame with 1 cm in diameter in the flow of various plasma forming gases including nitrogen and air at about 100 mA average discharge current. In the described construction the cathode spots of individual spark channels randomly move along the inner surface of the graphite electrode creating the secondary plasma stream time-average distributed throughout the whole exit aperture area after the decay of numerous filamentary discharge channels. The results of the spectral diagnostics of plasma in the discharge gap and in the stream coming out of the source are presented. Despite the low temperature of atoms and molecules in plasma stream the cathode spots operation with temperature of ∼ 4000 °C at a graphite electrode inside a discharge system enables to saturate the plasma by CN-radicals and atomic carbon in the case of using nitrogen as the working gas.

  17. Particle based plasma simulation for an ion engine discharge chamber

    NASA Astrophysics Data System (ADS)

    Mahalingam, Sudhakar

    Design of the next generation of ion engines can benefit from detailed computer simulations of the plasma in the discharge chamber. In this work a complete particle based approach has been taken to model the discharge chamber plasma. This is the first time that simplifying continuum assumptions on the particle motion have not been made in a discharge chamber model. Because of the long mean free paths of the particles in the discharge chamber continuum models are questionable. The PIC-MCC model developed in this work tracks following particles: neutrals, singly charged ions, doubly charged ions, secondary electrons, and primary electrons. The trajectories of these particles are determined using the Newton-Lorentz's equation of motion including the effects of magnetic and electric fields. Particle collisions are determined using an MCC statistical technique. A large number of collision processes and particle wall interactions are included in the model. The magnetic fields produced by the permanent magnets are determined using Maxwell's equations. The electric fields are determined using an approximate input electric field coupled with a dynamic determination of the electric fields caused by the charged particles. In this work inclusion of the dynamic electric field calculation is made possible by using an inflated plasma permittivity value in the Poisson solver. This allows dynamic electric field calculation with minimal computational requirements in terms of both computer memory and run time. In addition, a number of other numerical procedures such as parallel processing have been implemented to shorten the computational time. The primary results are those modeling the discharge chamber of NASA's NSTAR ion engine at its full operating power. Convergence of numerical results such as total number of particles inside the discharge chamber, average energy of the plasma particles, discharge current, beam current and beam efficiency are obtained. Steady state results for

  18. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  19. Highly porous micro-roughened structures developed on aluminum surface using the jet of rotating arc discharges at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Asadollahi, Siavash; Farzaneh, Masoud; Stafford, Luc

    2018-02-01

    Aluminum 6061 samples were exposed to the jet of an atmospheric pressure rotating arc discharge operated in either nitrogen or air. After multiple passes of treatment with an air-based plasma jet at very short source-to-substrate distances, scanning electron microscopy combined with x-ray photoelectron spectroscopy revealed a highly porous micro-roughened alumina-based structure on the surface of aluminum. Based on optical emission spectroscopy and high-speed optical imaging of the jet interacting with aluminum samples, it was found that the process is mainly driven by the energy transfer from the plasma source to the surface through transient plasma-transferred arcs. The occurrence of multiple arc discharges over very short time scales can induce rapid phase transformations of aluminum with characteristics similar to the ones usually observed during laser ablation of materials with femto- to nanosecond laser pulses or during the formation of cathode spots on the surface of metals.

  20. Interplay between discharge physics, gas phase chemistry and surface processes in hydrocarbon plasmas

    NASA Astrophysics Data System (ADS)

    Hassouni, Khaled

    2013-09-01

    In this paper we present two examples that illustrate two different contexts of the interplay between plasma-surface interaction process and discharge physics and gas phase chemistry in hydrocarbon discharges. In the first example we address the case of diamond deposition processes and illustrate how a detailed investigation of the discharge physics, collisional processes and transport phenomena in the plasma phase make possible to accurately predict the key local-parameters, i.e., species density at the growing substrate, as function of the macroscopic process parameters, thus allowing for a precise control of diamond deposition process. In the second example, we illustrate how the interaction between a rare gas pristine discharge and carbon (graphite) electrode induce a dramatic change on the discharge nature, i.e., composition, ionization kinetics, charge equilibrium, etc., through molecular growth and clustering processes, solid particle formation and dusty plasma generation. Work done in collaboration with Alix Gicquel, Francois Silva, Armelle Michau, Guillaume Lombardi, Xavier Bonnin, Xavier Duten, CNRS, Universite Paris 13.

  1. Development of plasma cathode electron guns

    NASA Astrophysics Data System (ADS)

    Oks, Efim M.; Schanin, Peter M.

    1999-05-01

    The status of experimental research and ongoing development of plasma cathode electron guns in recent years is reviewed, including some novel upgrades and applications to various technological fields. The attractiveness of this kind of e-gun is due to its capability of creating high current, broad or focused beams, both in pulsed and steady-state modes of operation. An important characteristic of the plasma cathode electron gun is the absence of a thermionic cathode, a feature which leads to long lifetime and reliable operation even in the presence of aggressive background gas media and at fore-vacuum gas pressure ranges such as achieved by mechanical pumps. Depending on the required beam parameters, different kinds of plasma discharge systems can be used in plasma cathode electron guns, such as vacuum arcs, constricted gaseous arcs, hollow cathode glows, and two kinds of discharges in crossed E×B fields: Penning and magnetron. At the present time, plasma cathode electron guns provide beams with transverse dimension from fractional millimeter up to about one meter, beam current from microamperes to kiloamperes, beam current density up to about 100 A/cm2, pulse duration from nanoseconds to dc, and electron energy from several keV to hundreds of keV. Applications include electron beam melting and welding, surface treatment, plasma chemistry, radiation technologies, laser pumping, microwave generation, and more.

  2. The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Zheng, Dianfeng

    2016-11-01

    Ignition is a key system in pulse detonation engines (PDE). As advanced ignition methods, nanosecond pulse discharge low-temperature plasma ignition is used in some combustion systems, and continuous alternating current (AC) driven low-temperature plasma using dielectric barrier discharge (DBD) is used for the combustion assistant. However, continuous AC driven plasmas cannot be used for ignition in pulse detonation engines. In this paper, experimental and numerical studies of pneumatic valve PDE using an AC driven low-temperature plasma igniter were described. The pneumatic valve was jointly designed with the low-temperature plasma igniter, and the numerical simulation of the cold-state flow field in the pneumatic valve showed that a complex flow in the discharge area, along with low speed, was beneficial for successful ignition. In the experiments ethylene was used as the fuel and air as oxidizing agent, ignition by an AC driven low-temperature plasma achieved multi-cycle intermittent detonation combustion on a PDE, the working frequency of the PDE reached 15 Hz and the peak pressure of the detonation wave was approximately 2.0 MPa. The experimental verifications of the feasibility in PDE ignition expanded the application field of AC driven low-temperature plasma. supported by National Natural Science Foundation of China (No. 51176001)

  3. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  4. Self-consistent discharge growing model of helicon plasma

    NASA Astrophysics Data System (ADS)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao

    2015-11-01

    Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.

  5. Characterization of Plasma Discharges in a High-Field Magnetic Tandem Mirror

    NASA Technical Reports Server (NTRS)

    Chang-Diaz, Franklin R.

    1998-01-01

    High density magnetized plasma discharges in open-ended geometries, like Tandem Mirrors, have a variety of space applications. Chief among them is the production of variable Specific Impulse (I(sub sp)) and variable thrust in a magnetic nozzle. Our research group is pursuing the experimental characterization of such discharges in our high-field facility located at the Advanced Space Propulsion Laboratory (ASPL). These studies focus on identifying plasma stability criteria as functions of density, temperature and magnetic field strength. Plasma heating is accomplished by both Electron and Ion Cyclotron Resonance (ECR and ICR) at frequencies of 2-3 Ghz and 1-30 Mhz respectively, for both Hydrogen and Helium. Electron density and temperature has measured by movable Langmuir probes. Macroscopic plasma stability is being investigated in ongoing research.

  6. Penning Effects in High-Pressure Discharge of the Plasma Display Panel

    NASA Astrophysics Data System (ADS)

    Kim, S. S.; Choi, E. H.; Uhm, H. S.

    2001-10-01

    The plasma display panel is operated with high-pressure gas, for which the breakdown voltage reduction may be accomplished by mixing a small amount of xenon with neon gas. The UV light emitted from xenon discharge plasma is converted into fluorescent light, providing TV images. A recent theoretical calculation indicates that the breakdown voltage is significantly reduced for the mixed gas due to collisional frequency decrease. It is easy to ionize xenon atoms with low ionization energy. The electrons can also easily get their kinetic energy in neon gas mixed with xenon atoms, thereby reducing their collisional cross section and ionizing xenon atoms. However, previous study indicates that the breakdown voltage can be further reduced by the Penning effects, which has been mostly studied in a low pressure discharge. Influence of the Penning effects on the high-pressure discharge in a neon-xenon mixed gas is investigated in connection with applications to the plasma display panel. A theoretical model for high-pressure discharge is developed. It is shown that the breakdown voltage is reduced by 20 percent at the xenon mole fraction of 0.015, which agree remarkably well with experimental data.

  7. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  8. Polymerization of phenol by using discharged plasma under hydrothermal state

    NASA Astrophysics Data System (ADS)

    Mitsugi, M.; Yoshida, A.; Watanabe, H.; Kiyan, T.; Takade, M.; Miyaji, K.; Namihira, T.; Kuwahara, Y.; Akiyama, H.; Hara, M.; Sasaki, M.; Goto, M.

    2010-03-01

    Supercritical fluid with plasma is a type of green processing media because this technique does not use catalyst and toxic solvents. In this study, we carried out experiments of organic materials in the presence of discharged plasma in sub- and supercritical water to evaluate the possibility for new reactions. For this purpose, we used SUS316 reactor that generates plasma at temperature and pressure up to 573K and 30MPa, respectively. 100 mmol/L aqueous phenol solution was used as starting material. The reactions were carried out at temperature of 523K and under pressure of 25MPa. After a series of reactions, water-soluble, water-insoluble (oily products), solid residue and gaseous product were obtained. For the analysis of these products, HPLC, GC-MS, TOC, GC-TCD and TOF-MS were used. The highest phenol conversion was 16.96% obtained at 523K, 25MPa and with 4000 times discharged plasma. Polymerized phenol was obtained as a product.

  9. Is the negative glow plasma of a direct current glow discharge negatively charged?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I., E-mail: Vladimir.Demidov@mail.wvu.edu

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculationmore » of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.« less

  10. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  11. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    NASA Astrophysics Data System (ADS)

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf, Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning.

  12. Laser-guided energetic discharges over large air gaps by electric-field enhanced plasma filaments

    PubMed Central

    Théberge, Francis; Daigle, Jean-François; Kieffer, Jean-Claude; Vidal, François; Châteauneuf , Marc

    2017-01-01

    Recent works on plasma channels produced during the propagation of ultrashort and intense laser pulses in air demonstrated the guiding of electric discharges along the laser path. However, the short plasma lifetime limits the length of the laser-guided discharge. In this paper, the conductivity and lifetime of long plasma channels produced by ultrashort laser pulses is enhanced efficiently over many orders of magnitude by the electric field of a hybrid AC-DC high-voltage source. The AC electric pulse from a Tesla coil allowed to stimulate and maintain the highly conductive channel during few milliseconds in order to guide a subsequent 500 times more energetic discharge from a 30-kV DC source. This DC discharge was laser-guided over an air gap length of two metres, which is more than two orders of magnitude longer than the expected natural discharge length. Long plasma channel induced by laser pulses and stimulated by an external high-voltage source opens the way for wireless and efficient transportation of energetic current pulses over long air gaps and potentially for guiding lightning. PMID:28053312

  13. Simulation of the Plasma Afterglow in the Discharge Gap of a Subnanosecond Switch Based on an Open Discharge in Helium

    NASA Astrophysics Data System (ADS)

    Alexandrov, A. L.; Schweigert, I. V.

    2018-05-01

    The phenomenon of subnanosecond electrical breakdown in a strong electric field observed in an open discharge in helium at pressures of 6-20 Torr can be used to create ultrafast plasma switches triggering into a conducting state for a time shorter than 1 ns. To evaluate the possible repetition rate of such a subnanosecond switch, it is interesting to study the decay dynamics of the plasma remaining in the discharge gap after ultrafast breakdown. In this paper, a kinetic model based on the particle-in-cell Monte Carlo collision method is used to study the dynamics of the plasma afterglow in the discharge gap of a subnanosecond switch operating with helium at a pressure of 6 Torr. The simulation results show that the radiative, collisional-radiative, and three-body collision recombination mechanisms significantly contribute to the afterglow decay only while the plasma density remains higher than 1012 cm-3; the main mechanism of the further plasma decay is diffusion of plasma particles onto the wall. Therefore, the effect of recombination in the plasma bulk is observed only during the first 10-20 μs of the afterglow. Over nearly the same time, plasma electrons become thermalized. The afterglow time can be substantially reduced by applying a positive voltage U c to the cathode. Since diffusive losses are limited by the ion mobility, the additional ion drift toward the wall significantly accelerates plasma decay. As U c increases from 0 to +500 V, the characteristic time of plasma decay is reduced from 35 to 10 μs.

  14. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  15. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses

    PubMed Central

    Smith, Kyle C.; Weaver, James C.

    2012-01-01

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883

  16. Improvement of wheat seed vitality by dielectric barrier discharge plasma treatment.

    PubMed

    Guo, Qiao; Meng, Yiran; Qu, Guangzhou; Wang, Tiecheng; Yang, Fengning; Liang, Dongli; Hu, Shibin

    2018-02-01

    Influences of discharge voltage on wheat seed vitality were investigated in a dielectric barrier discharge (DBD) plasma system at atmospheric pressure and temperature. Six different treatments were designed, and their discharge voltages were 0.0, 9.0, 11.0, 13.0, 15.0, and 17.0 kV, respectively. Fifty seeds were exposed to the DBD plasma atmosphere with an air flow rate of 1.5 L min -1 for 4 min in each treatment, and then the DBD plasma-treated seeds were prepared for germination in several Petri dishes. Each treatment was repeated three times. Germination indexes, growth indexes, surface topography, water uptake, permeability, and α-amylase activity were measured. DBD plasma treatment at appropriate energy levels had positive effects on wheat seed germination and seedling growth. The germination potential, germination index, and vigor index significantly increased by 31.4%, 13.9%, and 54.6% after DBD treatment at 11.0 kV, respectively, in comparison to the control. Shoot length, root length, dry weight, and fresh weight also significantly increased after the DBD plasma treatment. The seed coat was softened and cracks were observed, systematization of the protein was strengthened, and amount of free starch grain increased after the DBD plasma treatment. Water uptake, relative electroconductivity, soluble protein, and α-amylase activity of the wheat seed were also significantly improved after the DBD plasma treatment. Roles of active species and ultraviolet radiation generated in the DBD plasma process in wheat seed germination and seedling growth are proposed. Bioelectromagnetics. 39:120-131, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  17. Beam-plasma instabilities and the beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Boswell, R. W.

    1986-01-01

    Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.

  18. Development of large volume double ring penning plasma discharge source for efficient light emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd{sub 2}Fe{sub 14}B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic fieldmore » of {approx}0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is {approx}2 Multiplication-Sign 10{sup 11} cm{sup -3}, which is around one order of magnitude larger than that of single ring arrangement.« less

  19. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  20. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    NASA Technical Reports Server (NTRS)

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  1. Micronucleus formation induced by dielectric barrier discharge plasma exposure in brain cancer cells

    NASA Astrophysics Data System (ADS)

    Kaushik, Nagendra K.; Uhm, Hansup; Ha Choi, Eun

    2012-02-01

    Induction of micronucleus formation (cytogenetic damage) in brain cancer cells upon exposure of dielectric barrier discharge plasma has been investigated. We have investigated the influence of exposure and incubation times on T98G brain cancer cells by using growth kinetic, clonogenic, and micronucleus formation assay. We found that micronucleus formation rate directly depends on the plasma exposure time. It is also shown that colony formation capacity of cells has been inhibited by the treatment of plasma at all doses. Cell death and micronucleus formation are shown to be significantly elevated by 120 and 240 s exposure of dielectric barrier discharge plasma.

  2. Effect of actuating voltage and discharge gap on plasma assisted detonation initiation process

    NASA Astrophysics Data System (ADS)

    Siyin, ZHOU; Xueke, CHE; Wansheng, NIE; Di, WANG

    2018-06-01

    The influence of actuating voltage and discharge gap on plasma assisted detonation initiation by alternating current dielectric barrier discharge was studied in detail. A loose coupling method was used to simulate the detonation initiation process of a hydrogen–oxygen mixture in a detonation tube under different actuating voltage amplitudes and discharge gap sizes. Both the discharge products and the detonation forming process assisted by the plasma were analyzed. It was found that the patterns of the temporal and spatial distributions of discharge products in one cycle keep unchanged as changing the two discharge operating parameters. However, the adoption of a higher actuating voltage leads to a higher active species concentration within the discharge zone, and atom H is the most sensitive to the variations of the actuating voltage amplitude among the given species. Adopting a larger discharge gap results in a lower concentration of the active species, and all species have the same sensitivity to the variations of the gap. With respect to the reaction flow of the detonation tube, the corresponding deflagration to detonation transition (DDT) time and distance become slightly longer when a higher actuating voltage is chosen. The acceleration effect of plasma is more prominent with a smaller discharge gap, and the benefit builds gradually throughout the DDT process. Generally, these two control parameters have little effect on the amplitude of the flow field parameters, and they do not alter the combustion degree within the reaction zone.

  3. Transmission characteristics of microwave in a glow-discharge dusty plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia, Jieshu; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn; Gao, Ruilin

    2016-07-15

    In this study, the propagation characteristics of electromagnetic wave in a glow discharge plasma with dust particles are experimentally investigated. A helium alternating current glow discharge plasmas have been successfully generated. Measurements of the plasma parameters using Langmuir probes, in the absence of dust particles, provide plasma densities (n{sub e}) of 10{sup 17 }m{sup −3} and electron temperatures (T{sub e}) ranging from 2 to 4 eV. Dusty plasmas are made by adding 30 nm radius aluminum oxide (Al{sub 2}O{sub 3}) particles into the helium plasma. The density of the dust particle (n{sub d}) in the device is about 10{sup 11}–10{sup 12 }m{sup −3}. Themore » propagation characteristics of electromagnetic waves are determined by a vector network analyzer with 4–6 GHz antennas. An apparent attenuation by the dust is observed, and the measured attenuation data are approximately in accordance with the theoretical calculations. The effects of gas pressure and input power on the propagation are also investigated. Results show that the transmission attenuation increases with the gas pressure and input power, the charged dust particles play a significant role in the microwave attenuation.« less

  4. Sterilization by negative and positive DC plasma with a micro discharge gap at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Hua; Jiang, Lin-Xiu; Jiang, Yong-Rong; Zhu, Jian-Min; Chen, Zhen-Cheng

    2017-11-01

    A new needle-to-droplet electrode structure with a micro discharge gap (2 mm) was designed to achieve direct current (DC) discharge plasma in ambient air with the aim of using the plasma to sterilize liquids. Without using noble gases or an external air flow, we succeeded in generating both a negative and positive DC plasma at atmospheric pressure. The plasma was driven by a 0 to -20,000 V, 100 W DC power supply. A stainless steel needle with a tip diameter of ˜ 50μm and a 200-μL droplet of bacteria-containing liquid served as the electrodes. At atmospheric pressure and room temperature (23∘C), utilizing the negative DC plasma, the discharge time lasted 10 s; the results showed that the higher the discharge voltage, the more efficient the sterilization effect. Conversely, when we applied a voltage of -5.5 kV, we found that the sterilization effect was more efficient for longer discharge times. Our findings demonstrate that Escherichia coli (E. coli) and Bacillus subtilis (B. subtilis) can be killed in about 30 s. Our experiments show that our sterilization method required less time and was more efficient for positive than for negative DC plasma under the same conditions.

  5. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Dacheng; Department of Aeronautics, Fujian Key Laboratory for Plasma and Magnetic Resonance, School of Physics and Mechanical and Electrical Engineering, Xiamen University, Xiamen, Fujian 361005; Zhao Di

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilizationmore » process.« less

  6. Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.

    2017-08-01

    One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.

  7. Broad-beam high-current dc ion source based on a two-stage glow discharge plasma.

    PubMed

    Vizir, A V; Oks, E M; Yushkov, G Yu

    2010-02-01

    We have designed, made, and demonstrated a broad-beam, dc, ion source based on a two-stage, hollow-cathode, and glow discharges plasma. The first-stage discharge (auxiliary discharge) produces electrons that are injected into the cathode cavity of a second-stage discharge (main discharge). The electron injection causes a decrease in the required operating pressure of the main discharge down to 0.05 mTorr and a decrease in required operating voltage down to about 50 V. The decrease in operating voltage of the main discharge leads to a decrease in the fraction of impurity ions in the ion beam extracted from the main gas discharge plasma to less than 0.2%. Another feature of the source is a single-grid accelerating system in which the ion accelerating voltage is applied between the plasma itself and the grid electrode. The source has produced steady-state Ar, O, and N ion beams of about 14 cm diameter and current of more than 2 A at an accelerating voltage of up to 2 kV.

  8. One-dimensional Numerical Model of Transient Discharges in Air of a Spatial Plasma Ignition Device

    NASA Astrophysics Data System (ADS)

    Saceleanu, Florin N.

    This thesis examines the modes of discharge of a plasma ignition device. Oscilloscope data of the discharge voltage and current are analyzed for various pressures in air at ambient temperature. It is determined that the discharge operates in 2 modes: a glow discharge and a postulated streamer discharge. Subsequently, a 1-dimensional fluid simulation of plasma using the finite volume method (FVM) is developed to gain insight into the particle kinetics. Transient results of the simulation agree with theories of electric discharges; however, quasi-steady state results were not reached due to high diffusion time of ions in air. Next, an ordinary differential equation (ODE) is derived to understand the discharge transition. Simulated results were used to estimate the voltage waveform, which describes the ODE's forcing function; additional simulated results were used to estimate the discharge current and the ODE's non-linearity. It is found that the ODE's non-linearity increases exponentially for capacitive discharges. It is postulated that the non-linearity defines the mode transition observed experimentally. The research is motivated by Spatial Plasma Discharge Ignition (SPDI), an innovative ignition system postulated to increase combustion efficiency in automobile engines for up to 9%. The research thus far can only hypothesize SPDI's benefits on combustion, based on the literature review and the modes of discharge.

  9. Nonuniform discharge currents in active plasma lenses

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Tsai, H. -E.; ...

    2017-03-24

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  10. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  11. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space 1 spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  12. Plume and Discharge Plasma Measurements of an NSTAR-type Ion Thruster

    NASA Technical Reports Server (NTRS)

    Foster, John E; Soulas, George C.; Patterson, Michael J.

    2000-01-01

    The success of the NASA Deep Space I spacecraft has demonstrated that ion propulsion is a viable option for deep space science missions. More aggressive missions such as Comet Nuclear Sample Return and Europa lander will require higher power, higher propellant throughput and longer thruster lifetime than the NASA Solar Electric Propulsion Technology Application Readiness (NSTAR) engine. Presented here are thruster plume and discharge plasma measurements of an NSTAR-type thruster operated from 0.5 kW to 5 kW. From Faraday plume sweeps, beam divergence was determined. From Langmuir probe plume measurements on centerline, low energy ion production on axis due to charge-exchange and direct ionization was assessed. Additionally, plume plasma potential measurements made on axis were used to determine the upper energy limits at which ions created on centerline could be radially accelerated. Wall probes flush-mounted to the thruster discharge chamber anode were used to assess plasma conditions. Langmuir probe measurements at the wall indicated significant differences in the electron temperature in the cylindrical and conical sections of the discharge chamber.

  13. Nonuniformity of the chemical composition of a capillary discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocharyan, A. E.; Bobrova, N. A.; Sasorov, P. V.

    A steady-state distribution of the concentration of two ion species in a capillary discharge plasma is studied using MHD equations for a plasma with a spatially nonuniform, time-dependent chemical composition. In our case, the set of equations is significantly simplified because of the steady-state character and symmetry of the problem. Even with such simplification, however, some results could be obtained only by numerical integration. The factors affecting the distribution of heavy ions are studied. It is shown that the distribution of the heavy impurity over the discharge cross section can be much more nonuniform than the distribution of the mainmore » component (hydrogen). A simple criterion for such a nonuniformity is obtained.« less

  14. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.

    PubMed

    Smith, Kyle C; Weaver, James C

    2011-08-19

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Temporal and thermodynamic characteristics of plasma formation

    NASA Astrophysics Data System (ADS)

    Ignatavichyus, M. V.; Kazakyavichyus, É.; Orshevski, G.; Danyunas, V.

    1991-11-01

    An investigation was made of plasma formation accompanying the interaction with aluminum, iron, and VK-6 alloy targets of nanosecond radiation from a YAG:Nd3+ laser (Emax = 50 mJ, τ = 3-8 ns). The duration of the plasma formation process depended weakly on the laser radiation parameters [the power density was varied in the range 1-3 GW/cm2, the pulse rise time in the range 2-8 ns, or the rate of rise of the power density in the range (1-8) × 108 W · cm - 2 · ns -1]. A study was made of the establishment of a local thermodynamic equilibrium in a plasma jet excited by radiation from nanosecond and picosecond (E = 30 mJ, τ = 40 ps) lasers. The maximum of the luminescence from an aluminum plasma excited by picosecond laser radiation was found to correspond to a local thermodynamic equilibrium. A local thermodynamic equilibrium could be absent in the case of excitation by nanosecond laser radiation.

  16. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468

  17. The measurement of argon metastable atoms in the barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Ghildina, Anna R.; Mikheyev, Pavel Anatolyevich; Chernyshov, Aleksandr Konstantinovich; Lunev, Nikolai Nikolaevich; Azyazov, Valeriy Nikolaevich

    2018-04-01

    The mandatory condition for efficient operation of an optically-pumped all-rare-gas laser (OPRGL) is the presence of rare gas metastable atoms in the discharge plasma with number density of the order of 1012-1013 cm-3. This requirement mainly depends on the choice of a discharge system. In this study the number density values of argon metastable atoms were obtained in the condition of the dielectric-barrier discharge (DBD) at an atmospheric pressure.

  18. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  19. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  20. Internal Plasma Properties and Enhanced Performance of an 8 cm Ion Thruster Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    1999-01-01

    There is a need for a lightweight, low power ion thruster for space science missions. Such an ion thruster is under development at NASA Glenn Research Center. In an effort to better understand the discharge performance of this thruster. a version of this thruster with an anode containing electrically isolated electrodes at the cusps was fabricated and tested. Discharge characteristics of this ring cusp ion thruster were measured without ion beam extraction. Discharge current was measured at collection electrodes located at the cusps and at the anode body itself. Discharge performance and plasma properties were measured as a function of discharge power, which was varied between 20 and 50 W. It was found that ion production costs decreased by as much as 20 percent when the two most downstream cusp electrodes were allowed to float. Floating the electrodes did not give rise to a significant increase in discharge power even though the plasma density increased markedly. The improved performance is attributed to enhanced electron containment.

  1. Atmospheric Gaseous Plasma with Large Dimensions

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey

    2012-10-01

    The forming of atmospheric plasma with large dimensions using electrical discharge typically uses the Dielectric Barrier Discharge (DBD). The study of atmospheric DBD was shown some problems related to homogeneous volume plasma. The volume of this plasma determines by cross section and gas gap between electrode and dielectric. The using of electron beam for volume ionization of air molecules by CW relativistic electron beams was shown the high efficiency of this process [1, 2]. The main advantage of this approach consists in the ionization of gas molecules by electrons in longitudinal direction determines by their kinetic energy. A novel method for forming of atmospheric homogeneous plasma with large volume dimensions using ionization of gas molecules by pulsed non-relativistic electron beams is presented in the paper. The results of computer modeling for delivered doses of electron beams in gases and ionization are discussed. The structure of experimental bench with plasma diagnostics is considered. The preliminary results of forming atmospheric plasma with ionization gas molecules by pulsed nanosecond non-relativistic electron beam are given. The analysis of potential applications for atmospheric volume plasma is presented. Reference: [1] S. Korenev. ``The ionization of air by scanning relativistic high power CW electron beam,'' 2002 IEEE International Conference on Plasma Science. May 2002, Alberta, Canada. [2] S. Korenev, I. Korenev. ``The propagation of high power CW scanning electron beam in air.'' BEAMS 2002: 14th International Conference on High-Power Particle Beams, Albuquerque, New Mexico (USA), June 2002, AIP Conference Proceedings Vol. 650(1), pp. 373-376. December 17.

  2. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  3. Boundary Layer Flow Control with a One Atmosphere Uniform Glow Discharge Surface Plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. Reece; Sherman, Daniel M.; Wilkinson, Stephen P.

    1998-01-01

    Low speed wind tunnel data have been acquired for planar panels covered by a uniform, glow-discharge surface plasma in atmospheric pressure air known as the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Streamwise and spanwise arrays of flush, plasma-generating surface electrodes have been studied in laminar, transitional, and fully turbulent boundary layer flow. Plasma between symmetric streamwise electrode strips caused large increases in panel drag, whereas asymmetric spanwise electrode configurations produced a significant thrust. Smoke wire flow visualization and mean velocity diagnostics show the primary cause of the phenomena to be a combination of mass transport and vortical structures induced by strong paraelectric ElectroHydroDynamic (EHD) body forces on the flow.

  4. Electric characteristics of a surface barrier discharge with a plasma induction electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alemskii, I. N.; Lelevkin, V. M.; Tokarev, A. V.

    2006-07-15

    Static and dynamic current-voltage and charge-voltage characteristics of a surface barrier discharge with a plasma induction electrode have been investigated experimentally. The dependences of the discharge current on both the gas pressure in the induction electrode tube and the winding pitch of the corona electrode, as well as of the discharge power efficiency on the applied voltage, have been measured.

  5. First Breakthrough for Future Air-Breathing Magneto-Plasma Propulsion Systems

    NASA Astrophysics Data System (ADS)

    Göksel, B.; Mashek, I. Ch

    2017-04-01

    A new breakthrough in jet propulsion technology since the invention of the jet engine is achieved. The first critical tests for future air-breathing magneto-plasma propulsion systems have been successfully completed. In this regard, it is also the first time that a pinching dense plasma focus discharge could be ignited at one atmosphere and driven in pulse mode using very fast, nanosecond electrostatic excitations to induce self-organized plasma channels for ignition of the propulsive main discharge. Depending on the capacitor voltage (200-600 V) the energy input at one atmosphere varies from 52-320 J/pulse corresponding to impulse bits from 1.2-8.0 mNs. Such a new pulsed plasma propulsion system driven with one thousand pulses per second would already have thrust-to-area ratios (50-150 kN/m²) of modern jet engines. An array of thrusters could enable future aircrafts and airships to start from ground and reach altitudes up to 50km and beyond. The needed high power could be provided by future compact plasma fusion reactors already in development by aerospace companies. The magneto-plasma compressor itself was originally developed by Russian scientists as plasma fusion device and was later miniaturized for supersonic flow control applications. So the first breakthrough is based on a spin-off plasma fusion technology.

  6. A comparative study on the activity of TiO2 in pulsed plasma under different discharge conditions

    NASA Astrophysics Data System (ADS)

    Lijuan, DUAN; Nan, JIANG; Na, LU; Kefeng, SHANG; Jie, LI; Yan, WU

    2018-05-01

    In the present study, a combination of pulsed discharge plasma and TiO2 (plasma/TiO2) has been developed in order to study the activity of TiO2 by varying the discharge conditions of pulsed voltage, discharge mode, air flow rate and solution conductivity. Phenol was used as the chemical probe to characterize the activity of TiO2 in a pulsed discharge system. The experimental results showed that the phenol removal efficiency could be improved by about 10% by increasing the applied voltage. The phenol removal efficiency for three discharge modes in the plasma-discharge-alone system was found to be highest in the spark mode, followed by the spark–streamer mode and finally the streamer mode. In the plasma/TiO2 system, the highest catalytic effect of TiO2 was observed in the spark–streamer discharge mode, which may be attributed to the favorable chemical and physical effects from the spark–streamer discharge mode, such as ultraviolet light, O3, H2O2, pyrolysis, shockwaves and high-energy electrons. Meanwhile, the optimal flow rate and conductivity were 0.05 m3 l‑1 and 10 μS cm‑1, respectively. The main phenolic intermediates were hydroquinone, catechol, and p-benzoquinone during the discharge treatment process. A different phenol degradation pathway was observed in the plasma/TiO2 system as compared to plasma alone. Analysis of the reaction intermediates demonstrated that p-benzoquinone reduction was selectively catalyzed on the TiO2 surface. The effective decomposition of phenol constant (D e) increased from 74.11% to 79.16% when TiO2 was added, indicating that higher phenol mineralization was achieved in the plasma/TiO2 system.

  7. A compact, low cost Marx bank for generating capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Dyson, A. E.; Thornton, C.; Hooker, S. M.

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  8. FAST TRACK COMMUNICATION: Effects of Penning ionization on the discharge patterns of atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Li, Qing; Zhu, Wen-Chao; Zhu, Xi-Ming; Pu, Yi-Kang

    2010-09-01

    Atmospheric pressure plasma jets, generated in a coaxial dielectric barrier discharge configuration, have been investigated with different flowing gases. Discharge patterns in different tube regions were compared in the flowing gases of helium, neon and krypton. To explain the difference of these discharge patterns, a theoretical analysis is presented to reveal the possible basic processes. A comparison of experimental and theoretical results identifies that Penning ionization is mainly responsible for the discharge patterns of helium and neon plasma jets.

  9. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  10. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tie, W., E-mail: twh.110.666@163.com, E-mail: 84470220@qq.com; Xi'an Jiaotong University, Xi'an 710049; Liu, S.

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 10{sup 6 }cm/s. The electron temperature decreased from 2.0 eVmore » to 1.3 eV, and the electron density increased from 3.1 × 10{sup 15}/cm{sup 3} to 6.3 × 10{sup 15}/cm{sup 3} at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.« less

  11. Numerical simulation of the coaxial magneto-plasma accelerator and non-axisymmetric radio frequency discharge

    NASA Astrophysics Data System (ADS)

    Kuzenov, V. V.; Ryzhkov, S. V.; Frolko, P. A.

    2017-05-01

    The paper presents the results of mathematical modeling of physical processes in electronic devices such as helicon discharge and coaxial pulsed plasma thruster. A mathematical model of coaxial magneto-plasma accelerator (with a preionization helicon discharge), which allows estimating the transformation of one form of energy to another, as well as to evaluate the level of the contribution of different types of energy, the increase in mass of the accelerated plasmoid in the process of changing the speed. Main plasma parameters with experimental data were compared.

  12. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  13. Heating and cooling of the multiply charged ion nonequilibrium plasma in a high-current extended low-inductance discharge

    NASA Astrophysics Data System (ADS)

    Burtsev, V. A.; Kalinin, N. V.

    2014-09-01

    Using a radiation magnetohydrodynamics two-temperature model (RMHD model) of a high-current volumetric radiating Z-discharge, the heating and cooling of the nitrogen plasma in a pulsed pinched extended discharge is investigated as applied to the problem of creating a recombination laser based on 3 → 2 transitions of hydrogen-like nitrogen ions (λ = 13.4 nm). It is shown that the power supply of the discharge, which is represented by a dual storage-forming line and a transmission line, makes it possible to raise the power density of the nitrogen plasma to 0.01-1.00 TW/cm3. Accordingly, there arises the possibility of generating a fully ionized (i.e., consisting of bare nuclei and electrons) plasma through the heating (compression) of electrons owing to the self-magnetic field of the plasma current and Joule heat even if the plasma is cooled by its own radiation at this stage. Such a plasma is needed to produce the lasing (active) medium of a recombination laser based on electron transitions in hydrogen-like ions. At the second stage, it is necessary to rapidly and deeply cool the plasma to 20-40 eV for 1-2 ns. Cooling of the fully ionized expanding plasma was numerically simulated with the discharge current switched on and off by means of a switch with a rapidly rising resistance. In both cases, the plasma expansion in the discharge is not adiabatic. Even after the discharge current is fairly rapidly switched off, heating of electrons continues inside the plasma column for a time longer than the switching time. Discharge current switchoff improves the electron cooling efficiency only slightly. Under such conditions, the plasma cools down to 50-60 eV in the former case and to 46-54 eV in the latter case for 2-3 ns.

  14. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  15. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air.

    PubMed

    Jain, Vishal; Visani, Anand; Srinivasan, R; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (∼0.28 W/cm 2 ) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (∼50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  16. Design and development of a low cost, high current density power supply for streamer free atmospheric pressure DBD plasma generation in air

    NASA Astrophysics Data System (ADS)

    Jain, Vishal; Visani, Anand; Srinivasan, R.; Agarwal, Vivek

    2018-03-01

    This paper presents a new power supply architecture for generating a uniform dielectric barrier discharge (DBD) plasma in air medium at atmospheric pressure. It is quite a challenge to generate atmospheric pressure uniform glow discharge plasma, especially in air. This is because air plasma needs very high voltage for initiation of discharge. If the high voltage is used along with high current density, it leads to the formation of streamers, which is undesirable for most applications like textile treatment, etc. Researchers have tried to generate high-density plasma using a RF source, nanosecond pulsed DC source, and medium frequency AC source. However, these solutions suffer from low current discharge and low efficiency due to the addition of an external resistor to control the discharge current. Moreover, they are relatively costly and bulky. This paper presents a new power supply configuration which is very compact and generates high average density (˜0.28 W/cm2) uniform glow DBD plasma in air at atmospheric pressure. The efficiency is also higher as no external resistor is required to control the discharge current. An inherent feature of this topology is that it can drive higher current oscillations (˜50 A peak and 2-3 MHz frequency) into the plasma that damp out due to the plasma dissipation only. A newly proposed model has been used with experimental validation in this paper. Simulations and experimental validation of the proposed topology are included. Also, the application of the generated plasma for polymer film treatment is demonstrated.

  17. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  18. Novel high-frequency energy-efficient pulsed-dc generator for capacitively coupled plasma discharge.

    PubMed

    Mamun, Md Abdullah Al; Furuta, Hiroshi; Hatta, Akimitsu

    2018-03-01

    The circuit design, assembly, and operating tests of a high-frequency and high-voltage (HV) pulsed dc generator (PDG) for capacitively coupled plasma (CCP) discharge inside a vacuum chamber are reported. For capacitive loads, it is challenging to obtain sharp rectangular pulses with fast rising and falling edges, requiring intense current for quick charging and discharging. The requirement of intense current generally limits the pulse operation frequency. In this study, we present a new type of PDG consisting of a pair of half-resonant converters and a constant current-controller circuit connected with HV solid-state power switches that can deliver almost rectangular high voltage pulses with fast rising and falling edges for CCP discharge. A prototype of the PDG is assembled to modulate from a high-voltage direct current (HVdc) input into a pulsed HVdc output, while following an input pulse signal and a set current level. The pulse rise time and fall time are less than 500 ns and 800 ns, respectively, and the minimum pulse width is 1 µs. The maximum voltage for a negative pulse is 1000 V, and the maximum repetition frequency is 500 kHz. During the pulse on time, the plasma discharge current is controlled steadily at the set value. The half-resonant converters in the PDG perform recovery of the remaining energy from the capacitive load at every termination of pulse discharge. The PDG performed with a high energy efficiency of 85% from the HVdc input to the pulsed dc output at a repetition rate of 1 kHz and with stable plasma operation in various discharge conditions. The results suggest that the developed PDG can be considered to be more efficient for plasma processing by CCP.

  19. Effects of gas temperature in the plasma layer on RONS generation in array-type dielectric barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Yoon, Sung-Young; Yi, Changho; Eom, Sangheum; Park, Seungil; Kim, Seong Bong; Ryu, Seungmin; Yoo, Suk Jae

    2017-12-01

    In this work, we studied the control of plasma-produced species under a fixed gas composition (i.e., ambient air) in a 10 kHz-driven array-type dielectric barrier atmospheric-pressure plasma discharge. Instead of the gas composition, only the gas velocity was controlled. Thus, the plasma-maintenance cost was considerably lower than methods such as external N2 or O2 injection. The plasma-produced species were monitored using Fourier transformed infrared spectroscopy. The discharge properties were measured using a voltage probe, current probe, infrared camera, and optical emission spectroscopy. The results showed that the major plasma products largely depend on the gas temperature in the plasma discharge layer. The gas temperature in the plasma discharge layer was significantly different to the temperature of the ceramic adjacent to the plasma discharge layer, even in the small discharge power density of ˜15 W/cm2 or ˜100 W/cm3. Because the vibrational excitation of N2 was suppressed by the higher gas flow, the major plasma-produced species shifted from NOx in low flow to O3 in high flow.

  20. Experimental observation of the inductive electric field and related plasma nonuniformity in high frequency capacitive discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S. K.; Chang, H. Y.

    To elucidate plasma nonuniformity in high frequency capacitive discharges, Langmuir probe and B-dot probe measurements were carried out in the radial direction in a cylindrical capacitive discharge driven at 90 MHz with argon pressures of 50 and 400 mTorr. Through the measurements, a significant inductive electric field (i.e., time-varying magnetic field) was observed at the radial edge, and it was found that the inductive electric field creates strong plasma nonuniformity at high pressure operation. The plasma nonuniformity at high pressure operation is physically similar to the E-H mode transition typically observed in inductive discharges. This result agrees well with themore » theories of electromagnetic effects in large area and/or high frequency capacitive discharges.« less

  1. A study of the effect on human mesenchymal stem cells of an atmospheric pressure plasma source driven by different voltage waveforms

    NASA Astrophysics Data System (ADS)

    Laurita, R.; Alviano, F.; Marchionni, C.; Abruzzo, P. M.; Bolotta, A.; Bonsi, L.; Colombo, V.; Gherardi, M.; Liguori, A.; Ricci, F.; Rossi, M.; Stancampiano, A.; Tazzari, P. L.; Marini, M.

    2016-09-01

    The effect of an atmospheric pressure non-equilibrium plasma on human mesenchymal stem cells was investigated. A dielectric barrier discharge non-equilibrium plasma source driven by two different high-voltage pulsed generators was used and cell survival, senescence, proliferation, and differentiation were evaluated. Cells deprived of the culture medium and treated with nanosecond pulsed plasma showed a higher mortality rate, while higher survival and retention of proliferation were observed in cells treated with microsecond pulsed plasma in the presence of the culture medium. While a few treated cells showed the hallmarks of senescence, unexpected delayed apoptosis ensued in cells exposed to plasma-treated medium. The plasma treatment did not change the expression of OCT4, a marker of mesenchymal stem cell differentiation.

  2. Performance of a green propellant thruster with discharge plasma

    NASA Astrophysics Data System (ADS)

    Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki

    2017-02-01

    A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.

  3. Controlled cytotoxicity of plasma treated water formulated by open-air hybrid mode discharge

    NASA Astrophysics Data System (ADS)

    Lu, P.; Boehm, D.; Cullen, P.; Bourke, P.

    2017-06-01

    Plasma treated liquids (PTLs) provide a means to convey a broad range of effects of relevance for food, environmental, or clinical decontamination, plant growth promotion, and therapeutic applications. Devising the reactive species ingredients and controlling the biological response of PTLs are of great interest. We demonstrate an approach by using an open-air hybrid mode discharge (HMD) to control the principal reactive species composition within plasma treated water (PTW), which is then demonstrated to regulate the cytotoxicity of PTW. The cytotoxicity of HMD produced PTW demonstrates a non-monotonic change over the discharge time. Although hydrogen peroxide and nitrite are not the sole effectors for cell death caused by PTW, using them as principal reactive species indicators, cytotoxicity can be removed and/or enhanced by formulating their concentrations and composition through adjusting the discharge mode and time on-line during PTW generation without the addition of additional working gas or chemical scavengers. This work demonstrates that a hybrid mode discharge can be employed to generate a PTW formulation to control a biological response such as cytotoxicity. This provides insights into how plasma treated liquids may be harnessed for biological applications in a specific and controllable manner.

  4. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water

    NASA Astrophysics Data System (ADS)

    Locke, Bruce R.; Shih, Kai-Yuan

    2011-06-01

    This paper presents a review of the literature dealing with the formation of hydrogen peroxide from plasma processes. Energy yields for hydrogen peroxide generation by plasma from water span approximately three orders of magnitude from 4 × 10-2 to 80 g kWh-1. A wide range of plasma processes from rf to pulsed, ac, and dc discharges directly in the liquid phase have similar energy yields and may thus be limited by radical quenching processes at the plasma-liquid interface. Reactor modification using discharges in bubbles and discharges over the liquid phase can provide modest improvements in energy yield over direct discharge in the liquid, but the interpretation is complicated by additional chemical reactions of gas phase components such as ozone and nitrogen oxides. The highest efficiency plasma process utilizes liquid water droplets that may enhance efficiency by sequestering hydrogen peroxide in the liquid and by suppressing decomposition reactions by radicals from the gas and at the interface. Kinetic simulations of water vapor reported in the literature suggest that plasma generation of hydrogen peroxide should approach 45% of the thermodynamics limit, and this fact coupled with experimental studies demonstrating improvements with the presence of the condensed liquid phase suggest that further improvements in energy yield may be possible. Plasma generation of hydrogen peroxide directly from water compares favorably with a number of other methods including electron beam, ultrasound, electrochemical and photochemical methods, and other chemical processes.

  5. A compact, low cost Marx bank for generating capillary discharge plasmas.

    PubMed

    Dyson, A E; Thornton, C; Hooker, S M

    2016-09-01

    We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈10 18 cm -3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm  ×  25 cm  ×  5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.

  6. Near Discharge Cathode Assembly Plasma Potential Measurements in a 30-cm NSTAR Type Ion Engine During Beam Extraction

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Floating emissive probe plasma potential data are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring-cusp ion thruster. Discharge plasma data are presented with beam extraction at throttling conditions comparable to the NASA TH Levels 8, 12, and 15. The operating conditions of the Extended Life Test (ELT) of the Deep Space One (DS1) flight spare ion engine, where anomalous discharge keeper erosion occurred, were TH 8 and TH 12 consequently they are of specific interest in investigating discharge keeper erosion phenomena. The data do not validate the presence of a potential hill plasma structure downstream of the DCA, which has been proposed as a possible erosion mechanism. The data are comparable in magnitude to data taken by other researchers in ring-cusp electron-bombardment ion thrusters. The plasma potential structures are insensitive to thruster throttling level with a minimum as low as 14 V measured at the DCA exit plane and increasing gradually in the axial direction. A sharp increase in plasma potential to the bulk discharge value of 26 to 28 volts, roughly 10 mm radially from DCA centerline, was observed. Plasma potential measurements indicate a low-potential plume structure that is roughly 20 mm in diameter emanating from the discharge cathode that may be attributed to a free-standing plasma double layer.

  7. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    NASA Astrophysics Data System (ADS)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  8. Plasma-Chemical Synthesis of Oxide Powders Using Transformer-Coupled Discharge

    NASA Astrophysics Data System (ADS)

    M. Ulanov, I.; V. Isupov, M.; Yu Litvinsev, A.; A. Mischenko, P.

    2013-04-01

    An experimental investigation of transformer-coupled discharge in an Ar-O2 mixture with the addition of SiCl4, TiCl4 and ZrCl4 has been carried out under the atmospheric pressure of plasma-forming gases. Discharge power and discharge heat losses have been determined, and the dispersion and phase composition of reaction products (oxide powders) has been analyzed with SEM and X-ray diffraction analysis. Investigations reveal the formation of ultrafine oxide powders in the case of vaporized chloride (SiCl4 and TiCl4) injecting into the transformer coupled discharge. In the case of fine powder (ZrCl4) injection, full oxidation was not observed and reaction products consisted of a mixture of ZrO2 and ZrOCl2. A conclusion has been made regarding the perspectives of using transformer-coupled discharge to produce ultrafine oxide powders.

  9. Effects of Electric Discharge Plasma Treatment on the Thermal Conductivity of Polymer-Metal Nitride/Carbide Composites

    NASA Astrophysics Data System (ADS)

    Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara

    2015-11-01

    High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.

  10. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Note: Arc discharge plasma source with plane segmented LaB{sub 6} cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmetov, T. D., E-mail: t.d.akhmetov@inp.nsk.su; Davydenko, V. I.; Ivanov, A. A.

    2016-05-15

    A plane cathode composed of close-packed hexagonal LaB{sub 6} (lanthanum hexaboride) segments is described. The 6 cm diameter circular cathode is heated by radiation from a graphite foil flat spiral. The cathode along with a hollow copper anode is used for the arc discharge plasma production in a newly developed linear plasma device. A separately powered coil located around the anode is used to change the magnetic field strength and geometry in the anode region. Different discharge regimes were realized using this coil.

  12. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE PAGES

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; ...

    2017-12-27

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  13. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique is proposed. Our method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. We could use large aspect ratio rectangular capillaries to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  14. On production and asymmetric focusing of flat electron beams using rectangular capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bagdasarov, G. A.; Bobrova, N. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Sasorov, P. V.; Gasilov, V. A.; Barber, S. K.; Bulanov, S. S.; Gonsalves, A. J.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.; Kando, M.; Bulanov, S. V.

    2017-12-01

    A method for the asymmetric focusing of electron bunches, based on the active plasma lensing technique, is proposed. This method takes advantage of the strong inhomogeneous magnetic field generated inside the capillary discharge plasma to focus on the ultrarelativistic electrons. The plasma and magnetic field parameters inside the capillary discharge are described theoretically and modeled with dissipative magnetohydrodynamic computer simulations enabling analysis of the capillaries of rectangle cross-sections. Large aspect ratio rectangular capillaries might be used to transport electron beams with high emittance asymmetries, as well as assist in forming spatially flat electron bunches for final focusing before the interaction point.

  15. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  16. A Novel Nanosecond Pulsed Power Unit for the Formation of ·OH in Water

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Hu, Sheng; Zhang, Han

    2012-04-01

    A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of ·OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of ·OH increased with the increase in peak voltage, and the generation rates of ·OH were 4.1 × 10-10 mol/s, 5.7 × 10-10 mol/s, and 7.7 × 10-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10-12 mol/J obtained.

  17. NOx formation in apokamp-type atmospheric pressure plasma jets in air initiated by a pulse-repetitive discharge

    NASA Astrophysics Data System (ADS)

    Sosnin, Eduard A.; Didenko, Maria V.; Panarin, Victor A.; Skakun, Victor S.; Tarasenko, Victor F.; Liu, Dongping P.; Song, Ying

    2018-04-01

    The decomposition products of atmospheric pressure plasma of repetitive pulsed discharge in apokamp and corona modes were determined by optical and chemical methods. It is shown, that the decomposition products contain mainly nitrogen oxides NOx. A brief review of the plasma- and thermochemical reactions in the pulsed discharges was made. The review and experimental data allow us to explain the reactive oxygen species formation mechanisms in a potential discharge channel with apokamp. The possible applications of this plasma source for treatment of seeds of agricultural crops are discussed.

  18. Plasma dynamics in a packed bed dielectric barrier discharge (DBD) operated in helium

    NASA Astrophysics Data System (ADS)

    Mujahid, Zaka-ul-Islam; Hala, Ahmed

    2018-03-01

    Packed bed dielectric barrier discharges (DBDs) are very promising for several applications including remediation of environmental pollutants and greenhouse gas conversion. In this work, we have investigated the space and time-resolved emission from a packed bed DBD operated in helium, to understand the plasma dynamics. We have chosen a simple planar DBD arrangement with a patterned dielectric, which mimics the spherical boundaries between the dielectric pellets and allows the optical access to the plasma. The results show that plasma is sustained in a packed bed DBD by three mechanisms: filamentary discharge in the void (between the center of dielectric structures and the opposite electrode), microdischarges at the contact points and surface ionization waves over the dielectric surface. It is observed that for most of the duration plasma is generated at the contact points between the dielectric structures.

  19. Tesla coil discharges guided by femtosecond laser filaments in air

    NASA Astrophysics Data System (ADS)

    Brelet, Yohann; Houard, Aurélien; Arantchouk, Leonid; Forestier, Benjamin; Liu, Yi; Prade, Bernard; Carbonnel, Jérôme; André, Yves-Bernard; Mysyrowicz, André

    2012-04-01

    A Tesla coil generator was designed to produce high voltage pulses oscillating at 100 kHz synchronisable with a nanosecond temporal jitter. Using this compact high voltage generator, we demonstrate reproducible meter long discharges in air at a repetition rate of 1 Hz. Triggering and guiding of the discharges are performed in air by femtosecond laser filaments.

  20. Analysis on the spectra and synchronous radiated electric field observation of cloud-to-ground lightning discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cen Jianyong; Yuan Ping; Qu Haiyan

    2011-11-15

    According to the spectra of cloud-to-ground (CG) lightning discharge plasma captured by a slit-less spectrograph and the information of synchronous radiated electric field, the temperatures, the total intensity of spectra, the peak value of current and its action integral of discharge plasma channel have been calculated. Furthermore, the correlativity of these parameters has been analyzed for the first time. The results indicate that the total intensity of spectra has a positive correlation to the discharge current in different strokes of one CG lightning, and the temperature of discharge plasma is direct proportion to the action integral in the first returnmore » strokes of different lightning.« less

  1. Study of Plasma Flows Generated in Plasma Focus Discharge in Different Regimes of Working Gas Filling

    NASA Astrophysics Data System (ADS)

    Voitenko, D. A.; Ananyev, S. S.; Astapenko, G. I.; Basilaia, A. D.; Markolia, A. I.; Mitrofanov, K. N.; Myalton, V. V.; Timoshenko, A. P.; Kharrasov, A. M.; Krauz, V. I.

    2017-12-01

    Results are presented from experimental studies of the plasma flows generated in the KPF-4 Phoenix Mather-type plasma focus device (Sukhum Physical Technical Institute). In order to study how the formation and dynamics of the plasma flow depend on the initial distribution of the working gas, a system of pulsed gas puffing into the discharge volume was developed. The system allows one to create profiled gas distributions, including those with a reduced gas density in the region of plasma flow propagation. Results of measurements of the magnetic field, flow profile, and flow deceleration dynamics at different initial distributions of the gas pressure are presented.

  2. Decomposition of L-valine under nonthermal dielectric barrier discharge plasma.

    PubMed

    Li, Yingying; Kojtari, Arben; Friedman, Gary; Brooks, Ari D; Fridman, Alex; Ji, Hai-Feng

    2014-02-13

    L-Valine solutions in water and phosphate buffer were treated with nonthermal plasma generated by using a dielectric barrier discharge (DBD) device and the products generated after plasma treatments were characterized by (1)H NMR and GC-MS. Our results demonstrate that L-valine is decomposed to acetone, formic acid, acetic acid, threo-methylaspartic acid, erythro-methlyaspartic acid, and pyruvic acid after direct exposure to DBD plasma. The concentrations of these compounds are time-dependent with plasma treatment. The mechanisms of L-valine under the DBD plasma are also proposed in this study. Acetone, pyruvic acid, and organic radicals (•)CHO, CH3COCH2OO(•) (acetonylperoxy), and CH3COC(OH)2OO(•) (1,1-dihydroxypropan-2-one peroxy) may be the determining chemicals in DNA damage.

  3. Investigation of the relevant kinetic processes in the initial stage of a double-arcing instability in oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Mancinelli, B.; Prevosto, L.; Chamorro, J. C.; Minotti, F. O.; Kelly, H.

    2018-05-01

    A numerical investigation of the kinetic processes in the initial (nanosecond range) stage of the double-arcing instability was developed. The plasma-sheath boundary region of an oxygen-operated cutting torch was considered. The energy balance and chemistry processes in the discharge were described. It is shown that the double-arcing instability is a sudden transition from a diffuse (glow-like) discharge to a constricted (arc-like) discharge in the plasma-sheath boundary region arising from a field-emission instability. A critical electric field value of ˜107 V/m was found at the cathodic part of the nozzle wall under the conditions considered. The field-emission instability drives in turn a fast electronic-to-translational energy relaxation mechanism, giving rise to a very fast gas heating rate of at least ˜109 K/s, mainly due to reactions of preliminary dissociation of oxygen molecules via the highly excited electronic state O2(B3Σu-) populated by electron impact. It is expected that this fast oxygen heating rate further stimulates the discharge contraction through the thermal instability mechanism.

  4. Nanosecond bipolar pulse generators for bioelectrics.

    PubMed

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Plasma-Based Mixing Actuation in Airflow, Quantitated by Probe Breakdown Fluorescence

    NASA Astrophysics Data System (ADS)

    Leonov, Sergey; Firsov, Alexander; Shurupov, Michail; Yarantsev, Dmitry; Ohio State University Team; JIHT RAS Team

    2013-09-01

    Effective mixing of fuel and oxidizer in air-breathing engine at compressible conditions is an essential problem of high-speed combustion due to short residence time of gas mixture in the combustor of limited length. The effect of the mixing actuation by plasma is observed because of the gasdynamic instability arisen after the long filamentary discharge of submicrosecond duration generated along the contact zone of two co-flown gases. The work is focused on detail consideration of the mechanism of gas instability, promoted by plasma, on effect of the discharge specific localization, and on diagnostics development for qualitative and quantitative estimation of the mixing efficiency. The dynamics of relative concentration of gas components is examined quantitatively by means of Probe Discharge Breakdown Fluorescence (PBF). In this method an optical emission spectra of weak filamentary high-voltage nanosecond probe discharge are collected from local zone of interest in airflow. The first measurements of the mixing efficiency in vicinity of wall-injected secondary gas are presented. It is shown that the method of PBF could deliver experimental data on state of the two-component medium with <1 mcs and <5 mm of time and spatial resolution, correspondingly. Funded by AFOSR under Dr Chiping Li supervision

  6. Irradiation of silver and agar/silver nanoparticles with argon, oxygen glow discharge plasma, and mercury lamp.

    PubMed

    Ahmad, Mahmoud M; Abdel-Wahab, Essam A; El-Maaref, A A; Rawway, Mohammed; Shaaban, Essam R

    2014-01-01

    The irradiation effect of argon, oxygen glow discharge plasma, and mercury lamp on silver and agar/silver nanoparticle samples is studied. The irradiation time dependence of the synthesized silver and agar/silver nanoparticle absorption spectra and their antibacterial effect are studied and compared. In the agar/silver nanoparticle sample, as the irradiation time of argon glow discharge plasma or mercury lamp increases, the peak intensity and the full width at half maximum, FWHM, of the surface plasmon resonance absorption band is increased, however a decrease of the peak intensity with oxygen glow plasma has been observed. In the silver nanoparticle sample, as the irradiation time of argon, oxygen glow discharge plasma or mercury lamp increases, the peak intensity of the surface plasmon resonance absorption band is increased, however, there is no significant change in the FWHM of the surface plasmon resonance absorption band. The SEM results for both samples showed nanoparticle formation with mean size about 50 nm and 40 nm respectively. Throughout the irradiation time with the argon, oxygen glow discharge plasma or mercury lamp, the antibacterial activity of several kinds of Gram-positive and Gram-negative bacteria has been examined.

  7. Innovative approach for benzene degradation using hybrid surface/packed-bed discharge plasmas.

    PubMed

    Jiang, Nan; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-09-03

    An innovative plasma reactor, which generates hybrid surface/packed-bed discharge (HSPBD) plasmas, was employed for the degradation of benzene. The HSPBD reactor was found to display remarkably better benzene degradation, mineralization, and energy performance than surface or packed-bed discharge reactors alone. The degradation efficiency, CO2 selectivity, and energy yield in the HSPBD reactor were 21%, 11%, and 3.9 g kWh-1 higher, respectively, than in a surface discharge reactor and 30%, 21%, and 5.5 g kWh-1 higher, respectively, than in a packed-bed discharge reactor operated at 280 J L-1. Particularly, the benzene degradation in the HSPBD reactor exhibited an unambiguous synergistic enhancement rather than a simple additive effect using the surface discharge and packed-bed discharge reactors. Moreover, in the HSPBD reactor, the formation of byproducts, such as NO2, was suppressed, while O3 was promoted. The use of N2 as the carrier gas was found to be effective for benzene degradation because of the fast reaction rate of N2(A3∑u+) with benzene, and oxygen species derived from the dissociation of O2 were found to be significant in the mineralization process. Thus, the addition of O2 to N2 allows for efficient degradation of benzene, and the optimized amount of O2 was determined to be 3%.

  8. A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE

    NASA Astrophysics Data System (ADS)

    Buttenschön, B.; Fahrenkamp, N.; Grulke, O.

    2018-07-01

    A plasma cell prototype for the plasma wakefield accelerator experiment AWAKE based on a helicon discharge is presented. In the 1 m long prototype module a multiple antenna helicon discharge with an rf power density of 100 MW m‑3 is established. Based on the helicon dispersion relation, a linear scaling of plasma density with magnetic field is observed for rf frequencies above the lower hybrid frequency, ω LH ≤ 0.8ω rf. Density profiles are highest on the device axis and show shallow radial gradients, thus providing a relatively constant plasma density in the center over a radial range of Δr ≈ 10 mm with less than 10% variation. Peak plasma densities up to 7 × 1020 m‑3 are transiently achieved with a reproducibility that is sufficient for AWAKE. The results are in good agreement with power balance calculations.

  9. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  10. Effect of discharge polarity on the propagation of atmospheric-pressure helium plasma jets and the densities of OH, NO, and O radicals.

    PubMed

    Yonemori, Seiya; Ono, Ryo

    2015-06-01

    The atmospheric-pressure helium plasma jet is an emerging technology for plasma biomedical applications. In this paper, the authors focus on the effect of discharge polarity on propagation of the discharge and the densities of OH, NO, and O radicals. The plasma jet is applied to a glass surface placed on a grounded metal plate. Positive or negative voltage pulses with 25 μs duration, 8 kV amplitude, and 10 kpps repetition rate are used for the plasma jet. The plasma propagation is measured using a short-gated ICCD camera. The light emission intensity of the discharge generated at the rising phase of the voltage pulse is approximately equivalent for both polarities, while that generated during the falling phase is much higher for the negative discharge than the positive one. The shape of the discharge changes with the discharge polarity. The OH, NO, and O densities in the plasma jet are also measured for both polarities. It is found that the OH density is almost the same regardless the discharge polarity. Conversely, the negative discharge produces more O atoms and the positive discharge produces more NO molecules. These results indicate that the polarity of the discharge affects the densities of some reactive species produced in the plasma jet.

  11. Fast discharge in a plasma gun with hemispherical insulator

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.; Sidelnikov, Yu. V.; Koshelev, K. N.

    2009-05-01

    A method of creation of hot dense plasma is proposed. It is based on cumulation of a shockwave, which originates on a hemispherical surface of insulator of plasma gun. The results of first experiments are presented. The shock wave is driven by fast electrical discharge (dI /dt>1012 A/s). The inductive storage with semiconductor opening switch is used as a current driver. Time resolved pin-hole images and vacuum ultraviolet (vuv) spectra are studied. Shockwaves from hemispherical insulator with 4 mm radius create plasma with a form of column about 1 mm diameter and 3-4 mm length. vuv spectra contain the lines of Ar ions that corresponds to the electron temperature about 20 eV. Possible practical application is discussed.

  12. The development and application of a cold atmospheric plasma generator for treatment of skin and soft-tissue injuries in animals

    NASA Astrophysics Data System (ADS)

    Emelyanov, O. A.; Petrova, N. O.; Smirnova, N. V.; Shemet, M. V.

    2017-08-01

    We describe a device for obtaining cold plasma in air at atmospheric pressure using a system of positive high-voltage pin electrodes, which is intended for the treatment of skin and soft-tissue injuries in animals. Plasma is generated due to the development of periodic pulsed discharge of nanosecond duration at current pulse amplitudes 10-20 mA, characteristic frequencies 10-20 kHz, and applied voltages within 8-10 kV. The high efficacy of the proposed device and method is confirmed by the good clinical results of treating large domestic animals with traumatic injuries.

  13. Plasma-chemical processes accompanying discharge in air excited by a microwave beam

    NASA Astrophysics Data System (ADS)

    Askar'ian, G. A.; Batanov, G. M.; Gritsinin, S. I.; Kossyi, I. A.; Kostinskii, A. Iu.

    1990-11-01

    Experimental results are presented on plasma-chemical processes of nitrogen oxidation and ozone production accompanying microwave discharge in dry air and in nitrogen-oxygen mixtures. The degree of nitrogen oxidation and the energy expenditure toward the formation of oxides as a function of discharge conditions are established. The experimental results can be explained by assuming oxidation reactions of electron-excited metastable nitrogen molecules by oxygen atoms. Low ozone concentrations in the discharge indicate a significant energy input into the gas.

  14. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have

  15. Radiofrequency antenna for suppression of parasitic discharges in a helicon plasma thruster experiment.

    PubMed

    Takahashi, Kazunori

    2012-08-01

    A radiofrequency (rf) antenna for helicon plasma thruster experiments is developed and tested using a permanent magnets helicon plasma source immersed in a vacuum chamber. A magnetic nozzle is provided by permanent magnets arrays and an argon plasma is produced by a 13.56 MHz radiofrequency helicon-wave or inductively-coupled discharge. A parasitic discharge outside the source tube is successfully suppressed by covering the rf antenna with a ceramic ring and a grounded shield; a decrease in the ion saturation current of a Langmuir probe located outside the source tube is observed and the ion saturation current on axis increases simultaneously, compared with the case of a standard uncovered rf antenna. It is also demonstrated that the covered antenna can yield stable operation of the source.

  16. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10%more » by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.« less

  17. Gas Breakdown in the Sub-Nanosecond Regime with Voltages Below 15 KV

    DTIC Science & Technology

    2013-06-01

    needle -plane gap with outer coaxial conductor, and a 50-Ω load line. The needle consists of tungsten and has a radius of curvature below 0.5 µm. The...here gas breakdown during nanosecond pulses occurs mainly as corona discharges on wire antennas, and represents an unwanted effect - General...risetime between 400 ps to1 ns), 50-W transmission line, axial needle -plane gap with outer coaxial conductor, and a 50-W load line. The needle consists of

  18. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  19. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  20. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  1. Characterization of physical and biochemical changes in plasma treated spinach seed during germination

    NASA Astrophysics Data System (ADS)

    Hye Ji, Sang; Ki, Se Hoon; Kang, Min Ho; Choi, Jin Sung; Park, Yeunsoo; Oh, Jaesung; Kim, Seong Bong; Yoo, Suk Jae; Choi, Eun Ha; Park, Gyungsoon

    2018-04-01

    Despite the accumulating data on the effect of plasma on seed germination, mechanisms of plasma action need more extensive research. In a previous study, we observed that high voltage nanosecond pulsed plasma enhanced the germination of spinach seeds and subsequent seedling growth. As a follow-up study, we investigated the physico-chemical, biochemical, and molecular changes in seed after plasma treatment, focusing on the early germination stage, to elucidate mechanism(s) for the stimulating effects of plasma on seed germination. The primary radicle protruded from seeds exposed to high voltage nanosecond pulsed plasma (one shot) slightly faster than the control seeds. The hydrophilicity of the seed surface significantly increased after treatment with high voltage nanosecond pulsed plasma (one shot). However, a very subtle increase in water uptake by plasma treated seeds was observed. Raman and FTIR spectroscopy analyses on chloroform extract of seed coats demonstrated no significant chemical etching on the surface of plasma treated seeds. This may be related to no dramatic increase in water absorption by seeds. The level of GA hormone and starch hydrolysis inside the plasma treated seeds was significantly elevated within 24 h. Taken together, our results suggest that high voltage nanosecond pulsed plasma may not only enhance hydrophilicity of the seed surface but also stimulate biochemical and molecular processes inside seed, leading to enhanced embryonic development.

  2. Distinctive features of kinetics of plasma at high specific energy deposition

    NASA Astrophysics Data System (ADS)

    Lepikhin, Nikita; Popov, Nikolay; Starikovskaia, Svetlana

    2016-09-01

    A nanosecond capillary discharge in pure nitrogen at moderate pressures is used as an experimental tool for plasma kinetics studies at conditions of high specific deposited energy up to 1 eV/molecule. Experimental observations based on electrical (back current shunts, capacitive probe) and spectroscopic measurements (quenching rates; translational, rotational and vibrational temperature measurements) demonstrate that high specific deposited energy, at electric fields of 200-300 Td, can significantly change gas kinetics in the discharge and in the afterglow. The numerical calculations in 1D axially symmetric geometry using experimental data as input parameters show that changes in the plasma kinetics are caused by extremely high excitation degree: up to 10% of molecular nitrogen is electronically excited at present conditions. Distinctive features of kinetics of plasma at high specific energy deposition as well as details of the experimental technique and numerical calculations will be present. The work was partially supported by French National Agency, ANR (PLASMAFLAME Project, 2011 BS09 025 01), AOARD AFOSR, FA2386-13-1-4064 grant (Program Officer Prof. Chiping Li), LabEx Plas@Par and Linked International Laboratory LIA KaPPA (France-Russia).

  3. Electron beam generation in the turbulent plasma of Z-pinch discharges

    NASA Astrophysics Data System (ADS)

    Vikhrev, Victor V.; Baronova, Elena O.

    1997-05-01

    Numerical modeling of the process of electron beam generation in z-pinch discharges are presented. The proposed model represents the electron beam generation under turbulent plasma conditions. Strong current distribution inhomogeneity in the plasma column has been accounted for the adequate generation process investigation. Electron beam is generated near the maximum of compression due to run away mechanism and it is not related with the current break effect.

  4. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  5. Structure and properties of optical-discharge plasma in CO2-laser beam near target surface

    NASA Astrophysics Data System (ADS)

    Danshchikov, Ye. V.; Dymshakov, V. A.; Lebedev, F. V.; Ryazanov, A. V.

    1986-05-01

    An experimental study of optical-discharge plasma in a CO2-laser beam at a target surface was made for the purpose of exploring the not yet understood role of this plasma in the laser-target interaction process. Such a plasma was produced by means of a quasi-continuous CO2-laser with an unstable resonator, its power being maintained constant for 1 ms periods. Its radiation was focused on the surfaces of thick and seeding thin Al, Ti, and Ta targets inclined at an approximately 70 deg. angle to the beam, inside a hermetic chamber containing air, argon, or helium under atmospheric pressure. The radiation intensity distribution over the focal plane and the nearest caustic surface in the laser beam was measured along with the plasma parameters, the latter by the methods of spectral analysis and photoelectric recording. The instrumentation for this purpose included an MDR-3 monochromator with an entrance slit, a double electron-optical converter, a memory oscillograph, and an SI-10-30 ribbon lamp as radiation reference standard. The results yielded integral diametral intensity distributions of the emission lines Ti-II (457.2 nm), Ti-I (464 nm), Ar-II (462 nm), radial and axial temperature profiles of optical discharge in metal vapor in surrounding gas, and the radial temperature profile of irradiated metal surface at successive instants of time. The results reveal marked differences between the structures and the properties of optical-discharge plasma in metal vapor and in surrounding gas, optical discharge in the former being characterized by localization within the laser beam and optical discharge in the latter being characterized by a drift away from the target.

  6. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  7. Interaction Of CO2 Laser Nanosecond Pulse Train With The Metallic Targets In Optical Breakdown Regime

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Firsov, K. N.; Konov, V. I.; Nikitin, P. I.; Prokhorov, A. M.; Silenok, A. S.; Sorochenko, V. R.

    1986-11-01

    In the present paper the electric field and currents in the air-breakdown plasma, produced by the train of nanosecond pulses of TEA-002 - regenerative amplifier near the un-charged targets are studied. The breakdown thresholds and the efficiency of plasma-target heat transmission are also measured. The results of numerical calculations made for increasing of the pulse train contrast with respect to the background in a regenerative amplifier are advanced.

  8. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    NASA Astrophysics Data System (ADS)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  9. Comparison of femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for uranium isotopic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph; McIntosh, Kathryn Gallagher; Judge, Elizabeth

    2016-10-20

    Feasibility tests were conducted using femtosecond and nanosecond laser ablation inductively coupled plasma mass spectrometry for rapid uranium isotopic measurements. The samples used in this study consisted of a range of pg quantities of known 235/238 U solutions as dried spot residues of 300 pL drops on silicon substrates. The samples spanned the following enrichments of 235U: 0.5, 1.5, 2, 3, and 15.1%. In this direct comparison using these particular samples both pulse durations demonstrated near equivalent data can be produced on either system with respect to accuracy and precision. There is no question that either LA-ICP-MS method offers themore » potential for rapid, accurate and precise isotopic measurements of U10Mo materials whether DU, LEU or HEU. The LA-ICP-MS equipment used for this work is commercially available. The program is in the process of validating this work for large samples using center samples strips from Y-12 MP-1 LEU-Mo Casting #1.« less

  10. Studying the Generation Stage of a Plasma Jet in a Plasma Focus Discharge

    NASA Astrophysics Data System (ADS)

    Polukhin, S. N.; Gurei, A. E.; Nikulin, V. Ya.; Peregudova, E. N.; Silin, P. V.; Kharrasov, A. M.

    2017-12-01

    A dense compact plasmoid generated at the pinch collapse stage is revealed in a plasma focus discharge by laser optical methods. The initial size of the plasmoid is 1 mm, its electron density is more than 2 × 1019 cm-3, and the plasmoid propagates along the axis from the anode at an average velocity of more than 107 cm/s. A shock wave is generated in the residual argon plasma during the motion of the bunch, its density decreases to 1018 cm-3 at a distance of 3 cm from its place of generation, and the plasmoid expands by 3-5 times and almost merges together with the leading edge of the shock wave.

  11. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  12. Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration

    2013-10-01

    The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.

  13. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. I: Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurilenkov, Yu. K.; Skowronek, M.

    2010-12-15

    Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and theirmore » reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.« less

  14. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    NASA Astrophysics Data System (ADS)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  15. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  16. Activation of peroxydisulfate by gas-liquid pulsed discharge plasma to enhance the degradation of p-nitrophenol

    NASA Astrophysics Data System (ADS)

    Shang, Kefeng; Wang, Hao; Li, Jie; Lu, Na; Jiang, Nan; Wu, Yan

    2017-06-01

    Pulsed discharge in water and over water surfaces generates ultraviolet radiation, local high temperature, shock waves, and chemical reactive species, including hydroxyl radicals, hydrogen peroxide, and ozone. Pulsed discharge plasma (PDP) can oxidize and mineralize pollutants very efficiently, but high energy consumption restricts its application for industrial wastewater treatment. A novel method for improving the energy efficiency of wastewater treatment by PDP was proposed, in which peroxydisulfate (PDS) was added to wastewater and PDS was activated by PDP to produce more strong oxidizing radicals, including sulfate radicals and hydroxyl radicals, leading to a higher oxidation capacity for the PDP system. The experimental results show that the increase in solution conductivity slightly decreased the discharge power of the pulse discharge over the water surface. An increase in the discharge intensity improved the activation of PDS and therefore the degradation efficiency and energy efficiency of p-nitrophenol (PNP). An increase in the addition dosage of PDS greatly facilitated the degradation of PNP at a molar ratio of PDS to PNP of lower than 80:1, but the performance enhancement was no longer obvious at a dosage of more than 80:1. Under an applied voltage of 20 kV and a gas discharge gap of 2 mm, the degradation efficiency and energy efficiency of the PNP reached 90.7% and 45.0 mg kWh-1 for the plasma/PDS system, respectively, which was 34% and 18.0 mg kWh-1 higher than for the discharge plasma treatment alone. Analysis of the physical and chemical effects indicated that ozone and hydrogen peroxide were important for PNP degradation and UV irradiation and heat from the discharge plasma might be the main physical effects for the activation of PDS.

  17. Generation of tunable plasma photonic crystals in meshed dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yongjie; Dong, Lifang, E-mail: donglfhbu@163.com; Liu, Weibo

    2014-07-15

    Tunable superlattice plasma photonic crystals are obtained in a meshed dielectric barrier discharge. These plasma photonic crystals are composed of thin artificial lattices and thick self-organized lattices, and can be tuned easily by adjusting the applied voltage. A plasma photonic crystal with self-organized hexagonal lattice coupled to artificial square lattice is first realized. The dispersion relations of the square sublattices with different radii, which are recorded by an intensified charge-coupled device camera, are calculated. The results show that the thick square sublattice has the higher band edge frequencies and wider band widths. Band gaps of superlattice plasma photonic crystals aremore » actually temporal integrations of those of transient sublattices.« less

  18. Elimination of diazinon insecticide from cucumber surface by atmospheric pressure air-dielectric barrier discharge plasma.

    PubMed

    Dorraki, Naghme; Mahdavi, Vahideh; Ghomi, Hamid; Ghasempour, Alireza

    2016-12-06

    The food industry is in a constant search for new technologies to improve the commercial sterilization process of agricultural commodities. Plasma treatment may offer a novel and efficient method for pesticide removal from agricultural product surfaces. To study the proposed technique of plasma food treatment, the degradation behavior of diazinon insecticide by air-dielectric barrier discharge (DBD) plasma was investigated. The authors studied the effect of different plasma powers and treatment times on pesticide concentration in liquid form and coated on the surface of cucumbers, where the diazinon residue was analyzed with mass spectroscopy gas chromatography. Our results suggest that atmospheric pressure air-DBD plasma is potentially effective for the degradation of diazinon insecticide, and mainly depends on related operating parameters, including plasma treatment time, discharge power, and pesticide concentrations. Based on the interaction between reactive oxygen species and electrons in the plasma with the diazinon molecule, two degradation pathway of diazinon during plasma treatment are proposed. It was also found that produced organophosphate pesticides are harmless and less hazardous compounds than diazinon.

  19. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  20. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-01

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  1. Effects of space plasma discharge on the performance of large antenna structures in low Earth orbit

    NASA Technical Reports Server (NTRS)

    Blume, Hans-Juergen C.

    1987-01-01

    The anomalous plasma around spacecrafts in low Earth orbit represents the coma of an artificial comet. The plasma discharge is caused by an energetic disturbance of charged particles which were formerly in a state of equilibrium. The plasma can effect the passive and active radio frequency operation of large space antennas by inducing corona discharge or strong arcing in the antenna feeds. One such large space antenna is the 15-meter hoop column antenna which consists of a mesh membrane material (tricot knitted gold plated wire) reflector and carbon fiber tension cords. The atomic oxygen in the plasma discharge state can force the wire base metal particles through the gold lattice and oxydize the metal particles to build a Schottky-barrier contact at the point where the wires meet. This effect can cause strong deviations in the reflector performance in terms of antenna pattern and losses. Also, the carbon-fiber cords can experience a strength reduction of 30 percent over a 40-hour exposure time.

  2. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, D.; Shivarova, A., E-mail: ashiva@phys.uni-sofia.bg; Paunska, Ts.

    2015-03-15

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations formore » electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.« less

  3. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  4. Dielectric barrier discharge and jet type plasma surface modifications of hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds.

    PubMed

    Ozkan, Ozan; Turkoglu Sasmazel, Hilal

    2018-04-01

    In this study, dry air plasma jet and dielectric barrier discharge Ar + O 2 or Ar + N 2 plasma modifications and their effects on wettability, topography, functionality and biological efficiency of the hybrid polymeric poly (ε-caprolactone)/chitosan scaffolds were reported. The samples treated with Ar + O 2 dielectric barrier discharge plasma (80 sccm O 2 flow rate, 3-min treatment) or with dry air plasma jet (15-cm nozzle-sample distance, 13-min treatment) had the closest wettability (49.11 ± 1.83 and 53.60 ± 0.95, respectively) to the commercial tissue culture polystyrene used for cell cultivation. Scanning electron microscopy images and X-ray photoelectron spectrometry analysis showed increase in topographical roughness and OH/NH 2 functionality, respectively. Increased fluid uptake capacity for the scaffolds treated with Ar + O 2 dielectric barrier discharge plasma (73.60% ± 1.78) and dry air plasma jet (72.48% ± 0.75) were also noted. Finally, initial cell attachment as well as seven-day cell viability, growth and proliferation performances were found to be significantly better for both plasma treated scaffolds than for untreated scaffolds.

  5. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    NASA Astrophysics Data System (ADS)

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ < 0.2). Faraday probe measurements revealed that ion beams are finely collimated, and plumes have Gaussian distributions. Mass utilization efficiencies, beam utilization efficiencies, and plume divergence efficiencies ranged from 28 to 62%, 78 to 99%, and 40 to 48%, respectively. Electron densities and electron temperatures were found to reach 4 × 1018 m-3 ( ∂ n e / n e = ±52%) and 15 eV ( ∂ T e / T e = ±10%-30%), respectively, at 10 mm axial distance from the anode centerline. An ionization mean free path analysis revealed that electron density in the ionization region is substantially higher than the conventional Hall thrusters, which explain why the XPT is as efficient as conventional ones even without a physical ionization chamber. Our findings

  6. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application

    NASA Astrophysics Data System (ADS)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  7. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    PubMed

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  8. [Study on the Emission Spectrum of Hydrogen Production with Microwave Discharge Plasma in Ethanol Solution].

    PubMed

    Sun, Bing; Wang, Bo; Zhu, Xiao-mei; Yan, Zhi-yu; Liu, Yong-jun; Liu, Hui

    2016-03-01

    Hydrogen is regarded as a kind of clean energy with high caloricity and non-pollution, which has been studied by many experts and scholars home and abroad. Microwave discharge plasma shows light future in the area of hydrogen production from ethanol solution, providing a new way to produce hydrogen. In order to further improve the technology and analyze the mechanism of hydrogen production with microwave discharge in liquid, emission spectrum of hydrogen production by microwave discharge plasma in ethanol solution was being studied. In this paper, plasma was generated on the top of electrode by 2.45 GHz microwave, and the spectral characteristics of hydrogen production from ethanol by microwave discharge in liquid were being studied using emission spectrometer. The results showed that a large number of H, O, OH, CH, C2 and other active particles could be produced in the process of hydrogen production from ethanol by microwave discharge in liquid. The emission spectrum intensity of OH, H, O radicals generated from ethanol is far more than that generated from pure water. Bond of O-H split by more high-energy particles from water molecule was more difficult than that from ethanol molecule, so in the process of hydrogen production by microwave discharge plasma in ethanol solution; the main source of hydrogen was the dehydrogenation and restructuring of ethanol molecules instead of water decomposition. Under the definite external pressure and temperature, the emission spectrum intensity of OH, H, O radicals increased with the increase of microwave power markedly, but the emission spectrum intensity of CH, C2 active particles had the tendency to decrease with the increase of microwave power. It indicated that the number of high energy electrons and active particles high energy electron energy increased as the increase of microwave power, so more CH, C2 active particles were split more thoroughly.

  9. Plasma treatment of polyethylene tubes in continuous regime using surface dielectric barrier discharge with water electrodes

    NASA Astrophysics Data System (ADS)

    Galmiz, Oleksandr; Zemánek, Miroslav; Pavliňák, David; Černák, Mirko

    2018-05-01

    Combining the surface dielectric barrier discharges generated in contact with water based electrolytes, as the discharge electrodes, we have designed a new type of surface electric discharge, generating thin layers of plasma which propagate along the treated polymer surfaces. The technique was aimed to achieve uniform atmospheric pressure plasma treatment of polymeric tubes and other hollow bodies. The results presented in this work show the possibility of such system to treat outer surface of polymer materials in a continuous mode. The technical details of experimental setup are discussed as well as results of treatment of polyethylene tubes are shown.

  10. FAST TRACK COMMUNICATION: Asymmetric surface barrier discharge plasma driven by pulsed 13.56 MHz power in atmospheric pressure air

    NASA Astrophysics Data System (ADS)

    Dedrick, J.; Boswell, R. W.; Charles, C.

    2010-09-01

    Barrier discharges are a proven method of generating plasmas at high pressures, having applications in industrial processing, materials science and aerodynamics. In this paper, we present new measurements of an asymmetric surface barrier discharge plasma driven by pulsed radio frequency (rf 13.56 MHz) power in atmospheric pressure air. The voltage, current and optical emission of the discharge are measured temporally using 2.4 kVp-p (peak to peak) 13.56 MHz rf pulses, 20 µs in duration. The results exhibit different characteristics to plasma actuators, which have similar discharge geometry but are typically driven at frequencies of up to about 10 kHz. However, the electrical measurements are similar to some other atmospheric pressure, rf capacitively coupled discharge systems with symmetric electrode configurations and different feed gases.

  11. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  12. Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches

    NASA Astrophysics Data System (ADS)

    Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.

    1996-08-01

    A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.

  13. Plasma Emission Characteristics from a High Current Hollow Cathode in an Ion Thruster Discharge Chamber

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Patterson, Michael J.

    2002-01-01

    The presence of energetic ions produced by a hollow cathodes operating at high emission currents (greater than 5A) has been documented in the literature. In order to further elucidate these findings, an investigation of a high current cathode operating in an ion thruster discharge chamber has been undertaken. Using Langmuir probes, a low energy charged particle analyzer and emission spectroscopy, the behavior of the near-cathode plasma and the emitted ion energy distribution was characterized. The presence of energetic ions was confirmed. It was observed that these ions had energies in excess of the discharge voltage and thus cannot be simply explained by ions falling out of plasma through a potential difference of this order. Additionally, evidence provided by Langmuir probes suggests the existence of a double layer essentially separating the hollow cathode plasma column from the main discharge. The radial potential difference associated with this double layer was measured to be of order the ionization potential.

  14. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A.

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  15. Radial dependence of HF wave field strength in the BPD column. [Beam Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Jost, R. J.; Anderson, H. R.; Bernstein, W.; Kellogg, P. J.

    1982-01-01

    The results of a recent set of RF frequency measurements of the beam plasma discharge (BPD) performed in order to determine a quantitative value for the field strength in the plasma frequency region of the spectrum are presented. The parallel and perpendicular components of the plasma wave electric fields inside the BPD column have comparable field strengths, on the order of 10 volts/m. The radial dependence of the field strength is very strong, decreasing by as much as 40 dB within one meter from the beam center, with the illumination or discharge column approximately one meter in diameter. The field strength inside the column increases as a function of distance along the beam at least for several meters from the gun aperture. The frequency and amplitude of the plasma wave increases with beam current. A particularly rapid increase in these parameters occurs as the beam current approaches the critical current.

  16. Gas-phase evolution of Ar/H2O and Ar/CH4 dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Barni, Ruggero; Riccardi, Claudia

    2018-04-01

    We present some experimental results of an investigation aimed to hydrogen production with atmospheric pressure plasmas, based on the use of dielectric barrier discharges, fed with a high-voltage alternating signal at frequency 30-50 kHz, in mixtures of methane or water vapor diluted in argon. The plasma gas-phase of the discharge was investigated by means of optical and electrical diagnostics. The emission spectra of the discharges was measured with a wide band spectrometer and a photosensor module, based on a photomultiplier tube. A Rogowski coil allowed to measure the electric current flowing into the circuit and a high voltage probe was employed for evaluating the voltage at the electrodes. The analysis of the signals of voltage and current shows the presence of microdischarges between the electrodes in two alternating phases during the period of oscillation of the applied voltage. The hydrogen concentration in the gaseous mixture was measured too. Besides this experimental campaign, we present also results from a numerical modeling of chemical kinetics in the gas-phase of Ar/H2O and Ar/CH4 plasmas. The simulations were conducted under conditions of single discharge to study the evolution of the system and of fixed frequency repeated discharging. In particular in Ar/H2O mixtures we could study the evolution from early atomic dissociation in the discharge, to longer time scales, when chemical reactions take place producing an increase of the density of species such as OH, H2O2 and subsequently of H and H2. The results of numerical simulations provide some insights into the evolution happening in the plasma gas-phase during the hydrogen reforming process.

  17. [Automatic adjustment control system for DC glow discharge plasma source].

    PubMed

    Wan, Zhen-zhen; Wang, Yong-qing; Li, Xiao-jia; Wang, Hai-zhou; Shi, Ning

    2011-03-01

    There are three important parameters in the DC glow discharge process, the discharge current, discharge voltage and argon pressure in discharge source. These parameters influence each other during glow discharge process. This paper presents an automatic control system for DC glow discharge plasma source. This system collects and controls discharge voltage automatically by adjusting discharge source pressure while the discharge current is constant in the glow discharge process. The design concept, circuit principle and control program of this automatic control system are described. The accuracy is improved by this automatic control system with the method of reducing the complex operations and manual control errors. This system enhances the control accuracy of glow discharge voltage, and reduces the time to reach discharge voltage stability. The glow discharge voltage stability test results with automatic control system are provided as well, the accuracy with automatic control system is better than 1% FS which is improved from 4% FS by manual control. Time to reach discharge voltage stability has been shortened to within 30 s by automatic control from more than 90 s by manual control. Standard samples like middle-low alloy steel and tin bronze have been tested by this automatic control system. The concentration analysis precision has been significantly improved. The RSDs of all the test result are better than 3.5%. In middle-low alloy steel standard sample, the RSD range of concentration test result of Ti, Co and Mn elements is reduced from 3.0%-4.3% by manual control to 1.7%-2.4% by automatic control, and that for S and Mo is also reduced from 5.2%-5.9% to 3.3%-3.5%. In tin bronze standard sample, the RSD range of Sn, Zn and Al elements is reduced from 2.6%-4.4% to 1.0%-2.4%, and that for Si, Ni and Fe is reduced from 6.6%-13.9% to 2.6%-3.5%. The test data is also shown in this paper.

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Dynamics of a plasma formed by a surface optical-discharge in a metal vapour interacting with a cw CO2 laser beam

    NASA Astrophysics Data System (ADS)

    Zaikin, A. E.; Levin, A. V.; Petrov, A. L.

    1995-02-01

    A surface optical-discharge plasma was formed in a metal vapour under normal conditions by steady-state irradiation with a cw CO2 laser delivering radiation of moderate (2-4.5 MW cm-2) intensity. This plasma strongly screened the irradiated surface. Under the selected experimental conditions the optical discharge was not a continuous (steady-state) process. The plasma cloud was displaced along the beam out of the waist to a region where the laser radiation intensity was almost an order of magnitude less than the threshold for excitation of the optical-discharge plasma in the vapour. A strong screening of the metal surface, which could even completely stop evaporation of the metal, was observed. Self-oscillations of the optical-discharge plasma were observed for the first time in a vapour interacting with cw CO2 radiation: this was attributed to screening of the target surface. Within one period of the self-oscillations there were additional hf plasma pulsations which led to stratification of the plasma cloud. The results obtained were interpreted.

  19. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  20. Self-pulsing discharge of a plasma brush operated in atmospheric-pressure argon

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Liu, Runfu; Jia, Pengying; Bao, Wenting; Shang, Yong

    2013-06-01

    A plasma brush excited by DC voltage is developed with argon as working gas in the ambient air. The time evolution of the discharge current, the light emission, and the sustaining voltage are analyzed under different conditions. The self-pulsing phenomenon of the discharge is observed with oscillated voltage and intermittent current. The self-pulsing frequency ranges from several tens hertz to several hundred hertz depending on the output power and the gas flow rate. It increases with the increasing of the gas flow rate, while it decreases as the output power increases. The phenomenon is explained qualitatively based on a spatially resolved measurement about the discharge.

  1. Study of Mechanical and Thermal Impact of a Plasma Focus Discharge on Diagnostic Elements of PFM-72M Installation

    NASA Astrophysics Data System (ADS)

    Bashutin, O. A.; Savelov, A. S.; Sidorov, P. P.

    2017-12-01

    Mechanical and thermal impact of the plasma focus discharge on structural elements of diagnostic windows of the PFM-72m discharge installation are calculated. The absence of critical impact at early discharge stages and during the first 300 ns after the "plasma focus" formation is shown. The possibility of shock impact on the surface of diagnostic windows at later times, which may result in their substantial deformation and destruction, is demonstrated.

  2. Laser flash-photolysis and gas discharge in N2O-containing mixture: kinetic mechanism

    NASA Astrophysics Data System (ADS)

    Kosarev, Ilya; Popov, Nikolay; Starikovskaia, Svetlana; Starikovskiy, Andrey; mipt Team

    2011-10-01

    The paper is devoted to further experimental and theoretical analysis of ignition by ArF laser flash-photolysis and nanosecond discharge in N2O-containing mixture has been done. Additional experiments have been made to assure that laser emission is distributed uniformly throughout the cross-section. The series of experiments was proposed and carried out to check validity of O(1D) determination in experiments on plasma assisted ignition initiated by flash-photolysis. In these experiments, ozone density in the given mixture (mixture composition and kinetics has been preliminary analyzed) was measured using UV light absorption in Hartley band. Good coincidence between experimental data and results of calculations have been obtained Temporal behavior of energy input, electric field and electric current has been measured and analyzed. These data are considered as initial conditions for numerical modeling of the discharge in O2:N2O:H2:Ar = 0.3:1:3:5 mixture. Ion-molecular reactions and reactions of active species production in Ar:H2:O2:N2O mixture were analyzed. The set of reactions to describe chemical transformation in the system due to the discharge action has been selected.

  3. 2D Thermoluminescence imaging of dielectric surface long term charge memory of plasma surface interaction in DBD discharges

    NASA Astrophysics Data System (ADS)

    Ambrico, Paolo F.; Ambrico, Marianna; Schiavulli, Luigi; De Benedictis, Santolo

    2014-07-01

    The charge trapping effect due to the exposure of alumina surfaces to plasma has been studied in a volume dielectric barrier discharge (DBD) in Ar and He noble gases. The long lasting charge trapping of alumina dielectric plates, used as barriers in DBDs, is evidenced by an ex situ thermoluminescence (TL) experiment performed with a standard and a custom two-dimensional (2D)-TL apparatus. The spatial density of trapped surface charges is found to be strongly correlated to the plasma morphology, and the surface spatial memory lasted for several minutes to hours after plasma exposure. In the case of Ar, the plasma channel impact signature on the surface shows a higher equivalent radiation dose with respect to the surface plasma wave and the post-discharge species signature. As a consequence, for the development of discharges, inside the dielectric surface the availability of lower energy trapped electrons is larger in the first region of plasma impact. The reported spatial memory increases the likelihood of the occurrence of plasma filaments in the same position in different runs. In He plasmas, the dielectric barrier shows an almost uniform distribution of trapped charges, meaning that there is no preferred region for the development of the discharge. In all cases a slight asymmetry was shown in the direction of the gas flow. This can be interpreted as being due to the long-living species moving in the direction of the gas flow, corresponding with the TL side experiment on the sample exposed to the plasma afterglow. The maximum values and the integral of the 2D-TL images showed a linear relation with the total charge per ac cycle, corresponding with findings for the TL glow curve. In conclusion, 2D-TL images allow the retrieval of information regarding the plasma surface interaction such as the plasma morphology, trap sites and their activation temperature.

  4. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  5. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.

  6. Plasma breakdown in a capacitively-coupled radiofrequency argon discharge

    NASA Astrophysics Data System (ADS)

    Smith, H. B.; Charles, C.; Boswell, R. W.

    1998-10-01

    Low pressure, capacitively-coupled rf discharges are widely used in research and commercial ventures. Understanding of the non-equilibrium processes which occur in these discharges during breakdown is of interest, both for industrial applications and for a deeper understanding of fundamental plasma behaviour. The voltage required to breakdown the discharge V_brk has long been known to be a strong function of the product of the neutral gas pressure and the electrode seperation (pd). This paper investigates the dependence of V_brk on pd in rf systems using experimental, computational and analytic techniques. Experimental measurements of V_brk are made for pressures in the range 1 -- 500 mTorr and electrode separations of 2 -- 20 cm. A Paschen-style curve for breakdown in rf systems is developed which has the minimum breakdown voltage at a much smaller pd value, and breakdown voltages which are significantly lower overall, than for Paschen curves obtained from dc discharges. The differences between the two systems are explained using a simple analytic model. A Particle-in-Cell simulation is used to investigate a similar pd range and examine the effect of the secondary emission coefficient on the rf breakdown curve, particularly at low pd values. Analytic curves are fitted to both experimental and simulation results.

  7. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    NASA Astrophysics Data System (ADS)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  8. [Plasma temperature of white-eye hexagonal pattern in dielectric barrier discharge].

    PubMed

    Zhao, Yang; Dong, Li-fang; Fu, Hong-yan

    2015-01-01

    By using the water-electrode discharge experimental setup, the white-eye hexagonal pattern is firstly observed and investigated in the dielectric barrier discharge with the mixture of argon and air whose content can be varied whenever necessary, and the study shows that the white-eye cell is an interleaving of three different hexagonal sub-structures: the spot, the ring, and the halo. The white-eye hexagonal pattern has the excellent discharge stability and sustainability during the experiment. Pictures recorded by ordinary camera with long exposure time in the same argon content condition show that the spot, the ring, and the halo of the white-eye hexagonal pattern have different brightness, which may prove that their plasma states are different. And, it is worth noting that there are obvious differences not only on the brightness but also on the color of the white-eye cell in conditions of different argon content, which shows that its plasma state also changed with the variation of the argon content. The white-eye hexagonal pattern is observed at a lower applied voltage so that the temperature of the water electrodes almost keeps unchanged during the whole experiment, which is advantageous for the long term stable measurement. The plasma state will not be affected by the temperature of the electrodes during the continuous discharge. Based on the above phenomena, plasma temperatures of the spot, the ring, and the halo in white-eye hexagonal pattern including molecule vibrational temperature and variations of electron density at different argon content are investigated by means of optical emission spectroscopy (OES). The emission spectra of the N2 second positive band(C3Πu-->B3Πg)are measured, and the molecule vibrational temperature of the spot, the ring, and the halo of the white-eye hexagonal pattern are calculated by the emission intensities. Furthermore, emission spectra of Ar I (2P2-->1S5)is collected and the changes of its width with different argon

  9. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  10. Development of soft ionization using direct current pulse glow discharge plasma source in mass spectrometry for volatile organic compounds analysis

    NASA Astrophysics Data System (ADS)

    Nunome, Yoko; Kodama, Kenji; Ueki, Yasuaki; Yoshiie, Ryo; Naruse, Ichiro; Wagatsuma, Kazuaki

    2018-01-01

    This study describes an ionization source for mass analysis, consisting of glow discharge plasma driven by a pulsed direct-current voltage for soft plasma ionization, to detect toxic volatile organic compounds (VOCs) rapidly and easily. The novelty of this work is that a molecular adduct ion, in which the parent molecule attaches with an NO+ radical, [M + NO]+, can be dominantly detected as a base peak with little or no fragmentation of them in an ambient air plasma at a pressure of several kPa. Use of ambient air as the discharge plasma gas is suitable for practical applications. The higher pressure in an ambient air discharge provided a stable glow discharge plasma, contributing to the soft ionization of organic molecules. Typical mass spectra of VOCs toluene, benzene, o-xylene, chlorobenzene and n-hexane were observed as [M + NO]+ adduct ion whose peaks were detected at m/z 122, 108, 136, 142 and 116, respectively. The NO generation was also confirmed by emission bands of NO γ-system. The ionization reactions were suggested, such that NO+ radical formed in an ambient air discharge could attach with the analyte molecule.

  11. Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation

    NASA Astrophysics Data System (ADS)

    Xiang, HE; Chong, LIU; Yachun, ZHANG; Jianping, CHEN; Yudong, CHEN; Xiaojun, ZENG; Bingyan, CHEN; Jiaxin, PANG; Yibing, WANG

    2018-02-01

    The capacitively coupled radio frequency (CCRF) plasma has been widely used in various fields. In some cases, it requires us to estimate the range of key plasma parameters simpler and quicker in order to understand the behavior in plasma. In this paper, a glass vacuum chamber and a pair of plate electrodes were designed and fabricated, using 13.56 MHz radio frequency (RF) discharge technology to ionize the working gas of Ar. This discharge was mathematically described with equivalent circuit model. The discharge voltage and current of the plasma were measured at different pressures and different powers. Based on the capacitively coupled homogeneous discharge model, the equivalent circuit and the analytical formula were established. The plasma density and temperature were calculated by using the equivalent impedance principle and energy balance equation. The experimental results show that when RF discharge power is 50-300 W and pressure is 25-250 Pa, the average electron temperature is about 1.7-2.1 eV and the average electron density is about 0.5 × 1017-3.6 × 1017 m-3. Agreement was found when the results were compared to those given by optical emission spectroscopy and COMSOL simulation.

  12. Mono-energetic ions emission by nanosecond laser solid target irradiation

    NASA Astrophysics Data System (ADS)

    Muoio, A.; Tudisco, S.; Altana, C.; Lanzalone, G.; Mascali, D.; Cirrone, G. A. P.; Schillaci, F.; Trifirò, A.

    2016-09-01

    An experimental campaign aiming to investigate the acceleration mechanisms through laser-matter interaction in nanosecond domain has been carried out at the LENS (Laser Energy for Nuclear Science) laboratory of INFN-LNS, Catania. Pure Al targets were irradiated by 6 ns laser pulses at different pumping energies, up to 2 J. Advanced diagnostics tools were used to characterize the plasma plume and ion production. We show the preliminary results of this experimental campaign, and especially the ones showing the production of multicharged ions having very narrow energy spreads.

  13. Characterization of the supersonic flowing microwave discharge using two dimensional plasma tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nikolic, M.; Samolov, A.; Popovic, S.

    2013-03-14

    A tomographic numerical method based on the two-dimensional Radon formula for a cylindrical cavity has been employed for obtaining spatial distributions of the argon excited levels. The spectroscopy measurements were taken at different positions and directions to observe populations of excited species in the plasmoid region and the corresponding excitation temperatures. Excited argon states are concentrated near the tube walls, thus, confirming the assumption that the post discharge plasma is dominantly sustained by travelling surface wave. An automated optical measurement system has been developed for reconstruction of local plasma parameters of the plasmoid structure formed in an argon supersonic flowingmore » microwave discharge. The system carries out angle and distance measurements using a rotating, flat mirror, as well as two high precision stepper motors operated by a microcontroller-based system and several sensors for precise feedback control.« less

  14. Experimental study of low-temperature plasma of electrical discharges with liquid electrodes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gaisin, Almaz

    2016-09-01

    Results of the experimental research of discharge between the liquid jet cathode (LJC) and the metal anode are presented. The discharge was studied over the voltage range U = 100 - 600 V, discharge current range I = 0 . 1 - 0 . 25 A, external pressure range P =105 Pa, discharge power Pd = 10 - 150 W. We used the techniques of infrared thermography and spectral measurements. Schlieren's photography is applied for describing the processes in liquid and gas phase. Results of the experimental researches of discharge current-voltage characteristic (CVC), the surface temperature distribution both on the LJC and the metal anode, a spectral measurements are showed. Effects of action both of breakdown and discharge on the jet flow as well as on the air flow near the discharge are described. It is found that the discharge CVC has an ascending behavior due to increase of plasma current density. The discharge is generated on the borders between the LJC and the metal anode as well as along the LJC misshaping this one. It is established that both the convection streams and an electrolyte drops are formed during the discharge burn. It is found that the discharge temperature in the vicinity of electrode surface reaches T 348 K. The work was funded by RFBR, according to the research projects No.,14-01-0755.

  15. Large-Volume Resonant Microwave Discharge for Plasma Cleaning of a CEBAF 5-Cell SRF Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Mammosser, S. Ahmed, K. Macha, J. Upadhyay, M. Nikoli, S. Popovi, L. Vuakovi

    2012-07-01

    We report the preliminary results on plasma generation in a 5-cell CEBAF superconducting radio-frequency (SRF) cavity for the application of cavity interior surface cleaning. CEBAF currently has {approx}300 of these five cell cavities installed in the Jefferson Lab accelerator which are mostly limited by cavity surface contamination. The development of an in-situ cavity surface cleaning method utilizing a resonant microwave discharge could lead to significant CEBAF accelerator performance improvement. This microwave discharge is currently being used for the development of a set of plasma cleaning procedures targeted to the removal of various organic, metal and metal oxide impurities. These contaminantsmore » are responsible for the increase of surface resistance and the reduction of RF performance in installed cavities. The CEBAF five cell cavity volume is {approx} 0.5 m2, which places the discharge in the category of large-volume plasmas. CEBAF cavity has a cylindrical symmetry, but its elliptical shape and transversal power coupling makes it an unusual plasma application, which requires special consideration of microwave breakdown. Our preliminary study includes microwave breakdown and optical spectroscopy, which was used to define the operating pressure range and the rate of removal of organic impurities.« less

  16. Note: Rapid reduction of graphene oxide paper by glow discharge plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bo, Zheng; Qian, Jiajing; Duan, Liangping

    2015-05-15

    This note reports on a novel method for the rapid reduction of graphene oxide (GO) paper using a glow discharge plasma reactor. Glow discharge is produced and sustained between two parallel-plate graphite electrodes at a pressure of 240 mTorr. By exposing GO paper at the junction of negative-glow and Faraday-dark area for 4 min, the oxygen-containing groups can be effectively removed (C/O ratio increases from 2.6 to 7.9), while the material integrality and flexibility are kept well. Electrochemical measurements demonstrate that the as-obtained reduced GO paper can be potentially used for supercapacitor application.

  17. Characterization of argon dielectric barrier discharges applied to ethyl lactate plasma polymerization

    NASA Astrophysics Data System (ADS)

    Laurent, Morgane; Desjardins, Edouard; Meichelboeck, Maximilian; Naudé, Nicolas; Stafford, Luc; Gherardi, Nicolas; Laroche, Gaétan

    2017-11-01

    The influence of the input voltage frequency (35 and 150 kHz), interelectrode gap (1 and 2 mm) and precursor concentration (250, 350, and 450 ppm) on the electron temperature (T e), number density of metastable Ar atoms (n(Ar m )), and discharge current density (proportional to the electron density ne) is studied in an argon-ethyl lactate dielectric barrier discharge (DBD). An argon-ammonia Penning mixture is also considered as reference. These results are correlated to the chemistry (XPS, IR) and topography (AFM) of the ethyl-lactate-based plasma polymer coatings. Low T e values from 0.3 to 0.5 eV were obtained for all discharges. This observation, in addition to resemblances with the Ar-NH3 mixture, suggested that the ionization kinetics of ethyl lactate-based discharges is driven by Penning reactions. Among the investigated parameters, the dissipated power obtained through changes of the excitation frequency had the largest impact on both the coatings properties and the discharge behavior.

  18. Mode suppression of a two-dimensional potential relaxation instability in a weakly magnetized discharge plasma

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Čerček, M.; Jelić, N.; Stanojević, M.

    1993-05-01

    A potential relaxation instability (PRI) is modulated by an external signal using an additional grid to modulate the radial plasma potential profile in a magnetized plasma column in a linear magnetized discharge plasma device. It is observed that the electrode current oscillations follow the van der Pol equation with an external forcing term, and the linear growth rate of the instability is measured.

  19. Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Sun, Liqun; Huang, Xiaojiang; Zhang, Jie; Zhang, Jing; Shi, J. J.

    2010-11-01

    The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up to 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.

  20. Opportunities afforded by the intense nanosecond neutron pulses from a plasma focus source for neutron capture therapy and the preliminary simulation results

    NASA Astrophysics Data System (ADS)

    Giannini, G.; Gribkov, V.; Longo, F.; Ramos Aruca, M.; Tuniz, C.

    2012-11-01

    The use of short and powerful neutron pulses for boron neutron capture therapy (BNCT) can potentially increase selectivity and reduce the total dose absorbed by the patient. The biological effects of radiation depend on the dose, the dose power and the spatial distribution of the microscopic energy deposition. A dense plasma focus (DPF) device emits very short (in the nanosecond range) and extremely intense pulses of fast neutrons (2.5 or 14 MeV neutrons—from D-D or D-T nuclear reactions) and x-rays. Optimal spectra of neutrons formed for use in BNCT must contain an epithermal part to ensure a reasonable penetration depth into tissues at high enough cross-section on boron. So the powerful nanosecond pulses of fast neutrons generated by DPF must be moderated. After this moderation, the pulse duration must be shorter compared with the duration of the reaction with free radicals, that is, ⩾1 μs. In this work we focus on the development of a detailed simulation of interaction of short-pulse radiation from a DPF with the device's materials and with different types of moderators to estimate the dose power at the cells for this dynamic case. The simulation was carried out by means of the Geant4 toolkit in two main steps: the modeling of the pulsed neutron source device itself; the study of the interaction of fast mono-energetic neutrons with a moderator specific for BNCT.

  1. Numerical simulation and analysis of electromagnetic-wave absorption of a plasma slab created by a direct-current discharge with gridded anode

    NASA Astrophysics Data System (ADS)

    Yuan, Chengxun; Tian, Ruihuan; Eliseev, S. I.; Bekasov, V. S.; Bogdanov, E. A.; Kudryavtsev, A. A.; Zhou, Zhongxiang

    2018-03-01

    In this paper, we present investigation of a direct-current discharge with a gridded anode from the point of view of using it as a means of creating plasma coating that could efficiently absorb incident electromagnetic (EM) waves. A single discharge cell consists of two parallel plates, one of which (anode) is gridded. Electrons emitted from the cathode surface are accelerated in the short interelectrode gap and are injected into the post-anode space, where they lose acquired energy on ionization and create plasma. Numerical simulations were used to investigate the discharge structure and obtain spatial distributions of plasma density in the post-anode space. The numerical model of the discharge was based on a simple hybrid approach which takes into account non-local ionization by fast electrons streaming from the cathode sheath. Specially formulated transparency boundary conditions allowed performing simulations in 1D. Simulations were carried out in air at pressures of 10 Torr and higher. Analysis of the discharge structure and discharge formation is presented. It is shown that using cathode materials with lower secondary emission coefficients can allow increasing the thickness of plasma slabs for the same discharge current, which can potentially enhance EM wave absorption. Spatial distributions of electron density obtained during simulations were used to calculate attenuation of an incident EM wave propagating perpendicularly to the plasma slab boundary. It is shown that plasma created by means of a DC discharge with a gridded anode can efficiently absorb EM waves in the low frequency range (6-40 GHz). Increasing gas pressure results in a broader range of wave frequencies (up to 500 GHz) where a considerable attenuation is observed.

  2. Modeling of microwave-sustained plasmas at atmospheric pressure with application to discharge contraction.

    PubMed

    Castaños Martinez, E; Kabouzi, Y; Makasheva, K; Moisan, M

    2004-12-01

    The modeling of microwave-sustained discharges at atmospheric pressure is much less advanced than at reduced pressure (<10 Torr) because of the greater complexity of the mechanisms involved. In particular, discharge contraction, a characteristic feature of high-pressure discharges, is not well understood. To describe adequately this phenomenon, one needs to consider that the charged-particle balance in atmospheric-pressure discharges relies on the kinetics of molecular ions, including their dissociation through electron impact. Nonuniform gas heating plays a key role in the radial distribution of the density of molecular ions. The onset of contraction is shown to depend only on radially nonuniform gas heating. The radial nonuniformity of the electric field intensity also plays an important role allowing one, for instance, to explain the lower degree of contraction observed in microwave discharges compared to dc discharges. We present a numerical fluid-plasma model that aims to bring into relief the main features of discharge contraction in rare gases. It calls for surface-wave discharges because of their wide range of operating conditions, enabling a closer check between theory and experiment.

  3. Plasma characteristics in the discharge region of a 20 A emission current hollow cathode

    NASA Astrophysics Data System (ADS)

    Mingming, SUN; Tianping, ZHANG; Xiaodong, WEN; Weilong, GUO; Jiayao, SONG

    2018-02-01

    Numerical calculation and fluid simulation methods were used to obtain the plasma characteristics in the discharge region of the LIPS-300 ion thruster’s 20 A emission current hollow cathode and to verify the structural design of the emitter. The results of the two methods indicated that the highest plasma density and electron temperature, which improved significantly in the orifice region, were located in the discharge region of the hollow cathode. The magnitude of plasma density was about 1021 m-3 in the emitter and orifice regions, as obtained by numerical calculations, but decreased exponentially in the plume region with the distance from the orifice exit. Meanwhile, compared to the emitter region, the electron temperature and current improved by about 36% in the orifice region. The hollow cathode performance test results were in good agreement with the numerical calculation results, which proved that that the structural design of the emitter and the orifice met the requirements of a 20 A emission current. The numerical calculation method can be used to estimate plasma characteristics in the preliminary design stage of hollow cathodes.

  4. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  5. Synchronization between two coupled direct current glow discharge plasma sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  6. Analysis on the correlation between temperature and discharge characteristic of cloud-to-ground lightning discharge plasma with multiple return strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu Haiyan; Chang Zhengshi; Yuan Ping

    2011-01-15

    The spectra of cloud-to-ground lightning with multiple return strokes have been obtained by using a slitless spectrograph on the Chinese Tibet plateau. Combining the spectra with synchronous electrical information, the correlation among spectral properties, channel temperatures and discharge characteristics, and thermal effects of current is discussed for the first time. The results show that the channel plasma temperature varies significantly from stroke to stroke within a given flash, and the total intensity of spectra is directly proportional to the amplitude of electric field change. Moreover, the positive correlation has been confirmed between the channel plasma temperature and the thermal effectmore » which shows the effect of the electric current accumulation. It is inferred that the total intensity of the spectra should be directly proportional to the intensity of discharge current, and channel temperature is correlated positively with the energy transmission in one return stroke.« less

  7. Coagulation of dust grains in the plasma of an RF discharge in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal', A. F.

    2009-03-15

    Results are presented from experimental studies of coagulation of dust grains of different sizes injected into a low-temperature plasma of an RF discharge in argon. A theoretical model describing the formation of dust clusters in a low-temperature plasma is developed and applied to interpret the results of experiments on the coagulation of dust grains having large negative charges. The grain size at which coagulation under the given plasma conditions is possible is estimated using the developed theory. The theoretical results are compared with the experimental data.

  8. Dependence of optimal initial density on laser parameters for multi-keV x-ray radiators generated by nanosecond laser-produced underdense plasma

    NASA Astrophysics Data System (ADS)

    Tu, Shao-yong; Yuan, Yong-teng; Hu, Guang-yue; Miao, Wen-yong; Zhao, Bin; Zheng, Jian; Jiang, Shao-en; Ding, Yong-kun

    2016-01-01

    Efficient multi-keV x-ray sources can be produced using nanosecond laser pulse-heated middle-Z underdense plasmas generated using gas or foam. Previous experimental results show that an optimal initial target density exists for efficient multi-keV x-ray emission at which the laser ionization wave is supersonic. Here we explore the influence of the laser intensity and the pulse duration on this optimal initial target density via a one-dimensional radiation hydrodynamic simulation. The simulation shows that the optimal initial density is sensitive to both the laser intensity and the pulse duration. However, the speed of the supersonic ionization wave at the end of the laser irradiation is always maintained at 1.5 to 1.7 times that of the ion acoustic wave under the optimal initial density conditions.

  9. Discharge mode transition and temporal-spatial evolution of an air-water plasma jet generated by pulsating DC power

    NASA Astrophysics Data System (ADS)

    Lei, J.; Geng, Y.; Liu, K.; Zhu, W.; Zheng, Z.; Hu, H.

    2017-12-01

    In this paper, pulsating direct current air-water plasma jet, which can increase the production of •OH and decrease the temperature, is studied. The results show that the discharge mode changes in one cycle from corona discharge with steep Trichel current pulse to glow-like discharge. It is unknown whether the different discharge modes and water ratio have an effect on the transient process of the excited O and •OH production and the mechanism of plasma propagation. So, a series of experiments are done in this paper. The results show that the changing rules of both the excited state O and the discharge current reach their two peak values synchronously. And its maximum appears at the time of the first peak current value in corona mode. However, the change of the excited state •OH is different. It increases to its maximum at the time of the second peak current value in glow-like mode. Besides, the intensified charge coupled device photographs show that the luminous intensity of the discharge zone at the first peak current value in corona mode is stronger than the second peak current value in glow-like mode. At the same time, the discharge area of the former is larger than the latter. Nevertheless, with the increase in water ratio, the discharge area change reversed. Additionally, the air plasma plume propagation depends on the gas flow. The initial propagation velocity decreases with the increase in water ratio.

  10. Discharge dynamics of pin-to-plate dielectric barrier discharge at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Liqun; Huang, Xiaojiang; Member of Magnetic Confinement Fusion Research Center, Ministry of Education of the People's Republic of China, Shanghai 201620

    2010-11-15

    The discharge dynamics of pin-to-plate dielectric barrier discharge was studied in atmospheric helium at 20 kHz. The discharge was predominately ignited in positive half cycle of applied voltage with sinusoidal waveform. The temporal evolution of the discharge was investigated vertically along the discharge gap and radically on the dielectric surface by time resolved imaging. It is found that a discharge column with a diameter of 2 mm was ignited above the pin electrode and expanded toward a plate electrode. On the dielectric surface with space charge accumulation, plasma disk in terms of plasma ring was formed with radius up tomore » 25 mm. The expansion velocity of plasma ring can reach a hypersonic speed of 3.0 km/s. The ionization wave due to electron diffusion is considered to be the mechanism for plasma ring formation and dynamics.« less

  11. Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere

    NASA Astrophysics Data System (ADS)

    Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa

    2017-09-01

    Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.

  12. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  13. Transformative Pulsed Power Science and Technology

    DTIC Science & Technology

    2014-12-16

    Lin, D. Singleton, J. Sanders, A. Kuthi and M.A. Gundersen, “Experimental study of pulsed corona discharge in air at high pressures”, 65th Annual...Kastner, E. Gutmark, and M. A. Gundersen. “Surface Streamer Discharge for Plasma Flow Control Using Nanosecond Pulsed Power.” Plasma Sciences, IEEE... discharge in atmospheric pressure fuel/air mixtures”, J. Phys. D: Appl. Phys. 45 495401 (2012). 28. S. J. Pendleton, S. Bowman, C. Carter, M. A. Gundersen

  14. Electronic perturbation investigations into excitation and ionization in the millisecond pulsed glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Li, Lei; Robertson-Honecker, Jennifer; Vaghela, Vishal; King, Fred L.

    2006-06-01

    This study employed a power perturbation method to examine the energy transfer processes at different locations within the afterpeak regime of a millisecond pulsed glow discharge plasma. Brief power perturbation pulses were applied during the afterpeak regime altering the environment of the collapsing plasma. Responses of several transitions to the power perturbations were measured via atomic emission and absorption spectroscopic methods at various distances from the surface of the cathode. The experimental data provide further insight into the energy transfer processes that occur at different spatial locations and in different temporal regimes of these pulsed glow discharge plasmas. Although the enhancement of the large population of metastable argon atoms is again confirmed, the mechanism responsible for this enhancement remains unclear. The most likely possibility involves some form of ion-electron recombination followed by radiative relaxation of the resulting species. The metastable argon atoms subsequently Penning ionize sputtered copper atoms which then appear to undergo a similar ion-electron recombination process yielding variable degrees of observable afterpeak emission for copper atom transitions. The kinetic information of these processes was approximated from the corresponding relaxation time. The electron thermalization time allowing for recombination with ions was found to be ˜25 μs after the discharge power termination.

  15. Self-enhanced plasma discharge effect in the deposition of diamond-like carbon films on the inner surface of slender tube

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Li, Liuhe; Luo, Sida; Lu, Qiuyuan; Gu, Jiabin; Lei, Ning; Huo, Chunqin

    2017-01-01

    Enhanced glow discharge plasma immersion ion implantation and deposition (EGD-PIII&D) have been proved to be highly effective for depositing diamond-like carbon (DLC) films on the inner surface of the slender quartz tube with a deposition rate of 1.3 μm/min. Such a high-efficiency DLC films deposition was explained previously as the short electrons mean free path to cause large collision frequency between electrons and neutral particles. However, in this paper, we found that the inner surface material of the tube itself play a vital role on the films deposition. To disclose the mechanism of this phenomenon, the effect of different inner surface materials on plasma discharge was experimentally and theoretically investigated. Then a self-enhancing plasma discharge is discovered. It is found that secondary electrons emitted from the inner surface material, whatever it is the tube inner surface or deposited DLC films, can dramatically enhance the plasma discharge to improve the DLC films deposition rate.

  16. Microwave Discharges

    NASA Astrophysics Data System (ADS)

    Marec, J.; Bloyet, E.; Chaker, M.; Leprince, P.; Nghiem, P.

    Microwave discharges first appeared as unwanted and disturbing effects. However, beginning about the end of World War II, Professors Allis and Brown at the Massachusetts Institute of Technology started to investigate the physics of these discharges. During the next few years, many experimental and theoretical studies were undertaken. However, in the early 60's and for about 15 years, there were few studies of such discharges because of the theoretical difficulties encountered. Effectively, the impossibility of modeling microwave discharges prevented a good understanding of their behavior, and their future use did not appear promising. Recently there has been new interest in these discharges. The plasmas produced by microwave discharges find applications in areas such as: 1) spectroscopy (because of their low contamination), and 2) plasma chemistry. Another advantage of these discharges as compared to d.c. discharges is their ease of operation.

  17. Boundary-value problem for a counterrotating electrical discharge in an axial magnetic field. [plasma centrifuge for isotope separation

    NASA Technical Reports Server (NTRS)

    Hong, S. H.; Wilhelm, H. E.

    1978-01-01

    An electrical discharge between two ring electrodes embedded in the mantle of a cylindrical chamber is considered, in which the plasma in the anode and cathode regions rotates in opposite directions under the influence of an external axial magnetic field. The associated boundary-value problem for the coupled partial differential equations describing the azimuthal velocity and radial current-density fields is solved in closed form. The velocity, current density, induced magnetic induction, and electric fields are presented for typical Hartmann numbers, magnetic Reynolds numbers, and geometry parameters. The discharge is shown to produce anodic and cathodic plasma sections rotating at speeds of the order 1,000,000 cm/sec for conventional magnetic field intensities. Possible application of the magnetoactive discharge as a plasma centrifuge for isotope separation is discussed.

  18. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitrofanov, K. N., E-mail: mitrkn@inbox.ru; Krauz, V. I., E-mail: krauz-vi@nrcki.ru, E-mail: vkrauz@yandex.ru; Grabovski, E. V.

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with amore » dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5–3 Torr in discharges with energies of 0.3–0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.« less

  19. Study of the interrelation between the electrotechnical parameters of the plasma focus discharge circuit and the plasma compression dynamics on the PF-3 and PF-1000 facilities

    NASA Astrophysics Data System (ADS)

    Mitrofanov, K. N.; Krauz, V. I.; Grabovski, E. V.; Myalton, V. V.; Vinogradov, V. P.; Paduch, M.; Scholz, M.; Karpiński, L.

    2015-05-01

    The main stages of the plasma current sheath (PCS) dynamics on two plasma focus (PF) facilities with different geometries of the electrode system, PF-3 (Filippov type) and PF-1000 (Mather type), were studied by analyzing the results of the current and voltage measurements. Some dynamic characteristics, such as the PCS velocity in the acceleration phase in the Mather-type facility (PF-1000), the moment at which the PCS reaches the anode end, and the plasma velocity in the radial stage of plasma compression in the PF-3 Filippov-type facility, were determined from the time dependence of the inductance of the discharge circuit with a dynamic plasma load. The energy characteristics of the discharge circuit of the compressing PCS were studied for different working gases (deuterium, argon, and neon) at initial pressures of 1.5-3 Torr in discharges with energies of 0.3-0.6 MJ. In experiments with deuterium, correlation between the neutron yield and the electromagnetic energy deposited directly in the compressed PCS was investigated.

  20. Plasma core reactor simulations using RF uranium seeded argon discharges

    NASA Technical Reports Server (NTRS)

    Roman, W. C.

    1975-01-01

    An experimental investigation was conducted using the United Technologies Research Center (UTRC) 80 kW and 1.2 MW RF induction heater systems to aid in developing the technology necessary for designing a self-critical fissioning uranium plasma core reactor (PCR). A nonfissioning, steady-state RF-heated argon plasma seeded with pure uranium hexafluoride (UF6) was used. An overall objective was to achieve maximum confinement of uranium vapor within the plasma while simultaneously minimizing the uranium compound wall deposition. Exploratory tests were conducted using the 80 kW RF induction heater with the test chamber at approximately atmospheric pressure and discharge power levels on the order of 10 kW. Four different test chamber flow configurations were tested to permit selection of the configuration offering the best confinement characteristics for subsequent tests at higher pressure and power in the 1.2 MW RF induction heater facility.

  1. Effects of high voltage nanosecond electric pulses on eukaryotic cells (in vitro): A systematic review.

    PubMed

    Batista Napotnik, Tina; Reberšek, Matej; Vernier, P Thomas; Mali, Barbara; Miklavčič, Damijan

    2016-08-01

    For this systematic review, 203 published reports on effects of electroporation using nanosecond high-voltage electric pulses (nsEP) on eukaryotic cells (human, animal, plant) in vitro were analyzed. A field synopsis summarizes current published data in the field with respect to publication year, cell types, exposure configuration, and pulse duration. Published data were analyzed for effects observed in eight main target areas (plasma membrane, intracellular, apoptosis, calcium level and distribution, survival, nucleus, mitochondria, stress) and an additional 107 detailed outcomes. We statistically analyzed effects of nsEP with respect to three pulse duration groups: A: 1-10ns, B: 11-100ns and C: 101-999ns. The analysis confirmed that the plasma membrane is more affected with longer pulses than with short pulses, seen best in uptake of dye molecules after applying single pulses. Additionally, we have reviewed measurements of nsEP and evaluations of the electric fields to which cells were exposed in these reports, and we provide recommendations for assessing nanosecond pulsed electric field effects in electroporation studies. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Impact of nanosecond pulsed electric fields on primary hippocampal neurons

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Payne, Jason A.; Kuipers, Marjorie A.; Thompson, Gary L.; Wilmink, Gerald J.; Ibey, Bennett L.

    2012-02-01

    Cellular exposure to nanosecond pulsed electric fields (nsPEF) are believed to cause immediate creation of nanopores in the plasma membrane. These nanopores enable passage of small ions, but remain impermeable to larger molecules like propidium iodide. Previous work has shown that nanopores are stable for minutes after exposure, suggesting that formation of nanopores in excitable cells could lead to prolonged action potential inhibition. Previously, we measured the formation of nanopores in neuroblastoma cells by measuring the influx of extracellular calcium by preloading cells with Calcium Green-AM. In this work, we explored the impact of changing the width of a single nsPEF, at constant amplitude, on uptake of extracellular calcium ions by primary hippocampal neurons (PHN). Calcium Green was again used to measure the influx of extracellular calcium and FM1-43 was used to monitor changes in membrane conformation. The observed thresholds for nanopore formation in PHN by nsPEF were comparable to those measured in neuroblastoma. This work is the first study of nsPEF effects on PHN and strongly suggests that neurological inhibition by nanosecond electrical pulses is highly likely at doses well below irreversible damage.

  3. The bactericidal effect of surface micro-discharge plasma under different ambient conditions

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Zimmermann, J. L.; Morfill, G. E.

    2011-02-01

    A series of experiments on the bactericidal properties of plasmas using a surface micro-discharge (SMD) device in an atmosphere under different ambient temperatures and humidities was carried out. This plasma dispenser was developed for use as a disinfection system in private and public places (hospitals, medical practices, etc). The bactericidal effect is due to the interplay of the plasma and the chemical products produced via interactions with O2/N2 and H2O vapour in air. To use this device in different countries and therefore under various ambient conditions, it is important to understand its behaviour and efficiency, especially with respect to air temperature and humidity. The experimental results obtained in this study show that the bactericidal properties of the SMD plasma dispenser are not sensitive to the different temperatures and humidities.

  4. Plasma sterilization of polyethylene terephthalate bottles by pulsed corona discharge at atmospheric pressure.

    PubMed

    Masaoka, Satoshi

    2007-06-01

    A pulsed power supply was used to generate a corona discharge on a polyethylene terephthalate bottle, to conduct plasma sterilization at atmospheric pressure. Before generating such a discharge, minute quantities of water were attached to the inner surface of the bottle and to the surface of a high voltage (HV) electrode inserted into the bottle. Next, high-voltage pulses of electricity were discharged between electrodes for 6.0s, while rotating the bottle. The resulting spore log reduction values of Bacillus subtilis and Aspergillus niger on the inner surface of the bottle were 5.5 and 6 or higher, respectively, and those on the HV electrode surface were each 6 or higher for both strains. The presence of the by-products gaseous ozone, hydrogen peroxide, and nitric ions resulting from the electrical discharge was confirmed.

  5. Generation of uniform low-temperature plasma in a pulsed non-self-sustained glow discharge with a large-area hollow cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhmadeev, Yu. H.; Denisov, V. V., E-mail: volodyadenisov@yandex.ru; Koval, N. N.

    Generation of plasma in a pulsed non-self-sustained glow discharge with a hollow cathode with an area of ≥2 m{sup 2} at gas pressures of 0.4–1 Pa was studied experimentally. At an auxiliary arc-discharge current of 100 A and a main discharge voltage of 240 V, a pulse-periodic glow discharge with a current amplitude of 370 A, pulse duration of 340 μs, and repetition rate of 1 kHz was obtained. The possibility of creating a uniform gas-discharge plasma with a density of up to 10{sup 12} cm{sup −3} and an electron temperature of 1 eV in a volume of >0.2 m{supmore » 3} was demonstrated. Such plasma can be efficiently used to treat material surfaces and generate pulsed ion beams with a current density of up to 15 mA/cm{sup 2}.« less

  6. Investigation of complexity dynamics in a DC glow discharge magnetized plasma using recurrence quantification analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Vramori; Sarma, Bornali; Sarma, Arun

    Recurrence is an ubiquitous feature which provides deep insights into the dynamics of real dynamical systems. A suitable tool for investigating recurrences is recurrence quantification analysis (RQA). It allows, e.g., the detection of regime transitions with respect to varying control parameters. We investigate the complexity of different coexisting nonlinear dynamical regimes of the plasma floating potential fluctuations at different magnetic fields and discharge voltages by using recurrence quantification variables, in particular, DET, L{sub max}, and Entropy. The recurrence analysis reveals that the predictability of the system strongly depends on discharge voltage. Furthermore, the persistent behaviour of the plasma time seriesmore » is characterized by the Detrended fluctuation analysis technique to explore the complexity in terms of long range correlation. The enhancement of the discharge voltage at constant magnetic field increases the nonlinear correlations; hence, the complexity of the system decreases, which corroborates the RQA analysis.« less

  7. Plasma characteristics of long-pulse discharges heated by neutral beam injection in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Takeiri, Y.; Nakamura, Y.; Noda, N.; Osakabe, M.; Kawahata, K.; Oka, Y.; Kaneko, O.; Tsumori, K.; Sato, M.; Mutoh, T.; Shimozuma, T.; Goto, M.; Ida, K.; Inagaki, S.; Kado, S.; Masuzaki, S.; Morita, S.; Nagayama, Y.; Narihara, K.; Peterson, B. J.; Sakakibara, S.; Sato, K.; Shoji, M.; Tanaka, K.; de Vries, P. C.; Sudo, S.; Ohyabu, N.; Motojima, O.

    2000-02-01

    Long-pulse neutral beam injection heating has been achieved in the large helical device (LHD). Two different confinement states are observed for different averaged densities in the long-pulse plasmas. A quasi-steady-state plasma was sustained for 21 s with an injection power of 0.6 MW, where the central plasma temperature was around 1 keV with a line-averaged electron density of 0.3 × 1019 m-3 . The discharge duration can be so extended as to keep the plasma properties in the short-pulse discharge. The energy confinement time is nearly the same as that of the short-pulse discharge, which is 1.3 times as long as the international stellarator scaling ISS95. At higher densities, a relaxation oscillation phenomenon, observed as if the plasma would breathe, lasted for 20 s with a period of 1-2 s. The phenomenon is characterized with profile expansion and contraction of the electron temperature. The density oscillation is out of phase with the temperature oscillation and is related to the density clamping phenomenon. The observed plasma properties are shown in detail for the `breathing' oscillation phenomenon. Possible mechanisms for the breathing oscillation are also discussed, with a view of the screening effect near the last closed magnetic surface and the power balance between the heating and the radiation powers. The long-pulse heating results indicate unique characteristics of the LHD where no special feedback stabilization is required due to absence of disruption and no need for current drive.

  8. The nonlocal electron kinetics for a low-pressure glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Liang, Yonggan; Wang, Ying; Li, Hui; Tian, Ruihuan; Yuan, Chengxun; Kudryavtsev, A. A.; Rabadanov, K. M.; Wu, Jian; Zhou, Zhongxiang; Tian, Hao

    2018-05-01

    The nonlocal electron kinetic model based on the Boltzmann equation is developed in low-pressure argon glow discharge dusty plasmas. The additional electron-dust elastic and inelastic collision processes are considered when solving the kinetic equation numerically. The orbital motion limited theory and collision enhanced collection approximation are employed to calculate the dust surface potential. The electron energy distribution function (EEDF), effective electron temperature Teff, and dust surface potential are investigated under different plasma and dust conditions by solving the Boltzmann and the dust charging current balance equations self-consistently. A comparison of the calculation results obtained from nonlocal and local kinetic models is made. It is shown that the appearance of dust particles leads to a deviation of the EEDF from its original profile for both nonlocal and local kinetic models. With the increase in dust density and size, the effective electron temperature and dust surface potential decrease due to the high-energy electron loss on the dust surface. Meanwhile, the nonlocal and local results differ much from each other under the same calculation condition. It is concluded that, for low-pressure (PR ≤ 1 cm*Torr) glow discharge dusty plasmas, the existence of dust particles will amplify the difference of local and nonlocal EEDFs, which makes the local kinetic model more improper to determine the main parameters of the positive column. The nonlocal kinetic model should be used for the calculation of the EEDFs and dusty plasma parameters.

  9. Modeling of inhomogeneous mixing of plasma species in argon-steam arc discharge

    NASA Astrophysics Data System (ADS)

    Jeništa, J.; Takana, H.; Uehara, S.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Murphy, A. B.

    2018-01-01

    This paper presents numerical simulation of mixing of argon- and water-plasma species in an argon-steam arc discharge generated in a thermal plasma generator with the combined stabilization of arc by axial gas flow (argon) and water vortex. The diffusion of plasma species itself is described by the combined diffusion coefficients method in which the coefficients describe the diffusion of argon ‘gas,’ with respect to water vapor ‘gas.’ Diffusion processes due to the gradients of mass density, temperature, pressure, and an electric field have been considered in the model. Calculations for currents 150-400 A with 15-22.5 standard liters per minute (slm) of argon reveal inhomogeneous mixing of argon and oxygen-hydrogen species with the argon species prevailing near the arc axis. All the combined diffusion coefficients exhibit highly nonlinear distribution of their values within the discharge, depending on the temperature, pressure, and argon mass fraction of the plasma. The argon diffusion mass flux is driven mainly by the concentration and temperature space gradients. Diffusions due to pressure gradients and due to the electric field are of about 1 order lower. Comparison with our former calculations based on the homogeneous mixing assumption shows differences in temperature, enthalpy, radiation losses, arc efficiency, and velocity at 400 A. Comparison with available experiments exhibits very good qualitative and quantitative agreement for the radial temperature and velocity profiles 2 mm downstream of the exit nozzle.

  10. Study of surface atmospheric pressure glow discharge plasma based on ultrathin laminated electrodes in air

    NASA Astrophysics Data System (ADS)

    Zhao, Luxiang; Liu, Wenzheng; Li, Zhiyi; Ma, Chuanlong

    2018-05-01

    A method to generate large-area surface plasma in air by micro-discharge is proposed. Two ultrathin laminated electrode structures of non-insulating and insulating types were formed by using the nanoscale ITO conductive layer. The surface glow discharge in atmospheric air is realized in low discharge voltage by constructing the special electric field of two-dimensional unidirectional attenuation. In particular, the insulating electrode structure can avoid the loss of ITO electrodes so that the discharge stability can be increased, and the treated objects can be prevented from metal ion pollution caused by the electrode in the discharge. It has broad application prospects in the fields of aerodynamics and material surface treatment.

  11. Can a Penning ionization discharge simulate the tokamak scrape-off plasma conditions?

    NASA Technical Reports Server (NTRS)

    Finkenthal, M.; Littman, A.; Stutman, D.; Kovnovich, S.; Mandelbaum, P.; Schwob, J. L.; Bhatia, A. K.

    1990-01-01

    The tokamak scrape-off (the region between the vacuum vessel wall and the magnetically confined fusion plasma edge), represents a source/sink for the hot fusion plasma. The electron densities and temperatures are in the ranges 10 to the 11th - 10 to the 13th/cu cm and 1-40 eV, respectively (depending on the size, magnetic field intensity and configuration, plasma current, etc). In the work reported, the electron temperature and density have been estimated in a Penning ionization discharge by comparing its spectroscopic emission in the VUV with that predicted by a collisional radiative model. An attempt to directly compare this emission with that of the tokamak edge is briefly described.

  12. Reaction of Cl- ions in electrolyte solution induced electrical discharge plasma in the presence of argon fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Wahyudiono, Kanda, Hideki; Goto, Motonobu

    2017-05-01

    Active chlorine species such as chlorine molecules and hypochlorous acid have been known as high performance sanitizers. They would act more reactive on chemical and biological substances when an electrical discharge was introduced in water containing an electrolyte substance. Here, the reaction of chloride (Cl-) ions were examined by introducing of a pulsed discharge plasma in sodium chloride (NaCl) solution as an electrolyte solution at room temperature. The results show that a large electrical current generated by the pulsed discharge plasma affected the reaction of Cl- ions to result available chlorine. The reaction pathway for available chlorine production was assumed similar with the reaction pathway as electrolysis. A pulsed discharge plasma in NaCl solution in the presence of argon (Ar) fine bubbles exhibited intense emissions and high electron density compared to when no Ar fine bubbles were introduced. At these conditions, the dissociation reaction rate of water increased drastically leads to the formation of 0 atoms. As a result, the reaction of Cl- ions and the available chlorine generation were also increased.

  13. [The study on the characteristics and particle densities of lightning discharge plasma].

    PubMed

    Wang, Jie; Yuan, Ping; Zhang, Hua-ming; Shen, Xiao-zhi

    2008-09-01

    According to the wavelengths, relative intensities and transition parameters of lines in cloud-to-ground lightning spectra obtained by a slit-less spectrograph in Qinghai province and Xizang municipality, and by theoretical calculations of plasma, the average temperature and electron density for individual lightning discharge channel were calculated, and then, using Saha equations, electric charge conservation equations and particle conservation equations, the particle densities of every ionized-state, the mass density, pressure and the average ionization degree were obtained. Moreover, the average ionization degree and characteristics of particle distributions in each lightning discharge channel were analyzed. Local thermodynamic equilibrium and an optically thin emitting gas were assumed in the calculations. The result shows that the characteristics of lightning discharge plasma have strong relationships with lightning intensities. For a certain return stroke channel, both temperatures and electron densities of different positions show tiny trend of falling away with increasing height along the discharge channel. Lightning channels are almost completely ionized, and the first ionized particles occupy the main station while N II has the highest particle density. On the other hand, the relative concentrations of N II and O II are near a constant in lightning channels with different intensities. Generally speaking, the more intense the lightning discharge, the higher are the values of channel temperature, electron density and relative concentrations of highly ionized particles, but the lower the concentration of the neutral atoms. After considering the Coulomb interactions between positive and negative particles in the calculations, the results of ionization energies decrease, and the particle densities of atoms and first ionized ions become low while high-ionized ions become high. At a temperature of 28000 K, the pressure of the discharge channel due to electrons

  14. The synergetic effect of UV rays on the decomposition of xylene in dielectric barrier discharge plasma and photocatalyst process

    NASA Astrophysics Data System (ADS)

    Li, Wenjuan; Gu, Zhenyu; Teng, Fuhua; Lu, Jianhai; Dong, Shibi; Miao, Xiaoping; Wu, Zhongbiao

    2018-06-01

    The degradation of xylene in the dielectric barrier discharge plasma and photocatalyst process was studied, focusing on the synergetic effect of UV rays from plasma process and external UV lamps on the decomposition of xylene. The results showed that xylene could be decomposed by the discharge process in plasma system, whereas the UV rays from plasma process was very weak. After adding TiO2, the removal efficiency of xylene and energy yield in plasma process were enhanced since energetic particles activated the catalysis of TiO2. The removal efficiency of xylene and energy field in plasma and photocatalyst process combined with external UV lamps were further enhanced attributed to the degradation effect of plasma, the catalysis of TiO2 activated by plasma, the photolysis of UV rays and the photocatalysis of photocatalyst. The synergetic effect of UV rays from external UV lamps was obvious.

  15. Impacts created on various materials by micro-discharges in heptane: Influence of the dissipated charge

    NASA Astrophysics Data System (ADS)

    Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T.

    2013-01-01

    Modes of energy dissipation in impacts made on various materials (Al, Cu, Fe, and Si) by discharges in heptane are investigated for micro-gap conditions. Bulk metals and thin films of 300 nm in thickness deposited on silicon wafers are used as samples. Positive high voltage pulses with nanosecond rise times make it possible to isolate a single discharge and to study the way the charge delivered by the power supply is transferred to the larger electrode (the sample) in a pin-to-plate configuration. The diameter of the impacts created by the plasma varies linearly versus the charge raised at a power close to 0.5. However, the exact value of the power depends on the material. We also show how the impact morphologies change with the applied charge. At high charges, the diameters of impacts on thin films behave as those made on silicon. At low charges, they behave as the bulk material. Finally, we show that the energy dissipated in impacts is below a few percent.

  16. Effects of pulse frequency of input power on the physical and chemical properties of pulsed streamer discharge plasmas in water

    NASA Astrophysics Data System (ADS)

    Ruma; Lukes, P.; Aoki, N.; Spetlikova, E.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.

    2013-03-01

    A repetitive pulsed-power modulator, which employs a magnetic pulse compression circuit with a high-speed thyristor switch, was used to study the effects of the pulse repetition rate of input power on the physical and chemical properties of pulsed discharges in water. Positive high-voltage pulses of 20 kV with repetition rates of up to 1 kHz were used to generate a discharge in water using the point-to-plane electrode geometry. By varying the pulse repetition rate, two distinct modes of the discharge plasma were formed in water. The first mode was characterized by the formation of a corona-like discharge propagating through water in the form of streamer channels. The second mode was formed typically above 500 Hz, when the formation of streamer channels in water was suppressed and all plasmas occurred inside a spheroidal aggregate of very fine gas bubbles surrounding the tip of the high-voltage electrode. The production of hydrogen peroxide, degradation of organic dye Acid Orange 7 (AO7) and inactivation of bacteria Escherichia coli by the discharge in water were studied under different discharge plasma modes in dependence on the pulse repetition rate of input power. The efficiency of both chemical and biocidal processes induced by the plasma in water decreased significantly with pulse repetition rates above 500 Hz.

  17. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be toomore » weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.« less

  18. A study of the glow discharge plasma jet of the novel Hamburger-electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenzheng, E-mail: wzhliu@bjtu.edu.cn; Ma, Chuanlong, E-mail: 15121452@bjtu.edu.cn; Yang, Xiao

    2016-08-15

    To generate atmospheric pressure glow discharge plasma jets (APGDPJs), a novel Hamburger-electrode was proposed. Through the study on electric field distributions, flow field distributions, and characteristics of the discharge and jet, we found that adopting the mode of dielectric barrier discharge with non-uniform thickness of dielectric, it was easy to form the strong electric field areas which were conducive to generate discharge and electric field distributions with large electric field intensity in the narrow gap and weak electric field intensity in the wide gap that were not inclined to form a filament discharge. Using the structure of evenly distributed innermore » electrodes, it was easy to weaken the pressure of strong electric field areas and form flow field distributions which is beneficial for taking out the high density charged particles and generating APGDPJs. Stable APGDPJs in nitrogen with 3.5 mm in diameter and 9 mm in length were formed by using the novel Hamburger-electrode.« less

  19. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processesmore » observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.« less

  20. Plasma characteristics in non-sinusoidally excited CCP discharges

    NASA Astrophysics Data System (ADS)

    Lafleur, Trevor; Booth, Jean-Paul

    2012-10-01

    Using particle-in-cell (PIC) simulations we perform a characterization of the plasma response to positive pulse-type voltage excitations (with a repetition frequency of 13.56 MHz) in a geometrically symmetric CCP reactor (with a gap length of 2 cm) operated with argon (for pressures between 20-500 mTorr). Use of these non-sinusoidal waveforms generates an electrical asymmetry effect in the system, which necessitates the formation of a DC bias. This DC bias, together with the shape of the voltage waveforms used, produces a number of new phenomena that are not present in typical sinusoidal discharges: (1) the plasma density and ion flux can be increased as the pulse width is reduced, (2) a significant asymmetry in the ion fluxes to the powered and grounded electrodes develops as the pressure increases, (3) the average ion energy striking the grounded electrode remains low and approximately constant as the pulse width decreases, and (4) the sheath at the grounded electrode never fully collapses; electrons are no longer lost in sharp pulses, but escape essentially throughout the rf cycle. Effects (1) and (3) above offer the possibility for a new form of control in these types of discharges, where the ion flux can be increased while the ion energy on the grounded electrode can be kept small and essentially constant. This effect has recently been exploited to control the crystallinity of silicon thin films [1], where the low ion bombarding energy was found to improve the quality of films grown. [4pt] [1] Johnson E V, Pouliquen S, Delattre P A, and Booth J P, J. Non-Cryst. Solids 2012, in press.

  1. Carbon dioxide splitting in a dielectric barrier discharge plasma: a combined experimental and computational study.

    PubMed

    Aerts, Robby; Somers, Wesley; Bogaerts, Annemie

    2015-02-01

    Plasma technology is gaining increasing interest for the splitting of CO2 into CO and O2 . We have performed experiments to study this process in a dielectric barrier discharge (DBD) plasma with a wide range of parameters. The frequency and dielectric material did not affect the CO2 conversion and energy efficiency, but the discharge gap can have a considerable effect. The specific energy input has the most important effect on the CO2 conversion and energy efficiency. We have also presented a plasma chemistry model for CO2 splitting, which shows reasonable agreement with the experimental conversion and energy efficiency. This model is used to elucidate the critical reactions that are mostly responsible for the CO2 conversion. Finally, we have compared our results with other CO2 splitting techniques and we identified the limitations as well as the benefits and future possibilities in terms of modifications of DBD plasmas for greenhouse gas conversion in general. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Improvement of Technological Properties of a Vegetal Tanning Agent in Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Khairullin, A. K.; Voznesensky, E. F.; Rakhmatullina, G. R.; Sabirov, A. M.; Tikhonova, N. V.

    2017-11-01

    The article considers the possibility of modification of the vegetal tanning agent quebracho in the plasma of a radio-frequency induction discharge at low pressure. It is established that plasma treatment leads to a decrease in the size of colloid fractions and a decrease in the molecular weight, while the functionality of the vegetal tanning agent is preserved. Application of the obtained product in the process of leather retanning allows improving its physical, mechanical and consumer properties.

  3. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    PubMed

    Arjunan, Krishna P; Clyne, Alisa Morss

    2011-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), recently emerged as an efficient tool in medical applications. Liquids and endothelial cells were treated with a non-thermal dielectric barrier discharge plasma. Plasma treatment of phosphate buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration in serum-free medium. ROS concentration in cells peaked 1 hour after treatment. 4.2 J/cm(2) increased cell proliferation, 2D and 3D migration, as well as tube formation. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers for hydrogen peroxide and hydroxyl radicals abrogated these angiogenic effects. Non-thermal plasma may be a potential tool for applying ROS in precise doses to enhance vascularization.

  4. Development of a DC Glow Discharge Exhibit for the Demonstration of Plasma Behavior in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Bruder, Daniel

    2010-11-01

    The DC Glow Discharge Exhibit is intended to demonstrate the effects a magnetic field produces on a plasma in a vacuum chamber. The display, which will be featured as a part of The Liberty Science Center's ``Energy Quest Exhibition,'' consists of a DC glow discharge tube and information panels to educate the general public on plasma and its relation to fusion energy. Wall posters and an information booklet will offer brief descriptions of fusion-based science and technology, and will portray plasma's role in the development of fusion as a viable source of energy. The display features a horse-shoe magnet on a movable track, allowing viewers to witness the effects of a magnetic field upon a plasma. The plasma is created from air within a vacuum averaging between 100-200 mTorr. Signage within the casing describes the hardware components. The display is pending delivery to The Liberty Science Center, and will replace a similar, older exhibit presently at the museum.

  5. Spontaneous Generation of a Sheared Plasma Rotation in a Field-Reversed θ-Pinch Discharge

    NASA Astrophysics Data System (ADS)

    Omelchenko, Y. A.; Karimabadi, H.

    2012-08-01

    By conducting two-dimensional hybrid simulations of an infinitely long field-reversed θ-pinch discharge we discover a new type of plasma rotation, which rapidly develops at the plasma edge in the ion diamagnetic direction due to the self-consistent generation of a Hall-driven radial electric field. This effect is different from the previously identified end-shorting and particle-loss mechanisms. We also demonstrate flutelike perturbations frequently inferred in experiments and show that in the absence of axial contraction effects they may quickly alter the toroidal symmetry of the plasma.

  6. Focused beams of fast neutral atoms in glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. N.; Melnik, Yu. A.; Metel, A. S.; Volosova, M. A.

    2017-06-01

    Glow discharge with electrostatic confinement of electrons in a vacuum chamber allows plasma processing of conductive products in a wide pressure range of p = 0.01 - 5 Pa. To assist processing of a small dielectric product with a concentrated on its surface beam of fast neutral atoms, which do not cause charge effects, ions from the discharge plasma are accelerated towards the product and transformed into fast atoms. The beam is produced using a negatively biased cylindrical or a spherical grid immersed in the plasma. Ions accelerated by the grid turn into fast neutral atoms at p > 0.1 Pa due to charge exchange collisions with gas atoms in the space charge sheaths adjoining the grid. The atoms form a diverging neutral beam and a converging beam propagating from the grid in opposite directions. The beam propagating from the concave surface of a 0.24-m-wide cylindrical grid is focused on a target within a 10-mm-wide stripe, and the beam from the 0.24-m-diameter spherical grid is focused within a 10-mm-diameter circle. At the bias voltage U = 5 kV and p ˜ 0.1 Pa, the energy of fast argon atoms is distributed continuously from zero to eU ˜ 5 keV. The pressure increase to 1 Pa results in the tenfold growth of their equivalent current and a decrease in the mean energy by an order of magnitude, which substantially raises the efficiency of material etching. Sharpening by the beam of ceramic knife-blades proved that the new method for the generation of concentrated fast atom beams can be effectively used for the processing of dielectric materials in vacuum.

  7. Magneto-absorption effects in magnetic-field assisted laser ablation of silicon by UV nanosecond pulses

    NASA Astrophysics Data System (ADS)

    Farrokhi, H.; Gruzdev, V.; Zheng, H. Y.; Rawat, R. S.; Zhou, W.

    2016-06-01

    A constant magnetic field can significantly improve the quality and speed of ablation by nanosecond laser pulses. These improvements are usually attributed to the confinement of laser-produced plasma by the magnetic field and specific propagation effects in the magnetized plasma. Here we report a strong influence of constant axial magnetic field on the ablation of silicon by 20-ns laser pulses at wavelength 355 nm, which results in an increase of ablation depth by a factor of 1.3 to 69 depending on laser parameters and magnitude of the magnetic field. The traditional plasma effects do not explain this result, and magneto-absorption of silicon is proposed as one of the major mechanisms of the significant enhancement of ablation.

  8. A compact nanosecond pulse generator for DBD tube characterization.

    PubMed

    Rai, S K; Dhakar, A K; Pal, U N

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  9. A compact nanosecond pulse generator for DBD tube characterization

    NASA Astrophysics Data System (ADS)

    Rai, S. K.; Dhakar, A. K.; Pal, U. N.

    2018-03-01

    High voltage pulses of very short duration and fast rise time are required for generating uniform and diffuse plasma under various operating conditions. Dielectric Barrier Discharge (DBD) has been generated by high voltage pulses of short duration and fast rise time to produce diffuse plasma in the discharge gap. The high voltage pulse power generators have been chosen according to the requirement for the DBD applications. In this paper, a compact solid-state unipolar pulse generator has been constructed for characterization of DBD plasma. This pulsar is designed to provide repetitive pulses of 315 ns pulse width, pulse amplitude up to 5 kV, and frequency variation up to 10 kHz. The amplitude of the output pulse depends on the dc input voltage. The output frequency has been varied by changing the trigger pulse frequency. The pulsar is capable of generating pulses of positive or negative polarity by changing the polarity of pulse transformer's secondary. Uniform and stable homogeneous dielectric barrier discharge plasma has been produced successfully in a xenon DBD tube at 400-mbar pressure using the developed high voltage pulse generator.

  10. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges.

    PubMed

    Zając, S; Rzadkiewicz, J; Rosmej, O; Scholz, M; Yongtao, Zhao; Gójska, A; Paduch, M; Zielińska, E

    2010-10-01

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at ∼400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  11. Spatially resolved high-resolution x-ray spectroscopy of high-current plasma-focus discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZajaPc, S.; Rzadkiewicz, J.; Scholz, M.

    Soft x-ray emission from a Mather-type plasma-focus device (PF-1000) operated at {approx}400 kJ was measured. The high density and temperature plasma were generated by the discharge in the deuterium-argon gas mixture in the modified (high-current) plasma-focus configuration. A spherically bent mica crystal spectrograph viewing the axial output of the pinch region was used to measure the x-ray spectra. Spatially resolved spectra including the characteristic x-ray lines of highly ionized Ar and continua were recorded by means of an x-ray film. The x-ray emission of PF-1000 device was studied at different areas of the pinch.

  12. The physics of pulsed streamer discharge in high pressure air and applications to engine techonologies

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Hsu

    The goal of this dissertation is to study high pressure streamers in air and apply it to diesel engine technologies. Nanosecond scale pulsed high voltage discharges in air/fuel mixtures can generate radicals which in turn have been shown to improve combustion efficiency in gasoline fueled internal combustion engines. We are exploring the possibility to extend such transient plasma generation and expected radical species generation to the range of pressures encountered in compression-ignition (diesel) engines having compression ratios of ˜20:1, thereby improving lean burning efficiency and extending the range of lean combustion. At the beginning of this dissertation, research into streamer discharges is reviewed. Then, we conducted experiments of streamer propagation at high pressures, calculated the streamer velocity based on both optical and electrical measurements, and the similarity law was checked by analyzing the streamer velocity as a function of the reduced electric field, E/P. Our results showed that the similarity law is invalid, and an empirical scaling factor, E/√P, is obtained and verified by dimensional analysis. The equation derived from the dimensional analysis will be beneficial to proper electrode and pulse generator design for transient plasma assisted internal engine experiments. Along with the high pressure study, we applied such technique on diesel engine to improve the fuel efficiency and exhaust treatment. We observed a small effect of transient plasma on peak pressure, which implied that transient plasma has the capability to improve the fuel consumption. In addition, the NO can be reduced effectively by the same technique and the energy cost is 30 eV per NO molecule.

  13. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds.

    PubMed

    Kim, Je-Wook; Puligundla, Pradeep; Mok, Chulkyoon

    2017-01-01

    Different pathogenic microorganisms have been reported to cause sprouts-associated outbreaks. In order to sterilise and enhance the germination of seeds, non-thermal plasma has been increasingly investigated in the field of agricultural science as an alternative to the traditional pre-sowing seed treatments. This work aimed to evaluate the effect of corona discharge plasma jet (CDPJ) on disinfection of the natural bio-contaminants of broccoli seed and also studied the plasma effect on sprout seed germination rate and physico-chemical properties of sprouts. Aerobic bacteria, moulds and yeasts, B. cereus, E. coli, Salmonella spp. were detected on the broccoli seed surface. After 0-3 min treatment using CDPJ, the detected microorganisms were reduced in the range of 1.2-2.3 log units. Inactivation patterns were better explained using pseudo-first-order kinetics. The plasma treatment of seeds up to 2 min exhibited a positive effect on germination rate, seedling growth. The physico-chemical and sensory characteristics of sprouts were unaffected due to the CDPJ treatment of their respective seeds. Corona discharge plasma jet can potentially be used for microbial decontamination of broccoli seeds. In addition, the plasma treatment of broccoli sprout seeds has enabled a significant enhancement in their germination rate and seedling growth without compromising physico-chemical and sensory characteristics of their corresponding sprouts. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power

  15. Theoretical models of the electrical discharge machining process. III. The variable mass, cylindrical plasma model

    NASA Astrophysics Data System (ADS)

    Eubank, Philip T.; Patel, Mukund R.; Barrufet, Maria A.; Bozkurt, Bedri

    1993-06-01

    A variable mass, cylindrical plasma model (VMCPM) is developed for sparks created by electrical discharge in a liquid media. The model consist of three differential equations—one each from fluid dynamics, an energy balance, and the radiation equation—combined with a plasma equation of state. A thermophysical property subroutine allows realistic estimation of plasma enthalpy, mass density, and particle fractions by inclusion of the heats of dissociation and ionization for a plasma created from deionized water. Problems with the zero-time boundary conditions are overcome by an electron balance procedure. Numerical solution of the model provides plasma radius, temperature, pressure, and mass as a function of pulse time for fixed current, electrode gap, and power fraction remaining in the plasma. Moderately high temperatures (≳5000 K) and pressures (≳4 bar) persist in the sparks even after long pulse times (to ˜500 μs). Quantitative proof that superheating is the dominant mechanism for electrical discharge machining (EDM) erosion is thus provided for the first time. Some quantitative inconsistencies developed between our (1) cathode, (2) anode, and (3) plasma models (this series) are discussed with indication as to how they will be rectified in a fourth article to follow shortly in this journal. While containing oversimplifications, these three models are believed to contain the respective dominant physics of the EDM process but need be brought into numerical consistency for each time increment of the numerical solution.

  16. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.

    PubMed

    Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G

    2008-05-12

    In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

  17. Dissipated power and induced velocity fields data of a micro single dielectric barrier discharge plasma actuator for active flow control☆

    PubMed Central

    Pescini, E.; Martínez, D.S.; De Giorgi, M.G.; Francioso, L.; Ficarella, A.

    2015-01-01

    In recent years, single dielectric barrier discharge (SDBD) plasma actuators have gained great interest among all the active flow control devices typically employed in aerospace and turbomachinery applications [1,2]. Compared with the macro SDBDs, the micro single dielectric barrier discharge (MSDBD) actuators showed a higher efficiency in conversion of input electrical power to delivered mechanical power [3,4]. This article provides data regarding the performances of a MSDBD plasma actuator [5,6]. The power dissipation values [5] and the experimental and numerical induced velocity fields [6] are provided. The present data support and enrich the research article entitled “Optimization of micro single dielectric barrier discharge plasma actuator models based on experimental velocity and body force fields” by Pescini et al. [6]. PMID:26425667

  18. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  19. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  20. Measurements of the populations of metastable and resonance levels in the plasma of an RF capacitive discharge in argon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasilieva, A. N.; Voloshin, D. G.; Kovalev, A. S., E-mail: kovalev@dnph.phys.msu.su

    2015-05-15

    The behavior of the populations of two metastable and two lower resonance levels of argon atoms in the plasma of an RF capacitive discharge was studied. The populations were measured by two methods: the method of emission self-absorption and the method based on measurements of the intensity ratios of spectral lines. It is shown that the populations of resonance levels increase with increasing power deposited in the discharge, whereas the populations of metastable levels is independent of the RF power. The distribution of the populations over energy levels is not equilibrium under these conditions. The population kinetics of argon atomicmore » levels in the discharge plasma is simulated numerically. The distribution function of plasma electrons recovered from the measured populations of atomic levels and numerical simulations is found to be non-Maxwellian.« less

  1. Nanosecond laser-cluster interactions at 109-1012 W/cm 2

    NASA Astrophysics Data System (ADS)

    Singh, Rohtash; Tripathi, V. K.; Vatsa, R. K.; Das, D.

    2017-08-01

    An analytical model and a numerical code are developed to study the evolution of multiple charge states of ions by irradiating clusters of atoms of a high atomic number (e.g., Xe) by 1.06 μm and 0.53 μm nanosecond laser pulses of an intensity in the range of 109-1012 W/cm 2 . The laser turns clusters into plasma nanoballs. Initially, the momentum randomizing collisions of electrons are with neutrals, but soon these are taken over by collisions with ions. The ionization of an ion to the next higher state of ionization is taken to be caused by an energetic free electron impact, and the rates of impact ionization are suitably modelled by having an inverse exponential dependence of ionizing collision frequency on the ratio of ionization potential to electron temperature. Cluster expansion led adiabatic cooling is a major limiting mechanism on electron temperature. In the intensity range considered, ionization states up to 7 are expected with nanosecond pulses. Another possible mechanism, filamentation of the laser, has also been considered to account for the observation of higher charged states. However, filamentation is seen to be insufficient to cause substantial local enhancement in the intensity to affect electron heating rates.

  2. (RTO) Characterization of the Time-dependent Behaviour of Dielectric Barrier Discharge Plasma Actuators

    DTIC Science & Technology

    2014-06-19

    excited by a sine -wave signal with peak- to-peak amplitudes between 7.2 kV and 10 kV, and frequencies of 2.5 kHz and 4 kHz. The results indicate that the...side length of 0.68 m, made of transparent PMMA, to isolate it from ambient disturbances. The plasma actuator was excited by a sine -wave signal, which... Portugal , 2008. 6Hanson, R., Houser, N., and Lavoie, P., “Dielectric material degradation monitoring of dielectric barrier discharge plasma actuators

  3. Dielectric Barrier Discharge based Mercury-free plasma UV-lamp for efficient water disinfection.

    PubMed

    Prakash, Ram; Hossain, Afaque M; Pal, U N; Kumar, N; Khairnar, K; Mohan, M Krishna

    2017-12-12

    A structurally simple dielectric barrier discharge based mercury-free plasma UV-light source has been developed for efficient water disinfection. The source comprises of a dielectric barrier discharge arrangement between two co-axial quartz tubes with an optimized gas gap. The outer electrode is an aluminium baked foil tape arranged in a helical form with optimized pitch, while the inner electrode is a hollow aluminium metallic rod, hermetically sealed. Strong bands peaking at wavelengths 172 nm and 253 nm, along with a weak band peaking at wavelength 265 nm have been simultaneously observed due to plasma radiation from the admixture of xenon and iodine gases. The developed UV source has been used for bacterial deactivation studies using an experimental setup that is an equivalent of the conventional house-hold water purifier system. Deactivation studies for five types of bacteria, i.e., E. coli, Shigella boydii, Vibrio, Coliforms and Fecal coliform have been demonstrated with 4 log reductions in less than ten seconds.

  4. Cold atmospheric plasma discharged in water and its potential use in cancer therapy

    NASA Astrophysics Data System (ADS)

    Chen, Zhitong; Cheng, Xiaoqian; Lin, Li; Keidar, Michael

    2017-01-01

    Cold atmospheric plasma (CAP) has emerged as a novel technology for cancer treatment. CAP can directly treat cells and tissue but such direct application is limited to skin or can be invoked as a supplement during open surgery. In this study we report indirect plasma treatment using CAP discharged in deionized (DI) water using three gases as carriers (argon (Ar), helium (He), and nitrogen (N2)). Plasma stimulated water was applied to the human breast cancer cell line (MDA-MB-231). MTT (3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay tests showed that using Ar plasma had the strongest effect on inducing apoptosis in cultured human breast cancer cells. This result is attributed to the elevated production of reactive oxygen species and reactive nitrogen species in water.

  5. Emission characteristics of 6.78-MHz radio-frequency glow discharge plasma in a pulsed mode

    NASA Astrophysics Data System (ADS)

    Zhang, Xinyue; Wagatsuma, Kazuaki

    2017-07-01

    This paper investigated Boltzmann plots for both atomic and ionic emission lines of iron in an argon glow discharge plasma driven by 6.78-MHz radio-frequency (RF) voltage in a pulsed operation, in order to discuss how the excitation/ionization process was affected by the pulsation. For this purpose, a pulse frequency as well as a duty ratio of the pulsed RF voltage was selected as the experimenter parameters. A Grimm-style radiation source was employed at a forward RF power of 70 W and at an argon pressures of 670 Pa. The Boltzmann plot for low-lying excited levels of iron atom was on a linear relationship, which was probably attributed to thermal collisions with ultimate electrons in the negative glow region; in this case, the excitation temperature was obtained in a narrow range of 3300-3400 K, which was hardly affected by the duty ratio as well as the pulse frequency of the pulsed RF glow discharge plasma. This observation suggested that the RF plasma could be supported by a self-stabilized negative glow region, where the kinetic energy distribution of the electrons would be changed to a lesser extent. Additional non-thermal excitation processes, such as a Penning-type collision and a charge-transfer collision, led to deviations (overpopulation) of particular energy levels of iron atom or iron ion from the normal Boltzmann distribution. However, their contributions to the overall excitation/ionization were not altered so greatly, when the pulse frequency or the duty ratio was varied in the pulsed RF glow discharge plasma.

  6. Dielectric barrier discharges: progress on plasma sources and on the understanding of regimes and single filaments

    NASA Astrophysics Data System (ADS)

    Brandenburg, Ronny

    2017-05-01

    Dielectric barrier discharges (DBDs) are plasmas generated in configurations with an insulating (dielectric) material between the electrodes which is responsible for a self-pulsing operation. DBDs are a typical example of nonthermal atmospheric or normal pressure gas discharges. Initially used for the generation of ozone, they have opened up many other fields of application. Therefore DBDs are a relevant tool in current plasma technology as well as an object for fundamental studies. Another motivation for further research is the fact that so-called partial discharges in insulated high voltage systems are special types of DBDs. The breakdown processes, the formation of structures, and the role of surface processes are currently under investigation. This review is intended to give an update to the already existing literature on DBDs considering the research and development within the last two decades. The main principles and different modes of discharge generation are summarized. A collection of known as well as special electrode configurations and reactor designs will be presented. This shall demonstrate the different and broad possibilities, but also the similarities and common aspects of devices for different fields of applications explored within the last years. The main part is devoted to the progress on the investigation of different aspects of breakdown and plasma formation with the focus on single filaments or microdischarges. This includes a summary of the current knowledge on the electrical characterization of filamentary DBDs. In particular, the recent new insights on the elementary volume and surface memory mechanisms in these discharges will be discussed. An outlook for the forthcoming challenges on research and development will be given.

  7. Infrared gas phase study on plasma-polymer interactions in high-current diffuse dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Welzel, S.; Starostin, S. A.; van de Sanden, M. C. M.; Engeln, R.; de Vries, H. W.

    2017-06-01

    A roll-to-roll high-current diffuse dielectric barrier discharge at atmospheric pressure was operated in air and Ar/N2/O2 gas mixtures. The exhaust gas from the discharge was studied using a high-resolution Fourier-transform infrared spectrometer in the range from 3000 to 750 cm-1 to unravel the plasma-polymer interactions. The absorption features of HxNyOz, COx, and HCOOH (formic acid) were identified, and the relative densities were deduced by fitting the absorption bands of the detected molecules. Strong interactions between plasma and polymer (Polyethylene-2,6-naphthalate, or PEN) in precursor-free oxygen-containing gas mixtures were observed as evidenced by a high COx production. The presence of HCOOH in the gas effluent, formed through plasma-chemical synthesis of COx, turns out to be a sensitive indicator for etching. By adding tetraethylorthosilicate precursor in the plasma, dramatic changes in the COx production were measured, and two distinct deposition regimes were identified. At high precursor flows, a good agreement with the precursor combustion and the COx production was observed, whereas at low precursor flows an etching-deposition regime transpires, and the COx production is dominated by polymer etching.

  8. Application of filter method for detection of secondary electron emission in the auto-oscillating mode of beam plasma discharge

    NASA Astrophysics Data System (ADS)

    Balovnev, A. V.; Vizgalov, I. V.; Salahutdinov, G. H.

    2016-01-01

    In this paper we studied the non-self mode of the auto-oscillation secondary- emission discharge (ASED) in a longitudinal magnetic field with autonomous electron gun to ignite the primary beam-plasma discharge (PPD).

  9. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  10. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  11. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motie, Iman; Bokaeeyan, Mahyar, E-mail: Mehyar9798@gmail.com

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-calledmore » the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.« less

  12. Nonthermal Biological Treatments Using Discharge Plasma Produced by Pulsed Power 4. Cleaning of Lakes and Marshes by Pulsed Power Produced Streamer Discharges in Water

    NASA Astrophysics Data System (ADS)

    Akiyama, Hidenori; Katsuki, Sunao; Namihira, Takao; Ishibashi, Kazuo; Kiyosaki, Noriaki

    Pulsed power has been used to produce non-thermal plasmas in atmospheric pressure gases that generate a high electric field at the tips of streamer discharges, where high energy electrons, free radicals, ultraviolet rays, and ozone are produced. These manifestations of streamer discharges have been used in the treatment of exhaust gases, removal of volatile and toxic compounds such as dioxin, and the sterilization of microorganisms. Here, large volume streamer discharges in water are described. These streamer discharges in liquids are able to produce a high electric field, high energy electrons, ozone, chemically active species, ultraviolet rays, and shock waves, which readily sterilize microorganisms and decompose molecules and materials. An application of this phenomenon to the cleaning of lakes and marshes is also described.

  13. Variation in dose and plasma level of lamotrigine in patients discharged from a mental health trust.

    PubMed

    Douglas-Hall, Petrina; Dzahini, Olubanke; Gaughran, Fiona; Bile, Ahmed; Taylor, David

    2017-01-01

    The objectives of this study were to investigate the dose of lamotrigine when prescribed with an enzyme inhibitor or enzyme inducer in patients discharged from a mental health trust and to determine the corresponding lamotrigine plasma concentrations and the factors that may affect these. All patients discharged on lamotrigine between October 2007 and September 2012 were identified using the pharmacy dispensing database. We recorded demographic details, lamotrigine dose and plasma levels and coprescribed medication. During the designated period, 187 patients were discharged on lamotrigine of whom 117 had their plasma levels recorded. The mean lamotrigine daily dose was 226.1 mg (range 12.5-800 mg) and the mean plasma level 5.9 mg/l (range 0.8-18.1 mg/l). Gender, ethnicity, diagnosis and smoking status had no significant effect on dose or plasma levels. Patients taking an enzyme-inducing drug ( n = 6) had significantly lower plasma levels [mean (SD) 3.40 (1.54) mg/l] than those not taking enzyme inducers [ n = 111; 6.03 (3.13) mg/l; p = 0.043]. Patients taking an enzyme-inhibiting drug ( n = 23) had significantly higher levels [7.47 (3.99) mg/l] than those not taking an inhibitor [ n = 94; 5.52 (2.75) mg/l; p = 0.035]. No significant difference was found between the doses of lamotrigine in patients taking an enzyme inhibitor and those not taking one ( p = 0.376). No significant difference was found between the doses of lamotrigine in patients taking an enzyme-inducing drug and those not taking any ( p = 0.574). Current dosing recommendations indicate that lamotrigine doses should be halved in individuals taking enzyme inhibitors and doubled in those on enzyme inducers. In our survey these recommendations were rarely followed with the consequence that patients received too high or too low a dose of lamotrigine, respectively.

  14. Degradation of selected organophosphate pesticides in wastewater by dielectric barrier discharge plasma.

    PubMed

    Hu, Yingmei; Bai, Yanhong; Yu, Hu; Zhang, Chunhong; Chen, Jierong

    2013-09-01

    In this paper, degradation of selected organophosphate pesticides (dichlorvos and dimethoate) in wastewater by dielectric barrier discharge plasma (DBD) was studied. DBD parameters, i.e. discharge powers and air-gap distances, differently affect their degradation efficiency. The results show that better degradation efficiency is obtained with a higher discharge power and a shorter air-gap distance. The effect of radical intervention degradation was also investigated by adding radical scavenger (tert-butyl alcohol) to the pesticide solution during the experiments. The result shows that the degradation efficiency is restrained in the presence of radical scavenger. It clearly demonstrates that hydroxyl radicals are most likely the main driver for degradation process. Moreover, the kinetics indicate that the disappearance rate of pesticides follows the first-order rate law when the initial concentration of the solution is low, but shifts to zero-order at a higher initial concentration.

  15. Evaluation of pulsed corona discharge plasma for the treatment of petroleum-contaminated soil.

    PubMed

    Li, Rui; Liu, Yanan; Mu, Ruiwen; Cheng, Wenyan; Ognier, Stéphanie

    2017-01-01

    Petroleum hydrocarbons released to the environment caused by leakage or illegal dumping pose a threat to human health and the natural environment. In this study, the potential of a pulsed corona discharge plasma system for treating petroleum-polluted soils was evaluated. This system removed 76.93 % of the petroleum from the soil in 60 min with an energy efficiency of 0.20 mg/kJ. Furthermore, the energy and degradation efficiencies for the remediation of soil contaminated by single polyaromatic hydrocarbons, such as phenanthrene and pyrene, were also compared, and the results showed that this technology had potential in organic-polluted soil remediation. In addition, the role of water molecules was investigated for their direct involvement in the formation and transportation of active species. The increase of soil moisture to a certain extent clearly benefitted degradation efficiency. Then, treated soils were analyzed by FTIR and GC-MS for proposing the degradation mechanism of petroleum. During the plasma discharging processes, the change of functional group and the detection of small aromatic hydrocarbons indicated that the plasma active species attached petroleum hydrocarbons and degradation occurred. This technique reported herein demonstrated significant potential for the remediation of heavily petroleum-polluted soil, as well as for the treatment of organic-polluted soils.

  16. Effect of Inductive Coil Geometry on the Thrust Efficiency of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley; Polzin, Kurt; Emsellem, Gregory

    2012-01-01

    Pulsed inductive plasma thrusters [1-3] are spacecraft propulsion devices in which electrical energy is capacitively stored and then discharged through an inductive coil. The thruster is electrodeless, with a time-varying current in the coil interacting with a plasma covering the face of the coil to induce a plasma current. Propellant is accelerated and expelled at a high exhaust velocity (O(10-100 km/s)) by the Lorentz body force arising from the interaction of the magnetic field and the induced plasma current. While this class of thruster mitigates the life-limiting issues associated with electrode erosion, pulsed inductive plasma thrusters require high pulse energies to inductively ionize propellant. The Microwave Assisted Discharge Inductive Plasma Accelerator (MAD-IPA) [4, 5] is a pulsed inductive plasma thruster that addressees this issue by partially ionizing propellant inside a conical inductive coil via an electron cyclotron resonance (ECR) discharge. The ECR plasma is produced using microwaves and permanent magnets that are arranged to create a thin resonance region along the inner surface of the coil, restricting plasma formation, and in turn current sheet formation, to a region where the magnetic coupling between the plasma and the inductive coil is high. The use of a conical theta-pinch coil is under investigation. The conical geometry serves to provide neutral propellant containment and plasma plume focusing that is improved relative to the more common planar geometry of the Pulsed Inductive Thruster (PIT) [2, 3], however a conical coil imparts a direct radial acceleration of the current sheet that serves to rapidly decouple the propellant from the coil, limiting the direct axial electromagnetic acceleration in favor of an indirect acceleration mechanism that requires significant heating of the propellant within the volume bounded by the current sheet. In this paper, we describe thrust stand measurements performed to characterize the performance

  17. Experimental investigation on a vectorized aerodynamic dielectric barrier discharge plasma actuator array

    NASA Astrophysics Data System (ADS)

    Neretti, Gabriele; Cristofolini, Andrea; Borghi, Carlo A.

    2014-04-01

    The Electro-Hydro-Dynamics (EHD) interaction, induced in atmospheric pressure still air by a surface dielectric barrier discharge (DBD) actuator, had been experimentally studied. A plasma aerodynamic actuator array, able to produce a vectorized jet, with the induced airflow oriented toward the desired direction, had been developed. The array was constituted by a sequence of single surface DBD actuators with kapton as dielectric material. An ac voltage in the range of 0-6 kV peak at 15 kHz had been used. The vectorization had been obtained by feeding the upper electrodes with different voltages and by varying the electrical connections. The lower electrodes had been connected either to ground or to the high voltage source, to produce the desired jet orientation and to avoid plasma formation acting in an undesired direction. Voltage and current measurements had been carried out to evaluate waveforms and to estimate the active power delivered to the discharge. Schlieren imaging allowed to visualize the induced jet and to estimate its orientation. Pitot measurements had been performed to obtain velocity profiles for all jet configurations. A proportional relation between the jet deflection angle and the applied voltage had been found. Moreover, a linear relation had been obtained between the maximum speed in the jet direction and the applied voltage. The active power of the discharge is approximated by both a power law function and an exponential function of the applied voltage.

  18. Electric discharge during electrosurgery

    PubMed Central

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I.; Keidar, Michael

    2015-01-01

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 103 A/cm2. The plasma electron density and electrical conductivities in the channel were found be 1016 cm−3 and (1-2) Ohm−1cm−1, respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold. PMID:25880721

  19. Electric discharge during electrosurgery.

    PubMed

    Shashurin, Alexey; Scott, David; Zhuang, Taisen; Canady, Jerome; Beilis, Isak I; Keidar, Michael

    2015-04-16

    Electric discharge utilized for electrosurgery is studied by means of a recently developed method for the diagnostics of small-size atmospheric plasma objects based on Rayleigh scattering of microwaves on the plasma volume. Evolution of the plasma parameters in the near-electrode sheaths and in the positive column is measured and analyzed. It is found that the electrosurgical system produces a glow discharge of alternating current with strongly contracted positive column with current densities reaching 10(3) A/cm(2). The plasma electron density and electrical conductivities in the channel were found be 10(16) cm(-3) and (1-2) Ohm(-1) cm(-1), respectively. The discharge interrupts every instance when the discharge-driving AC voltage crosses zero and re-ignites again every next half-wave at the moment when the instant voltage exceeds the breakdown threshold.

  20. Static gas-liquid interfacial direct current discharge plasmas using ionic liquid cathode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, T.; CREST/JST, Tokyo 102-0075; Baba, K.

    Due to the unique properties of ionic liquids such as their extremely low vapor pressure and high heat capacity, we have succeeded in creating the static and stable gas (plasmas)-liquid (ionic liquids) interfacial field using a direct current discharge under a low gas pressure condition. It is clarified that the ionic liquid works as a nonmetal liquid electrode, and furthermore, a secondary electron emission coefficient of the ionic liquid is larger than that of conventional metal electrodes. The plasma potential structure of the gas-liquid interfacial region, and resultant interactions between the plasma and the ionic liquid are revealed by changingmore » a polarity of the electrode in the ionic liquid. By utilizing the ionic liquid as a cathode electrode, the positive ions in the plasma region are found to be irradiated to the ionic liquid. This ion irradiation causes physical and chemical reactions at the gas-liquid interfacial region without the vaporization of the ionic liquid.« less

  1. Biosurfactant assisted synthesis of Fe3O4@rhamnolipid@BiOBr and its behaviour in plasma discharge system

    NASA Astrophysics Data System (ADS)

    Wang, Li; Yu, Zebin; Hou, Yanping; Peng, Zhenbo; Zhang, Li; Meng, Zhengcheng; Li, Fengyuan; He, Jun; Huang, Junlin

    2016-06-01

    A novel Fe3O4@rhamnolipid@BiOBr (FRB) was synthesized via a modified precipitation method and applied in the plasma discharge system. Rhamnolipid was used as biosurfactant to modify Fe3O4 by interacting with Fe3O4 via its aliphatic chain. The results show that the prepared FRB magnetic photocatalyst exhibited excellent photocatalytic activity and Fenton reaction behavior in the plasma discharge system. Meanwhile, the addition of FRB could improve energy efficiency of defluorination by 21.29 mg kW-1 h-1.

  2. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    NASA Astrophysics Data System (ADS)

    Jae-Ou, Chae; Young-Jun, Jeong; V, M. Shmelev; A, A. Denicaev; V, M. Poutchkov; V, Ravi

    2006-07-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly.

  3. Particle-in-cell simulations of bounded plasma discharges applied to low pressure high density sources and positive columns

    NASA Astrophysics Data System (ADS)

    Kawamura, Emi

    Particle-in-cell (PIC) simulations of bounded plasma discharges are attractive because the fields and the particle motion can be obtained self-consistently from first principles. Thus, we can accurately model a wide range of nonlocal and kinetic behavior. The only disadvantage is that PIC may be computationally expensive compared to other methods. Fluid codes, for example, may run faster but make assumptions about the bulk plasma velocity distributions and ignore kinetic effects. In Chapter 1, we demonstrate methods of accelerating PIC simulations of bounded plasma discharges. We find that a combination of physical and numerical methods makes run-times for PIC codes much more competitive with other types of codes. In processing plasmas, the ion energy distributions (IEDs) arriving at the wafer target are crucial in determining ion anisotropy and etch rates. The current trend for plasma reactors is towards lower gas pressure and higher plasma density. In Chapter 2, we review and analyze IEDs arriving at the target of low pressure high density rf plasma reactors. In these reactors, the sheath is typically collisionless. We then perform PIC simulations of collisionless rf sheaths and find that the key parameter governing the shape of the TED at the wafer is the ratio of the ion transit time across the sheath over the rf period. Positive columns are the source of illumination in fluorescent mercury-argon lamps. The efficiency of light production increases with decreasing gas pressure and decreasing discharge radius. Most current lamp software is based on the local concept even though low pressure lighting discharges tend to be nonlocal. In Chapter 3, we demonstrate a 1d3v radial PIC model to conduct nonlocal kinetic simulations of low pressure, small radius positive columns. When compared to other available codes, we find that our PIC code makes the least approximations and assumptions and is accurate and stable over a wider parameter range. We analyze the PIC

  4. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  5. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  6. Inactivation of Bacteria in Oil Field Injected Water by a Pulsed Plasma Discharge Process

    NASA Astrophysics Data System (ADS)

    Xin, Qing; Li, Zhongjian; Lei, Lecheng; Yang, Bin

    2016-09-01

    Pulsed plasma discharge was employed to inactivate bacteria in the injection water for an oil field. The effects of water conductivity and initial concentration of bacteria on elimination efficiency were investigated in the batch and continuous flow modes. It was demonstrated that Fe2+ contained in injection water could enhance the elimination efficiency greatly. The addition of reducing agent glutathione (GSH) indicated that active radicals generated by pulsed plasma discharges played an important role in the inactivation of bacteria. Moreover, it was found that the microbial inactivation process for both batch and continuous flow mode well fitted the model based on the Weibull's survival function. supported by Zhejiang Province Welfare Technology Applied Research Project of China (No. 2014C31137), National Natural Science Foundation of China (Nos. 21436007 and U1462201), and the Fundamental Research Funds for the Central Universities of China (No. 2015QNA4032)

  7. Modification of the Steel Surface Treated by a Volume Discharge Plasma in Nitrogen at Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Erofeev, M. V.; Shulepov, M. A.; Ivanov, Yu. F.; Oskomov, K. V.; Tarasenko, V. F.

    2016-03-01

    Effect of volume discharge plasma initiated by an avalanche electron beam on the composition, structure, and properties of the surface steel layer is investigated. Voltage pulses with incident wave amplitude up to 30 kV, full width at half maximum of about 4 ns, and wave front of about 2.5 ns were applied to the gap with an inhomogeneous electric field. Changes indicating the hardening effect of the volume discharge initiated by an avalanche electron beam are revealed in St3-grade steel specimens treated by the discharge of this type.

  8. First measurements of the temporal evolution of the plasma density in HiPIMS discharges using THz time domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Meier, Steffen M.; Hecimovic, Ante; Tsankov, Tsanko V.; Luggenhölscher, Dirk; Czarnetzki, Uwe

    2018-03-01

    In this paper, the novel technique of THz time domain spectroscopy has been applied to obtain time-resolved measurements of the plasma density in the active zone of a HiPIMS discharge with a titanium target. The obtained peak values are in the range of 1012-1013 cm-3 for discharge current densities of 1-4 A cm-2 at 0.5 and 2 Pa argon pressure. The measured densities show good correlation with the discharge current and voltage and the intensity of various atomic and ionic lines. The well known phases of the discharge have been identified and related to the variation of the electron density. The measurement results show that the plasma density remains nearly constant during the runaway/self-sputtering phase. Based on that, it is conjectured that singly charged titanium ions are the dominant ion species during this phase.

  9. Optical Characteristics of a Gas Discharge Plasma Based on a Mixture of Mercury Diiodide Vapor, Nitrogen, and Helium

    NASA Astrophysics Data System (ADS)

    Malinina, A. A.; Malinin, A. N.

    2016-09-01

    The results of studies of spectral, temporal, and energy characteristics of radiation in a gas discharge plasma based on a mixture of mercury diiodide vapor with helium and nitrogen in the spectral range of 350-800 nm are presented. Plasma was produced by a barrier discharge in a device with a cylindrical aperture. The electrodes 0.2 m in length were placed at a distance of 0.015 m. The amplitude of the pump pulses, their duration, and frequency were equal to 20-30 kV, 150 ns, and 1-20 kHz, respectively. Radiation of mercury monoiodide exciplex molecules was revealed in the visible spectra region. Dependences of the plasma optical characteristics on the partial pressures of the mixture components were established.

  10. Multiple solutions in the theory of direct current glow discharges: Effect of plasma chemistry and nonlocality, different plasma-producing gases, and 3D modelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almeida, P. G. C.; Benilov, M. S.

    2013-10-15

    The work is aimed at advancing the multiple steady-state solutions that have been found recently in the theory of direct current (DC) glow discharges. It is shown that an account of detailed plasma chemistry and non-locality of electron transport and kinetic coefficients results in an increase of the number of multiple solutions but does not change their pattern. Multiple solutions are shown to exist for discharges in argon and helium provided that discharge pressure is high enough. This result indicates that self-organization in DC glow microdischarges can be observed not only in xenon, which has been the case until recently,more » but also in other plasma-producing gases; a conclusion that has been confirmed by recent experiments. Existence of secondary bifurcations can explain why patterns of spots grouped in concentric rings, observed in the experiment, possess in many cases higher number of spots in outer rings than in inner ones.« less

  11. Methane chemistry involved in a low-pressure electron cyclotron wave resonant plasma discharge

    NASA Astrophysics Data System (ADS)

    Morrison, N. A.; William, C.; Milne, W. I.

    2003-12-01

    Radio frequency (rf) generated methane plasmas are commonly employed in the deposition of hydrogenated amorphous carbon (a-C:H) thin films. However, very little is known about the rf discharge chemistry and how it relates to the deposition process. Consequently, we have characterized a low-pressure methane plasma and compared the results with those obtained theoretically by considering the steady-state kinetics of the chemical processes present in a low-pressure plasma reactor, in order to elucidate the dominant reaction channels responsible for the generation of the active precursors required for film growth. Mass spectrometry measurements of the gas phase indicated little variation in the plasma chemistry with increasing electron temperature. This was later attributed to the partial saturation of the electron-impact dissociation and ionization rate constants at electron temperatures in excess of ˜4 eV. The ion densities in the plasma were also found to be strongly dependent upon the parent neutral concentration in the gas phase, indicating that direct electron-impact reactions exerted greater influence on the plasma chemistry than secondary ion-neutral reactions.

  12. High Voltage, Sub Nanosecond Feedthrough Design for Liquid Breakdown Studies

    NASA Astrophysics Data System (ADS)

    Cevallos, Michael; Dickens, James; Neuber, Andreas; Krompholz, Herman

    2002-12-01

    Experiments in self-breakdown mode and pulsed breakdown at high over-voltages in standard electrode geometries are performed for liquids to gain a better understanding of their fundamental breakdown physics. Different liquids of interest include liquids such as super-cooled liquid nitrogen, oils, glycerols and water. A typical setup employs a discharge chamber with a cable discharge into a coaxial system with axial discharge, and a load line to simulate a matched terminating impedance, thus providing a sub-nanosecond response. This study is focused on the feed-through design of the coaxial cable into this type of discharge chamber, with the feed-through being the critical element with respect to maximum hold-off voltage. Diverse feedthroughs were designed and simulated using Maxwell 3-D Field Simulator Version 5. Several geometrically shaped feed-through transitions were simulated, including linearly and exponentially tapered, to minimize electrostatic fields, thus ensuring that the discharge occurs in the volume of interest and not between the inner and outer conductor at the transition from the insulation of the coaxial cable to the liquid. All feedthroughs are designed to match the incoming impedance of the coaxial cable. The size of the feedthroughs will vary from liquid to liquid in order to match the coaxial cable impedance of 50Ω. The discharge chamber has two main ports where the feed-through will enter the chamber. Each feed-through is built through a flange that covers the two main ports. This allows the use of the same discharge chamber for various liquids by changing the flanges on the main ports to match the particular liquid. The feedthroughs were designed and built to withstand voltages of up to 200 kV. The feedthroughs are also fitted with transmission line type current sensors and capacitive voltage dividers with fast amplifiers/attenuators in order to attain a complete range of information from amplitudes of 0.1mA to 1 kA with a temporal

  13. Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Gallimore, Alec D.

    2006-01-01

    Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.

  14. High Power ECR Ion Thruster Discharge Characterization

    NASA Technical Reports Server (NTRS)

    Foster, John E.; Kamhawi, Hani; Haag, Thomas; Carpenter, Christian; Williams, George W.

    2006-01-01

    Electron cyclotron resonance (ECR) based ion thrusters with carbon based ion optics can potentially satisfy lifetime requirements for long duration missions (approximately 10 years) because grid erosion and cathode insert depletion issues are virtually eliminated. Though the ECR plasma discharge has been found to typically operate at slightly higher discharge losses than conventional DC ion thrusters (for high total thruster power applications), the discharge power fraction is small (less than 1 percent at 25 kW). In this regard, the benefits of increased life, low discharge plasma potentials, and reduced complexity are welcome tradeoffs for the associated discharge efficiency decrease. Presented here are results from discharge characterization of a large area ECR plasma source for gridded ion thruster applications. These measurements included load matching efficacy, bulk plasma properties via Langmuir probe, and plasma uniformity as measured using current probes distributed at the exit plane. A high degree of plasma uniformity was observed (flatness greater than 0.9). Additionally, charge state composition was qualitatively evaluated using emission spectroscopy. Plasma induced emission was dominated by xenon ion lines. No doubly charged xenon ions were detected.

  15. Optimized LWIR enhancement of nanosecond and femtosecond LIBS uranium emission

    NASA Astrophysics Data System (ADS)

    Akpovo, Codjo A.; Ford, Alan; Johnson, Lewis

    2016-05-01

    A carbon dioxide (CO2) transverse electrical breakdown in atmosphere (TEA), pulsed laser was used to enhance the laser-induced breakdown spectroscopy (LIBS) spectral signatures of uranium under nanosecond (ns) and femtosecond (fs) ablation. The peak areas of both ionic and neutral species increased by one order of magnitude for ns-ablation and two orders of magnitude for fs-ablation over LIBS when the CO2 TEA laser was used with samples of dried solutions of uranyl nitrate hexahydrate (UO2(NO3)2·6H2O) on silicon wafers. Electron temperature and density measurements show that the spectral emission improvement from using the TEA laser comes from plasma reheating.

  16. Co-axial discharges

    DOEpatents

    Luce, J. S.; Smith, L. P.

    1960-11-22

    An apparatus is described for producing coaxial arc discharges in an evacuated enclosure and within a strong, confining magnetic field. The arcs are maintained at a high potential difference. Electrons diffuse to the more positive arc from the negative arc, and positive ions diffuse from the more positive arc to the negative arc. Coaxial arc discharges have the advantuge that ions that return to strike the positive arc discharge will lose no energy since they do not strike a solid wall or electrode. These discharges are useful in confining an ionized plasma between the discharges and have the advantage of preventing impurities from the walls of the enclosure from entering the plasma area because of the arc barrier set up by the cylindrical outer arc. (auth)

  17. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    PubMed

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  18. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species

    PubMed Central

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-01

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm–2 had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm–2 plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization. PMID:21653568

  19. The predictive value of plasma biomarkers in discharged heart failure patients: role of plasma NT-proBNP.

    PubMed

    Leto, Laura; Testa, Marzia; Feola, Mauro

    2016-04-01

    Natriuretic peptides (NPs) have demonstrated their value to support clinical diagnosis of heart failure (HF); furthermore they are also studied for their prognostic role using them to guide appropriate management strategies. The present review gathers available evidence on prognostic role of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in patients hospitalized for acute decompensated heart failure (ADHF). We searched Medline for English-language studies with the sequent key-words: "acute heart failure/acute decompensated heart failure", "NT-proBNP/N-terminal pro-B type natriuretic peptide" and "prognosis/mortality/readmission". Almost 30 studies were included. NT-proBNP plasma levels at admission are strongly associated with all-cause short-term mortality (2-3 months), mid-term (6-11 months) or long- term mortality (more than one year) of follow-up. Regarding the prognostic power on cardiac death fewer data are available with uncertain results. NT-proBNP at discharge demonstrated its prognostic role for all-cause mortality at mid and long-term follow-up. The relation between NT-proBNP at discharge and cardiovascular mortality or composite end-point is under investigation. A decrease in NT-proBNP values during hospitalization provided prognostic prospects mainly for cardiovascular mortality and HF readmission. A 30% variation in NT-proBNP levels during in-hospital stay seemed to be an optimal cut-off for prognostic role. SNT-proBNP plasma levels proved to have a strong correlation with all-cause mortality, cardiovascular mortality, morbidity and composite outcomes in patients discharged after an ADHF. A better definition of the correct time of serial measurements and the cut-off values might be the challenge for the future investigations.

  20. Modeling of nanosecond pulsed laser processing of polymers in air and water

    NASA Astrophysics Data System (ADS)

    Marla, Deepak; Zhang, Yang; Hattel, Jesper H.; Spangenberg, Jon

    2018-07-01

    Laser ablation of polymers in water is known to generate distinct surface characteristics as compared to that in air. In order to understand the role of ambient media during laser ablation of polymers, this paper aims to develop a physics-based model of the process considering the effect of ambient media. Therefore, in the present work, models are developed for laser ablation of polymers in air and water considering all the relevant physical phenomena such as laser–polymer interaction, plasma generation, plasma expansion and plasma shielding. The current work focuses on near-infrared laser radiation (λ = 1064 nm) of nanosecond pulse duration. The laser–polymer interaction at such wavelengths is purely photo-thermal in nature and the laser–plasma interaction is assumed to occur mainly by inverse-bremsstrahlung photon absorption. The computational model is based on the finite volume method using the Crank‑Nicholson scheme. The model predicts that underwater laser ablation results in subsurface heating effect in the polymer and confinement of the laser generated plasma, which makes it different from laser ablation in air. Plasma expansion velocities are much lower in water than in air. This results in an enhanced plasma shielding effect in the case of water. The predicted results of ablation depth versus fluence from the model are in qualitative agreement with those observed in experiments.