Sample records for nanosecond time-resolved transient

  1. Development of nanosecond time-resolved infrared detection at the LEAF pulse radiolysis facility

    DOE PAGES

    Grills, David C.; Farrington, Jaime A.; Layne, Bobby H.; ...

    2015-04-27

    When coupled with transient absorption spectroscopy, pulse radiolysis, which utilizes high-energy electron pulses from an accelerator, is a powerful tool for investigating the kinetics and thermodynamics of a wide range of radiation-induced redox and electron transfer processes. The majority of these investigations detect transient species in the UV, visible, or near-IR spectral regions. Unfortunately, the often-broad and featureless absorption bands in these regions can make the definitive identification of intermediates difficult. Time-resolved vibrational spectroscopy would offer much improved structural characterization, but has received only limited application in pulse radiolysis. In this paper, we describe in detail the development of amore » unique nanosecond time-resolved infrared (TRIR) detection capability for condensed-phase pulse radiolysis on a new beam line at the LEAF facility of Brookhaven National Laboratory. The system makes use of a suite of high-power, continuous wave external-cavity quantum cascade lasers as the IR probe source, with coverage from 2330-1051 cm⁻¹. The response time of the TRIR detection setup is ~40 ns, with a typical sensitivity of ~100 µOD after 4-8 signal averages using a dual-beam probe/reference normalization detection scheme. As a result, this new detection method has enabled mechanistic investigations of a range of radiation-induced chemical processes, some of which are highlighted here.« less

  2. Observation of laser-driven shock propagation by nanosecond time-resolved Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Yu, Guoyang; Zheng, Xianxu; Song, Yunfei; Zeng, Yangyang; Guo, Wencan; Zhao, Jun; Yang, Yanqiang

    2015-01-01

    An improved nanosecond time-resolved Raman spectroscopy is performed to observe laser-driven shock propagation in the anthracene/epoxy glue layer. The digital delay instead of optical delay line is introduced for sake of unlimited time range of detection, which enables the ability to observe both shock loading and shock unloading that always lasts several hundred nanoseconds. In this experiment, the peak pressure of shock wave, the pressure distribution, and the position of shock front in gauge layer were determined by fitting Raman spectra of anthracene using the Raman peak shift simulation. And, the velocity of shock wave was calculated by the time-dependent position of shock front.

  3. Introduction to Time-Resolved Spectroscopy: Nanosecond Transient Absorption and Time-Resolved Fluorescence of Eosin B

    ERIC Educational Resources Information Center

    Farr, Erik P.; Quintana, Jason C.; Reynoso, Vanessa; Ruberry, Josiah D.; Shin, Wook R.; Swartz, Kevin R.

    2018-01-01

    Here we present a new undergraduate laboratory that will introduce the concepts of time-resolved spectroscopy and provide insight into the natural time scales on which chemical dynamics occur through direct measurement. A quantitative treatment of the acquired data will provide a deeper understanding of the role of quantum mechanics and various…

  4. A Q-switched Ho:YAG laser assisted nanosecond time-resolved T-jump transient mid-IR absorbance spectroscopy with high sensitivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Deyong; Li, Yunliang; Li, Hao

    2015-05-15

    Knowledge of dynamical structure of protein is an important clue to understand its biological function in vivo. Temperature-jump (T-jump) time-resolved transient mid-IR absorbance spectroscopy is a powerful tool in elucidating the protein dynamical structures and the folding/unfolding kinetics of proteins in solution. A home-built setup of T-jump time-resolved transient mid-IR absorbance spectroscopy with high sensitivity is developed, which is composed of a Q-switched Cr, Tm, Ho:YAG laser with an output wavelength at 2.09 μm as the T-jump heating source, and a continuous working CO laser tunable from 1580 to 1980 cm{sup −1} as the IR probe. The results demonstrate thatmore » this system has a sensitivity of 1 × 10{sup −4} ΔOD for a single wavelength detection, and 2 × 10{sup −4} ΔOD for spectral detection in amide I′ region, as well as a temporal resolution of 20 ns. Moreover, the data quality coming from the CO laser is comparable to the one using the commercial quantum cascade laser.« less

  5. Development of an electron momentum spectrometer for time-resolved experiments employing nanosecond pulsed electron beam

    NASA Astrophysics Data System (ADS)

    Tang, Yaguo; Shan, Xu; Liu, Zhaohui; Niu, Shanshan; Wang, Enliang; Chen, Xiangjun

    2018-03-01

    The low count rate of (e, 2e) electron momentum spectroscopy (EMS) has long been a major limitation of its application to the investigation of molecular dynamics. Here we report a new EMS apparatus developed for time-resolved experiments in the nanosecond time scale, in which a double toroidal energy analyzer is utilized to improve the sensitivity of the spectrometer and a nanosecond pulsed electron gun with a repetition rate of 10 kHz is used to obtain an average beam current up to nA. Meanwhile, a picosecond ultraviolet laser with a repetition rate of 5 kHz is introduced to pump the sample target. The time zero is determined by photoionizing the target using a pump laser and monitoring the change of the electron beam current with time delay between the laser pulse and electron pulse, which is influenced by the plasma induced by the photoionization. The performance of the spectrometer is demonstrated by the EMS measurement on argon using a pulsed electron beam, illustrating the potential abilities of the apparatus for investigating the molecular dynamics in excited states when employing the pump-probe scheme.

  6. Nanosecond UV lasers stimulate transient Ca2+ elevations in human hNT astrocytes.

    PubMed

    Raos, B J; Graham, E S; Unsworth, C P

    2017-06-01

    Astrocytes respond to various stimuli resulting in intracellular Ca 2+ signals that can propagate through organized functional networks. Recent literature calls for the development of techniques that can stimulate astrocytes in a fast and highly localized manner to emulate more closely the characteristics of astrocytic Ca 2+ signals in vivo. In this article we demonstrate, for the first time, how nanosecond UV lasers are capable of reproducibly stimulating Ca 2+ transients in human hNT astrocytes. We report that laser pulses with a beam energy of 4-29 µJ generate transient increases in cytosolic Ca 2+ . These Ca 2+ transients then propagate to adjacent astrocytes as intercellular Ca 2+ waves. We propose that nanosecond laser stimulation provides a valuable tool for enabling the study of Ca 2+ dynamics in human astrocytes at both a single cell and network level. Compared to previously developed techniques nanosecond laser stimulation has the advantage of not requiring loading of photo-caged or -sensitising agents, is non-contact, enables stimulation with a high spatiotemporal resolution and is comparatively cost effective.

  7. Nanosecond step-scan FT-infrared absorption spectroscopy in photochemistry and catalysis

    NASA Astrophysics Data System (ADS)

    Frei, H.

    1998-06-01

    Time-resolved step-scan FT-IR absorption spectroscopy has been expanded to a resolution of 20 nanosecond. Following a description of the experimental set-up, applications in four research areas are presented. In the first project, we discuss a reversible isomerization, namely the bacteriorhodopsin photocycle. Main results are the discovery of 2 processes with distinct kinetics on the nanosecond time scale not detected by previous spectroscopic techniques, and observation of an instantaneous response of the protein environment to chromophore dynamics within the nanosecond laser pulse duration. In a second project, alkane C-H bond activation by a transition metal complex in room temperature solution is investigated and the first measurement of the formation of a C-H insertion product reported (alkyl hydride). Then, a nanosecond study of a pericyclic reaction, the ring-opening of cyclohexadiene, is discussed. The fourth example describes the first observation of a transient molecule in a zeolite matrix, a triplet excited quinone, by time-resolved infrared spectroscopy.

  8. Spectroscopic studies of model photo-receptors: validation of a nanosecond time-resolved micro-spectrophotometer design using photoactive yellow protein and α-phycoerythrocyanin.

    PubMed

    Purwar, Namrta; Tenboer, Jason; Tripathi, Shailesh; Schmidt, Marius

    2013-09-13

    Time-resolved spectroscopic experiments have been performed with protein in solution and in crystalline form using a newly designed microspectrophotometer. The time-resolution of these experiments can be as good as two nanoseconds (ns), which is the minimal response time of the image intensifier used. With the current setup, the effective time-resolution is about seven ns, determined mainly by the pulse duration of the nanosecond laser. The amount of protein required is small, on the order of 100 nanograms. Bleaching, which is an undesirable effect common to photoreceptor proteins, is minimized by using a millisecond shutter to avoid extensive exposure to the probing light. We investigate two model photoreceptors, photoactive yellow protein (PYP), and α-phycoerythrocyanin (α-PEC), on different time scales and at different temperatures. Relaxation times obtained from kinetic time-series of difference absorption spectra collected from PYP are consistent with previous results. The comparison with these results validates the capability of this spectrophotometer to deliver high quality time-resolved absorption spectra.

  9. Thermally activated delayed fluorescence of fluorescein derivative for time-resolved and confocal fluorescence imaging.

    PubMed

    Xiong, Xiaoqing; Song, Fengling; Wang, Jingyun; Zhang, Yukang; Xue, Yingying; Sun, Liangliang; Jiang, Na; Gao, Pan; Tian, Lu; Peng, Xiaojun

    2014-07-09

    Compared with fluorescence imaging utilizing fluorophores whose lifetimes are in the order of nanoseconds, time-resolved fluorescence microscopy has more advantages in monitoring target fluorescence. In this work, compound DCF-MPYM, which is based on a fluorescein derivative, showed long-lived luminescence (22.11 μs in deaerated ethanol) and was used in time-resolved fluorescence imaging in living cells. Both nanosecond time-resolved transient difference absorption spectra and time-correlated single-photon counting (TCSPC) were employed to explain the long lifetime of the compound, which is rare in pure organic fluorophores without rare earth metals and heavy atoms. A mechanism of thermally activated delayed fluorescence (TADF) that considers the long wavelength fluorescence, large Stokes shift, and long-lived triplet state of DCF-MPYM was proposed. The energy gap (ΔEST) of DCF-MPYM between the singlet and triplet state was determined to be 28.36 meV by the decay rate of DF as a function of temperature. The ΔE(ST) was small enough to allow efficient intersystem crossing (ISC) and reverse ISC, leading to efficient TADF at room temperature. The straightforward synthesis of DCF-MPYM and wide availability of its starting materials contribute to the excellent potential of the compound to replace luminescent lanthanide complexes in future time-resolved imaging technologies.

  10. Raman linewidth measurements using time-resolved hybrid picosecond/nanosecond rotational CARS.

    PubMed

    Nordström, Emil; Hosseinnia, Ali; Brackmann, Christian; Bood, Joakim; Bengtsson, Per-Erik

    2015-12-15

    We report an innovative approach for time-domain measurements of S-branch Raman linewidths using hybrid picosecond/nanosecond pure-rotational coherent anti-Stokes Raman spectroscopy (RCARS). The Raman coherences are created by two picosecond excitation pulses and are probed using a narrow-band nanosecond pulse at 532 nm. The generated RCARS signal contains the entire coherence decay in a single pulse. By extracting the decay times of the individual transitions, the J-dependent Raman linewidths can be calculated. Self-broadened S-branch linewidths for nitrogen and oxygen at 293 K and ambient pressure are in good agreement with previous time-domain measurements. Experimental considerations of the approach are discussed along with its merits and limitations. The approach can be extended to a wide range of pressures and temperatures and has potential for simultaneous single-shot thermometry and linewidth determination.

  11. Protein relaxation without a geminate phase in nanosecond photodissociated CO carp hemoglobin

    NASA Astrophysics Data System (ADS)

    Loupiac, Camille; Kruk, Nicolay; Valat, Pierre; Alpert, Bernard

    1999-03-01

    Transient heme-protein interactions upon passing from ligated to deligated carp hemoglobin were observed through time-resolved optical spectra following nanosecond CO photodissociation. The spectral evolution of the heme, in the nanosecond and microsecond time ranges, shows a protein conformational relaxation and the absence of a geminate CO recombination in carp hemoglobin. The comparison of the phenomena in carp and human hemoglobin implies that the physical basis of the geminate rebinding in human hemoglobin should involve an out-of-equilibrium protein conformation, close to a dissipative structure defined by the thermodynamics of Prigogine.

  12. Transient radical pairs studied by time-resolved EPR.

    PubMed

    Bittl, Robert; Weber, Stefan

    2005-02-25

    Photogenerated short-lived radical pairs (RP) are common in biological photoprocesses such as photosynthesis and enzymatic DNA repair. They can be favorably probed by time-resolved electron paramagnetic resonance (EPR) methods with adequate time resolution. Two EPR techniques have proven to be particularly useful to extract information on the working states of photoinduced biological processes that is only difficult or sometimes even impossible to obtain by other types of spectroscopy. Firstly, transient EPR yields crucial information on the chemical nature and the geometry of the individual RP halves in a doublet-spin pair generated by a short laser pulse. This time-resolved method is applicable in all magnetic field/microwave frequency regimes that are used for continuous-wave EPR, and is nowadays routinely utilized with a time resolution reaching about 10 ns. Secondly, a pulsed EPR method named out-of-phase electron spin echo envelope modulation (OOP-ESEEM) is increasingly becoming popular. By this pulsed technique, the mutual spin-spin interaction between the RP halves in a doublet-spin pair manifests itself as an echo modulation detected as a function of the microwave-pulse spacing of a two-pulse echo sequence subsequent to a laser pulse. From the dipolar coupling, the distance between the radicals is readily derived. Since the spin-spin interaction parameters are typically not observable by transient EPR, the two techniques complement each other favorably. Both EPR methods have recently been applied to a variety of light-induced RPs in photobiology. This review summarizes the results obtained from such studies in the fields of plant and bacterial photosynthesis and DNA repair mediated by the enzyme DNA photolyase.

  13. Time-Resolved X-Ray Magnetic Circular Dichroism - A Selective Probe of Magnetization Dynamics on Nanosecond Timescales

    NASA Astrophysics Data System (ADS)

    Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain

    Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil

  14. Near shot-noise limited time-resolved circular dichroism pump-probe spectrometer

    NASA Astrophysics Data System (ADS)

    Stadnytskyi, Valentyn; Orf, Gregory S.; Blankenship, Robert E.; Savikhin, Sergei

    2018-03-01

    We describe an optical near shot-noise limited time-resolved circular dichroism (TRCD) pump-probe spectrometer capable of reliably measuring circular dichroism signals in the order of μdeg with nanosecond time resolution. Such sensitivity is achieved through a modification of existing TRCD designs and introduction of a new data processing protocol that eliminates approximations that have caused substantial nonlinearities in past measurements and allows the measurement of absorption and circular dichroism transients simultaneously with a single pump pulse. The exceptional signal-to-noise ratio of the described setup makes the TRCD technique applicable to a large range of non-biological and biological systems. The spectrometer was used to record, for the first time, weak TRCD kinetics associated with the triplet state energy transfer in the photosynthetic Fenna-Matthews-Olson antenna pigment-protein complex.

  15. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  16. Toward picosecond time-resolved X-ray absorption studies of interfacial photochemistry

    NASA Astrophysics Data System (ADS)

    Gessner, Oliver; Mahl, Johannes; Neppl, Stefan

    2016-05-01

    We report on the progress toward developing a novel picosecond time-resolved transient X-ray absorption spectroscopy (TRXAS) capability for time-domain studies of interfacial photochemistry. The technique is based on the combination of a high repetition rate picosecond laser system with a time-resolved X-ray fluorescent yield setup that may be used for the study of radiation sensitive materials and X-ray spectroscopy compatible photoelectrochemical (PEC) cells. The mobile system is currently deployed at the Advanced Light Source (ALS) and may be used in all operating modes (two-bunch and multi-bunch) of the synchrotron. The use of a time-stamping technique enables the simultaneous recording of TRXAS spectra with delays between the exciting laser pulses and the probing X-ray pulses spanning picosecond to nanosecond temporal scales. First results are discussed that demonstrate the viability of the method to study photoinduced dynamics in transition metal-oxide semiconductor (SC) samples under high vacuum conditions and at SC-liquid electrolyte interfaces during photoelectrochemical water splitting. Opportunities and challenges are outlined to capture crucial short-lived intermediates of photochemical processes with the technique. This work was supported by the Department of Energy Office of Science Early Career Research Program.

  17. Direct Observation of Insulin Association Dynamics with Time-Resolved X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimmerman, Dolev; Leshchev, Denis; Hsu, Darren J.

    Biological functions frequently require protein-protein interactions that involve secondary and tertiary structural perturbation. Here we study protein-protein dissociation and reassociation dynamics in insulin, a model system for protein oligomerization. Insulin dimer dissociation into monomers was induced by a nanosecond temperature-jump (T-jump) of ~8 °C in aqueous solution, and the resulting protein and solvent dynamics were tracked by time-resolved X-ray solution scattering (TRXSS) on time scales of 10 ns to 100 ms. The protein scattering signals revealed the formation of five distinguishable transient species during the association process that deviate from simple two state kinetics. Our results show that the combinationmore » of T-jump pump coupled to TRXSS probe allows for direct tracking of structural dynamics in nonphotoactive proteins.« less

  18. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE PAGES

    Dennett, Cody A.; Short, Michael P.

    2017-05-23

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  19. Time-resolved, dual heterodyne phase collection transient grating spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennett, Cody A.; Short, Michael P.

    The application of optical heterodyne detection for transient grating spectroscopy (TGS) using a fixed, binary phase mask often relies on taking the difference between signals captured at multiple heterodyne phases. To date, this has been accomplished by manually controlling the heterodyne phase between measurements with an optical flat. In this letter, an optical configuration is presented which allows for collection of TGS measurements at two heterodyne phases concurrently through the use of two independently phase controlled interrogation paths. This arrangement allows for complete, heterodyne amplified TGS measurements to be made in a manner not constrained by a mechanical actuation time.more » Measurements are instead constrained only by the desired signal-to-noise ratio. A temporal resolution of between 1 and 10 s, demonstrated here on single crystal metallic samples, will allow TGS experiments to be used as an in-situ, time-resolved monitoring technique for many material processing applications.« less

  20. Observing non-equilibrium state of transport through graphene channel at the nano-second time-scale

    NASA Astrophysics Data System (ADS)

    Mishra, Abhishek; Meersha, Adil; Raghavan, Srinivasan; Shrivastava, Mayank

    2017-12-01

    Electrical performance of a graphene FET is drastically affected by electron-phonon inelastic scattering. At high electric fields, the out-of-equilibrium population of optical phonons equilibrates by emitting acoustic phonons, which dissipate the energy to heat sinks. The equilibration time of the process is governed by thermal diffusion time, which is few nano-seconds for a typical graphene FET. The nano-second time-scale of the process keeps it elusive to conventional steady-state or DC measurement systems. Here, we employ a time-domain reflectometry-based technique to electrically probe the device for few nano-seconds and investigate the non-equilibrium state. For the first time, the transient nature of electrical transport through graphene FET is revealed. A maximum change of 35% in current and 50% in contact resistance is recorded over a time span of 8 ns, while operating graphene FET at a current density of 1 mA/μm. The study highlights the role of intrinsic heating (scattering) in deciding metal-graphene contact resistance and transport through the graphene channel.

  1. A single-sweep, nanosecond time resolution laser temperature-jump apparatus

    NASA Astrophysics Data System (ADS)

    Ballew, R. M.; Sabelko, J.; Reiner, C.; Gruebele, M.

    1996-10-01

    We describe a fast temperature-jump (T-jump) apparatus capable of acquiring kinetic relaxation transients via real-time fluorescence detection over a time interval from nanoseconds to milliseconds in a single sweep. The method is suitable for aqueous solutions, relying upon the direct absorption of laser light by the bulk water. This obviates the need for additives (serving as optical or conductive heaters) that may interact with the sample under investigation. The longitudinal temperature profile is made uniform by counterpropagating heating pulses. Dead time is limited to one period of the probe laser (16 ns). The apparatus response is tested with aqueous tryptophan and the diffusion-controlled dimerization of proflavine.

  2. Single-label kinase and phosphatase assays for tyrosine phosphorylation using nanosecond time-resolved fluorescence detection.

    PubMed

    Sahoo, Harekrushna; Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-12-26

    The collision-induced fluorescence quenching of a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) by hydrogen atom abstraction from the tyrosine residue in peptide substrates was introduced as a single-labeling strategy to assay the activity of tyrosine kinases and phosphatases. The assays were tested for 12 different combinations of Dbo-labeled substrates and with the enzymes p60c-Src Src kinase, EGFR kinase, YOP protein tyrosine phosphatase, as well as acid and alkaline phosphatases, thereby demonstrating a broad application potential. The steady-state fluorescence changed by a factor of up to 7 in the course of the enzymatic reaction, which allowed for a sufficient sensitivity of continuous monitoring in steady-state experiments. The fluorescence lifetimes (and intensities) were found to be rather constant for the phosphotyrosine peptides (ca. 300 ns in aerated water), while those of the unphosphorylated peptides were as short as 40 ns (at pH 7) and 7 ns (at pH 13) as a result of intramolecular quenching. Owing to the exceptionally long fluorescence lifetime of Dbo, the assays were alternatively performed by using nanosecond time-resolved fluorescence (Nano-TRF) detection, which leads to an improved discrimination of background fluorescence and an increased sensitivity. The potential for inhibitor screening was demonstrated through the inhibition of acid and alkaline phosphatases by molybdate.

  3. Sub-nanosecond time-resolved near-field scanning magneto-optical microscope.

    PubMed

    Rudge, J; Xu, H; Kolthammer, J; Hong, Y K; Choi, B C

    2015-02-01

    We report on the development of a new magnetic microscope, time-resolved near-field scanning magneto-optical microscope, which combines a near-field scanning optical microscope and magneto-optical contrast. By taking advantage of the high temporal resolution of time-resolved Kerr microscope and the sub-wavelength spatial resolution of a near-field microscope, we achieved a temporal resolution of ∼50 ps and a spatial resolution of <100 nm. In order to demonstrate the spatiotemporal magnetic imaging capability of this microscope, the magnetic field pulse induced gyrotropic vortex dynamics occurring in 1 μm diameter, 20 nm thick CoFeB circular disks has been investigated. The microscope provides sub-wavelength resolution magnetic images of the gyrotropic motion of the vortex core at a resonance frequency of ∼240 MHz.

  4. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices.

    PubMed

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag 5 In 5 Sb 60 Te 30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  5. An ultrafast programmable electrical tester for enabling time-resolved, sub-nanosecond switching dynamics and programming of nanoscale memory devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Manivannan, Anbarasu

    2017-12-01

    Recent advancements in commercialization of high-speed non-volatile electronic memories including phase change memory (PCM) have shown potential not only for advanced data storage but also for novel computing concepts. However, an in-depth understanding on ultrafast electrical switching dynamics is a key challenge for defining the ultimate speed of nanoscale memory devices that demands for an unconventional electrical setup, specifically capable of handling extremely fast electrical pulses. In the present work, an ultrafast programmable electrical tester (PET) setup has been developed exceptionally for unravelling time-resolved electrical switching dynamics and programming characteristics of nanoscale memory devices at the picosecond (ps) time scale. This setup consists of novel high-frequency contact-boards carefully designed to capture extremely fast switching transient characteristics within 200 ± 25 ps using time-resolved current-voltage measurements. All the instruments in the system are synchronized using LabVIEW, which helps to achieve various programming characteristics such as voltage-dependent transient parameters, read/write operations, and endurance test of memory devices systematically using short voltage pulses having pulse parameters varied from 1 ns rise/fall time and 1.5 ns pulse width (full width half maximum). Furthermore, the setup has successfully demonstrated strikingly one order faster switching characteristics of Ag5In5Sb60Te30 (AIST) PCM devices within 250 ps. Hence, this novel electrical setup would be immensely helpful for realizing the ultimate speed limits of various high-speed memory technologies for future computing.

  6. Transient features in nanosecond pulsed electric fields differentially modulate mitochondria and viability.

    PubMed

    Beebe, Stephen J; Chen, Yeong-Jer; Sain, Nova M; Schoenbach, Karl H; Xiao, Shu

    2012-01-01

    It is hypothesized that high frequency components of nanosecond pulsed electric fields (nsPEFs), determined by transient pulse features, are important for maximizing electric field interactions with intracellular structures. For monopolar square wave pulses, these transient features are determined by the rapid rise and fall of the pulsed electric fields. To determine effects on mitochondria membranes and plasma membranes, N1-S1 hepatocellular carcinoma cells were exposed to single 600 ns pulses with varying electric fields (0-80 kV/cm) and short (15 ns) or long (150 ns) rise and fall times. Plasma membrane effects were evaluated using Fluo-4 to determine calcium influx, the only measurable source of increases in intracellular calcium. Mitochondria membrane effects were evaluated using tetramethylrhodamine ethyl ester (TMRE) to determine mitochondria membrane potentials (ΔΨm). Single pulses with short rise and fall times caused electric field-dependent increases in calcium influx, dissipation of ΔΨm and cell death. Pulses with long rise and fall times exhibited electric field-dependent increases in calcium influx, but diminished effects on dissipation of ΔΨm and viability. Results indicate that high frequency components have significant differential impact on mitochondria membranes, which determines cell death, but lesser variances on plasma membranes, which allows calcium influxes, a primary determinant for dissipation of ΔΨm and cell death.

  7. Nanosecond Plasma Enhanced H2/O2/N2 Premixed Flat Flames

    DTIC Science & Technology

    2014-01-01

    Simulations are conducted with a one-dimensional, multi-scale, pulsed -discharge model with detailed plasma-combustion kinetics to develop additional insight... model framework. The reduced electric field, E/N, during each pulse varies inversely with number density. A significant portion of the input energy is...dimensional numerical model [4, 12] capable of resolving electric field transients over nanosecond timescales (during each discharge pulse ) and radical

  8. Ultrafast time-resolved spectroscopy of the light-harvesting complex 2 (LH2) from the photosynthetic bacterium Thermochromatium tepidum.

    PubMed

    Niedzwiedzki, Dariusz M; Fuciman, Marcel; Kobayashi, Masayuki; Frank, Harry A; Blankenship, Robert E

    2011-10-01

    The light-harvesting complex 2 from the thermophilic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption and fluorescence, sub-nanosecond-time-resolved fluorescence and femtosecond time-resolved transient absorption spectroscopy. The measurements were performed at room temperature and at 10 K. The combination of both ultrafast and steady-state optical spectroscopy methods at ambient and cryogenic temperatures allowed the detailed study of carotenoid (Car)-to-bacteriochlorophyll (BChl) as well BChl-to-BChl excitation energy transfer in the complex. The studies show that the dominant Cars rhodopin (N=11) and spirilloxanthin (N=13) do not play a significant role as supportive energy donors for BChl a. This is related with their photophysical properties regulated by long π-electron conjugation. On the other hand, such properties favor some of the Cars, particularly spirilloxanthin (N=13) to play the role of the direct quencher of the excited singlet state of BChl. © Springer Science+Business Media B.V. 2011

  9. Investigation of RNA Hairpin Loop Folding with Time-Resolved Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Stancik, Aaron Lee

    Ribonucleic acids (RNAs) are a group of functional biopolymers central to the molecular underpinnings of life. To complete the many processes they mediate, RNAs must fold into precise three-dimensional structures. Hairpin loops are the most ubiquitous and basic structural elements present in all folded RNAs, and are the foundation upon which all complex tertiary structures are built. A hairpin loop forms when a single stranded RNA molecule folds back on itself creating a helical stem of paired bases capped by a loop. This work investigates the formation of UNCG hairpin loops with the sequence 5'-GC(UNCG)GC-3' (N = A, U, G, or C) using both equilibrium infrared (IR) and time-resolved IR spectroscopy. Equilibrium IR melting data were used to determine thermodynamic parameters. Melting temperatures ranged from 50 to 60°C, and enthalpies of unfolding were on the order of 100 kJ/mol. In the time-resolved work, temperature jumps of up to 20°C at 2.5°C increments were obtained with transient relaxation kinetics spanning nanoseconds to hundreds of microseconds. The relaxation kinetics for all of the oligomers studied were fit to first or second order exponentials. Multiple vibrational transitions were probed on each oligomer for fully folded and partially denatured structures. In the time-resolved limit, in contrast to equilibrium melting, RNA does not fold according to two-state behavior. These results are some of the first to show that RNA hairpins fold according to a rugged energy landscape, which contradicts their relatively simple nature. In addition, this work has proven that time-resolved IR spectroscopy is a powerful and novel tool for investigating the earliest events of RNA folding, the formation of the hairpin loop.

  10. Sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy setup for pulsed and constant wave X-ray light sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shavorskiy, Andrey; Slaughter, Daniel S.; Zegkinoglou, Ioannis

    2014-09-15

    An apparatus for sub-nanosecond time-resolved ambient-pressure X-ray photoelectron spectroscopy studies with pulsed and constant wave X-ray light sources is presented. A differentially pumped hemispherical electron analyzer is equipped with a delay-line detector that simultaneously records the position and arrival time of every single electron at the exit aperture of the hemisphere with ∼0.1 mm spatial resolution and ∼150 ps temporal accuracy. The kinetic energies of the photoelectrons are encoded in the hit positions along the dispersive axis of the two-dimensional detector. Pump-probe time-delays are provided by the electron arrival times relative to the pump pulse timing. An average time-resolution ofmore » (780 ± 20) ps (FWHM) is demonstrated for a hemisphere pass energy E{sub p} = 150 eV and an electron kinetic energy range KE = 503–508 eV. The time-resolution of the setup is limited by the electron time-of-flight (TOF) spread related to the electron trajectory distribution within the analyzer hemisphere and within the electrostatic lens system that images the interaction volume onto the hemisphere entrance slit. The TOF spread for electrons with KE = 430 eV varies between ∼9 ns at a pass energy of 50 eV and ∼1 ns at pass energies between 200 eV and 400 eV. The correlation between the retarding ratio and the TOF spread is evaluated by means of both analytical descriptions of the electron trajectories within the analyzer hemisphere and computer simulations of the entire trajectories including the electrostatic lens system. In agreement with previous studies, we find that the by far dominant contribution to the TOF spread is acquired within the hemisphere. However, both experiment and computer simulations show that the lens system indirectly affects the time resolution of the setup to a significant extent by inducing a strong dependence of the angular spread of electron trajectories entering the hemisphere on the retarding ratio. The scaling of the

  11. SPORT: A new sub-nanosecond time-resolved instrument to study swift heavy ion-beam induced luminescence - Application to luminescence degradation of a fast plastic scintillator

    NASA Astrophysics Data System (ADS)

    Gardés, E.; Balanzat, E.; Ban-d'Etat, B.; Cassimi, A.; Durantel, F.; Grygiel, C.; Madi, T.; Monnet, I.; Ramillon, J.-M.; Ropars, F.; Lebius, H.

    2013-02-01

    We developed a new sub-nanosecond time-resolved instrument to study the dynamics of UV-visible luminescence under high stopping power heavy ion irradiation. We applied our instrument, called SPORT, on a fast plastic scintillator (BC-400) irradiated with 27-MeV Ar ions having high mean electronic stopping power of 2.6 MeV/μm. As a consequence of increasing permanent radiation damages with increasing ion fluence, our investigations reveal a degradation of scintillation intensity together with, thanks to the time-resolved measurement, a decrease in the decay constant of the scintillator. This combination indicates that luminescence degradation processes by both dynamic and static quenching, the latter mechanism being predominant. Under such high density excitation, the scintillation deterioration of BC-400 is significantly enhanced compared to that observed in previous investigations, mainly performed using light ions. The observed non-linear behaviour implies that the dose at which luminescence starts deteriorating is not independent on particles' stopping power, thus illustrating that the radiation hardness of plastic scintillators can be strongly weakened under high excitation density in heavy ion environments.

  12. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  13. Nanosecond time-resolved characterization of a pentacene-based room-temperature MASER

    PubMed Central

    Salvadori, Enrico; Breeze, Jonathan D.; Tan, Ke-Jie; Sathian, Juna; Richards, Benjamin; Fung, Mei Wai; Wolfowicz, Gary; Oxborrow, Mark; Alford, Neil McN.; Kay, Christopher W. M.

    2017-01-01

    The performance of a room temperature, zero-field MASER operating at 1.45 GHz has been examined. Nanosecond laser pulses, which are essentially instantaneous on the timescale of the spin dynamics, allow the visible-to-microwave conversion efficiency and temporal response of the MASER to be measured as a function of excitation energy. It is observed that the timing and amplitude of the MASER output pulse are correlated with the laser excitation energy: at higher laser energy, the microwave pulses have larger amplitude and appear after shorter delay than those recorded at lower laser energy. Seeding experiments demonstrate that the output variation may be stabilized by an external source and establish the minimum seeding power required. The dynamics of the MASER emission may be modeled by a pair of first order, non-linear differential equations, derived from the Lotka-Volterra model (Predator-Prey), where by the microwave mode of the resonator is the predator and the spin polarization in the triplet state of pentacene is the prey. Simulations allowed the Einstein coefficient of stimulated emission, the spin-lattice relaxation and the number of triplets contributing to the MASER emission to be estimated. These are essential parameters for the rational improvement of a MASER based on a spin-polarized triplet molecule. PMID:28169331

  14. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  15. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  16. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure

    PubMed Central

    Roth, Caleb C.; Barnes Jr., Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Christopher Mimun, L.; Maswadi, Saher M.; Shadaram, Mehdi; Glickman, Randolph D.

    2015-01-01

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane. PMID:26450165

  17. Characterization of Pressure Transients Generated by Nanosecond Electrical Pulse (nsEP) Exposure.

    PubMed

    Roth, Caleb C; Barnes, Ronald A; Ibey, Bennett L; Beier, Hope T; Christopher Mimun, L; Maswadi, Saher M; Shadaram, Mehdi; Glickman, Randolph D

    2015-10-09

    The mechanism(s) responsible for the breakdown (nanoporation) of cell plasma membranes after nanosecond pulse (nsEP) exposure remains poorly understood. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. However, the delivery of a high-voltage nsEP to cells by tungsten electrodes creates a multitude of biophysical phenomena, including electrohydraulic cavitation, electrochemical interactions, thermoelastic expansion, and others. To date, very limited research has investigated non-electric phenomena occurring during nsEP exposures and their potential effect on cell nanoporation. Of primary interest is the production of acoustic shock waves during nsEP exposure, as it is known that acoustic shock waves can cause membrane poration (sonoporation). Based on these observations, our group characterized the acoustic pressure transients generated by nsEP and determined if such transients played any role in nanoporation. In this paper, we show that nsEP exposures, equivalent to those used in cellular studies, are capable of generating high-frequency (2.5 MHz), high-intensity (>13 kPa) pressure transients. Using confocal microscopy to measure cell uptake of YO-PRO®-1 (indicator of nanoporation of the plasma membrane) and changing the electrode geometry, we determined that acoustic waves alone are not responsible for poration of the membrane.

  18. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  19. [System of ns time-resolved spectroscopy diagnosis and radioprotection].

    PubMed

    Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo

    2014-06-01

    Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.

  20. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  1. Investigation of airfoil leading edge separation control with nanosecond plasma actuator

    NASA Astrophysics Data System (ADS)

    Zheng, J. G.; Cui, Y. D.; Zhao, Z. J.; Li, J.; Khoo, B. C.

    2016-11-01

    A combined numerical and experimental investigation of airfoil leading edge flow separation control with a nanosecond dielectric barrier discharge (DBD) plasma actuator is presented. Our study concentrates on describing dynamics of detailed flow actuation process and elucidating the nanosecond DBD actuation mechanism. A loose coupling methodology is employed to perform simulation, which consists of a self-similar plasma model for the description of pulsed discharge and two-dimensional Reynolds averaged Navier-Stokes (RANS) equations for the calculation of external airflow. A series of simulations of poststall flows around a NACA0015 airfoil is conducted with a Reynolds number range covering both low and high Re at Re=(0.05 ,0.15 ,1.2 ) ×106 . Meanwhile, wind-tunnel experiment is performed for two low Re flows to measure aerodynamic force on airfoil model and transient flow field with time-resolved particle image velocimetry (PIV). The PIV measurement provides possibly the clearest view of flow reattachment process under the actuation of a nanosecond plasma actuator ever observed in experiments, which is highly comparable to that predicted by simulation. It is found from the detailed simulation that the discharge-induced residual heat rather than shock wave plays a dominant role in flow control. For any leading edge separations, the preliminary flow reattachment is realized by residual heat-induced spanwise vortices. After that, the nanosecond actuator functions by continuing exciting flow instability at poststall attack angles or acting as an active trip near stall angle. As a result, the controlled flow is characterized by a train of repetitive, downstream moving vortices over suction surface or an attached turbulent boundary layer, which depends on both angle of attack and Reynolds number. The advection of residual temperature with external flow offers a nanosecond plasma actuator a lot of flexibility to extend its influence region. Animations are provided for

  2. Development of in situ time-resolved Raman spectroscopy facility for dynamic shock loading in materials

    NASA Astrophysics Data System (ADS)

    Chaurasia, S.; Rastogi, V.; Rao, U.; Sijoy, C. D.; Mishra, V.; Deo, M. N.

    2017-11-01

    The transient state of excitation and relaxation processes in materials under shock compression can be investigated by coupling the laser driven shock facility with Raman spectroscopy. For this purpose, a time resolved Raman spectroscopy setup has been developed to monitor the physical and the chemical changes such as phase transitions, chemical reactions, molecular kinetics etc., under shock compression with nanosecond time resolution. This system consist of mainly three parts, a 2 J/8 ns Nd:YAG laser system used for generation of pump and probe beams, a Raman spectrometer with temporal and spectral resolution of 1.2 ns and 3 cm-1 respectively and a target holder in confinement geometry assembly. Detailed simulation for the optimization of confinement geometry targets is performed. Time resolved measurement of polytetrafluoroethylene (PTFE) targets at focused laser intensity of 2.2 GW/cm2 has been done. The corresponding pressure in the Aluminum and PTFE are 3.6 and 1.7 GPa respectively. At 1.7 GPa in PTFE, a red shift of 5 cm-1 is observed for the CF2 twisting mode (291 cm-1). Shock velocity in PTFE is calculated by measuring rate of change of ratios of the intensity of Raman lines scattered from shocked volume to total volume of sample in the laser focal spot along the laser axis. The calculated shock velocity in PTFE is found to be 1.64 ± 0.16 km/s at shock pressure of 1.7 GPa, for present experimental conditions.

  3. Filming the invisible - time-resolved visualization of compressible flows

    NASA Astrophysics Data System (ADS)

    Kleine, H.

    2010-04-01

    Essentially all processes in gasdynamics are invisible to the naked eye as they occur in a transparent medium. The task to observe them is further complicated by the fact that most of these processes are also transient, often with characteristic times that are considerably below the threshold of human perception. Both difficulties can be overcome by combining visualization methods that reveal changes in the transparent medium, and high-speed photography techniques that “stop” the motion of the flow. The traditional approach is to reconstruct a transient process from a series of single images, each taken in a different experiment at a different instant. This approach, which is still widely used today, can only be expected to give reliable results when the process is reproducible. Truly time-resolved visualization, which yields a sequence of flow images in a single experiment, has been attempted for more than a century, but many of the developed camera systems were characterized by a high level of complexity and limited quality of the results. Recent advances in digital high-speed photography have changed this situation and have provided the tools to investigate, with relative ease and in sufficient detail, the true development of a transient flow with characteristic time scales down to one microsecond. This paper discusses the potential and the limitations one encounters when using density-sensitive visualization techniques in time-resolved mode. Several examples illustrate how this approach can reveal and explain a number of previously undetected phenomena in a variety of highly transient compressible flows. It is demonstrated that time-resolved visualization offers numerous advantages which normally outweigh its shortcomings, mainly the often-encountered loss in resolution. Apart from the capability to track the location and/or shape of flow features in space and time, adequate time-resolved visualization allows one to observe the development of deliberately

  4. Rapid time-resolved diffraction studies of protein structures using synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Bartunik, Hans D.; Bartunik, Lesley J.

    1992-07-01

    The crystal structure of intermediate states in biological reactions of proteins of multi-protein complexes may be studied by time-resolved X-ray diffraction techniques which make use of the high spectral brilliance, continuous wavelength distribution and pulsed time structure of synchrotron radiation. Laue diffraction methods provide a means of investigating intermediate structures with lifetimes in the millisecond time range at presently operational facilities. Third-generation storage rings which are under construction may permit one to reach a time resolution of one microsecond for non-cyclic and one nanosecond for cyclic reactions. The number of individual exposures required for exploring reciprocal space and hence the total time scale strongly depend on the lattice order that may be affected, e.g., by conformational changes. Time-resolved experiments require high population of a specific intermediate which has to be homogeneous over the crystal volume. A number of external excitation techniques have been developed including in situ liberation of active metabolites by laser pulse photolysis of photolabile inactive precursors. First applications to crystal structure analysis of catalytic intermediates of enzymes demonstrate the potential of time-resolved protein crystallography.

  5. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  6. Spin-orbit torque-driven skyrmion dynamics revealed by time-resolved X-ray microscopy

    DOE PAGES

    Woo, Seonghoon; Song, Kyung Mee; Han, Hee-Sung; ...

    2017-05-24

    Magnetic skyrmions are topologically protected spin textures with attractive properties suitable for high-density and low-power spintronic device applications. Much effort has been dedicated to understanding the dynamical behaviours of the magnetic skyrmions. However, experimental observation of the ultrafast dynamics of this chiral magnetic texture in real space, which is the hallmark of its quasiparticle nature, has so far remained elusive. Here, we report nanosecond-dynamics of a 100nm-diameter magnetic skyrmion during a current pulse application, using a time-resolved pump-probe soft X-ray imaging technique. We demonstrate that distinct dynamic excitation states of magnetic skyrmions, triggered by current-induced spin-orbit torques, can be reliablymore » tuned by changing the magnitude of spin-orbit torques. Our findings show that the dynamics of magnetic skyrmions can be controlled by the spin-orbit torque on the nanosecond time scale, which points to exciting opportunities for ultrafast and novel skyrmionic appl ications in the future.« less

  7. Time evolution of nanosecond runaway discharges in air and helium at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-12-15

    Time- and space-resolved fast framing photography was employed to study the discharge initiated by runaway electrons in air and He gas at atmospheric pressure. Whereas in the both cases, the discharge occurs in a nanosecond time scale and its front propagates with a similar velocity along the cathode-anode gap, the later stages of the discharge differ significantly. In air, the main discharge channels develop and remain in the locations with the strongest field enhancement. In He gas, the first, diode 'gap bridging' stage, is similar to that obtained in air; however, the development of the discharge that follows is dictatedmore » by an explosive electron emission from micro-protrusions on the edge of the cathode. These results allow us to draw conclusions regarding the different conductivity of the plasma produced in He and air discharges.« less

  8. The time resolved SBS and SRS research in heavy water and its application in CARS

    NASA Astrophysics Data System (ADS)

    Liu, Jinbo; Gai, Baodong; Yuan, Hong; Sun, Jianfeng; Zhou, Xin; Liu, Di; Xia, Xusheng; Wang, Pengyuan; Hu, Shu; Chen, Ying; Guo, Jingwei; Jin, Yuqi; Sang, Fengting

    2018-05-01

    We present the time-resolved character of stimulated Brillouin scattering (SBS) and backward stimulated Raman scattering (BSRS) in heavy water and its application in Coherent Anti-Stokes Raman Scattering (CARS) technique. A nanosecond laser from a frequency-doubled Nd: YAG laser is introduced into a heavy water cell, to generate SBS and BSRS beams. The SBS and BSRS beams are collinear, and their time resolved characters are studied by a streak camera, experiment show that they are ideal source for an alignment-free CARS system, and the time resolved property of SBS and BSRS beams could affect the CARS efficiency significantly. By inserting a Dye cuvette to the collinear beams, the time-overlapping of SBS and BSRS could be improved, and finally the CARS efficiency is increased, even though the SBS energy is decreased. Possible methods to improve the efficiency of this CARS system are discussed too.

  9. Plasma plume expansion dynamics in nanosecond Nd:YAG laserosteotome

    NASA Astrophysics Data System (ADS)

    Abbasi, Hamed; Rauter, Georg; Guzman, Raphael; Cattin, Philippe C.; Zam, Azhar

    2018-02-01

    In minimal invasive laser osteotomy precise information about the ablation process can be obtained with LIBS in order to avoid carbonization, or cutting of wrong types of tissue. Therefore, the collecting fiber for LIBS needs to be optimally placed in narrow cavities in the endoscope. To determine this optimal placement, the plasma plume expansion dynamics in ablation of bone tissue by the second harmonic of a nanosecond Nd:YAG laser at 532 nm has been studied. The laserinduced plasma plume was monitored in different time delays, from one nanosecond up to one hundred microseconds. Measurements were performed using high-speed gated illumination imaging. The expansion features were studied using illumination of the overall visible emission by using a gated intensified charged coupled device (ICCD). The camera was capable of having a minimum gate width (Optical FWHM) of 3 ns and the timing resolution (minimum temporal shift of the gate) of 10 ps. The imaging data were used to generate position-time data of the luminous plasma-front. Moreover, the velocity of the plasma plume expansion was studied based on the time-resolved intensity data. By knowing the plasma plume profile over time, the optimum position (axial distance from the laser spot) of the collecting fiber and optimal time delay (to have the best signal to noise ratio) in spatial-resolved and time-resolved laser-induced breakdown spectroscopy (LIBS) can be determined. Additionally, the function of plasma plume expansion could be used to study the shock wave of the plasma plume.

  10. High-performance time-resolved fluorescence by direct waveform recording.

    PubMed

    Muretta, Joseph M; Kyrychenko, Alexander; Ladokhin, Alexey S; Kast, David J; Gillispie, Gregory D; Thomas, David D

    2010-10-01

    We describe a high-performance time-resolved fluorescence (HPTRF) spectrometer that dramatically increases the rate at which precise and accurate subnanosecond-resolved fluorescence emission waveforms can be acquired in response to pulsed excitation. The key features of this instrument are an intense (1 μJ/pulse), high-repetition rate (10 kHz), and short (1 ns full width at half maximum) laser excitation source and a transient digitizer (0.125 ns per time point) that records a complete and accurate fluorescence decay curve for every laser pulse. For a typical fluorescent sample containing a few nanomoles of dye, a waveform with a signal/noise of about 100 can be acquired in response to a single laser pulse every 0.1 ms, at least 10(5) times faster than the conventional method of time-correlated single photon counting, with equal accuracy and precision in lifetime determination for lifetimes as short as 100 ps. Using standard single-lifetime samples, the detected signals are extremely reproducible, with waveform precision and linearity to within 1% error for single-pulse experiments. Waveforms acquired in 0.1 s (1000 pulses) with the HPTRF instrument were of sufficient precision to analyze two samples having different lifetimes, resolving minor components with high accuracy with respect to both lifetime and mole fraction. The instrument makes possible a new class of high-throughput time-resolved fluorescence experiments that should be especially powerful for biological applications, including transient kinetics, multidimensional fluorescence, and microplate formats.

  11. Detection of colorectal cancer using time-resolved autofluorescence spectrometer

    NASA Astrophysics Data System (ADS)

    Fu, Sheng; Kwek, Leong-Chuan; Chia, Teck-Chee; Lim, Chu-Sing; Tang, Choong-Leong; Ang, Wuan-Suan; Zhou, Miao-Chang; Loke, Po-Ling

    2006-04-01

    As we know Quantum mechanics is a mathematical theory that can describe the behavior of objects that are at microscopic level. Time-resolved autofluorescence spectrometer monitors events that occur during the lifetime of the excited state. This time ranges from a few picoseconds to hundreds of nanoseconds. That is an extremely important advance as it allows environmental parameters to be monitored in a spatially defined manner in the specimen under study. This technique is based on the application of Quantum Mechanics. This principle is applied in our project as we are trying to use different fluorescence spectra to detect biological molecules commonly found in cancerous colorectal tissue and thereby differentiate the cancerous and non-cancerous colorectal polyps more accurately and specifically. In this paper, we use Fluorescence Lifetime Spectrometer (Edinburgh Instruments FL920) to measure decay time of autofluorescence of colorectal cancerous and normal tissue sample. All specimens are from Department of Colorectal Surgery, Singapore General Hospital. The tissues are placed in the time-resolved autofluorescence instrument, which records and calculates the decay time of the autofluorescence in the tissue sample at the excitation and emission wavelengths pre-determined from a conventional spectrometer. By studying the decay time,τ, etc. for cancerous and normal tissue, we aim to present time-resolved autofluorescence as a feasible technique for earlier detection of malignant colorectal tissues. By using this concept, we try to contribute an algorithm even an application tool for real time early diagnosis of colorectal cancer for clinical services.

  12. Photodissociation dynamics of nitromethane at 226 and 271 nm at both nanosecond and femtosecond time scales.

    PubMed

    Guo, Y Q; Bhattacharya, A; Bernstein, E R

    2009-01-08

    Photodissociation of nitromethane has been investigated for decades both theoretically and experimentally; however, as a whole picture, the dissociation dynamics for nitromethane are still not clear, although many different mechanisms have been proposed. To make a complete interpretation of these different mechanisms, photolysis of nitromethane at 226 and 271 nm under both collisional and collisionless conditions is investigated at nanosecond and femtosecond time scales. These two laser wavelengths correspond to the pi* <-- pi and pi* <-- n excitations of nitromethane, respectively. In nanosecond 226 nm (pi* <-- pi) photolysis experiments, CH(3) and NO radicals are observed as major products employing resonance enhanced multiphoton ionization techniques and time-of-flight mass spectrometry. Additionally, OH and CH(3)O radicals are weakly observed as dissociation products employing laser induced fluorescence spectroscopy; the CH(3)O product is only observed under collisional conditions. In femtosecond 226 nm experiments, CH(3), NO(2), and NO products are observed. These results confirm that rupture of C-N bond should be the main primary process for the photolysis of nitromethane after the pi* <-- pi excitation at 226 nm, and the NO(2) molecule should be the precursor of the observed NO product. Formation of the CH(3)O radical after the recombination of CH(3) and NO(2) species under collisional conditions rules out a nitro-nitrite isomerization mechanism for the generation of CH(3)O and NO from pi pi* CH(3)NO(2). The OH radical formation for pi pi* CH(3)NO(2) should be a minor dissociation channel because of the weak OH signal in both nanosecond and femtosecond (nonobservable) experiments. Single color femtosecond pump-probe experiments at 226 nm are also employed to monitor the dynamics of the dissociation of nitromethane after the pi* <-- pi excitation. Because of the ultrafast dynamics of product formation at 226 nm, the pump-probe transients for the three

  13. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    NASA Astrophysics Data System (ADS)

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.; Herbert, John M.; Kohler, Bern

    2008-05-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2'-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs to 3 μs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ˜1700 cm -1 in room-temperature acetonitrile- d3 solution. These bands and additional ones observed between 1300 and 1450 cm -1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4 dbnd O carbonyl exhibits substantial single-bond character, explaining the large (˜70 cm -1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ ∗ state as the triplet precursor.

  14. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine

    PubMed Central

    Hare, Patrick M.; Middleton, Chris T.; Mertel, Kristin I.

    2008-01-01

    Vibrational spectra of the lowest energy triplet states of thymine and its 2’-deoxyribonucleoside, thymidine, are reported for the first time. Time-resolved infrared (TRIR) difference spectra were recorded over seven decades of time from 300 fs – 3 µs using femtosecond and nanosecond pump-probe techniques. The carbonyl stretch bands in the triplet state are seen at 1603 and ~1700 cm−1 in room-temperature acetonitrile-d3 solution. These bands and additional ones observed between 1300 and 1450 cm−1 are quenched by dissolved oxygen on a nanosecond time scale. Density-functional calculations accurately predict the difference spectrum between triplet and singlet IR absorption cross sections, confirming the peak assignments and elucidating the nature of the vibrational modes. In the triplet state, the C4=O carbonyl exhibits substantial single-bond character, explaining the large (~70 cm−1) red shift in this vibration, relative to the singlet ground state. Femtosecond TRIR measurements unambiguously demonstrate that the triplet state is fully formed within the first 10 ps after excitation, ruling out a relaxed 1nπ* state as the triplet precursor. PMID:19936322

  15. Fast time-resolved electrostatic force microscopy: Achieving sub-cycle time resolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karatay, Durmus U.; Harrison, Jeffrey S.; Glaz, Micah S.

    The ability to measure microsecond- and nanosecond-scale local dynamics below the diffraction limit with widely available atomic force microscopy hardware would enable new scientific studies in fields ranging from biology to semiconductor physics. However, commercially available scanning-probe instruments typically offer the ability to measure dynamics only on time scales of milliseconds to seconds. Here, we describe in detail the implementation of fast time-resolved electrostatic force microscopy using an oscillating cantilever as a means to measure fast local dynamics following a perturbation to a sample. We show how the phase of the oscillating cantilever relative to the perturbation event is criticalmore » to achieving reliable sub-cycle time resolution. We explore how noise affects the achievable time resolution and present empirical guidelines for reducing noise and optimizing experimental parameters. Specifically, we show that reducing the noise on the cantilever by using photothermal excitation instead of piezoacoustic excitation further improves time resolution. We demonstrate the discrimination of signal rise times with time constants as fast as 10 ns, and simultaneous data acquisition and analysis for dramatically improved image acquisition times.« less

  16. Detecting beta-amyloid aggregation from time-resolved emission spectra

    NASA Astrophysics Data System (ADS)

    Alghamdi, A.; Vyshemirsky, V.; Birch, D. J. S.; Rolinski, O. J.

    2018-04-01

    The aggregation of beta-amyloids is one of the key processes responsible for the development of Alzheimer’s disease. Early molecular-level detection of beta-amyloid oligomers may help in early diagnosis and in the development of new intervention therapies. Our previous studies on the changes in beta-amyloid’s single tyrosine intrinsic fluorescence response during aggregation demonstrated a four-exponential fluorescence intensity decay, and the ratio of the pre-exponential factors indicated the extent of the aggregation in the early stages of the process before the beta-sheets were formed. Here we present a complementary approach based on the time-resolved emission spectra (TRES) of amyloid’s tyrosine excited at 279 nm and fluorescence in the window 240-450 nm. TRES have been used to demonstrate sturctural changes occuring on the nanosecond time scale after excitation which has significant advantages over using steady-state spectra. We demonstrate this by resolving the fluorescent species and revealing that beta-amyloid’s monomers show very fast dielectric relaxation, and its oligomers display a substantial spectral shift due to dielectric relaxation, which gradually decreases when the oligomers become larger.

  17. Nanosecond time transfer via shuttle laser ranging experiment

    NASA Technical Reports Server (NTRS)

    Reinhardt, V. S.; Premo, D. A.; Fitzmaurice, M. W.; Wardrip, S. C.; Cervenka, P. O.

    1978-01-01

    A method is described to use a proposed shuttle laser ranging experiment to transfer time with nanosecond precision. All that need be added to the original experiment are low cost ground stations and an atomic clock on the shuttle. It is shown that global time transfer can be accomplished with 1 ns precision and transfer up to distances of 2000 km can be accomplished with better than 100 ps precision.

  18. Coherent optical effect on time-resolved vibrational SFG spectrum of adsorbates

    NASA Astrophysics Data System (ADS)

    Ueba, H.; Sawabu, T.; Mii, T.

    2002-04-01

    We present a theory to study the influence of the coherent mixing between pump-infrared and probe-visible pulse on a time-resolved sum-frequency generation (TR-SFG) spectrum for vibrations at surfaces. The general formula of the time-dependent and its Fourier transform of the SFG polarization and its Fourier transform allows us to calculate the time-resolved vibrational SFG spectrum and the transient characteristics of the SFG intensity as a function of the delay time td between the pump-infrared and probe-visible pulse. It is found the coherent optical effect manifests itself in the broadening and narrowing of the SFG spectrum with the intrinsic width of T2 at negative and positive td, respectively, being in qualitative agreement with recent experimental results. The influence of the coherent mixing on the transient behavior of the SFG intensity is also discussed in conjunction to the T2 determination.

  19. Molecular specificity in photoacoustic microscopy by time-resolved transient absorption.

    PubMed

    Shelton, Ryan L; Mattison, Scott P; Applegate, Brian E

    2014-06-01

    We have recently harnessed transient absorption, a resonant two-photon process, for ultrahigh resolution photoacoustic microscopy, achieving nearly an order of magnitude improvement in axial resolution. The axial resolution is optically constrained due to the two-photon process unlike traditional photoacoustic microscopy where the axial resolution is inversely proportional to the frequency bandwidth of the detector. As a resonant process, the arrival time of the two photons need not be instantaneous. Systematically recording the signal as a function of the delay between two pulses will result in the measurement of an exponential decay whose time constant is related to the molecular dynamics. This time constant, analogous to the fluorescence lifetime, but encompassing nonradiative decay as well, can be used to differentiate between molecular systems with overlapping absorption spectra. This is frequently the situation for closely related yet distinct molecules such as redox pairs. In order to enable the measure of the exponential decay, we have reconfigured our transient absorption ultrasonic microscopy (TAUM) system to incorporate two laser sources with precisely controlled pulse trains. The system was tested by measuring Rhodamine 6G, an efficient laser dye where the molecular dynamics are dominated by the fluorescence pathway. As expected, the measured exponential time constant or ground state recovery time, 3.3±0.7  ns, was similar to the well-known fluorescence lifetime, 4.11±0.05  ns. Oxy- and deoxy-hemoglobin are the quintessential pair whose relative concentration is related to the local blood oxygen saturation. We have measured the ground state recovery times of these two species in fully oxygenated and deoxygenated bovine whole blood to be 3.7±0.8  ns and 7.9±1.0  ns, respectively. Hence, even very closely related pairs of molecules may be differentiated with this technique.

  20. Tracking the photodissociation dynamics of liquid nitromethane at 266 nm by femtosecond time-resolved broadband transient grating spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Honglin; Song, Yunfei; Yu, Guoyang; Wang, Yang; Wang, Chang; Yang, Yanqiang

    2016-05-01

    Femtosecond time-resolved transient grating (TG) technique was employed to get insight into the photodissociation mechanism of liquid nitromethane (NM). Broadband white-light continuum was introduced as the probe to observe the evolution of electronic excited states of NM molecules and the formation of photodissociation products simultaneously. The reaction channel of liquid NM under 266 nm excitation was obtained that NM molecules in excited state S2 relax through two channels: about 73% relax to low lying S1 state through S2/S1 internal conversion with a time constant of 0.24 ps and then go back to the ground state through S1/S0 internal conversion; the other 27% will dissociate with a time constant of 2.56 ps. NO2 was found to be one of the products from the experimental TG spectra, which confirmed that C-N bond rupture was the primary dissociation channel of liquid NM.

  1. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy.

    PubMed

    Weidlich, O; Ujj, L; Jäger, F; Atkinson, G H

    1997-05-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These

  2. Time-resolved spectroscopic studies of photosynthetic reaction centers and tetrapyrrole chromophores for biomedical and solar-energy applications

    NASA Astrophysics Data System (ADS)

    Kee, Hooi Ling

    2008-10-01

    The photophysical properties of diverse tetrapyrrole chromophores as well as energy and electron transfer processes in tetrapyrrole dyads are investigated using static and time-resolved (femtoseconds to seconds) absorption and fluorescence spectroscopy. The goal of these studies is to elucidate the molecular design principals necessary to construct chromophores with the specific and tunable properties that will enhance applications in optical molecular imaging, photodynamic therapy, and solar-energy conversion. The kinetic properties of the transient intermediate P+H B- involving the bacteriopheophytin molecule HB on the normally inactive (B) cofactor branch of the bacterial photosynthetic reaction center are examined in Rhodobacter capsulatus mutants. Using nanosecond flash photolysis and F(L181)Y/Y(M208)F/L(M212)H mutant, the decay pathways and yields of P+HB- were measured, giving an overall yield of 13% for B-side charge separation P* → P+HB- → P+ QB- in this mutant. The goal of these studies is to understand the fundamental differences in the rates, yields, and mechanisms of charge separation and charge recombination along the two parallel electron-transport chains in the bacterial reaction center.

  3. Exploring time-resolved photoluminescence for nanowires using a three-dimensional computational transient model.

    PubMed

    Ren, Dingkun; Scofield, Adam C; Farrell, Alan C; Rong, Zixuan; Haddad, Michael A; Laghumavarapu, Ramesh B; Liang, Baolai; Huffaker, Diana L

    2018-04-26

    Time-resolved photoluminescence (TRPL) has been implemented experimentally to measure the carrier lifetime of semiconductors for decades. For the characterization of nanowires, the rich information embedded in TRPL curves has not been fully interpreted and meaningfully mapped to the respective material properties. This is because their three-dimensional (3-D) geometries result in more complicated mechanisms of carrier recombination than those in thin films and analytical solutions cannot be found for those nanostructures. In this work, we extend the intrinsic power of TRPL by developing a full 3-D transient model, which accounts for different material properties and drift-diffusion, to simulate TRPL curves for nanowires. To show the capability of the model, we perform TRPL measurements on a set of GaAs nanowire arrays grown on silicon substrates and then fit the measured data by tuning various material properties, including carrier mobility, Shockley-Read-Hall recombination lifetime, and surface recombination velocity at the GaAs-Si heterointerface. From the resultant TRPL simulations, we numerically identify the lifetime characteristics of those material properties. In addition, we computationally map the spatial and temporal electron distributions in nanowire segments and reveal the underlying carrier dynamics. We believe this study provides a theoretical foundation for interpretation of TRPL measurements to unveil the complex carrier recombination mechanisms in 3-D nanostructured materials.

  4. Time-resolved explosion of intense-laser-heated clusters.

    PubMed

    Kim, K Y; Alexeev, I; Parra, E; Milchberg, H M

    2003-01-17

    We investigate the femtosecond explosive dynamics of intense laser-heated argon clusters by measuring the cluster complex transient polarizability. The time evolution of the polarizability is characteristic of competition in the optical response between supercritical and subcritical density regions of the expanding cluster. The results are consistent with time-resolved Rayleigh scattering measurements, and bear out the predictions of a recent laser-cluster interaction model [H. M. Milchberg, S. J. McNaught, and E. Parra, Phys. Rev. E 64, 056402 (2001)

  5. Transient thermal effect, nonlinear refraction and nonlinear absorption properties of graphene oxide sheets in dispersion.

    PubMed

    Zhang, Xiao-Liang; Liu, Zhi-Bo; Li, Xiao-Chun; Ma, Qiang; Chen, Xu-Dong; Tian, Jian-Guo; Xu, Yan-Fei; Chen, Yong-Sheng

    2013-03-25

    The nonlinear refraction (NLR) properties of graphene oxide (GO) in N, N-Dimethylformamide (DMF) was studied in nanosecond, picosecond and femtosecond time regimes by Z-scan technique. Results show that the dispersion of GO in DMF exhibits negative NLR properties in nanosecond time regime, which is mainly attributed to transient thermal effect in the dispersion. The dispersion also exhibits negative NLR in picosecond and femtosecond time regimes, which are arising from sp(2)- hybridized carbon domains and sp(3)- hybridized matrix in GO sheets. To illustrate the relations between NLR and nonlinear absorption (NLA), NLA properties of the dispersion were also studied in nanosecond, picosecond and femtosecond time regimes.

  6. Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging

    PubMed Central

    Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan

    2008-01-01

    We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shayduk, Roman; Vonk, Vedran; Strempfer, Jörg

    We report on the quantitative determination of the transient surface temperature of Pt(110) upon nanosecond laser pulse heating. We find excellent agreement between heat transport theory and the experimentally determined transient surface temperature as obtained from time-resolved X-ray diffraction on timescales from hundred nanoseconds to milliseconds. Exact knowledge of the surface temperature's temporal evolution after laser excitation is crucial for future pump-probe experiments at synchrotron storage rings and X-ray free electron lasers.

  8. Real-time digital signal processing in multiphoton and time-resolved microscopy

    NASA Astrophysics Data System (ADS)

    Wilson, Jesse W.; Warren, Warren S.; Fischer, Martin C.

    2016-03-01

    The use of multiphoton interactions in biological tissue for imaging contrast requires highly sensitive optical measurements. These often involve signal processing and filtering steps between the photodetector and the data acquisition device, such as photon counting and lock-in amplification. These steps can be implemented as real-time digital signal processing (DSP) elements on field-programmable gate array (FPGA) devices, an approach that affords much greater flexibility than commercial photon counting or lock-in devices. We will present progress toward developing two new FPGA-based DSP devices for multiphoton and time-resolved microscopy applications. The first is a high-speed multiharmonic lock-in amplifier for transient absorption microscopy, which is being developed for real-time analysis of the intensity-dependence of melanin, with applications in vivo and ex vivo (noninvasive histopathology of melanoma and pigmented lesions). The second device is a kHz lock-in amplifier running on a low cost (50-200) development platform. It is our hope that these FPGA-based DSP devices will enable new, high-speed, low-cost applications in multiphoton and time-resolved microscopy.

  9. Differentiation of black writing ink on paper using luminescence lifetime by time-resolved luminescence spectroscopy.

    PubMed

    Suzuki, Mototsugu; Akiba, Norimitsu; Kurosawa, Kenji; Akao, Yoshinori; Higashikawa, Yoshiyasu

    2017-10-01

    The time-resolved luminescence spectra and the lifetimes of eighteen black writing inks were measured to differentiate pen ink on altered documents. The spectra and lifetimes depended on the samples. About half of the samples only exhibited short-lived luminescence components on the nanosecond time scale. On the other hand, the other samples exhibited short- and long-lived components on the microsecond time scale. The samples could be classified into fifteen groups based on the luminescence spectra and dynamics. Therefore, luminescence lifetime can be used for the differentiation of writing inks, and luminescence lifetime imaging can be applied for the examination of altered documents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry.

    PubMed

    Kittell, David E; Mares, Jesus O; Son, Steven F

    2015-04-01

    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications.

  11. Sub-10 fs Time-Resolved Vibronic Optical Microscopy

    PubMed Central

    2016-01-01

    We introduce femtosecond wide-field transient absorption microscopy combining sub-10 fs pump and probe pulses covering the complete visible (500–650 nm) and near-infrared (650–950 nm) spectrum with diffraction-limited optical resolution. We demonstrate the capabilities of our system by reporting the spatially- and spectrally-resolved transient electronic response of MAPbI3–xClx perovskite films and reveal significant quenching of the transient bleach signal at grain boundaries. The unprecedented temporal resolution enables us to directly observe the formation of band-gap renormalization, completed in 25 fs after photoexcitation. In addition, we acquire hyperspectral Raman maps of TIPS pentacene films with sub-400 nm spatial and sub-15 cm–1 spectral resolution covering the 100–2000 cm–1 window. Our approach opens up the possibility of studying ultrafast dynamics on nanometer length and femtosecond time scales in a variety of two-dimensional and nanoscopic systems. PMID:27934055

  12. Miniaturized time-resolved Raman spectrometer for planetary science based on a fast single photon avalanche diode detector array.

    PubMed

    Blacksberg, Jordana; Alerstam, Erik; Maruyama, Yuki; Cochrane, Corey J; Rossman, George R

    2016-02-01

    We present recent developments in time-resolved Raman spectroscopy instrumentation and measurement techniques for in situ planetary surface exploration, leading to improved performance and identification of minerals and organics. The time-resolved Raman spectrometer uses a 532 nm pulsed microchip laser source synchronized with a single photon avalanche diode array to achieve sub-nanosecond time resolution. This instrument can detect Raman spectral signatures from a wide variety of minerals and organics relevant to planetary science while eliminating pervasive background interference caused by fluorescence. We present an overview of the instrument design and operation and demonstrate high signal-to-noise ratio Raman spectra for several relevant samples of sulfates, clays, and polycyclic aromatic hydrocarbons. Finally, we present an instrument design suitable for operation on a rover or lander and discuss future directions that promise great advancement in capability.

  13. Design of peptide substrates for nanosecond time-resolved fluorescence assays of proteases: 2,3-diazabicyclo[2.2.2]oct-2-ene as a noninvasive fluorophore.

    PubMed

    Hennig, Andreas; Florea, Mara; Roth, Doris; Enderle, Thilo; Nau, Werner M

    2007-01-15

    Fluorescence protease assays were investigated with peptide substrates containing a 2,3-diazabicyclo[2.2.2]oct-2-ene-labeled asparagine (Dbo) as a fluorescent amino acid. The special characteristic of the fluorophore Dbo is its exceedingly long fluorescence lifetime (ca. 300 ns in water under air), which allows the use of nanosecond time-resolved fluorescence (Nano-TRF) detection to efficiently suppress shorter-lived background emission. In addition, the natural amino acids tryptophan and tyrosine can be employed as intramolecular fluorescence quenchers, which facilitates substrate design. Fourteen synthetic peptide substrates (composed of 2-19 amino acids) and five enzymes (trypsin, pepsin, carboxypeptidase A, leucine aminopeptidase, and chymotrypsin) were investigated and, in all 28 examined combinations, enzymatic activity was detected by monitoring the increase in steady state fluorescence with time and determining the reaction rates as kcat/Km values, which ranged from 0.2 to 80x10(6) M-1 min-1. The results suggest an excellent compatibility of the very small and hydrophilic fluorescent probe Dbo with solid-phase peptide synthesis and the investigated proteases. For all 14 peptides the fluorescence lifetimes before and after enzymatic cleavage were measured and Nano-TRF measurements were performed in 384-well microplates. The fluorescence lifetimes of the different peptides provide the basis for the rational design of Dbo-based fluorescent substrates for protease assays. Measurements in Nano-TRF mode revealed, in addition to efficient suppression of background fluorescence, an increased differentiation between cleaved and uncleaved substrate. The Dbo-based assays can be adapted for high-throughput screening.

  14. Time-resolved infrared and resonance Raman studies of benzil. Vibrational analysis and structures of the excited states

    NASA Astrophysics Data System (ADS)

    Mizuno, Misao; Iwata, Koichi; Takahashi, Hiroaki

    2003-12-01

    Structures of the S 1 and T 1 states of benzil are examined based on the experimental results from nanosecond time-resolved infrared spectroscopy and picosecond time-resolved Raman spectroscopy. Nanosecond time-resolved infrared spectra of the T 1 state of benzil as well as its three isotopically substituted analogues were measured in carbon tetrachloride. The observed infrared bands of T 1 benzil were assigned based on the frequency shifts on isotopic ( 18O, and deuteration) substitutions. The infrared band at 1312 cm -1 is assigned to the CO anti-symmetric stretch vibration. An infrared band that has large contribution from the central C-C stretch is not observed. Picosecond time-resolved resonance Raman spectra of the S 1 state of benzil were also measured. It has been reported that after the photoexcitation, the benzil molecule shows an ultrafast conformational change in the S 1 state. The observed resonance Raman bands are attributable to the vibrations of the relaxed form of the S 1 state. By comparing the Raman and infrared spectra of the S 0, S 1, and T 1 states of benzil, the structures of benzil in the excited states are discussed. Upon going from the S 0 state to the S 1 or T 1 state, the bond order of the CO bond decreases while that of the central C-C bond increases. Although several ground-state bands appear in both the infrared and Raman spectra, there is no band observed simultaneously in the infrared and Raman spectra of the T 1 state, except for bands attributable to the phenyl ring vibrations. We conclude that T 1 benzil has the inversion center that arises from the trans-planar structure. The spectral pattern of the resonance Raman scattering of the relaxed S 1 state is very similar to that of the T 1 state. This implies that the molecular structure of the relaxed S 1 state is similar to that of the T 1 state. The structure of the relaxed form of the S 1 state is also considered to be trans-planar.

  15. Novel laser gain and time-resolved FTIR studies of photochemistry

    NASA Technical Reports Server (NTRS)

    Leone, Stephen R.

    1990-01-01

    Several techniques are discussed which can be used to explore laboratory photochemical processes and kinetics relevant to planetary atmospheres; these include time-resolved laser gain-versus-absorption spectroscopy and time-resolved Fourier transform infrared (FTIR) emission studies. The laser gain-versus-absorption method employed tunable diode and F-center lasers to determine the yields of excited photofragments and their kinetics. The time-resolved FTIR technique synchronizes the sweep of a commercial FTIR with a pulsed source of light to obtain emission spectra of novel transient species in the infrared. These methods are presently being employed to investigate molecular photodissociation, the yields of excited states of fragments, their subsequent reaction kinetics, Doppler velocity distributions, and velocity-changing collisions of translationally fast atoms. Such techniques may be employed in future investigations of planetary atmospheres, for example to study polycyclic aromatic hydrocarbons related to cometary emissions, to analyze acetylene decomposition products and reactions, and to determine spectral features in the near infrared and infrared wavelength regions for planetary molecules and clusters.

  16. Exciplex formation in bimolecular photoinduced electron-transfer investigated by ultrafast time-resolved infrared spectroscopy.

    PubMed

    Koch, Marius; Letrun, Romain; Vauthey, Eric

    2014-03-12

    The dynamics of bimolecular photoinduced electron-transfer reactions has been investigated with three donor/acceptor (D/A) pairs in tetrahydrofuran (THF) and acetonitrile (ACN) using a combination of ultrafast spectroscopic techniques, including time-resolved infrared absorption. For the D/A pairs with the highest driving force of electron transfer, all transient spectroscopic features can be unambiguously assigned to the excited reactant and the ionic products. For the pair with the lowest driving force, three additional transient infrared bands, more intense in THF than in ACN, with a time dependence that differs from those of the other bands are observed. From their frequency and solvent dependence, these bands can be assigned to an exciplex. Moreover, polarization-resolved measurements point to a relatively well-defined mutual orientation of the constituents and to a slower reorientational time compared to those of the individual reactants. Thanks to the minimal overlap of the infrared signature of all transient species in THF, a detailed reaction scheme including the relevant kinetic and thermodynamic parameters could be deduced for this pair. This analysis reveals that the formation and recombination of the ion pair occur almost exclusively via the exciplex.

  17. Plume splitting and oscillatory behavior in transient plasmas generated by high-fluence laser ablation in vacuum

    NASA Astrophysics Data System (ADS)

    Focsa, C.; Gurlui, S.; Nica, P.; Agop, M.; Ziskind, M.

    2017-12-01

    We present a short overview of studies performed in our research groups over the last decade on the characterization of transient plasma plumes generated by laser ablation in various temporal regimes, from nanosecond to femtosecond. New results are also presented along with this overview, both being placed in the context of similar studies performed by other investigators. Optical (fast gate intensified CCD camera imaging and space- and time-resolved emission spectroscopy) and electrical (mainly Langmuir probe) methods have been applied to experimentally explore the dynamics of the plasma plume and its constituents. Peculiar effects as plume splitting and sharpening or oscillations onset have been evidenced in vacuum at high laser fluence. New theoretical approaches have been developed to account for the experimental observations.

  18. Ultrafast time-resolved spectroscopy of lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Idowu, Mopelola A.; Yau, Sung H.; Varnavski, Oleg; Goodson, Theodore

    2015-09-01

    Recently, lead halide perovskites which are organic-inorganic hybrid structures, have been discovered to be highly efficient as light absorbers. Herein, we show the investigation of the excited state dynamics and emission properties of non-stoichiometric precursor formed lead halide perovskites grown by interdiffusion method using steady-state and time-resolved spectroscopic measurements. The influence of the different ratios of the non-stoichiometric precursor solution was examined. The observed photoluminescence properties were correlated with the femtosecond transient absorption measurements.

  19. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar.

    PubMed

    Hankins, T H; Kern, J S; Weatherall, J C; Eilek, J A

    2003-03-13

    The Crab pulsar was discovered by the occasional exceptionally bright radio pulses it emits, subsequently dubbed 'giant' pulses. Only two other pulsars are known to emit giant pulses. There is no satisfactory explanation for the occurrence of giant pulses, nor is there a complete theory of the pulsar emission mechanism in general. Competing models for the radio emission mechanism can be distinguished by the temporal structure of their coherent emission. Here we report the discovery of isolated, highly polarized, two-nanosecond subpulses within the giant radio pulses from the Crab pulsar. The plasma structures responsible for these emissions must be smaller than one metre in size, making them by far the smallest objects ever detected and resolved outside the Solar System, and the brightest transient radio sources in the sky. Only one of the current models--the collapse of plasma-turbulent wave packets in the pulsar magnetosphere--can account for the nanopulses we observe.

  20. Time-resolved nanoseconds dynamics of ultrasound contrast agent microbubbles manipulated and controlled by optical tweezers

    NASA Astrophysics Data System (ADS)

    Garbin, Valeria; Cojoc, Dan; Ferrari, Enrico; Di Fabrizio, Enzo; Overvelde, Marlies L. J.; Versluis, Michel; van der Meer, Sander M.; de Jong, Nico; Lohse, Detlef

    2006-08-01

    Optical tweezers enable non-destructive, contact-free manipulation of ultrasound contrast agent (UCA) microbubbles, which are used in medical imaging for enhancing the echogenicity of the blood pool and to quantify organ perfusion. The understanding of the fundamental dynamics of ultrasound-driven contrast agent microbubbles is a first step for exploiting their acoustical properties and to develop new diagnostic and therapeutic applications. In this respect, optical tweezers can be used to study UCA microbubbles under controlled and repeatable conditions, by positioning them away from interfaces and from neighboring bubbles. In addition, a high-speed imaging system is required to record the dynamics of UCA microbubbles in ultrasound, as their oscillations occur on the nanoseconds timescale. In this work, we demonstrate the use of an optical tweezers system combined with a high-speed camera capable of 128-frame recordings at up to 25 million frames per second (Mfps), for the study of individual UCA microbubble dynamics as a function of the distance from solid interfaces.

  1. Time-resolved Sensing of Meso-scale Shock Compression with Multilayer Photonic Crystal Structures

    NASA Astrophysics Data System (ADS)

    Scripka, David; Lee, Gyuhyon; Summers, Christopher J.; Thadhani, Naresh

    2017-06-01

    Multilayer Photonic Crystal structures can provide spatially and temporally resolved data needed to validate theoretical and computational models relevant for understanding shock compression in heterogeneous materials. Two classes of 1-D photonic crystal multilayer structures were studied: optical microcavities (OMC) and distributed Bragg reflectors (DBR). These 0.5 to 5 micron thick structures were composed of SiO2, Al2O3, Ag, and PMMA layers fabricated primarily via e-beam evaporation. The multilayers have unique spectral signatures inherently linked to their time-resolved physical states. By observing shock-induced changes in these signatures, an optically-based pressure sensor was developed. Results to date indicate that both OMCs and DBRs exhibit nanosecond-resolved spectral shifts of several to 10s of nanometers under laser-driven shock compression loads of 0-10 GPa, with the magnitude of the shift strongly correlating to the shock load magnitude. Additionally, spatially and temporally resolved spectral shifts under heterogeneous laser-driven shock compression created by partial beam blocking have been successfully demonstrated. These results illustrate the potential for multilayer structures to serve as meso-scale sensors, capturing temporal and spatial pressure profile evolutions in shock-compressed heterogeneous materials, and revealing meso-scale pressure distributions across a shocked surface. Supported by DTRA Grant HDTRA1-12-1-005 and DoD, AFOSR, National Defense Science and Eng. Graduate Fellowship, 32 CFR 168a.

  2. Application of MEMS-based x-ray optics as tuneable nanosecond choppers

    NASA Astrophysics Data System (ADS)

    Chen, Pice; Walko, Donald A.; Jung, Il Woong; Li, Zhilong; Gao, Ya; Shenoy, Gopal K.; Lopez, Daniel; Wang, Jin

    2017-08-01

    Time-resolved synchrotron x-ray measurements often rely on using a mechanical chopper to isolate a set of x-ray pulses. We have started the development of micro electromechanical systems (MEMS)-based x-ray optics, as an alternate method to manipulate x-ray beams. In the application of x-ray pulse isolation, we recently achieved a pulse-picking time window of half a nanosecond, which is more than 100 times faster than mechanical choppers can achieve. The MEMS device consists of a comb-drive silicon micromirror, designed for efficiently diffracting an x-ray beam during oscillation. The MEMS devices were operated in Bragg geometry and their oscillation was synchronized to x-ray pulses, with a frequency matching subharmonics of the cycling frequency of x-ray pulses. The microscale structure of the silicon mirror in terms of the curvature and the quality of crystallinity ensures a narrow angular spread of the Bragg reflection. With the discussion of factors determining the diffractive time window, this report showed our approaches to narrow down the time window to half a nanosecond. The short diffractive time window will allow us to select single x-ray pulse out of a train of pulses from synchrotron radiation facilities.

  3. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    PubMed

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  4. Spectroscopic characteristics of H α /OI atomic lines generated by nanosecond pulsed corona-like discharge in deionized water

    NASA Astrophysics Data System (ADS)

    Pongrác, Branislav; Šimek, Milan; Člupek, Martin; Babický, Václav; Lukeš, Petr

    2018-03-01

    Basic emission fingerprints of nanosecond discharges produced in deionized water by fast rise-time positive high-voltage pulses (duration of 6 ns and amplitude of  +100 kV) in a point-to-plane electrode geometry were investigated by means of time-resolved intensified charge-coupled device (ICCD) spectroscopy. Time-resolved emission spectra were measured via ICCD kinetic series during the discharge ignition and later phases over the 350-850 nm spectral range with fixed, either 3 ns or 30 ns, acquisition time and with 3 ns or 30 ns time resolution, respectively. The luminous phase of the initial discharge expansion and its subsequent collapse was characterized by a broadband vis-NIR continuum emission evolving during the first few nanoseconds which shifted more toward the UV with further increase of time. After ~30 ns from the discharge onset, the continuum gradually disappeared followed by the emission of H α and OI atomic lines. The electron densities calculated from the H α profile fit were estimated to be of the order of 1018-1019 cm-3. It is unknown if the H α and OI atomic lines are generated even in earlier times (before ~30 ns) because such signals were not detectable due to the superposition with the strong continuum. However, subsequent events caused by the reflected HV pulses were observed to have significant effects on the emission spectra profiles of the nanosecond discharge. By varying the time delay of the reflected pulse from 45 to 90 ns after the primary pulse, the intensities of the H α /OI atomic lines in the emission spectra of the secondary discharges were clearly visible and their intensities were greater with shorter time delay between primary and reflected pulses. These results indicate that the discharges generated due to the reflected pulses were very likely generated in the non-relaxed environment.

  5. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    PubMed Central

    Consoli, F.; De Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; Di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-01-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation. PMID:27301704

  6. Time-resolved absolute measurements by electro-optic effect of giant electromagnetic pulses due to laser-plasma interaction in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Consoli, F.; de Angelis, R.; Duvillaret, L.; Andreoli, P. L.; Cipriani, M.; Cristofari, G.; di Giorgio, G.; Ingenito, F.; Verona, C.

    2016-06-01

    We describe the first electro-optical absolute measurements of electromagnetic pulses (EMPs) generated by laser-plasma interaction in nanosecond regime. Laser intensities are inertial-confinement-fusion (ICF) relevant and wavelength is 1054 nm. These are the first direct EMP amplitude measurements with the detector rather close and in direct view of the plasma. A maximum field of 261 kV/m was measured, two orders of magnitude higher than previous measurements by conductive probes on nanosecond regime lasers with much higher energy. The analysis of measurements and of particle-in-cell simulations indicates that signals match the emission of charged particles detected in the same experiment, and suggests that anisotropic particle emission from target, X-ray photoionization and charge implantation on surfaces directly exposed to plasma, could be important EMP contributions. Significant information achieved on EMP features and sources is crucial for future plants of laser-plasma acceleration and inertial-confinement-fusion and for the use as effective plasma diagnostics. It also opens to remarkable applications of laser-plasma interaction as intense source of RF-microwaves for studies on materials and devices, EMP-radiation-hardening and electromagnetic compatibility. The demonstrated extreme effectivity of electric-fields detection in laser-plasma context by electro-optic effect, leads to great potential for characterization of laser-plasma interaction and generated Terahertz radiation.

  7. Temporally resolved ozone distribution of a time modulated RF atmospheric pressure argon plasma jet: flow, chemical reaction, and transient vortex

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2015-08-01

    The ozone density distribution in the effluent of a time modulated RF atmospheric pressure plasma jet (APPJ) is investigated by time and spatially resolved by UV absorption spectroscopy. The plasma jet is operated with an averaged dissipated power of 6.5 W and gas flow rate 2 slm argon  +2% O2. The modulation frequency of the RF power is 50 Hz with a duty cycle of 50%. To investigate the production and destruction mechanism of ozone in the plasma effluent, the atomic oxygen and gas temperature is also obtained by TALIF and Rayleigh scattering, respectively. A temporal increase in ozone density is observed close to the quartz tube exit when the plasma is switched off due to the decrease in O density and gas temperature. Ozone absorption at different axial positions indicates that the ozone distribution is dominated by the convection induced by the gas flow and allows estimating the on-axis local gas velocity in the jet effluent. Transient vortex structures occurring during the switch on and off of the RF power also significantly affect the ozone density in the far effluent.

  8. Time-resolved cathodoluminescence microscopy with sub-nanosecond beam blanking for direct evaluation of the local density of states.

    PubMed

    Moerland, Robert J; Weppelman, I Gerward C; Garming, Mathijs W H; Kruit, Pieter; Hoogenboom, Jacob P

    2016-10-17

    We show cathodoluminescence-based time-resolved electron beam spectroscopy in order to directly probe the spontaneous emission decay rate that is modified by the local density of states in a nanoscale environment. In contrast to dedicated laser-triggered electron-microscopy setups, we use commercial hardware in a standard SEM, which allows us to easily switch from pulsed to continuous operation of the SEM. Electron pulses of 80-90 ps duration are generated by conjugate blanking of a high-brightness electron beam, which allows probing emitters within a large range of decay rates. Moreover, we simultaneously attain a resolution better than λ/10, which ensures details at deep-subwavelength scales can be retrieved. As a proof-of-principle, we employ the pulsed electron beam to spatially measure excited-state lifetime modifications in a phosphor material across the edge of an aluminum half-plane, coated on top of the phosphor. The measured emission dynamics can be directly related to the structure of the sample by recording photon arrival histograms together with the secondary-electron signal. Our results show that time-resolved electron cathodoluminescence spectroscopy is a powerful tool of choice for nanophotonics, within reach of a large audience.

  9. Quantitative analysis of time-resolved microwave conductivity data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reid, Obadiah G.; Moore, David T.; Li, Zhen

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  10. Quantitative analysis of time-resolved microwave conductivity data

    DOE PAGES

    Reid, Obadiah G.; Moore, David T.; Li, Zhen; ...

    2017-11-10

    Flash-photolysis time-resolved microwave conductivity (fp-TRMC) is a versatile, highly sensitive technique for studying the complex photoconductivity of solution, solid, and gas-phase samples. The purpose of this paper is to provide a standard reference work for experimentalists interested in using microwave conductivity methods to study functional electronic materials, describing how to conduct and calibrate these experiments in order to obtain quantitative results. The main focus of the paper is on calculating the calibration factor, K, which is used to connect the measured change in microwave power absorption to the conductance of the sample. We describe the standard analytical formulae that havemore » been used in the past, and compare them to numerical simulations. This comparison shows that the most widely used analytical analysis of fp-TRMC data systematically under-estimates the transient conductivity by ~60%. We suggest a more accurate semi-empirical way of calibrating these experiments. However, we emphasize that the full numerical calculation is necessary to quantify both transient and steady-state conductance for arbitrary sample properties and geometry.« less

  11. Development of an integrated four-channel fast avalanche-photodiode detector system with nanosecond time resolution

    NASA Astrophysics Data System (ADS)

    Li, Zhenjie; Li, Qiuju; Chang, Jinfan; Ma, Yichao; Liu, Peng; Wang, Zheng; Hu, Michael Y.; Zhao, Jiyong; Alp, E. E.; Xu, Wei; Tao, Ye; Wu, Chaoqun; Zhou, Yangfan

    2017-10-01

    A four-channel nanosecond time-resolved avalanche-photodiode (APD) detector system is developed at Beijing Synchrotron Radiation. It uses a single module for signal processing and readout. This integrated system provides better reliability and flexibility for custom improvement. The detector system consists of three parts: (i) four APD sensors, (ii) four fast preamplifiers and (iii) a time-digital-converter (TDC) readout electronics. The C30703FH silicon APD chips fabricated by Excelitas are used as the sensors of the detectors. It has an effective light-sensitive area of 10 × 10 mm2 and an absorption layer thickness of 110 μm. A fast preamplifier with a gain of 59 dB and bandwidth of 2 GHz is designed to readout of the weak signal from the C30703FH APD. The TDC is realized by a Spartan-6 field-programmable-gate-array (FPGA) with multiphase method in a resolution of 1ns. The arrival time of all scattering events between two start triggers can be recorded by the TDC. The detector has been used for nuclear resonant scattering study at both Advanced Photon Source and also at Beijing Synchrotron Radiation Facility. For the X-ray energy of 14.4 keV, the time resolution, the full width of half maximum (FWHM) of the detector (APD sensor + fast amplifier) is 0.86 ns, and the whole detector system (APD sensors + fast amplifiers + TDC readout electronics) achieves a time resolution of 1.4 ns.

  12. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum.

    PubMed

    Xu, Yuntao; Dibble, Collin J; Petrik, Nikolay G; Smith, R Scott; Joly, Alan G; Tonkyn, Russell G; Kay, Bruce D; Kimmel, Greg A

    2016-04-28

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond time scale in ultrahigh vacuum (UHV). Details of the design, implementation, and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ∼10(10) K/s for temperature increases of ∼100-200 K are obtained. Subsequent rapid cooling (∼5 × 10(9) K/s) quenches the film, permitting in-situ, post-heating analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ∼±2.7% leading to a temperature uncertainty of ∼±4.4 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  13. Dynamic response of polyurea subjected to nanosecond rise-time stress waves

    NASA Astrophysics Data System (ADS)

    Youssef, George; Gupta, Vijay

    2012-08-01

    Shaped charges and explosively formed projectiles used in modern warfare can attain speeds as high as 30,000 ft/s. Impacts from these threats are expected to load the armor materials in the 10 to 100 ns timeframe. During this time, the material strains are quite limited but the strain rates are extremely high. To develop armors against such threats it is imperative to understand the dynamic constitutive behavior of materials in the tens of nanoseconds timeframe. Material behavior in this parameter space cannot be obtained by even the most sophisticated plate-impact and split-Hopkinson bar setups that exist within the high energy materials field today. This paper introduces an apparatus and a test method that are based on laser-generated stress waves to obtain such material behaviors. Although applicable to any material system, the test procedures are demonstrated on polyurea which shows unusual dynamic properties. Thin polyurea layers were deformed using laser-generated stress waves with 1-2 ns rise times and 16 ns total duration. The total strain in the samples was less than 3%. Because of the transient nature of the stress wave, the strain rate varied throughout the deformation history of the sample. A peak value of 1.1×105 s-1 was calculated. It was found that the stress-strain characteristics, determined from experimentally recorded incident and transmitted wave profiles, matched satisfactorily with those computed from a 2D wave mechanics simulation in which the polyurea was modeled as a linearly viscoelastic solid with constants derived from the quasi-static experiments. Thus, the test data conformed to the Time-Temperature Superposition (TTS) principle even at extremely high strain rates of our test. This then extends the previous observations of Zhao et al. (Mech. Time-Depend. Mater. 11:289-308, 2007) who showed the applicability of the TTS principle for polyurea in the linearly viscoelastic regime up to peak strain rates of 1200 s-1.

  14. Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity

    NASA Astrophysics Data System (ADS)

    Sander, M.; Pudell, J.-E.; Herzog, M.; Bargheer, M.; Bauer, R.; Besse, V.; Temnov, V.; Gaal, P.

    2017-12-01

    We present time-resolved x-ray reflectivity measurements on laser excited coherent and incoherent surface deformations of thin metallic films. Based on a kinematical diffraction model, we derive the surface amplitude from the diffracted x-ray intensity and resolve transient surface excursions with sub-Å spatial precision and 70 ps temporal resolution. The analysis allows for decomposition of the surface amplitude into multiple coherent acoustic modes and a substantial contribution from incoherent phonons which constitute the sample heating.

  15. Time-resolved x-ray absorption spectroscopy: Watching atoms dance

    NASA Astrophysics Data System (ADS)

    Milne, Chris J.; Pham, Van-Thai; Gawelda, Wojciech; van der Veen, Renske M.; El Nahhas, Amal; Johnson, Steven L.; Beaud, Paul; Ingold, Gerhard; Lima, Frederico; Vithanage, Dimali A.; Benfatto, Maurizio; Grolimund, Daniel; Borca, Camelia; Kaiser, Maik; Hauser, Andreas; Abela, Rafael; Bressler, Christian; Chergui, Majed

    2009-11-01

    The introduction of pump-probe techniques to the field of x-ray absorption spectroscopy (XAS) has allowed the monitoring of both structural and electronic dynamics of disordered systems in the condensed phase with unprecedented accuracy, both in time and in space. We present results on the electronically excited high-spin state structure of an Fe(II) molecular species, [FeII(bpy)3]2+, in aqueous solution, resolving the Fe-N bond distance elongation as 0.2 Å. In addition an analysis technique using the reduced χ2 goodness of fit between FEFF EXAFS simulations and the experimental transient absorption signal in energy space has been successfully tested as a function of excited state population and chemical shift, demonstrating its applicability in situations where the fractional excited state population cannot be determined through other measurements. Finally by using a novel ultrafast hard x-ray 'slicing' source the question of how the molecule relaxes after optical excitation has been successfully resolved using femtosecond XANES.

  16. Time-resolved energy transduction in a quantum capacitor

    PubMed Central

    Jung, Woojin; Cho, Doohee; Kim, Min-Kook; Choi, Hyoung Joon; Lyo, In-Whan

    2011-01-01

    The capability to deposit charge and energy quantum-by-quantum into a specific atomic site could lead to many previously unidentified applications. Here we report on the quantum capacitor formed by a strongly localized field possessing such capability. We investigated the charging dynamics of such a capacitor by using the unique scanning tunneling microscopy that combines nanosecond temporal and subangstrom spatial resolutions, and by using Si(001) as the electrode as well as the detector for excitations produced by the charging transitions. We show that sudden switching of a localized field induces a transiently empty quantum dot at the surface and that the dot acts as a tunable excitation source with subangstrom site selectivity. The timescale in the deexcitation of the dot suggests the formation of long-lived, excited states. Our study illustrates that a quantum capacitor has serious implications not only for the bottom-up nanotechnology but also for future switching devices. PMID:21817067

  17. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Frank R., E-mail: frank.wagner@fresnel.fr; Natoli, Jean-Yves; Akhouayri, Hassan

    2014-06-28

    Due to its high effective nonlinearity and the possibility to produce periodically poled crystals, potassium titanyl phosphate (KTiOPO{sub 4}, KTP) is still one of the economically important nonlinear optical materials. In this overview article, we present a large study on catastrophic nanosecond laser induced damage in this material and the very similar RbTiOPO{sub 4} (RTP). Several different systematic studies are included: multiple pulse laser damage, multi-wavelength laser damage in KTP, damage resistance anisotropy, and variations of the laser damage thresholds for RTP crystals of different qualities. All measurements were carried out in comparable experimental conditions using a 1064 nm Q-switched lasermore » and some were repeated at 532 nm. After summarizing the experimental results, we detail the proposed model for laser damage in this material and discuss the experimental results in this context. According to the model, nanosecond laser damage is caused by light-induced generation of transient laser-damage precursors which subsequently provide free electrons that are heated by the same nanosecond pulse. We also present a stimulated Raman scattering measurement and confront slightly different models to the experimental data. Finally, the physical nature of the transient damage precursors is discussed and similarities and differences to laser damage in other crystals are pointed out.« less

  18. A trial of ignition innovation of gasoline engine by nanosecond pulsed low temperature plasma ignition

    NASA Astrophysics Data System (ADS)

    Shiraishi, Taisuke; Urushihara, Tomonori; Gundersen, Martin

    2009-07-01

    Application of nanosecond pulsed low temperature plasma as an ignition technique for automotive gasoline engines, which require a discharge under conditions of high back pressure, has been studied experimentally using a single-cylinder engine. The nanosecond pulsed plasma refers to the transient (non-equilibrated) phase of a plasma before the formation of an arc discharge; it was obtained by applying a high voltage with a nanosecond pulse (FWHM of approximately 80 or 25 ns) between coaxial cylindrical electrodes. It was confirmed that nanosecond pulsed plasma can form a volumetric multi-channel streamer discharge at an energy consumption of 60 mJ cycle-1 under a high back pressure of 1400 kPa. It was found that the initial combustion period was shortened compared with the conventional spark ignition. The initial flame visualization suggested that the nanosecond pulsed plasma ignition results in the formation of a spatially dispersed initial flame kernel at a position of high electric field strength around the central electrode. It was observed that the electric field strength in the air gap between the coaxial cylindrical electrodes was increased further by applying a shorter pulse. It was also clarified that the shorter pulse improved ignitability even further.

  19. Materials science in the time domain using Bragg coherent diffraction imaging

    DOE PAGES

    Robinson, Ian; Clark, Jesse; Harder, Ross

    2016-03-14

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C 60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  20. Inverting dynamic force microscopy: From signals to time-resolved interaction forces

    PubMed Central

    Stark, Martin; Stark, Robert W.; Heckl, Wolfgang M.; Guckenberger, Reinhard

    2002-01-01

    Transient forces between nanoscale objects on surfaces govern friction, viscous flow, and plastic deformation, occur during manipulation of matter, or mediate the local wetting behavior of thin films. To resolve transient forces on the (sub) microsecond time and nanometer length scale, dynamic atomic force microscopy (AFM) offers largely unexploited potential. Full spectral analysis of the AFM signal completes dynamic AFM. Inverting the signal formation process, we measure the time course of the force effective at the sensing tip. This approach yields rich insight into processes at the tip and dispenses with a priori assumptions about the interaction, as it relies solely on measured data. Force measurements on silicon under ambient conditions demonstrate the distinct signature of the interaction and reveal that peak forces exceeding 200 nN are applied to the sample in a typical imaging situation. These forces are 2 orders of magnitude higher than those in covalent bonds. PMID:12070341

  1. Time-resolvable fluorescent conjugates for the detection of pathogens in environmental samples containing autofluorescent material

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Veal, Duncan; Piper, James A.

    2003-07-01

    Water is routinely monitored for environmental pathogens such a Cryptosporidium and Giardia using immunofluorescence microscopy (IFM). Autofluorescence can greatly diminish an operators capacity to resolve labeled pathogens from non-specific background. Naturally fluorescing components (autofluorophores) encountered in biological samples typically have fluorescent lifetimes (τ) of less than 100 nanoseconds and their emissions may be excluded through use of time-resolved fluorescence microscopy (TRFM). TRFM relies on the large differences in τ between autofluorescent molecules and long-lived lanthanide chelates. In TRFM, targets labeled with a time-resolvable fluorescent immunoconjugate are excited by an intense (UV) light pulse. A short delay is imposed to permit the decay of autofluorescence before capture of luminescence from the excited chelate using an image intensified CCD camera. In our experience, autofluorescence can be reduced to insignificant levels with a consequent 30-fold increase in target visibility using TRFM techniques. We report conjugation of a novel europium chelate to a monoclonal antibody specific for Giardia lamblia and use of the immunoconjugate for TRFM studies. Initial attempts to conjugate the same chelate to a monoclonal antibody directed against Cryptosporidium parvum led to poorly fluorescent constructs that were prone to denature and precipitate. We successfully conjugated BHHCT to anti-mouse polyvalent immunoglobulin and used this construct to overcome the difficulties in direct labeling of the anti-Cryptosporidium antibody. Both Giardia and Cryptosporidium were labeled using the anti-mouse protocol with a subsequent 20-fold and 6.6-fold suppression of autofluorescence respectively. A rapid protocol for conjugating and purifying the immunoconjugate was found and methods of quantifying the fluorescence to protein ratio determined. Performance of our TRFM was dependent on the quality and brightness of the immunoconjugate and

  2. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources.

    PubMed

    Rutherford, Michael E; Chapman, David J; White, Thomas G; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E

    2016-05-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits).

  3. Evaluating scintillator performance in time-resolved hard X-ray studies at synchrotron light sources

    PubMed Central

    Rutherford, Michael E.; Chapman, David J.; White, Thomas G.; Drakopoulos, Michael; Rack, Alexander; Eakins, Daniel E.

    2016-01-01

    The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially available crystal LYSO:Ce, allowing time-resolved experiments with an interframe time of 189 ns and a maximum dynamic range of 98 (6.6 bits). PMID:27140147

  4. Numerical modeling of thermal refraction inliquids in the transient regime.

    PubMed

    Kovsh, D; Hagan, D; Van Stryland, E

    1999-04-12

    We present the results of modeling of nanosecond pulse propagation in optically absorbing liquid media. Acoustic and electromagnetic wave equations must be solved simultaneously to model refractive index changes due to thermal expansion and/or electrostriction, which are highly transient phenomena on a nanosecond time scale. Although we consider situations with cylindrical symmetry and where the paraxial approximation is valid, this is still a computation-intensive problem, as beam propagation through optically thick media must be modeled. We compare the full solution of the acoustic wave equation with the approximation of instantaneous expansion (steady-state solution) and hence determine the regimes of validity of this approximation. We also find that the refractive index change obtained from the photo-acoustic equation overshoots its steady-state value once the ratio between the pulsewidth and the acoustic transit time exceeds a factor of unity.

  5. Time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tokmakoff, Andrei; Champion, Paul; Heilweil, Edwin J.

    2009-05-14

    This document contains the Proceedings from the 14th International Conference on Time-Resolved Vibrational Spectroscopy, which was held in Meredith, NH from May 9-14, 2009. The study of molecular dynamics in chemical reaction and biological processes using time-resolved spectroscopy plays an important role in our understanding of energy conversion, storage, and utilization problems. Fundamental studies of chemical reactivity, molecular rearrangements, and charge transport are broadly supported by the DOE's Office of Science because of their role in the development of alternative energy sources, the understanding of biological energy conversion processes, the efficient utilization of existing energy resources, and the mitigation ofmore » reactive intermediates in radiation chemistry. In addition, time-resolved spectroscopy is central to all fiveof DOE's grand challenges for fundamental energy science. The Time-Resolved Vibrational Spectroscopy conference is organized biennially to bring the leaders in this field from around the globe together with young scientists to discuss the most recent scientific and technological advances. The latest technology in ultrafast infrared, Raman, and terahertz spectroscopy and the scientific advances that these methods enable were covered. Particular emphasis was placed on new experimental methods used to probe molecular dynamics in liquids, solids, interfaces, nanostructured materials, and biomolecules.« less

  6. Nanosecond electric modification of order parameters

    NASA Astrophysics Data System (ADS)

    Borshch, Volodymyr

    In this Dissertation, we study a nanosecond electro-optic response of a nematic liquid crystal in a geometry where an applied electric field E modifies the tensor order parameter but does not change the orientation of the optic axis (director N̂). We use nematics with negative dielectric anisotropy with the electric field applied perpendicularly to N̂. The field changes the dielectric tensor at optical frequencies (optic tensor), due to the following mechanisms: (a) nanosecond creation of biaxial orientational order; (b) uniaxial modification of the orientational order that occurs over the timescales of tens of nanoseconds, and (c) quenching of director fluctuations with a wide range of characteristic times up to milliseconds. We develop a model to describe the dynamics of all three mechanisms. We design the experimental conditions to selectively suppress the contributions from the quenching of director fluctuations (c) and from the biaxial order effect (a) and thus, separate the contributions of the three mechanisms in the electro-optic response. As a result, the experimental data can be well fitted with the model parameters. The analysis provides a rather detailed physical picture of how the liquid crystal responds to a strong electric field, E ˜ 108 V/m, on a timescale of nanoseconds. This work provides a useful guide in the current search of the biaxial nematic phase. Namely, the temperature dependence of the biaxial susceptibility allows one to estimate the temperature of the potential uniaxial-to-biaxial phase transition. An analysis of the quenching of director fluctuations indicates that on a timescale of nanoseconds, the classic model with constant viscoelastic material parameters might reach its limit of validity. The effect of nanosecond electric modification of the order parameter (NEMOP) can be used in applications in which one needs to achieve ultrafast (nanosecond) changes of optical characteristics, such as birefringence.

  7. Direct Imaging of Transient Fano Resonances in N_{2} Using Time-, Energy-, and Angular-Resolved Photoelectron Spectroscopy.

    PubMed

    Eckstein, Martin; Yang, Chung-Hsin; Frassetto, Fabio; Poletto, Luca; Sansone, Giuseppe; Vrakking, Marc J J; Kornilov, Oleg

    2016-04-22

    Autoionizing Rydberg states of molecular N_{2} are studied using time-, energy-, and angular-resolved photoelectron spectroscopy. A femtosecond extreme ultraviolet pulse with a photon energy of 17.5 eV excites the resonance and a subsequent IR pulse ionizes the molecule before the autoionization takes place. The angular-resolved photoelectron spectra depend on pump-probe time delay and allow for the distinguishing of two electronic states contributing to the resonance. The lifetime of one of the contributions is determined to be 14±1  fs, while the lifetime of the other appears to be significantly shorter than the time resolution of the experiment. These observations suggest that the Rydberg states in this energy region are influenced by the effect of interference stabilization and merge into a complex resonance.

  8. Dynamics of the time-resolved stimulated Raman scattering spectrum in presence of transient vibronic inversion of population on the example of optically excited trans-β-apo-8{sup ′}-carotenal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardaś, T. M., E-mail: kardas@chem.uw.edu.pl; Ratajska-Gadomska, B.; Gadomski, W.

    2014-05-28

    We have studied the effect of transient vibrational inversion of population in trans-β-apo-8{sup ′}-carotenal on the time-resolved femtosecond stimulated Raman scattering (TR-FSRS) signal. The experimental data are interpreted by applying a quantum mechanical approach, using the formalism of projection operators for constructing the theoretical model of TR-FSRS. Within this theoretical frame we explain the presence of transient Raman losses on the Stokes side of the TR-FSRS spectrum as the effect of vibrational inversion of population. In view of the obtained experimental and theoretical results, we conclude that the excited S{sub 2} electronic level of trans-β-apo-8{sup ′}-carotenal relaxes towards the S{submore » 0} ground state through a set of four vibrational sublevels of S{sub 1} state.« less

  9. Femtosecond time-resolved vibrational SFG spectroscopy of CO/Ru( 0 0 1 )

    NASA Astrophysics Data System (ADS)

    Hess, Ch.; Wolf, M.; Roke, S.; Bonn, M.

    2002-04-01

    Vibrational sum-frequency generation (SFG) employing femtosecond infrared (IR) laser pulses is used to study the dynamics of the C-O stretch vibration on Ru(0 0 1). Time-resolved measurements of the free induction decay (FID) of the IR-polarization for 0.33 ML CO/Ru(0 0 1) exhibit single exponential decays over three decades corresponding to dephasing times of T2=1.94 ps at 95 K and T2=1.16 ps at 340 K. This is consistent with pure homogeneous broadening due to anharmonic coupling with the thermally activated low-frequency dephasing mode together with a contribution from saturation of the IR transition. In pump-probe SFG experiments using a strong visible (VIS) pump pulse the perturbation of the FID leads to transient line shifts even at negative delay times, i.e. when the IR-VIS SFG probe pair precedes the pump pulse. Based on an analysis of the time-dependent polarization we discuss the influence of the perturbed FID on time-resolved SFG spectra. We investigate how coherent effects affect the SFG spectra and we examine the time resolution in these experiments, in particular in dependence of the dephasing time.

  10. Time-resolved photoluminescence characterization of oxygen-related defect centers in AlN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genji, Kumihiro; Uchino, Takashi, E-mail: uchino@kobe-u.ac.jp

    2016-07-11

    Time-resolved photoluminescence (PL) spectroscopy has been employed to investigate the emission characteristics of oxygen-related defects in AlN in the temperature region from 77 to 500 K. Two PL components with different decay constants are observed in the near-ultraviolet to visible regions. One is the PL component with decay time of <10 ns and its peak position shifts to longer wavelengths from ∼350 to ∼500 nm with increasing temperature up to 500 K. This PL component is attributed to the radiative relaxation of photoexcited electrons from the band-edge states to the ground state of the oxygen-related emission centers. In the time region from tens tomore » hundreds of nanoseconds, the second PL component emerges in the wavelength region from 300 to 400 nm. The spectral shape and the decay profiles are hardly dependent on temperature. This temperature-independent PL component most likely results from the transfer of photoexcited electrons from the band-edge states to the localized excited state of the oxygen-related emission centers. These results provide a detailed insight into the radiative relaxation processes of the oxygen-related defect centers in AlN immediately after the photoexcitation process.« less

  11. Negative response of HgCdTe photodiode induced by nanosecond laser pulse

    NASA Astrophysics Data System (ADS)

    Xu, Zuodong; Zhang, Jianmin; Lin, Xinwei; Shao, Bibo; Yang, Pengling

    2017-05-01

    Photodetectors' behavior and mechanism of transient response are still not understood very well, especially under high photon injection. Most of the researches on this topic were carried out with ultra-short laser pulse, whose pulse width ranged from femtosecond scale to picosecond scale. However, in many applications the durations of incident light are in nanosecond order and the light intensities are strong. To investigate the transient response characteristics and mechanisms of narrow-bandgap photovoltaic detectors under short laser irradiation, we performed an experiment on HgCdTe photodiodes. The n+-on-p type HgCdTe photodiodes in the experiment were designed to work in spectrum from 1.0μm to 3.0μm, with conditions of zero bias and room temperature. They were exposed to in-band short laser pulses with dwell time of 20 nanosecond. When the intensity of incident laser beam rose to 0.1J/cm2 order, the photodiodes' response characteristics turned to be bipolar from unipolar. A much longer negative response with duration of about 10μs to 100μs followed the positive light response. The amplitude of the negative response increased with the laser intensity, while the dwell time of positive response decreased with the laser intensity. Considering the response characteristics and the device structure, it is proposed that the negative response was caused by space charge effect at the electrodes. Under intense laser irradiation, a temperature gradient formed in the HgCdTe material. Due to the temperature gradient, the majority carriers diffused away from upper surface and left space charge at the electrodes. Then negative response voltage could be measured in the external circuit. With higher incident laser intensity, the degree of the space charge effect would become higher, and then the negative response would come earlier and show larger amplitude.

  12. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    PubMed

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  13. Timing of transients: quantifying reaching times and transient behavior in complex systems

    NASA Astrophysics Data System (ADS)

    Kittel, Tim; Heitzig, Jobst; Webster, Kevin; Kurths, Jürgen

    2017-08-01

    In dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much ‘earlier’ or ‘later’ than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.

  14. Time-resolved microscopy of fs-laser-induced heat flows in glasses

    NASA Astrophysics Data System (ADS)

    Bonse, Jörn; Seuthe, Thomas; Grehn, Moritz; Eberstein, Markus; Rosenfeld, Arkadi; Mermillod-Blondin, Alexandre

    2018-01-01

    Time-resolved phase-contrast microscopy is employed to visualize spatio-temporal thermal transients induced by tight focusing of a single Ti:sapphire fs-laser pulse into a solid dielectric sample. This method relies on the coupling of the refractive index change and the sample temperature through the thermo-optic coefficient d n/d T. The thermal transients are studied on a timescale ranging from 10 ns up to 0.1 ms after laser excitation. Beyond providing direct insights into the laser-matter interaction, analyzing the results obtained also enables quantifying the local thermal diffusivity of the sample on a micrometer scale. Studies conducted in different solid dielectrics, namely amorphous fused silica (a-SiO2), a commercial borosilicate glass (BO33, Schott), and a custom alkaline earth silicate glass (NaSi66), illustrate the applicability of this approach to the investigation of various glassy materials.

  15. Resolving human object recognition in space and time

    PubMed Central

    Cichy, Radoslaw Martin; Pantazis, Dimitrios; Oliva, Aude

    2014-01-01

    A comprehensive picture of object processing in the human brain requires combining both spatial and temporal information about brain activity. Here, we acquired human magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) responses to 92 object images. Multivariate pattern classification applied to MEG revealed the time course of object processing: whereas individual images were discriminated by visual representations early, ordinate and superordinate category levels emerged relatively later. Using representational similarity analysis, we combine human fMRI and MEG to show content-specific correspondence between early MEG responses and primary visual cortex (V1), and later MEG responses and inferior temporal (IT) cortex. We identified transient and persistent neural activities during object processing, with sources in V1 and IT., Finally, human MEG signals were correlated to single-unit responses in monkey IT. Together, our findings provide an integrated space- and time-resolved view of human object categorization during the first few hundred milliseconds of vision. PMID:24464044

  16. Time-Resolved Photoluminescence Microscopy for the Analysis of Semiconductor-Based Paint Layers

    PubMed Central

    Mosca, Sara; Gonzalez, Victor; Eveno, Myriam

    2017-01-01

    In conservation, science semiconductors occur as the constituent matter of the so-called semiconductor pigments, produced following the Industrial Revolution and extensively used by modern painters. With recent research highlighting the occurrence of various degradation phenomena in semiconductor paints, it is clear that their detection by conventional optical fluorescence imaging and microscopy is limited by the complexity of historical painting materials. Here, we illustrate and prove the capabilities of time-resolved photoluminescence (TRPL) microscopy, equipped with both spectral and lifetime sensitivity at timescales ranging from nanoseconds to hundreds of microseconds, for the analysis of cross-sections of paint layers made of luminescent semiconductor pigments. The method is sensitive to heterogeneities within micro-samples and provides valuable information for the interpretation of the nature of the emissions in samples. A case study is presented on micro samples from a painting by Henri Matisse and serves to demonstrate how TRPL can be used to identify the semiconductor pigments zinc white and cadmium yellow, and to inform future investigations of the degradation of a cadmium yellow paint. PMID:29160862

  17. Frequency-resolved Raman for transient thermal probing and thermal diffusivity measurement

    DOE PAGES

    Wang, Tianyu; Xu, Shen; Hurley, David H.; ...

    2015-12-18

    Steady state Raman has been widely used for temperature probing and thermal conductivity/conductance measurement in combination with temperature coefficient calibration. In this work, a new transient Raman thermal probing technique: frequency-resolved Raman (FR-Raman) is developed for probing the transient thermal response of materials and measuring their thermal diffusivity. The FR-Raman uses an amplitude modulated square-wave laser for simultaneous material heating and Raman excitation. The evolution profile of Raman properties: intensity, Raman wavenumber, and emission, against frequency are measured experimentally and reconstructed theoretically. They are used for fitting to determine the thermal diffusivity of the material under test. A Si cantilevermore » is used to investigate the capacity of this new technique. The cantilever’s thermal diffusivity is determined as 9.57 × 10 -5 m 2/s, 11.00 × 10 -5 m 2/s and 9.02 × 10 -5 m 2/s by fitting the Raman intensity, wavenumber and emission. The deviation from the reference value is largely attributed to thermal stress-induced material deflection and Raman drift, which could be significantly suppressed by using a higher sensitivity Raman spectrometer with lower laser energy. As a result, the FR-Raman provides a novel way for transient thermal characterization of materials with a ?m spatial resolution.« less

  18. Wide Field Radio Transient Surveys

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey

    2011-04-01

    The time domain of the radio wavelength sky has been only sparsely explored. Nevertheless, serendipitous discovery and results from limited surveys indicate that there is much to be found on timescales from nanoseconds to years and at wavelengths from meters to millimeters. These observations have revealed unexpected phenomena such as rotating radio transients and coherent pulses from brown dwarfs. Additionally, archival studies have revealed an unknown class of radio transients without radio, optical, or high-energy hosts. The new generation of centimeter-wave radio telescopes such as the Allen Telescope Array (ATA) will exploit wide fields of view and flexible digital signal processing to systematically explore radio transient parameter space, as well as lay the scientific and technical foundation for the Square Kilometer Array. Known unknowns that will be the target of future transient surveys include orphan gamma-ray burst afterglows, radio supernovae, tidally-disrupted stars, flare stars, and magnetars. While probing the variable sky, these surveys will also provide unprecedented information on the static radio sky. I will present results from three large ATA surveys (the Fly's Eye survey, the ATA Twenty CM Survey (ATATS), and the Pi GHz Survey (PiGSS)) and several small ATA transient searches. Finally, I will discuss the landscape and opportunities for future instruments at centimeter wavelengths.

  19. Use of ruthenium dyes for subnanosecond detector fidelity testing in real time transient absorption

    NASA Astrophysics Data System (ADS)

    Byrdin, Martin; Thiagarajan, Viruthachalam; Villette, Sandrine; Espagne, Agathe; Brettel, Klaus

    2009-04-01

    Transient absorption spectroscopy is a powerful tool for the study of photoreactions on time scales from femtoseconds to seconds. Typically, reactions slower than ˜1 ns are recorded by the "classical" technique; the reaction is triggered by an excitation flash, and absorption changes accompanying the reaction are recorded in real time using a continuous monitoring light beam and a detection system with sufficiently fast response. The pico- and femtosecond region can be accessed by the more recent "pump-probe" technique, which circumvents the difficulties of real time detection on a subnanosecond time scale. This is paid for by accumulation of an excessively large number of shots to sample the reaction kinetics. Hence, it is of interest to extend the classical real time technique as far as possible to the subnanosecond range. In order to identify and minimize detection artifacts common on a subnanosecond scale, like overshoot, ringing, and signal reflections, rigorous testing is required of how the detection system responds to fast changes of the monitoring light intensity. Here, we introduce a novel method to create standard signals for detector fidelity testing on a time scale from a few picoseconds to tens of nanoseconds. The signals result from polarized measurements of absorption changes upon excitation of ruthenium complexes {[Ru(bpy)3]2+ and a less symmetric derivative} by a short laser flash. Two types of signals can be created depending on the polarization of the monitoring light with respect to that of the excitation flash: a fast steplike bleaching at magic angle and a monoexponentially decaying bleaching for parallel polarizations. The lifetime of the decay can be easily varied via temperature and viscosity of the solvent. The method is applied to test the performance of a newly developed real time transient absorption setup with 300 ps time resolution and high sensitivity.

  20. Transient and stationary spectroscopy of cytochrome c: ultrafast internal conversion controls photoreduction.

    PubMed

    Löwenich, Dennis; Kleinermanns, Karl; Karunakaran, Venugopal; Kovalenko, Sergey Alexander

    2008-01-01

    Photoreduction of cytochrome c (Cyt c) has been reinvestigated using femtosecond-to-nanosecond transient absorption and stationary spectroscopy. Femtosecond spectra of oxidized Cyt c, recorded in the probe range 270-1000 nm, demonstrate similar evolution upon 266 or 403 nm excitation: an ultrafast 0.3 ps internal conversion followed by a 4 ps vibrational cooling. Late transient spectra after 20 ps, from the cold ground-state chromophore, reveal a small but measurable signal from reduced Cyt c. The yield phi for Fe3+-->Fe2+ photoreduction is measured to be phi(403) = 0.016 and phi(266) = 0.08 for 403 and 266 nm excitation. These yields lead to a guess of the barrier E(f)(A) = 55 kJ mol(-1) for thermal ground-state electron transfer (ET). Nanosecond spectra initially show the typical absorption from reduced Cyt c and then exhibit temperature-dependent sub-microsecond decays (0.5 micros at 297 K), corresponding to a barrier E(A)(b) = 33 kJ mol(-1) for the back ET reaction and a reaction energy DeltaE = 22 kJ mol(-1). The nanosecond transients do not decay to zero on a second time scale, demonstrating the stability of some of the reduced Cyt c. The yields calculated from this stable reduced form agree with quasistationary reduction yields. Modest heating of Cyt c leads to its efficient thermal reduction as demonstrated by differential stationary absorption spectroscopy. In summary, our results point to ultrafast internal conversion of oxidized Cyt c upon UV or visible excitation, followed by Fe-porphyrin reduction due to thermal ground-state ET as the prevailing mechanism.

  1. Conductivity affects nanosecond electrical pulse induced pressure transient formation

    NASA Astrophysics Data System (ADS)

    Roth, Caleb C.; Barnes, Ronald A.; Ibey, Bennett L.; Beier, Hope T.; Glickman, Randolph D.

    2016-03-01

    Nanoporation occurs in cells exposed to high amplitude short duration (< 1μs) electrical pulses. The biophysical mechanism(s) responsible for nanoporation is unknown although several theories exist. Current theories focus exclusively on the electrical field, citing electrostriction, water dipole alignment and/or electrodeformation as the primary mechanisms for pore formation. Our group has shown that mechanical forces of substantial magnitude are also generated during nsEP exposures. We hypothesize that these mechanical forces may contribute to pore formation. In this paper, we report that alteration of the conductivity of the exposure solution also altered the level of mechanical forces generated during a nsEP exposure. By reducing the conductivity of the exposure solutions, we found that we could completely eliminate any pressure transients normally created by nsEP exposure. The data collected for this proceeding does not definitively show that the pressure transients previously identified contribute to nanoporation; however; it indicates that conductivity influences both survival and pressure transient formation.

  2. Unravelling the mysteries of sub-second biochemical processes using time-resolved mass spectrometry.

    PubMed

    Lento, Cristina; Wilson, Derek J

    2017-05-21

    Many important chemical and biochemical phenomena proceed on sub-second time scales before entering equilibrium. In this mini-review, we explore the history and recent advancements of time-resolved mass spectrometry (TRMS) for the characterization of millisecond time-scale chemical reactions and biochemical processes. TRMS allows for the simultaneous tracking of multiple reactants, intermediates and products with no chromophoric species required, high sensitivity and temporal resolution. The method has most recently been used for the characterization of several short-lived reaction intermediates in rapid chemical reactions. Most of the reactions that occur in living organisms are accelerated by enzymes, with pre-steady state kinetics only attainable using time-resolved methods. TRMS has been increasingly used to monitor the conversion of substrates to products and the resulting changes to the enzyme during catalytic turnover. Early events in protein folding systems have also been elucidated, along with the characterization of dynamics and transient secondary structures in intrinsically disordered proteins. In this review, we will highlight representative examples where TRMS has been applied to study these phenomena.

  3. Sub-nanosecond dynamics in low-dimensional systems

    NASA Astrophysics Data System (ADS)

    Armstrong-Brown, Alistair

    The sub-nanosecond dynamics of a two-dimensional electron gas (2DEG) are studied in conditions of high fields and low temperatures. Three main regimes are identified. Firstly, the propagation of sub-nanosecond, or GHz, signals in a 2DEG waveguide at low temperature (2 K) and high magnetic field (9 T). Here we show that the 2DEG waveguide can be fully parameterised by the Hall resistance and a new 'microwave scaling constant'. Secondly, the physics of plasmons confined at the edge and in a magnetic field (9 T): edge magnetoplasmons (EMPs). Here we resolve multiple plasmon modes, where as well as the standard EMP resonances, we discover additional lower frequency modes, which could be related to transverse acoustic excitations. Thirdly, tunneling into microwave induced resistance oscillation (MIRO) states at low temperatures (50 mK). By using a novel cleaved edge overgrown (CEO) technique we are able to identify the role of photon assisted tunneling (PAT) in the formation of MIROs. These experimental results were obtained by developing new techniques combining microwaves, low temperatures, 2DEGs and high magnetic fields, which required the design and fabrication of several novel probes for these regimes.

  4. Optical studies of the X-ray transient XTE J2123-058 - II. Phase-resolved spectroscopy

    NASA Astrophysics Data System (ADS)

    Hynes, R. I.; Charles, P. A.; Haswell, C. A.; Casares, J.; Zurita, C.; Serra-Ricart, M.

    2001-06-01

    We present time-resolved spectroscopy of the soft X-ray transient XTEJ2123-058 in outburst. A useful spectral coverage of 3700-6700Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ~9000Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh-Jeans tail of a hot blackbody spectrum. The strongest spectral lines are Heii 4686Å and Ciii/Niii 4640Å (Bowen blend) in emission. Their relative strengths suggest that XTEJ2123-058 was formed in the Galactic plane, not in the halo. Other weak emission lines of Heii and Civ are present, and Balmer lines show a complex structure, blended with Heii. Heii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. Hα shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTEJ2123-058 can be explained by the same models invoked for those systems.

  5. Time-resolved transillumination and optical tomography

    NASA Astrophysics Data System (ADS)

    de Haller, Emmanuel B.

    1996-01-01

    In response to an invitation by the editor-in-chief, I would like to present the current status of time-domain imaging. With exciting new photon diffusion techniques being developed in the frequency domain and promising optical coherence tomography, time-resolved transillumination is in constant evolution and the subject of passionate discussions during the numerous conferences dedicated to this subject. The purpose of time-resolved optical tomography is to provide noninvasive, high-resolution imaging of the interior of living bodies by the use of nonionizing radiation. Moreover, the use of visible to near-infrared wavelength yields metabolic information. Breast cancer screening is the primary potential application for time-resolved imaging. Neurology and tissue characterization are also possible fields of applications. Time- resolved transillumination and optical tomography should not only improve diagnoses, but the welfare of the patient. As no overview of this technique has yet been presented to my knowledge, this paper briefly describes the various methods enabling time-resolved transillumination and optical tomography. The advantages and disadvantages of these methods, as well as the clinical challenges they face are discussed. Although an analytic and computable model of light transport through tissues is essential for a meaningful interpretation of the transillumination process, this paper will not dwell on the mathematics of photon propagation.

  6. Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schotte, Friedrich; Cho, Hyun Sun; Kaila, Ville R.I.

    2012-11-06

    To understand how signaling proteins function, it is necessary to know the time-ordered sequence of events that lead to the signaling state. We recently developed on the BioCARS 14-IDB beamline at the Advanced Photon Source the infrastructure required to characterize structural changes in protein crystals with near-atomic spatial resolution and 150-ps time resolution, and have used this capability to track the reversible photocycle of photoactive yellow protein (PYP) following trans-to-cis photoisomerization of its p-coumaric acid (pCA) chromophore over 10 decades of time. The first of four major intermediates characterized in this study is highly contorted, with the pCA carbonyl rotatedmore » nearly 90° out of the plane of the phenolate. A hydrogen bond between the pCA carbonyl and the Cys69 backbone constrains the chromophore in this unusual twisted conformation. Density functional theory calculations confirm that this structure is chemically plausible and corresponds to a strained cis intermediate. This unique structure is short-lived (~600 ps), has not been observed in prior cryocrystallography experiments, and is the progenitor of intermediates characterized in previous nanosecond time-resolved Laue crystallography studies. The structural transitions unveiled during the PYP photocycle include trans/cis isomerization, the breaking and making of hydrogen bonds, formation/relaxation of strain, and gated water penetration into the interior of the protein. This mechanistically detailed, near-atomic resolution description of the complete PYP photocycle provides a framework for understanding signal transduction in proteins, and for assessing and validating theoretical/computational approaches in protein biophysics.« less

  7. Relationship between time-resolved and non-time-resolved Beer-Lambert law in turbid media.

    PubMed

    Nomura, Y; Hazeki, O; Tamura, M

    1997-06-01

    The time-resolved Beer-Lambert law proposed for oxygen monitoring using pulsed light was extended to the non-time-resolved case in a scattered medium such as living tissues with continuous illumination. The time-resolved Beer-Lambert law was valid for the phantom model and living tissues in the visible and near-infrared regions. The absolute concentration and oxygen saturation of haemoglobin in rat brain and thigh muscle could be determined. The temporal profile of rat brain was reproduced by Monte Carlo simulation. When the temporal profiles of rat brain under different oxygenation states were integrated with time, the absorbance difference was linearly related to changes in the absorption coefficient. When the simulated profiles were integrated, there was a linear relationship within the absorption coefficient which was predicted for fractional inspiratory oxygen concentration from 10 to 100% and, in the case beyond the range of the absorption coefficient, the deviation from linearity was slight. We concluded that an optical pathlength which is independent of changes in the absorption coefficient is a good approximation for near-infrared oxygen monitoring.

  8. Glucose Sensing by Time-Resolved Fluorescence of Sol-Gel Immobilized Glucose Oxidase

    PubMed Central

    Esposito, Rosario; Ventura, Bartolomeo Della; De Nicola, Sergio; Altucci, Carlo; Velotta, Raffaele; Mita, Damiano Gustavo; Lepore, Maria

    2011-01-01

    A monolithic silica gel matrix with entrapped glucose oxidase (GOD) was constructed as a bioactive element in an optical biosensor for glucose determination. Intrinsic fluorescence of free and immobilised GOD was investigated in the visible range in presence of different glucose concentrations by time-resolved spectroscopy with time-correlated single-photon counting detector. A three-exponential model was used for analysing the fluorescence transients. Fractional intensities and mean lifetime were shown to be sensitive to the enzymatic reaction and were used for obtaining calibration curve for glucose concentration determination. The sensing system proposed achieved high resolution (up to 0.17 mM) glucose determination with a detection range from 0.4 mM to 5 mM. PMID:22163807

  9. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE PAGES

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.; ...

    2017-02-20

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  10. Light-induced radical formation and isomerization of an aromatic thiol in solution followed by time-resolved x-ray absorption spectroscopy at the sulfur K-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ochmann, Miguel; von Ahnen, Inga; Cordones, Amy A.

    Here, we applied time-resolved sulfur-1s absorption spectroscopy to a model aromatic thiol system as a promising method for tracking chemical reactions in solution. Sulfur-1s absorption spectroscopy allows tracking multiple sulfur species with a time resolution of ~70 ps at synchrotron radiation facilities. Experimental transient spectra combined with high-level electronic structure theory allow identification of a radical and two thione isomers, which are generated upon illumination with 267 nm radiation. Moreover, the regioselectivity of the thione isomerization is explained by the resulting radical frontier orbitals. This work demonstrates the usefulness and potential of time-resolved sulfur-1s absorption spectroscopy for tracking multiple chemicalmore » reaction pathways and transient products of sulfur-containing molecules in solution.« less

  11. Time-resolved, nonequilibrium carrier dynamics in Si-on-glass thin films for photovoltaic cells

    DOE PAGES

    Serafini, John; Akbas, Yunus; Crandall, Lucas; ...

    2016-03-02

    Here, a femtosecond pump–probe spectroscopy method was used to characterize the growth process and transport properties of amorphous silicon-on-glass, thin films, intended as absorbers for photovoltaic cells. We collected normalized transmissivity change (ΔT/T) waveforms and interpreted them using a comprehensive three-rate equation electron trapping and recombination model. Optically excited ~300–500 nm thick Si films exhibited a bi-exponential carrier relaxation with the characteristic times varying from picoseconds to nanoseconds depending on the film growth process. From our comprehensive trapping model, we could determine that for doped and intrinsic films with very low hydrogen dilution the dominant relaxation mode was carrier trapping;more » while for intrinsic films with large hydrogen content and some texture, it was the standard electron–phonon cooling. In both cases, the initial nonequilibrium relaxation was followed by Shockley–Read–Hall recombination. An excellent fit between the model and the ΔT/T experimental transients was obtained and a correlation between the Si film growth process, its hydrogen content, and the associated trap concentration was demonstrated.« less

  12. Time-resolved fluorescence spectroscopy of human brain tumors

    NASA Astrophysics Data System (ADS)

    Marcu, Laura; Thompson, Reid C.; Garde, Smita; Sedrak, Mark; Black, Keith L.; Yong, William H.

    2002-05-01

    Fluorescence spectroscopy of the endogenous emission of brain tumors has been researched as a potentially important method for the intraoperative localization of brain tumor margins. In this study, we investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) for demarcation of primary brain tumors by studying the time-resolved spectra of gliomas of different histologic grades. Time-resolved fluorescence (3 ns, 337 nm excitation) from excised human brain tumor show differences between the time-resolved emission of malignant glioma and normal brain tissue (gray and white matter). Our findings suggest that brain tumors can be differentiated from normal brain tissue based upon unique time-resolved fluorescence signature.

  13. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation

    NASA Astrophysics Data System (ADS)

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  14. A distributed parameter model of transmission line transformer for high voltage nanosecond pulse generation.

    PubMed

    Li, Jiangtao; Zhao, Zheng; Li, Longjie; He, Jiaxin; Li, Chenjie; Wang, Yifeng; Su, Can

    2017-09-01

    A transmission line transformer has potential advantages for nanosecond pulse generation including excellent frequency response and no leakage inductance. The wave propagation process in a secondary mode line is indispensable due to an obvious inside transient electromagnetic transition in this scenario. The equivalent model of the transmission line transformer is crucial for predicting the output waveform and evaluating the effects of magnetic cores on output performance. However, traditional lumped parameter models are not sufficient for nanosecond pulse generation due to the natural neglect of wave propagations in secondary mode lines based on a lumped parameter assumption. In this paper, a distributed parameter model of transmission line transformer was established to investigate wave propagation in the secondary mode line and its influential factors through theoretical analysis and experimental verification. The wave propagation discontinuity in the secondary mode line induced by magnetic cores is emphasized. Characteristics of the magnetic core under a nanosecond pulse were obtained by experiments. Distribution and formation of the secondary mode current were determined for revealing essential wave propagation processes in secondary mode lines. The output waveform and efficiency were found to be affected dramatically by wave propagation discontinuity in secondary mode lines induced by magnetic cores. The proposed distributed parameter model was proved more suitable for nanosecond pulse generation in aspects of secondary mode current, output efficiency, and output waveform. In depth, comprehension of underlying mechanisms and a broader view of the working principle of the transmission line transformer for nanosecond pulse generation can be obtained through this research.

  15. Characterization of the LCLS “nanosecond two-bunch” mode for x-ray speckle visibility spectroscopy experiments

    DOE PAGES

    Sun, Yanwen; Zhu, Diling; Song, Sanghoon; ...

    2017-05-23

    The generation of two X-ray pulses with tunable nanosecond scale time separations has recently been demonstrated at the Linac Coherent Light Source using an accelerator based technique. This approach offers the opportunity to extend X-ray Photon Correlation Spectroscopy techniques to the yet unexplored regime of nanosecond timescales by means of X-ray Speckle Visibility Spectroscopy. As the two pulses originate from two independent Spontaneous Amplified Stimulated Emission processes, the beam properties fluctuate from pulse pair to pulse pair, but as well between the individual pulses within a pair. However, two-pulse XSVS experiments require the intensity of the individual pulses to bemore » either identical in the ideal case, or with a accurately known intensity ratio. We present the design and performances of a non-destructive intensity diagnostic based on measurement of scattering from a transparent target using a high-speed photo-detector. Individual pulses within a pulse pair with time delays as short as 0.7 ns can be resolved. Moreover, using small angle coherent scattering, we characterize the averaged spatial overlap of the focused pulse pairs. Furthermore, the multi-shot average-speckle contrasts from individual pulses and pulse pairs are compared.« less

  16. Fast Rise Time and High Voltage Nanosecond Pulses at High Pulse Repetition Frequency

    NASA Astrophysics Data System (ADS)

    Miller, Kenneth E.; Ziemba, Timothy; Prager, James; Picard, Julian; Hashim, Akel

    2015-09-01

    Eagle Harbor Technologies (EHT), Inc. is conducting research to decrease the rise time and increase the output voltage of the EHT Nanosecond Pulser product line, which allows for independently, user-adjustable output voltage (0 - 20 kV), pulse width (20 - 500 ns), and pulse repetition frequency (0 - 100 kHz). The goals are to develop higher voltage pulses (50 - 60 kV), decrease the rise time from 20 to below 10 ns, and maintain the high pulse repetition capabilities. These new capabilities have applications to pseudospark generation, corona production, liquid discharges, and nonlinear transmission line driving for microwave production. This work is supported in part by the US Navy SBIR program.

  17. Real-time visualization of the vibrational wavepacket dynamics in electronically excited pyrimidine via femtosecond time-resolved photoelectron imaging

    NASA Astrophysics Data System (ADS)

    Li, Shuai; Long, Jinyou; Ling, Fengzi; Wang, Yanmei; Song, Xinli; Zhang, Song; Zhang, Bing

    2017-07-01

    The vibrational wavepacket dynamics at the very early stages of the S1-T1 intersystem crossing in photoexcited pyrimidine is visualized in real time by femtosecond time-resolved photoelectron imaging and time-resolved mass spectroscopy. A coherent superposition of the vibrational states is prepared by the femtosecond pump pulse at 315.3 nm, resulting in a vibrational wavepacket. The composition of the prepared wavepacket is directly identified by a sustained quantum beat superimposed on the parent-ion transient, possessing a frequency in accord with the energy separation between the 6a1 and 6b2 states. The dephasing time of the vibrational wavepacket is determined to be 82 ps. More importantly, the variable Franck-Condon factors between the wavepacket components and the dispersed cation vibrational levels are experimentally illustrated to identify the dark state and follow the energy-flow dynamics on the femtosecond time scale. The time-dependent intensities of the photoelectron peaks originated from the 6a1 vibrational state exhibit a clear quantum beating pattern with similar periodicity but a phase shift of π rad with respect to those from the 6b2 state, offering an unambiguous picture of the restricted intramolecular vibrational energy redistribution dynamics in the 6a1/6b2 Fermi resonance.

  18. Molecular orbital imaging of the acetone S2 excited state using time-resolved (e, 2e) electron momentum spectroscopy.

    PubMed

    Yamazaki, Masakazu; Oishi, Keiya; Nakazawa, Hiroyuki; Zhu, Chaoyuan; Takahashi, Masahiko

    2015-03-13

    We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35  ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

  19. Investigations on the photoreactions of phenothiazine and phenoxazine in presence of 9-cyanoanthracene by using steady state and time resolved spectroscopic techniques.

    PubMed

    Bardhan, Munmun; Mandal, Paulami; Tzeng, Wen-Bih; Ganguly, Tapan

    2010-09-01

    By using electrochemical, steady state and time resolved (fluorescence lifetime and transient absorption) spectroscopic techniques, detailed investigations were made to reveal the mechanisms of charge separation or forward electron transfer reactions within the electron donor phenothiazine (PTZH) or phenoxazine (PXZH) and well known electron acceptor 9-cyanoanthracene (CNA). The transient absorption spectra suggest that the charge separated species formed in the excited singlet state resulted from intermolecular photoinduced electron transfer reactions within the donor PTZH (or PXZH) and CNA acceptor relaxes to the corresponding triplet state. Though alternative mechanisms of via formations of contact neutral radical by H-transfer reaction have been proposed but the observed results obtained from the time resolved measurements indicate that the regeneration of ground state reactants is primarily responsible due to direct recombination of triplet contact ion-pair (CIP) or solvent-separated ion-pair (SSIP).

  20. Spectroscopic study of bipolar nanosecond pulse gas-liquid discharge in atmospheric argon

    NASA Astrophysics Data System (ADS)

    Sen, WANG; Dezheng, YANG; Feng, LIU; Wenchun, WANG; Zhi, FANG

    2018-07-01

    Atmospheric gas-liquid discharge with argon as a working gas is presented by employed nanosecond pulse power. The discharge is presented in a glow-like mode. The discharge powers are determined to be less than 1 W, and remains almost constant when the discharge duration time increases. Bountiful active species are determined by capturing optical emission spectra, and their main generation processes are also discussed. The plasma gas temperature is calculated as 350 K by comparing the experimental spectra and the simulated ones of {{{N}}}2({{C}}{}3{{\\Pi }}{{g}}\\to {{B}}{}3{{\\Pi }}{{g}},{{Δ }}{{ν }}=-2). The time resolved vibrational and rotational temperature is researched to present the stability of discharge when pulse voltage and discharge duration vary. The electron density is determined to be 1016 cm‑3 according to the Stark broadening effect of the H α line.

  1. Quantum state-resolved probing of strong-field-ionized xenon atoms using femtosecond high-order harmonic transient absorption spectroscopy.

    PubMed

    Loh, Zhi-Heng; Khalil, Munira; Correa, Raoul E; Santra, Robin; Buth, Christian; Leone, Stephen R

    2007-04-06

    Femtosecond high-order harmonic transient absorption spectroscopy is used to resolve the complete |j,m quantum state distribution of Xe+ produced by optical strong-field ionization of Xe atoms at 800 nm. Probing at the Xe N4/5 edge yields a population distribution rhoj,|m| of rho3/2,1/2ratiorho1/2,1/2ratiorho3/2,3/2=75+/-6 :12+/-3 :13+/-6%. The result is compared to a tunnel ionization calculation with the inclusion of spin-orbit coupling, revealing nonadiabatic ionization behavior. The sub-50-fs time resolution paves the way for tabletop extreme ultraviolet absorption probing of ultrafast dynamics.

  2. Seventh international conference on time-resolved vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, R.B.; Martinez, M.A.D.; Shreve, A.

    1997-04-01

    The International Conference on Time-Resolved Vibrational Spectroscopy (TRVS) is widely recognized as the major international forum for the discussion of advances in this rapidly growing field. The 1995 conference was the seventh in a series that began at Lake Placid, New York, 1982. Santa Fe, New Mexico, was the site of the Seventh International Conference on Time-Resolved Vibrational Spectroscopy, held from June 11 to 16, 1995. TRVS-7 was attended by 157 participants from 16 countries and 85 institutions, and research ranging across the full breadth of the field of time-resolved vibrational spectroscopy was presented. Advances in both experimental capabilities formore » time-resolved vibrational measurements and in theoretical descriptions of time-resolved vibrational methods continue to occur, and several sessions of the conference were devoted to discussion of these advances and the associated new directions in TRVS. Continuing the interdisciplinary tradition of the TRVS meetings, applications of time-resolved vibrational methods to problems in physics, biology, materials science, and chemistry comprised a large portion of the papers presented at the conference.« less

  3. Reduced photoconductivity observed by time-resolved terahertz spectroscopy in metal nanofilms with and without adhesion layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alberding, Brian G.; Heilweil, Edwin J., E-mail: edwin.heilweil@nist.gov; Kushto, Gary P.

    2016-05-30

    Non-contact, optical time-resolved terahertz spectroscopy has been used to study the transient photoconductivity of nanometer-scale metallic films deposited on the fused quartz substrates. Samples of 8 nm thick gold or titanium show an instrument-limited (ca. 0.5 ps) decrease in conductivity following photoexcitation due to electron-phonon coupling and subsequent increased lattice temperatures which increases charge carrier scattering. In contrast, for samples of 8 nm gold with a 4 nm adhesion layer of titanium or chromium, a ca. 70 ps rise time for the lattice temperature increase is observed. These results establish the increased transient terahertz transmission sign change of metallic compared to semiconductor materials.more » The results also suggest nanoscale gold films that utilize an adhesion material do not consist of distinct layers.« less

  4. Structure and function of proteins investigated by crystallographic and spectroscopic time-resolved methods

    NASA Astrophysics Data System (ADS)

    Purwar, Namrta

    crystal. Time-resolved X-ray data collected at pH's of 4, 7 and 9 demonstrate that pH alters the kinetics of the PYP photocycle dramatically. At pH 4 the photocycle lasts almost one order of magnitude longer in time compared to pH 7. The final intermediate that accumulates at both pH 7 and pH 4 is absent at pH 9. Results from the dose- and the pH-dependent time-resolved crystallographic experiments show that it is imperative to carefully control the conditions under which time-resolved data are collected. With these considerations we collected a comprehensive time-series from nanoseconds to seconds at 14 different temperature settings from -40 °C to 70 °C. Results from time-resolved crystallography are corroborated by employing time-resolved absorption spectroscopy. For this, absorption spectra on crystals and solution are collected by a fast micro-spectrophotometer custom-designed in our lab. We identify kinetic phases of the PYP photocycle at all 14 temperature settings. Relaxation times associated with these phases are temperature-dependent and can be fit by the Van't Hoff-Arrhenius equation. Kinetic modeling yields entropy and enthalpy values at the barriers of the activation solely from the time-resolved crystallographic data. With this, we advance crystallography to a new frontier: the determination of free energy surfaces. Investigating enzymatic reactions can be challenging, because they are non-cyclic. After one turnover product must be washed away and substrate must be reloaded. A promising approach for routine application can be envisioned at the new 4th generation X-ray sources, such as X-ray free electron lasers (XFELs). With our results we set the scene to comprehensively investigate all kinds of enzymatic reactions with these instruments.

  5. An efficient and accurate approach to MTE-MART for time-resolved tomographic PIV

    NASA Astrophysics Data System (ADS)

    Lynch, K. P.; Scarano, F.

    2015-03-01

    The motion-tracking-enhanced MART (MTE-MART; Novara et al. in Meas Sci Technol 21:035401, 2010) has demonstrated the potential to increase the accuracy of tomographic PIV by the combined use of a short sequence of non-simultaneous recordings. A clear bottleneck of the MTE-MART technique has been its computational cost. For large datasets comprising time-resolved sequences, MTE-MART becomes unaffordable and has been barely applied even for the analysis of densely seeded tomographic PIV datasets. A novel implementation is proposed for tomographic PIV image sequences, which strongly reduces the computational burden of MTE-MART, possibly below that of regular MART. The method is a sequential algorithm that produces a time-marching estimation of the object intensity field based on an enhanced guess, which is built upon the object reconstructed at the previous time instant. As the method becomes effective after a number of snapshots (typically 5-10), the sequential MTE-MART (SMTE) is most suited for time-resolved sequences. The computational cost reduction due to SMTE simply stems from the fewer MART iterations required for each time instant. Moreover, the method yields superior reconstruction quality and higher velocity field measurement precision when compared with both MART and MTE-MART. The working principle is assessed in terms of computational effort, reconstruction quality and velocity field accuracy with both synthetic time-resolved tomographic images of a turbulent boundary layer and two experimental databases documented in the literature. The first is the time-resolved data of flow past an airfoil trailing edge used in the study of Novara and Scarano (Exp Fluids 52:1027-1041, 2012); the second is a swirling jet in a water flow. In both cases, the effective elimination of ghost particles is demonstrated in number and intensity within a short temporal transient of 5-10 frames, depending on the seeding density. The increased value of the velocity space-time

  6. Infrared nanosecond laser-metal ablation in atmosphere: Initial plasma during laser pulse and further expansion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jian; Wei, Wenfu; Li, Xingwen

    2013-04-22

    We have investigated the dynamics of the nanosecond laser ablated plasma within and after the laser pulse irradiation using fast photography. A 1064 nm, 15 ns laser beam was focused onto a target made from various materials with an energy density in the order of J/mm{sup 2} in atmosphere. The plasma dynamics during the nanosecond laser pulse were observed, which could be divided into three stages: fast expansion, division into the primary plasma and the front plasma, and stagnation. After the laser terminated, a critical moment when the primary plasma expansion transited from the shock model to the drag modelmore » was resolved, and this phenomenon could be understood in terms of interactions between the primary and the front plasmas.« less

  7. Time Resolved Studies of Carrier Dynamics in III -v Heterojunction Semiconductors.

    NASA Astrophysics Data System (ADS)

    Westland, Duncan James

    Available from UMI in association with The British Library. Requires signed TDF. Picosecond time-resolution photoluminescence spectroscopy has been used to study transient processes in Ga _{.47}In_{.53 }As/InP multiple quantum wells (MQWs), and in bulk Ga_{.47}In _{.53}As and GaSb. To facilitate the experimental studies, apparatus was constructed to allow the detection of transient luminescence with 3ps time resolution. A frequency upconversion technique was employed. Relaxation of energetic carriers in bulk Ga _{.47}In_{.53 }As by optic phonons has been investigated, and, at carrier densities ~3 times 10^{18}cm ^{-3} is found to be a considerably slower process than simple theory predicts. The discrepancy is resolved by the inclusion of a non-equilibrium population of longitudinal optic phonons in the theoretical description. Slow energy loss is also observed in a 154A MQW under similar conditions, but carriers are found to relax more quickly in a 14A MQW with a comparable repeat period. The theory of non-equilibrium mode occupation is modified to describe the case of a MQW and is found to agree with experiment. Carrier relaxation in GaSb is studied and the importance of occupation of the L _6 conduction band valley in this material is demonstrated. The ambipolar diffusion of a photoexcited carrier plasma through an InP capping layer was investigated using an optical time-of-flight technique. This experiment also enables the efficiency of carrier capture by a Ga _{.47}In_{.53 }As quantum well to be determined. A capture time of 4ps was found.

  8. OSETI with STACEE: a search for nanosecond optical transients from nearby stars.

    PubMed

    Hanna, D S; Ball, J; Covault, C E; Carson, J E; Driscoll, D D; Fortin, P; Gingrich, D M; Jarvis, A; Kildea, J; Lindner, T; Mueller, C; Mukherjee, R; Ong, R A; Ragan, K; Williams, D A; Zweerink, J

    2009-05-01

    We have used the Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE) high-energy gamma-ray detector to look for fast blue-green laser pulses from the vicinity of 187 stars. The STACEE detector offers unprecedented light-collecting capability for the detection of nanosecond pulses from such lasers. We estimate STACEE's sensitivity to be approximately 10 photons/m(2) at a wavelength of 420 nm. The stars have been chosen because their characteristics are such that they may harbor habitable planets, and they are relatively close to Earth. Each star was observed for 10 minutes, and we found no evidence for laser pulses in any of the data sets. Key Words: Search for extraterrestrial intelligence-Optical search for extraterrestrial intelligence-Interstellar communication-Laser.

  9. Direct observation of back energy transfer in blue phosphorescent materials for organic light emitting diodes by time-resolved optical waveguide spectroscopy.

    PubMed

    Hirayama, H; Sugawara, Y; Miyashita, Y; Mitsuishi, M; Miyashita, T

    2013-02-25

    We demonstrate a high-sensitive transient absorption technique for detection of excited states in an organic thin film by time-resolved optical waveguide spectroscopy. By using a laser beam as a probe light, we detect small change in the transient absorbance which is equivalent to 10 -7 absorbance unit in a conventional method. This technique was applied to organic thin films of blue phosphorescent materials for organic light emitting diodes. We directly observed the back energy transfer from emitting guest molecules to conductive host molecules.

  10. Effects of tissue optical properties on time-resolved fluorescence measurements from brain tumors: an experimental and computational study

    NASA Astrophysics Data System (ADS)

    Butte, Pramod V.; Vishwanath, Karthik; Pikul, Brian K.; Mycek, Mary-Ann; Marcu, Laura

    2003-07-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (tr-LIFS) offers the potential for intra-operative diagnosis of primary brain tumors. However, both the intrinsic properties of endogenous fluorophores and the optical properties of brain tissue could affect the fluorescence measurements from brain. Scattering has been demonstrated to increase, for instance, detected lifetimes by 10-20% in media less scattering than the brain. The overall goal of this study is to investigate experimentally and computationally how optical properties of distinct types of brain tissue (normal porcine white and gray matter) affect the propagation of the excitation pulse and fluorescent transients and the detected fluorescence lifetime. A time-domain tr-LIFS apparatus (fast digitizer and gated detection) was employed to measure the propagation of ultra-short pulsed light through brain specimens (1-2.5-mm source-detector separation; 0.100-mm increment). A Monte Carlo model for semi-infinite turbid media was used to simulate time-resolved light propagation for arbitrary source-detector fiber geometries and optical fiber specifications; and to record spatially- and temporally resolved information. We determined a good correlation between experimental and computational results. Our findings provide means for quantification of time-resolved fluorescence spectra from healthy and diseased brain tissue.

  11. Time-resolved lidar fluorosensor for sea pollution detection

    NASA Technical Reports Server (NTRS)

    Ferrario, A.; Pizzolati, P. L.; Zanzottera, E.

    1986-01-01

    A contemporary time and spectral analysis of oil fluorescence is useful for the detection and the characterization of oil spills on the sea surface. Nevertheless the fluorosensor lidars, which were realized up to now, have only partial capability to perform this double analysis. The main difficulties are the high resolution required (of the order of 1 nanosecond) and the complexity of the detection system for the recording of a two-dimensional matrix of data for each laser pulse. An airborne system whose major specifications were: time range, 30 to 75 ns; time resolution, 1 ns; spectral range, 350 to 700 nm; and spectral resolution, 10 nm was designed and constructed. The designed system of a short pulse ultraviolet laser source and a streak camera based detector are described.

  12. Time-resolved photoelectron spectroscopy of a dinuclear Pt(II) complex: Tunneling autodetachment from both singlet and triplet excited states of a molecular dianion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winghart, Marc-Oliver, E-mail: marc-oliver.winghart@kit.edu; Unterreiner, Andreas-Neil; Yang, Ji-Ping

    2016-02-07

    Time-resolved pump-probe photoelectron spectroscopy has been used to study the relaxation dynamics of gaseous [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} after population of its first singlet excited state by 388 nm femtosecond laser irradiation. In contrast to the fluorescence and phosphorescence observed in condensed phase, a significant fraction of the photoexcited isolated dianions decays by electron loss to form the corresponding monoanions. Our transient photoelectron data reveal an ultrafast decay of the initially excited singlet {sup 1}A{sub 2u} state and concomitant rise in population of the triplet {sup 3}A{sub 2u} state, via sub-picosecond intersystem crossing (ISC). Wemore » find that both of the electronically excited states are metastably bound behind a repulsive Coulomb barrier and can decay via delayed autodetachment to yield electrons with characteristic kinetic energies. While excited state tunneling detachment (ESETD) from the singlet {sup 1}A{sub 2u} state takes only a few picoseconds, ESETD from the triplet {sup 3}A{sub 2u} state is much slower and proceeds on a time scale of hundreds of nanoseconds. The ISC rate in the gas phase is significantly higher than in solution, which can be rationalized in terms of changes to the energy dissipation mechanism in the absence of solvent molecules. [Pt{sub 2}(μ-P{sub 2}O{sub 5}H{sub 2}){sub 4} + 2H]{sup 2−} is the first example of a photoexcited multianion for which ESETD has been observed following ISC.« less

  13. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yuntao; Dibble, Collin J.; Petrik, Nikolay G.

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109more » K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.« less

  14. Picosecond time-resolved absorption and fluorescence dynamics in the artificial bacteriorhodopsin pigment BR6.11.

    PubMed

    Brack, T L; Delaney, J K; Atkinson, G H; Albeck, A; Sheves, M; Ottolenghi, M

    1993-08-01

    The picosecond molecular dynamics in an artificial bacteriorhodopsin (BR) pigment containing a structurally modified all-trans retinal chromphore with a six-membered ring bridging the C11=C12-C13 positions (BR6.11) are measured by picosecond transient absorption and picosecond time-resolved fluorescence spectroscopy. Time-dependent intensity and spectral changes in absorption in the 570-650-nm region are monitored for delays as long as 5 ns after the 7-ps, 573-nm excitation of BR6.11. Two intermediates, J6.11 and K6.11/1, both with enhanced absorption to the red (> 600 nm) of the BR6.11 spectrum are observed within approximately 50 ps. The J6.11 intermediate decays with a time constant of 12 +/- 3 ps to form K6.11/1. The K6.11/1 intermediate decays with an approximately 100-ps time constant to form a third intermediate, K6.11/2, which is observed through diminished 650-nm absorption (relative to that of K6.11/1). No other transient absorption changes are found during the remainder of the initial 5-ns period of the BR6.11 photoreaction. Fluorescence in the 650-900-nm region is observed from BR6.11, K6.11/1, and K6.11/2, but no emission assignable to J6.11 is found. The BR6.11 fluroescence spectrum has a approximately 725-nm maximum which is blue-shifted by approximately 15 nm relative to that of native BR-570 and is 4.2 +/- 1.5 times larger in intensity (same sample optical density). No differences in the profile of the fluorescence spectra of BR6.11 and the intermediates K6.11/1 and K6.11/2 are observed. Following ground-state depletion of the BR6.11 population, the time-resolved fluroescence intensity monitored at 725 nm increases with two time constants, 12 +/- 3 and approximately 100 ps, both of which correlate well with changes in the picosecond transient absorption data. The resonance Raman spectrum of ground-state BR6.11, measured with low-energy, 560-nm excitation, is significantly different from the spectrum of native BR-570, thus confirming that the

  15. Apparatus Characterizes Transient Voltages in Real Time

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro

    2005-01-01

    is received, a volatile memory is filled with data for a total time of 200 ms. After the data are transferred to nonvolatile memory, the recorder rearms itself within 400 ms to enable recording of subsequent transients. Unfortunately, the recorded data must be retrieved through a serial communication link. Depending on the amount of data recorded, the memory can be filled before retrieval is completed. Although large amounts of data are recorded and retrieved, only a small part of the information (the selected parameters) is usually required. The present transient-voltage recorder provides the required information, without incurring the overhead associated with the recording, storage, and retrieval of complete transient-waveform data. In operation, this apparatus processes transient voltage waveforms in real time to extract and record the selected parameters. An analog-to-digital converter that operates at a speed of as much as 100 mega-samples per second is used to sample a transient waveform. A real-time comparator and peak detector are implemented by use of fast field-programmable gate arrays.

  16. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  17. Nanosecond pulse lasers for retinal applications.

    PubMed

    Wood, John P M; Plunkett, Malcolm; Previn, Victor; Chidlow, Glyn; Casson, Robert J

    2011-08-01

    Thermal lasers are routinely used to treat certain retinal disorders although they cause collateral damage to photoreceptors. The current study evaluated a confined, non-conductive thermal, 3-nanosecond pulse laser in order to determine how to produce the greatest therapeutic range without causing collateral damage. Data were compared with that obtained from a standard thermal laser. Porcine ocular explants were used; apposed neuroretina was also in place for actual laser treatment. After treatment, the retina was removed and a calcein-AM assay was used to assess retinal pigmented epithelium (RPE) cell viability in the explants. Histological methods were also employed to examine lased transverse explant sections. Three nanoseconds pulse lasers with either speckle- or gaussian-beam profile were employed in the study. Comparisons were made with a 100 milliseconds continuous wave (CW) 532 nm laser. The therapeutic energy range ratio was defined as the minimum visible effect threshold (VET) versus the minimum detectable RPE kill threshold. The 3-nanosecond lasers produced markedly lower minimum RPE kill threshold levels than the CW laser (e.g., 36 mJ/cm(2) for speckle-beam and 89 mJ/cm(2) for gaussian-beam profile nanosecond lasers vs. 7,958 mJ/cm(2) for CW laser). VET values were also correspondingly lower for the nanosecond lasers (130 mJ/cm(2) for 3 nanoseconds speckle-beam and 219 mJ/cm(2) for gaussian-beam profile vs. 1,0346 mJ/cm(2) for CW laser). Thus, the therapeutic range ratios obtained with the nanosecond lasers were much more favorable than that obtained by the CW laser: 3.6:1 for the speckle-beam and 2.5:1 for the gaussian-beam profile 3-nanosecond lasers versus 1.3:1 for the CW laser. Nanosecond lasers, particularly with a speckle-beam profile, provide a much wider therapeutic range of energies over which RPE treatment can be performed, without damage to the apposed retina, as compared with conventional CW lasers. These results may have

  18. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion

    DOE PAGES

    Theobald, W.; Solodov, A. A.; Stoeckl, C.; ...

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achievemore » areal densities in excess of 300 mg cm -2 with a nanosecond-duration compression pulse -- the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.« less

  19. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion.

    PubMed

    Theobald, W; Solodov, A A; Stoeckl, C; Anderson, K S; Beg, F N; Epstein, R; Fiksel, G; Giraldez, E M; Glebov, V Yu; Habara, H; Ivancic, S; Jarrott, L C; Marshall, F J; McKiernan, G; McLean, H S; Mileham, C; Nilson, P M; Patel, P K; Pérez, F; Sangster, T C; Santos, J J; Sawada, H; Shvydky, A; Stephens, R B; Wei, M S

    2014-12-12

    The advent of high-intensity lasers enables us to recreate and study the behaviour of matter under the extreme densities and pressures that exist in many astrophysical objects. It may also enable us to develop a power source based on laser-driven nuclear fusion. Achieving such conditions usually requires a target that is highly uniform and spherically symmetric. Here we show that it is possible to generate high densities in a so-called fast-ignition target that consists of a thin shell whose spherical symmetry is interrupted by the inclusion of a metal cone. Using picosecond-time-resolved X-ray radiography, we show that we can achieve areal densities in excess of 300 mg cm(-2) with a nanosecond-duration compression pulse--the highest areal density ever reported for a cone-in-shell target. Such densities are high enough to stop MeV electrons, which is necessary for igniting the fuel with a subsequent picosecond pulse focused into the resulting plasma.

  20. Study of particle evolution from Composition B-3 detonation by time-resolved small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Huber, R.; Podlesak, D.; Dattelbaum, D.; Firestone, M.; Gustavsen, R.; Jensen, B.; Ringstrand, B.; Watkins, E.; Bagge-Hansen, M.; Hodgin, R.; Lauderbach, L.; Willey, T.; van Buuren, T.; Graber, T.; Rigg, P.; Sinclair, N.; Seifert, S.

    2017-06-01

    High explosive (HE) detonations produce an assortment of gases (CO, CO2, N2) and solid carbon products (nanodiamond, graphite). The evolution of solid carbon particles, within the chemical reaction zone, help to propel the detonation wave forward. Due to the violent nature and short reaction times during HE detonations, experimental observation are limited. Through time-resolved small angle x-ray scattering (TRSAXS) we are able to observed nanocarbon formation on nanosecond time scales. This TRSAXS setup is the first of its kind in the United States at Argonne National Laboratory at the Advanced Photon Source in the Dynamic Compression Sector. From the empirical and analytical analysis of the x-ray scattering of an in-line detonation we are able to temporally follow morphology and size. Two detonation geometries were studied for the HE Comp B-3 (40% TNT/60% RDX), producing steady and overdriven conditions. Steady wave particle evolution plateaued by 2 microseconds, where overdriven condition particle size decreases at the collision of the two shock fronts then plateaus. Post detonation soot is also analyzed to confirm size and shape of nanocarbon formation from Comp B-3 detonations. LA-UR-17-21443.

  1. Axial- and radial-resolved electron density and excitation temperature of aluminum plasma induced by nanosecond laser: Effect of the ambient gas composition and pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawood, Mahmoud S.; Hamdan, Ahmad, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca; Margot, Joëlle, E-mail: ahmad.ba.hamdan@gmail.com, E-mail: Joelle.margot@umontreal.ca

    2015-11-15

    The spatial variation of the characteristics of an aluminum plasma induced by a pulsed nanosecond XeCl laser is studied in this paper. The electron density and the excitation temperature are deduced from time- and space- resolved Stark broadening of an ion line and from a Boltzmann diagram, respectively. The influence of the gas pressure (from vacuum up to atmospheric pressure) and compositions (argon, nitrogen and helium) on these characteristics is investigated. It is observed that the highest electron density occurs near the laser spot and decreases by moving away both from the target surface and from the plume center tomore » its edge. The electron density increases with the gas pressure, the highest values being occurred at atmospheric pressure when the ambient gas has the highest mass, i.e. in argon. The excitation temperature is determined from the Boltzmann plot of line intensities of iron impurities present in the aluminum target. The highest temperature is observed close to the laser spot location for argon at atmospheric pressure. It decreases by moving away from the target surface in the axial direction. However, no significant variation of temperature occurs along the radial direction. The differences observed between the axial and radial direction are mainly due to the different plasma kinetics in both directions.« less

  2. Temporally resolved plasma spectroscopy for analyzing natural gas components

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Tsumaki, Naomasa; Ito, Tsuyohito

    2016-09-01

    Temporally resolved plasma spectroscopy has been carried out in two different hydrocarbon gas mixtures (CH4/Ar and C2H6/Ar) to explore the possibility of a new gas sensor using plasma emission spectral analysis. In this experiment, a nanosecond-pulsed plasma discharge was applied to observe optical emissions representing the initial molecular structure. It is found that a CH emission intensity in CH4/Ar is higher than that in C2H6/Ar. On the other hand, C2 intensities are almost the same degree between CH4/Ar and C2H6/Ar. This finding indicates that the emission intensity ratio of CH to C2 might be an effective index for a gas analysis. In addition, a time for the highest emission intensities of CH and C2 is several nanoseconds later than that of Ar. This result suggests that spectra from the initial molecular structure may be observed at the early stage of the discharge before molecules are fully dissociated, and this is currently in progress.

  3. Time-Resolved Measurements in Optoelectronic Microbioanalysis

    NASA Technical Reports Server (NTRS)

    Bearman, Gregory; Kossakovski, Dmitri

    2003-01-01

    A report presents discussion of time-resolved measurements in optoelectronic microbioanalysis. Proposed microbioanalytical laboratory-on-a-chip devices for detection of microbes and toxic chemicals would include optoelectronic sensors and associated electronic circuits that would look for fluorescence or phosphorescence signatures of multiple hazardous biomolecules in order to detect which ones were present in a given situation. The emphasis in the instant report is on gating an active-pixel sensor in the time domain, instead of filtering light in the wavelength domain, to prevent the sensor from responding to a laser pulse used to excite fluorescence or phosphorescence while enabling the sensor to respond to the decaying fluorescence or phosphorescence signal that follows the laser pulse. The active-pixel sensor would be turned on after the laser pulse and would be used to either integrate the fluorescence or phosphorescence signal over several lifetimes and many excitation pulses or else take time-resolved measurements of the fluorescence or phosphorescence. The report also discusses issues of multiplexing and of using time-resolved measurements of fluorophores with known different fluorescence lifetimes to distinguish among them.

  4. Direct detection of time-resolved Rabi oscillations in a single quantum dot via resonance fluorescence

    NASA Astrophysics Data System (ADS)

    Schaibley, J. R.; Burgers, A. P.; McCracken, G. A.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J.

    2013-03-01

    Optical Rabi oscillations are coherent population oscillations of a two-level system coupled by an electric dipole transition when driven by a strong nearly resonant optical field. In quantum dot structures, these measurements have typically been performed as a function of the total pulse area ∫Ω0(t)dt where the pulse area varies as a function of Rabi frequency. Here, we report direct detection of the time-resolved coherent transient response of the resonance fluorescence to measure the time evolution of the optical Rabi oscillations in a single charged InAs quantum dot. We extract a decoherence rate consistent with the limit from the excited state lifetime.

  5. Time-resolved molecular imaging

    NASA Astrophysics Data System (ADS)

    Xu, Junliang; Blaga, Cosmin I.; Agostini, Pierre; DiMauro, Louis F.

    2016-06-01

    Time-resolved molecular imaging is a frontier of ultrafast optical science and physical chemistry. In this article, we review present and future key spectroscopic and microscopic techniques for ultrafast imaging of molecular dynamics and show their differences and connections. The advent of femtosecond lasers and free electron x-ray lasers bring us closer to this goal, which eventually will extend our knowledge about molecular dynamics to the attosecond time domain.

  6. Bypassing the energy-time uncertainty in time-resolved photoemission

    NASA Astrophysics Data System (ADS)

    Randi, Francesco; Fausti, Daniele; Eckstein, Martin

    2017-03-01

    The energy-time uncertainty is an intrinsic limit for time-resolved experiments imposing a tradeoff between the duration of the light pulses used in experiments and their frequency content. In standard time-resolved photoemission, this limitation maps directly onto a tradeoff between the time resolution of the experiment and the energy resolution that can be achieved on the electronic spectral function. Here we propose a protocol to disentangle the energy and time resolutions in photoemission. We demonstrate that dynamical information on all time scales can be retrieved from time-resolved photoemission experiments using suitably shaped light pulses of quantum or classical nature. As a paradigmatic example, we study the dynamical buildup of the Kondo peak, a narrow feature in the electronic response function arising from the screening of a magnetic impurity by the conduction electrons. After a quench, the electronic screening builds up on timescales shorter than the inverse width of the Kondo peak and we demonstrate that the proposed experimental scheme could be used to measure the intrinsic time scales of such electronic screening. The proposed approach provides an experimental framework to access the nonequilibrium response of collective electronic properties beyond the spectral uncertainty limit and will enable the direct measurement of phenomena such as excited Higgs modes and, possibly, the retarded interactions in superconducting systems.

  7. Characteristics of a novel nanosecond DBD microplasma reactor for flow applications

    NASA Astrophysics Data System (ADS)

    Elkholy, A.; Nijdam, S.; van Veldhuizen, E.; Dam, N.; van Oijen, J.; Ebert, U.; de Goey, L. Philip H.

    2018-05-01

    We present a novel microplasma flow reactor using a dielectric barrier discharge (DBD) driven by repetitive nanosecond high-voltage pulses. Our DBD-based geometry can generate a non-thermal plasma discharge at atmospheric pressure and below in a regular pattern of micro-channels. This reactor can work continuously up to about 100 min in air, depending on the pulse repetition rate and operating pressure. We here present the geometry and main characteristics of the reactor. Pulse energies of 1.46 and 1.3 μJ per channel at atmospheric pressure and 50 mbar, respectively, have been determined by time-resolved measurements of current and voltage. Time-resolved optical emission spectroscopy measurements have been performed to calculate the relative species concentrations and temperatures (vibrational and rotational) of the discharge. The effects of the operating pressure and flow velocity on the discharge intensity have been investigated. In addition, the effective reduced electric field strength {(E/N)}eff} has been obtained from the intensity ratio of vibronic emission bands of molecular nitrogen at different operating pressures and different locations. The derived {(E/N)}eff} increases gradually from about 550 to 4600 Td when decreasing the pressure from 1 bar to 100 mbar. Below 100 mbar, further pressure reduction results in a significant increase in {(E/N)}eff} up to about 10000 Td at 50 mbar.

  8. Visualization of nanosecond laser-induced dewetting, ablation and crystallization processes in thin silicon films

    NASA Astrophysics Data System (ADS)

    Qi, Dongfeng; Zhang, Zifeng; Yu, Xiaohan; Zhang, Yawen

    2018-06-01

    In the present work, nanosecond pulsed laser crystallization, dewetting and ablation of thin amorphous silicon films are investigated by time-resolved imaging. Laser pulses of 532 nm wavelength and 7 ns temporal width are irradiated on silicon film. Below the dewetting threshold, crystallization process happens after 400 ns laser irradiation in the spot central region. With the increasing of laser fluence, it is observed that the dewetting process does not conclude until 300 ns after the laser irradiation, forming droplet-like particles in the spot central region. At higher laser intensities, ablative material removal occurs in the spot center. Cylindrical rims are formed in the peripheral dewetting zone due to solidification of transported matter at about 500 ns following the laser pulse exposure.

  9. Time-resolved EPR spectroscopy in a Unix environment.

    PubMed

    Lacoff, N M; Franke, J E; Warden, J T

    1990-02-01

    A computer-aided time-resolved electron paramagnetic resonance (EPR) spectrometer implemented under version 2.9 BSD Unix was developed by interfacing a Varian E-9 EPR spectrometer and a Biomation 805 waveform recorder to a PDP-11/23A minicomputer having MINC A/D and D/A capabilities. Special problems with real-time data acquisition in a multiuser, multitasking Unix environment, addressing of computer main memory for the control of hardware devices, and limitation of computer main memory were resolved, and their solutions are presented. The time-resolved EPR system and the data acquisition and analysis programs, written entirely in C, are described. Furthermore, the benefits of utilizing the Unix operating system and the C language are discussed, and system performance is illustrated with time-resolved EPR spectra of the reaction center cation in photosystem 1 of green plant photosynthesis.

  10. Investigation of laser induced breakdown in liquid nitromethane using nanosecond shadowgraphy

    NASA Astrophysics Data System (ADS)

    Guo, Wencan; Zheng, Xianxu; Yu, Guoyang; Zhao, Jun; Zeng, Yangyang; Liu, Cangli

    2016-09-01

    A nanosecond time-resolved shadowgraphy is performed to observe a laser-induced breakdown in nitromethane. The digital delays are introduced between a pump beam and an illumination light to achieve a measuring range from 40 ns to 100 ms, which enable us to study the shock wave propagation, bubble dynamics, and other process of the laser-induced breakdown. Compared with distilled water, there are two obvious differences observed in nitromethane: (1) the production of a non-evaporative gas at the final stage, and (2) an absence of the secondary shock wave after the first collapse of the bubble. We also calculated the bubble energy in nitromethane and distilled water under a different incident energy. The results indicate that the bubble energy in nitromethane is more than twice as large as that in water. It is suggested that chemical reactions contribute to the releasing of energy.

  11. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluckiger, L.; Rupp, D.; Adolph, M.

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  12. Time-resolved x-ray imaging of a laser-induced nanoplasma and its neutral residuals

    DOE PAGES

    Fluckiger, L.; Rupp, D.; Adolph, M.; ...

    2016-04-13

    The evolution of individual, large gas-phase xenon clusters, turned into a nanoplasma by a high power infrared laser pulse, is tracked from femtoseconds up to nanoseconds after laser excitation via coherent diffractive imaging, using ultra-short soft x-ray free electron laser pulses. A decline of scattering signal at high detection angles with increasing time delay indicates a softening of the cluster surface. Here we demonstrate, for the first time a representative speckle pattern of a new stage of cluster expansion for xenon clusters after a nanosecond irradiation. The analysis of the measured average speckle size and the envelope of the intensitymore » distribution reveals a mean cluster size and length scale of internal density fluctuations. Furthermore, the measured diffraction patterns were reproduced by scattering simulations which assumed that the cluster expands with pronounced internal density fluctuations hundreds of picoseconds after excitation.« less

  13. Transient-state kinetic approach to mechanisms of enzymatic catalysis.

    PubMed

    Fisher, Harvey F

    2005-03-01

    Transient-state kinetics by its inherent nature can potentially provide more directly observed detailed resolution of discrete events in the mechanistic time courses of enzyme-catalyzed reactions than its more widely used steady-state counterpart. The use of the transient-state approach, however, has been severely limited by the lack of any theoretically sound and applicable basis of interpreting the virtual cornucopia of time and signal-dependent phenomena that it provides. This Account describes the basic kinetic behavior of the transient state, critically examines some currently used analytic methods, discusses the application of a new and more soundly based "resolved component transient-state time-course method" to the L-glutamate-dehydrogenase reaction, and establishes new approaches for the analysis of both single- and multiple-step substituted transient-state kinetic isotope effects.

  14. ULTRAFAST CHEMISTRY: Using Time-Resolved Vibrational Spectroscopy for Interrogation of Structural Dynamics

    NASA Astrophysics Data System (ADS)

    Nibbering, Erik T. J.; Fidder, Henk; Pines, Ehud

    2005-05-01

    Time-resolved infrared (IR) and Raman spectroscopy elucidates molecular structure evolution during ultrafast chemical reactions. Following vibrational marker modes in real time provides direct insight into the structural dynamics, as is evidenced in studies on intramolecular hydrogen transfer, bimolecular proton transfer, electron transfer, hydrogen bonding during solvation dynamics, bond fission in organometallic compounds and heme proteins, cis-trans isomerization in retinal proteins, and transformations in photochromic switch pairs. Femtosecond IR spectroscopy monitors the site-specific interactions in hydrogen bonds. Conversion between excited electronic states can be followed for intramolecular electron transfer by inspection of the fingerprint IR- or Raman-active vibrations in conjunction with quantum chemical calculations. Excess internal vibrational energy, generated either by optical excitation or by internal conversion from the electronic excited state to the ground state, is observable through transient frequency shifts of IR-active vibrations and through nonequilibrium populations as deduced by Raman resonances.

  15. Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements--method, rationale, and results on the activation energy of dioxygen formation.

    PubMed

    Buchta, Joachim; Grabolle, Markus; Dau, Holger

    2007-06-01

    The analysis of the time-resolved delayed fluorescence (DF) measurements represents an important tool to study quantitatively light-induced electron transfer as well as associated processes, e.g. proton movements, at the donor side of photosystem II (PSII). This method can provide, inter alia, insights in the functionally important inner-protein proton movements, which are hardly detectable by conventional spectroscopic approaches. The underlying rationale and experimental details of the method are described. The delayed emission of chlorophyll fluorescence of highly active PSII membrane particles was measured in the time domain from 10 mus to 60 ms after each flash of a train of nanosecond laser pulses. Focusing on the oxygen-formation step induced by the third flash, we find that the recently reported formation of an S4-intermediate prior to the onset of O-O bond formation [M. Haumann, P. Liebisch, C. Müller, M. Barra, M. Grabolle, H. Dau, Science 310, 1019-1021, 2006] is a multiphasic process, as anticipated for proton movements from the manganese complex of PSII to the aqueous bulk phase. The S4-formation involves three or more likely sequential steps; a tri-exponential fit yields time constants of 14, 65, and 200 mus (at 20 degrees C, pH 6.4). We determine that S4-formation is characterized by a sizable difference in Gibbs free energy of more than 90 meV (20 degrees C, pH 6.4). In the second part of the study, the temperature dependence (-2.7 to 27.5 degrees C) of the rate constant of dioxygen formation (600/s at 20 degrees C) was investigated by analysis of DF transients. If the activation energy is assumed to be temperature-independent, a value of 230 meV is determined. There are weak indications for a biphasicity in the Arrhenius plot, but clear-cut evidence for a temperature-dependent switch between two activation energies, which would point to the existence of two distinct rate-limiting steps, is not obtained.

  16. OGLE-IV Real-Time Transient Search

    NASA Astrophysics Data System (ADS)

    Wyrzykowski, Ł.; Kostrzewa-Rutkowska, Z.; Kozłowski, S.; Udalski, A.; Poleski, R.; Skowron, J.; Blagorodnova, N.; Kubiak, M.; Szymański, M. K.; Pietrzyński, G.; Soszyński, I.; Ulaczyk, K.; Pietrukowicz, P.; Mróz, P.

    2014-09-01

    We present the design and first results of a real-time search for transients within the 650 sq. deg. area around the Magellanic Clouds, conducted as part of the OGLE-IV project and aimed at detecting supernovae, novae and other events. The average sampling of about four days from September to May, yielded a detection of 238 transients in 2012/2013 and 2013/2014 seasons. The superb photometric and astrometric quality of the OGLE data allows for numerous applications of the discovered transients. We use this sample to prepare and train a Machine Learning-based automated classifier for early light curves, which distinguishes major classes of transients with more than 80% of correct answers. Spectroscopically classified 49 supernovae Type Ia are used to construct a Hubble Diagram with statistical scatter of about 0.3 mag and fill the least populated region of the redshifts range in the Union sample. We investigate the influence of host galaxy environments on supernovae statistics and find the mean host extinction of AI=0.19±0.10 mag and AV=0.39±0.21 mag based on a subsample of supernovae Type Ia. We show that the positional accuracy of the survey is of the order of 0.5 pixels (0.13'') and that the OGLE-IV Transient Detection System is capable of detecting transients within the nuclei of galaxies. We present a few interesting cases of nuclear transients of unknown type. All data on the OGLE transients are made publicly available to the astronomical community via the OGLE website.

  17. Charge carrier dynamics in organic semiconductors and their donor-acceptor composites: Numerical modeling of time-resolved photocurrent

    NASA Astrophysics Data System (ADS)

    Johnson, Brian; Kendrick, Mark J.; Ostroverkhova, Oksana

    2013-09-01

    We present a model that describes nanosecond (ns) time-scale photocurrent dynamics in functionalized anthradithiophene (ADT) films and ADT-based donor-acceptor (D/A) composites. By fitting numerically simulated photocurrents to experimental data, we quantify contributions of multiple pathways of charge carrier photogeneration to the photocurrent, as well as extract parameters that characterize charge transport (CT) in organic films including charge carrier mobilities, trap densities, hole trap depth, and trapping and recombination rates. In pristine ADT films, simulations revealed two competing charge photogeneration pathways: fast, occurring on picosecond (ps) or sub-ps time scales with efficiencies below 10%, and slow, which proceeds at the time scale of tens of nanoseconds, with efficiencies of about 11%-12%, at the applied electric fields of 40-80 kV/cm. The relative contribution of these pathways to the photocurrent was electric field dependent, with the contribution of the fast process increasing with applied electric field. However, the total charge photogeneration efficiency was weakly electric field dependent exhibiting values of 14%-20% of the absorbed photons. The remaining 80%-86% of the photoexcitation did not contribute to charge carrier generation at these time scales. In ADT-based D/A composites with 2 wt.% acceptor concentration, an additional pathway of charge photogeneration that proceeds via CT exciton dissociation contributed to the total charge photogeneration. In the composite with the functionalized pentacene (Pn) acceptor, which exhibits strong exciplex emission from a tightly bound D/A CT exciton, the contribution of the CT state to charge generation was small, ˜8%-12% of the total number of photogenerated charge carriers, dependent on the electric field. In contrast, in the composite with PCBM acceptor, the CT state contributed about a half of all photogenerated charge carriers. In both D/A composites, the charge carrier mobilities were

  18. Characterization of the startup transient electrokinetic flow in rectangular channels of arbitrary dimensions, zeta potential distribution, and time-varying pressure gradient.

    PubMed

    Miller, Andrew; Villegas, Arturo; Diez, F Javier

    2015-03-01

    The solution to the startup transient EOF in an arbitrary rectangular microchannel is derived analytically and validated experimentally. This full 2D transient solution describes the evolution of the flow through five distinct periods until reaching a final steady state. The derived analytical velocity solution is validated experimentally for different channel sizes and aspect ratios under time-varying pressure gradients. The experiments used a time resolved micro particle image velocimetry technique to calculate the startup transient velocity profiles. The measurements captured the effect of time-varying pressure gradient fields derived in the analytical solutions. This is tested by using small reservoirs at both ends of the channel which allowed a time-varying pressure gradient to develop with a time scale on the order of the transient EOF. Results showed that under these common conditions, the effect of the pressure build up in the reservoirs on the temporal development of the transient startup EOF in the channels cannot be neglected. The measurements also captured the analytical predictions for channel walls made of different materials (i.e., zeta potentials). This was tested in channels that had three PDMS and one quartz wall, resulting in a flow with an asymmetric velocity profile due to variations in the zeta potential between the walls. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Application of time-resolved shadowgraph imaging and computer analysis to study micrometer-scale response of superfluid helium

    NASA Astrophysics Data System (ADS)

    Sajjadi, Seyed; Buelna, Xavier; Eloranta, Jussi

    2018-01-01

    Application of inexpensive light emitting diodes as backlight sources for time-resolved shadowgraph imaging is demonstrated. The two light sources tested are able to produce light pulse sequences in the nanosecond and microsecond time regimes. After determining their time response characteristics, the diodes were applied to study the gas bubble formation around laser-heated copper nanoparticles in superfluid helium at 1.7 K and to determine the local cavitation bubble dynamics around fast moving metal micro-particles in the liquid. A convolutional neural network algorithm for analyzing the shadowgraph images by a computer is presented and the method is validated against the results from manual image analysis. The second application employed the red-green-blue light emitting diode source that produces light pulse sequences of the individual colors such that three separate shadowgraph frames can be recorded onto the color pixels of a charge-coupled device camera. Such an image sequence can be used to determine the moving object geometry, local velocity, and acceleration/deceleration. These data can be used to calculate, for example, the instantaneous Reynolds number for the liquid flow around the particle. Although specifically demonstrated for superfluid helium, the technique can be used to study the dynamic response of any medium that exhibits spatial variations in the index of refraction.

  20. Monolithic Microfluidic Mixing-Spraying Devices for Time-Resolved Cryo-Electron Microscopy

    PubMed Central

    Lu, Zonghuan; Shaikh, Tanvir R.; Barnard, David; Meng, Xing; Mohamed, Hisham; Yassin, Aymen; Mannella, Carmen A.; Agrawal, Rajendra K.; Lu, Toh-Ming

    2009-01-01

    The goal of time-resolved cryo-electron microscopy is to determine structural models for transient functional states of large macromolecular complexes such as ribosomes and viruses. The challenge of time-resolved cryo-electron microscopy is to rapidly mix reactants, and then, following a defined time interval, to rapidly deposit them as a thin film and freeze the sample to the vitreous state. Here we describe a methodology in which reaction components are mixed and allowed to react, and are then sprayed onto an EM grid as it is being plunged into cryogen. All steps are accomplished by a monolithic, microfabricated silicon device that incorporates a mixer, reaction channel, and pneumatic sprayer in a single chip. We have found that microdroplets produced by air atomization spread to sufficiently thin films on a millisecond time scale provided that the carbon supporting film is made suitably hydrophilic. The device incorporates two T-mixers flowing into a single channel of four butterfly-shaped mixing elements that ensure effective mixing, followed by a microfluidic reaction channel whose length can be varied to achieve the desired reaction time. The reaction channel is flanked by two ports connected to compressed humidified nitrogen gas (at 50 psi) to generate the spray. The monolithic mixer-sprayer is incorporated into a computer-controlled plunging apparatus. To test the mixing performance and the suitability of the device for preparation of biological macromolecules for cryo-EM, ribosomes and ferritin were mixed in the device and sprayed onto grids. Three-dimensional reconstructions of the ribosomes demonstrated retention of native structure, and 30S and 50S subunits were shown to be capable of reassociation into ribosomes after passage through the device. PMID:19683579

  1. Design and evaluation of a device for fast multispectral time-resolved fluorescence spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Yankelevich, Diego R.; Ma, Dinglong; Liu, Jing; Sun, Yang; Sun, Yinghua; Bec, Julien; Elson, Daniel S.; Marcu, Laura

    2014-03-01

    The application of time-resolved fluorescence spectroscopy (TRFS) to in vivo tissue diagnosis requires a method for fast acquisition of fluorescence decay profiles in multiple spectral bands. This study focusses on development of a clinically compatible fiber-optic based multispectral TRFS (ms-TRFS) system together with validation of its accuracy and precision for fluorescence lifetime measurements. It also presents the expansion of this technique into an imaging spectroscopy method. A tandem array of dichroic beamsplitters and filters was used to record TRFS decay profiles at four distinct spectral bands where biological tissue typically presents fluorescence emission maxima, namely, 390, 452, 542, and 629 nm. Each emission channel was temporally separated by using transmission delays through 200 μm diameter multimode optical fibers of 1, 10, 19, and 28 m lengths. A Laguerre-expansion deconvolution algorithm was used to compensate for modal dispersion inherent to large diameter optical fibers and the finite bandwidth of detectors and digitizers. The system was found to be highly efficient and fast requiring a few nano-Joule of laser pulse energy and <1 ms per point measurement, respectively, for the detection of tissue autofluorescent components. Organic and biological chromophores with lifetimes that spanned a 0.8-7 ns range were used for system validation, and the measured lifetimes from the organic fluorophores deviated by less than 10% from values reported in the literature. Multi-spectral lifetime images of organic dye solutions contained in glass capillary tubes were recorded by raster scanning the single fiber probe in a 2D plane to validate the system as an imaging tool. The lifetime measurement variability was measured indicating that the system provides reproducible results with a standard deviation smaller than 50 ps. The ms-TRFS is a compact apparatus that makes possible the fast, accurate, and precise multispectral time-resolved fluorescence lifetime

  2. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  3. Near-membrane [Ca2+] transients resolved using the Ca2+ indicator FFP18.

    PubMed

    Etter, E F; Minta, A; Poenie, M; Fay, F S

    1996-05-28

    (Ca2+)-sensitive processes at cell membranes involved in contraction, secretion, and neurotransmitter release are activated in situ or in vitro by Ca2+ concentrations ([Ca2+]) 10-100 times higher than [Ca2+] measured during stimulation in intact cells. This paradox might be explained if the local [Ca2+] at the cell membrane is very different from that in the rest of the cell. Soluble Ca2+ indicators, which indicate spatially averaged cytoplasmic [Ca2+], cannot resolve these localized, near-membrane [Ca2+] signals. FFP18, the newest Ca2+ indicator designed to selectively monitor near-membrane [Ca2+], has a lower Ca2+ affinity and is more water soluble than previously used membrane-associating Ca2+ indicators. Images of the intracellular distribution of FFP18 show that >65% is located on or near the plasma membrane. [Ca2+] transients recorded using FFP18 during membrane depolarization-induced Ca2+ influx show that near-membrane [Ca2+] rises faster and reaches micromolar levels at early times when the cytoplasmic [Ca2+], recorded using fura-2, has risen to only a few hundred nanomolar. High-speed series of digital images of [Ca2+] show that near-membrane [Ca2+], reported by FFP18, rises within 20 msec, peaks at 50-100 msec, and then declines. [Ca2+] reported by fura-2 rose slowly and continuously throughout the time images were acquired. The existence of these large, rapid increases in [Ca2+] directly beneath the surface membrane may explain how numerous (Ca2+)-sensitive membrane processes are activated at times when bulk cytoplasmic [Ca2+] changes are too small to activate them.

  4. SVD-aided pseudo principal-component analysis: A new method to speed up and improve determination of the optimum kinetic model from time-resolved data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oang, Key Young; Yang, Cheolhee; Muniyappan, Srinivasan

    Determination of the optimum kinetic model is an essential prerequisite for characterizing dynamics and mechanism of a reaction. Here, we propose a simple method, termed as singular value decomposition-aided pseudo principal-component analysis (SAPPA), to facilitate determination of the optimum kinetic model from time-resolved data by bypassing any need to examine candidate kinetic models. We demonstrate the wide applicability of SAPPA by examining three different sets of experimental time-resolved data and show that SAPPA can efficiently determine the optimum kinetic model. In addition, the results of SAPPA for both time-resolved X-ray solution scattering (TRXSS) and transient absorption (TA) data of themore » same protein reveal that global structural changes of protein, which is probed by TRXSS, may occur more slowly than local structural changes around the chromophore, which is probed by TA spectroscopy.« less

  5. Intracellular cavitation as a mechanism of short-pulse laser injury to the retinal pigment epithelium

    NASA Astrophysics Data System (ADS)

    Kelly, Michael William

    This research was primarily motivated to determine the retinal injury mechanism from ultra-short pulse (<1ns) lasers. The American National Standards Institute, ANSI, standards for safe retinal exposures, and mechanisms for injury, are established for pulse durations longer than 1 ns. Little data exists for shorter pulse durations. High temperatures and pressures, generated within pigmented melanosomes, leads to mechanically mediated injury for such exposures. We used nanosecond time resolved imaging to evaluate transient photo-mechanical effects on isolated melanosomes, pigmented cell cultures, and the retinal pigment epithelium, RPE, ex-vivo. Exposures between 20 ns and 100 fs were performed. We developed a unique ex-vivo model to examine transient events directly on the RPE. Evaluation of cell viability was accomplished in real time, minutes after the exposure. The threshold for cavitation (bubble formation) around single melanosomes corresponded with the threshold for intracellular cavitation and cell killing, in the nanosecond and picosecond domain. Shock waves, formed around melanosomes following sub-nanosecond exposures, did not affect the mechanism for cell killing at threshold. Although the wavelength was increased for shorter exposures (3 ps, 300 fs, and 100 fs) the threshold for intracellular cavitation decreased. All results were compared with data collected by others, using live animal models.

  6. Disentangling the photodissociation pathways of small lead clusters by time-resolved monitoring of their delayed decays: the case of {{{\\rm{P}}{\\rm{b}}}_{31}}^{+}

    NASA Astrophysics Data System (ADS)

    Wolfram, Markus; König, Stephan; Bandelow, Steffi; Fischer, Paul; Jankowski, Alexander; Marx, Gerrit; Schweikhard, Lutz

    2018-02-01

    Lead clusters {{{{Pb}}}{n}}+/- in the size range between about n = 15 and 40 have recently shown to exhibit complex dissociation spectra due to sequential and competing decays. In order to disentangle the pathways the exemplary {{{{Pb}}}31}+ clusters have been stored and size selected in a Penning trap and irradiated by nanosecond laser pulses. We present time-resolved measurements at time scales from several tens of microseconds to several hundreds of milliseconds. The study results in strong evidence that {{{{Pb}}}31}+ decays not only by neutral monomer evaporation but also by neutral heptamers breaking off. In addition, the decays are further followed to smaller products. The corresponding decay and growth times show that {{{{Pb}}}30}+ also dissociates by either monomer evaporation or heptamer break-off. Furthermore, the product {{{{Pb}}}17}+ may well be a result of heptamer break-off from {{{{Pb}}}24}+—as the second step of a sequential heptamer decay.

  7. Real-time detection of optical transients with RAPTOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borozdin, K. N.; Brumby, Steven P.; Galassi, M. C.

    2002-01-01

    Fast variability of optical objects is an interesting though poorly explored subject in modern astronomy. Real-time data processing and identification of transient, celestial events in the images is very important, for such study as it allows rapid follow-up with more sensitive instruments, We discuss an approach which we have chosen for the RAPTOR project which is a pioneering close-loop system combining real-time transient detection with rapid follow-up. Our data processing pipeline is able to identify and localize an optical transient within seconds after the observation. We describe the challenges we met, solutions we found and some results obtained in ourmore » search for fast optical transients. The software pipeline we have developed for RAPTOR can easily be applied to the data from other experiments.« less

  8. Sub-nanosecond resolution electric field measurements during ns pulse breakdown in ambient air

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Goldberg, Ben; Gulko, Ilya; Frederickson, Kraig; Adamovich, Igor V.

    2018-01-01

    Electric field during ns pulse discharge breakdown in ambient air has been measured by ps four-wave mixing, with temporal resolution of 0.2 ns. The measurements have been performed in a diffuse plasma generated in a dielectric barrier discharge, in plane-to-plane geometry. Absolute calibration of the electric field in the plasma is provided by the Laplacian field measured before breakdown. Sub-nanosecond time resolution is obtained by using a 150 ps duration laser pulse, as well as by monitoring the timing of individual laser shots relative to the voltage pulse, and post-processing four-wave mixing signal waveforms saved for each laser shot, placing them in the appropriate ‘time bins’. The experimental data are compared with the analytic solution for time-resolved electric field in the plasma during pulse breakdown, showing good agreement on ns time scale. Qualitative interpretation of the data illustrates the effects of charge separation, charge accumulation/neutralization on the dielectric surfaces, electron attachment, and secondary breakdown. Comparison of the present data with more advanced kinetic modeling is expected to provide additional quantitative insight into air plasma kinetics on ~ 0.1-100 ns scales.

  9. Improvements in brain activation detection using time-resolved diffuse optical means

    NASA Astrophysics Data System (ADS)

    Montcel, Bruno; Chabrier, Renee; Poulet, Patrick

    2005-08-01

    An experimental method based on time-resolved absorbance difference is described. The absorbance difference is calculated over each temporal step of the optical signal with the time-resolved Beer-Lambert law. Finite element simulations show that each step corresponds to a different scanned zone and that cerebral contribution increases with the arrival time of photons. Experiments are conducted at 690 and 830 nm with a time-resolved system consisting of picosecond laser diodes, micro-channel plate photo-multiplier tube and photon counting modules. The hemodynamic response to a short finger tapping stimulus is measured over the motor cortex. Time-resolved absorbance difference maps show that variations in the optical signals are not localized in superficial regions of the head, which testify for their cerebral origin. Furthermore improvements in the detection of cerebral activation is achieved through the increase of variations in absorbance by a factor of almost 5 for time-resolved measurements as compared to non-time-resolved measurements.

  10. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses

    PubMed Central

    Smith, Kyle C.; Weaver, James C.

    2012-01-01

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (~16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. PMID:21756883

  11. Spectral and temporal characteristics of target current and electromagnetic pulse induced by nanosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Krása, J.; De Marco, M.; Cikhardt, J.; Pfeifer, M.; Velyhan, A.; Klír, D.; Řezáč, K.; Limpouch, J.; Krouský, E.; Dostál, J.; Ullschmied, J.; Dudžák, R.

    2017-06-01

    The current balancing the target charging and the emission of transient electromagnetic pulses (EMP) driven by the interaction of a focused 1.315 μm iodine 300 ps PALS laser with metallic and plastic targets were measured with the use of inductive probes. It is experimentally proven that the duration of return target currents and EMPs is much longer than the duration of laser-target interaction. The laser-produced plasma is active after the laser-target interaction. During this phase, the target acts as a virtual cathode and the plasma-target interface expands. A double exponential function is used in order to obtain the temporal characteristics of EMP. The rise time of EMPs fluctuates in the range up to a few tens of nanoseconds. Frequency spectra of EMP and target currents are modified by resonant frequencies of the interaction chamber.

  12. Low charge state heavy ion production with sub-nanosecond laser.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the difference of generated plasma using the Zirconium target.

  13. Energetics and dynamics through time-resolved measurements in mass spectrometry

    NASA Astrophysics Data System (ADS)

    Lifshitz, Chava

    Results of recent work on time-resolved photoionization and electron ionization mass spectrometry carried out in Jerusalem are reviewed. Time-resolved photoionization mass spectrometry in the vacuum ultraviolet is applied to polycyclic aromatic hydrocarbons, for example naphthalene, pyrene and fluoranthene as well as to some bromo derivatives (bromonaphthalene and bromoanthracene). Time-resolved photoionization efficiency curves are modelled by Rice-Ramsperger-Kassel-Marcus QET rate-energy k ( E ) dependences of the unimolecular dissociative processes and by the rate process infrared radiative relaxation k . Experimental results are augmented by time-resolved photorad dissociation data for the same species, whenever available. Kinetic shifts, conventional and intrinsic (due to competition between dissociative and radiative decay), are evaluated. Activation parameters (activation energies and entropies) are deduced. Thermochemical information is obtained including bond energies and ionic heats of formation. Fullerenes, notably C , are studied by time-resolved electron ionization and a large intrinsic shift, due to competition with black-bodylike radiative decay in the visible is discussed.

  14. Emerging biomedical applications of time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lakowicz, Joseph R.; Szmacinski, Henryk; Koen, Peter A.

    1994-07-01

    Time-resolved fluorescence spectroscopy is presently regarded as a research tool in biochemistry, biophysics, and chemical physics. Advances in laser technology, the development of long-wavelength probes, and the use of lifetime-based methods are resulting in the rapid migration of time-resolved fluorescence to the clinical chemistry lab, to the patient's bedside, to flow cytometers, to the doctor's office, and even to home health care. Additionally, time-resolved imaging is now a reality in fluorescence microscopy, and will provide chemical imaging of a variety of intracellular analytes and/or cellular phenomena. In this overview paper we attempt to describe some of the opportunities available using chemical sensing based on fluorescence lifetimes, and to predict those applications of lifetime-based sensing which are most likely in the near future.

  15. Application of time-resolved glucose concentration photoacoustic signals based on an improved wavelet denoising

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen

    2014-10-01

    Real-time monitoring of blood glucose concentration (BGC) is a great important procedure in controlling diabetes mellitus and preventing the complication for diabetic patients. Noninvasive measurement of BGC has already become a research hotspot because it can overcome the physical and psychological harm. Photoacoustic spectroscopy is a well-established, hybrid and alternative technique used to determine the BGC. According to the theory of photoacoustic technique, the blood is irradiated by plused laser with nano-second repeation time and micro-joule power, the photoacoustic singals contained the information of BGC are generated due to the thermal-elastic mechanism, then the BGC level can be interpreted from photoacoustic signal via the data analysis. But in practice, the time-resolved photoacoustic signals of BGC are polluted by the varities of noises, e.g., the interference of background sounds and multi-component of blood. The quality of photoacoustic signal of BGC directly impacts the precision of BGC measurement. So, an improved wavelet denoising method was proposed to eliminate the noises contained in BGC photoacoustic signals. To overcome the shortcoming of traditional wavelet threshold denoising, an improved dual-threshold wavelet function was proposed in this paper. Simulation experimental results illustrated that the denoising result of this improved wavelet method was better than that of traditional soft and hard threshold function. To varify the feasibility of this improved function, the actual photoacoustic BGC signals were test, the test reslut demonstrated that the signal-to-noises ratio(SNR) of the improved function increases about 40-80%, and its root-mean-square error (RMSE) decreases about 38.7-52.8%.

  16. Artifacts in time-resolved Kelvin probe force microscopy

    DOE PAGES

    Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.

    2018-04-24

    Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less

  17. Artifacts in time-resolved Kelvin probe force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.

    Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less

  18. Time Resolved Spectroscopic Studies on a Novel Synthesized Photo-Switchable Organic Dyad and Its Nanocomposite Form in Order to Develop Light Energy Conversion Devices.

    PubMed

    Dutta Pal, Gopa; Paul, Abhijit; Yadav, Somnath; Bardhan, Munmun; De, Asish; Chowdhury, Joydeep; Jana, Aindrila; Ganguly, Tapan

    2015-08-01

    UV-vis absorption, steady state and time resolved spectroscopic investigations in pico and nanosecond time domain were made in the different environments on a novel synthesized dyad, 3-(2-methoxynaphthalen-1-yl)-1-(4-methoxyphenyl)prop-2-en-1-one (MNTMA) in its pristine form and when combined with gold (Au) nanoparticles i.e., in its nanocomposite structure. Both steady state and time resolved measurements coupled with the DFT calculations performed by using Gaussian 03 suit of software operated in the linux operating system show that though the dyad exhibits mainly the folded conformation in the ground state but on photoexcitation the nanocomposite form of dyad prefers to be in elongated structure in the excited state indicating its photoswitchable nature. Due to the predominancy of elongated isomeric form of the dyad in the excited state in presence of Au Nps, it appears that the dyad MNTMA may behave as a good light energy converter specially in its nanocomposite form. As larger charge separation rate (kcs ~ 4 x 10(8) s-1) is found relative to the rate associated with the energy wasting charge recombination processes (kcR ~ 3 x 10(5) s-1) in the nanocomposite form of the dyad, it demonstrates the suitability of constructing the efficient light energy conversion devices with Au-dyad hybrid nanomaterials.

  19. Nanosecond pulsed humid Ar plasma jet in air: shielding, discharge characteristics and atomic hydrogen production

    NASA Astrophysics Data System (ADS)

    Yatom, Shurik; Luo, Yuchen; Xiong, Qing; Bruggeman, Peter J.

    2017-10-01

    Gas phase non-equilibrium plasmas jets containing water vapor are of growing interest for many applications. In this manuscript, we report a detailed study of an atmospheric pressure nanosecond pulsed Ar  +  0.26% H2O plasma jet. The plasma jet operates in an atmospheric pressure air surrounding but is shielded with a coaxial argon flow to limit the air diffusion into the jet effluent core. The jet impinges on a metal plate electrode and produces a stable plasma filament (transient spark) between the needle electrode in the jet and the metal plate. The stable plasma filament is characterized by spatially and time resolved electrical and optical diagnostics. This includes Rayleigh scattering, Stark broadening of the hydrogen Balmer lines and two-photon absorption laser induced fluorescence (TaLIF) to obtain the gas temperature, the electron density and the atomic hydrogen density respectively. Electron densities and atomic hydrogen densities up to 5 × 1022 m-3 and 2 × 1022 m-3 have been measured. This shows that atomic hydrogen is one of the main species in high density Ar-H2O plasmas. The gas temperature does not exceed 550 K in the core of the plasma. To enable in situ calibration of the H TaLIF at atmospheric pressure a previously published O density calibration scheme is extended to include a correction for the line profiles by including overlap integrals as required by H TaLIF. The line width of H TaLIF, due to collision broadening has the same trend as the neutral density obtained by Rayleigh scattering. This suggests the possibility to use this technique to in situ probe neutral gas densities.

  20. Role of phase instabilities in the early response of bulk fused silica during laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Demange, P.; Negres, R. A.; Raman, R. N.; Colvin, J. D.; Demos, S. G.

    2011-08-01

    We report on the experimental and hydrocode modeling investigation of the early material response to localized energy deposition via nanosecond laser pulses in bulk fused silica. A time-resolved microscope system was used to acquire transient images with adequate spatial and temporal resolution to resolve the material behavior from the onset of the process. These images revealed a high-pressure shock front propagating at twice the speed of sound at ambient conditions and bounding a region of modified material at delays up to one nanosecond. Hydrocode simulations matching the experimental conditions were also performed and indicated initial pressures of ˜40 GPa and temperatures of ˜1 eV at the absorption region. Both the simulations and the image data show a clear boundary between distinct material phases, a hot plasma and solid silica, with a suggestion that growth of perturbations at the Rayleigh-Taylor unstable interface between the two phases is the seed mechanism for the growth of cracks into the stressed solid.

  1. Dynamics of Molecular Emission Features from Nanosecond, Femtosecond Laser and Filament Ablation Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harilal, Sivanandan S.; Yeak, J.; Brumfield, Brian E.

    2016-06-15

    The evolutionary paths of molecular species and nanoparticles in laser ablation plumes are not well understood due to the complexity of numerous physical processes that occur simultaneously in a transient laser-plasma system. It is well known that the emission features of ions, atoms, molecules and nanoparticles in a laser ablation plume strongly depend on the laser irradiation conditions. In this letter we report the temporal emission features of AlO molecules in plasmas generated using a nanosecond laser, a femtosecond laser and filaments generated from a femtosecond laser. Our results show that, at a fixed laser energy, the persistence of AlOmore » is found to be highest and lowest in ns and filament laser plasmas respectively while molecular species are formed at early times for both ultrashort pulse (fs and filament) generated plasmas. Analysis of the AlO emission band features show that the vibrational temperature of AlO decays rapidly in filament assisted laser ablation plumes.« less

  2. Low charge state heavy ion production with sub-nanosecond laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanesue, T., E-mail: tkanesue@bnl.gov; Okamura, M.; Kumaki, M.

    2016-02-15

    We have investigated laser ablation plasma of various species using nanosecond and sub-nanosecond lasers for both high and low charge state ion productions. We found that with sub-nanosecond laser, the generated plasma has a long tail which has low charge state ions determined by an electrostatic ion analyzer even under the laser irradiation condition for highly charged ion production. This can be caused by insufficient laser absorption in plasma plume. This property might be suitable for low charge state ion production. We used a nanosecond laser and a sub-nanosecond laser for low charge state ion production to investigate the differencemore » of generated plasma using the Zirconium target.« less

  3. Distinction of brain tissue, low grade and high grade glioma with time-resolved fluorescence spectroscopy

    PubMed Central

    Yong, William H.; Butte, Pramod V.; Pikul, Brian K.; Jo, Javier A.; Fang, Qiyin; Papaioannou, Thanassis; Black, Keith L.; Marcu, Laura

    2010-01-01

    Neuropathology frozen section diagnoses are difficult in part because of the small tissue samples and the paucity of adjunctive rapid intraoperative stains. This study aims to explore the use of time-resolved laser-induced fluorescence spectroscopy as a rapid adjunctive tool for the diagnosis of glioma specimens and for distinction of glioma from normal tissues intraoperatively. Ten low grade gliomas, 15 high grade gliomas without necrosis, 6 high grade gliomas with necrosis and/or radiation effect, and 14 histologically uninvolved “normal” brain specimens are spectroscopicaly analyzed and contrasted. Tissue autofluorescence was induced with a pulsed Nitrogen laser (337 nm, 1.2 ns) and the transient intensity decay profiles were recorded in the 370-500 nm spectral range with a fast digitized (0.2 ns time resolution). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site were used for tissue characterization. A linear discriminant analysis diagnostic algorithm was used for tissue classification. Both low and high grade gliomas can be distinguished from histologically uninvolved cerebral cortex and white matter with high accuracy (above 90%). In addition, the presence or absence of treatment effect and/or necrosis can be identified in high grade gliomas. Taking advantage of tissue autofluorescence, this technique facilitates a direct and rapid investigation of surgically obtained tissue. PMID:16368511

  4. Transient times in linear metabolic pathways under constant affinity constraints.

    PubMed

    Lloréns, M; Nuño, J C; Montero, F

    1997-10-15

    In the early seventies, Easterby began the analytical study of transition times for linear reaction schemes [Easterby (1973) Biochim. Biophys. Acta 293, 552-558]. In this pioneer work and in subsequent papers, a state function (the transient time) was used to measure the period before the stationary state, for systems constrained to work under both constant and variable input flux, was reached. Despite the undoubted usefulness of this quantity to describe the time-dependent features of these kinds of systems, its application to the study of chemical reactions under other constraints is questionable. In the present work, a generalization of these magnitudes to linear metabolic pathways functioning under a constant-affinity constraint is carried out. It is proved that classical definitions of transient times do not reflect the actual properties of the transition to the steady state in systems evolving under this restriction. Alternatively, a more adequate framework for interpretation of the transient times for systems with both constant and variable input flux is suggested. Within this context, new definitions that reflect more accurately the transient characteristics of constant affinity systems are stated. Finally, the meaning of these transient times is discussed.

  5. Transmembrane molecular transport during versus after extremely large, nanosecond electric pulses.

    PubMed

    Smith, Kyle C; Weaver, James C

    2011-08-19

    Recently there has been intense and growing interest in the non-thermal biological effects of nanosecond electric pulses, particularly apoptosis induction. These effects have been hypothesized to result from the widespread creation of small, lipidic pores in the plasma and organelle membranes of cells (supra-electroporation) and, more specifically, ionic and molecular transport through these pores. Here we show that transport occurs overwhelmingly after pulsing. First, we show that the electrical drift distance for typical charged solutes during nanosecond pulses (up to 100 ns), even those with very large magnitudes (up to 10 MV/m), ranges from only a fraction of the membrane thickness (5 nm) to several membrane thicknesses. This is much smaller than the diameter of a typical cell (∼16 μm), which implies that molecular drift transport during nanosecond pulses is necessarily minimal. This implication is not dependent on assumptions about pore density or the molecular flux through pores. Second, we show that molecular transport resulting from post-pulse diffusion through minimum-size pores is orders of magnitude larger than electrical drift-driven transport during nanosecond pulses. While field-assisted charge entry and the magnitude of flux favor transport during nanosecond pulses, these effects are too small to overcome the orders of magnitude more time available for post-pulse transport. Therefore, the basic conclusion that essentially all transmembrane molecular transport occurs post-pulse holds across the plausible range of relevant parameters. Our analysis shows that a primary direct consequence of nanosecond electric pulses is the creation (or maintenance) of large populations of small pores in cell membranes that govern post-pulse transmembrane transport of small ions and molecules. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Spatially resolved and time-resolved imaging of transport of indirect excitons in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Dorow, C. J.; Hasling, M. W.; Calman, E. V.; Butov, L. V.; Wilkes, J.; Campman, K. L.; Gossard, A. C.

    2017-06-01

    We present the direct measurements of magnetoexciton transport. Excitons give the opportunity to realize the high magnetic-field regime for composite bosons with magnetic fields of a few tesla. Long lifetimes of indirect excitons allow the study of kinetics of magnetoexciton transport with time-resolved optical imaging of exciton photoluminescence. We performed spatially, spectrally, and time-resolved optical imaging of transport of indirect excitons in high magnetic fields. We observed that an increasing magnetic field slows down magnetoexciton transport. The time-resolved measurements of the magnetoexciton transport distance allowed for an experimental estimation of the magnetoexciton diffusion coefficient. An enhancement of the exciton photoluminescence energy at the laser excitation spot was found to anticorrelate with the exciton transport distance. A theoretical model of indirect magnetoexciton transport is presented and is in agreement with the experimental data.

  7. One-dimensional transient radiative transfer by lattice Boltzmann method.

    PubMed

    Zhang, Yong; Yi, Hongliang; Tan, Heping

    2013-10-21

    The lattice Boltzmann method (LBM) is extended to solve transient radiative transfer in one-dimensional slab containing scattering media subjected to a collimated short laser irradiation. By using a fully implicit backward differencing scheme to discretize the transient term in the radiative transfer equation, a new type of lattice structure is devised. The accuracy and computational efficiency of this algorithm are examined firstly. Afterwards, effects of the medium properties such as the extinction coefficient, the scattering albedo and the anisotropy factor, and the shapes of laser pulse on time-resolved signals of transmittance and reflectance are investigated. Results of the present method are found to compare very well with the data from the literature. For an oblique incidence, the LBM results in this paper are compared with those by Monte Carlo method generated by ourselves. In addition, transient radiative transfer in a two-Layer inhomogeneous media subjected to a short square pulse irradiation is investigated. At last, the LBM is further extended to study the transient radiative transfer in homogeneous medium with a refractive index discontinuity irradiated by the short pulse laser. Several trends on the time-resolved signals different from those for refractive index of 1 (i.e. refractive-index-matched boundary) are observed and analysed.

  8. A New Approach to Time-Resolved 3D-PTV

    NASA Astrophysics Data System (ADS)

    Boomsma, Aaron; Troolin, Dan; Bjorkquist, Dan; TSI Inc Team

    2017-11-01

    Volumetric three-component velocimetry via particle tracking is a powerful alternative to TomoPIV. It has been thoroughly documented that compared to TomoPIV, particle tracking velocimetry (PTV) methods (whether 2D or 3D) better resolve regions of high velocity gradient, identify fewer ghost particles, and are less computationally demanding, which results in shorter processing times. Recently, 3D-PTV has seen renewed interest in the PIV community with the availability of time-resolved data. Of course, advances in hardware are partly to thank for that availability-higher speed cameras, more effective memory management, and higher speed lasers. But in software, algorithms that utilize time resolved data to improve 3D particle reconstruction and particle tracking are also under development and advancing (e.g. shake-the-box, neighbor tracking reconstruction, etc.). .In the current study, we present a new 3D-PTV method that incorporates time-resolved data. We detail the method, its performance in terms of particle identification and reconstruction error and their relation to varying seeding densities, as well as computational performance.

  9. Time resolved thermal lens in edible oils

    NASA Astrophysics Data System (ADS)

    Albuquerque, T. A. S.; Pedreira, P. R. B.; Medina, A. N.; Pereira, J. R. D.; Bento, A. C.; Baesso, M. L.

    2003-01-01

    In this work time resolved thermal lens spectrometry is applied to investigate the optical properties of the following edible oils: soya, sunflower, canola, and corn oils. The experiments were performed at room temperature using the mode mismatched thermal lens configuration. The results showed that when the time resolved procedure is adopted the technique can be applied to investigate the photosensitivity of edible oils. Soya oil presented a stronger photochemical reaction as compared to the other investigated samples. This observation may be relevant for future studies evaluating edible oils storage conditions and also may contribute to a better understanding of the physical and chemical properties of this important foodstuff.

  10. Real Time Quantification of Ultrafast Photoinduced Bimolecular Electron Transfer Rate: Direct Probing of the Transient Intermediate.

    PubMed

    Mukherjee, Puspal; Biswas, Somnath; Sen, Pratik

    2015-08-27

    Fluorescence quenching studies through steady-state and time-resolved measurements are inadequate to quantify the bimolecular electron transfer rate in bulk homogeneous solution due to constraints from diffusion. To nullify the effect of diffusion, direct evaluation of the rate of formation of a transient intermediate produced upon the electron transfer is essential. Methyl viologen, a well-known electron acceptor, produces a radical cation after accepting an electron, which has a characteristic strong and broad absorption band centered at 600 nm. Hence it is a good choice to evaluate the rate of photoinduced electron transfer reaction employing femtosecond broadband transient absorption spectroscopy. The time constant of the aforementioned process between pyrene and methyl viologen in methanol has been estimated to be 2.5 ± 0.4 ps using the same technique. The time constant for the backward reaction was found to be 14 ± 1 ps. These values did not change with variation of concentration of quencher, i.e., methyl viologen. Hence, we can infer that diffusion has no contribution in the estimation of rate constants. However, on changing the solvent from methanol to ethanol, the time constant of the electron transfer reaction has been found to increase and has accounted for the change in solvent reorganization energy.

  11. Dynamic Optoelectronic Properties in Perovskite Oxide Thin Films Measured with Ultrafast Transient Absorption & Reflectance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Smolin, Sergey Y.

    -dependent, variable-angle spectroscopic ellipsometry and time-resolved ultrafast optical spectroscopy on a type I heterostructure, we clarify thermal and electronic contributions to spectral transients in LaFeO3. Upon comparison to thermally-derived static spectra of LaFeO3, we find that thermal contributions dominate the transient absorption and reflectance spectra above the band gap. A transient photoinduced absorption feature below the band gap at 1.9 eV is not reproduced in the thermally derived spectra and has significantly longer decay kinetics from the thermallyinduced features; therefore, this long lived photoinduced absorption is likely derived, at least partially, from photoexcited carriers with lifetimes much longer than 3 nanoseconds. LaFeO3 has a wide band gap of 2.4 eV but its absorption can be decreased with chemical substitution of Sr for Fe to make it more suitable for various applications. This type of A-site substitution is a common route to change static optical absorption in perovskite oxides, but there are no systematic studies looking at how A-site substitution changes dynamic optoelectronic properties. To understand the relationship between composition and static and dynamic optical properties we worked with the model system of La1-xSrxFeO 3-delta epitaxial films grown on LSAT, uncovering the effects of A-site cation substitution and oxygen stoichiometry. Variable-angle spectroscopic ellipsometry was used to measure static optical properties, revealing a linear increase in absorption coefficient at 1.25 eV and a red-shifting of the optical absorption edge with increasing Sr fraction. The absorption spectra can be similarly tuned through the introduction of oxygen vacancies, indicating the critical role that nominal Fe valence plays in optical absorption. Dynamic optoelectronic properties were studied with ultrafast transient reflectance spectroscopy with broadband visible (1.6 eV to 4 eV) and near-infrared (0.9 eV to 1.5 eV) probes. The sign of the reflectance

  12. Searching for optical transients in real-time : the RAPTOR experiment /.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestrand, W. T.; Borozdin, K. N.; Brumby, Steven P.

    2002-01-01

    A rich, but relatively unexplored, region in optical astronomy is the study of transients with durations of less than a day. We describe a wide-field optical monitoring system, RAPTOR, which is designed to identify and make follow-up observations of optical transients in real-time. The system is composed of an array of telescopes that continuously monitor about 1500 square degrees of the sky for transients down to about 12' magnitude in 60 seconds and a central fovea telescope that can reach 16{approx}m' agnitude in 60 seconds. Coupled to the telescope array is a real-time data analysis pipeline that is designed tomore » identify transients on timescales of seconds. In a manner analogous to human vision, the entire array is mounted on a rapidly slewing robotic mount so that the fovea of the array can be rapidly directed at transients identified by the wide-field system. The goal of the project is to develop a ground-based optical system that can reliably identify transients in real-time and ultimately generate alerts with source locations to enable follow-up observations wilh other, larger, telescopes.« less

  13. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yanwen; Decker, Franz-Josef; Turner, James

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  14. Pulse intensity characterization of the LCLS nanosecond double-bunch mode of operation

    DOE PAGES

    Sun, Yanwen; Decker, Franz-Josef; Turner, James; ...

    2018-03-27

    The recent demonstration of the 'nanosecond double-bunch' operation mode,i.e.two X-ray pulses separated in time between 0.35 and hundreds of nanoseconds and by increments of 0.35 ns, offers new opportunities to investigate ultrafast dynamics in diverse systems of interest. However, in order to reach its full potential, this mode of operation requires the precise characterization of the intensity of each X-ray pulse within each pulse pair for any time separation. Here, a transmissive single-shot diagnostic that achieves this goal for time separations larger than 0.7 ns with a precision better than 5% is presented. Lastly, it also provides real-time monitoring feedbackmore » to help tune the accelerator parameters to deliver double pulse intensity distributions optimized for specific experimental goals.« less

  15. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Wang, Hongtao; Qi, Ying; Mountziaris, T. J.; Salthouse, Christopher D.

    2014-05-01

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve the peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.

  16. A portable time-domain LED fluorimeter for nanosecond fluorescence lifetime measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hongtao; Salthouse, Christopher D., E-mail: salthouse@ecs.umass.edu; Center for Personalized Health Monitoring, University of Massachusetts, Amherst, Massachusetts 01003

    2014-05-15

    Fluorescence lifetime measurements are becoming increasingly important in chemical and biological research. Time-domain lifetime measurements offer fluorescence multiplexing and improved handling of interferers compared with the frequency-domain technique. In this paper, an all solid-state, filterless, and highly portable light-emitting-diode based time-domain fluorimeter (LED TDF) is reported for the measurement of nanosecond fluorescence lifetimes. LED based excitation provides more wavelengths options compared to laser diode based excitation, but the excitation is less effective due to the uncollimated beam, less optical power, and longer latency in state transition. Pulse triggering and pre-bias techniques were implemented in our LED TDF to improve themore » peak optical power to over 100 mW. The proposed pulsing circuit achieved an excitation light fall time of less than 2 ns. Electrical resetting technique realized a time-gated photo-detector to remove the interference of the excitation light with fluorescence. These techniques allow the LED fluorimeter to accurately measure the fluorescence lifetime of fluorescein down to concentration of 0.5 μM. In addition, all filters required in traditional instruments are eliminated for the non-attenuated excitation/emission light power. These achievements make the reported device attractive to biochemical laboratories seeking for highly portable lifetime detection devices for developing sensors based on fluorescence lifetime changes. The device was initially validated by measuring the lifetimes of three commercial fluorophores and comparing them with reported lifetime data. It was subsequently used to characterize a ZnSe quantum dot based DNA sensor.« less

  17. On the boundary flow using pulsed nanosecond DBD plasma actuators

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Jie; Cui, Y. D.; Li, Jiun-Ming; Zheng, Jian-Guo; Khoo, B. C.

    2018-05-01

    Our previous studies in quiescent air environment [Z. J. Zhao et al., AIAA J. 53(5) (2015) 1336; J. G. Zheng et al., Phys. Fluids 26(3) (2014) 036102] reveal experimentally and numerically that the shock wave generated by the nanosecond pulsed plasma is fundamentally a microblast wave. The shock-induced burst perturbations (overpressure and induced velocity) are found to be restricted to a very narrow region (about 1 mm) behind the shock front and last only for a few microseconds. These results indicate that the pulsed nanosecond dielectric barrier discharge (DBD) plasma actuator has stronger local effects in time and spatial domain. In this paper, we further investigate the effects of pulsed plasma on the boundary layer flow over a flat plate. The present investigation reveals that the nanosecond pulsed plasma actuator generates intense perturbations and tends to promote the laminar boundary over a flat plate to turbulent flow. The heat effect after the pulsed plasma discharge was observed in the external flow, lasting a few milliseconds for a single pulse and reaching a quasi-stable state for multi-pulses.

  18. Applications of time-resolved laser fluorescence spectroscopy to the environmental biogeochemistry of actinides.

    PubMed

    Collins, Richard N; Saito, Takumi; Aoyagi, Noboru; Payne, Timothy E; Kimura, Takaumi; Waite, T David

    2011-01-01

    Time-resolved laser fluorescence spectroscopy (TRLFS) is a useful means of identifying certain actinide species resulting from various biogeochemical processes. In general, TRLFS differentiates chemical species of a fluorescent metal ion through analysis of different excitation and emission spectra and decay lifetimes. Although this spectroscopic technique has largely been applied to the analysis of actinide and lanthanide ions having fluorescence decay lifetimes on the order of microseconds, such as UO , Cm, and Eu, continuing development of ultra-fast and cryogenic TRLFS systems offers the possibility to obtain speciation information on metal ions having room-temperature fluorescence decay lifetimes on the order of nanoseconds to picoseconds. The main advantage of TRLFS over other advanced spectroscopic techniques is the ability to determine in situ metal speciation at environmentally relevant micromolar to picomolar concentrations. In the context of environmental biogeochemistry, TRLFS has principally been applied to studies of (i) metal speciation in aqueous and solid phases and (ii) the coordination environment of metal ions sorbed to mineral and bacterial surfaces. In this review, the principles of TRLFS are described, and the literature reporting the application of this methodology to the speciation of actinides in systems of biogeochemical interest is assessed. Significant developments in TRLFS methodology and advanced data analysis are highlighted, and we outline how these developments have the potential to further our mechanistic understanding of actinide biogeochemistry. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

  19. [Mechanism of ablation with nanosecond pulsed electric field].

    PubMed

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  20. Modelling Time-Resolved Two-Dimensional Electronic Spectroscopy of the Primary Photoisomerization Event in Rhodopsin

    PubMed Central

    2015-01-01

    Time-resolved two-dimensional (2D) electronic spectra (ES) tracking the evolution of the excited state manifolds of the retinal chromophore have been simulated along the photoisomerization pathway in bovine rhodopsin, using a state-of-the-art hybrid QM/MM approach based on multiconfigurational methods. Simulations of broadband 2D spectra provide a useful picture of the overall detectable 2D signals from the near-infrared (NIR) to the near-ultraviolet (UV). Evolution of the stimulated emission (SE) and excited state absorption (ESA) 2D signals indicates that the S1 → SN (with N ≥ 2) ESAs feature a substantial blue-shift only after bond inversion and partial rotation along the cis → trans isomerization angle, while the SE rapidly red-shifts during the photoinduced skeletal relaxation of the polyene chain. Different combinations of pulse frequencies are proposed in order to follow the evolution of specific ESA signals. These include a two-color 2DVis/NIR setup especially suited for tracking the evolution of the S1 → S2 transitions that can be used to discriminate between different photochemical mechanisms of retinal photoisomerization as a function of the environment. The reported results are consistent with the available time-resolved pump–probe experimental data, and may be used for the design of more elaborate transient 2D electronic spectroscopy techniques. PMID:24794143

  1. Transient binding of CO to Cu(B) in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation.

    PubMed Central

    Heitbrink, Dirk; Sigurdson, Håkan; Bolwien, Carsten; Brzezinski, Peter; Heberle, Joachim

    2002-01-01

    The redox-driven proton pump cytochrome c oxidase is that enzymatic machinery of the respiratory chain that transfers electrons from cytochrome c to molecular oxygen and thereby splits molecular oxygen to form water. To investigate the reaction mechanism of cytochrome c oxidase on the single vibrational level, we used time-resolved step-scan Fourier transform infrared spectroscopy and studied the dynamics of the reduced enzyme after photodissociation of bound carbon monoxide across the mid-infrared range (2300-950 cm(-1)). Difference spectra of the bovine complex were obtained at -20 degrees C with 5 micros time resolution. The data demonstrate a dynamic link between the transient binding of CO to Cu(B) and changes in hydrogen bonding at the functionally important residue E(I-286). Variation of the pH revealed that the pK(a) of E(I-286) is >9.3 in the fully reduced CO-bound oxidase. Difference spectra of cytochrome c oxidase from beef heart are compared with those of the oxidase isolated from Rhodobacter sphaeroides. The bacterial enzyme does not show the environmental change in the vicinity of E(I-286) upon CO dissociation. The characteristic band shape appears, however, in redox-induced difference spectra of the bacterial enzyme but is absent in redox-induced difference spectra of mammalian enzyme. In conclusion, it is demonstrated that the dynamics of a large protein complex such as cytochrome c oxidase can be resolved on the single vibrational level with microsecond Fourier transform infrared spectroscopy. The applied methodology provides the basis for future investigations of the physiological reaction steps of this important enzyme. PMID:11751290

  2. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  3. Diamondoid synthesis by nanosecond pulsed microplasmas generated in He at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Stauss, Sven; Shizuno, Tomoki; Oshima, Fumito; Pai, David Z.; Terashima, Kazuo

    2012-10-01

    Diamondoids are sp^3 hybridized carbon nanomaterials that possess interesting properties making them attractive for biotechnology, medicine, and opto- and nanoelectronics. So far, larger diamondoids have been synthesized using the smallest diamondoid (adamantane) as a precursor. For this electric discharges and pulsed laser plasmas generated in supercritical fluids, and hot filament chemical vapor deposition have been used, but these methods are difficult to realize or very time-consuming. We have developed a more convenient approach where diamondoids are synthesized by high-voltage nanosecond pulsed microplasmas (voltage 15 kVp-p, frequency 1 Hz, pulse width 10 ns) generated in He at atmospheric pressure using point-to-plane tungsten electrodes. Adamantane was used as a precursor, and synthesis was conducted for 10^5 pulses at gas temperatures of 297, 373 and 473 K. Energy dispersive X-ray and micro-Raman spectroscopy were conducted to determine the composition of the products, and gas chromatography - mass spectra indicated the formation of diamantane. It was found that synthesis is more efficient at room temperature than at higher temperatures, and time-resolved optical emission spectroscopy suggest that the chemical reactions take place in the afterglow.

  4. Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory's Transient Discovery Pipeline

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frohmaier, C.; Sullivan, M.; Nugent, P. E.

    In this paper, we present the transient source detection efficiencies of the Palomar Transient Factory (PTF), parameterizing the number of transients that PTF found versus the number of similar transients that occurred over the same period in the survey search area but were missed. PTF was an optical sky survey carried out with the Palomar 48 inch telescope over 2009–2012, observing more than 8000 square degrees of sky with cadences of between one and five days, locating around 50,000 non-moving transient sources, and spectroscopically confirming around 1900 supernovae. We assess the effectiveness with which PTF detected transient sources, by insertingmore » $$\\simeq 7$$ million artificial point sources into real PTF data. We then study the efficiency with which the PTF real-time pipeline recovered these sources as a function of the source magnitude, host galaxy surface brightness, and various observing conditions (using proxies for seeing, sky brightness, and transparency). The product of this study is a multi-dimensional recovery efficiency grid appropriate for the range of observing conditions that PTF experienced and that can then be used for studies of the rates, environments, and luminosity functions of different transient types using detailed Monte Carlo simulations. Finally, we illustrate the technique using the observationally well-understood class of type Ia supernovae.« less

  5. Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory's Transient Discovery Pipeline

    DOE PAGES

    Frohmaier, C.; Sullivan, M.; Nugent, P. E.; ...

    2017-05-09

    In this paper, we present the transient source detection efficiencies of the Palomar Transient Factory (PTF), parameterizing the number of transients that PTF found versus the number of similar transients that occurred over the same period in the survey search area but were missed. PTF was an optical sky survey carried out with the Palomar 48 inch telescope over 2009–2012, observing more than 8000 square degrees of sky with cadences of between one and five days, locating around 50,000 non-moving transient sources, and spectroscopically confirming around 1900 supernovae. We assess the effectiveness with which PTF detected transient sources, by insertingmore » $$\\simeq 7$$ million artificial point sources into real PTF data. We then study the efficiency with which the PTF real-time pipeline recovered these sources as a function of the source magnitude, host galaxy surface brightness, and various observing conditions (using proxies for seeing, sky brightness, and transparency). The product of this study is a multi-dimensional recovery efficiency grid appropriate for the range of observing conditions that PTF experienced and that can then be used for studies of the rates, environments, and luminosity functions of different transient types using detailed Monte Carlo simulations. Finally, we illustrate the technique using the observationally well-understood class of type Ia supernovae.« less

  6. An inexpensive technique for the time resolved laser induced plasma spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Rizwan, E-mail: rizwan.ahmed@ncp.edu.pk; Ahmed, Nasar; Iqbal, J.

    We present an efficient and inexpensive method for calculating the time resolved emission spectrum from the time integrated spectrum by monitoring the time evolution of neutral and singly ionized species in the laser produced plasma. To validate our assertion of extracting time resolved information from the time integrated spectrum, the time evolution data of the Cu II line at 481.29 nm and the molecular bands of AlO in the wavelength region (450–550 nm) have been studied. The plasma parameters were also estimated from the time resolved and time integrated spectra. A comparison of the results clearly reveals that the time resolved informationmore » about the plasma parameters can be extracted from the spectra registered with a time integrated spectrograph. Our proposed method will make the laser induced plasma spectroscopy robust and a low cost technique which is attractive for industry and environmental monitoring.« less

  7. Time-resolved photon emission from layered turbid media

    NASA Astrophysics Data System (ADS)

    Hielscher, Andreas H.; Liu, Hanli; Chance, Britton; Tittel, Frank K.; Jacques, Steven L.

    1996-02-01

    We present numerical and experimental results of time-resolved emission profiles from various layered turbid media. Numerical solutions determined by time-resolved Monte Carlo simulations are compared with measurements on layered-tissue phantoms made from gelatin. In particular, we show that in certain cases the effects of the upper layers can be eliminated. As a practical example, these results are used to analyze in vivo measurements on the human head. This demonstrates the influence of skin, skull, and meninges on the determination of the blood oxygenation in the brain.

  8. A time-resolved image sensor for tubeless streak cameras

    NASA Astrophysics Data System (ADS)

    Yasutomi, Keita; Han, SangMan; Seo, Min-Woong; Takasawa, Taishi; Kagawa, Keiichiro; Kawahito, Shoji

    2014-03-01

    This paper presents a time-resolved CMOS image sensor with draining-only modulation (DOM) pixels for tube-less streak cameras. Although the conventional streak camera has high time resolution, the device requires high voltage and bulky system due to the structure with a vacuum tube. The proposed time-resolved imager with a simple optics realize a streak camera without any vacuum tubes. The proposed image sensor has DOM pixels, a delay-based pulse generator, and a readout circuitry. The delay-based pulse generator in combination with an in-pixel logic allows us to create and to provide a short gating clock to the pixel array. A prototype time-resolved CMOS image sensor with the proposed pixel is designed and implemented using 0.11um CMOS image sensor technology. The image array has 30(Vertical) x 128(Memory length) pixels with the pixel pitch of 22.4um. .

  9. Sub-5-ps optical pulse generation from a 1.55-µm distributed-feedback laser diode with nanosecond electric pulse excitation and spectral filtering.

    PubMed

    Chen, Shaoqiang; Sato, Aya; Ito, Takashi; Yoshita, Masahiro; Akiyama, Hidefumi; Yokoyama, Hiroyuki

    2012-10-22

    This paper reports generation of sub-5-ps Fourier-transform limited optical pulses from a 1.55-µm gain-switched single-mode distributed-feedback laser diode via nanosecond electric excitation and a simple spectral-filtering technique. Typical damped oscillations of the whole lasing spectrum were observed in the time-resolved waveform. Through a spectral-filtering technique, the initial relaxation oscillation pulse and the following components in the output pulse can be well separated, and the initial short pulse can be selectively extracted by filtering out the short-wavelength components in the spectrum. Short pulses generated by this simple method are expected to have wide potential applications comparable to mode-locking lasers.

  10. Femtosecond time-resolved X-ray absorption spectroscopy of anatase TiO2 nanoparticles using XFEL

    PubMed Central

    Obara, Yuki; Ito, Hironori; Ito, Terumasa; Kurahashi, Naoya; Thürmer, Stephan; Tanaka, Hiroki; Katayama, Tetsuo; Togashi, Tadashi; Owada, Shigeki; Yamamoto, Yo-ichi; Karashima, Shutaro; Nishitani, Junichi; Yabashi, Makina; Suzuki, Toshinori; Misawa, Kazuhiko

    2017-01-01

    The charge-carrier dynamics of anatase TiO2 nanoparticles in an aqueous solution were studied by femtosecond time-resolved X-ray absorption spectroscopy using an X-ray free electron laser in combination with a synchronized ultraviolet femtosecond laser (268 nm). Using an arrival time monitor for the X-ray pulses, we obtained a temporal resolution of 170 fs. The transient X-ray absorption spectra revealed an ultrafast Ti K-edge shift and a subsequent growth of a pre-edge structure. The edge shift occurred in ca. 100 fs and is ascribed to reduction of Ti by localization of generated conduction band electrons into shallow traps of self-trapped polarons or deep traps at penta-coordinate Ti sites. Growth of the pre-edge feature and reduction of the above-edge peak intensity occur with similar time constants of 300–400 fs, which we assign to the structural distortion dynamics near the surface. PMID:28713842

  11. SmB6 electron-phonon coupling constant from time- and angle-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Sterzi, A.; Crepaldi, A.; Cilento, F.; Manzoni, G.; Frantzeskakis, E.; Zacchigna, M.; van Heumen, E.; Huang, Y. K.; Golden, M. S.; Parmigiani, F.

    2016-08-01

    SmB6 is a mixed valence Kondo system resulting from the hybridization between localized f electrons and delocalized d electrons. We have investigated its out-of-equilibrium electron dynamics by means of time- and angle-resolved photoelectron spectroscopy. The transient electronic population above the Fermi level can be described by a time-dependent Fermi-Dirac distribution. By solving a two-temperature model that well reproduces the relaxation dynamics of the effective electronic temperature, we estimate the electron-phonon coupling constant λ to range from 0.13 ±0.03 to 0.04 ±0.01 . These extremes are obtained assuming a coupling of the electrons with either a phonon mode at 10 or 19 meV. A realistic value of the average phonon energy will give an actual value of λ within this range. Our results provide an experimental report on the material electron-phonon coupling, contributing to both the electronic transport and the macroscopic thermodynamic properties of SmB6.

  12. A point implicit time integration technique for slow transient flow problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kadioglu, Samet Y.; Berry, Ray A.; Martineau, Richard C.

    2015-05-01

    We introduce a point implicit time integration technique for slow transient flow problems. The method treats the solution variables of interest (that can be located at cell centers, cell edges, or cell nodes) implicitly and the rest of the information related to same or other variables are handled explicitly. The method does not require implicit iteration; instead it time advances the solutions in a similar spirit to explicit methods, except it involves a few additional function(s) evaluation steps. Moreover, the method is unconditionally stable, as a fully implicit method would be. This new approach exhibits the simplicity of implementation ofmore » explicit methods and the stability of implicit methods. It is specifically designed for slow transient flow problems of long duration wherein one would like to perform time integrations with very large time steps. Because the method can be time inaccurate for fast transient problems, particularly with larger time steps, an appropriate solution strategy for a problem that evolves from a fast to a slow transient would be to integrate the fast transient with an explicit or semi-implicit technique and then switch to this point implicit method as soon as the time variation slows sufficiently. We have solved several test problems that result from scalar or systems of flow equations. Our findings indicate the new method can integrate slow transient problems very efficiently; and its implementation is very robust.« less

  13. Alignment of time-resolved data from high throughput experiments.

    PubMed

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  14. Transient suppression of gap junctional intercellular communication after exposure to 100-nanosecond pulsed electric fields.

    PubMed

    Steuer, Anna; Schmidt, Anke; Labohá, Petra; Babica, Pavel; Kolb, Juergen F

    2016-12-01

    Gap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer. In order to observe sub-lethal effects, cells were exposed to pulsed electric fields with a duration of 100ns and amplitudes between 10 and 20kV/cm. GJIC strongly decreased within 15min after treatment but recovered within 24h. Gene expression of Cx43 was significantly decreased and associated with a reduced total amount of Cx43 protein. In addition, MAP kinases p38 and Erk1/2, involved in Cx43 phosphorylation, were activated and Cx43 became hyperphosphorylated. Immunofluorescent staining of Cx43 displayed the disassembly of gap junctions. Further, a reorganization of the actin cytoskeleton was observed whereas tight junction protein ZO-1 was not significantly affected. All effects were field- and time-dependent and most pronounced within 30 to 60min after treatment. A better understanding of a possible manipulation of GJIC by nsPEFs might eventually offer a possibility to develop and improve treatments. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Probing Charge Carrier Dynamics in Porphyrin-Based Organic Semiconductor Thin Films by Time-Resolved THz Spectroscopy.

    PubMed

    Ohta, Kaoru; Tokonami, Shunrou; Takahashi, Kotaro; Tamura, Yuto; Yamada, Hiroko; Tominaga, Keisuke

    2017-11-02

    To improve the power conversion efficiency of solar cells, it is important to understand the underlying relaxation mechanisms of photogenerated charge carriers in organic semiconductors. In this work, we studied the charge carrier dynamics of diketopyrrolopyrrole-linked tetrabenzoporphyrin thin films where the diketopyrrolopyrrole unit has two n-butyl groups, abbreviated as C4-DPP-BP. We used time-resolved terahertz (THz) spectroscopy to track charge carrier dynamics with excitations at 800 and 400 nm. Compared with tetrabenzoporphyrin (BP), the extension of π-electron delocalization to the diketopyrrolopyrrole peripherals leads to an increase in absorption in the near-infrared region. Following the excitation at 800 nm, we found that the transient THz signals in C4-DPP-BP thin films decay with time constants of 0.5 and 9.1 ps, with small residual components. With excitation at 400 nm, we found that the transient THz signals decay with time constants of 0.4 and 7.5 ps. On the basis of the similarity of the decay profiles of the transient THz signals obtained with excitations at 400 and 800 nm, we considered that the decaying components are due to charge carrier recombination and/or trapping at defect sites, which do not depend on the excess energy of the photoexcitation. In contrast to BP, even without an electron acceptor, we observed the finite offset of the transient THz signals at 100 ps, demonstrating the existence of long-lived charge carriers. We also measured the photoconductivity spectra of C4-DPP-BP thin films with the excitation at both 800 and 400 nm. It was found that the spectra can be fitted by the Drude-Smith model. From these results, it was determined that the charge carriers are localized right after photoexcitation. At 0.4 ps, the product of the quantum yield of charge generation and mobility of charge carriers at 400 nm is approximately twice that obtained at 800 nm. We discuss the implications of the excess excitation energy in organic

  16. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE PAGES

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.; ...

    2016-08-02

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  17. A stretch/compress scheme for a high temporal resolution detector for the magnetic recoil spectrometer time (MRSt)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hilsabeck, T. J.; Frenje, J. A.; Hares, J. D.

    Here we present a time-resolved detector concept for the magnetic recoil spectrometer for time-resolved measurements of the NIF neutron spectrum. The measurement is challenging due to the time spreading of the recoil protons (or deuterons) as they transit an energy dispersing magnet system. Ions arrive at the focal plane of the magnetic spectrometer over an interval of tens of nanoseconds. We seek to measure the time-resolved neutron spectrum with 20 ps precision by manipulating an electron signal derived from the ions. A stretch-compress scheme is employed to remove transit time skewing while simultaneously reducing the bandwidth requirements for signal recording.more » Simulation results are presented along with design concepts for structures capable of establishing the required electromagnetic fields.« less

  18. Real-time Recovery Efficiencies and Performance of the Palomar Transient Factory’s Transient Discovery Pipeline

    NASA Astrophysics Data System (ADS)

    Frohmaier, C.; Sullivan, M.; Nugent, P. E.; Goldstein, D. A.; DeRose, J.

    2017-05-01

    We present the transient source detection efficiencies of the Palomar Transient Factory (PTF), parameterizing the number of transients that PTF found versus the number of similar transients that occurred over the same period in the survey search area but were missed. PTF was an optical sky survey carried out with the Palomar 48 inch telescope over 2009-2012, observing more than 8000 square degrees of sky with cadences of between one and five days, locating around 50,000 non-moving transient sources, and spectroscopically confirming around 1900 supernovae. We assess the effectiveness with which PTF detected transient sources, by inserting ≃ 7 million artificial point sources into real PTF data. We then study the efficiency with which the PTF real-time pipeline recovered these sources as a function of the source magnitude, host galaxy surface brightness, and various observing conditions (using proxies for seeing, sky brightness, and transparency). The product of this study is a multi-dimensional recovery efficiency grid appropriate for the range of observing conditions that PTF experienced and that can then be used for studies of the rates, environments, and luminosity functions of different transient types using detailed Monte Carlo simulations. We illustrate the technique using the observationally well-understood class of type Ia supernovae.

  19. Millifluidics for Chemical Synthesis and Time-resolved Mechanistic Studies

    PubMed Central

    Krishna, Katla Sai; Biswas, Sanchita; Navin, Chelliah V.; Yamane, Dawit G.; Miller, Jeffrey T.; Kumar, Challa S.S.R.

    2013-01-01

    Procedures utilizing millifluidic devices for chemical synthesis and time-resolved mechanistic studies are described by taking three examples. In the first, synthesis of ultra-small copper nanoclusters is described. The second example provides their utility for investigating time resolved kinetics of chemical reactions by analyzing gold nanoparticle formation using in situ X-ray absorption spectroscopy. The final example demonstrates continuous flow catalysis of reactions inside millifluidic channel coated with nanostructured catalyst. PMID:24327099

  20. Electromagnetic Pulse/Transient Threat Testing of Protection Devices for Amateur/Military Affiliate Radio System Equipment. Volume 2

    DTIC Science & Technology

    1985-10-31

    4-45 4-1 SPC =. NTiC)NS I SPIKEGUARD SUPPRESSORS NANOSECOND TRANSIENT PROTECTION MODELS AVAILABLE FOR ,u * COAXIAL LINES...molded epoxy casc 4-40 General1- ~ *Sewiconductor4*industries,, Inc. Squats D oE.!v! MAXIMUM RATINGS DESCRIPTION coNro CASE 19 * Steady State POWr I

  1. Time-resolved microplasma excitation temperature in a pulsed microwave discharge

    NASA Astrophysics Data System (ADS)

    Hopwood, Jeffrey; Monfared, Shabnam; Hoskinson, Alan

    2013-09-01

    Microwave-driven microplasmas are usually operated in a steady-state mode such that the electron temperature is constant in time. Transient measurements of excitation temperature and helium emission lines, however, suggest that short microwave pulses can be used to raise the electron energy by 20-30% for approximately 100 ns. Time-resolved optical emission spectrometry reveals an initial burst of light emission from the igniting microplasma. This emission overshoot is also correlated with a measured increase in excitation temperature. Excimer emission lags atomic emission, however, and does not overshoot. A simple model demonstrates that an increase in electron temperature is responsible for the overshoot of atomic optical emission at the beginning of each microwave pulse. The formation of dimers and subsequent excimer emission requires slower three-body collisions with the excited rare gas atom; this is why excimer emission does not overshoot the steady state value. Similar experimental and modeling results are observed in argon gas. The overshoot in electron temperature may be used to manipulate the collisional production of species in microplasmas using short, low-duty cycle microwave pulses. This material is based upon work supported by the USAF and Physical Sciences Inc., under contract No. FA8650-C-12-C-2312. Additional support was provided by the DARPA MPD program under award FA9550-12-1-0006.

  2. Time-resolved brightness measurements by streaking

    NASA Astrophysics Data System (ADS)

    Torrance, Joshua S.; Speirs, Rory W.; McCulloch, Andrew J.; Scholten, Robert E.

    2018-03-01

    Brightness is a key figure of merit for charged particle beams, and time-resolved brightness measurements can elucidate the processes involved in beam creation and manipulation. Here we report on a simple, robust, and widely applicable method for the measurement of beam brightness with temporal resolution by streaking one-dimensional pepperpots, and demonstrate the technique to characterize electron bunches produced from a cold-atom electron source. We demonstrate brightness measurements with 145 ps temporal resolution and a minimum resolvable emittance of 40 nm rad. This technique provides an efficient method of exploring source parameters and will prove useful for examining the efficacy of techniques to counter space-charge expansion, a critical hurdle to achieving single-shot imaging of atomic scale targets.

  3. Transient photothermal spectra of plasmonic nanobubbles.

    PubMed

    Lukianova-Hleb, Ekaterina Y; Sassaroli, Elisabetta; Jones, Alicia; Lapotko, Dmitri O

    2012-03-13

    The photothermal efficacy of near-infrared gold nanoparticles (NP), nanoshells, and nanorods was studied under pulsed high-energy optical excitation in plasmonic nanobubble (PNB) mode as a function of the wavelength and duration of the excitation laser pulse. PNBs, transient vapor nanobubbles, were generated around individual and clustered overheated NPs in water and living cells. Transient PNBs showed two photothermal features not previously observed for NPs: the narrowing of the spectral peaks to 1 nm and the strong dependence of the photothermal efficacy upon the duration of the laser pulse. Narrow red-shifted (relative to those of NPs) near-infrared spectral peaks were observed for 70 ps excitation laser pulses, while longer sub- and nanosecond pulses completely suppressed near-infrared peaks and blue shifted the PNB generation to the visual range. Thus, PNBs can provide superior spectral selectivity over gold NPs under specific optical excitation conditions.

  4. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects

    PubMed Central

    2017-01-01

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor–acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents. PMID:28263599

  5. Effects of Preferential Solvation Revealed by Time-Resolved Magnetic Field Effects.

    PubMed

    Pham, Van Thi Bich; Hoang, Hao Minh; Grampp, Günter; Kattnig, Daniel R

    2017-03-30

    External magnetic fields can impact recombination yields of photoinduced electron transfer reactions by affecting the spin dynamics in transient, spin-correlated radical pair intermediates. For exciplex-forming donor-acceptor systems, this magnetic field effect (MFE) can be investigated sensitively by studying the delayed recombination fluorescence. Here, we investigate the effect of preferential solvation in microheterogeneous solvent mixtures on the radical pair dynamics of the system 9,10-dimethylanthracene (fluorophore)/N,N-dimethylaniline (quencher) by means of time-resolved magnetic field effect (TR-MFE) measurements, wherein the exciplex emission is recorded in the absence and the presence of an external magnetic field using time-correlated single photon counting (TCSPC). In microheterogeneous environments, the MFE of the exciplex emission occurs on a faster time scale than in iso-dielectric homogeneous solvents. In addition, the local polarity reported by the exciplex is enhanced compared to homogeneous solvent mixtures of the same macroscopic permittivity. Detailed analyses of the TR-MFE reveal that the quenching reaction directly yielding the radical ion pair is favored in microheterogeneous environments. This is in stark contrast to homogeneous media, for which the MFE predominantly involves direct formation of the exciplex, its subsequent dissociation to the magneto-sensitive radical pair, and re-encounters. These observations provide evidence for polar microdomains and enhanced caging, which are shown to have a significant impact on the reaction dynamics in microheterogeneous binary solvents.

  6. Time-resolved methods in biophysics. 7. Photon counting vs. analog time-resolved singlet oxygen phosphorescence detection.

    PubMed

    Jiménez-Banzo, Ana; Ragàs, Xavier; Kapusta, Peter; Nonell, Santi

    2008-09-01

    Two recent advances in optoelectronics, namely novel near-IR sensitive photomultipliers and inexpensive yet powerful diode-pumped solid-state lasers working at kHz repetition rate, enable the time-resolved detection of singlet oxygen (O2(a1Deltag)) phosphorescence in photon counting mode, thereby boosting the time-resolution, sensitivity, and dynamic range of this well-established detection technique. Principles underlying this novel approach and selected examples of applications are provided in this perspective, which illustrate the advantages over the conventional analog detection mode.

  7. Improving arrival time identification in transient elastography

    NASA Astrophysics Data System (ADS)

    Klein, Jens; McLaughlin, Joyce; Renzi, Daniel

    2012-04-01

    In this paper, we improve the first step in the arrival time algorithm used for shear wave speed recovery in transient elastography. In transient elastography, a shear wave is initiated at the boundary and the interior displacement of the propagating shear wave is imaged with an ultrasound ultra-fast imaging system. The first step in the arrival time algorithm finds the arrival times of the shear wave by cross correlating displacement time traces (the time history of the displacement at a single point) with a reference time trace located near the shear wave source. The second step finds the shear wave speed from the arrival times. In performing the first step, we observe that the wave pulse decorrelates as it travels through the medium, which leads to inaccurate estimates of the arrival times and ultimately to blurring and artifacts in the shear wave speed image. In particular, wave ‘spreading’ accounts for much of this decorrelation. Here we remove most of the decorrelation by allowing the reference wave pulse to spread during the cross correlation. This dramatically improves the images obtained from arrival time identification. We illustrate the improvement of this method on phantom and in vivo data obtained from the laboratory of Mathias Fink at ESPCI, Paris.

  8. Time-resolved orbital angular momentum spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noyan, Mehmet A.; Kikkawa, James M.

    We introduce pump-probe magneto-orbital spectroscopy, wherein Laguerre-Gauss optical pump pulses impart orbital angular momentum to the electronic states of a material and subsequent dynamics are studied with 100 fs time resolution. The excitation uses vortex modes that distribute angular momentum over a macroscopic area determined by the spot size, and the optical probe studies the chiral imbalance of vortex modes reflected off the sample. First observations in bulk GaAs yield transients that evolve on time scales distinctly different from population and spin relaxation, as expected, but with surprisingly large lifetimes.

  9. Single laser based pump-probe technique to study plasma shielding during nanosecond laser ablation of copper thin films

    NASA Astrophysics Data System (ADS)

    Nammi, Srinagalakshmi; Vasa, Nilesh J.; Gurusamy, Balaganesan; Mathur, Anil C.

    2017-09-01

    A plasma shielding phenomenon and its influence on micromachining is studied experimentally and theoretically for laser wavelengths of 355 nm, 532 nm and 1064 nm. A time resolved pump-probe technique is proposed and demonstrated by splitting a single nanosecond Nd3+:YAG laser into an ablation laser (pump laser) and a probe laser to understand the influence of plasma shielding on laser ablation of copper (Cu) clad on polyimide thin films. The proposed nanosecond pump-probe technique allows simultaneous measurement of the absorption characteristics of plasma produced during Cu film ablation by the pump laser. Experimental measurements of the probe intensity distinctly show that the absorption by the ablated plume increases with increase in the pump intensity, as a result of plasma shielding. Theoretical estimation of the intensity of the transmitted pump beam based on the thermo-temporal modeling is in qualitative agreement with the pump-probe based experimental measurements. The theoretical estimate of the depth attained for a single pulse with high pump intensity value on a Cu thin film is limited by the plasma shielding of the incident laser beam, similar to that observed experimentally. Further, the depth of micro-channels produced shows a similar trend for all three wavelengths, however, the channel depth achieved is lesser at the wavelength of 1064 nm.

  10. Time-resolved study of SrTiO3 homoepitaxial pulsed-laser deposition using surface x-ray diffraction

    NASA Astrophysics Data System (ADS)

    Eres, G.; Tischler, J. Z.; Yoon, M.; Larson, B. C.; Rouleau, C. M.; Lowndes, D. H.; Zschack, P.

    2002-05-01

    Homoepitaxy of SrTiO3 by pulsed-laser deposition has been studied using in situ time-resolved surface x-ray diffraction in the temperature range of 310 °C to 780 °C. Using a two-detector configuration, surface x-ray diffraction intensities were monitored simultaneously at the (0 0 1/2) specular and the (0 1 1/2) off-specular truncation rod positions. Abrupt intensity changes in both the specular and off-specular rods after laser pulses indicated prompt crystallization into SrTiO3 layers followed by slower intra- and interlayer surface rearrangements on time scales of seconds. Specular rod intensity oscillations indicated layer-by-layer growth, while off-specular rod intensity measurements suggested the presence of transient in-plane lattice distortions for depositions above 600 °C.

  11. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NASA Astrophysics Data System (ADS)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  12. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    DOE PAGES

    Aab, Alexander

    2016-01-29

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independentmore » method used for cross-checks that indeed we reach nanosecond-scale timing accuracy by this correction. First, we operate a “beacon transmitter” which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.« less

  13. Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow

    DTIC Science & Technology

    2013-01-01

    Numerical Simulation of a Nanosecond Pulse Discharge in Mach 5 Flow Jonathan Poggie∗and Nicholas J. Bisek† Air Force Research Laboratory, Wright...was developed for nanosecond- pulse discharges , including real- istic air kinetics, electron energy transport, and compressible bulk gas flow. A reduced...shock waves originating near the sheath edge, consistent with experimental observations. I. Introduction In a nanosecond- pulse discharge , the input

  14. The 700-1500 cm{sup −1} region of the S{sub 1} (A{sup ~1}B{sub 2}) state of toluene studied with resonance-enhanced multiphoton ionization (REMPI), zero-kinetic-energy (ZEKE) spectroscopy, and time-resolved slow-electron velocity-map imaging (tr-SEVI) spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gardner, Adrian M.; Green, Alistair M.; Tamé-Reyes, Victor M.

    We report (nanosecond) resonance-enhanced multiphoton ionization (REMPI), (nanosecond) zero-kinetic-energy (ZEKE) and (picosecond) time-resolved slow-electron velocity map imaging (tr-SEVI) spectra of fully hydrogenated toluene (Tol-h{sub 8}) and the deuterated-methyl group isotopologue (α{sub 3}-Tol-d{sub 3}). Vibrational assignments are made making use of the activity observed in the ZEKE and tr-SEVI spectra, together with the results from quantum chemical and previous experimental results. Here, we examine the 700–1500 cm{sup −1} region of the REMPI spectrum, extending our previous work on the region ≤700 cm{sup −1}. We provide assignments for the majority of the S{sub 1} and cation bands observed, and in particular wemore » gain insight regarding a number of regions where vibrations are coupled via Fermi resonance. We also gain insight into intramolecular vibrational redistribution in this molecule.« less

  15. Feasibility experiments on time-resolved fluorosensing applied to oil slicks

    NASA Technical Reports Server (NTRS)

    Camagni, P.; Colombo, G.; Koechler, C.; Pedrini, A.; Omenetto, N.; Rossi, G.

    1986-01-01

    The introduction of time resolved observations can provide a very penetrating tool in the practice of laser fluorosensing. The investigations have demonstrated a relevance of multispectral, time resolved analysis for oil fingerprinting. By comparative studies on a variety of crude oils and their most significant fractions, it was found that the process of time decay in a composite oil is characterized by a few steps, which are associated with specific components in the medium light range. The average decay times of these pure fractions are markedly differentiated as to absolute values and spectral spread; as a consequence, the corresponding parameters in the resultant crude are quite sensitive to the particular mixture of these components. Measurements of the time response give then a finer discrimination between oil classes, depending on the relative content of certain fractions. Experiments were pursued with an improved fluorosensor facility, in order to test the application of time resolved fluorosensing to remote samples on water.

  16. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  17. Energy efficiency in nanoscale synthesis using nanosecond plasmas.

    PubMed

    Pai, David Z; Ken Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A; Levchenko, Igor; Laux, Christophe O

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO₃ nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges.

  18. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    DOE PAGES

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; ...

    2015-03-16

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. In the past, signal propagation in nanomagnet chains were characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolvedmore » photoemission electron microscopy after applying nanosecond magnetic field pulses. Moreover, an intrinsic switching time of 100 ps per magnet is observed. In conclusion these experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.« less

  19. Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles.

    PubMed

    Nanjo, Daisuke; Hosoi, Haruko; Fujino, Tatsuya; Tahara, Tahei; Korenaga, Takashi

    2007-03-22

    Femtosecond/picosecond time-resolved fluorescence study of hydrophilic polymer fine particles (polyacrylamide, PAAm) was reported. Ultrafast fluorescence dynamics of polymer/water solution was monitored using a fluorescent probe molecule (C153). In the femtosecond time-resolved fluorescence measurement at 480 nm, slowly decay components having lifetimes of tau(1) approximately 53 ps and tau(2) approximately 5 ns were observed in addition to rapid fluorescence decay. Picosecond time-resolved fluorescence spectra of C153/PAAm/H2O solution were also measured. In the time-resolved fluorescence spectra of C153/PAAm/H2O, a peak shift from 490 to 515 nm was measured, which can be assigned to the solvation dynamics of polymer fine particles. The fluorescence peak shift was related to the solvation response function and two time constants were determined (tau(3) approximately 50 ps and tau(4) approximately 467 ps). Therefore, the tau(1) component observed in the femtosecond time-resolved fluorescence measurement was assigned to the solvation dynamics that was observed only in the presence of polymer fine particles. Rotational diffusion measurements were also carried out on the basis of the picosecond time-resolved fluorescence spectra. In the C153/PAAm/H2O solution, anisotropy decay having two different time constants was also derived (tau(6) approximately 76 ps and tau(7) approximately 676 ps), indicating the presence of two different microscopic molecular environments around the polymer surface. Using the Stokes-Einstein-Debye (SED) equation, microscopic viscosity around the polymer surface was evaluated. For the area that gave a rotational diffusion time of tau(6) approximately 76 ps, the calculated viscosity is approximately 1.1 cP and for tau(7) approximately 676 ps, it is approximately 10 cP. The calculated viscosity values clearly revealed that there are two different molecular environments around the polyacrylamide fine particles.

  20. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-01

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-L-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms.

  1. Biomolecular dynamics studied with IR-spectroscopy using quantum cascade lasers combined with nanosecond perturbation techniques.

    PubMed

    Popp, Alexander; Scheerer, David; Heck, Benjamin; Hauser, Karin

    2017-06-15

    Early events of protein folding can be studied with fast perturbation techniques triggering non-equilibrium relaxation dynamics. A nanosecond laser-excited pH-jump or temperature-jump (T-jump) was applied to initiate helix folding or unfolding of poly-l-glutamic acid (PGA). PGA is a homopolypeptide with titratable carboxyl side-chains whose protonation degree determines the PGA conformation. A pH-jump was realized by the photochemical release of protons and induces PGA folding due to protonation of the side-chains. Otherwise, the helical conformation can be unfolded by a T-jump. We operated under conditions where PGA does not aggregate and temperature and pH are the regulatory properties of its conformation. The experiments were performed in such a manner that the folding/unfolding jump proceeded to the same PGA conformation. We quantified the increase/decrease in helicity induced by the pH-/T-jump and demonstrated that the T-jump results in a relatively small change in helical content in contrast to the pH-jump. This is caused by the strong pH-dependence of the PGA conformation. The conformational changes were detected by time-resolved single wavelength IR-spectroscopy using quantum cascade lasers (QCL). We could independently observe the kinetics for α-helix folding and unfolding in PGA by using different perturbation techniques and demonstrate the high sensitivity of time-resolved IR-spectroscopy to study protein folding mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Real-time photoacoustic imaging of rat deep brain: hemodynamic responses to hypoxia

    NASA Astrophysics Data System (ADS)

    Kawauchi, Satoko; Iwazaki, Hideaki; Ida, Taiichiro; Hosaka, Tomoya; Kawaguchi, Yasushi; Nawashiro, Hiroshi; Sato, Shunichi

    2013-03-01

    Hemodynamic responses of the brain to hypoxia or ischemia are one of the major interests in neurosurgery and neuroscience. In this study, we performed real-time transcutaneous PA imaging of the rat brain that was exposed to a hypoxic stress and investigated depth-resolved responses of the brain, including the hippocampus. A linear-array 8ch 10-MHz ultrasonic sensor (measurement length, 10 mm) was placed on the shaved scalp. Nanosecond, 570-nm and 595- nm light pulses were used to excite PA signals indicating cerebral blood volume (CBV) and blood deoxygenation, respectively. Under spontaneous respiration, inhalation gas was switched from air to nitrogen, and then reswitched to oxygen, during which real-time PA imaging was performed continuously. High-contrast PA signals were observed from the depth regions corresponding to the scalp, skull, cortex and hippocampus. After starting hypoxia, PA signals at 595 nm increased immediately in both the cortex and hippocampus for about 1.5 min, showing hemoglobin deoxygenation. On the other hand, PA signals at 570 nm coming from these regions did not increase in the early phase but started to increase at about 1.5 min after starting hypoxia, indicating reactive hyperemia to hypoxia. During hypoxia, PA signals coming from the scalp decreased transiently, which is presumably due to compensatory response in the peripheral tissue to preserve blood perfusion in the brain. The reoxygenation caused a gradual recovery of these PA signals. These findings demonstrate the usefulness of PA imaging for real-time, depth-resolved observation of cerebral hemodynamics.

  3. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-10-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  4. Fast time-resolved aerosol collector: proof of concept

    NASA Astrophysics Data System (ADS)

    Yu, X.-Y.; Cowin, J. P.; Iedema, M. J.; Ali, H.

    2010-06-01

    Atmospheric particles can be collected in the field on substrates for subsequent laboratory analysis via chemically sensitive single particle methods such as scanning electron microscopy with energy dispersive x-ray analysis. With moving substrates time resolution of seconds to minutes can be achieved. In this paper, we demonstrate how to increase the time resolution when collecting particles on a substrate to a few milliseconds to provide real-time information. Our fast time-resolved aerosol collector ("Fast-TRAC") microscopically observes the particle collection on a substrate and records an on-line video. Particle arrivals are resolved to within a single frame (4-17 ms in this setup), and the spatial locations are matched to the subsequent single particle analysis. This approach also provides in-situ information on particle size and number concentration. Applications are expected in airborne studies of cloud microstructure, pollution plumes, and surface long-term monitoring.

  5. Exploring Nuclear Photorelaxation of Pyranine in Aqueous Solution: an Integrated Ab-Initio Molecular Dynamics and Time Resolved Vibrational Analysis Approach.

    PubMed

    Chiariello, Maria Gabriella; Rega, Nadia

    2018-03-22

    Advances in time-resolved vibrational spectroscopy techniques provided a new stimulus for understanding the transient molecular dynamics triggered by the electronic excitation. The detailed interpretation of such time-dependent spectroscopic signals is a challenging task from both experimental and theoretical points of view. We simulated and analyzed the transient photorelaxation of the pyranine photoacid in aqueous solution, with special focus on structural parameters and low frequency skeleton modes that are possibly preparatory for the photoreaction occurring at later time, as suggested by experimental spectroscopic studies. To this aim, we adopted an accurate computational protocol that combines excited state ab initio molecular dynamics within an hybrid quantum mechanical/molecular mechanics framework and a time-resolved vibrational analysis based on the Wavelet transform. According to our results, the main nuclear relaxation on the excited potential energy surface is completed in about 500 fs, in agreement with experimental data. The rearrangement of C-C bonds occurs according to a complex vibrational dynamics, showing oscillatory patterns that are out of phase and modulated by modes below 200 cm -1 . We also analyzed in both the ground and the excited state the evolution of some structural parameters involved in excited state proton transfer reaction, namely, those involving the pyranine and the water molecule hydrogen bonded to the phenolic O-H group. Both the hydrogen bond distance and the intermolecular orientation are optimized in the excited state, resulting in a tighter proton donor-acceptor couple. Indeed, we found evidence that collective low frequency skeleton modes, such as the out of plane wagging at 108 cm -1 and the deformation at 280 cm -1 , are photoactivated by the ultrafast part of the relaxation and modulate the pyranine-water molecule rearrangement, favoring the preparatory step for the photoreactivity.

  6. Spatially and time resolved kinetics of indirect magnetoexcitons

    NASA Astrophysics Data System (ADS)

    Hasling, Matthew; Dorow, Chelsey; Calman, Erica; Butov, Leonid; Wilkes, Joe; Campman, Kenneth; Gossard, Arthur

    The small exciton mass and binding energy give the opportunity to realize the high magnetic field regime for excitons in magnetic fields of few Tesla achievable in lab Long lifetimes of indirect exciton give the opportunity to study kinetics of magnetoexciton transport by time-resolved optical imaging of exciton emission. We present spatially and time resolved measurements showing the effect of increased magnetic field on transport of magnetoexcitons. We observe that increased magnetic field leads to slowing down of magnetoexciton transport. Supported by NSF Grant No. 1407277. J.W. was supported by the EPSRC (Grant EP/L022990/1). C.J.D. was supported by the NSF Graduate Research Fellowship Program under Grant No. DGE-1144086.

  7. Daylight time-resolved photographs of lightning.

    PubMed

    Qrville, R E; Lala, G G; Idone, V P

    1978-07-07

    Lightning dart leaders and return strokes have been recorded in daylight with both good spatial resolution and good time resolution as part of the Thunder-storm Research International Program. The resulting time-resolved photographs are apparently equivalent to the best data obtained earlier only at night. Average two-dimensional return stroke velocities in four subsequent strokes between the ground and a height of 1400 meters were approximately 1.3 x 10(8) meters per second. The estimated systematic error is 10 to 15 percent.

  8. Energy efficiency in nanoscale synthesis using nanosecond plasmas

    PubMed Central

    Pai, David Z.; (Ken) Ostrikov, Kostya; Kumar, Shailesh; Lacoste, Deanna A.; Levchenko, Igor; Laux, Christophe O.

    2013-01-01

    We report a nanoscale synthesis technique using nanosecond-duration plasma discharges. Voltage pulses 12.5 kV in amplitude and 40 ns in duration were applied repetitively at 30 kHz across molybdenum electrodes in open ambient air, generating a nanosecond spark discharge that synthesized well-defined MoO3 nanoscale architectures (i.e. flakes, dots, walls, porous networks) upon polyamide and copper substrates. No nitrides were formed. The energy cost was as low as 75 eV per atom incorporated into a nanostructure, suggesting a dramatic reduction compared to other techniques using atmospheric pressure plasmas. These findings show that highly efficient synthesis at atmospheric pressure without catalysts or external substrate heating can be achieved in a simple fashion using nanosecond discharges. PMID:23386976

  9. Dynamic evolution of light-induced orientation of dye-doped liquid crystals in liquid phase studied by time-resolved optically heterodyned optical Kerr effect technique.

    PubMed

    Yang, Pei; Liu, Liying; Xu, Lei

    2008-02-28

    Transient evolution of light-induced molecular reorientation both in 1-amino-anthraquinone (1AAQ) dye and azobenzene doped isotropic liquid crystals (LCs) were studied by time-resolved optically heterodyned optical Kerr effect method. The results give clear direct experimental proof that under short pulse (30 ps) excitation, LC molecules orientate toward the excitation light polarization direction in the 1AAQ/LC system. However, LC molecular orientation becomes orthogonal to the light polarization in azobenzene/LC system. Time-resolved excited-state absorption of 1AAQ and wavelength dependent excited-state absorption of azobenzene were also observed and their contributions to the early dynamics of the third order optical responses of the two systems were confirmed. A simplified two-level mean-field theory was derived to reveal the intensity dependence of orientation enhancement factor in azobenzene/LC system considering the photoisomerization process.

  10. Recent Advances in 3D Time-Resolved Contrast-Enhanced MR Angiography

    PubMed Central

    Riederer, Stephen J.; Haider, Clifton R.; Borisch, Eric A.; Weavers, Paul T.; Young, Phillip M.

    2015-01-01

    Contrast-enhanced MR angiography (CE-MRA) was first introduced for clinical studies approximately 20 years ago. Early work provided 3 to 4 mm spatial resolution with acquisition times in the 30 sec range. Since that time there has been continuing effort to provide improved spatial resolution with reduced acquisition time, allowing high resolution three-dimensional (3D) time-resolved studies. The purpose of this work is to describe how this has been accomplished. Specific technical enablers have been: improved gradients allowing reduced repetition times, improved k-space sampling and reconstruction methods, parallel acquisition particularly in two directions, and improved and higher count receiver coil arrays. These have collectively made high resolution time-resolved studies readily available for many anatomic regions. Depending on the application, approximate 1 mm isotropic resolution is now possible with frame times of several seconds. Clinical applications of time-resolved CE-MRA are briefly reviewed. PMID:26032598

  11. Time-resolved hard x-ray spectrometer

    NASA Astrophysics Data System (ADS)

    Moy, Kenneth; Cuneo, Michael; McKenna, Ian; Keenan, Thomas; Sanford, Thomas; Mock, Ray

    2006-08-01

    Wired array studies are being conducted at the SNL Z accelerator to maximize the x-ray generation for inertial confinement fusion targets and high energy density physics experiments. An integral component of these studies is the characterization of the time-resolved spectral content of the x-rays. Due to potential spatial anisotropy in the emitted radiation, it is also critical to diagnose the time-evolved spectral content in a space-resolved manner. To accomplish these two measurement goals, we developed an x-ray spectrometer using a set of high-speed detectors (silicon PIN diodes) with a collimated field-of-view that converged on a 1-cm-diameter spot at the pinch axis. Spectral discrimination is achieved by placing high Z absorbers in front of these detectors. We built two spectrometers to permit simultaneous different angular views of the emitted radiation. Spectral data have been acquired from recent Z shots for the radial and axial (polar) views. UNSPEC 1 has been adapted to analyze and unfold the measured data to reconstruct the x-ray spectrum. The unfold operator code, UFO2, is being adapted for a more comprehensive spectral unfolding treatment.

  12. Time-Resolved Fluorescence of Water-Soluble Pyridinium Salt: Sensitive Detection of the Conformational Changes of Bovine Serum Albumin.

    PubMed

    Li, Lei; Yi, Hua; Jia, Menghui; Chang, Mengfang; Zhou, Zhongneng; Zhang, Sanjun; Pan, Haifeng; Chen, Yan; Chen, Jinquan; Xu, Jianhua

    2016-06-20

    In this paper, we report a pyridinium salt "turn-on" fluorescent probe, 4-[2-(4-Dimethylamino-phenyl)-vinyl]-1-methylpyridinium iodide (p-DASPMI), and applied its time-resolved fluorescence (TRF) to monitor the protein conformational changes. Both the fluorescence lifetime and quantum yield (QY) of p-DASPMI were increased about two orders of magnitude after binding to the protein bovine serum albumin (BSA). The free p-DASPMI in solution presents an ultrashort fluorescence lifetime (12.4 ps), thus it does not interfere the detection of bound p-DASPMI which has nanosecond fluorescence lifetime. Decay-associated spectra (DAS) show that p-DASPMI molecules bind to subdomains IIA and IIIA of BSA. The TRF decay profiles of p-DASPMI can be described by multi-exponential decay function ([Formula: see text]), and the obtained parameters, such as lifetimes ([Formula: see text]), fractional amplitudes ([Formula: see text]), and fractional intensities ([Formula: see text]), may be used to deduce the conformational changes of BSA. The pH and Cu 2+ induced conformational changes of BSA were investigated through the TRF of p-DASPMI. The results show that the p-DASPMI is a candidate fluorescent probe in studying the conformational changes of proteins through TRF spectroscopy and microscopy in the visible range. © The Author(s) 2016.

  13. Comparison of treatment with an Alexandrite picosecond laser and Nd:YAG nanosecond laser for removing blue-black Chinese eyeliner tattoos.

    PubMed

    Zhang, Mengli; Huang, Yuqing; Lin, Tong; Wu, Qiuju

    2018-02-28

    To retrospectively evaluate the efficacy of an Alexandrite picosecond laser versus Nd:YAG nanosecond laser for removing blue-black eyeliner tattoos which have existed more than 10 years. A total of 40 patients were treated with an Alexandrite picosecond laser in our department from August 2015 to July 2017, with a fluence of 1.96-6.37J/cm 2 , spot size of 2.0-3.6 mm, and pulse width of 750 ps. Another 32 patients were treated with an Nd:YAG nanosecond laser, with a fluence of 2.80-7.00 J/cm 2 , spot size of 3 mm, and pulse width of 5-20 ns. All analysed patients completed at least one treatment and follow-up. The median number of treatment for all the patients was 1 (range, 1-4). After a single session, no difference was found between the two lasers for the eyeliner removal (p > 0.05). For the people who achieved an excellent response of tattoo clearance, there was still no difference between the two groups (p > 0.05). Transient side effects were observed in two groups, but neither group had significant adverse reactions. To treat blue-black Chinese eyeliner tattoos over 10 years, Alexandrite picosecond laser does not provide better clearance than the Nd:YAG nanosecond laser.

  14. A compact, low jitter, nanosecond rise time, high voltage pulse generator with variable amplitude.

    PubMed

    Mao, Jiubing; Wang, Xin; Tang, Dan; Lv, Huayi; Li, Chengxin; Shao, Yanhua; Qin, Lan

    2012-07-01

    In this paper, a compact, low jitter, nanosecond rise time, command triggered, high peak power, gas-switch pulse generator system is developed for high energy physics experiment. The main components of the system are a high voltage capacitor, the spark gap switch and R = 50 Ω load resistance built into a structure to obtain a fast high power pulse. The pulse drive unit, comprised of a vacuum planar triode and a stack of avalanche transistors, is command triggered by a single or multiple TTL (transistor-transistor logic) level pulses generated by a trigger pulse control unit implemented using the 555 timer circuit. The control unit also accepts user input TTL trigger signal. The vacuum planar triode in the pulse driving unit that close the first stage switches is applied to drive the spark gap reducing jitter. By adjusting the charge voltage of a high voltage capacitor charging power supply, the pulse amplitude varies from 5 kV to 10 kV, with a rise time of <3 ns and the maximum peak current up to 200 A (into 50 Ω). The jitter of the pulse generator system is less than 1 ns. The maximum pulse repetition rate is set at 10 Hz that limited only by the gas-switch and available capacitor recovery time.

  15. Temporal and spatial evolution of nanosecond microwave-driven plasma

    NASA Astrophysics Data System (ADS)

    Chang, C.; Chen, X. Q.; Zhu, M.; Pu, Y. K.

    2018-06-01

    In this paper, a method for simultaneously acquiring the temporal and spatial evolution of characteristic plasma spectra in a single microwave pulse is proposed and studied. By using multi-sub-beam fiber bundles coupled with a spectrometer and EMICCD (Electron-multiplying intensified charge-coupled device), the spatial distribution and time evolution of characteristic spectra of desorbed gases at the dielectric/vacuum interface during nanosecond microwave-driven plasma discharge are observed. Arrays of small align tubes punctured with metal walls of feed horn are filled with separate fibers of matched sizes and equal lengths. The output ends of fibers arranged in a single longitudinal column are connected to the entrance slit of a spectrometer, where the optical spectrum inputs to a high-speed EMICCD, to detect the rapid-varying time and space spectra of nanosecond giga-watt microwave discharges. The evolution of spectral clusters of N2 (C-B), N2+ (B-X), and the hydrogen atoms is discovered and monitored. The whole duration of light emission is much longer than the microwave pulse, and the intensities of ion N2+ (B-X) spectra increase after microwave pulses with rise times of 25-50 ns. The brightness distribution of plasma spectra in different space is observed and approximately consistent with the simulated E-field distribution.

  16. Nanosecond bipolar pulse generators for bioelectrics.

    PubMed

    Xiao, Shu; Zhou, Chunrong; Yang, Enbo; Rajulapati, Sambasiva R

    2018-04-26

    Biological effects caused by a nanosecond pulse, such as cell membrane permeabilization, peripheral nerve excitation and cell blebbing, can be reduced or cancelled by applying another pulse of reversed polarity. Depending on the degree of cancellation, the pulse interval of these two pulses can be as long as dozens of microseconds. The cancellation effect diminishes as the pulse duration increases. To study the cancellation effect and potentially utilize it in electrotherapy, nanosecond bipolar pulse generators must be made available. An overview of the generators is given in this paper. A pulse forming line (PFL) that is matched at one end and shorted at the other end allows a bipolar pulse to be produced, but no delay can be inserted between the phases. Another generator employs a combination of a resistor, an inductor and a capacitor to form an RLC resonant circuit so that a bipolar pulse with a decaying magnitude can be generated. A third generator is a converter, which converts an existing unipolar pulse to a bipolar pulse. This is done by inserting an inductor in a transmission line. The first phase of the bipolar pulse is provided by the unipolar pulse's rising phase. The second phase is formed during the fall time of the unipolar pulse, when the inductor, which was previously charged during the flat part of the unipolar pulse, discharges its current to the load. The fourth type of generator uses multiple MOSFET switches stacked to turn on a pre-charged, bipolar RC network. This approach is the most flexible in that it can generate multiphasic pulses that have different amplitudes, delays, and durations. However, it may not be suitable for producing short nanosecond pulses (<100 ns), whereas the PFL approach and the RLC approach with gas switches are used for this range. Thus, each generator has its own advantages and applicable range. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE PAGES

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan; ...

    2017-08-28

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  18. Charge Carriers Modulate the Bonding of Semiconductor Nanoparticle Dopants As Revealed by Time-Resolved X-ray Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassan, Asra; Zhang, Xiaoyi; Liu, Xiaohan

    Understanding the electronic structure of doped semiconductors is essential to realize advancements in electronics and in the rational design of nanoscale devices. Here, we report the results of time-resolved X-ray absorption studies on copper-doped cadmium sulfide nanoparticles that provide an explicit description of the electronic dynamics of the dopants. The interaction of a dopant ion and an excess charge carrier is unambiguously observed via monitoring the oxidation state. The experimental data combined with DFT calculations demonstrate that dopant bonding to the host matrix is modulated by its interaction with charge carriers. Additionally, the transient photoluminescence and the kinetics of dopantmore » oxidation reveal the presence of two types of surface-bound ions that create mid-gap states.« less

  19. Simulation of transformations of thin metal films heated by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Balandin, V. Yu.; Niedrig, R.; Bostanjoglo, O.

    1995-01-01

    The ablation of free-standing thin aluminum films by a nanosecond laser pulse was investigated by time-resolved transmission electron microscopy and numerical simulation. It was established that thin film geometry is particularly suited to furnish information on the mechanism of evaporation and the surface tension of the melt. In the case of aluminum the surface tension sigma as function of temperature can be approximated by two linear sections with a coefficient -0.3 x 10(exp -3) N/K m from the melting point 933 K up to 3000 K and -0.02 x 10(exp -3) N/K m above 3000 K, respectively, with sigma(993 K) = 0.9 N/m and sigma(8500 K) = 0. At lower pulse energies the films disintegrated predominantly by thermocapillary flow. Higher pulse energies produced volume evaporation, and a nonmonotonous flow, explained by recoil from evaporating atoms and thermocapillarity. The familiar equations of energy and motion, which presuppose separate and coherent vapor and liquid phases, were not adequate to describe the ablation of the hottest zone. Surface evaporation seemed to be marginal at all laser pulse energies used.

  20. Development of a New Time-Resolved Laser-Induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Durot, Christopher; Gallimore, Alec

    2012-10-01

    We are developing a time-resolved laser-induced fluorescence (LIF) technique to interrogate the ion velocity distribution function (VDF) of EP thruster plumes down to the microsecond time scale. Better measurements of dynamic plasma processes will lead to improvements in simulation and prediction of thruster operation and erosion. We present the development of the new technique and results of initial tests. Signal-to-noise ratio (SNR) is often a challenge for LIF studies, and it is only more challenging for time-resolved measurements since a lock-in amplifier cannot be used with a long time constant. The new system uses laser modulation on the order of MHz, which enables the use of electronic filtering and phase-sensitive detection to improve SNR while preserving time-resolved information. Statistical averaging over many cycles to further improve SNR is done in the frequency domain. This technique can have significant advantages, including (1) larger spatial maps enabled by shorter data acquisition time and (2) the ability to average data without creating a phase reference by modifying the thruster operating condition with a periodic cutoff in discharge current, which can modify the ion velocity distribution.

  1. Compressive hyperspectral time-resolved wide-field fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Pian, Qi; Yao, Ruoyang; Sinsuebphon, Nattawut; Intes, Xavier

    2017-07-01

    Spectrally resolved fluorescence lifetime imaging and spatial multiplexing have offered information content and collection-efficiency boosts in microscopy, but efficient implementations for macroscopic applications are still lacking. An imaging platform based on time-resolved structured light and hyperspectral single-pixel detection has been developed to perform quantitative macroscopic fluorescence lifetime imaging (MFLI) over a large field of view (FOV) and multiple spectral bands simultaneously. The system makes use of three digital micromirror device (DMD)-based spatial light modulators (SLMs) to generate spatial optical bases and reconstruct N by N images over 16 spectral channels with a time-resolved capability (∼40 ps temporal resolution) using fewer than N2 optical measurements. We demonstrate the potential of this new imaging platform by quantitatively imaging near-infrared (NIR) Förster resonance energy transfer (FRET) both in vitro and in vivo. The technique is well suited for quantitative hyperspectral lifetime imaging with a high sensitivity and paves the way for many important biomedical applications.

  2. Real-time Transients from Palomar-QUEST Synoptic Sky Survey

    NASA Astrophysics Data System (ADS)

    Mahabal, Ashish A.; Drake, A.; Djorgovski, S. G.; Donalek, C.; Glikman, E.; Graham, M. J.; Williams, R.; Baltay, C.; Rabinowitz, D.; Bauer, A.; Ellman, N.; Lauer, R.; PQ Team Indiana

    2006-12-01

    The data from the driftscans of the Palomar-QUEST synoptic sky survey is now routinely processed in real-time. We describe here the various components of the pipeline. We search for both variable and transient objects, including supernovae, variable AGN, GRB orphan afterglows, cataclysmic variables, interesting stellar flares, novae, other types of variable stars, and do not exclude the possibility of even entirely new types of objects or phenomena. In order to flag as many asteroids as possible we have been doing two 4-hour scans of the same area covering 250 sq. deg and detect over a million sources. Flagging a source as a candidate transient requires detection in at least two filters besides its absence in fiducial sky constructed from past images. We use various software filters to eliminate instrument artifacts, and false alarms due to the proximity of bright, saturated stars which dominate the initial detection rate. This leaves up to a couple of hundred asteroids and genuine transients. Previously known asteroids are flagged through an automated comparison with a databases of known asteroids, and new ones through apparent motion. In the end, we have typically 10 20 astrophysical transients remaining per night, and we are currently working on their automated classification, and spectroscopic follow-up. We present preliminary results from real-time follow-up of a few candidates carried out with the Palomar 200-inch telescope as part of a pilot project. Finally we outline the plans for the much harder problem of classifying the transients more accurately for distribution through VOEventNet to astronomers interested only in specific types of transients, more details and overall setting of which is covered in our VOEventNet poster (Drake et al.)

  3. Watching proteins function with time-resolved x-ray crystallography

    NASA Astrophysics Data System (ADS)

    Šrajer, Vukica; Schmidt, Marius

    2017-09-01

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in action and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115-54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201-41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651-9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237-51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5-20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242-6, Barends et al 2015 Science 350 445-50, Pande et al 2016 Science 352 725-9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs. We also outline

  4. The Deep Lens Survey : Real--time Optical Transient and Moving Object Detection

    NASA Astrophysics Data System (ADS)

    Becker, Andy; Wittman, David; Stubbs, Chris; Dell'Antonio, Ian; Loomba, Dinesh; Schommer, Robert; Tyson, J. Anthony; Margoniner, Vera; DLS Collaboration

    2001-12-01

    We report on the real-time optical transient program of the Deep Lens Survey (DLS). Meeting the DLS core science weak-lensing objective requires repeated visits to the same part of the sky, 20 visits for 63 sub-fields in 4 filters, on a 4-m telescope. These data are reduced in real-time, and differenced against each other on all available timescales. Our observing strategy is optimized to allow sensitivity to transients on several minute, one day, one month, and one year timescales. The depth of the survey allows us to detect and classify both moving and stationary transients down to ~ 25th magnitude, a relatively unconstrained region of astronomical variability space. All transients and moving objects, including asteroids, Kuiper belt (or trans-Neptunian) objects, variable stars, supernovae, 'unknown' bursts with no apparent host, orphan gamma-ray burst afterglows, as well as airplanes, are posted on the web in real-time for use by the community. We emphasize our sensitivity to detect and respond in real-time to orphan afterglows of gamma-ray bursts, and present one candidate orphan in the field of Abell 1836. See http://dls.bell-labs.com/transients.html.

  5. Time-to-digital converter card for multichannel time-resolved single-photon counting applications

    NASA Astrophysics Data System (ADS)

    Tamborini, Davide; Portaluppi, Davide; Tisa, Simone; Tosi, Alberto

    2015-03-01

    We present a high performance Time-to-Digital Converter (TDC) card that provides 10 ps timing resolution and 20 ps (rms) timing precision with a programmable full-scale-range from 160 ns to 10 μs. Differential Non-Linearity (DNL) is better than 1.3% LSB (rms) and Integral Non-Linearity (INL) is 5 ps rms. Thanks to the low power consumption (400 mW) and the compact size (78 mm x 28 mm x 10 mm), this card is the building block for developing compact multichannel time-resolved instrumentation for Time-Correlated Single-Photon Counting (TCSPC). The TDC-card outputs the time measurement results together with the rates of START and STOP signals and the number of valid TDC conversions. These additional information are needed by many TCSPC-based applications, such as: Fluorescence Lifetime Imaging (FLIM), Time-of-Flight (TOF) ranging measurements, time-resolved Positron Emission Tomography (PET), single-molecule spectroscopy, Fluorescence Correlation Spectroscopy (FCS), Diffuse Optical Tomography (DOT), Optical Time-Domain Reflectometry (OTDR), quantum optics, etc.

  6. PREFACE: Time-resolved scanning tunnelling microscopy Time-resolved scanning tunnelling microscopy

    NASA Astrophysics Data System (ADS)

    Zandvliet, Harold J. W.; Lin, Nian

    2010-07-01

    out the potential landscape of the system (often a molecule or an atom) under study [4, 5]. However, the dynamical processes might also be induced by the tunnelling process itself [6, 7]. In the field of molecular science, excited single molecule experiments have been especially performed [8]. As a nice example, we refer to the work of Sykes' group [9] on thioether molecular rotors. In addition, several groups explore the possibility of combining time-resolved scanning tunnelling microscopy with optical techniques [10, 11]. Although the majority of studies that have been performed so far focus on rather simple systems under nearly ideal and well-defined conditions, we anticipate that time-resolved scanning tunnelling microscopy can also be applied in other research areas, such as biology and soft condensed matter, where the experimental conditions are often less ideal. We hope that readers will enjoy this collection of papers and that it will trigger them to further explore the possibilities of this simple, but powerful technique. References [1] Besenbacher F, Laegsgaard E and Stengaard I 2005 Mater. Today 8 26 [2] van Houselt A and Zandvliet H J W 2010 Rev. Mod. Phys. 82 1593 [3] Tringides M C and Hupalo M 2010 J. Phys.: Condens. Matter 22 264002 [4] Ronci F, Colonna S, Cricenti A and Le Lay G 2010 J. Phys.: Condens. Matter 22 264003 [5] van Houselt A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264004 [6] Sprodowski C, Mehlhorn M and Morgenstern K 2010 J. Phys.: Condens. Matter 22 264005 [7] Saedi A, Poelsema B and Zandvliet H J W 2010 J. Phys.: Condens. Matter 22 264007 [8] Sloan P A 2010 J. Phys.: Condens. Matter 22 264001 [9] Jewell A D, Tierney H L, Baber A E, Iski E V, Laha M M and Sykes E C H 2010 J. Phys.: Condens. Matter 22 264006 [10] Riedel D 2010 J. Phys.: Condens. Matter 22 264009 [11] Terada Y, Yoshida S, Takeuchi O and Shigekawa H 2010 J. Phys.: Condens. Matter 22 264008

  7. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  8. Diffuse dispersive delay and the time convolution/attenuation of transients

    NASA Technical Reports Server (NTRS)

    Bittner, Burt J.

    1991-01-01

    Test data and analytic evaluations are presented to show that relatively poor 100 KHz shielding of 12 Db can effectively provide an electromagnetic pulse transient reduction of 100 Db. More importantly, several techniques are shown for lightning surge attenuation as an alternative to crowbar, spark gap, or power zener type clipping which simply reflects the surge. A time delay test method is shown which allows CW testing, along with a convolution program to define transient shielding effectivity where the Fourier phase characteristics of the transient are known or can be broadly estimated.

  9. Application of a liquid chromatography detector to time-resolved RYDMR spectroscopy: a comparison of in situ and ex post facto measurements

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Yoshio

    2001-09-01

    A photodiode-array (PDA) UV-VIS detector for liquid chromatography is applied to time-resolved reaction yield detected magnetic resonance (RYDMR) measurements. The results derived from the yields of cage and escape products in the photoreaction of 2-methyl-1, 4-naphtnoquinone in a sodium dodecylsulfate micelle are found to be identical with those derived from the yield of escaping semiquinone radical detected by transient optical absorption. This implies practical linearity between the yields of escaping radicals and escape products. High sensitivity of the PDA detector enables application of escape product yields for kinetic analysis by reducing microwave-induced perturbation.

  10. Difference structures from time-resolved small-angle and wide-angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Nepal, Prakash; Saldin, D. K.

    2018-05-01

    Time-resolved small-angle x-ray scattering/wide-angle x-ray scattering (SAXS/WAXS) is capable of recovering difference structures directly from difference SAXS/WAXS curves. It does so by means of the theory described here because the structural changes in pump-probe detection in a typical time-resolved experiment are generally small enough to be confined to a single residue or group in close proximity which is identified by a method akin to the difference Fourier method of time-resolved crystallography. If it is assumed, as is usual with time-resolved structures, that the moved atoms lie within the residue, the 100-fold reduction in the search space (assuming a typical protein has about 100 residues) allows the exaction of the structure by a simulated annealing algorithm with a huge reduction in computing time and leads to a greater resolution by varying the positions of atoms only within that residue. This reduction in the number of potential moved atoms allows us to identify the actual motions of the individual atoms. In the case of a crystal, time-resolved calculations are normally performed using the difference Fourier method, which is, of course, not directly applicable to SAXS/WAXS. The method developed in this paper may be thought of as a substitute for that method which allows SAXS/WAXS (and hence disordered molecules) to also be used for time-resolved structural work.

  11. Time-resolved rhodopsin activation currents in a unicellular expression system.

    PubMed Central

    Sullivan, J M; Shukla, P

    1999-01-01

    The early receptor current (ERC) is the charge redistribution occurring in plasma membrane rhodopsin during light activation of photoreceptors. Both the molecular mechanism of the ERC and its relationship to rhodopsin conformational activation are unknown. To investigate whether the ERC could be a time-resolved assay of rhodopsin structure-function relationships, the distinct sensitivity of modern electrophysiological tools was employed to test for flash-activated ERC signals in cells stably expressing normal human rod opsin after regeneration with 11-cis-retinal. ERCs are similar in waveform and kinetics to those found in photoreceptors. The action spectrum of the major R(2) charge motion is consistent with a rhodopsin photopigment. The R(1) phase is not kinetically resolvable and the R(2) phase, which overlaps metarhodopsin-II formation, has a rapid risetime and complex multiexponential decay. These experiments demonstrate, for the first time, kinetically resolved electrical state transitions during activation of expressed visual pigment in a unicellular environment (single or fused giant cells) containing only 6 x 10(6)-8 x 10(7) molecules of rhodopsin. This method improves measurement sensitivity 7 to 8 orders of magnitude compared to other time-resolved techniques applied to rhodopsin to study the role particular amino acids play in conformational activation and the forces that govern those transitions. PMID:10465746

  12. Deflagration-to-Detonation Transition Control by Nanosecond Gas Discharges

    DTIC Science & Technology

    2008-04-07

    Report 3. DATES COVERED (From – To) 1 April 2007 - 18 August 09 4. TITLE AND SUBTITLE Deflagration-To- Detonation Transition Control By Nanosecond...SUPPLEMENTARY NOTES 14. ABSTRACT During the current project, an extensive experimental study of detonation initiation by high{voltage...nanosecond gas discharges has been performed in a smooth detonation tube with different discharge chambers and various discharge cell numbers. The chambers

  13. Compact nanosecond laser system for the ignition of aeronautic combustion engines

    NASA Astrophysics Data System (ADS)

    Amiard-Hudebine, G.; Tison, G.; Freysz, E.

    2016-12-01

    We have studied and developed a compact nanosecond laser system dedicated to the ignition of aeronautic combustion engines. This system is based on a nanosecond microchip laser delivering 6 μJ nanosecond pulses, which are amplified in two successive stages. The first stage is based on an Ytterbium doped fiber amplifier (YDFA) working in a quasi-continuous-wave (QCW) regime. Pumped at 1 kHz repetition rate, it delivers TEM00 and linearly polarized nanosecond pulses centered at 1064 nm with energies up to 350 μJ. These results are in very good agreement with the model we specially designed for a pulsed QCW pump regime. The second amplification stage is based on a compact Nd:YAG double-pass amplifier pumped by a 400 W peak power QCW diode centered at λ = 808 nm and coupled to a 800 μm core multimode fiber. At 10 Hz repetition rate, this system amplifies the pulse delivered by the YDFA up to 11 mJ while preserving its beam profile, polarization ratio, and pulse duration. Finally, we demonstrate that this compact nanosecond system can ignite an experimental combustion chamber.

  14. Stability of mixed time integration schemes for transient thermal analysis

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Lin, J. I.

    1982-01-01

    A current research topic in coupled-field problems is the development of effective transient algorithms that permit different time integration methods with different time steps to be used simultaneously in various regions of the problems. The implicit-explicit approach seems to be very successful in structural, fluid, and fluid-structure problems. This paper summarizes this research direction. A family of mixed time integration schemes, with the capabilities mentioned above, is also introduced for transient thermal analysis. A stability analysis and the computer implementation of this technique are also presented. In particular, it is shown that the mixed time implicit-explicit methods provide a natural framework for the further development of efficient, clean, modularized computer codes.

  15. Evaluation of material dispersion using a nanosecond optical pulse radiator.

    PubMed

    Horiguchi, M; Ohmori, Y; Miya, T

    1979-07-01

    To study the material dispersion effects on graded-index fibers, a method for measuring the material dispersion in optical glass fibers has been developed. Nanosecond pulses in the 0.5-1.7-microm region are generated by a nanosecond optical pulse radiator and grating monochromator. These pulses are injected into a GeO(2)-P(2)0(5)-doped silica graded-index fiber. Relative time delay changes between different wavelengths are used to determine material dispersion, core glass refractive index, material group index, and optimum profile parameter of the graded-index fiber. From the measured data, the optimum profile parameter on the GeO(2)-P(2)O(5)-doped silica graded-index fiber could be estimated to be 1.88 at 1.27 microm of the material dispersion free wavelength region and 1.82 at 1.55 microm of the lowest-loss wavelength region in silica-based optical fiber waveguides.

  16. Detection of experimental brain tumors using time-resolved laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Thompson, Reid C.; Black, Keith L.; Kateb, Babak; Marcu, Laura

    2002-05-01

    Time-Resolved Laser-Induced Fluorescence Spectroscopy (TR-LIFS) has the potential to provide a non- invasive characterization and detection of tumors. We utilized TR-LIFS to detect gliomas in-vivo in the rat C6 glioma model. Time-resolved emission spectra of both normal brain and tumor were analyzed to determine if unique fluorescence signatures could be used to distinguish the two. Fluorescence parameters derived from both spectral and time domain were used for tissue characterization. Our results show that in the rat C6 glioma model, TR-LIFS can be used to differentiate brain tumors from normal tissue (gray and white mater) based upon time- resolved fluorescence signatures seen in brain tumors.

  17. Time Resolved Raman and Fluorescence Spectrometer for Planetary Mineralogy

    NASA Astrophysics Data System (ADS)

    Blacksberg, Jordana; Rossman, George

    2010-05-01

    Raman spectroscopy is a prime candidate for the next generation of planetary instruments, as it addresses the primary goal of mineralogical analysis which is structure and composition. It does not require sample preparation and provides unique mineral fingerprints, even for mixed phase samples. However, large fluorescence return from many mineral samples under visible light excitation can seriously compromise the quality of the spectra or even render Raman spectra unattainable. Fluorescence interference is likely to be a problem on Mars and is evident in Raman spectra of Martian Meteorites[1]. Our approach uses time resolution for elimination of fluorescence from Raman spectra, allowing for traditional visible laser excitation (532 nm). Since Raman occurs instantaneously with the laser pulse and fluorescence lifetimes vary from nsec to msec depending on the mineral, it is possible to separate them out in time. Complementary information can also be obtained simultaneously using the time resolved fluorescence data. The Simultaneous Spectral Temporal Adaptive Raman Spectrometer (SSTARS) is a planetary instrument under development at the Jet Propulsion Laboratory, capable of time-resolved in situ Raman and fluorescence spectroscopy. A streak camera and pulsed miniature microchip laser provide psec scale time resolution. Our ability to observe the complete time evolution of Raman and fluorescence in minerals provides a foundation for design of pulsed Raman and fluorescence spectrometers in diverse planetary environments. We will discuss the SSTARS instrument design and performance capability. We will also present time-resolved pulsed Raman spectra collected from a relevant set of minerals selected using available data on Mars mineralogy[2]. Of particular interest are minerals resulting from aqueous alteration on Mars. For comparison, we will present Raman spectra obtained using a commercial continuous wave (CW) green (514 nm) Raman system. In many cases using a CW laser

  18. On coincident loop transient electromagnetic induction logging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swidinsky, Andrei; Weiss, Chester J.

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  19. On coincident loop transient electromagnetic induction logging

    DOE PAGES

    Swidinsky, Andrei; Weiss, Chester J.

    2017-05-31

    Coincident loop transient induction wireline logging is examined as the borehole analog of the well-known land and airborne time-domain electromagnetic (EM) method. The concept of whole-space late-time apparent resistivity is modified from the half-space version commonly used in land and airborne geophysics and applied to the coincident loop voltages produced from various formation, borehole, and invasion models. Given typical tool diameters, off-time measurements with such an instrument must be made on the order of nanoseconds to microseconds — much more rapidly than for surface methods. Departure curves of the apparent resistivity for thin beds, calculated using an algorithm developed tomore » model the transient response of a loop in a multilayered earth, indicate that the depth of investigation scales with the bed thickness. Modeled resistivity logs are comparable in accuracy and resolution with standard frequency-domain focused induction logs. However, if measurement times are longer than a few microseconds, the thicknesses of conductors can be overestimated, whereas resistors are underestimated. Thin-bed resolution characteristics are explained by visualizing snapshots of the EM fields in the formation, where a conductor traps the electric field while two current maxima are produced in the shoulder beds surrounding a resistor. Radial profiling is studied using a concentric cylinder earth model. Results found that true formation resistivity can be determined in the presence of either oil- or water-based mud, although in the latter case, measurements must be taken several orders of magnitude later in time. Lastly, the ability to determine true formation resistivity is governed by the degree that the EM field heals after being distorted by borehole fluid and invasion, a process visualized and particularly evident in the case of conductive water-based mud.« less

  20. Picosecond absorption relaxation measured with nanosecond laser photoacoustics

    PubMed Central

    Danielli, Amos; Favazza, Christopher P.; Maslov, Konstantin; Wang, Lihong V.

    2010-01-01

    Picosecond absorption relaxation—central to many disciplines—is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural—including strongly scattering and nonfluorescent—materials. PMID:21079726

  1. Picosecond absorption relaxation measured with nanosecond laser photoacoustics.

    PubMed

    Danielli, Amos; Favazza, Christopher P; Maslov, Konstantin; Wang, Lihong V

    2010-10-18

    Picosecond absorption relaxation-central to many disciplines-is typically measured by ultrafast (femtosecond or picosecond) pump-probe techniques, which however are restricted to optically thin and weakly scattering materials or require artificial sample preparation. Here, we developed a reflection-mode relaxation photoacoustic microscope based on a nanosecond laser and measured picosecond absorption relaxation times. The relaxation times of oxygenated and deoxygenated hemoglobin molecules, both possessing extremely low fluorescence quantum yields, were measured at 576 nm. The added advantages in dispersion susceptibility, laser-wavelength availability, reflection sensing, and expense foster the study of natural-including strongly scattering and nonfluorescent-materials.

  2. Laser-induced dental caries and plaque diagnosis on patients by sensitive autofluorescence spectroscopy and time-gated video imaging: preliminary studies

    NASA Astrophysics Data System (ADS)

    Koenig, Karsten; Schneckenburger, Herbert

    1994-09-01

    The laser-induced in vivo autofluorescence of human teeth was investigated by means of time- resolved/time-gated fluorescence techniques. The aim of these studies was non-contact caries and plaque detection. Carious lesions and dental plaque fluoresce in the red spectral region. This autofluorescence seems to be based on porphyrin-producing bacteria. We report on preliminary studies on patients using a novel method of autofluorescence imaging. A special device was constructed for time-gated video imaging. Nanosecond laser pulses for fluorescence excitation were provided by a frequency-doubled, Q-switched Nd:YAG laser. Autofluorescence was detected in an appropriate nanosecond time window using a video camera with a time-gated image intensifier (minimal time gate: 5 ns). Laser-induced autofluorescence based on porphyrin-producing bacteria seems to be an appropriate tool for detecting dental lesions and for creating `caries-images' and `dental plaque' images.

  3. Adaptive Decomposition of Highly Resolved Time Series into Local and Non‐local Components

    EPA Science Inventory

    Highly time-resolved air monitoring data are widely being collected over long time horizons in order to characterizeambient and near-source air quality trends. In many applications, it is desirable to split the time-resolved data into two ormore components (e.g., local and region...

  4. Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*

    NASA Astrophysics Data System (ADS)

    Belak, J.; Ilavsky, J.; Hessler, J. P.

    2005-07-01

    Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

  5. In-pile Thermal Conductivity Characterization with Time Resolved Raman

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xinwei; Hurley, David H.

    The project is designed to achieve three objectives: (1) Develop a novel time resolved Raman technology for direct measurement of fuel and cladding thermal conductivity. (2) Validate and improve the technology development by measuring ceramic materials germane to the nuclear industry. (3) Conduct instrumentation development to integrate optical fiber into our sensing system for eventual in-pile measurement. We have developed three new techniques: time-domain differential Raman (TD-Raman), frequency-resolved Raman (FR-Raman), and energy transport state-resolved Raman (ET-Raman). The TD-Raman varies the laser heating time and does simultaneous Raman thermal probing, the FR-Raman probes the material’s thermal response under periodical laser heatingmore » of different frequencies, and the ET-Raman probes the thermal response under steady and pulsed laser heating. The measurement capacity of these techniques have been fully assessed and verified by measuring micro/nanoscale materials. All these techniques do not need the data of laser absorption and absolute material temperature rise, yet still be able to measure the thermal conductivity and thermal diffusivity with unprecedented accuracy. It is expected they will have broad applications for in-pile thermal characterization of nuclear materials based on pure optical heating and sensing.« less

  6. Watching proteins function with time-resolved x-ray crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Šrajer, Vukica; Schmidt, Marius

    Macromolecular crystallography was immensely successful in the last two decades. To a large degree this success resulted from use of powerful third generation synchrotron x-ray sources. An expansive database of more than 100 000 protein structures, of which many were determined at resolution better than 2 Å, is available today. With this achievement, the spotlight in structural biology is shifting from determination of static structures to elucidating dynamic aspects of protein function. A powerful tool for addressing these aspects is time-resolved crystallography, where a genuine biological function is triggered in the crystal with a goal of capturing molecules in actionmore » and determining protein kinetics and structures of intermediates (Schmidt et al 2005a Methods Mol. Biol. 305 115–54, Schmidt 2008 Ultrashort Laser Pulses in Biology and Medicine (Berlin: Springer) pp 201–41, Neutze and Moffat 2012 Curr. Opin. Struct. Biol. 22 651–9, Šrajer 2014 The Future of Dynamic Structural Science (Berlin: Springer) pp 237–51). In this approach, short and intense x-ray pulses are used to probe intermediates in real time and at room temperature, in an ongoing reaction that is initiated synchronously and rapidly in the crystal. Time-resolved macromolecular crystallography with 100 ps time resolution at synchrotron x-ray sources is in its mature phase today, particularly for studies of reversible, light-initiated reactions. The advent of the new free electron lasers for hard x-rays (XFELs; 5–20 keV), which provide exceptionally intense, femtosecond x-ray pulses, marks a new frontier for time-resolved crystallography. The exploration of ultra-fast events becomes possible in high-resolution structural detail, on sub-picosecond time scales (Tenboer et al 2014 Science 346 1242–6, Barends et al 2015 Science 350 445–50, Pande et al 2016 Science 352 725–9). We review here state-of-the-art time-resolved crystallographic experiments both at synchrotrons and XFELs

  7. Elasticity and Anelasticity of Materials from Time-Resolved X-ray Diffraction

    NASA Astrophysics Data System (ADS)

    Sinogeikin, S. V.; Smith, J.; Lin, C.; Bai, L.; Rod, E.; Shen, G.

    2014-12-01

    Recent advances in synchrotron sources, x-ray optics, area detectors, and sample environment control have enabled many time-resolved experimental techniques for studying materials at extreme pressure and temperature conditions. The High Pressure Collaborative Access Team (HPCAT) at the Advanced Photon Source has made a sustained effort to develop and assemble a powerful collection of high-pressure apparatus for time-resolved research, and considerable time has been invested in developing techniques for collecting high-quality time-resolved x-ray scattering data. In this talk we will outline recently developed capabilities at HPCAT for studying elasticity and anelasticity of minerals using fast compression and cyclic compression-decompression. A few recent studies will be highlighted. For example, with fast x-ray area detectors having millisecond time resolution, accurate thermal equations of state of materials at temperatures up to 1000K and megabar pressures can be collected in a matter of seconds using membrane-driven diamond anvil cells (DAC), yielding unprecedented time and pressure resolution of true isotherms. Short duration of the experiments eliminates temperature variation during the experiments and in general allows volume measurements at higher pressures and temperatures. Alternatively, high-frequency (kilohertz range) radial diffraction measurements in a panoramic DAC combined with fast, precise cyclic loading/unloading by piezo drive could provide the short time scale necessary for studying rheology of minerals from the elastic response and lattice relaxation as a function of pressure, temperature and strain rate. Finally, we consider some possible future applications for time-resolved high-pressure, high-temperature research of mantle minerals.

  8. A Low-Cost Time-Resolved Spectrometer for the Study of Ruby Emission

    ERIC Educational Resources Information Center

    McBane, George C.; Cannella, Christian; Schaertel, Stephanie

    2018-01-01

    A low-cost time-resolved emission spectrometer optimized for ruby emission is presented. The use of a Class II diode laser module as the excitation source reduces costs and hazards. The design presented here can facilitate the inclusion of time-resolved emission spectroscopy with laser excitation sources in the undergraduate laboratory curriculum.…

  9. Femtosecond transient absorption, Raman, and electrochemistry studies of tetrasulfonated copper phthalocyanine in water solutions.

    PubMed

    Abramczyk, H; Brozek-Płuska, B; Kurczewski, K; Kurczewska, M; Szymczyk, I; Krzyczmonik, P; Błaszczyk, T; Scholl, H; Czajkowski, W

    2006-07-20

    Ultrafast time-resolved electronic spectra of the primary events induced in the copper tetrasulfonated phthalocyanine Cu(tsPc)4-) in aqueous solution has been measured by femtosecond pump-probe transient absorption spectroscopy. The primary events initiated by the absorption of a photon occurring within the femtosecond time scale are discussed on the basis of the electron transfer mechanism between the adjacent phthalocyanine rings proposed recently in our laboratory. The femtosecond transient absorption results are compared with the low temperature emission spectra obtained with Raman spectroscopy and the voltammetric curves.

  10. Time domain dielectric spectroscopy of nanosecond pulsed electric field induced changes in dielectric properties of pig whole blood.

    PubMed

    Zhuang, Jie; Kolb, Juergen F

    2015-06-01

    The dielectric spectra of fresh pig whole blood in the β-dispersion range after exposure to 300-nanosecond pulsed electric fields (nsPEFs) with amplitude higher than the supra-electroporation threshold for erythrocytes were recorded by time domain reflectometry dielectric spectroscopy. The implications of the dielectric parameters on the dynamics of post-pulse pore development were discussed in light of the Cole-Cole relaxation model. The temporal development of the Cole-Cole parameters indicates that nsPEFs induced significant poration and swelling of erythrocytes within the first 5 min. The results also show that the majority of erythrocytes could not fully recover from supra-electroporation up to 30 min. The findings of this study suggest that time domain dielectric spectroscopy is a promising label-free and real-time physiological measuring technique for nsPEF-blood related biomedical applications, capable of following the conformational and morphological changes of cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Characterization of nanosecond pulse electrical field shock waves using imaging techniques

    NASA Astrophysics Data System (ADS)

    Mimun, L. Chris; Ibey, Bennett L.; Roth, Caleb C.; Barnes, Ronald A.; Sardar, Dhiraj K.; Beier, Hope T.

    2015-03-01

    Nanosecond pulsed electric fields (nsPEF) cause the formation of small pores, termed nanopores, in the membrane of cells. Current nanoporation models treat nsPEF exposure as a purely electromagnetic phenomenon, but recent publications showing pressure transients, ROS production, temperature gradients, and pH waves suggest the stimulus may be physically and chemically multifactorial causing elicitation of diverse biological conditions and stressors. Our research group's goal is to quantify the breadth and participation of these stressors generated during nsPEF exposure and determine their relative importance to the observed cellular response. In this paper, we used advanced imaging techniques to identify a possible source of nsPEF-induced acoustic shock waves. nsPEFs were delivered in an aqueous media via a pair of 125 μm tungsten electrodes separated by 100 μm, mirroring our previously published cellular exposure experiments. To visualize any pressure transients emanating from the electrodes or surrounding medium, we used the Schlieren imaging technique. Resulting images and measurements confirmed that mechanical pressure waves and electrode-based stresses are formed during nsPEF, resulting in a clearer understanding of the whole exposure dosimetry. This information will be used to better quantify the impact of nsPEF-induced acoustic shock waves on cells, and has provided further evidence of non-electrical-field induced exposures for elicitation of bioieffects.

  12. Multicolor Photometry and Time-resolved Spectroscopy of Two sdBV Stars

    NASA Astrophysics Data System (ADS)

    Reed, M. D.; O'Toole, S. J.; Telting, J. H.; Østensen, R. H.; Heber, U.; Barlow, B. N.; Reichart, D. E.; Nysewander, M. C.; LaCluyze, A. P.; Ivarsen, K. M.; Haislip, J. B.; Bean, J.

    2012-03-01

    Observational mode constraints have mostly been lacking for short period pulsating sdB stars, yet such identifications are vital to constrain models. Time-resolved spectroscopy and multicolor photometry have been employed with mixed results for short-period pulsating sdB stars. Time-resolved spectroscopy has successfully measured radial velocity, temperature, and gravity variations in six pulsators, yet interpreting results is far from straightforward. Multicolor photometry requires extremely high precision to discern between low-degree modes, yet has been used effectively to eliminate high-degree modes. Combining radial velocity (RV) and multicolor measurements has also been shown as an effective means of constraining mode identifications. We present preliminary results for Feige 48 and EC 01541-1409 using both time-resolved spectroscopy and multicolor photometry and an initial examination of their pulsation modes using the atmospheric codes BRUCE and KYLIE.

  13. Watching proteins function with 150-ps time-resolved X-ray crystallography

    NASA Astrophysics Data System (ADS)

    Anfinrud, Philip

    2007-03-01

    We have used time-resolved Laue crystallography to characterize ligand migration pathways and dynamics in wild-type and several mutant forms of myoglobin (Mb), a ligand-binding heme protein found in muscle tissue. In these pump-probe experiments, which were conducted on the ID09B time-resolved beamline at the European Synchrotron and Radiation Facility, a laser pulse photodissociates CO from an MbCO crystal and a suitably delayed X-ray pulse probes its structure via Laue diffraction. Single-site mutations in the vicinity of the heme pocket docking site were found to have a dramatic effect on ligand migration. To visualize this process, time-resolved electron density maps were stitched together into movies that unveil with <2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration. These studies help to illustrate at an atomic level relationships between protein structure, dynamics, and function.

  14. A scheme for recording a fast process at nanosecond scale by using digital holographic interferometry with continuous wave laser

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Zhao, Jianlin; Di, Jianglei; Jiang, Biqiang

    2015-04-01

    A scheme for recording fast process at nanosecond scale by using digital holographic interferometry with continuous wave (CW) laser is described and demonstrated experimentally, which employs delayed-time fibers and angular multiplexing technique and can realize the variable temporal resolution at nanosecond scale and different measured depths of object field at certain temporal resolution. The actual delay-time is controlled by two delayed-time fibers with different lengths. The object field information in two different states can be simultaneously recorded in a composite hologram. This scheme is also suitable for recording fast process at picosecond scale, by using an electro-optic modulator.

  15. Unraveling the Mechanism of the Photodeprotection Reaction of 8-Bromo- and 8-Chloro-7-hydroxyquinoline Caged Acetates

    PubMed Central

    Ma, Jiani; Rea, Adam C; An, Huiying; Ma, Chensheng; Guan, Xiangguo; Li, Ming-De; Su, Tao; Yeung, Chi Shun; Harris, Kyle T; Zhu, Yue; Nganga, Jameil L; Fedoryak, Olesya D; Dore, Timothy M; Phillips, David Lee

    2012-01-01

    Abstract Photoremovable protecting groups (PPGs) when conjugated to biological effectors forming “caged compounds” are a powerful means to regulate the action of physiologically active messengers in vivo through 1-photon excitation (1PE) and 2-photon excitation (2PE). Understanding the photodeprotection mechanism is important for their physiological use. We compared the quantum efficiencies and product outcomes in different solvent and pH conditions for the photolysis reactions of (8-chloro-7-hydroxyquinolin-2-yl)methyl acetate (CHQ-OAc) and (8-bromo-7-hydroxyquinolin-2-yl)methyl acetate (BHQ-OAc), representatives of the quinoline class of phototriggers for biological use, and conducted nanosecond time-resolved spectroscopic studies using transient emission (ns-EM), transient absorption (ns-TA), transient resonance Raman (ns-TR2), and time-resolved resonance Raman (ns-TR3) spectroscopies. The results indicate differences in the photochemical mechanisms and product outcomes, and reveal that the triplet excited state is most likely on the pathway to the product and that dehalogenation competes with release of acetate from BHQ-OAc, but not CHQ-OAc. A high fluorescence quantum yield and a more efficient excited-state proton transfer (ESPT) in CHQ-OAc compared to BHQ-OAc explain the lower quantum efficiency of CHQ-OAc relative to BHQ-OAc. PMID:22511356

  16. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU

    NASA Astrophysics Data System (ADS)

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  17. Development of soft x-ray time-resolved photoemission spectroscopy system with a two-dimensional angle-resolved time-of-flight analyzer at SPring-8 BL07LSU.

    PubMed

    Ogawa, Manami; Yamamoto, Susumu; Kousa, Yuka; Nakamura, Fumitaka; Yukawa, Ryu; Fukushima, Akiko; Harasawa, Ayumi; Kondoh, Hiroshi; Tanaka, Yoshihito; Kakizaki, Akito; Matsuda, Iwao

    2012-02-01

    We have developed a soft x-ray time-resolved photoemission spectroscopy system using synchrotron radiation (SR) at SPring-8 BL07LSU and an ultrashort pulse laser system. Two-dimensional angle-resolved measurements were performed with a time-of-flight-type analyzer. The photoemission spectroscopy system is synchronized to light pulses of SR and laser using a time control unit. The performance of the instrument is demonstrated by mapping the band structure of a Si(111) crystal over the surface Brillouin zones and observing relaxation of the surface photo-voltage effect using the pump (laser) and probe (SR) method.

  18. EUV nanosecond laser ablation of silicon carbide, tungsten and molybdenum

    NASA Astrophysics Data System (ADS)

    Frolov, Oleksandr; Kolacek, Karel; Schmidt, Jiri; Straus, Jaroslav; Choukourov, Andrei; Kasuya, Koichi

    2015-09-01

    In this paper we present results of study interaction of nanosecond EUV laser pulses at wavelength of 46.9 nm with silicon carbide (SiC), tungsten (W) and molybdenum (Mo). As a source of laser radiation was used discharge-plasma driver CAPEX (CAPillary EXperiment) based on high current capillary discharge in argon. The laser beam is focused with a spherical Si/Sc multilayer-coated mirror on samples. Experimental study has been performed with 1, 5, 10, 20 and 50 laser pulses ablation of SiC, W and Mo at various fluence values. Firstly, sample surface modification in the nanosecond time scale have been registered by optical microscope. And the secondly, laser beam footprints on the samples have been analyzed by atomic-force microscope (AFM). This work supported by the Czech Science Foundation under Contract GA14-29772S and by the Grant Agency of the Ministry of Education, Youth and Sports of the Czech Republic under Contract LG13029.

  19. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    NASA Astrophysics Data System (ADS)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  20. Development of time-domain differential Raman for transient thermal probing of materials

    DOE PAGES

    Xu, Shen; Wang, Tianyu; Hurley, David; ...

    2015-01-01

    A novel transient thermal characterization technology is developed based on the principles of transient optical heating and Raman probing: time-domain differential Raman. It employs a square-wave modulated laser of varying duty cycle to realize controlled heating and transient thermal probing. Very well defined extension of the heating time in each measurement changes the temperature evolution profile and the probed temperature field at μs resolution. Using this new technique, the transient thermal response of a tipless Si cantilever is investigated along the length direction. A physical model is developed to reconstruct the Raman spectrum considering the temperature evolution, while taking intomore » account the temperature dependence of the Raman emission. By fitting the variation of the normalized Raman peak intensity, wavenumber, and peak area against the heating time, the thermal diffusivity is determined as 9.17 × 10⁻⁵, 8.14 × 10⁻⁵, and 9.51 × 10⁻⁵ m²/s. These results agree well with the reference value of 8.66 × 10⁻⁵ m²/s considering the 10% fitting uncertainty. The time-domain differential Raman provides a novel way to introduce transient thermal excitation of materials, probe the thermal response, and measure the thermal diffusivity, all with high accuracy.« less

  1. Vibrational cooling dynamics of a [FeFe]-hydrogenase mimic probed by time-resolved infrared spectroscopy.

    PubMed

    Caplins, Benjamin W; Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2014-12-11

    Picosecond time-resolved infrared spectroscopy (TRIR) was performed for the first time on a dithiolate bridged binuclear iron(I) hexacarbonyl complex ([Fe₂(μ-bdt)(CO)₆], bdt = benzene-1,2-dithiolate) which is a structural mimic of the active site of the [FeFe]-hydrogenase enzyme. As these model active sites are increasingly being studied for their potential in photocatalytic systems for hydrogen production, understanding their excited and ground state dynamics is critical. In n-heptane, absorption of 400 nm light causes carbonyl loss with low quantum yield (<10%), while the majority (ca. 90%) of the parent complex is regenerated with biexponential kinetics (τ₁ = 21 ps and τ₂ = 134 ps). In order to understand the mechanism of picosecond bleach recovery, a series of UV-pump TRIR experiments were performed in different solvents. The long time decay (τ₂) of the transient spectra is seen to change substantially as a function of solvent, from 95 ps in THF to 262 ps in CCl₄. Broadband IR-pump TRIR experiments were performed for comparison. The measured vibrational lifetimes (T₁(avg)) of the carbonyl stretches were found to be in excellent correspondence to the observed τ₂ decays in the UV-pump experiments, signifying that vibrationally excited carbonyl stretches are responsible for the observed longtime decays. The fast spectral evolution (τ₁) was determined to be due to vibrational cooling of low frequency modes anharmonically coupled to the carbonyl stretches that were excited after electronic internal conversion. The results show that cooling of both low and high frequency vibrational modes on the electronic ground state give rise to the observed picosecond TRIR transient spectra of this compound, without the need to invoke electronically excited states.

  2. Theory of time-resolved photoelectron imaging. Comparison of a density functional with a time-dependent density functional approach

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshi-ichi; Seideman, Tamar; Stener, Mauro

    2004-01-01

    Time-resolved photoelectron differential cross sections are computed within a quantum dynamical theory that combines a formally exact solution of the nuclear dynamics with density functional theory (DFT)-based approximations of the electronic dynamics. Various observables of time-resolved photoelectron imaging techniques are computed at the Kohn-Sham and at the time-dependent DFT levels. Comparison of the results serves to assess the reliability of the former method and hence its usefulness as an economic approach for time-domain photoelectron cross section calculations, that is applicable to complex polyatomic systems. Analysis of the matrix elements that contain the electronic dynamics provides insight into a previously unexplored aspect of femtosecond-resolved photoelectron imaging.

  3. Enhancement of ultracold molecule formation by local control in the nanosecond regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carini, J. L.; Kallush, S.; Kosloff, R.

    2015-02-01

    We describe quantum simulations of ultracold 87Rb 2 molecule formation using photoassociation (PA) with nanosecond-time-scale pulses of frequency chirped light. In particular, we compare the case of a linear chirp to one where the frequency evolution is optimized by local control (LC) of the phase, and find that LC can provide a significant enhancement. The resulting optimal frequency evolution corresponds to a rapid jump from the PA absorption resonance to a downward transition to a bound level of the lowest triplet state. We also consider the case of two frequencies and investigate interference effects. The assumed chirp parameters should bemore » achievable with nanosecond pulse shaping techniques and are predicted to provide a significant enhancement over recent experiments with linear chirps.« less

  4. Time-resolved spectroscopy using a chopper wheel as a fast shutter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shicong; Wendt, Amy E.; Boffard, John B.

    Widely available, small form-factor, fiber-coupled spectrometers typically have a minimum exposure time measured in milliseconds, and thus cannot be used directly for time-resolved measurements at the microsecond level. Spectroscopy at these faster time scales is typically done with an intensified charge coupled device (CCD) system where the image intensifier acts as a “fast” electronic shutter for the slower CCD array. In this paper, we describe simple modifications to a commercially available chopper wheel system to allow it to be used as a “fast” mechanical shutter for gating a fiber-coupled spectrometer to achieve microsecond-scale time-resolved optical measurements of a periodically pulsedmore » light source. With the chopper wheel synchronized to the pulsing of the light source, the time resolution can be set to a small fraction of the pulse period by using a chopper wheel with narrow slots separated by wide spokes. Different methods of synchronizing the chopper wheel and pulsing of the light sources are explored. The capability of the chopper wheel system is illustrated with time-resolved measurements of pulsed plasmas.« less

  5. Nanosecond laser coloration on stainless steel surface.

    PubMed

    Lu, Yan; Shi, Xinying; Huang, Zhongjia; Li, Taohai; Zhang, Meng; Czajkowski, Jakub; Fabritius, Tapio; Huttula, Marko; Cao, Wei

    2017-08-02

    In this work, we present laser coloration on 304 stainless steel using nanosecond laser. Surface modifications are tuned by adjusting laser parameters of scanning speed, repetition rate, and pulse width. A comprehensive study of the physical mechanism leading to the appearance is presented. Microscopic patterns are measured and employed as input to simulate light-matter interferences, while chemical states and crystal structures of composites to figure out intrinsic colors. Quantitative analysis clarifies the final colors and RGB values are the combinations of structural colors and intrinsic colors from the oxidized pigments, with the latter dominating. Therefore, the engineering and scientific insights of nanosecond laser coloration highlight large-scale utilization of the present route for colorful and resistant steels.

  6. Fiber-fed time-resolved photoluminescence for reduced process feedback time on thin-film photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, I. L.; Egaas, B.; Mansfield, L. M.

    2015-01-15

    Fiber-fed time-resolved photoluminescence is demonstrated as a tool for immediate process feedback after deposition of the absorber layer for CuIn{sub x}Ga{sub 1-x}Se{sub 2} and Cu{sub 2}ZnSnSe{sub 4} photovoltaic devices. The technique uses a simplified configuration compared to typical laboratory time-resolved photoluminescence in the delivery of the exciting beam, signal collection, and electronic components. Correlation of instrument output with completed device efficiency is demonstrated over a large sample set. The extraction of the instrument figure of merit, depending on both the initial luminescence intensity and its time decay, is explained and justified. Limitations in the prediction of device efficiency by thismore » method, including surface effect, are demonstrated and discussed.« less

  7. Quasiparticle dynamics across the full Brillouin zone of Bi 2Sr 2CaCu 2O 8+δ traced with ultrafast time and angle-resolved photoemission spectroscopy

    DOE PAGES

    Dakovski, Georgi L.; Durakiewicz, Tomasz; Zhu, Jian-Xin; ...

    2015-10-12

    A hallmark in the cuprate family of high-temperature superconductors is the nodal-antinodal dichotomy. In this regard, angle-resolved photoemission spectroscopy (ARPES) has proven especially powerful, providing band structure information directly in energy-momentum space. Time-resolved ARPES (trARPES) holds great promise of adding ultrafast temporal information, in an attempt to identify different interaction channels in the time domain. Previous studies of the cuprates using trARPES were handicapped by the low probing energy which significantly limits the accessible momentum space. Using 20.15eV, 12 fs pulses we show for the first time the evolution of quasiparticles in the antinodal region of Bi 2Sr 2CaCu 2Omore » 8+δ and demonstrate that nonmonotonic relaxation dynamics dominates above a certain fluence threshold. The dynamics is heavily influenced by transient modification of the electron-phonon interaction and phase space restrictions, in severe contrast to the monotonic relaxation in the nodal and off-nodal regions.« less

  8. Diiodobodipy-styrylbodipy Dyads: Preparation and Study of the Intersystem Crossing and Fluorescence Resonance Energy Transfer.

    PubMed

    Wang, Zhijia; Xie, Yun; Xu, Kejing; Zhao, Jianzhang; Glusac, Ksenija D

    2015-07-02

    2,6-Diiodobodipy-styrylbodipy dyads were prepared to study the competing intersystem crossing (ISC) and the fluorescence-resonance-energy-transfer (FRET), and its effect on the photophysical property of the dyads. In the dyads, 2,6-diiodobodipy moiety was used as singlet energy donor and the spin converter for triplet state formation, whereas the styrylbodipy was used as singlet and triplet energy acceptors, thus the competition between the ISC and FRET processes is established. The photophysical properties were studied with steady-state UV-vis absorption and fluorescence spectroscopy, electrochemical characterization, and femto/nanosecond time-resolved transient absorption spectroscopies. FRET was confirmed with steady state fluorescence quenching and fluorescence excitation spectra and ultrafast transient absorption spectroscopy (kFRET = 5.0 × 10(10) s(-1)). The singlet oxygen quantum yield (ΦΔ = 0.19) of the dyad was reduced as compared with that of the reference spin converter (2,6-diiodobodipy, ΦΔ = 0.85), thus the ISC was substantially inhibited by FRET. Photoinduced intramolecular electron transfer (ET) was studied by electrochemical data and fluorescence quenching. Intermolecular triplet energy transfer was studied with nanosecond transient absorption spectroscopy as an efficient (ΦTTET = 92%) and fast process (kTTET = 5.2 × 10(4) s(-1)). These results are useful for designing organic triplet photosensitizers and for the study of the photophysical properties.

  9. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue.

  10. Diagnosis of meningioma by time-resolved fluorescence spectroscopy.

    PubMed

    Butte, Pramod V; Pikul, Brian K; Hever, Aviv; Yong, William H; Black, Keith L; Marcu, Laura

    2005-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors.

  11. Diagnosis of meningioma by time-resolved fluorescence spectroscopy

    PubMed Central

    Butte, Pramod V.; Pikul, Brian K.; Hever, Aviv; Yong, William H.; Black, Keith L.; Marcu, Laura

    2010-01-01

    We investigate the use of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) as an adjunctive tool for the intraoperative rapid evaluation of tumor specimens and delineation of tumor from surrounding normal tissue. Tissue autofluorescence is induced with a pulsed nitrogen laser (337 nm, 1.2 ns) and the intensity decay profiles are recorded in the 370 to 500 nm spectral range with a fast digitizer (0.2 ns resolution). Experiments are conducted on excised specimens (meningioma, dura mater, cerebral cortex) from 26 patients (97 sites). Spectral intensities and time-dependent parameters derived from the time-resolved spectra of each site are used for tissue characterization. A linear discriminant analysis algorithm is used for tissue classification. Our results reveal that meningioma is characterized by unique fluorescence characteristics that enable discrimination of tumor from normal tissue with high sensitivity (>89%) and specificity (100%). The accuracy of classification is found to increase (92.8% cases in the training set and 91.8% in the cross-validated set correctly classified) when parameters from both the spectral and the time domain are used for discrimination. Our findings establish the feasibility of using TR-LIFS as a tool for the identification of meningiomas and enables further development of real-time diagnostic tools for analyzing surgical tissue specimens of meningioma or other brain tumors. PMID:16409091

  12. Electronic and nuclear contributions to time-resolved optical and X-ray absorption spectra of hematite and insights into photoelectrochemical performance

    DOE PAGES

    Hayes, Dugan; Hadt, Ryan G.; Emery, Jonathan D.; ...

    2016-11-02

    Ultrafast time-resolved studies of photocatalytic thin films can provide a wealth of information crucial for understanding and thereby improving the performance of these materials by directly probing electronic structure, reaction intermediates, and charge carrier dynamics. The interpretation of transient spectra, however, can be complicated by thermally induced structural distortions, which appear within the first few picoseconds following excitation due to carrier–phonon scattering. Here we present a comparison of ex situ steady-state thermal difference spectra and transient absorption spectra spanning from NIR to hard X-ray energies of hematite thin films grown by atomic layer deposition. We find that beyond the firstmore » 100 picoseconds, the transient spectra measured for all excitation wavelengths and probe energies are almost entirely due to thermal effects as the lattice expands in response to the ultrafast temperature jump and then cools to room temperature on the microsecond timescale. At earlier times, a broad excited state absorption band that is assigned to free carriers appears at 675 nm, and the lifetime and shape of this feature also appear to be mostly independent of excitation wavelength. The combined spectroscopic data, which are modeled with density functional theory and full multiple scattering calculations, support an assignment of the optical absorption spectrum of hematite that involves two LMCT bands that nearly span the visible spectrum. Lastly, our results also suggest a framework for shifting the ligand-to-metal charge transfer absorption bands of ferric oxide films from the near-UV further into the visible part of the solar spectrum to improve solar conversion efficiency.« less

  13. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1982-01-01

    The computational methods used to predict and optimize the thermal structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a different yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  14. Mixed time integration methods for transient thermal analysis of structures

    NASA Technical Reports Server (NTRS)

    Liu, W. K.

    1983-01-01

    The computational methods used to predict and optimize the thermal-structural behavior of aerospace vehicle structures are reviewed. In general, two classes of algorithms, implicit and explicit, are used in transient thermal analysis of structures. Each of these two methods has its own merits. Due to the different time scales of the mechanical and thermal responses, the selection of a time integration method can be a difficult yet critical factor in the efficient solution of such problems. Therefore mixed time integration methods for transient thermal analysis of structures are being developed. The computer implementation aspects and numerical evaluation of these mixed time implicit-explicit algorithms in thermal analysis of structures are presented. A computationally-useful method of estimating the critical time step for linear quadrilateral element is also given. Numerical tests confirm the stability criterion and accuracy characteristics of the methods. The superiority of these mixed time methods to the fully implicit method or the fully explicit method is also demonstrated.

  15. Whole-head functional brain imaging of neonates at cot-side using time-resolved diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Dempsey, Laura A.; Cooper, Robert J.; Powell, Samuel; Edwards, Andrea; Lee, Chuen-Wai; Brigadoi, Sabrina; Everdell, Nick; Arridge, Simon; Gibson, Adam P.; Austin, Topun; Hebden, Jeremy C.

    2015-07-01

    We present a method for acquiring whole-head images of changes in blood volume and oxygenation from the infant brain at cot-side using time-resolved diffuse optical tomography (TR-DOT). At UCL, we have built a portable TR-DOT device, known as MONSTIR II, which is capable of obtaining a whole-head (1024 channels) image sequence in 75 seconds. Datatypes extracted from the temporal point spread functions acquired by the system allow us to determine changes in absorption and reduced scattering coefficients within the interrogated tissue. This information can then be used to define clinically relevant measures, such as oxygen saturation, as well as to reconstruct images of relative changes in tissue chromophore concentration, notably those of oxy- and deoxyhaemoglobin. Additionally, the effective temporal resolution of our system is improved with spatio-temporal regularisation implemented through a Kalman filtering approach, allowing us to image transient haemodynamic changes. By using this filtering technique with intensity and mean time-of-flight datatypes, we have reconstructed images of changes in absorption and reduced scattering coefficients in a dynamic 2D phantom. These results demonstrate that MONSTIR II is capable of resolving slow changes in tissue optical properties within volumes that are comparable to the preterm head. Following this verification study, we are progressing to imaging a 3D dynamic phantom as well as the neonatal brain at cot-side. Our current study involves scanning healthy babies to demonstrate the quality of recordings we are able to achieve in this challenging patient population, with the eventual goal of imaging functional activation and seizures.

  16. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite.

    PubMed

    Kraus, D; Ravasio, A; Gauthier, M; Gericke, D O; Vorberger, J; Frydrych, S; Helfrich, J; Fletcher, L B; Schaumann, G; Nagler, B; Barbrel, B; Bachmann, B; Gamboa, E J; Göde, S; Granados, E; Gregori, G; Lee, H J; Neumayer, P; Schumaker, W; Döppner, T; Falcone, R W; Glenzer, S H; Roth, M

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.

  17. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    DOE PAGES

    Kraus, D.; Ravasio, A.; Gauthier, M.; ...

    2016-03-14

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystallinemore » graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. In conclusion, our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.« less

  18. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite

    PubMed Central

    Kraus, D.; Ravasio, A.; Gauthier, M.; Gericke, D. O.; Vorberger, J.; Frydrych, S.; Helfrich, J.; Fletcher, L. B.; Schaumann, G.; Nagler, B.; Barbrel, B.; Bachmann, B.; Gamboa, E. J.; Göde, S.; Granados, E.; Gregori, G.; Lee, H. J.; Neumayer, P.; Schumaker, W.; Döppner, T.; Falcone, R. W.; Glenzer, S. H.; Roth, M.

    2016-01-01

    The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites. PMID:26972122

  19. Spectral reconstruction analysis for enhancing signal-to-noise in time-resolved spectroscopies

    NASA Astrophysics Data System (ADS)

    Wilhelm, Michael J.; Smith, Jonathan M.; Dai, Hai-Lung

    2015-09-01

    We demonstrate a new spectral analysis for the enhancement of the signal-to-noise ratio (SNR) in time-resolved spectroscopies. Unlike the simple linear average which produces a single representative spectrum with enhanced SNR, this Spectral Reconstruction analysis (SRa) improves the SNR (by a factor of ca. 0 . 6 √{ n } ) for all n experimentally recorded time-resolved spectra. SRa operates by eliminating noise in the temporal domain, thereby attenuating noise in the spectral domain, as follows: Temporal profiles at each measured frequency are fit to a generic mathematical function that best represents the temporal evolution; spectra at each time are then reconstructed with data points from the fitted profiles. The SRa method is validated with simulated control spectral data sets. Finally, we apply SRa to two distinct experimentally measured sets of time-resolved IR emission spectra: (1) UV photolysis of carbonyl cyanide and (2) UV photolysis of vinyl cyanide.

  20. A Tesla-type repetitive nanosecond pulse generator for solid dielectric breakdown research.

    PubMed

    Zhao, Liang; Pan, Ya Feng; Su, Jian Cang; Zhang, Xi Bo; Wang, Li Min; Fang, Jin Peng; Sun, Xu; Lui, Rui

    2013-10-01

    A Tesla-type repetitive nanosecond pulse generator including a pair of electrode and a matched absorption resistor is established for the application of solid dielectric breakdown research. As major components, a built-in Tesla transformer and a gas-gap switch are designed to boost and shape the output pulse, respectively; the electrode is to form the anticipated electric field; the resistor is parallel to the electrode to absorb the reflected energy from the test sample. The parameters of the generator are a pulse width of 10 ns, a rise and fall time of 3 ns, and a maximum amplitude of 300 kV. By modifying the primary circuit of the Tesla transformer, the generator can produce both positive and negative pulses at a repetition rate of 1-50 Hz. In addition, a real-time measurement and control system is established based on the solid dielectric breakdown requirements for this generator. With this system, experiments on test samples made of common insulation materials in pulsed power systems are conducted. The preliminary experimental results show that the constructed generator is capable to research the solid dielectric breakdown phenomenon on a nanosecond time scale.

  1. All-fibre optical gating system for measuring a complex-shaped periodic broadband signal with picosecond resolution in a nanosecond time window

    NASA Astrophysics Data System (ADS)

    Andrianov, A. V.

    2018-04-01

    We have developed an optical gating system for continuously monitoring a complex-shaped periodic optical signal with picosecond resolution in a nanosecond time window using an all-fibre optical gate in the form of a nonlinear loop mirror and a passively mode-locked femtosecond laser. The distinctive features of the system are the possibility of characterizing signals with a very large spectral bandwidth, the possibility of using a gating pulse source with a wavelength falling in the band of the signal under study and its all-fibre design with the use of standard fibres and telecom components.

  2. Toward Femtosecond Time-Resolved Studies of Solvent-Solute Energy Transfer in Doped Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Bacellar, C.; Ziemkiewicz, M. P.; Leone, S. R.; Neumark, D. M.; Gessner, O.

    2015-05-01

    Superfluid helium nanodroplets provide a unique cryogenic matrix for high resolution spectroscopy and ultracold chemistry applications. With increasing photon energy and, in particular, in the increasingly important Extreme Ultraviolet (EUV) regime, the droplets become optically dense and, therefore, participate in the EUV-induced dynamics. Energy- and charge-transfer mechanisms between the host droplets and dopant atoms, however, are poorly understood. Static energy domain measurements of helium droplets doped with noble gas atoms (Xe, Kr) indicate that Penning ionization due to energy transfer from the excited droplet to dopant atoms may be a significant relaxation channel. We have set up a femtosecond time-resolved photoelectron imaging experiment to probe these dynamics directly in the time-domain. Droplets containing 104 to 106 helium atoms and a small percentage (<10-4) of dopant atoms (Xe, Kr, Ne) are excited to the 1s2p Rydberg band by 21.6 eV photons produced by high harmonic generation (HHG). Transiently populated states are probed by 1.6 eV photons, generating time-dependent photoelectron kinetic energy distributions, which are monitored by velocity map imaging (VMI). The results will provide new information about the dynamic timescales and the different relaxation channels, giving access to a more complete physical picture of solvent-solute interactions in the superfluid environment. Prospects and challenges of the novel experiment as well as preliminary experimental results will be discussed.

  3. Experimental Investigation of Pulsed Nanosecond Streamer Discharges for CO2 Reforming

    NASA Astrophysics Data System (ADS)

    Pachuilo, Michael; Levko, Dima; Raja, Laxminarayan; Varghese, Philip

    2016-09-01

    Rapid global industrialization has led to an increase in atmospheric greenhouse gases, specifically carbon dioxide levels. Plasmas present a great potential for efficient reforming of greenhouse gases. There are several plasma discharges which have been reported for reforming process: dielectric barrier discharges (DBD), microwave discharges, and glide-arcs. Microwave discharges have CO2 conversion energy efficiency of up to 40% at atmospheric conditions, while glide-arcs have 43% and DBD 2-10%. In our study, we analyze a single nanosecond pulsed cathode directed streamer discharge in CO2 at atmospheric pressure and temperature. We have conducted time resolved imaging with spectral bandpass filters of a streamer discharge with an applied negative polarity pulse. The image sequences have been correlated to the applied voltage and current pulses. From the spectral filters we can determine where spatially and temporally excited species are formed. In this talk we report on spectroscopic studies of the discharge and estimate plasma properties such as temperature and density of excited species and electrons. Furthermore, we report on the effects of pulse polarity as well as anodic streamer discharges on the CO2 conversion efficiency. Finally, we will focus on the effects of vibrational excitation on carbon dioxide reforming efficiency for streamer discharges. Our experimental results will be compared with an accompanying plasma computational model studies.

  4. Do fluorescence and transient absorption probe the same intramolecular charge transfer state of 4-(dimethylamino)benzonitrile?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustavsson, Thomas; Coto, Pedro B.; Serrano-Andres, Luis

    2009-07-21

    We present here the results of time-resolved absorption and emission experiments for 4-(dimethylamino)benzonitrile in solution, which suggest that the fluorescent intramolecular charge transfer (ICT) state may differ from the twisted ICT (TICT) state observed in transient absorption.

  5. Motor Oil Classification Based on Time-Resolved Fluorescence

    PubMed Central

    Mu, Taotao; Chen, Siying; Zhang, Yinchao; Guo, Pan; Chen, He; Meng, Fandong

    2014-01-01

    A time-resolved fluorescence (TRF) technique is presented for classifying motor oils. The system is constructed with a third harmonic Nd:YAG laser, a spectrometer, and an intensified charge coupled device (ICCD) camera. Steady-state and time-resolved fluorescence (TRF) measurements are reported for several motor oils. It is found that steady-state fluorescence is insufficient to distinguish the motor oil samples. Then contour diagrams of TRF intensities (CDTRFIs) are acquired to serve as unique fingerprints to identify motor oils by using the distinct TRF of motor oils. CDTRFIs are preferable to steady-state fluorescence spectra for classifying different motor oils, making CDTRFIs a particularly choice for the development of fluorescence-based methods for the discrimination and characterization of motor oils. The two-dimensional fluorescence contour diagrams contain more information, not only the changing shapes of the LIF spectra but also the relative intensity. The results indicate that motor oils can be differentiated based on the new proposed method, which provides reliable methods for analyzing and classifying motor oils. PMID:24988439

  6. Pump-probe imaging of nanosecond laser-induced bubbles in agar gel.

    PubMed

    Evans, R; Camacho-López, S; Pérez-Gutiérrez, F G; Aguilar, G

    2008-05-12

    In this paper we show results of Nd:YAG laser-induced bubbles formed in a one millimeter thick agar gel slab. The nine nanosecond duration pulse with a wave length of 532 nm was tightly focused inside the bulk of the gel sample. We present for the first time a pump-probe laser-flash shadowgraphy system that uses two electronically delayed Nd:YAG lasers to image the the bubble formation and shock wave fronts with nanosecond temporal resolution and up to nine seconds of temporal range. The shock waves generated by the laser are shown to begin at an earlier times within the laser pulse as the pulse energy increases. The shock wave velocity is used to infer a shocked to unshocked material pressure difference of up to 500 MPa. The bubble created settles to a quasi-stable size that has a linear relation to the maximum bubble size. The energy stored in the bubble is shown to increase nonlinearly with applied laser energy, and corresponds in form to the energy transmission in the agar gel. We show that the interaction is highly nonlinear, and most likely is plasma-mediated.

  7. Two dimensional, transient catalytic combustion of CO-air on platinum

    NASA Technical Reports Server (NTRS)

    Sinha, N.; Bruno, C.; Bracco, F. V.

    1985-01-01

    The light off transient of catalytic combustion of lean CO-air mixtures in a platinum coated channel of a honeycomb monolith is studied with a model that resolves transient radial and axial gradients in both the gas and the solid. For the conditions studied it is concluded that: the initial heat release occurs near the entrance at the gas-solid interface and is controlled by heterogeneous reactions; large spatial and temporal temperature gradients occur in the solid near the entrance controlled mostly by the availability of fuel; the temperature of the solid near the entrance achieves almost its steady state value before significant heating of the back; heterogeneous reactions and the gas heated up front and flowing downstream heat the back of the solid; the overall transient time is controlled by the thermal inertia of the solid and by forced convection; radiation significantly influences both transient and steady state particularly near the entrance; the oxidation of CO occurs mostly on the catalyst and becomes diffusion controlled soon into the transient.

  8. Detecting aromatic compounds on planetary surfaces using ultraviolet time-resolved fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Eshelman, E.; Daly, M. G.; Slater, G.; Cloutis, E.

    2018-02-01

    Many aromatic organic molecules exhibit strong and characteristic fluorescence when excited with ultraviolet radiation. As laser excitation in the ultraviolet generates both fluorescence and resonantly enhanced Raman scattering of aromatic vibrational modes, combined Raman and fluorescence instruments have been proposed to search for organic compounds on Mars. In this work the time-resolved fluorescence of a suite of 24 compounds composed of 2-5 ringed alternant, non-alternant, and heterocyclic PAHs was measured. Fluorescence instrumentation with similar specifications to a putative flight instrument was capable of observing the fluorescence decay of these compounds with a sub-ns resolution. Incorporating time-resolved capabilities was also found to increase the ability to discriminate between individual PAHs. Incorporating time-resolved fluorescence capabilities into an ultraviolet gated Raman system intended for a rover or lander can increase the ability to detect and characterize PAHs on planetary surfaces.

  9. Excited Electronic and Vibrational State Decomposition of Energetic Materials and Model Systems on Both Nanosecond and Femtosecond Time Scales

    DTIC Science & Technology

    2014-07-22

    differences among electronically excited nitro-containing molecules with different X–NO2 (X = C, N, O) bond connections. Nitromethane (NM...Dynamics of Nitromethane at 226 nm and 271 nm at both Nanosecond and Femtosecond Temporal Scales," J. Phys. Chem. A 113, 85 (2009).

  10. Femtosecond to picosecond transient effects in WSe 2 observed by pump-probe angle-resolved photoemission spectroscopy.

    PubMed

    Liu, Ro-Ya; Ogawa, Yu; Chen, Peng; Ozawa, Kenichi; Suzuki, Takeshi; Okada, Masaru; Someya, Takashi; Ishida, Yukiaki; Okazaki, Kozo; Shin, Shik; Chiang, Tai-Chang; Matsuda, Iwao

    2017-11-22

    Time-dependent responses of materials to an ultrashort optical pulse carry valuable information about the electronic and lattice dynamics; this research area has been widely studied on novel two-dimensional materials such as graphene, transition metal dichalcogenides (TMDs) and topological insulators (TIs). We report herein a time-resolved and angle-resolved photoemission spectroscopy (TRARPES) study of WSe 2 , a layered semiconductor of interest for valley electronics. The results for below-gap optical pumping reveal energy-gain and -loss Floquet replica valence bands that appear instantaneously in concert with the pump pulse. Energy shift, broadening, and complex intensity variation and oscillation at twice the phonon frequency for the valence bands are observed at time scales ranging from the femtosecond to the picosecond and beyond. The underlying physics is rich, including ponderomotive interaction, dressing of the electronic states, creation of coherent phonon pairs, and diffusion of charge carriers - effects operating at vastly different time domains.

  11. Development of a visible-light-sensitized europium complex for time-resolved fluorometric application.

    PubMed

    Jiang, Lina; Wu, Jing; Wang, Guilan; Ye, Zhiqiang; Zhang, Wenzhu; Jin, Dayong; Yuan, Jingli; Piper, James

    2010-03-15

    The time-resolved luminescence bioassay technique using luminescent lanthanide complexes as labels is a highly sensitive and widely used bioassay method for clinical diagnostics and biotechnology. A major drawback of the current technique is that the luminescent lanthanide labels require UV excitation (typically less than 360 nm), which can damage living biological systems and is holding back further development of time-resolved luminescence instruments. Herein we describe two approaches for preparing a visible-light-sensitized Eu(3+) complex in aqueous media for time-resolved fluorometric applications: a dissociation enhancement aqueous solution that can be excited by visible light for ethylenediaminetetraacetate (EDTA)-Eu(3+) detection and a visible-light-sensitized water-soluble Eu(3+) complex conjugated bovine serum albumin (BSA) for biolabeling and time-resolved luminescence bioimaging. In the first approach, a weakly acidic aqueous solution consisting of 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-o-terphenyl (BHHT), 2-(N,N-diethylanilin-4-yl)-4,6-bis(3,5-dimethylpyrazol-1-yl)-1,3,5-triazine (DPBT), and Triton X-100 was prepared. This solution shows a strong luminescence enhancement effect for EDTA-Eu(3+) with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm) and a long luminescence lifetime (520 micros), to provide a novel dissociation enhancement solution for time-resolved luminescence detection of EDTA-Eu(3+). In the second approach, a ternary Eu(3+) complex, 4,4'-bis(1'',1'',1'',2'',2'',3'',3''-heptafluoro-4'',6''-hexanedion-6''-yl)-chlorosulfo-o-terphenyl (BHHCT)-Eu(3+)-DPBT, was covalently bound to BSA to form a water-soluble BSA-BHHCT-Eu(3+)-DPBT conjugate. This biocompatible conjugate is of the visible-light excitable feature in aqueous media with a wide excitation wavelength range from UV to visible light (a maximum at 387 nm), a long luminescence lifetime (460 micros), and a higher

  12. Time-resolved measurement of global synchronization in the dust acoustic wave

    NASA Astrophysics Data System (ADS)

    Williams, J. D.

    2014-10-01

    A spatially and temporally resolved measurement of the synchronization of the naturally occurring dust acoustic wave to an external drive and the relaxation from the driven wave mode back to the naturally occuring wave mode is presented. This measurement provides a time-resolved measurement of the synchronization of the self-excited dust acoustic wave with an external drive and the return to the self-excited mode. It is observed that the wave synchronizes to the external drive in a distinct time-dependent fashion, while there is an immediate loss of synchronization when the external modulation is discontinued.

  13. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography

    DTIC Science & Technology

    2009-03-01

    polarization sensitive imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON R. R...project; • Development of a near-infrared center of intensity time gated imaging approach; and • Polarization sensitive imaging. We provide an...spectroscopic imaging arrangement, and a multi-source illumination and multi- detector signal acquisition arrangement. 5 5.1.1. Time-resolved transillumination

  14. Time-Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is being used to characterize the decay of turbulence in jet flows a critical element for understanding the acoustic properties of the flow. A TR-PIV system, developed in-house at the NASA Glenn Research Center, is capable of acquiring planar PIV image frame pairs at up to 10 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number.

  15. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier

    DOE PAGES

    Rogers, III, C. E.; Gould, P. L.

    2016-02-01

    Here, we describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  16. Nanosecond pulse shaping at 780 nm with fiber-based electro-optical modulators and a double-pass tapered amplifier.

    PubMed

    Rogers, C E; Gould, P L

    2016-02-08

    We describe a system for generating frequency-chirped and amplitude-shaped pulses on time scales from sub-nanosecond to ten nanoseconds. The system starts with cw diode-laser light at 780 nm and utilizes fiber-based electro-optical phase and intensity modulators, driven by an arbitrary waveform generator, to generate the shaped pulses. These pulses are subsequently amplified to several hundred mW with a tapered amplifier in a delayed double-pass configuration. Frequency chirps up to 5 GHz in 2 ns and pulse widths as short as 0.15 ns have been realized.

  17. Effective image differencing with convolutional neural networks for real-time transient hunting

    NASA Astrophysics Data System (ADS)

    Sedaghat, Nima; Mahabal, Ashish

    2018-06-01

    Large sky surveys are increasingly relying on image subtraction pipelines for real-time (and archival) transient detection. In this process one has to contend with varying point-spread function (PSF) and small brightness variations in many sources, as well as artefacts resulting from saturated stars and, in general, matching errors. Very often the differencing is done with a reference image that is deeper than individual images and the attendant difference in noise characteristics can also lead to artefacts. We present here a deep-learning approach to transient detection that encapsulates all the steps of a traditional image-subtraction pipeline - image registration, background subtraction, noise removal, PSF matching and subtraction - in a single real-time convolutional network. Once trained, the method works lightening-fast and, given that it performs multiple steps in one go, the time saved and false positives eliminated for multi-CCD surveys like Zwicky Transient Facility and Large Synoptic Survey Telescope will be immense, as millions of subtractions will be needed per night.

  18. Space- and time-resolved raman and breakdown spectroscopy: advanced lidar techniques

    NASA Astrophysics Data System (ADS)

    Silviu, Gurlui; Marius Mihai, Cazacu; Adrian, Timofte; Oana, Rusu; Georgiana, Bulai; Dimitriu, Dan

    2018-04-01

    DARLIOES - the advanced LIDAR is based on space- and time-resolved RAMAN and breakdown spectroscopy, to investigate chemical and toxic compounds, their kinetics and physical properties at high temporal (2 ns) and spatial (1 cm) resolution. The high spatial and temporal resolution are needed to resolve a large variety of chemical troposphere compounds, emissions from aircraft, the self-organization space charges induced light phenomena, temperature and humidity profiles, ice nucleation, etc.

  19. Transient imaging for real-time tracking around a corner

    NASA Astrophysics Data System (ADS)

    Klein, Jonathan; Laurenzis, Martin; Hullin, Matthias

    2016-10-01

    Non-line-of-sight imaging is a fascinating emerging area of research and expected to have an impact in numerous application fields including civilian and military sensing. Performance of human perception and situational awareness can be extended by the sensing of shapes and movement around a corner in future scenarios. Rather than seeing through obstacles directly, non-line-of-sight imaging relies on analyzing indirect reflections of light that traveled around the obstacle. In previous work, transient imaging was established as the key mechanic to enable the extraction of useful information from such reflections. So far, a number of different approaches based on transient imaging have been proposed, with back projection being the most prominent one. Different hardware setups were used for the acquisition of the required data, however all of them have severe drawbacks such as limited image quality, long capture time or very high prices. In this paper we propose the analysis of synthetic transient renderings to gain more insights into the transient light transport. With this simulated data, we are no longer bound to the imperfect data of real systems and gain more flexibility and control over the analysis. In a second part, we use the insights of our analysis to formulate a novel reconstruction algorithm. It uses an adapted light simulation to formulate an inverse problem which is solved in an analysis-by-synthesis fashion. Through rigorous optimization of the reconstruction, it then becomes possible to track known objects outside the line of side in real time. Due to the forward formulation of the light transport, the algorithm is easily expandable to more general scenarios or different hardware setups. We therefore expect it to become a viable alternative to the classic back projection approach in the future.

  20. Some exact properties of the nonequilibrium response function for transient photoabsorption

    NASA Astrophysics Data System (ADS)

    Perfetto, E.; Stefanucci, G.

    2015-03-01

    The physical interpretation of time-resolved photoabsorption experiments is not as straightforward as for the more conventional photoabsorption experiments conducted on equilibrium systems. In fact, the relation between the transient photoabsorption spectrum and the properties of the examined sample can be rather intricate since the former is a complicated functional of both the driving pump and the feeble probe fields. In this work, we critically review the derivation of the time-resolved photoabsorption spectrum in terms of the nonequilibrium dipole response function χ and assess its domain of validity. We then analyze χ in detail and discuss a few exact properties useful to interpret the transient spectrum during (overlapping regime) and after (nonoverlapping regime) the action of the pump. The nonoverlapping regime is the simplest to address. The absorption energies are indeed independent of the delay between the pump and probe pulses and hence the transient spectrum can change only by a rearrangement of the spectral weights. We give a close expression of these spectral weights in two limiting cases (ultrashort and everlasting monochromatic probes) and highlight their strong dependence on coherence and probe envelope. In the overlapping regime, we obtain a Lehmann-type representation of χ in terms of light-dressed states and provide a unifying framework of various well-known effects in pump-driven systems. We also show the emergence of spectral substructures due to the finite duration of the pump pulse.

  1. Time-Resolved Rayleigh Scattering Measurements in Hot Gas Flows

    NASA Technical Reports Server (NTRS)

    Mielke, Amy F.; Elam, Kristie A.; Sung, Chih-Jen

    2008-01-01

    A molecular Rayleigh scattering technique is developed to measure time-resolved gas velocity, temperature, and density in unseeded gas flows at sampling rates up to 32 kHz. A high power continuous-wave laser beam is focused at a point in an air flow field and Rayleigh scattered light is collected and fiber-optically transmitted to the spectral analysis and detection equipment. The spectrum of the light, which contains information about the temperature and velocity of the flow, is analyzed using a Fabry-Perot interferometer. Photomultipler tubes operated in the photon counting mode allow high frequency sampling of the circular interference pattern to provide time-resolved flow property measurements. Mean and rms velocity and temperature fluctuation measurements in both an electrically-heated jet facility with a 10-mm diameter nozzle and also in a hydrogen-combustor heated jet facility with a 50.8-mm diameter nozzle at NASA Glenn Research Center are presented.

  2. Femtosecond transient absorption spectroscopy of silanized silicon quantum dots

    NASA Astrophysics Data System (ADS)

    Kuntermann, Volker; Cimpean, Carla; Brehm, Georg; Sauer, Guido; Kryschi, Carola; Wiggers, Hartmut

    2008-03-01

    Excitonic properties of colloidal silicon quantum dots (Si qdots) with mean sizes of 4nm were examined using stationary and time-resolved optical spectroscopy. Chemically stable silicon oxide shells were prepared by controlled surface oxidation and silanization of HF-etched Si qdots. The ultrafast relaxation dynamics of photogenerated excitons in Si qdot colloids were studied on the picosecond time scale from 0.3psto2.3ns using femtosecond-resolved transient absorption spectroscopy. The time evolution of the transient absorption spectra of the Si qdots excited with a 150fs pump pulse at 390nm was observed to consist of decays of various absorption transitions of photoexcited electrons in the conduction band which overlap with both the photoluminescence and the photobleaching of the valence band population density. Gaussian deconvolution of the spectroscopic data allowed for disentangling various carrier relaxation processes involving electron-phonon and phonon-phonon scatterings or arising from surface-state trapping. The initial energy and momentum relaxation of hot carriers was observed to take place via scattering by optical phonons within 0.6ps . Exciton capturing by surface states forming shallow traps in the amorphous SiOx shell was found to occur with a time constant of 4ps , whereas deeper traps presumably localized in the Si-SiOx interface gave rise to exciton trapping processes with time constants of 110 and 180ps . Electron transfer from initially populated, higher-lying surface states to the conduction band of Si qdots (>2nm) was observed to take place within 400 or 700fs .

  3. Prospective time-resolved LCA of fully electric supercap vehicles in Germany.

    PubMed

    Zimmermann, Benedikt M; Dura, Hanna; Baumann, Manuel J; Weil, Marcel R

    2015-07-01

    The ongoing transition of the German electricity supply toward a higher share of renewable and sustainable energy sources, called Energiewende in German, has led to dynamic changes in the environmental impact of electricity over the last few years. Prominent scenario studies predict that comparable dynamics will continue in the coming decades, which will further improve the environmental performance of Germany's electricity supply. Life cycle assessment (LCA) is the methodology commonly used to evaluate environmental performance. Previous LCA studies on electric vehicles have shown that the electricity supply for the vehicles' operation is responsible for the major part of their environmental impact. The core question of this study is how the prospective dynamic development of the German electricity mix will affect the impact of electric vehicles operated in Germany and how LCA can be adapted to analyze this impact in a more robust manner. The previously suggested approach of time-resolved LCA, which is located between static and dynamic LCA, is used in this study and compared with several static approaches. Furthermore, the uncertainty issue associated with scenario studies is addressed in general and in relation to time-resolved LCA. Two scenario studies relevant to policy making have been selected, but a moderate number of modifications have been necessary to adapt the data to the requirements of a life cycle inventory. A potential, fully electric vehicle powered by a supercapacitor energy storage system is used as a generic example. The results show that substantial improvements in the environmental repercussions of the electricity supply and, consequentially, of electric vehicles will be achieved between 2020 and 2031 on the basis of the energy mixes predicted in both studies. This study concludes that although scenarios might not be able to predict the future, they should nonetheless be used as data sources in prospective LCA studies, because in many cases

  4. Time-Resolved Macromolecular Crystallography at Modern X-Ray Sources.

    PubMed

    Schmidt, Marius

    2017-01-01

    Time-resolved macromolecular crystallography unifies protein structure determination with chemical kinetics. With the advent of fourth generation X-ray sources the time-resolution can be on the order of 10-40 fs, which opens the ultrafast time scale to structure determination. Fundamental motions and transitions associated with chemical reactions in proteins can now be observed. Moreover, new experimental approaches at synchrotrons allow for the straightforward investigation of all kind of reactions in biological macromolecules. Here, recent developments in the field are reviewed.

  5. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, C.; Steinkamp, J.A.

    1999-06-01

    Time-resolved fluorescence decay measurements are disclosed for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated CW laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes. 12 figs.

  6. Time-resolved fluorescence decay measurements for flowing particles

    DOEpatents

    Deka, Chiranjit; Steinkamp, John A.

    1999-01-01

    Time-resolved fluorescence decay measurements for flowing particles. An apparatus and method for the measurement and analysis of fluorescence for individual cells and particles in flow are described, wherein the rapid measurement capabilities of flow cytometry and the robust measurement and analysis procedures of time-domain fluorescence lifetime spectroscopy are combined. A pulse-modulated cw laser is employed for excitation of the particles. The characteristics and the repetition rate of the excitation pulses can be readily adjusted to accommodate for fluorescence decays having a wide range of lifetimes.

  7. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  8. Time Resolved Phonon Spectroscopy, Version 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goett, Johnny; Zhu, Brian

    TRPS code was developed for the project "Time Resolved Phonon Spectroscopy". Routines contained in this piece of software were specially created to model phonon generation and tracking within materials that interact with ionizing radiation, particularly applicable to the modeling of cryogenic radiation detectors for dark matter and neutrino research. These routines were created to link seamlessly with the open source Geant4 framework for the modeling of radiation transport in matter, with the explicit intent of open sourcing them for eventual integration into that code base.

  9. Transient features and growth behavior of artificial cracks during the initial damage period.

    PubMed

    Ma, Bin; Wang, Ke; Lu, Menglei; Zhang, Li; Zhang, Lei; Zhang, Jinlong; Cheng, Xinbin; Wang, Zhanshan

    2017-02-01

    The laser damage of transmission elements contains a series of complex processes and physical phenomena. The final morphology is a crater structure with different sizes and shapes. The formation and development of the crater are also accompanied by the generation, extension, and submersion of cracks. The growth characteristics of craters and cracks are important in the thermal-mechanism damage research. By using pump-probe detection and an imaging technique with a nanosecond pulsewidth probe laser, we obtained the formation time of the crack structure in the radial and circumferential directions. We carried out statistical analysis in angle, number, and crack length. We further analyzed the relationship between cracks and stress intensity or laser irradiation energy as well as the crack evolution process and the inner link between cracks and pit growth. We used an artificial indentation defect to investigate the time-domain evolution of crack growth, growth speed, transient morphology, and the characteristics of crater expansion. The results can be used to elucidate thermal stress effects on cracks, time-domain evolution of the damage structure, and the damage growth mechanism.

  10. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics.

    PubMed

    Wei, Liping; Yan, Wenrong; Ho, Derek

    2017-12-04

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices.

  11. Recent Advances in Fluorescence Lifetime Analytical Microsystems: Contact Optics and CMOS Time-Resolved Electronics

    PubMed Central

    Yan, Wenrong; Ho, Derek

    2017-01-01

    Fluorescence spectroscopy has become a prominent research tool with wide applications in medical diagnostics and bio-imaging. However, the realization of combined high-performance, portable, and low-cost spectroscopic sensors still remains a challenge, which has limited the technique to the laboratories. A fluorescence lifetime measurement seeks to obtain the characteristic lifetime from the fluorescence decay profile. Time-correlated single photon counting (TCSPC) and time-gated techniques are two key variations of time-resolved measurements. However, commercial time-resolved analysis systems typically contain complex optics and discrete electronic components, which lead to bulkiness and a high cost. These two limitations can be significantly mitigated using contact sensing and complementary metal-oxide-semiconductor (CMOS) implementation. Contact sensing simplifies the optics, whereas CMOS technology enables on-chip, arrayed detection and signal processing, significantly reducing size and power consumption. This paper examines recent advances in contact sensing and CMOS time-resolved circuits for the realization of fully integrated fluorescence lifetime measurement microsystems. The high level of performance from recently reported prototypes suggests that the CMOS-based contact sensing microsystems are emerging as sound technologies for application-specific, low-cost, and portable time-resolved diagnostic devices. PMID:29207568

  12. realfast: Real-time, Commensal Fast Transient Surveys with the Very Large Array

    NASA Astrophysics Data System (ADS)

    Law, C. J.; Bower, G. C.; Burke-Spolaor, S.; Butler, B. J.; Demorest, P.; Halle, A.; Khudikyan, S.; Lazio, T. J. W.; Pokorny, M.; Robnett, J.; Rupen, M. P.

    2018-05-01

    Radio interferometers have the ability to precisely localize and better characterize the properties of sources. This ability is having a powerful impact on the study of fast radio transients, where a few milliseconds of data is enough to pinpoint a source at cosmological distances. However, recording interferometric data at millisecond cadence produces a terabyte-per-hour data stream that strains networks, computing systems, and archives. This challenge mirrors that of other domains of science, where the science scope is limited by the computational architecture as much as the physical processes at play. Here, we present a solution to this problem in the context of radio transients: realfast, a commensal, fast transient search system at the Jansky Very Large Array. realfast uses a novel architecture to distribute fast-sampled interferometric data to a 32-node, 64-GPU cluster for real-time imaging and transient detection. By detecting transients in situ, we can trigger the recording of data for those rare, brief instants when the event occurs and reduce the recorded data volume by a factor of 1000. This makes it possible to commensally search a data stream that would otherwise be impossible to record. This system will search for millisecond transients in more than 1000 hr of data per year, potentially localizing several Fast Radio Bursts, pulsars, and other sources of impulsive radio emission. We describe the science scope for realfast, the system design, expected outcomes, and ways in which real-time analysis can help in other fields of astrophysics.

  13. Real-time Automatic Search for Multi-wavelength Counterparts of DWF Transients

    NASA Astrophysics Data System (ADS)

    Murphy, Christopher; Cucchiara, Antonino; Andreoni, Igor; Cooke, Jeff; Hegarty, Sarah

    2018-01-01

    The Deeper Wider Faster (DWF) survey aims to find and classify the fastest transients in the Universe. DWF utilizes the Dark Energy Camera (DECam), collecting a continuous sequence of 20s images over a 3 square degree field of view.Once an interesting transient is detected during DWF observations, the DWF collaboration has access to several facilities for rapid follow-up in multiple wavelengths (from gamma to radio).An online web tool has been designed to help with real-time visual classification of possible astrophysical transients in data collected by the DWF observing program. The goal of this project is to create a python-based code to improve the classification process by querying several existing archive databases. Given the DWF transient location and search radius, the developed code will extract a list of possible counterparts and all available information (e.g. magnitude, radio fluxes, distance separation).Thanks to this tool, the human classifier can make a quicker decision in order to trigger the collaboration rapid-response resources.

  14. Optical plasma monitoring of Y-Ba-Cu-O rf sputter target transients

    NASA Astrophysics Data System (ADS)

    Klein, J. D.; Yen, A.

    1989-12-01

    The plasma emission spectra resulting from rf sputtering Y-Ba-Cu-O targets were observed as a function of sputter time. Although most lines of the observed spectra are not attributable to target species, peaks associated with each of the cation elements were resolved. The Ba and Cu peaks can be used as tracking indicators of process conditions. For example, switching from an O2/Ar sputter atmosphere to pure Ar enhanced the Ba peak much more than that associated with Cu. The emission spectra from a newly fabricated target exhibited a slow first-order transient response in seeking equilibrium with the rf plasma. The transient response of a previously sputtered target is also first order but has a much shorter time constant.

  15. Time Resolved FTIR Analysis of Tailpipe Exhaust for Several Automobiles

    NASA Astrophysics Data System (ADS)

    White, Allen R.; Allen, James; Devasher, Rebecca B.

    2011-06-01

    The automotive catalytic converter reduces or eliminates the emission of various chemical species (e.g. CO, hydrocarbons, etc.) that are the products of combustion from automobile exhaust. However, these units are only effective once they have reached operating temperature. The design and placement of catalytic converters has changed in order to reduce both the quantity of emissions and the time that is required for the converter to be effective. In order to compare the effectiveness of catalytic converters, time-resolved measurements were performed on several vehicles, including a 2010 Toyota Prius, a 2010 Honda Fit, a 1994 Honda Civic, and a 1967 Oldsmobile 442 (which is not equipped with a catalytic converter but is used as a baseline). The newer vehicles demonstrate bot a reduced overall level of CO and hydrocarbon emissions but are also effective more quickly than older units. The time-resolved emissions will be discussed along with the impact of catalytic converter design and location on the measured emissions.

  16. The Initial Development of Transient Volcanic Plumes as a Function of Source Conditions

    NASA Astrophysics Data System (ADS)

    Tournigand, Pierre-Yves; Taddeucci, Jacopo; Gaudin, Damien; Peña Fernández, Juan José; Del Bello, Elisabetta; Scarlato, Piergiorgio; Kueppers, Ulrich; Sesterhenn, Jörn; Yokoo, Akihiko

    2017-12-01

    Transient volcanic plumes, having similar eruption duration and rise timescales, characterize many unsteady Strombolian to Vulcanian eruptions. Despite being more common, such plumes are less studied than their steady state counterpart from stronger eruptions. Here we investigate the initial dynamics of transient volcanic plumes using high-speed (visible light and thermal) and high-resolution (visible light) videos from Strombolian to Vulcanian eruptions of Stromboli (Italy), Fuego (Guatemala), and Sakurajima (Japan) volcanoes. Physical parameterization of the plumes has been performed by defining their front velocity, velocity field, volume, and apparent surface temperature. We also characterized the ejection of the gas-pyroclast mixture at the vent, in terms of number, location, duration, and frequency of individual ejection pulses and of time-resolved mass eruption rate of the ejecta's ash fraction. Front velocity evolves along two distinct trends related to the initial gas-thrust phase and later buoyant phase. Plumes' velocity field, obtained via optical flow analysis, highlights different features, including initial jets and the formation and/or merging of ring vortexes at different scales. Plume volume increases over time following a power law trend common to all volcanoes and affected by discharge history at the vent. Time-resolved ash eruption rates range between 102 and 107 kg/s and may vary up to 2 orders of magnitude within the first seconds of eruption. Our results help detailing how the number, location, angle, duration, velocity, and time interval between ejection pulses at the vents crucially control the initial (first tens of second), and possibly later, evolution of transient volcanic plumes.

  17. Time Resolved PIV for Space-Time Correlations in Hot Jets

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    2007-01-01

    Temporally Resolved Particle Image Velocimetry (TR-PIV) is the newest and most exciting tool recently developed to support our continuing efforts to characterize and improve our understanding of the decay of turbulence in jet flows -- a critical element for understanding the acoustic properties of the flow. A new TR-PIV system has been developed at the NASA Glenn Research Center which is capable of acquiring planar PIV image frame pairs at up to 25 kHz. The data reported here were collected at Mach numbers of 0.5 and 0.9 and at temperature ratios of 0.89 and 1.76. The field of view of the TR-PIV system covered 6 nozzle diameters along the lip line of the 50.8 mm diameter jet. The cold flow data at Mach 0.5 were compared with hotwire anemometry measurements in order to validate the new TR-PIV technique. The axial turbulence profiles measured across the shear layer using TR-PIV were thinner than those measured using hotwire anemometry and remained centered along the nozzle lip line. The collected TR-PIV data illustrate the differences in the single point statistical flow properties of cold and hot jet flows. The planar, time-resolved velocity records were then used to compute two-point space-time correlations of the flow at the Mach 0.9 flow condition. The TR-PIV results show that there are differences in the convective velocity and growth rate of the turbulent structures between cold and hot flows at the same Mach number

  18. Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens

    NASA Astrophysics Data System (ADS)

    Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.

    2006-11-01

    Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.

  19. Photodissociation dynamics of allyl chloride at 200 and 266 nm studied by time-resolved mass spectrometry and photoelectron imaging.

    PubMed

    Shen, Huan; Chen, Jianjun; Hua, Linqiang; Zhang, Bing

    2014-06-26

    The photodissociation dynamics of allyl chloride at 200 and 266 nm has been studied by femtosecond time-resolved mass spectrometry coupled with photoelectron imaging. The molecule was prepared to different excited states by selectively pumping with 400 or 266 nm pulse. The dissociated products were then probed by multiphoton ionization with 800 nm pulse. After absorbing two photons at 400 nm, several dissociation channels were directly observed from the mass spectrum. The two important channels, C-Cl fission and HCl elimination, were found to decay with multiexponential functions. For C-Cl fission, two time constants, 48 ± 1 fs and 85 ± 40 ps, were observed. The first one was due to the fast predissociation process on the repulsive nσ*/πσ* state. The second one could be ascribed to dissociation on the vibrationally excited ground state which is generated after internal conversion from the initially prepared ππ* state. HCl elimination, which is a typical example of a molecular elimination reaction, was found to proceed with two time constants, 600 ± 135 fs and 14 ± 2 ps. We assigned the first one to dissociation on the excited state and the second one to the internal conversion from the ππ* state to the ground state and then dissociation on the ground state. As we excited the molecule with 266 nm light, the transient signals decayed exponentially with a time constant of ∼48 fs, which is coincident with the time scale of C-halogen direct dissociation. Photoelectron images, which provided translational and angular distributions of the generated electron, were also recorded. Detailed analysis of the kinetic energy distribution strongly suggested that C3H4(+) and C3H5(+) were generated from ionization of the neutral radical. The present study reveals the dissociation dynamics of allyl chloride in a time-resolved way.

  20. Heavy Ion Current Transients in SiGe HBTs

    NASA Technical Reports Server (NTRS)

    Pellish, Jonathan A.; Reed, Robert A.; Vizkelethy, Gyorgy; McMorrow, Dale; Ferlet-Cavrois, Veronique; Baggio, Jacques; Paillet, Philipe; Duhanel, Olivier; Phillips, Stanley D.; Sutton, Akil K.; hide

    2009-01-01

    Time-resolved ion beam induced charge reveals heavy ion response of IBM 5AM SiGe HBT: a) Position correlation[ b) Unique response for different bias schemes; c) Similarities to TPA pulsed-laser data. Heavy ion broad-beam transients provide more realistic device response: a) Feedback using microbeam data; b) Overcome issues of LET and ion range with microbeam. Both micro- and broad-beam data sets yield valuable input for TCAD simulations. Uncover detailed mechanisms for SiGe HBTs and other devices fabricated on lightly-doped substrates.

  1. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis

    Cobalt-carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co-C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a fewmore » microseconds, where the Co-C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co-NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.« less

  2. Software defined photon counting system for time resolved x-ray experiments.

    PubMed

    Acremann, Y; Chembrolu, V; Strachan, J P; Tyliszczak, T; Stöhr, J

    2007-01-01

    The time structure of synchrotron radiation allows time resolved experiments with sub-100 ps temporal resolution using a pump-probe approach. However, the relaxation time of the samples may require a lower repetition rate of the pump pulse compared to the full repetition rate of the x-ray pulses from the synchrotron. The use of only the x-ray pulse immediately following the pump pulse is not efficient and often requires special operation modes where only a few buckets of the storage ring are filled. We designed a novel software defined photon counting system that allows to implement a variety of pump-probe schemes at the full repetition rate. The high number of photon counters allows to detect the response of the sample at multiple time delays simultaneously, thus improving the efficiency of the experiment. The system has been successfully applied to time resolved scanning transmission x-ray microscopy. However, this technique is applicable more generally.

  3. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  4. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  5. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  6. Studies of Time-Resolved Fluorescence Spectroscopy and Resolved Absorption Spectra of Nucleic Acid Components.

    NASA Astrophysics Data System (ADS)

    Fu, Yingxian

    1993-01-01

    There is considerable uncertainty about dynamic aspects of the photophysics of the adenylyl chromophore, stemming from the discordant values reported for the room temperature fluorescence lifetimes (tau_1 = 5 ps, tau_2 = 330 ps for 9MeAde; tau_1 = 290 ps, tau_2 = 4.17 ns for ATP). Spectra reported in conjunction with these lifetimes create difficulties in assignment of emission. To clarify this situation I have investigated the fluorescence decay times and time -resolved emission spectra of adenylyl compounds under a variety of conditions (concentration, pH, solvent) using sub-ns laser excitation at 265 nm together with gated fast sampling (100 ps) detection and signal averaging. Multi -component decays and spectra are observed in aqueous solution. Major slow components (tau = 4.4 +/- 0.2 ns) with emission maxima at 380 nm are found for all components at pH 1.1 and for ATP at pH 4.4. At pH 7 a fast component (<100 ps) predominates. There is no marked evidence for a concentration dependence, the oscillator strengths are 10^ {-3}-10^{-5} and transitions must be classified as weakly forbidden. Single component emission is observed in acetonitrile and ethanol. The UV absorption spectra of biomolecules d(CG) and polyd(GC)cdotpolyd(GC) exhibit the different hypochromic effects due to different interactions between guanosine(G) and cytidine(C) in stacked form. The present work has been carried out to explain this quantitatively. To approach this problem the absorption spectra of G and C have been resolved into gaussian components using the PeakFit program. The absorption spectra (220-310 nm) of d(CG) and polyd(GC)cdotpolyd(GC) have been fitted with gaussian components of G and C (in the order of increasing energy, G1 and G2, and C1, C2 and C3, respectively), and the contribution to both spectra from individual gaussians is estimated in terms of oscillator strengths. The fitting results suggest that the small hypochromism in absorption spectrum of d(CG) may be attributed

  7. Transient Spectra in TDDFT: Corrections and Correlations

    NASA Astrophysics Data System (ADS)

    Parkhill, John; Nguyen, Triet

    We introduce an atomistic, all-electron, black-box electronic structure code to simulate transient absorption (TA) spectra and apply it to simulate pyrazole and a GFP chromophore derivative. The method is an application of OSCF2, our dissipative extension of time-dependent density functional theory. We compare our simulated spectra directly with recent ultra-fast spectroscopic experiments, showing that they are usefully predicted. We also relate bleaches in the TA signal to Fermi-blocking which would be missed in a simplified model. An important ingredient in the method is the stationary-TDDFT correction scheme recently put forwards by Fischer, Govind, and Cramer which allows us to overcome a limitation of adiabatic TDDFT. We demonstrate that OSCF2 is able to predict both the energies of bleaches and induced absorptions, as well as the decay of the transient spectrum, with only the molecular structure as input. With remaining time we will discuss corrections which resolve the non-resonant behavior of driven TDDFT, and correlated corrections to mean-field dynamics.

  8. Adaptive Time Stepping for Transient Network Flow Simulation in Rocket Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Majumdar, Alok K.; Ravindran, S. S.

    2017-01-01

    Fluid and thermal transients found in rocket propulsion systems such as propellant feedline system is a complex process involving fast phases followed by slow phases. Therefore their time accurate computation requires use of short time step initially followed by the use of much larger time step. Yet there are instances that involve fast-slow-fast phases. In this paper, we present a feedback control based adaptive time stepping algorithm, and discuss its use in network flow simulation of fluid and thermal transients. The time step is automatically controlled during the simulation by monitoring changes in certain key variables and by feedback. In order to demonstrate the viability of time adaptivity for engineering problems, we applied it to simulate water hammer and cryogenic chill down in pipelines. Our comparison and validation demonstrate the accuracy and efficiency of this adaptive strategy.

  9. Time-resolved nanosecond fluorescence lifetime imaging and picosecond infrared spectroscopy of combretastatin A-4 in solution and in cellular systems

    NASA Astrophysics Data System (ADS)

    Bisby, Roger H.; Botchway, Stanley W.; Greetham, Greg M.; Hadfield, John A.; McGown, Alan T.; Parker, Anthony W.; Scherer, Kathrin M.; Towrie, Mike

    2012-08-01

    Fluorescence lifetime images of intrinsic fluorescence obtained with two-photon excitation at 630 nm are shown following uptake of a series of E-combretastatins into live cells, including human umbilical vein endothelial cells (HUVECs) that are the target for the anticancer activity of combretastatins. Images show distribution of the compounds within the cell cytoplasm and in structures identified as lipid droplets by comparison with images obtained following Nile red staining of the same cells. The intracellular fluorescent lifetimes are generally longer than in fluid solution as a consequence of the high viscosity of the cellular environment. Following incubation, the intracellular concentrations of a fluorinated derivative of E-combretastatin A-4 in HUVECs are between two and three orders of magnitude higher than the concentration in the surrounding medium. Evidence is presented to indicate that at moderate laser powers (up to 6 mW), it is possible to isomerize up to 25% of the combretastatin within the femtolitre focal volume of the femtosecond laser beam. This suggests that it may be possible to activate the E-combretastatin (with low cellular toxicity) to the Z-isomer with high anticancer drug activity using two-photon irradiation. The isomerization of Z- and E-combretastatins by 266 nm irradiation has been probed by ultrafast time-resolved infrared spectroscopy. Results for the E-isomer show a rapid loss of excess vibrational energy in the excited state with a lifetime of 7 ps, followed by a slower process with a lifetime of 500 ps corresponding to the return to the ground state as also determined from the fluorescence lifetime. In contrast, the Z-isomer, whilst also appearing to undergo a rapid cooling of the initial excited state, has a much shorter overall excited state lifetime of 14 ps. DedicationThis paper is dedicated to the memory of Professor Christopher G Morgan (1949-2011). He was a valued colleague and friend at the University of Salford and made

  10. The stretch to stray on time: Resonant length of random walks in a transient

    NASA Astrophysics Data System (ADS)

    Falcke, Martin; Friedhoff, Victor Nicolai

    2018-05-01

    First-passage times in random walks have a vast number of diverse applications in physics, chemistry, biology, and finance. In general, environmental conditions for a stochastic process are not constant on the time scale of the average first-passage time or control might be applied to reduce noise. We investigate moments of the first-passage time distribution under an exponential transient describing relaxation of environmental conditions. We solve the Laplace-transformed (generalized) master equation analytically using a novel method that is applicable to general state schemes. The first-passage time from one end to the other of a linear chain of states is our application for the solutions. The dependence of its average on the relaxation rate obeys a power law for slow transients. The exponent ν depends on the chain length N like ν = - N / ( N + 1 ) to leading order. Slow transients substantially reduce the noise of first-passage times expressed as the coefficient of variation (CV), even if the average first-passage time is much longer than the transient. The CV has a pronounced minimum for some lengths, which we call resonant lengths. These results also suggest a simple and efficient noise control strategy and are closely related to the timing of repetitive excitations, coherence resonance, and information transmission by noisy excitable systems. A resonant number of steps from the inhibited state to the excitation threshold and slow recovery from negative feedback provide optimal timing noise reduction and information transmission.

  11. Intramolecular charge transfer of 4-(dimethylamino)benzonitrile probed by time-resolved fluorescence and transient absorption: No evidence for two ICT states and a {pi}{sigma}{sup *} reaction intermediate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachariasse, Klaas A.; Druzhinin, Sergey I.; Senyushkina, Tamara

    2009-12-14

    For the double exponential fluorescence decays of the locally excited (LE) and intramolecular charge transfer (ICT) states of 4-(dimethylamino)benzonitrile (DMABN) in acetonitrile (MeCN) the same times {tau}{sub 1} and {tau}{sub 2} are observed. This means that the reversible LE<-->ICT reaction, starting from the initially excited LE state, can be adequately described by a two state mechanism. The most important factor responsible for the sometimes experimentally observed differences in the nanosecond decay time, with {tau}{sub 1}(LE)<{tau}{sub 1}(ICT), is photoproduct formation. By employing a global analysis of the LE and ICT fluorescence response functions with a time resolution of 0.5 ps/channel inmore » 1200 channels reliable kinetic and thermodynamic data can be obtained. The arguments presented in the literature in favor of a {pi}{sigma}* state with a bent CN group as an intermediate in the ICT reaction of DMABN are discussed. From the appearance of an excited state absorption (ESA) band in the spectral region between 700 and 800 nm in MeCN for N,N-dimethylanilines with CN, Br, F, CF{sub 3}, and C(=O)OC{sub 2}H{sub 2} p-substituents, it is concluded that this ESA band cannot be attributed to a {pi}{sigma}{sup *} state, as only the C-C{identical_to}N group can undergo the required 120 deg. bending.« less

  12. The RATIO method for time-resolved Laue crystallography

    PubMed Central

    Coppens, Philip; Pitak, Mateusz; Gembicky, Milan; Messerschmidt, Marc; Scheins, Stephan; Benedict, Jason; Adachi, Shin-ichi; Sato, Tokushi; Nozawa, Shunsuke; Ichiyanagi, Kohei; Chollet, Matthieu; Koshihara, Shin-ya

    2009-01-01

    A RATIO method for analysis of intensity changes in time-resolved pump–probe Laue diffraction experiments is described. The method eliminates the need for scaling the data with a wavelength curve representing the spectral distribution of the source and removes the effect of possible anisotropic absorption. It does not require relative scaling of series of frames and removes errors due to all but very short term fluctuations in the synchrotron beam. PMID:19240334

  13. Development of a Transient Thrust Stand with Sub-Millisecond Resolution

    NASA Astrophysics Data System (ADS)

    Spells, Corbin Fraser

    The transient thrust stand has been developed to offer 0.1 ms time resolved thrust measurements for the characterization of mono-propellant thrusters for spacecraft applications. Results demonstrated that the system was capable of obtaining dynamic thrust profiles within 5 % and 0.1 ms. Measuring and improving the thrust performance of mono-propellant thrusters will require 1 ms time resolved forces to observe shot-to-shot variations, oscillations, and minimum impulse bits. To date, no thrust stand is capable of measuring up to 22 N forces with a time response of up to 10 kHz. Calibration forces up to 22 N with a frequency response greater than 0.1 ms were obtained using voice coil actuators. Steady state and low frequency measurements were obtained using displacement and velocity sensors and were combined with high frequency vibration modes measured using several accelerometers along the thrust stand arm. The system uses a predictor-based subspace algorithm to obtain a high order state space model of the thrust stand capable of defining the high frequency vibration modes. The high frequency vibration modes are necessary to provide the time response of 0.1 ms. Thruster forces are estimated using an augmented Kalman filter to combine sensor traces from four accelerometers, a velocity sensor, and displacement transducer. Combining low frequency displacement data with high frequency acceleration measurements provides accurate force data across a broad time domain. The transient thrust stand uses a torsional pendulum configuration to minimize influence from external vibration and achieve high force resolution independent of thruster weight.

  14. A novel multiplex absorption spectrometer for time-resolved studies

    NASA Astrophysics Data System (ADS)

    Lewis, Thomas; Heard, Dwayne E.; Blitz, Mark A.

    2018-02-01

    A Time-Resolved Ultraviolet/Visible (UV/Vis) Absorption Spectrometer (TRUVAS) has been developed that can simultaneously monitor absorption at all wavelengths between 200 and 800 nm with millisecond time resolution. A pulsed photolysis laser (KrF 248 nm) is used to initiate chemical reactions that create the target species. The absorption signals from these species evolve as the composition of the gas in the photolysis region changes over time. The instrument can operate at pressures over the range ˜10-800 Torr and can measure time-resolved absorbances <10-4 in the UV (300 nm) and even lower in the visible (580 nm) 2.3 × 10-5, with the peak of sensitivity at ˜500 nm. The novelty of this setup lies in the arrangement of the multipass optics. Although appearing similar to other multipass optical systems (in particular the Herriott cell), there are fundamental differences, most notably the ability to adjust each mirror to maximise the overlap between the probe beam and the photolysis laser. Another feature which aids the sensitivity and versatility of the system is the use of 2 high-throughput spectrographs coupled with sensitive line-array CCDs, which can measure absorbance from ˜200 to 800 nm simultaneously. The capability of the instrument is demonstrated via measurements of the absorption spectrum of the peroxy radical, HOCH2CH2O2, and its self-reaction kinetics.

  15. Reduction of Poisson noise in measured time-resolved data for time-domain diffuse optical tomography.

    PubMed

    Okawa, S; Endo, Y; Hoshi, Y; Yamada, Y

    2012-01-01

    A method to reduce noise for time-domain diffuse optical tomography (DOT) is proposed. Poisson noise which contaminates time-resolved photon counting data is reduced by use of maximum a posteriori estimation. The noise-free data are modeled as a Markov random process, and the measured time-resolved data are assumed as Poisson distributed random variables. The posterior probability of the occurrence of the noise-free data is formulated. By maximizing the probability, the noise-free data are estimated, and the Poisson noise is reduced as a result. The performances of the Poisson noise reduction are demonstrated in some experiments of the image reconstruction of time-domain DOT. In simulations, the proposed method reduces the relative error between the noise-free and noisy data to about one thirtieth, and the reconstructed DOT image was smoothed by the proposed noise reduction. The variance of the reconstructed absorption coefficients decreased by 22% in a phantom experiment. The quality of DOT, which can be applied to breast cancer screening etc., is improved by the proposed noise reduction.

  16. Early-Time Observations of the GRB 050319 Optical Transient

    NASA Astrophysics Data System (ADS)

    Quimby, R. M.; Rykoff, E. S.; Yost, S. A.; Aharonian, F.; Akerlof, C. W.; Alatalo, K.; Ashley, M. C. B.; Göǧüş, E.; Güver, T.; Horns, D.; Kehoe, R. L.; Kιzιloǧlu, Ü.; Mckay, T. A.; Özel, M.; Phillips, A.; Schaefer, B. E.; Smith, D. A.; Swan, H. F.; Vestrand, W. T.; Wheeler, J. C.; Wren, J.

    2006-03-01

    We present the unfiltered ROTSE-III light curve of the optical transient associated with GRB 050319 beginning 4 s after the cessation of γ-ray activity. We fit a power-law function to the data using the revised trigger time given by Chincarini and coworkers, and a smoothly broken power-law to the data using the original trigger disseminated through the GCN notices. Including the RAPTOR data from Woźniak and coworkers, the best-fit power-law indices are α=-0.854+/-0.014 for the single power-law and α1=-0.364+0.020-0.019, α2=-0.881+0.030-0.031, with a break at tb=418+31-30 s for the smoothly broken fit. We discuss the fit results, with emphasis placed on the importance of knowing the true start time of the optical transient for this multipeaked burst. As Swift continues to provide prompt GRB locations, it becomes more important to answer the question, ``when does the afterglow begin?'' in order to correctly interpret the light curves.

  17. Time-resolved multispectral imaging of combustion reactions

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Frédérick

    2015-10-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. These allow to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases, such as carbon dioxide (CO2), selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge of spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using a Telops MS-IR MW camera, which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profiles derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  18. Time-resolved multispectral imaging of combustion reaction

    NASA Astrophysics Data System (ADS)

    Huot, Alexandrine; Gagnon, Marc-André; Jahjah, Karl-Alexandre; Tremblay, Pierre; Savary, Simon; Farley, Vincent; Lagueux, Philippe; Guyot, Éric; Chamberland, Martin; Marcotte, Fréderick

    2015-05-01

    Thermal infrared imaging is a field of science that evolves rapidly. Scientists have used for years the simplest tool: thermal broadband cameras. This allows to perform target characterization in both the longwave (LWIR) and midwave (MWIR) infrared spectral range. Infrared thermal imaging is used for a wide range of applications, especially in the combustion domain. For example, it can be used to follow combustion reactions, in order to characterize the injection and the ignition in a combustion chamber or even to observe gases produced by a flare or smokestack. Most combustion gases such as carbon dioxide (CO2) selectively absorb/emit infrared radiation at discrete energies, i.e. over a very narrow spectral range. Therefore, temperatures derived from broadband imaging are not reliable without prior knowledge about spectral emissivity. This information is not directly available from broadband images. However, spectral information is available using spectral filters. In this work, combustion analysis was carried out using Telops MS-IR MW camera which allows multispectral imaging at a high frame rate. A motorized filter wheel allowing synchronized acquisitions on eight (8) different channels was used to provide time-resolved multispectral imaging of combustion products of a candle in which black powder has been burnt to create a burst. It was then possible to estimate the temperature by modeling spectral profile derived from information obtained with the different spectral filters. Comparison with temperatures obtained using conventional broadband imaging illustrates the benefits of time-resolved multispectral imaging for the characterization of combustion processes.

  19. VLITE-Fast: A Real-time, 350 MHz Commensal VLA Survey for Fast Transients

    NASA Astrophysics Data System (ADS)

    Kerr, Matthew; Ray, Paul S.; Kassim, Namir E.; Clarke, Tracy; Deneva, Julia; Polisensky, Emil

    2018-01-01

    The VLITE (VLA Low Band Ionosphere and Transient Experiment; http://vlite.nrao.edu) program operates commensally during all Very Large Array observations, collecting data from 320 to 384 MHz. Recently expanded to include 16 antennas, the large field of view and huge time on sky offer good coverage of the transient, low-frequency sky. We describe the VLITE-Fast system, a GPU-based signal processor capable of detecting short (<1s) transients in real time and triggering recording of baseband voltage for offline imaging. In the case of Fast Radio Bursts, this offers the opportunity for discovering host galaxies of non-repeating FRBs, and in the case of single pulses, the identification of pulsar positions for dedicated follow-up. We describe the observing system, techniques for mitigating interference, and initial results from searches for FRBs.

  20. Eight-channel time-resolved tissue oximeter for functional muscle studies

    NASA Astrophysics Data System (ADS)

    Cubeddu, Rinaldo; Biscotti, Giovanni; Pifferi, Antonio; Taroni, Paola; Torricelli, Alessandro; Ferrari, Marco; Quaresima, Valentina

    2003-07-01

    A portable instrument for tissue oximetry based on time-resolved reflectance spectroscopy was developed. The output pulses of 2 laser diodes (683 and 785 nm, 80 MHz pulse repetition rate, 1 mW average power, 100 ps FWHM) are delayed and coupled into a multimode graded-index fiber (50/125 μm and injected into the tissue. The reflectance photons are collected by 8 independent 1 mm fibers and detected by a 16-anode photomultiplier. A time-correlated single photon counting PC board is used for the parallel acquisition of the curves. Simultaneous estimate of the transport scattering and absorption coefficients is achieved by best fitting of time-resolved reflectance curves with a standard model of Diffusion Theory. The performances of the system were tested on phantoms in terms of stability, reproducibility among channels, and accuracy in the determination of the optical properties. Preliminary in vivo measurements were performed on healthy volunteers to monitor spatial changes in calf (medical and lateral gastrocnemius) oxygen hemoglobin saturation and blood volume during dynamic plantar flexion exercise.

  1. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    PubMed

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  2. Time-Frequency Analysis of Rocket Nozzle Wall Pressures During Start-up Transients

    NASA Technical Reports Server (NTRS)

    Baars, Woutijn J.; Tinney, Charles E.; Ruf, Joseph H.

    2011-01-01

    Surveys of the fluctuating wall pressure were conducted on a sub-scale, thrust- optimized parabolic nozzle in order to develop a physical intuition for its Fourier-azimuthal mode behavior during fixed and transient start-up conditions. These unsteady signatures are driven by shock wave turbulent boundary layer interactions which depend on the nozzle pressure ratio and nozzle geometry. The focus however, is on the degree of similarity between the spectral footprints of these modes obtained from transient start-ups as opposed to a sequence of fixed nozzle pressure ratio conditions. For the latter, statistically converged spectra are computed using conventional Fourier analyses techniques, whereas the former are investigated by way of time-frequency analysis. The findings suggest that at low nozzle pressure ratios -- where the flow resides in a Free Shock Separation state -- strong spectral similarities occur between fixed and transient conditions. Conversely, at higher nozzle pressure ratios -- where the flow resides in Restricted Shock Separation -- stark differences are observed between the fixed and transient conditions and depends greatly on the ramping rate of the transient period. And so, it appears that an understanding of the dynamics during transient start-up conditions cannot be furnished by a way of fixed flow analysis.

  3. Deconvolution improves the accuracy and depth sensitivity of time-resolved measurements

    NASA Astrophysics Data System (ADS)

    Diop, Mamadou; St. Lawrence, Keith

    2013-03-01

    Time-resolved (TR) techniques have the potential to distinguish early- from late-arriving photons. Since light travelling through superficial tissue is detected earlier than photons that penetrate the deeper layers, time-windowing can in principle be used to improve the depth sensitivity of TR measurements. However, TR measurements also contain instrument contributions - referred to as the instrument-response-function (IRF) - which cause temporal broadening of the measured temporal-point-spread-function (TPSF). In this report, we investigate the influence of the IRF on pathlength-resolved absorption changes (Δμa) retrieved from TR measurements using the microscopic Beer-Lambert law (MBLL). TPSFs were acquired on homogeneous and two-layer tissue-mimicking phantoms with varying optical properties. The measured IRF and TPSFs were deconvolved to recover the distribution of time-of-flights (DTOFs) of the detected photons. The microscopic Beer-Lambert law was applied to early and late time-windows of the TPSFs and DTOFs to access the effects of the IRF on pathlength-resolved Δμa. The analysis showed that the late part of the TPSFs contains substantial contributions from early-arriving photons, due to the smearing effects of the IRF, which reduced its sensitivity to absorption changes occurring in deep layers. We also demonstrated that the effects of the IRF can be efficiently eliminated by applying a robust deconvolution technique, thereby improving the accuracy and sensitivity of TR measurements to deep-tissue absorption changes.

  4. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  5. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  6. Monitoring of KrF excimer laser ablation for burn scars: a comparative study of transient reflection measurement and time-resolved photography of ablation plume

    NASA Astrophysics Data System (ADS)

    Nakajima, Akio; Arai, Tsunenori; Kikuchi, Makoto; Iwaya, Akimi; Arai, Katsuyuki; Inazaki, Satoshi; Takaoka, Takatsugu; Kato, Masayoshi

    1995-05-01

    A simple laser ablation monitoring during burn scar removal by KrF laser irradiation was studied to control laser fluence in real-time. Because, to obtain suitable surface for auto skin-graft, the laser fluence should be precisely controlled at each laser shot. We employed simple probe transmission method which could detect ejected material/phenomena from irradiated surface. The time-course of measured probe intensity contained a couple of attenuated peaks, which might corresponded to a shock wave front and debris plume. The delay time from laser irradiation to the debris plume peak appearance varied with the ablation fluence. The delay time of 1 J/cm2 (near ablation threshold) case prolonged 25% from 8 J/cm2 (far above threshold) case. Therefore, we think the delay time measurement by means of the simple probe transmission method may be available to attain the laser fluence control for nonuniform burn scar removal. The time-resolved photography and probe reflection method were also studied to understand the measured time-course of the transmitted probe intensity.

  7. Coherent excitations and electron-phonon coupling in Ba/EuFe2As2 compounds investigated by femtosecond time- and angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Avigo, I.; Cortés, R.; Rettig, L.; Thirupathaiah, S.; Jeevan, H. S.; Gegenwart, P.; Wolf, T.; Ligges, M.; Wolf, M.; Fink, J.; Bovensiepen, U.

    2013-03-01

    We employed femtosecond time- and angle-resolved photoelectron spectroscopy to analyze the response of the electronic structure of the 122 Fe-pnictide parent compounds Ba/EuFe2As2 and optimally doped BaFe1.85Co0.15As2 near the Γ point to optical excitation by an infrared femtosecond laser pulse. We identify pronounced changes of the electron population within several 100 meV above and below the Fermi level, which we explain as a combination of (i) coherent lattice vibrations, (ii) a hot electron and hole distribution, and (iii) transient modifications of the chemical potential. The responses of the three different materials are very similar. In the coherent response we identify three modes at 5.6, 3.3, and 2.6 THz. While the highest frequency mode is safely assigned to the A1g mode, the other two modes require a discussion in comparison to the literature. Employing a transient three temperature model we deduce from the transient evolution of the electron distribution a rather weak, momentum-averaged electron-phonon coupling quantified by values for λ<ω2> between 30 and 70 meV2. The chemical potential is found to present pronounced transient changes reaching a maximum of 15 meV about 0.6 ps after optical excitation and is modulated by the coherent phonons. This change in the chemical potential is particularly strong in a multiband system like the 122 Fe-pnictide compounds investigated here due to the pronounced variation of the electron density of states close to the equilibrium chemical potential.

  8. A time-resolved Langmuir double-probe method for the investigation of pulsed magnetron discharges

    NASA Astrophysics Data System (ADS)

    Welzel, Th.; Dunger, Th.; Kupfer, H.; Richter, F.

    2004-12-01

    Langmuir probes are important means for the characterization of plasma discharges. For measurements in plasmas used for the deposition of thin films, the Langmuir double probe is especially suited. With the increasing popularity of pulsed deposition discharges, there is also an increasing need for time-resolved characterization methods. For Langmuir probes, several single-probe approaches to time-resolved measurements are reported but very few for the double probe. We present a time-resolved Langmuir double-probe technique, which is applied to a pulsed magnetron discharge at several 100 kHz used for MgO deposition. The investigations show that a proper treatment of the current measurement is necessary to obtain reliable results. In doing so, a characteristic time dependence of the charge-carrier density during the "pulse on" time containing maximum values of almost 2•1011cm-3 was found. This characteristic time dependence varies with the pulse frequency and the duty cycle. A similar time dependence of the electron temperature is only observed when the probe is placed near the magnesium target.

  9. New time-resolved micro-photoluminescence spectroscopy of natural and synthetic analogue minerals

    NASA Astrophysics Data System (ADS)

    Panczer, G.; Ollier, N.; Champagnon, B.; Gaft, M.

    2003-04-01

    Minerals as well as geomaterials often present light emissions under UV or visible excitations. This property called photoluminescence is due to low concentration impurities such as the rare earths, the transition elements and the lanthanides. The induced color is used for ore prospection but only spectroscopic analyses indicate the nature of the emitted centers. However natural samples contained numerous luminescent centers simultaneously and with regular steady-state measurements (such as in cathodoluminescence) all the emissions are often over lapping. In order to record the contributions of each separate center, it is possible to use time-resolved measurements based on the decay time of the emissions and using pulsed laser excitation. Some characteristic examples will be presented on apatites, zircons as well as gemstones. Geomaterials present as well micro scale heterogeneities (growth zoning, inclusions, devitrification, microphases...). Precise identification and optical effects of such heterogeneities have to be taken into account. To reach the microscale using photo luminescence studies, a microscope has be modified to allowed pulsed laser injection (from UV to visible), beam focus with micro scale resolution on the sample (<10 μm), as well as time resolved collection of micro fluorescence. Such equipment allows now undertaking time-resolved measurements of microphases. Applications on geomaterials will be presented.

  10. A resolvable subfilter-scale model specific to large-eddy simulation of under-resolved turbulence

    NASA Astrophysics Data System (ADS)

    Zhou, Yong; Brasseur, James G.; Juneja, Anurag

    2001-09-01

    Large-eddy simulation (LES) of boundary-layer flows has serious deficiencies near the surface when a viscous sublayer either does not exist (rough walls) or is not practical to resolve (high Reynolds numbers). In previous work, we have shown that the near-surface errors arise from the poor performance of algebraic subfilter-scale (SFS) models at the first several grid levels, where integral scales are necessarily under-resolved and the turbulence is highly anisotropic. In under-resolved turbulence, eddy viscosity and similarity SFS models create a spurious feedback loop between predicted resolved-scale (RS) velocity and modeled SFS acceleration, and are unable to simultaneously capture SFS acceleration and RS-SFS energy flux. To break the spurious coupling in a dynamically meaningful manner, we introduce a new modeling strategy in which the grid-resolved subfilter velocity is estimated from a separate dynamical equation containing the essential inertial interactions between SFS and RS velocity. This resolved SFS (RSFS) velocity is then used as a surrogate for the complete SFS velocity in the SFS stress tensor. We test the RSFS model by comparing LES of highly under-resolved anisotropic buoyancy-generated homogeneous turbulence with a corresponding direct numerical simulation (DNS). The new model successfully suppresses the spurious feedback loop between RS velocity and SFS acceleration, and greatly improves model predictions of the anisotropic structure of SFS acceleration and resolved velocity fields. Unlike algebraic models, the RSFS model accurately captures SFS acceleration intensity and RS-SFS energy flux, even during the nonequilibrium transient, and properly partitions SFS acceleration between SFS stress divergence and SFS pressure force.

  11. Hardware solution for continuous time-resolved burst detection of single molecules in flow

    NASA Astrophysics Data System (ADS)

    Wahl, Michael; Erdmann, Rainer; Lauritsen, Kristian; Rahn, Hans-Juergen

    1998-04-01

    Time Correlated Single Photon Counting (TCSPC) is a valuable tool for Single Molecule Detection (SMD). However, existing TCSPC systems did not support continuous data collection and processing as is desirable for applications such as SMD for e.g. DNA-sequencing in a liquid flow. First attempts at using existing instrumentation in this kind of operation mode required additional routing hardware to switch between several memory banks and were not truly continuous. We have designed a hard- and software system to perform continuous real-time TCSPC based upon a modern solid state Time to Digital Converter (TDC). Short dead times of the fully digital TDC design combined with fast Field Programmable Gay Array logic permit a continuous data throughput as high as 3 Mcounts/sec. The histogramming time may be set as short as 100 microsecond(s) . Every histogram or every single fluorescence photon can be real-time tagged at 200 ns resolution in addition to recording its arrival time relative to the excitation pulse. Continuous switching between memory banks permits concurrent histogramming and data read-out. The instrument provides a time resolution of 60 ps and up to 4096 histogram channels. The overall instrument response function in combination with a low cost picosecond diode laser and an inexpensive photomultiplier tube was found to be 180 ps and well sufficient to measure sub-nanosecond fluorescence lifetimes.

  12. Fast switching thyristor applied in nanosecond-pulse high-voltage generator with closed transformer core.

    PubMed

    Li, Lee; Bao, Chaobing; Feng, Xibo; Liu, Yunlong; Fochan, Lin

    2013-02-01

    For a compact and reliable nanosecond-pulse high-voltage generator (NPHVG), the specification parameter selection and potential usage of fast controllable state-solid switches have an important bearing on the optimal design. The NPHVG with closed transformer core and fast switching thyristor (FST) was studied in this paper. According to the analysis of T-type circuit, the expressions for the voltages and currents of the primary and secondary windings on the transformer core of NPHVG were deduced, and the theoretical maximum analysis was performed. For NPHVG, the rise-rate of turn-on current (di/dt) across a FST may exceed its transient rating. Both mean and maximum values of di/dt were determined by the leakage inductances of the transformer, and the difference is 1.57 times. The optimum winding ratio is helpful to getting higher voltage output with lower specification FST, especially when the primary and secondary capacitances have been established. The oscillation period analysis can be effectively used to estimate the equivalent leakage inductance. When the core saturation effect was considered, the maximum di/dt estimated from the oscillating period of the primary current is more accurate than one from the oscillating period of the secondary voltage. Although increasing the leakage inductance of NPHVG can decrease di/dt across FST, it may reduce the output peak voltage of the NPHVG.

  13. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device.

    PubMed

    Boddu, S R; Tong, F C; Dehkharghani, S; Dion, J E; Saindane, A M

    2014-01-01

    Endovascular reconstruction and flow diversion by using the Pipeline Embolization Device is an effective treatment for complex cerebral aneurysms. Accurate noninvasive alternatives to DSA for follow-up after Pipeline Embolization Device treatment are desirable. This study evaluated the accuracy of contrast-enhanced time-resolved MRA for this purpose, hypothesizing that contrast-enhanced time-resolved MRA will be comparable with DSA and superior to 3D-TOF MRA. During a 24-month period, 37 Pipeline Embolization Device-treated intracranial aneurysms in 26 patients underwent initial follow-up by using 3D-TOF MRA, contrast-enhanced time-resolved MRA, and DSA. MRA was performed on a 1.5T unit by using 3D-TOF and time-resolved imaging of contrast kinetics. All patients underwent DSA a median of 0 days (range, 0-68) after MRA. Studies were evaluated for aneurysm occlusion, quality of visualization of the reconstructed artery, and measurable luminal diameter of the Pipeline Embolization Device, with DSA used as the reference standard. The sensitivity, specificity, and positive and negative predictive values of contrast-enhanced time-resolved MRA relative to DSA for posttreatment aneurysm occlusion were 96%, 85%, 92%, and 92%. Contrast-enhanced time-resolved MRA demonstrated superior quality of visualization (P = .0001) and a higher measurable luminal diameter (P = .0001) of the reconstructed artery compared with 3D-TOF MRA but no significant difference compared with DSA. Contrast-enhanced time-resolved MRA underestimated the luminal diameter of the reconstructed artery by 0.965 ± 0.497 mm (27% ± 13%) relative to DSA. Contrast-enhanced time-resolved MRA is a reliable noninvasive method for monitoring intracranial aneurysms following flow diversion and vessel reconstruction by using the Pipeline Embolization Device. © 2014 by American Journal of Neuroradiology.

  14. Recent studies on nanosecond-timescale pressurized gas discharges

    DOE PAGES

    Yatom, S.; Shlapakovski, A.; Beilin, L.; ...

    2016-10-05

    The results of recent experimental and numerical studies of nanosecond high-voltage discharges in pressurized gases are reviewed. The discharges were ignited in a diode filled by different gases within a wide range of pressures by an applied pulsed voltage or by a laser pulse in the gas-filled charged resonant microwave cavity. Fast-framing imaging of light emission, optical emission spectroscopy, X-ray foil spectrometry and coherent anti-Stokes Raman scattering were used to study temporal and spatial evolution of the discharge plasma density and temperature, energy distribution function of runaway electrons and dynamics of the electric field in the plasma channel. The resultsmore » obtained allow a deeper understanding of discharge dynamical properties in the nanosecond timescale, which is important for various applications of these types of discharges in pressurized gases.« less

  15. Theoretical foundations for finite-time transient stability and sensitivity analysis of power systems

    NASA Astrophysics Data System (ADS)

    Dasgupta, Sambarta

    Transient stability and sensitivity analysis of power systems are problems of enormous academic and practical interest. These classical problems have received renewed interest, because of the advancement in sensor technology in the form of phasor measurement units (PMUs). The advancement in sensor technology has provided unique opportunity for the development of real-time stability monitoring and sensitivity analysis tools. Transient stability problem in power system is inherently a problem of stability analysis of the non-equilibrium dynamics, because for a short time period following a fault or disturbance the system trajectory moves away from the equilibrium point. The real-time stability decision has to be made over this short time period. However, the existing stability definitions and hence analysis tools for transient stability are asymptotic in nature. In this thesis, we discover theoretical foundations for the short-term transient stability analysis of power systems, based on the theory of normally hyperbolic invariant manifolds and finite time Lyapunov exponents, adopted from geometric theory of dynamical systems. The theory of normally hyperbolic surfaces allows us to characterize the rate of expansion and contraction of co-dimension one material surfaces in the phase space. The expansion and contraction rates of these material surfaces can be computed in finite time. We prove that the expansion and contraction rates can be used as finite time transient stability certificates. Furthermore, material surfaces with maximum expansion and contraction rate are identified with the stability boundaries. These stability boundaries are used for computation of stability margin. We have used the theoretical framework for the development of model-based and model-free real-time stability monitoring methods. Both the model-based and model-free approaches rely on the availability of high resolution time series data from the PMUs for stability prediction. The problem of

  16. Time-Resolved SEDs of Blazars Flares

    NASA Astrophysics Data System (ADS)

    Kreikenbohm, A.; Dorner, D.; Kadler, M.; Beuchert, T.; Kreter, M.; Kreykenbohm, I.; Langejahn, M.; Leiter, K.; Mannheim, K.; Wilms, J.

    2017-10-01

    The origin of very-high-energy gamma rays in active galactic nuclei is still under debate. While snapshots of spectral energy distributions (SEDs) can usually be explained with simple competing models, the true emission mechanisms may be revealed from dynamic SED studies during exceptional source states. Based on the FACT monitoring program, we have set up a multiwavelength target-of-opportunity program which allows us to measure time-resolved SEDs during blazar flares. While the FACT and Fermi measurements cover the high energy peak continuously, X-ray observations with INTEGRAL and XMM-Newton are triggered in case of a bright flare. To distinguish orphan flares from time lags between the energy bands, this is combined with an X-ray monitoring with the Swift satellite. In December 2015, observations of the X-ray telescopes Swift and INTEGRAL were triggered during a moderately-high flux state of the TeV blazar Mrk 421. Pre- and post observations in X-rays are available from Swift-XRT. In this presentation, the results from the Mrk 421 ToO observations will be summarized.

  17. Time-resolved laser-induced fluorescence system

    NASA Astrophysics Data System (ADS)

    Bautista, F. J.; De la Rosa, J.; Gallegos, F. J.

    2006-02-01

    Fluorescence methods are being used increasingly in the measurement of species concentrations in gases, liquids and solids. Laser induced fluorescence is spontaneous emission from atoms or molecules that have been excited by laser radiation. Here we present a time resolved fluorescence instrument that consists of a 5 μJ Nitrogen laser (337.1 nm), a sample holder, a quartz optical fiber, a spectrometer, a PMT and a PC that allows the measurement of visible fluorescence spectra (350-750 nm). Time response of the system is approximately 5 ns. The instrument has been used in the measurement of colored bond paper, antifreeze, diesel, cochineal pigment and malignant tissues. The data acquisition was achieved through computer control of a digital oscilloscope (using General Purpose Interface Bus GPIB) and the spectrometer via serial (RS232). The instrument software provides a graphic interface that lets make some data acquisition tasks like finding fluorescence spectra, and fluorescence lifetimes. The software was developed using the Lab-View 6i graphic programming package and can be easily managed in order to add more functions to it.

  18. Highly sensitive time-resolved thermography and multivariate image analysis of the cerebral cortex for intrasurgical diagnostics

    NASA Astrophysics Data System (ADS)

    Hollmach, Julia; Hoffmann, Nico; Schnabel, Christian; Küchler, Saskia; Sobottka, Stephan; Kirsch, Matthias; Schackert, Gabriele; Koch, Edmund; Steiner, Gerald

    2013-03-01

    Time-resolved thermography is a novel method to assess thermal variations and heterogeneities in tissue and blood. The recent generation of thermal cameras provides a sensitivity of less than mK. This high sensitivity in conjunction with non-invasive, label-free and radiation-free monitoring makes thermography a promising tool for intrasurgical diagnostics. In brain surgery, time-resolved thermography can be employed to distinguish between normal and anomalous tissue. In this study, we investigated and discussed the potential of time-resolved thermography in neurosurgery for the intraoperative detection and demarcation of tumor borders. Algorithms for segmentation, reduction of movement artifacts and image fusion were developed. The preprocessed image stacks were subjected to discrete wavelet transform to examine individual frequency components. K-means clustering was used for image evaluation to reveal similarities within the image sequence. The image evaluation shows significant differences for both types of tissue. Tumor and normal tissues have different time characteristics in heat production and transfer. Furthermore, tumor could be highlighted. These results demonstrate that time-resolved thermography is able to support the detection of tumors in a contactless manner without any side effects for the tissue. The intraoperative usage of time-resolved thermography improves the accuracy of tumor resections to prevent irreversible brain damage during surgery.

  19. Ultrafast Time-Resolved Hard X-Ray Emission Spectroscopy on a Tabletop

    NASA Astrophysics Data System (ADS)

    Miaja-Avila, Luis; O'Neil, Galen C.; Joe, Young I.; Alpert, Bradley K.; Damrauer, Niels H.; Doriese, William B.; Fatur, Steven M.; Fowler, Joseph W.; Hilton, Gene C.; Jimenez, Ralph; Reintsema, Carl D.; Schmidt, Daniel R.; Silverman, Kevin L.; Swetz, Daniel S.; Tatsuno, Hideyuki; Ullom, Joel N.

    2016-07-01

    Experimental tools capable of monitoring both atomic and electronic structure on ultrafast (femtosecond to picosecond) time scales are needed for investigating photophysical processes fundamental to light harvesting, photocatalysis, energy and data storage, and optical display technologies. Time-resolved hard x-ray (>3 keV ) spectroscopies have proven valuable for these measurements due to their elemental specificity and sensitivity to geometric and electronic structures. Here, we present the first tabletop apparatus capable of performing time-resolved x-ray emission spectroscopy. The time resolution of the apparatus is better than 6 ps. By combining a compact laser-driven plasma source with a highly efficient array of microcalorimeter x-ray detectors, we are able to observe photoinduced spin changes in an archetypal polypyridyl iron complex [Fe (2 ,2'-bipyridine)3]2 + and accurately measure the lifetime of the quintet spin state. Our results demonstrate that ultrafast hard x-ray emission spectroscopy is no longer confined to large facilities and now can be performed in conventional laboratories with 10 times better time resolution than at synchrotrons. Our results are enabled, in part, by a 100- to 1000-fold increase in x-ray collection efficiency compared to current techniques.

  20. Validation of a time-resolved fluorescence spectroscopy apparatus in a rabbit atherosclerosis model

    NASA Astrophysics Data System (ADS)

    Fang, Qiyin; Jo, Javier A.; Papaioannou, Thanassis; Dorafshar, Amir; Reil, Todd; Qiao, Jian-Hua; Fishbein, Michael C.; Freischlag, Julie A.; Marcu, Laura

    2004-07-01

    Time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) has been studied as a potential tool for in vivo diagnosis of atherosclerotic lesions. This study is to evaluate the potential of a compact fiber-optics based tr-LIFS instrument developed in our laboratory for in vivo analysis of atherosclerotic plaque composition. Time-resolved fluorescence spectroscopy studies were performed in vivo on fifteen New Zealand White rabbits (atherosclerotic: N=8, control: N=7). Time-resolved fluorescence spectra were acquired (range: 360-600 nm, increment: 5 nm, total acquisition time: 65 s) from normal aorta wall and lesions in the abdominal aorta. Data were analyzed in terms of fluorescence emission spectra and wavelength specific lifetimes. Following trichrome staining, tissue specimens were analyzed histopathologically in terms of intima/media thickness and biochemical composition (collagen, elastin, foam cells, and etc). Based on intimal thickness, the lesions were divided into thin and thick lesions. Each group was further separated into two categories: collagen rich lesions and foam cell rich lesions based on their biochemical composition. The obtained spectral and time domain fluorescence signatures were subsequently correlated to the histopathological findings. The results have shown that time-domain fluorescence spectral features can be used in vivo to separate atherosclerotic lesions from normal aorta wall as well discrimination within certain types of lesions.

  1. Time resolved fluorescence of cow and goat milk powder

    NASA Astrophysics Data System (ADS)

    Brandao, Mariana P.; de Carvalho dos Anjos, Virgílio; Bell., Maria José V.

    2017-01-01

    Milk powder is an international dairy commodity. Goat and cow milk powders are significant sources of nutrients and the investigation of the authenticity and classification of milk powder is particularly important. The use of time-resolved fluorescence techniques to distinguish chemical composition and structure modifications could assist develop a portable and non-destructive methodology to perform milk powder classification and determine composition. This study goal is to differentiate milk powder samples from cows and goats using fluorescence lifetimes. The samples were excited at 315 nm and the fluorescence intensity decay registered at 468 nm. We observed fluorescence lifetimes of 1.5 ± 0.3, 6.4 ± 0.4 and 18.7 ± 2.5 ns for goat milk powder; and 1.7 ± 0.3, 6.9 ± 0.2 and 29.9 ± 1.6 ns for cow's milk powder. We discriminate goat and cow powder milk by analysis of variance using Fisher's method. In addition, we employed quadratic discriminant analysis to differentiate the milk samples with accuracy of 100%. Our results suggest that time-resolved fluorescence can provide a new method to the analysis of powder milk and its composition.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Ian; Clark, Jesse; Harder, Ross

    Materials are generally classified by a phase diagram which displays their properties as a function of external state variables, typically temperature and pressure. A new dimension that is relatively unexplored is time: a rich variety of new materials can become accessible in the transient period following laser excitation from the ground state. The timescale of nanoseconds to femtoseconds, is ripe for investigation using x-ray free-electron laser (XFEL) methods. There is no shortage of materials suitable for time-resolved materials-science exploration. Oxides alone represent most of the minerals making up the Earth's crust, catalysts, ferroelectrics, corrosion products and electronically ordered materials suchmore » as superconductors, to name a few. Some of the elements have metastable phase diagrams with predicted new phases. There are some examples known already: an oxide 'hidden phase' living only nanoseconds and an electronically ordered excited phase of fullerene C 60, lasting only femtoseconds. In a completely general way, optically excited states of materials can be probed with Bragg coherent diffraction imaging, both below the damage threshold and in the destructive regime. Lastly, prospective methods for carrying out such XFEL experiments are discussed.« less

  3. 3D-resolved fluorescence and phosphorescence lifetime imaging using temporal focusing wide-field two-photon excitation

    PubMed Central

    Choi, Heejin; Tzeranis, Dimitrios S.; Cha, Jae Won; Clémenceau, Philippe; de Jong, Sander J. G.; van Geest, Lambertus K.; Moon, Joong Ho; Yannas, Ioannis V.; So, Peter T. C.

    2012-01-01

    Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude. PMID:23187477

  4. Picosecond to nanosecond dynamics provide a source of conformational entropy for protein folding.

    PubMed

    Stadler, Andreas M; Demmel, Franz; Ollivier, Jacques; Seydel, Tilo

    2016-08-03

    Myoglobin can be trapped in fully folded structures, partially folded molten globules, and unfolded states under stable equilibrium conditions. Here, we report an experimental study on the conformational dynamics of different folded conformational states of apo- and holomyoglobin in solution. Global protein diffusion and internal molecular motions were probed by neutron time-of-flight and neutron backscattering spectroscopy on the picosecond and nanosecond time scales. Global protein diffusion was found to depend on the α-helical content of the protein suggesting that charges on the macromolecule increase the short-time diffusion of protein. With regard to the molten globules, a gel-like phase due to protein entanglement and interactions with neighbouring macromolecules was visible due to a reduction of the global diffusion coefficients on the nanosecond time scale. Diffusion coefficients, residence and relaxation times of internal protein dynamics and root mean square displacements of localised internal motions were determined for the investigated structural states. The difference in conformational entropy ΔSconf of the protein between the unfolded and the partially or fully folded conformations was extracted from the measured root mean square displacements. Using thermodynamic parameters from the literature and the experimentally determined ΔSconf values we could identify the entropic contribution of the hydration shell ΔShydr of the different folded states. Our results point out the relevance of conformational entropy of the protein and the hydration shell for stability and folding of myoglobin.

  5. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  6. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    NASA Astrophysics Data System (ADS)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  7. Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges

    PubMed Central

    Neutze, Richard; Moffat, Keith

    2012-01-01

    X-ray free electron lasers (XFELs) are potentially revolutionary X-ray sources because of their very short pulse duration, extreme peak brilliance and high spatial coherence, features that distinguish them from today’s synchrotron sources. We review recent time-resolved Laue diffraction and time-resolved wide angle X-ray scattering (WAXS) studies at synchrotron sources, and initial static studies at XFELs. XFELs have the potential to transform the field of time-resolved structural biology, yet many challenges arise in devising and adapting hardware, experimental design and data analysis strategies to exploit their unusual properties. Despite these challenges, we are confident that XFEL sources are poised to shed new light on ultrafast protein reaction dynamics. PMID:23021004

  8. Mach 5 bow shock control by a nanosecond pulse surface dielectric barrier discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishihara, M.; Takashima, K.; Rich, J. W.

    2011-06-15

    Bow shock perturbations in a Mach 5 air flow, produced by low-temperature, nanosecond pulse, and surface dielectric barrier discharge (DBD), are detected by phase-locked schlieren imaging. A diffuse nanosecond pulse discharge is generated in a DBD plasma actuator on a surface of a cylinder model placed in air flow in a small scale blow-down supersonic wind tunnel. Discharge energy coupled to the actuator is 7.3-7.8 mJ/pulse. Plasma temperature inferred from nitrogen emission spectra is a few tens of degrees higher than flow stagnation temperature, T = 340 {+-} 30 K. Phase-locked Schlieren images are used to detect compression waves generatedmore » by individual nanosecond discharge pulses near the actuator surface. The compression wave propagates upstream toward the baseline bow shock standing in front of the cylinder model. Interaction of the compression wave and the bow shock causes its displacement in the upstream direction, increasing shock stand-off distance by up to 25%. The compression wave speed behind the bow shock and the perturbed bow shock velocity are inferred from the Schlieren images. The effect of compression waves generated by nanosecond discharge pulses on shock stand-off distance is demonstrated in a single-pulse regime (at pulse repetition rates of a few hundred Hz) and in a quasi-continuous mode (using a two-pulse sequence at a pulse repetition rate of 100 kHz). The results demonstrate feasibility of hypersonic flow control by low-temperature, repetitive nanosecond pulse discharges.« less

  9. BHHST: An improved lanthanide chelate for time-resolved fluorescence applications

    NASA Astrophysics Data System (ADS)

    Connally, Russell; Jin, Dayong; Piper, James

    2005-04-01

    The detection of the waterborne pathogens Giardia lamblia and Cryptosporidium parvum in environmental water bodies requires concentration of large volumes of water due to the low dose required for infection. The highly concentrated (10,000-fold) water sample is often rich in strongly autofluorescent algae, organic debris and mineral particles that can obscure immunofluorescently labeled (oo)cysts during analysis. Time-resolved fluorescence techniques exploit the long fluorescence lifetimes of lanthanide chelates (ms) to differentiate target fluorescence from background autofluorescence (ns). Relatively simple instrumentation can be used to enhance the signal-to-noise ratio (S/N) of labelled target. Time-resolved fluorescence techniques exploit the large difference in lifetime by briefly exciting fluorescence from the sample using a pulsed excitation source. Capture of the resulting fluorescence emission is delayed until the more rapidly decaying autofluorescence has faded beyond detection, whereon the much stronger and slower fading emission from labelled target is collected. BHHCT is a tetradentate beta-diketone chelate that is activated to bind with protein (antibody) as the chlorosulfonate. The high activity of this residue makes conjugations difficult to control and can lead to the formation of unstable immunoconjugates. To overcome these limitations a 5-atom hydrophylic molecular tether was attached to BHHCT via the chlorosulfonate and the BHHCT derivative was then activated to bind to proteins as the succinimide. The new compound (BHHST) could be prepared in high purity and was far more stable than the chlorosulfonate on storage. A high activity immunocojugate was prepared against Cryptosporidium that yielded an 8-fold increase in SNR using a lab-built time-resolved fluorescence microscope.

  10. Time-resolved SERS for characterizing extracellular vesicles

    NASA Astrophysics Data System (ADS)

    Rojalin, Tatu; Saari, Heikki; Somersalo, Petter; Laitinen, Saara; Turunen, Mikko; Viitala, Tapani; Wachsmann-Hogiu, Sebastian; Smith, Zachary J.; Yliperttula, Marjo

    2017-02-01

    The aim of this work is to develop a platform for characterizing extracellular vesicles (EV) by using gold-polymer nanopillar SERS arrays simultaneously circumventing the photoluminescence-related disadvantages of Raman with a time-resolved approach. EVs are rich of biochemical information reporting of, for example, diseased state of the biological system. Currently, straightforward, label-free and fast EV characterization methods with low sample consumption are warranted. In this study, SERS spectra of red blood cell and platelet derived EVs were successfully measured and their biochemical contents analyzed using multivariate data analysis techniques. The developed platform could be conveniently used for EV analytics in general.

  11. Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    NASA Astrophysics Data System (ADS)

    Brauße, Felix; Goldsztejn, Gildas; Amini, Kasra; Boll, Rebecca; Bari, Sadia; Bomme, Cédric; Brouard, Mark; Burt, Michael; de Miranda, Barbara Cunha; Düsterer, Stefan; Erk, Benjamin; Géléoc, Marie; Geneaux, Romain; Gentleman, Alexander S.; Guillemin, Renaud; Ismail, Iyas; Johnsson, Per; Journel, Loïc; Kierspel, Thomas; Köckert, Hansjochen; Küpper, Jochen; Lablanquie, Pascal; Lahl, Jan; Lee, Jason W. L.; Mackenzie, Stuart R.; Maclot, Sylvain; Manschwetus, Bastian; Mereshchenko, Andrey S.; Mullins, Terence; Olshin, Pavel K.; Palaudoux, Jérôme; Patchkovskii, Serguei; Penent, Francis; Piancastelli, Maria Novella; Rompotis, Dimitrios; Ruchon, Thierry; Rudenko, Artem; Savelyev, Evgeny; Schirmel, Nora; Techert, Simone; Travnikova, Oksana; Trippel, Sebastian; Underwood, Jonathan G.; Vallance, Claire; Wiese, Joss; Simon, Marc; Holland, David M. P.; Marchenko, Tatiana; Rouzée, Arnaud; Rolles, Daniel

    2018-04-01

    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane (CH3I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules.

  12. Time-resolved diffusion tomographic imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1998-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: X.sup.(k+1).spsp.T =?Y.sup.T W+X.sup.(k).spsp.T .LAMBDA.!?W.sup.T W+.LAMBDA.!.sup.-1 wherein W is a matrix relating output at detector position r.sub.d, at time t, to source at position r.sub.s, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Here Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information.

  13. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field.

    PubMed

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-06-25

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge.

  14. Time-resolved wide-field optically sectioned fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dupuis, Guillaume; Benabdallah, Nadia; Chopinaud, Aurélien; Mayet, Céline; Lévêque-Fort, Sandrine

    2013-02-01

    We present the implementation of a fast wide-field optical sectioning technique called HiLo microscopy on a fluorescence lifetime imaging microscope. HiLo microscopy is based on the fusion of two images, one with structured illumination and another with uniform illumination. Optically sectioned images are then digitally generated thanks to a fusion algorithm. HiLo images are comparable in quality with confocal images but they can be acquired faster over larger fields of view. We obtain 4D imaging by combining HiLo optical sectioning, time-gated detection, and z-displacement. We characterize the performances of this set-up in terms of 3D spatial resolution and time-resolved capabilities in both fixed- and live-cell imaging modes.

  15. Towards Measurement of the Time-resolved Heat Release of Protein Conformation Dynamics

    NASA Technical Reports Server (NTRS)

    Puchalla, Jason; Adamek, Daniel; Austin, Robert

    2004-01-01

    We present a way to observe time-resolved heat release using a laminar flow diffusional mixer coupled with a highly sensitive infrared camera which measures the temperature change of the solvent. There are significant benefits to the use of laminar flow mixers for time-resolved calorimetry: (1) The thermal signal can be made position and time- stationary to allow for signal integration; (2) Extremely small volumes (nl/s) of sample are required for a measurement; (3) The same mixing environment can be observed spectroscopically to obtain state occupation information; (4) The mixer allows one to do out of equilibrium dynamic studies. The hope is that these measurements will allow us probe the non-equilibrium thermodynamics as a protein moves along a free energy trajectory from one state to another.

  16. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  17. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics.

    PubMed

    Davis, Caitlin M; Reddish, Michael J; Dyer, R Brian

    2017-05-05

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of <0.2mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50ns to 0.5ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Dual time-resolved temperature-jump fluorescence and infrared spectroscopy for the study of fast protein dynamics

    NASA Astrophysics Data System (ADS)

    Davis, Caitlin M.; Reddish, Michael J.; Dyer, R. Brian

    2017-05-01

    Time-resolved temperature-jump (T-jump) coupled with fluorescence and infrared (IR) spectroscopy is a powerful technique for monitoring protein dynamics. Although IR spectroscopy of the polypeptide amide I mode is more technically challenging, it offers complementary information because it directly probes changes in the protein backbone, whereas, fluorescence spectroscopy is sensitive to the environment of specific side chains. With the advent of widely tunable quantum cascade lasers (QCL) it is possible to efficiently probe multiple IR frequencies with high sensitivity and reproducibility. Here we describe a dual time-resolved T-jump fluorescence and IR spectrometer and its application to study protein folding dynamics. A Q-switched Ho:YAG laser provides the T-jump source for both time-resolved IR and fluorescence spectroscopy, which are probed by a QCL and Ti:Sapphire laser, respectively. The Ho:YAG laser simultaneously pumps the time-resolved IR and fluorescence spectrometers. The instrument has high sensitivity, with an IR absorbance detection limit of < 0.2 mOD and a fluorescence sensitivity of 2% of the overall fluorescence intensity. Using a computer controlled QCL to rapidly tune the IR frequency it is possible to create a T-jump induced difference spectrum from 50 ns to 0.5 ms. This study demonstrates the power of the dual time-resolved T-jump fluorescence and IR spectroscopy to resolve complex folding mechanisms by complementary IR absorbance and fluorescence measurements of protein dynamics.

  19. Finite difference time domain calculation of transients in antennas with nonlinear loads

    NASA Technical Reports Server (NTRS)

    Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent

    1991-01-01

    In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.

  20. Formation of various types of nanostructures on germanium surface by nanosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Mikolutskiy, S. I.; Khasaya, R. R.; Khomich, Yu V.; Yamshchikov, V. A.

    2018-03-01

    The paper describes the formation of micro- and nanostructures in different parts of irradiation zone on germanium surface by multiple action of nanosecond pulses of ArF-laser. It proposes a simple method using only one laser beam without any optional devices and masks for surface treatment. Hexa- and pentagonal cells with submicron dimensions along the surface were observed in peripheral zone of irradiation spot by atomic-force microscopy. Nanostructures in the form of bulbs with rounded peaks with lateral sizes of 40-120 nm were obtained in peripheral low-intensity region of the laser spot. Considering experimental data on material processing by nanosecond laser pulses, a classification of five main types of surface reliefs formed by nanosecond laser pulses with energy density near or slightly above ablation threshold was proposed.

  1. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    PubMed

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  2. Fluorescence from Multiple Chromophore Hydrogen-Bonding States in the Far-Red Protein TagRFP675.

    PubMed

    Konold, Patrick E; Yoon, Eunjin; Lee, Junghwa; Allen, Samantha L; Chapagain, Prem P; Gerstman, Bernard S; Regmi, Chola K; Piatkevich, Kiryl D; Verkhusha, Vladislav V; Joo, Taiha; Jimenez, Ralph

    2016-08-04

    Far-red fluorescent proteins are critical for in vivo imaging applications, but the relative importance of structure versus dynamics in generating large Stokes-shifted emission is unclear. The unusually red-shifted emission of TagRFP675, a derivative of mKate, has been attributed to the multiple hydrogen bonds with the chromophore N-acylimine carbonyl. We characterized TagRFP675 and point mutants designed to perturb these hydrogen bonds with spectrally resolved transient grating and time-resolved fluorescence (TRF) spectroscopies supported by molecular dynamics simulations. TRF results for TagRFP675 and the mKate/M41Q variant show picosecond time scale red-shifts followed by nanosecond time blue-shifts. Global analysis of the TRF spectra reveals spectrally distinct emitting states that do not interconvert during the S1 lifetime. These dynamics originate from photoexcitation of a mixed ground-state population of acylimine hydrogen bond conformers. Strategically tuning the chromophore environment in TagRFP675 might stabilize the most red-shifted conformation and result in a variant with a larger Stokes shift.

  3. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.

    PubMed

    Ahn, Keun Jae; Zheng, Zhenlong; Kwon, Tae Rin; Kim, Beom Joon; Lee, Hye Sun; Cho, Sung Bin

    2017-05-08

    During laser treatment for tattoo removal, pigment chromophores absorb laser energy, resulting in fragmentation of the ink particles via selective photothermolysis. The present study aimed to outline macroscopic laser-tattoo interactions in tissue-mimicking (TM) phantoms treated with picosecond- and nanosecond-domain lasers. Additionally, high-speed cinematographs were captured to visualize time-dependent tattoo-tissue interactions, from laser irradiation to the formation of photothermal and photoacoustic injury zones (PIZs). In all experimental settings using the nanosecond or picosecond laser, tattoo pigments fragmented into coarse particles after a single laser pulse, and further disintegrated into smaller particles that dispersed toward the boundaries of PIZs after repetitive delivery of laser energy. Particles fractured by picosecond treatment were more evenly dispersed throughout PIZs than those fractured by nanosecond treatment. Additionally, picosecond-then-picosecond laser treatment (5-pass-picosecond treatment + 5-pass-picosecond treatment) induced greater disintegration of tattoo particles within PIZs than picosecond-then-nanosecond laser treatment (5-pass-picosecond treatment + 5-pass-nanosecond treatment). High-speed cinematography recorded the formation of PIZs after repeated reflection and propagation of acoustic waves over hundreds of microseconds to a few milliseconds. The present data may be of use in predicting three-dimensional laser-tattoo interactions and associated reactions in surrounding tissue.

  4. Time resolved Thomson scattering diagnostic of pulsed gas metal arc welding (GMAW) process

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marquès, J. L.; Schein, J.

    2014-11-01

    In this work a Thomson scattering diagnostic technique was applied to obtain time resolved electron temperature and density values during a gas metal arc welding (GMAW) process. The investigated GMAW process was run with aluminum wire (AlMg 4,5 Mn) with 1.2 mm diameter as a wire electrode, argon as a shielding gas and peak currents in the range of 400 A. Time resolved measurements could be achieved by triggering the laser pulse at shifted time positions with respect to the current pulse driving the process. Time evaluation of resulting electron temperatures and densities is used to investigate the state of the plasma in different phases of the current pulse and to determine the influence of the metal vapor and droplets on the plasma properties.

  5. Laser-combined scanning tunnelling microscopy for probing ultrafast transient dynamics.

    PubMed

    Terada, Yasuhiko; Yoshida, Shoji; Takeuchi, Osamu; Shigekawa, Hidemi

    2010-07-07

    The development of time-resolved scanning tunnelling microscopy (STM), in particular, attempts to combine STM with ultrafast laser technology, is reviewed with emphasis on observed physical quantities and spatiotemporal resolution. Ultrashort optical pulse technology has allowed us to observe transient phenomena in the femtosecond range, which, however, has the drawback of a relatively low spatial resolution due to the electromagnetic wavelength used. In contrast, STM and its related techniques, although the time resolution is limited by the circuit bandwidth (∼100 kHz), enable us to observe structures at the atomic level in real space. Our purpose has been to combine these two techniques to achieve a new technology that satisfies the requirements for exploring the ultrafast transient dynamics of the local quantum functions in organized small structures, which will advance the pursuit of future nanoscale scientific research in terms of the ultimate temporal and spatial resolutions. © 2010 IOP Publishing Ltd

  6. Two-photon microscopy using fiber-based nanosecond excitation.

    PubMed

    Karpf, Sebastian; Eibl, Matthias; Sauer, Benjamin; Reinholz, Fred; Hüttmann, Gereon; Huber, Robert

    2016-07-01

    Two-photon excitation fluorescence (TPEF) microscopy is a powerful technique for sensitive tissue imaging at depths of up to 1000 micrometers. However, due to the shallow penetration, for in vivo imaging of internal organs in patients beam delivery by an endoscope is crucial. Until today, this is hindered by linear and non-linear pulse broadening of the femtosecond pulses in the optical fibers of the endoscopes. Here we present an endoscope-ready, fiber-based TPEF microscope, using nanosecond pulses at low repetition rates instead of femtosecond pulses. These nanosecond pulses lack most of the problems connected with femtosecond pulses but are equally suited for TPEF imaging. We derive and demonstrate that at given cw-power the TPEF signal only depends on the duty cycle of the laser source. Due to the higher pulse energy at the same peak power we can also demonstrate single shot two-photon fluorescence lifetime measurements.

  7. Ablation of aluminum nitride films by nanosecond and femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Tzou, Robert; Salakhutdinov, Ildar; Danylyuk, Yuriy; McCullen, Erik; Auner, Gregory

    2009-02-01

    We present results of comparative study of laser-induced ablation of AlN films with variable content of oxygen as a surface-doping element. The films deposited on sapphire substrate were ablated by a single nanosecond pulse at wavelength 248 nm, and by a single femtosecond pulse at wavelength 775 nm in air at normal pressure. Ablation craters were inspected by AFM and Nomarski high-resolution microscope. Irradiation by nanosecond pulses leads to a significant removal of material accompanied by extensive thermal effects, chemical modification of the films around the ablation craters and formation of specific defect structures next to the craters. Remarkable feature of the nanosecond experiments was total absence of thermo-mechanical fracturing near the edges of ablation craters. The femtosecond pulses produced very gentle ablation removing sub-micrometer layers of the films. No remarkable signs of thermal, thermo-mechanical or chemical effects were found on the films after the femtosecond ablation. We discuss mechanisms responsible for the specific ablation effects and morphology of the ablation craters.

  8. Improving time-delay cosmography with spatially resolved kinematics

    NASA Astrophysics Data System (ADS)

    Shajib, Anowar J.; Treu, Tommaso; Agnello, Adriano

    2018-01-01

    Strongly gravitational lensed quasars can be used to measure the so-called time-delay distance DΔt, and thus the Hubble constant H0 and other cosmological parameters. Stellar kinematics of the deflector galaxy play an essential role in this measurement by: (i) helping break the mass-sheet degeneracy; (ii) determining in principle the angular diameter distance Dd to the deflector and thus further improving the cosmological constraints. In this paper we simulate observations of lensed quasars with integral field spectrographs and show that spatially resolved kinematics of the deflector enables further progress by helping break the mass-anisotropy degeneracy. Furthermore, we use our simulations to obtain realistic error estimates with current/upcoming instruments like OSIRIS on Keck and NIRSPEC on the James Webb Space Telescope for both distances (typically ∼6 per cent on DΔt and ∼10 per cent on Dd). We use the error estimates to compute cosmological forecasts for the sample of nine lenses that currently have well-measured time delays and deep Hubble Space Telescope images and for a sample of 40 lenses that is projected to be available in a few years through follow-up of candidates found in ongoing wide field surveys. We find that H0 can be measured with 2 per cent (1 per cent) precision from nine (40) lenses in a flat Λcold dark matter cosmology. We study several other cosmological models beyond the flat Λcold dark matter model and find that time-delay lenses with spatially resolved kinematics can greatly improve the precision of the cosmological parameters measured by cosmic microwave background data.

  9. Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephansen, Anne B.; King, Sarah B.; Li, Wei-Li

    2015-09-14

    Dipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer. In the UV-pump/IR-probe time-resolved experiments, transient adenine anions can be formed by electron transfer from the iodide. These experiments show signals from both DB and VB states of adenine anions formed on femto- and picosecond time scales, respectively. Analysis of the spectra and comparison withmore » calculations suggest that while both the A9 and A3 tautomers contribute to the DB signal, only the DB state of the A3 tautomer undergoes a transition to the VB anion. The VB anion of A9 is higher in energy than both the DB anion and the neutral, and the VB anion is therefore not accessible through the DB state. Experimental evidence of the metastable A9 VB anion is instead observed as a shape resonance in the one-color photoelectron spectra, as a result of UV absorption by A9 and subsequent electron transfer from iodide into the empty π-orbital. In contrast, the iodide-A3 complex constitutes an excellent example of how DB states can act as doorway state for VB anion formation when the VB state is energetically available.« less

  10. Real-Time Gas Identification by Analyzing the Transient Response of Capillary-Attached Conductive Gas Sensor

    PubMed Central

    Bahraminejad, Behzad; Basri, Shahnor; Isa, Maryam; Hambli, Zarida

    2010-01-01

    In this study, the ability of the Capillary-attached conductive gas sensor (CGS) in real-time gas identification was investigated. The structure of the prototype fabricated CGS is presented. Portions were selected from the beginning of the CGS transient response including the first 11 samples to the first 100 samples. Different feature extraction and classification methods were applied on the selected portions. Validation of methods was evaluated to study the ability of an early portion of the CGS transient response in target gas (TG) identification. Experimental results proved that applying extracted features from an early part of the CGS transient response along with a classifier can distinguish short-chain alcohols from each other perfectly. Decreasing time of exposition in the interaction between target gas and sensing element improved the reliability of the sensor. Classification rate was also improved and time of identification was decreased. Moreover, the results indicated the optimum interval of the early transient response of the CGS for selecting portions to achieve the best classification rates. PMID:22219666

  11. Flip-flop resolving time test circuit

    NASA Technical Reports Server (NTRS)

    Rosenberger, F.; Chaney, T. J.

    1982-01-01

    Integrated circuit (IC) flip-flop resolving time parameters are measured by wafer probing, without need of dicing or bonding, throught the incorporation of test structures on an IC together with the flip-flop to be measured. Several delays that are fabricated as part of the test circuit, including a voltage-controlled delay with a resolution of a few picosecs, are calibrated as part of the test procedure by integrating them into, and out of, the delay path of a ring oscillator. Each of the delay values is calculated by subtracting the period of the ring oscillator with the delay omitted from the period with the delay included. The delay measurement technique is sufficiently general for other applications. The technique is illustrated for the case of the flip-flop parameters of a 5-micron feature size NMOS circuit.

  12. Femtosecond-resolved ablation dynamics of Si in the near field of a small dielectric particle

    PubMed Central

    Kühler, Paul; Puerto, Daniel; Mosbacher, Mario; Leiderer, Paul; Garcia de Abajo, Francisco Javier

    2013-01-01

    Summary In this work we analyze the ablation dynamics of crystalline Si in the intense near field generated by a small dielectric particle located at the material surface when being irradiated with an infrared femtosecond laser pulse (800 nm, 120 fs). The presence of the particle (7.9 μm diameter) leads to a strong local enhancement (ca. 40 times) of the incoming intensity of the pulse. The transient optical response of the material has been analyzed by means of fs-resolved optical microscopy in reflection configuration over a time span from 0.1 ps to about 1 ns. Characteristic phenomena like electron plasma formation, ultrafast melting and ablation, along with their characteristic time scales are observed in the region surrounding the particle. The use of a time resolved imaging technique allows us recording simultaneously the material response at ordinary and large peak power densities enabling a direct comparison between both scenarios. The time resolved images of near field exposed regions are consistent with a remarkable temporal shift of the ablation onset which occurs in the sub-picosend regime, from about 500 to 800 fs after excitation. PMID:24062976

  13. An electron energy loss spectrometer based streak camera for time resolved TEM measurements.

    PubMed

    Ali, Hasan; Eriksson, Johan; Li, Hu; Jafri, S Hassan M; Kumar, M S Sharath; Ögren, Jim; Ziemann, Volker; Leifer, Klaus

    2017-05-01

    We propose an experimental setup based on a streak camera approach inside an energy filter to measure time resolved properties of materials in the transmission electron microscope (TEM). In order to put in place the streak camera, a beam sweeper was built inside an energy filter. After exciting the TEM sample, the beam is swept across the CCD camera of the filter. We describe different parts of the setup at the example of a magnetic measurement. This setup is capable to acquire time resolved diffraction patterns, electron energy loss spectra (EELS) and images with total streaking times in the range between 100ns and 10μs. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawauchi, Taizo; Matsumoto, Masuaki; Fukutani, Katsuyuki

    2007-01-15

    A high-energy and large-object-spot type cylindrical mirror analyzer (CMA) was constructed with the aid of electron trajectory simulations. By adopting a particular shape for the outer cylinder, an energy resolution of 7% was achieved without guide rings as used in conventional CMAs. Combined with an avalanche photodiode as an electron detector, the K-shell internal conversion electrons were successfully measured under irradiation of synchrotron radiation at 14.4 keV in an energy-resolved and time-resolved manner.

  15. Time-resolved observation of protein allosteric communication

    PubMed Central

    Buchenberg, Sebastian; Sittel, Florian; Stock, Gerhard

    2017-01-01

    Allostery represents a fundamental mechanism of biological regulation that is mediated via long-range communication between distant protein sites. Although little is known about the underlying dynamical process, recent time-resolved infrared spectroscopy experiments on a photoswitchable PDZ domain (PDZ2S) have indicated that the allosteric transition occurs on multiple timescales. Here, using extensive nonequilibrium molecular dynamics simulations, a time-dependent picture of the allosteric communication in PDZ2S is developed. The simulations reveal that allostery amounts to the propagation of structural and dynamical changes that are genuinely nonlinear and can occur in a nonlocal fashion. A dynamic network model is constructed that illustrates the hierarchy and exceeding structural heterogeneity of the process. In compelling agreement with experiment, three physically distinct phases of the time evolution are identified, describing elastic response (≲0.1 ns), inelastic reorganization (∼100 ns), and structural relaxation (≳1μs). Issues such as the similarity to downhill folding as well as the interpretation of allosteric pathways are discussed. PMID:28760989

  16. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime t decreased from 670 +/-50 ns to 60 +/- 10 ns with increase of excess carrier density N from 10 16 to 5 x 10 18cm -3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 um to 6 um due to lifetime decrease. Modeling of in-depth (axial) andmore » in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 x 10 5 cm/s for the untreated surface. At even higher excitations, in the 10 19-3 x 10 20 cm -3 density range, D increase from 5 to 20 cm^2/s due to carrier degeneracy was observed.« less

  17. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    DOE PAGES

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas; ...

    2018-01-14

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime t decreased from 670 +/-50 ns to 60 +/- 10 ns with increase of excess carrier density N from 10 16 to 5 x 10 18cm -3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 um to 6 um due to lifetime decrease. Modeling of in-depth (axial) andmore » in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 x 10 5 cm/s for the untreated surface. At even higher excitations, in the 10 19-3 x 10 20 cm -3 density range, D increase from 5 to 20 cm^2/s due to carrier degeneracy was observed.« less

  18. Excitation-dependent carrier lifetime and diffusion length in bulk CdTe determined by time-resolved optical pump-probe techniques

    NASA Astrophysics Data System (ADS)

    Ščajev, Patrik; Miasojedovas, Saulius; Mekys, Algirdas; Kuciauskas, Darius; Lynn, Kelvin G.; Swain, Santosh K.; JarašiÅ«nas, Kestutis

    2018-01-01

    We applied time-resolved pump-probe spectroscopy based on free carrier absorption and light diffraction on a transient grating for direct measurements of the carrier lifetime and diffusion coefficient D in high-resistivity single crystal CdTe (codoped with In and Er). The bulk carrier lifetime τ decreased from 670 ± 50 ns to 60 ± 10 ns with increase of excess carrier density N from 1016 to 5 × 1018 cm-3 due to the excitation-dependent radiative recombination rate. In this N range, the carrier diffusion length dropped from 14 μm to 6 μm due to lifetime decrease. Modeling of in-depth (axial) and in-plane (lateral) carrier diffusion provided the value of surface recombination velocity S = 6 × 105 cm/s for the untreated surface. At even higher excitations, in the 1019-3 × 1020 cm-3 density range, D increase from 5 to 20 cm2/s due to carrier degeneracy was observed.

  19. Non-Intrusive, Time-Resolved Hall Thruster Near-Field Electron Temperature Measurements

    DTIC Science & Technology

    2011-08-01

    With the growing interest in Hall thruster technology, comes the need to fully characterize the plasma dynamics that determine performance. Of...instabilities characteristic of Hall thruster behavior, time resolved techniques must be developed. This study presents a non-intrusive method of

  20. An innovative Yb-based ultrafast deep ultraviolet source for time-resolved photoemission experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, F.; Hedayat, H.; Dallera, C.

    2014-12-15

    Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

  1. Opportunities and challenges for time-resolved studies of protein structural dynamics at X-ray free-electron lasers.

    PubMed

    Neutze, Richard

    2014-07-17

    X-ray free-electron lasers (XFELs) are revolutionary X-ray sources. Their time structure, providing X-ray pulses of a few tens of femtoseconds in duration; and their extreme peak brilliance, delivering approximately 10(12) X-ray photons per pulse and facilitating sub-micrometre focusing, distinguish XFEL sources from synchrotron radiation. In this opinion piece, I argue that these properties of XFEL radiation will facilitate new discoveries in life science. I reason that time-resolved serial femtosecond crystallography and time-resolved wide angle X-ray scattering are promising areas of scientific investigation that will be advanced by XFEL capabilities, allowing new scientific questions to be addressed that are not accessible using established methods at storage ring facilities. These questions include visualizing ultrafast protein structural dynamics on the femtosecond to picosecond time-scale, as well as time-resolved diffraction studies of non-cyclic reactions. I argue that these emerging opportunities will stimulate a renaissance of interest in time-resolved structural biochemistry.

  2. A Novel Nanosecond Pulsed Power Unit for the Formation of ·OH in Water

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Hu, Sheng; Zhang, Han

    2012-04-01

    A novel nanosecond pulsed power unit was developed for plasma treatment of wastewater, based on the theory of magnetic pulse compression and semiconductor opening switch (SOS). The peak value, rise time and pulse duration of the output voltage were observed to be -51 kV, 60 ns and 120 ns, respectively. The concentrations of ·OH generated by the novel nanosecond pulsed plasma power were determined using the method of high-performance liquid chromatography (HPLC). The results showed that the concentrations of ·OH increased with the increase in peak voltage, and the generation rates of ·OH were 4.1 × 10-10 mol/s, 5.7 × 10-10 mol/s, and 7.7 × 10-10 mol/s at 30 kV, 35 kV, and 40 kV, respectively. The efficiency of OH generation was found to be independent of the input parameters for applied power, with an average value of 3.23×10-12 mol/J obtained.

  3. Time Resolved X-Ray Diffraction Study of Acoustoelectrically Amplified Phonons.

    NASA Astrophysics Data System (ADS)

    Chapman, Leroy Dean

    X-rays diffracted by nearly perfect crystals of n-type InSb have been investigated in the presence of intense acoustoelectrically (A.E.) amplified phonons. The fact that these phonons are nearly monochromatic and have a well defined propagation and polarization direction presents an excellent opportunity to investigate the nature of x -ray photon-phonon scattering in a diffracting crystal. The Debye-Waller factor which accounts for the attenuation of diffracted x-ray intensities due to thermal phonons is reflection dependent owing to its sin (theta)/(lamda) dependence. We have performed experiments comparing the (004) and (008) anomalously transmitted intensities as a function of A.E. amplified flux. The attenuation of both reflections due to the amplified phonons was the same in direct contradiction to an expected sin (theta)/(lamda) dependence. Some possible reasons for this failure are discussed. In a Bragg reflection scattering geometry, the intense monochromatic amplified phonons give rise to satellite peaks symmetrically located about the central elastic Brag peak in a rocking profile. We report in this thesis on the first observation of satellites in a thin crystal Laue transmission geometry. We have theoretically simulated the rocking profiles with some success. The A.E. amplification process in InSb is strongly favored for {110} propagation fast transverse (FT) phonons. In earlier experiments it was found that non-{110} FT phonons were also produced during the amplification process. We have developed a time resolved x-ray counting system which, in conjunction with a spatially resolved x-ray beam and a localized, traveling A.E. phonon distribution, allow the time evolution of the amplified distribution to be followed. We report on time resolved measurements for both the symmetric Bragg and Laue geometries from which we can determine when and where non-{110 } FT flux is generated and restrict the possible mechanisms for its generation.

  4. Real-Time Eddy-Resolving Ocean Prediction in the Caribbean

    NASA Astrophysics Data System (ADS)

    Hurlburt, H. E.; Smedstad, O. M.; Shriver, J. F.; Townsend, T. L.; Murphy, S. J.

    2001-12-01

    A {1/16}o eddy-resolving, nearly global ocean prediction system has been developed by the Naval Research Laboratory (NRL), Stennis Space Center, MS. It has been run in real-time by the Naval Oceanographic Office (NAVO), Stennis Space Center, MS since 18 Oct 2000 with daily updates for the nowcast and 30-day forecasts performed every Wednesday. The model has ~8 km resolution in the Caribbean region and assimilates real-time altimeter sea surface height (SSH) data from ERS-2, GFO and TOPEX/POSEIDON plus multi-channel sea surface temperature (MCSST) from satellite IR. Real-time and archived results from the system can be seen at web site: http://www7320.nrlssc.navy.mil/global\

  5. Effect of the RC time on photocurrent transients and determination of charge carrier mobilities

    NASA Astrophysics Data System (ADS)

    Kniepert, Juliane; Neher, Dieter

    2017-11-01

    We present a closed analytical model to describe time dependent photocurrents upon pulsed illumination in the presence of an external RC circuit. In combination with numerical drift diffusion simulations, it is shown that the RC time has a severe influence on the shape of the transients. In particular, the maximum of the photocurrent is delayed due to a delayed recharging of the electrodes. This delay increases with the increasing RC constant. As a consequence, charge carrier mobilities determined from simple extrapolation of the initial photocurrent decay will be in general too small and feature a false dependence on the electric field. Here, we present a recipe to correct charge carrier mobilities determined from measured photocurrent transients by taking into account the RC time of the experimental set-up. We also demonstrate how the model can be used to more reliably determine the charge carrier mobility from experimental data of a typical polymer/fullerene organic solar cell. It is shown that further aspects like a finite rising time of the pulse generator and the current contribution of the slower charger carriers influence the shape of the transients and may lead to an additional underestimation of the transit time.

  6. Impact of time-resolved MRA on diagnostic accuracy in patients with symptomatic peripheral artery disease of the calf station.

    PubMed

    Hansmann, Jan; Michaely, Henrik J; Morelli, John N; Diehl, Steffen J; Meyer, Mathias; Schoenberg, Stefan O; Attenberger, Ulrike I

    2013-12-01

    The purpose of this article is to evaluate the added diagnostic accuracy of time-resolved MR angiography (MRA) of the calves compared with continuous-table-movement MRA in patients with symptomatic lower extremity peripheral artery disease (PAD) using digital subtraction angiography (DSA) correlation. Eighty-four consecutive patients with symptomatic PAD underwent a low-dose 3-T MRA protocol, consisting of continuous-table-movement MRA, acquired from the diaphragm to the calves, and an additional time-resolved MRA of the calves; 0.1 mmol/kg body weight (bw) of contrast material was used (0.07 mmol/kg bw for continuous-table-movement MRA and 0.03 mmol/kg bw for time-resolved MRA). Two radiologists rated image quality on a 4-point scale and stenosis degree on a 3-point scale. An additional assessment determined the degree of venous contamination and whether time-resolved MRA improved diagnostic confidence. The accuracy of stenosis gradation with continuous-table-movement and time-resolved MRA was compared with that of DSA as a correlation. Overall diagnostic accuracy was calculated for continuous-table-movement and time-resolved MRA. Median image quality was rated as good for 578 vessel segments with continuous-table-movement MRA and as excellent for 565 vessel segments with time-resolved MRA. Interreader agreement was excellent (κ = 0.80-0.84). Venous contamination interfered with diagnosis in more than 60% of continuous-table-movement MRA examinations. The degree of stenosis was assessed for 340 vessel segments. The diagnostic accuracies (continuous-table-movement MRA/time-resolved MRA) combined for the readers were obtained for the tibioperoneal trunk (84%/93%), anterior tibial (69%/87%), posterior tibial (85%/91%), and peroneal (67%/81%) arteries. The addition of time-resolved MRA improved diagnostic confidence in 69% of examinations. The addition of time-resolved MRA at the calf station improves diagnostic accuracy over continuous-table-movement MRA alone in

  7. Nanosecond multiple pulse measurements and the different types of defects

    NASA Astrophysics Data System (ADS)

    Wagner, Frank R.; Natoli, Jean-Yves; Beaudier, Alexandre; Commandré, Mireille

    2017-11-01

    Laser damage measurements with multiple pulses at constant fluence (S-on-1 measurements) are of high practical importance for design and validation of high power photonic instruments. Using nanosecond lasers, it has been recognized long ago that single pulse laser damage is linked to fabrication related defects. Models describing the laser damage probability as the probability of encounter between the high fluence region of the laser beam and the fabrication related defects are thus widely used to analyze the measurements. Nanosecond S-on-1 tests often reveal the "fatigue effect", i.e. a decrease of the laser damage threshold with increasing pulse number. Most authors attribute this effect to cumulative material modifications operated by the first pulses. In this paper we discuss the different situations that are observed upon nanosecond S-on-1 measurements of several different materials using different wavelengths and speak in particular about the defects involved in the laser damage mechanism. These defects may be fabrication-related or laser-induced, stable or evolutive, cumulative or of short lifetime. We will show that the type of defect that is dominating an S-on-1 experiment depends on the wavelength and the material under test and give examples from measurements of nonlinear optical crystals, fused silica and oxide mixture coatings.

  8. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging.

    PubMed

    Fischer, Michael A; Leidner, Bertil; Kartalis, Nikolaos; Svensson, Anders; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B

    2014-01-01

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. • Four-dimensional computed tomography is limited by motion artefacts and poor image quality. • Time-resolved-CT facilitates 4D-CT data visualisation, segmentation and analysis by condensing raw data. • Time-resolved CT demonstrates better image quality than raw data images. • Time-resolved CT improves detection of arterialised liver lesions in cirrhotic patients.

  9. Uniform and non-uniform modes of nanosecond-pulsed dielectric barrier discharge in atmospheric air: fast imaging and spectroscopic measurements of electric field

    PubMed Central

    Liu, Chong; Dobrynin, Danil; Fridman, Alexander

    2014-01-01

    In this study, we report experimental results on fast ICCD imaging of development of nanosecond-pulsed dielectric barrier discharge (DBD) in atmospheric air and spectroscopic measurements of electric field in the discharge. Uniformity of the discharge images obtained with nanosecond exposure times were analyzed using chi-square test. The results indicate that DBD uniformity strongly depends on applied (global) electric field in the discharge gap, and is a threshold phenomenon. We show that in the case of strong overvoltage on the discharge gap (provided by fast rise times), there is transition from filamentary to uniform DBD mode which correlates to the corresponding decrease of maximum local electric field in the discharge. PMID:25071294

  10. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μmμm spatial resolution and less than 20 analogue-to-digital converter count RMS pixel noise. The uniquemore » capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  11. Time-resolved polarization imaging by pump-probe (stimulated emission) fluorescence microscopy.

    PubMed Central

    Buehler, C; Dong, C Y; So, P T; French, T; Gratton, E

    2000-01-01

    We report the application of pump-probe fluorescence microscopy in time-resolved polarization imaging. We derived the equations governing the pump-probe stimulated emission process and characterized the pump and probe laser power levels for signal saturation. Our emphasis is to use this novel methodology to image polarization properties of fluorophores across entire cells. As a feasibility study, we imaged a 15-microm orange latex sphere and found that there is depolarization that is possibly due to energy transfer among fluorescent molecules inside the sphere. We also imaged a mouse fibroblast labeled with CellTracker Orange CMTMR (5-(and-6)-(((4-chloromethyl)benzoyl)amino)tetramethyl-rhodamine). We observed that Orange CMTMR complexed with gluthathione rotates fast, indicating the relatively low fluid-phase viscosity of the cytoplasmic microenvironment as seen by Orange CMTMR. The measured rotational correlation time ranged from approximately 30 to approximately 150 ps. This work demonstrates the effectiveness of stimulated emission measurements in acquiring high-resolution, time-resolved polarization information across the entire cell. PMID:10866979

  12. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples.

    PubMed

    Kim, Stephan D; Luo, Jiajun; Buchholz, D Bruce; Chang, R P H; Grayson, M

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  13. Modular time division multiplexer: Efficient simultaneous characterization of fast and slow transients in multiple samples

    NASA Astrophysics Data System (ADS)

    Kim, Stephan D.; Luo, Jiajun; Buchholz, D. Bruce; Chang, R. P. H.; Grayson, M.

    2016-09-01

    A modular time division multiplexer (MTDM) device is introduced to enable parallel measurement of multiple samples with both fast and slow decay transients spanning from millisecond to month-long time scales. This is achieved by dedicating a single high-speed measurement instrument for rapid data collection at the start of a transient, and by multiplexing a second low-speed measurement instrument for slow data collection of several samples in parallel for the later transients. The MTDM is a high-level design concept that can in principle measure an arbitrary number of samples, and the low cost implementation here allows up to 16 samples to be measured in parallel over several months, reducing the total ensemble measurement duration and equipment usage by as much as an order of magnitude without sacrificing fidelity. The MTDM was successfully demonstrated by simultaneously measuring the photoconductivity of three amorphous indium-gallium-zinc-oxide thin films with 20 ms data resolution for fast transients and an uninterrupted parallel run time of over 20 days. The MTDM has potential applications in many areas of research that manifest response times spanning many orders of magnitude, such as photovoltaics, rechargeable batteries, amorphous semiconductors such as silicon and amorphous indium-gallium-zinc-oxide.

  14. Time-Resolved Photometry of V458 Vul

    NASA Astrophysics Data System (ADS)

    Bouzid, Samia; Garnavich, P.

    2011-01-01

    We observed V458 Vul (Nova Vul 2007) over four nights in June, 2010, nearly three years after its nova outburst. Time-resolved photometry was obtained at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham, Arizona, covering 2 to 4 hour spans with a cadence of 30 sec. The first night of data shows a clear 20 minute periodicity with a 0.1 magnitude amplitude. On subsequent nights, power-spectral analysis continues to show variations with a time scale of 20 minutes, but the irregularity of the signal suggests that this is a quasi-periodic oscillation. The 98-minute orbital period is not evident in our observations. V458 Vul is the central star of a planetary nebula. Combining our CCD images suggests a light echo from the nova outburst is scattering off of material in the nebula to the northwest of the central star. Appreciation goes to the National Science Foundation for supporting this project through the Research Experience for Undergraduates program at Notre Dame.

  15. Real-time eye motion correction in phase-resolved OCT angiography with tracking SLO

    PubMed Central

    Braaf, Boy; Vienola, Kari V.; Sheehy, Christy K.; Yang, Qiang; Vermeer, Koenraad A.; Tiruveedhula, Pavan; Arathorn, David W.; Roorda, Austin; de Boer, Johannes F.

    2012-01-01

    In phase-resolved OCT angiography blood flow is detected from phase changes in between A-scans that are obtained from the same location. In ophthalmology, this technique is vulnerable to eye motion. We address this problem by combining inter-B-scan phase-resolved OCT angiography with real-time eye tracking. A tracking scanning laser ophthalmoscope (TSLO) at 840 nm provided eye tracking functionality and was combined with a phase-stabilized optical frequency domain imaging (OFDI) system at 1040 nm. Real-time eye tracking corrected eye drift and prevented discontinuity artifacts from (micro)saccadic eye motion in OCT angiograms. This improved the OCT spot stability on the retina and consequently reduced the phase-noise, thereby enabling the detection of slower blood flows by extending the inter-B-scan time interval. In addition, eye tracking enabled the easy compounding of multiple data sets from the fovea of a healthy volunteer to create high-quality eye motion artifact-free angiograms. High-quality images are presented of two distinct layers of vasculature in the retina and the dense vasculature of the choroid. Additionally we present, for the first time, a phase-resolved OCT angiogram of the mesh-like network of the choriocapillaris containing typical pore openings. PMID:23304647

  16. Wake losses from averaged and time-resolved power measurements at full scale wind turbines

    NASA Astrophysics Data System (ADS)

    Castellani, Francesco; Astolfi, Davide; Mana, Matteo; Becchetti, Matteo; Segalini, Antonio

    2017-05-01

    This work deals with the experimental analysis of wake losses fluctuations at full-scale wind turbines. The test case is a wind farm sited on a moderately complex terrain: 4 turbines are installed, having 2 MW of rated power each. The sources of information are the time-resolved data, as collected from the OPC server, and the 10-minutes averaged SCADA data. The objective is to compare the statistical distributions of wake losses for far and middle wakes, as can be observed through the “fast” lens of time-resolved data, for certain selected test-case time series, and through the “slow” lens of SCADA data, on a much longer time basis that allow to set the standards of the mean wake losses along the wind farm. Further, time-resolved data are used for an insight into the spectral properties of wake fluctuations, highlighting the role of the wind turbine as low-pass filter. Summarizing, the wind rose, the layout of the site and the structure of the data sets at disposal allow to study middle and far wake behavior, with a “slow” and “fast” perspective.

  17. Ozone and dinitrogen monoxide production in atmospheric pressure air dielectric barrier discharge plasma effluent generated by nanosecond pulse superimposed alternating current voltage

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Kaneko, Toshiro

    2017-06-01

    The effects of nanosecond pulse superposition to alternating current voltage (NS + AC) on the generation of an air dielectric barrier discharge (DBD) plasma and reactive species are experimentally studied, along with measurements of ozone (O3) and dinitrogen monoxide (N2O) in the exhausted gas through the air DBD plasma (air plasma effluent). The charge-voltage cycle measurement indicates that the role of nanosecond pulse superposition is to induce electrical charge transport and excess charge accumulation on the dielectric surface following the nanosecond pulses. The densities of O3 and N2O in NS + AC DBD are found to be significantly increased in the plasma effluent, compared to the sum of those densities generated in NS DBD and AC DBD operated individually. The production of O3 and N2O is modulated significantly by the phase in which the nanosecond pulse is superimposed. The density increase and modulation effects by the nanosecond pulse are found to correspond with the electrical charge transport and the excess electrical charge accumulation induced by the nanosecond pulse. It is suggested that the electrical charge transport by the nanosecond pulse might result in the enhancement of the nanosecond pulse current, which may lead to more efficient molecular dissociation, and the excess electrical charge accumulation induced by the nanosecond pulse increases the discharge coupling power which would enhance molecular dissociation.

  18. Acoustic transient generation in pulsed holmium laser ablation under water

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Rink, Klaus; Delacretaz, Guy P.; Salathe, Rene-Paul; Gerber, Bruno E.; Frenz, Martin; Pratisto, Hans; Ith, Michael; Romano, Valerio; Weber, Heinz P.

    1994-08-01

    In this study the role of acoustical transients during pulsed holmium laser ablation is addressed. For this the collapse of cavitation bubbles generated by 2.12 micrometers Cr:Tm:Ho:YAG laser pulses delivered via a fiber in water is investigated. Multiple consecutive collapses of a single bubble generating acoustic transients are documented. Pulse durations are varied from 130 - 230 microsecond(s) and pulse energies from 20 - 800 mJ. Fiber diameters of 400 and 600 micrometers are used. The bubble collapse behavior is observed by time resolved fast flash photography with 1 microsecond(s) strobe lamp or 5 ns 1064 nm Nd:YAG laser illumination. A PVDF needle probe transducer is used to observe acoustic transients and measure their pressure amplitudes. Under certain conditions, at the end of the collapse phase the bubbles emit spherical acoustic transients of up to several hundred bars amplitude. After the first collapse up to two rebounds leading to further acoustic transient emissions are observed. Bubbles generated near a solid surface under water are attracted towards the surface during their development. The final phase of the collapse generating the acoustic transients takes place directly on the surface, exposing it to maximum pressure amplitudes. Our results indicate a possible mechanism of unwanted tissue damage during holmium laser application in a liquid environment as in arthroscopy or angioplasty that may set limits to the choice of laser pulse duration and energies.

  19. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Large-volume excitation of air, argon, nitrogen and combustible mixtures by thermal jets produced by nanosecond spark discharges

    NASA Astrophysics Data System (ADS)

    Stepanyan, Sergey; Hayashi, Jun; Salmon, Arthur; Stancu, Gabi D.; Laux, Christophe O.

    2017-04-01

    This work presents experimental observations of strong expanding thermal jets following the application of nanosecond spark discharges. These jets propagate in a toroidal shape perpendicular to the interelectrode axis, with high velocities of up to 30 m s-1 and over distances of the order of a cm. Their propagation length is much larger than the thermal expansion region produced by the conventional millisecond sparks used in car engine ignition, thus greatly improving the volumetric excitation of gas mixtures. The shape and velocity of the jets is found to be fairly insensitive to the shape of the electrodes. In addition, their spatial extent is found to increase with the number of nanosecond sparks and with the discharge voltage, and to decrease slightly with the pressure between 1 and 7 atm at constant applied voltage. Finally, this thermal jet phenomenon is observed in experiments conducted with many types of gas mixtures, including air, nitrogen, argon, and combustible CH4/air mixtures. This makes nanosecond repetitively pulsed discharges particularly attractive for aerodynamic flow control or plasma-assisted combustion because of their ability to excite large volumes of gas, typically about 100 times the volume of the discharge.

  1. Association of transient hyperthyroidism and severity of hyperemesis gravidarum.

    PubMed

    Malek, Nor Zila Hassan; Kalok, Aida; Hanafiah, Zainal Abidin; Shah, Shamsul Azhar; Ismail, Nor Azlin Mohamed

    2017-03-23

    Background Transient non-immune hyperthyroidism in early pregnancy is hyperthyroidism diagnosed for the first time in early pregnancy, without evidence of thyroid autoimmunity or clinical findings of Grave's disease and resolved spontaneously as the pregnancy progressed. Hyperemesis gravidarum (HG) is the commonest cause with 66%-73% of women with severe HG were found to have elevated thyroid function. Materials and methods We conducted a cross sectional study to determine the prevalence of transient hyperthyroidism in patients with hyperemesis gravidarum and its relation to the severity of nausea and vomiting. Severity of nausea and vomiting in pregnancy was assessed using the modified pregnancy-unique quantification of emesis (PUQE) scoring system. Each patient had urine and blood investigations which also included a full blood count and thyroid and renal function tests. Patients with abnormal thyroid function were retested at 20 weeks of gestation. The patients' demographic data, electrolyte levels, thyroid function and their respective PUQE score were analyzed. Results The prevalence of transient hyperthyroidism in women with hyperemesis gravidarum was 4.8%. Although there was a significant association between the severity of the PUQE score and hypokalemia (p = 0.001), there was no significant association with transient hyperthyroidism in early pregnancy (p = 0.072). Free T4 and TSH values of all women with transient hyperthyroidism were normalized by 20 weeks of gestation. Conclusion Transient hyperthyroidism in pregnancy is not significantly associated with the severity of the PUQE score. Women with transient hyperthyroidism in pregnancy are normally clinically euthyroid, hence a routine thyroid function test is unnecessary unless they exhibit clinical signs or symptoms of hyperthyroidism.

  2. Time-resolved optical spectroscopic quantification of red blood cell damage caused by cardiovascular devices

    NASA Astrophysics Data System (ADS)

    Sakota, D.; Sakamoto, R.; Sobajima, H.; Yokoyama, N.; Yokoyama, Y.; Waguri, S.; Ohuchi, K.; Takatani, S.

    2008-02-01

    Cardiovascular devices such as heart-lung machine generate un-physiological level of shear stress to damage red blood cells, leading to hemolysis. The diagnostic techniques of cell damages, however, have not yet been established. In this study, the time-resolved optical spectroscopy was applied to quantify red blood cell (RBC) damages caused by the extracorporeal circulation system. Experimentally, the fresh porcine blood was subjected to varying degrees of shear stress in the rotary blood pump, followed with measurement of the time-resolved transmission characteristics using the pico-second pulses at 651 nm. The propagated optical energy through the blood specimen was detected using a streak camera. The data were analyzed in terms of the mean cell volume (MCV) and mean cell hemoglobin concentration (MCHC) measured separately versus the energy and propagation time of the light pulses. The results showed that as the circulation time increased, the MCV increased with decrease in MCHC. It was speculated that the older RBCs with smaller size and fragile membrane properties had been selectively destroyed by the shear stress. The time-resolved optical spectroscopy is a useful technique in quantifying the RBCs' damages by measuring the energy and propagation time of the ultra-short light pulses through the blood.

  3. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.

    PubMed

    Hu, Q; Viswanadham, S; Joshi, R P; Schoenbach, K H; Beebe, S J; Blackmore, P F

    2005-03-01

    A molecular dynamics (MD) scheme is combined with a distributed circuit model for a self-consistent analysis of the transient membrane response for cells subjected to an ultrashort (nanosecond) high-intensity (approximately 0.01-V/nm spatially averaged field) voltage pulse. The dynamical, stochastic, many-body aspects are treated at the molecular level by resorting to a course-grained representation of the membrane lipid molecules. Coupling the Smoluchowski equation to the distributed electrical model for current flow provides the time-dependent transmembrane fields for the MD simulations. A good match between the simulation results and available experimental data is obtained. Predictions include pore formation times of about 5-6 ns. It is also shown that the pore formation process would tend to begin from the anodic side of an electrically stressed membrane. Furthermore, the present simulations demonstrate that ions could facilitate pore formation. This could be of practical importance and have direct relevance to the recent observations of calcium release from the endoplasmic reticulum in cells subjected to such ultrashort, high-intensity pulses.

  4. Nanosecond time resolved x-ray diagnostics of relativistic electron beam initiated events

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuswa, Glenn W.; Chang, James

    The dynamic behavior of a test sample during aid shortly after it has teen irradiated by an intense relativistic electron beam (REB) is of great interest to the study of team energy deposition. Since the sample densities are far beyond the cutoff in the optical region, flash x-radiography techniques have been developed to diagnose the evolution of the samples. The conventional approach of analyzing the dynamic behavior of solid densities utilizes one or more short x-ray bursts to record images on photographic emulsion. This technique is not useful in the presence of the intense x-rays from the REB interacting withmore » the sample. We report two techniques for isolating the film package from the REB x-ray pulse.« less

  5. GPS common-view time transfer

    NASA Technical Reports Server (NTRS)

    Lewandowski, W.

    1994-01-01

    The introduction of the GPS common-view method at the beginning of the 1980's led to an immediate and dramatic improvement of international time comparisons. Since then, further progress brought the precision and accuracy of GPS common-view intercontinental time transfer from tens of nanoseconds to a few nanoseconds, even with SA activated. This achievement was made possible by the use of the following: ultra-precise ground antenna coordinates, post-processed precise ephemerides, double-frequency measurements of ionosphere, and appropriate international coordination and standardization. This paper reviews developments and applications of the GPS common-view method during the last decade and comments on possible future improvements whose objective is to attain sub-nanosecond uncertainty.

  6. Time-resolved VUV spectroscopy in the EXTRAP-T2 reversed field pinch

    NASA Astrophysics Data System (ADS)

    Hedqvist, Anders; Rachlew-Källne, Elisabeth

    1998-09-01

    Time-resolved VUV spectroscopy has been used to investigate the effects of impurities in a reversed field pinch operating with a resistive shell. Results of electron temperature, impurity ion densities, particle confinement time and 0741-3335/40/9/004/img1 together with a description of the interpretation and the equipment are presented.

  7. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    DOE PAGES

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; ...

    2016-08-22

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  8. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    PubMed Central

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett; Gati, Cornelius; Kimura, Tetsunari; Milne, Christopher; Milathianaki, Despina; Kubo, Minoru; Wu, Wenting; Conrad, Chelsie; Coe, Jesse; Bean, Richard; Zhao, Yun; Båth, Petra; Dods, Robert; Harimoorthy, Rajiv; Beyerlein, Kenneth R.; Rheinberger, Jan; James, Daniel; DePonte, Daniel; Li, Chufeng; Sala, Leonardo; Williams, Garth J.; Hunter, Mark S.; Koglin, Jason E.; Berntsen, Peter; Nango, Eriko; Iwata, So; Chapman, Henry N.; Fromme, Petra; Frank, Matthias; Abela, Rafael; Boutet, Sébastien; Barty, Anton; White, Thomas A.; Weierstall, Uwe; Spence, John; Neutze, Richard; Schertler, Gebhard; Standfuss, Jörg

    2016-01-01

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within the crystal lattice is confirmed by time-resolved visible absorption spectroscopy. This study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX. PMID:27545823

  9. Lipidic cubic phase injector is a viable crystal delivery system for time-resolved serial crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nogly, Przemyslaw; Panneels, Valerie; Nelson, Garrett

    Serial femtosecond crystallography (SFX) using X-ray free-electron laser sources is an emerging method with considerable potential for time-resolved pump-probe experiments. Here we present a lipidic cubic phase SFX structure of the light-driven proton pump bacteriorhodopsin (bR) to 2.3 Å resolution and a method to investigate protein dynamics with modest sample requirement. Time-resolved SFX (TR-SFX) with a pump-probe delay of 1 ms yields difference Fourier maps compatible with the dark to M state transition of bR. Importantly, the method is very sample efficient and reduces sample consumption to about 1 mg per collected time point. Accumulation of M intermediate within themore » crystal lattice is confirmed by time-resolved visible absorption spectroscopy. Furthermore, this study provides an important step towards characterizing the complete photocycle dynamics of retinal proteins and demonstrates the feasibility of a sample efficient viscous medium jet for TR-SFX.« less

  10. Time to transient and stable reductions in hot flush frequency in postmenopausal women using conjugated estrogens/bazedoxifene.

    PubMed

    Pinkerton, JoAnn V; Bushmakin, Andrew G; Abraham, Lucy; Komm, Barry S; Bobula, Joel

    2017-09-01

    This post hoc analysis estimates time to transient and stable reductions in hot flush frequency in postmenopausal women using conjugated estrogens/bazedoxifene. In the 12-week Selective estrogens, Menopause, And Response to Therapy (SMART)-2 trial of conjugated estrogens/bazedoxifene 0.45 mg/20 mg and 0.625 mg/20 mg, women with at least seven moderate/severe hot flushes per day or 50 per week at screening recorded frequency of moderate/severe hot flushes in diaries. Nonparametric models and SAS Proc Lifetest were used to estimate median times to various degrees of transient reductions (first day with improvement) and stable reductions (first day with improvement maintained through study's end) in hot flush frequency. Treatment produced transient hot flush reductions of 40% to 100% and stable reductions of 30% to 100% significantly faster than placebo. Median time to a transient 50% reduction was 8 days for conjugated estrogens/bazedoxifene 0.45 mg/20 mg, 9.5 for 0.625 mg/20 mg, and 10 for placebo; median time to a stable 50% reduction was 9, 10, and 38 days. Median time to a transient 90% reduction was 32 and 22.5 days for 0.45 mg/20 mg and 0.625 mg/20 mg, and median time to a stable 90% reduction was 83 and 29 days, respectively; median times to transient/stable 90% reductions were not reached during the 12-week study in the placebo group. Although not all women using conjugated estrogens/bazedoxifene achieve permanent elimination of hot flushes, the frequency is likely to be substantially reduced during the first week to month. Women can expect approximately 50% reduction in hot flush frequency after about 8 to 10 days, and sustained improvement with continued treatment.

  11. A high-order time-accurate interrogation method for time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Lynch, Kyle; Scarano, Fulvio

    2013-03-01

    A novel method is introduced for increasing the accuracy and extending the dynamic range of time-resolved particle image velocimetry (PIV). The approach extends the concept of particle tracking velocimetry by multiple frames to the pattern tracking by cross-correlation analysis as employed in PIV. The working principle is based on tracking the patterned fluid element, within a chosen interrogation window, along its individual trajectory throughout an image sequence. In contrast to image-pair interrogation methods, the fluid trajectory correlation concept deals with variable velocity along curved trajectories and non-zero tangential acceleration during the observed time interval. As a result, the velocity magnitude and its direction are allowed to evolve in a nonlinear fashion along the fluid element trajectory. The continuum deformation (namely spatial derivatives of the velocity vector) is accounted for by adopting local image deformation. The principle offers important reductions of the measurement error based on three main points: by enlarging the temporal measurement interval, the relative error becomes reduced; secondly, the random and peak-locking errors are reduced by the use of least-squares polynomial fits to individual trajectories; finally, the introduction of high-order (nonlinear) fitting functions provides the basis for reducing the truncation error. Lastly, the instantaneous velocity is evaluated as the temporal derivative of the polynomial representation of the fluid parcel position in time. The principal features of this algorithm are compared with a single-pair iterative image deformation method. Synthetic image sequences are considered with steady flow (translation, shear and rotation) illustrating the increase of measurement precision. An experimental data set obtained by time-resolved PIV measurements of a circular jet is used to verify the robustness of the method on image sequences affected by camera noise and three-dimensional motions. In

  12. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixit, Gopal; Santra, Robin; Department of Physics, University of Hamburg, D-20355 Hamburg

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixturemore » of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.« less

  13. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets

    NASA Astrophysics Data System (ADS)

    Dixit, Gopal; Santra, Robin

    2013-04-01

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)], 10.1073/pnas.1202226109. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  14. Role of electron-electron interference in ultrafast time-resolved imaging of electronic wavepackets.

    PubMed

    Dixit, Gopal; Santra, Robin

    2013-04-07

    Ultrafast time-resolved x-ray scattering is an emerging approach to image the dynamical evolution of the electronic charge distribution during complex chemical and biological processes in real-space and real-time. Recently, the differences between semiclassical and quantum-electrodynamical (QED) theory of light-matter interaction for scattering of ultrashort x-ray pulses from the electronic wavepacket were formally demonstrated and visually illustrated by scattering patterns calculated for an electronic wavepacket in atomic hydrogen [G. Dixit, O. Vendrell, and R. Santra, Proc. Natl. Acad. Sci. U.S.A. 109, 11636 (2012)]. In this work, we present a detailed analysis of time-resolved x-ray scattering from a sample containing a mixture of non-stationary and stationary electrons within both the theories. In a many-electron system, the role of scattering interference between a non-stationary and several stationary electrons to the total scattering signal is investigated. In general, QED and semiclassical theory provide different results for the contribution from the scattering interference, which depends on the energy resolution of the detector and the x-ray pulse duration. The present findings are demonstrated by means of a numerical example of x-ray time-resolved imaging for an electronic wavepacket in helium. It is shown that the time-dependent scattering interference vanishes within semiclassical theory and the corresponding patterns are dominated by the scattering contribution from the time-independent interference, whereas the time-dependent scattering interference contribution do not vanish in the QED theory and the patterns are dominated by the scattering contribution from the non-stationary electron scattering.

  15. A direct electron detector for time-resolved MeV electron microscopy

    DOE PAGES

    Vecchione, T.; Denes, P.; Jobe, R. K.; ...

    2017-03-15

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  16. A direct electron detector for time-resolved MeV electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vecchione, T.; Denes, P.; Jobe, R. K.

    The introduction of direct electron detectors enabled the structural biology revolution of cryogenic electron microscopy. Direct electron detectors are now expected to have a similarly dramatic impact on time-resolved MeV electron microscopy, particularly by enabling both spatial and temporal jitter correction. Here in this paper, we report on the commissioning of a direct electron detector for time-resolved MeV electron microscopy. The direct electron detector demonstrated MeV single electron sensitivity and is capable of recording megapixel images at 180 Hz. The detector has a 15-bit dynamic range, better than 30-μm spatial resolution and less than 20 analogue-to-digital converter count RMS pixelmore » noise. The unique capabilities of the direct electron detector and the data analysis required to take advantage of these capabilities are presented. The technical challenges associated with generating and processing large amounts of data are also discussed.« less

  17. Time-resolved UV-excited microarray reader for fluorescence energy transfer (FRET) measurements

    NASA Astrophysics Data System (ADS)

    Orellana, Adelina; Hokkanen, Ari P.; Pastinen, Tomi; Takkinen, Kristina; Soderlund, Hans

    2001-05-01

    Analytical systems based on immunochemistry are largely used in medical diagnostics and in biotechnology. There is a significant pressure to develop the present assay formats to become easier to use, faster, and less reagent consuming. Further developments towards high density array--like multianalyte measurement systems would be valuable. To this aim we have studied the applicability of fluorescence resonance energy transfer and time-resolved fluorescence resonance energy transfer in immunoassays on microspots and in microwells. We have used engineered recombinant antibodies detecting the pentameric protein CRP as a model analyte system, and tested different assay formats. We describe also the construction of a time-resolved scanning epifluorometer with which we could measure the FRET interaction between the slow fluorescence decay from europium chelates and its energy transfer to the rapidly decaying fluorophore Cy5.

  18. On the Resolvability of Steam Assisted Gravity Drainage Reservoirs Using Time-Lapse Gravity Gradiometry

    NASA Astrophysics Data System (ADS)

    Elliott, E. Judith; Braun, Alexander

    2017-11-01

    Unconventional heavy oil resource plays are important contributors to oil and gas production, as well as controversial for posing environmental hazards. Monitoring those reservoirs before, during, and after operations would assist both the optimization of economic benefits and the mitigation of potential environmental hazards. This study investigates how gravity gradiometry using superconducting gravimeters could resolve depletion areas in steam assisted gravity drainage (SAGD) reservoirs. This is achieved through modelling of a SAGD reservoir at 1.25 and 5 years of operation. Specifically, the density change structure identified from geological, petrological, and seismic observations is forward modelled for gravity and gradients. Three main parameters have an impact on the resolvability of bitumen depletion volumes and are varied through a suitable parameter space: well pair separation, depth to the well pairs, and survey grid sampling. The results include a resolvability matrix, which identifies reservoirs that could benefit from time-lapse gravity gradiometry monitoring. After 1.25 years of operation, during the rising phase, the resolvable maximum reservoir depth ranges between the surface and 230 m, considering a well pair separation between 80 and 200 m. After 5 years of production, during the spreading phase, the resolvability of depletion volumes around single well pairs is greatly compromised as the depletion volume is closer to the surface, which translates to a larger portion of the gravity signal. The modelled resolvability matrices were derived from visual inspection and spectral analysis of the gravity gradient signatures and can be used to assess the applicability of time-lapse gradiometry to monitor reservoir density changes.

  19. Imaging dental sections with polarization-resolved SHG and time-resolved autofluorescence

    NASA Astrophysics Data System (ADS)

    Chen, Jun Huang; Lin, Po-Yen; Hsu, Stephen C. Y.; Kao, Fu-Jen

    2009-02-01

    In this study, we are using two-photon (2-p) excited autofluorescence and second harmonic (SH) as imaging modalities to investigate dental sections that contains the enamel and the dentin. The use of near-infrared wavelengths for multiphoton excitation greatly facilitates the observation of these sections due to the hard tissue's larger index of refraction and highly scattering nature. Clear imaging can be achieved without feature altering preparation procedures of the samples. Specifically, we perform polarization resolving on SH and lifetime analysis on autofluorescence. Polarization resolved SH reflects the preferred orientation of collagen while very different autofluorescence lifetimes are observed from the dentin and the enamel. The origin of 2-p autofluorescence and SH signals are attributed to hydroxyapatite crystals and collagen fibrils, respectively. Hydroxyapatite is found to be present throughout the sections while collagen fibrils exist only in the dentin and dentinoenamel junctions.

  20. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.