Sample records for nanosphere self-assembly initiated

  1. Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers

    NASA Astrophysics Data System (ADS)

    Fontana, Jake; Livenere, John; Bezares, Francisco J.; Caldwell, Joshua D.; Rendell, Ronald; Ratna, Banahalli R.

    2013-05-01

    We demonstrate an average surface-enhanced Raman scattering enhancement on the order of 108 from benzenethiol molecules using self-assembled, macroscopic, and tunable gold nanosphere monolayers on non-templated substrates. The self-assembly of the nanosphere monolayers uses a simple and efficient technique that allows for the creation of a high-density, chemically functionalized gold nanosphere monolayers with enhancement factors comparable to those produced using top-down fabrication techniques. These films may provide an approach for the future development of portable chemical/biological sensors.

  2. Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh

    2018-01-01

    In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.

  3. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    NASA Astrophysics Data System (ADS)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  4. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2015-06-01

    Plasmonic structures on graphene can tailor its optical properties, which is essential for sensing and optoelectronic applications, e.g. for the enhancement of photoresponsivity of graphene photodetectors. Control over their structural and, hence, spectral properties can be attained by using electron beam lithography, which is not a viable solution for the definition of patterns over large areas. For the fabrication of large-area plasmonic nanostructures, we propose to use self-assembled monolayers of nanospheres as a mask for metal evaporation and etching processes. An optimized approach based on self-assembly at air/water interface with a properly designed apparatus allows the attainment of monolayers of hexagonally closely packed patterns with high long-range order and large area coverage; special strategies are devised in order to protect graphene against damage resulting from surface treatment and further processing steps such as reactive ion etching, which could potentially impair graphene properties. Therefore we demonstrate that nanosphere lithography is a cost-effective solution to create plasmonic patterns on graphene. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Efficiency improvement of InGaN light emitting diodes with embedded self-assembled SiO2 nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghui; Wei, Tongbo; Wang, Junxi; Fan, Chao; Chen, Yu; Hu, Qiang; Li, Jinmin

    2014-05-01

    In this study, the periodic SiO2 nanosphere nanopatterned sapphire substrate (SiO2-NPSS) was made using self-assembled SiO2 nanosphere monolayer template and inductively coupled plasma (ICP) etching. And the self-assembled SiO2 nanosphere monolayer was directly embedded into the GaN/sapphire interface by nanoscale epitaxial lateral overgrowth (NELOG). For comparison, a common nanopatterned sapphire substrate (C-NPSS) was also made through dry etching with the SiO2 nanospheres used as the mask. Compared with LEDs grown on C-NPSS and flat sapphire substrate (FSS), the external quantum efficiency of LEDs with SiO2 nanopheres (SiO2-NPSS) was increased by 30.7% and 81.9% under a driving current 350 mA. The SiO2-NPSS not only improved the crystalline quality of GaN but also enhanced the light extraction efficiency (LEE) of LED. And the SiO2-NPSS LED also showed more light in vertical direction and more uniform light distribution. By finite-difference time-domain (FDTD) simulation, we confirmed that more light could be reflected from the GaN/SiO2 interface than the GaN/sapphire interface because the refractive index of SiO2 was lower than that of sapphire. Therefore, LED grown on the SiO2-NPSS showed superior light extraction efficiency compared to that on C-NPSS.

  6. Hierarchical assembly of Sm2Co7/Co magnetic nanoparticles into highly stable and uniform nanospheres.

    PubMed

    Saravanan, P; Sreedhar, B; Mishra, D; Perumal, A; Chandrasekaran, V

    2011-04-01

    Hierarchical assembly of colloidal Sm2Co7/Co clusters in the form of nanospheres has been processed through a polyol process. The SmCo nanospheres are found to be robust, uniform ( 100 nm) and tend to self-assemble in the form of ordered superstructures. Each nanosphere consists of large number of discrete fine particles ( 6.0 nm), having two-phase structure of both Sm2Co7 and Co-phases. Upon annealing, these phases transform into Sm2Co17 phase with very high magnetization (169 emu/g). A possible mechanism on the formation of nanospheres from the individual Sm2Co2o7 and Co nanoparticles is also discussed.

  7. Self-assembled polystyrene nanospheres for the evaluation of atomic force microscopy tip curvature radius

    NASA Astrophysics Data System (ADS)

    Colombi, P.; Alessandri, I.; Bergese, P.; Federici, S.; Depero, L. E.

    2009-08-01

    In this paper, self-assembled polystyrene nanospheres are proposed as a shape characterizer sample for SPM tips. Ordered arrays or 2D islands of polystyrene spheres may be prepared either by sedimentation or by crystallization of the colloidal spheres' suspension. The self-assembling mechanism guarantees high reproducibility; thus the characterizer sample can be 'freshly' prepared at each use, avoiding the problem of time and use deterioration and reducing the problem of sample structure fidelity that occurs when lithographic structures are employed. The spheres could also be deposited on the sample itself in order to speed up the characterization process in applications requiring frequent tip characterizations. We present numerical calculations of geometrical convoluted profiles on the proposed structures showing that, for a variety of different tip shapes, at the border between a couple of touching spheres the tip flanks do not come into contact with the spheres. Due to this behaviour, touching spheres are an optimum characterizer sample for SPM tip curvature radius characterization, enabling a straightforward procedure for calculating the curvature radius from the amplitude of tip oscillation along profiles connecting spheres' centres. The new procedure for the characterization of SPM probes was assessed exploiting different kinds of self-assembled structures and comparing results to those obtained by spiked structures and SEM observations.

  8. GREEN AND CONTROLLED SYNTHESIS OF GOLD AND PLATINUM NANOMATERIALS USING VITAMIN B2: DENSITY-ASSISTED SELF-ASSEMBLY OF NANOSPHERES, WIRES AND RODS

    EPA Science Inventory

    For the first time, we report density-assisted self-assembly and efficient synthesis of gold (Au) and platinum (Pt) nanospheres, nanowires and nanorods using vitamin B2 (riboflavin) without employing any special capping or dispersing agent at room temperature; this env...

  9. Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials.

    PubMed

    Butler, Samuel J; Bülow, Leif; Bonde, Johan

    2016-10-01

    Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10 -7 mole/m 2 . By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-Assembled Polystyrene Beads for Templated Covalent Functionalization of Graphitic Substrates Using Diazonium Chemistry.

    PubMed

    Van Gorp, Hans; Walke, Peter; Bragança, Ana M; Greenwood, John; Ivasenko, Oleksandr; Hirsch, Brandon E; De Feyter, Steven

    2018-04-11

    A network of self-assembled polystyrene beads was employed as a lithographic mask during covalent functionalization reactions on graphitic surfaces to create nanocorrals for confined molecular self-assembly studies. The beads were initially assembled into hexagonal arrays at the air-liquid interface and then transferred to the substrate surface. Subsequent electrochemical grafting reactions involving aryl diazonium molecules created covalently bound molecular units that were localized in the void space between the nanospheres. Removal of the bead template exposed hexagonally arranged circular nanocorrals separated by regions of chemisorbed molecules. Small molecule self-assembly was then investigated inside the resultant nanocorrals using scanning tunneling microscopy to highlight localized confinement effects. Overall, this work illustrates the utility of self-assembly principles to transcend length scale gaps in the development of hierarchically patterned molecular materials.

  11. A bacterial process for selenium nanosphere assembly

    PubMed Central

    Debieux, Charles M.; Dridge, Elizabeth J.; Mueller, Claudia M.; Splatt, Peter; Paszkiewicz, Konrad; Knight, Iona; Florance, Hannah; Love, John; Titball, Richard W.; Lewis, Richard J.; Richardson, David J.; Butler, Clive S.

    2011-01-01

    During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations. The protein was purified from Se nanospheres, and peptide fragments from a tryptic digest were used to identify the gene in the draft T. selenatis genome. A matched open reading frame was located, encoding a protein with a calculated mass of 94.5 kDa. N-terminal sequence analysis of the mature protein revealed no cleavable signal peptide, suggesting that the protein is exported directly from the cytoplasm. The protein has been called Se factor A (SefA), and homologues of known function have not been reported previously. The sefA gene was cloned and expressed in Escherichia coli, and the recombinant His-tagged SefA purified. In vivo experiments demonstrate that SefA forms larger (approximately 300 nm) Se nanospheres in E. coli when treated with selenite, and these are retained within the cell. In vitro assays demonstrate that the formation of Se nanospheres upon the reduction of selenite by glutathione are stabilized by the presence of SefA. The role of SefA in selenium nanosphere assembly has potential for exploitation in bionanomaterial fabrication. PMID:21808043

  12. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  13. Adsorption of Amelogenin onto Self-Assembled and Fluoroapatite Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasevich, Barbara J.; Lea, Alan S.; Bernt, William

    Abstract. The interactions of proteins at surfaces are of great importance to biomineralizaton processes and to the development and function of biomaterials. Amelogenin is a unique biomineralization protein because it self-assembles to form supramolecular structures called “nanospheres,” spherical aggregates of monomers that are 20-60 nm in diameter. Although the nanosphere quaternary structure has been observed in solution, the quaternary structure of amelogenin adsorbed onto surfaces is also of great interest because the surface structure is critical to its function. We report studies of the adsorption of the amelogenin onto self-assembled monolayers (SAMs) with COOH and CH3 end group functionality andmore » single crystal fluoroapatite (FAP). Dynamic light scattering (DLS) experiments showed that the solutions contained nanospheres and aggregates of nanospheres. Protein adsorption onto the various substrates was evidenced by null ellipsometry, x-ray photoelectron spectroscopy (XPS), and external reflectance Fourier transform infrared spectroscopy (ERFTIR). Although only nanospheres were observed in solution, ellipsometry and atomic force microscopy (AFM) indicated that the protein adsorbates were much smaller structures than the original nanospheres, from monomers to small oligomers in size. Monomer adsorption was promoted onto the CH3 surfaces and small oligomer adsorption was promoted onto the COOH and FAP substrates. In some cases, remnants of the original nanospheres adsorbed as multilayers on top of the underlying subnanosphere layers. This work suggests that amelogenin can adsorb by the “shedding” or disassembling of substructures from the nanospheres onto substrates and indicates that amelogenin may have a range of possible quaternary structures depending on whether it is in solution or interacting with surfaces.« less

  14. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Zhang, Rong

    2003-11-01

    The fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres via a micelle-assisted route is reported, in which necklace-shaped assembly of amorphous MoS 3 nanospheres is driven by the aggregation transformation of surfactants at low temperatures and then is transformed to the assembly of target fullerene-like MoS 2 by annealing. This nanostructure is a type of oriented assembly of inorganic fullerene-like structures, which is confirmed by the transmission electron microscopy and high-resolution transmission electron microscopy analysis. The optical absorption property is investigated to show their inorganic fullerene-like structure and uniform shape.

  15. Structural and optical properties of self-assembled chains of plasmonic nanocubes

    DOE PAGES

    Klinkova, Anna; Gang, Oleg; Therien-Aubin, Heloise; ...

    2014-10-10

    Solution-based linear self-assembly of metal nanoparticles offers a powerful strategy for creating plasmonic polymers, which, so far, have been formed from spherical nanoparticles and nanorods. Here, we report linear solution-based self-assembly of metal nanocubes (NCs), examine the structural characteristics of the NC chains and demonstrate their advanced optical characteristics. Predominant face-to-face assembly of large NCs coated with short polymer ligands led to a larger volume of hot spots in the chains, a nearly uniform E-field enhancement in the gaps between co-linear NCs and a new coupling mode for NC chains, in comparison with chains of nanospheres with similar dimensions, compositionmore » and surface chemistry. The NC chains exhibited a stronger surface enhanced Raman scattering (SERS) signal, in comparison with linear assemblies of nanospheres. The experimental results were in agreement with finite difference time domain (FDTD) simulations.« less

  16. Light-triggered self-assembly of triarylamine-based nanospheres

    NASA Astrophysics Data System (ADS)

    Moulin, Emilie; Niess, Frédéric; Fuks, Gad; Jouault, Nicolas; Buhler, Eric; Giuseppone, Nicolas

    2012-10-01

    Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm.Tailored triarylamine units modified with terpyridine ligands were coordinated to Zn2+ ions and characterized as discrete dimeric entities. Interestingly, when these complexes were subsequently irradiated with simple visible light in chloroform, they readily self-assembled into monodisperse spheres with a mean diameter of 160 nm. Electronic supplementary information (ESI) available: Synthetic procedures and products' characterization (2-4 and 6-9). 1H NMR titration of compound 6 by Zn(OTf)2 to form complex 7. Kinetic measurements by UV-Vis-NIR spectroscopy. Transmission electron microscopy imaging for complexes 8 and 9. UV-Vis-NIR for an Fe2+ analogue of complex 7. Dynamic light scattering and time autocorrelation function for self-assembly of complexes 7-9. Copies of 1H and 13C NMR spectra for compounds 2-4 and 6. See DOI: 10.1039/c2nr32168h

  17. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  18. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  19. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  20. Self-assembly of bimodal particles inside emulsion droplets

    NASA Astrophysics Data System (ADS)

    Cho, Young-Sang; Yi, Gi-Ra; Yang, Seung-Man; Kim, Young-Kuk; Choi, Chul-Jin

    2010-08-01

    Colloidal dispersion of bimodal particles were self-organized inside water-in-oil emulsion droplets by evaporationdriven self-assembly method. After droplet shrinkage by heating the complex fluid system, small numbers of microspheres were packed into minimal second moment clusters, which are partially coated with silica nanospheres, resulting in the generation of patchy particles. The patchy particles in this study possess potential applications for selfassembly of non-isotropic particles such as dimmers or tetramers for colloidal photonic crystals with diamond lattice structures. The composite micro-clusters of amidine polystyrene microspheres and titania nanoparticles were also generated by evaporation-driven self-assembly to fabricate nonspherical hollow micro-particles made of titania shell.

  1. Recent developments in the fabrication of ordered nanostructure arrays based on nanosphere lithography.

    PubMed

    Wei, Xueyong

    2010-11-01

    Since it was invented two decades ago, Nanosphere Lithography (NSL) has been widely studied as a low cost and flexible technique to fabricate nanostructures. Based on the registered patents and some selected papers, this review will discuss recent developments of different NSL strategies for the fabrication of ordered nanostructure arrays. The mechanism of self-assembly process and the techniques for preparing the self-assembled nanosphere template are first briefly introduced. The nanosphere templates are used either as shadow masks or as moulds for pattern transfer. Much more work now combines NSL with other lithographic techniques and material growth methods to form novel nanostructures of complex shape or various materials. Hence, this review finally gives a discussion on some future directions in NSL study.

  2. Giant Enhancement of Small Photoluminescent Signals on Glass Surfaces Covered by Self-Assembled Silver Nanorings.

    PubMed

    Sousanis, A; Poulopoulos, P; Karoutsos, V; Trachylis, D; Politis, C

    2017-02-01

    Self-assembled nanostructures with the shape of nanospheres or nanorings were formed after annealing of ultrathin Ag films grown on glass, in a furnace with air at 460 °C. Intense localized surface plasmon resonances were recorded for these nanostructures with maxima at the green-blue light. The surface became functional in terms of enhancing the weak photoluminescence of glass between 2–400 times. This system provides an easy way of enhancing the photoluminescence emission of initially low performance materials.

  3. Initial condition of stochastic self-assembly

    NASA Astrophysics Data System (ADS)

    Davis, Jason K.; Sindi, Suzanne S.

    2016-02-01

    The formation of a stable protein aggregate is regarded as the rate limiting step in the establishment of prion diseases. In these systems, once aggregates reach a critical size the growth process accelerates and thus the waiting time until the appearance of the first critically sized aggregate is a key determinant of disease onset. In addition to prion diseases, aggregation and nucleation is a central step of many physical, chemical, and biological process. Previous studies have examined the first-arrival time at a critical nucleus size during homogeneous self-assembly under the assumption that at time t =0 the system was in the all-monomer state. However, in order to compare to in vivo biological experiments where protein constituents inherited by a newly born cell likely contain intermediate aggregates, other possibilities must be considered. We consider one such possibility by conditioning the unique ergodic size distribution on subcritical aggregate sizes; this least-informed distribution is then used as an initial condition. We make the claim that this initial condition carries fewer assumptions than an all-monomer one and verify that it can yield significantly different averaged waiting times relative to the all-monomer condition under various models of assembly.

  4. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

  5. Structure and dynamics of optically directed self-assembly of nanoparticles

    PubMed Central

    Roy, Debjit; Mondal, Dipankar; Goswami, Debabrata

    2016-01-01

    Self-assembly of nanoparticles leading to the formation of colloidal clusters often serves as the representative analogue for understanding molecular assembly. Unravelling the in situ structure and dynamics of such clusters in liquid suspensions is highly challenging. Presently colloidal clusters are first isolated from their generating environment and then their structures are probed by light scattering methods. In order to measure the in situ structure and dynamics of colloidal clusters, we have generated them using the high-repetition-rate femtosecond laser pulse optical tweezer. Since the constituent of our dimer, trimer or tetramer clusters are 250 nm radius two-photon resonant fluorophore coated nanospheres under the optical trap, they inherently produce Two-Photon Fluorescence, which undergo intra-nanosphere Fluorescence Energy Transfer. This unique energy transfer signature, in turn, enables us to visualize structures and orientations of these colloidal clusters during the process of their formation and subsequent dynamics in a liquid suspension. We also show that due to shape-birefringence, orientation and structural control of these colloidal clusters are possible as the polarization of the trapping laser is changed from linear to circular. We thus report important progress in sampling the smallest possible aggregates of nanoparticles, dimers, trimers or tetramers, formed early in the self-assembly process. PMID:27006305

  6. Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies

    PubMed Central

    Gajowy, Joanna; Bolikal, Durgadas; Kohn, Joachim; El Fray, Miroslawa

    2014-01-01

    In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as “R” (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(ethylene glycol) (PEG) and poly(ethylene glycol methyl ether) of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic) triblock copolymers. We used Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC) measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196–239 nm and critical micelle concentration (CMC) of 0.125–0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices. PMID:25347356

  7. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    PubMed

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  8. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Tifeng; Yan, Xingbin; Balan, Lavinia

    2014-01-01

    This special issue addresses the research studies on chemical functionalization, self-assembly, and applications of nanomaterials and nanocomposites. It contains twentyfour articles including two reviews and twenty-two research articles. It is used to create new functional nanomaterials and nanocomposites with a variety of sizes and morphologies such as Zn/Al layered double hydroxide, tin oxide nanowires, FeOOH-modified anion resin, Au nanoclusters silica composite nanospheres, Ti-doped ZnO sol-composite films, TiO2/ZnO composite, graphene oxide nanocomposites, LiFePO4/C nanocomposites, and chitosan nanoparticles. These nanomaterials and nanocomposites have widespread applications in tissue engineering, antitumor, sensors, photoluminescence, electrochemical, and catalytic properties. In addition, this themed issue includes somemore » research articles about self-assembly systems covering organogels and Langmuir films. Furthermore, B. Blasiak et al. performed a literature survey on the recent advances in production, functionalization, toxicity reduction, and application of nanoparticles in cancer diagnosis, treatment, and treatment monitoring. P. Colson et al. performed a literature survey on the recent advances in nanosphere lithography due to its compatibility with wafer-scale processes as well as its potential to manufacture a wide variety of homogeneous one-, two-, or three-dimensional nanostructures.« less

  10. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    PubMed

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  11. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.

    PubMed

    Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud

    2018-04-24

    Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.

  12. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    PubMed Central

    Lakshmanan, Anupama; Hauser, Charlotte A.E.

    2011-01-01

    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures. PMID:22016623

  13. Theoretical Study of the Initial Stages of Self-Assembly of a Carboxysome’s Facet

    DOE PAGES

    Mahalik, J. P.; Brown, Kirsten A.; Cheng, Xiaolin; ...

    2016-02-24

    Bacterial microcompartments, BMCs, are organelles that exist within wide variety of bacteria and act as nanofactories. Among the different types of known BMCs, the carboxysome has been studied the most. The carboxysome plays an important role in the light-independent part of the photosynthesis process, where its icosahedral-like proteinaceous shell acts as a membrane that controls the transport of metabolites. Although a structural model exists for the carboxysome shell, it remains largely unknown how the shell proteins self-assemble. Understanding the self-assembly process can provide insights into how the shell affects the carboxysome s function and how it can be modified tomore » create new functionalities, such as artificial nanoreactors and artificial protein membranes. Here, we explain a theoretical framework that employs Monte Carlo simulations with a coarse-grain potential that reproduces well the atomistic potential of mean force; employing this framework, we are able to capture the initial stages of the 2D self-assembly of CcmK2 hexamers, a major protein-shell component of the carboxysome's facet. The simulations reveal that CcmK2 hexamers self-assemble into clusters that resemble what was seen experimentally in 2D layers. Further analysis of the simulation results suggests that the 2D self-assembly of carboxysome s facets is driven by a nucleation growth process, which in turn could play an important role in the hierarchical self- assembly of BMC shells in general.« less

  14. Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.

    2013-12-01

    In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.

  15. Novel Self-Assembling Amino Acid-Derived Block Copolymer with Changeable Polymer Backbone Structure.

    PubMed

    Koga, Tomoyuki; Aso, Eri; Higashi, Nobuyuki

    2016-11-29

    Block copolymers have attracted much attention as potentially interesting building blocks for the development of novel nanostructured materials in recent years. Herein, we report a new type of self-assembling block copolymer with changeable polymer backbone structure, poly(Fmoc-Ser) ester -b-PSt, which was synthesized by combining the polycondensation of 9-fluorenylmethoxycarbonyl-serine (Fmoc-Ser) with the reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene (St). This block copolymer showed the direct conversion of the backbone structure from polyester to polypeptide through a multi O,N-acyl migration triggered by base-induced deprotection of Fmoc groups in organic solvent. Such polymer-to-polymer conversion was found to occur quantitatively without decrease in degree of polymerization and to cause a drastic change in self-assembling property of the block copolymer. On the basis of several morphological analyses using FTIR spectroscopy, atomic force, and transmission and scanning electron microscopies, the resulting peptide block copolymer was found to self-assemble into a vesicle-like hollow nanosphere with relatively uniform diameter of ca. 300 nm in toluene. In this case, the peptide block generated from polyester formed β-sheet structure, indicating the self-assembly via peptide-guided route. We believe the findings presented in this study offer a new concept for the development of self-assembling block copolymer system.

  16. Identification of Key Interactions in the Initial Self-Assembly of Amylin in a Membrane Environment.

    PubMed

    Christensen, Mikkel; Skeby, Katrine K; Schiøtt, Birgit

    2017-09-12

    Islet amyloid polypeptide, also known as amylin, forms aggregates that reduce the amount of insulin-producing cells in patients with type II diabetes mellitus. Much remains unknown about the process of aggregation and cytotoxicity, but it is known that certain cell membrane components can alter the rate of aggregation. Using atomistic molecular dynamics simulations combined with the highly mobile membrane mimetic model incorporating enhanced sampling of lipid diffusion, we investigate interaction of amylin peptides with the membrane components as well as the self-assembly of amylin. Consistent with experimental evidence, we find that an initial membrane-bound α-helical state folds into stable β-sheet structures upon self-assembly. Our results suggest the following mechanism for the initial phase of amylin self-assembly. The peptides move around on the membrane with the positively charged N-terminus interacting with the negatively charged lipid headgroups. When the peptides start to interact, they partly unfold and break some of the contacts with the membrane. The initial interactions between the peptides are dominated by aromatic and hydrophobic interactions. Oligomers are formed showing both intra- and interpeptide β-sheets, initially with interactions mainly in the C-terminal domain of the peptides. Decreasing the pH to 5.5 is known to inhibit amyloid formation. At low pH, His18 is protonated, adding a fourth positive charge at the peptide. With His18 protonated, no oligomerization is observed in the simulations. The additional charge gives a strong midpoint anchoring of the peptides to negatively charged membrane components, and the peptides experience additional interpeptide repulsion, thereby preventing interactions.

  17. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  18. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  19. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    PubMed

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Molecular Self-Assembly of Short Aromatic Peptides: From Biology to Nanotechnology and Material Science

    NASA Astrophysics Data System (ADS)

    Gazit, Ehud

    2013-03-01

    The formation of ordered amyloid fibrils is the hallmark of several diseases of unrelated origin. In spite of grave clinical consequence, the mechanism of amyloid formation is not fully understood. We have suggested, based on experimental and bioinformatic analysis, that aromatic interactions may provide energetic contribution as well as order and directionality in the molecular-recognition and self-association processes that lead to the formation of these assemblies. This is in line with the well-known central role of aromatic-stacking interactions in self-assembly processes. Our works on the mechanism of aromatic peptide self-assembly, lead to the discovery that the diphenylalanine recognition motif self-assembles into peptide nanotubes with a remarkable persistence length. Other aromatic homodipeptides could self-assemble in nano-spheres, nano-plates, nano-fibrils and hydrogels with nano-scale order. We demonstrated that the peptide nanostructures have unique chemical, physical and mechanical properties including ultra-rigidity as aramides, semi-conductive, piezoelectric and non-linear optic properties. We also demonstrated the ability to use these peptide nanostructures as casting mold for the fabrication of metallic nano-wires and coaxial nano-cables. The application of the nanostructures was demonstrated in various fields including electrochemical biosensors, tissue engineering, and molecular imaging. Finally, we had developed ways for depositing of the peptide nanostructures and their organization. We had use inkjet technology as well as vapour deposition methods to coat surface and from the peptide ``nano-forests''. We recently demonstrated that even a single phenylalanine amino-acid can form well-ordered fibrilar assemblies.

  1. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts.

    PubMed

    Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon

    2016-10-01

    Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Altered self-assembly and apatite binding of amelogenin induced by N-terminal proline mutation

    PubMed Central

    Zhu, Li; Uskoković, Vuk; Le, Thuan; DenBesten, Pamela; Huang, Yulei; Habelitz, Stefan; Li, Wu

    2012-01-01

    Objective A single Pro-70 to Thr (p.P70T) mutation of amelogenin is known to result in hypomineralized amelogenesis imperfecta (AI). This study aims to test the hypothesis that the given mutation affects the self-assembly of amelogenin molecules and impairs their ability to conduct the growth of apatite crystals. Design Recombinant human full-length wild-type (rh174) and p.P70T mutated amelogenins were analyzed using dynamic light scattering (DLS), protein quantification assay and atomic force microscopy (AFM) before and after the binding of amelogenins to hydroxyapatite crystals. The crystal growth modulated by both amelogenins in a dynamic titration system was observed using AFM. Results As compared to rh174 amelogenin, p.P70T mutant displayed significantly increased sizes of the assemblies, higher binding affinity to apatite, and decreased crystal height. Conclusions Pro-70 plays an important structural role in the biologically relevant amelogenin self-assembly. The disturbed regularity of amelogenin nanospheres by this single mutation resulted in an increased binding to apatite and inhibited crystal growth. PMID:21081224

  3. Self-assembly of nanocomposite materials

    DOEpatents

    Brinker, C. Jeffrey; Sellinger, Alan; Lu, Yunfeng

    2001-01-01

    A method of making a nanocomposite self-assembly is provided where at least one hydrophilic compound, at least one hydrophobic compound, and at least one amphiphilic surfactant are mixed in an aqueous solvent with the solvent subsequently evaporated to form a self-assembled liquid crystalline mesophase material. Upon polymerization of the hydrophilic and hydrophobic compounds, a robust nanocomposite self-assembled material is formed. Importantly, in the reaction mixture, the amphiphilic surfactant has an initial concentration below the critical micelle concentration to allow formation of the liquid-phase micellar mesophase material. A variety of nanocomposite structures can be formed, depending upon the solvent evaporazation process, including layered mesophases, tubular mesophases, and a hierarchical composite coating composed of an isotropic worm-like micellar overlayer bonded to an oriented, nanolaminated underlayer.

  4. Biocatalytic Self-Assembly on Magnetic Nanoparticles.

    PubMed

    Conte, Maria P; Sahoo, Jugal Kishore; Abul-Haija, Yousef M; Lau, K H Aaron; Ulijn, Rein V

    2018-01-24

    Combining (bio)catalysis and molecular self-assembly provides an effective approach for the production and processing of self-assembled materials by exploiting catalysis to direct the assembly kinetics and hence controlling the formation of ordered nanostructures. Applications of (bio)catalytic self-assembly in biologically interfacing systems and in nanofabrication have recently been reported. Inspired by self-assembly in biological cells, efforts to confine catalysts on flat or patterned surfaces to exert spatial control over molecular gelator generation and nanostructure self-assembly have also emerged. Building on our previous work in the area, we demonstrate in this report the use of enzymes immobilized onto magnetic nanoparticles (NPs) to spatially localize the initiation of peptide self-assembly into nanofibers around NPs. The concept is generalized for both an equilibrium biocatalytic system that forms stable hydrogels and a nonequilibrium system that normally has a preset lifetime. Characterization of the hydrogels shows that self-assembly occurs at the site of enzyme immobilization on the NPs to give rise to gels with a "hub-and-spoke" morphology, where the nanofibers are linked through the enzyme-NP conjugates. This NP-controlled arrangement of self-assembled nanofibers enables both remarkable enhancements in the shear strength of hydrogel systems and a dramatic extension of the hydrogel stability in the nonequilibrium system. We are also able to show that the use of magnetic NPs enables the external control of both the formation of the hydrogel and its overall structure by application of an external magnetic field. We anticipate that the enhanced properties and stimuli-responsiveness of our NP-enzyme system will have applications ranging from nanomaterial fabrication to biomaterials and biosensing.

  5. Large-scale self-assembly of uniform submicron silver sulfide material driven by precise pressure control

    NASA Astrophysics Data System (ADS)

    Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe

    2017-03-01

    The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.

  6. Sequential self-assembly of DNA functionalized droplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia

    Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less

  7. Sequential self-assembly of DNA functionalized droplets

    DOE PAGES

    Zhang, Yin; McMullen, Angus; Pontani, Lea-Laetitia; ...

    2017-06-16

    Complex structures and devices, both natural and manmade, are often constructed sequentially. From crystallization to embryogenesis, a nucleus or seed is formed and built upon. Sequential assembly allows for initiation, signaling, and logical programming, which are necessary for making enclosed, hierarchical structures. Though biology relies on such schemes, they have not been available in materials science. We demonstrate programmed sequential self-assembly of DNA functionalized emulsions. The droplets are initially inert because the grafted DNA strands are pre-hybridized in pairs. Active strands on initiator droplets then displace one of the paired strands and thus release its complement, which in turn activatesmore » the next droplet in the sequence, akin to living polymerization. This strategy provides time and logic control during the self-assembly process, and offers a new perspective on the synthesis of materials.« less

  8. Facile fabrication of dual emissive nanospheres via the self-assembling of CdSe@CdS and zinc phthalocyanine and their application for silver ion detection

    NASA Astrophysics Data System (ADS)

    Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai

    2017-09-01

    The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.

  9. Self Assembled Particles

    NASA Technical Reports Server (NTRS)

    Palacci, Jeremie (Inventor); Pine, David J. (Inventor); Chaikin, Paul Michael (Inventor); Sacanna, Stefano (Inventor)

    2017-01-01

    A self-assembling structure using non-equilibrium driving forces leading to 'living crystals' and other maniputable particles with a complex dynamics. The dynamic self-assembly assembly results from a competition between self-propulsion of particles and an attractive interaction between the particles. As a result of non-equilibrium driving forces, the crystals form, grow, collide, anneal, repair themselves and spontaneously self-destruct, thereby enabling reconfiguration and assembly to achieve a desired property.

  10. Self-assembling segmented coiled tubing

    DOEpatents

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  11. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  12. Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Lingyun; Xie, Guohong; Chen, Xiling

    2018-05-01

    In this paper, a nitrogen-doped hollow microporous carbon nanospheres was synthesized via the combination of hyper-crosslinking mediated self-assembly and further pyrolysis using polylactide-b-polystyrene (PLA-b-PS) copolymers and aniline monomers as precursor. The pore structure and the correlative electrochemical performance of nitrogen-doped hollow microporous carbon nanospheres were affected by the molar mass ratio of aniline and PS in block copolymers and the carbonization conditions. The electrochemical measurements results showed that the obtained PLA150-PS250-N4-900-10H sample with nitrogen content of 3.57% and the BET surface area of 945 m2 g-1 displays the best capacitance performance. At a current density of 1.0 Ag-1, the resultant specific capacitance is 250 Fg-1. In addition, it also exhibits high capacitance retention of 98% after charging-discharging 1500 times at 25 Ag-1. The results demonstrate the nitrogen-doped hollow microporous carbon nanospheres can be used as promising supercapacitor electrode materials for high performance energy storage devices.

  13. Photocontrolled reversible self-assembly of dodecamer nitrilase.

    PubMed

    Yu, Qiao; Wang, Yong; Zhao, Shengyun; Ren, Yuhong

    2017-01-01

    Naturally photoswitchable proteins act as a powerful tool for the spatial and temporal control of biological processes by inducing the formation of a photodimerizer. In this study, a method for the precise and reversible inducible self-assembly of dodecamer nitrilase in vivo (in Escherichia coli ) and in vitro (in a cell-free solution) was developed by means of the photoswitch-improved light-inducible dimer (iLID) system which could induce protein-protein dimerization. Nitrilase was fused with the photoswitch protein AsLOV2-SsrA to achieve the photocontrolled self-assembly of dodecamer nitrilase. The fusion protein self-assembled into a supramolecular assembly when illuminated at 470 nm. Scanning electron microscopy showed that the assembly formed a circular sheet structure. Self-assembly was also induced by light in E. coli . Dynamic light scattering and turbidity assay experiments showed that the assemblies formed within a few seconds under 470-nm light and completely disassembled within 5 min in the dark. Assembly and disassembly could be maintained for at least five cycles. Both in vitro and in vivo, the assemblies retained 90% of the initial activity of nitrilase and could be reused at least four times in vitro with 90% activity. An efficient method was developed for the photocontrolled assembly and disassembly of dodecamer nitrilase and for scaffold-free reversible self-assembly of multiple oligomeric enzymes in vivo and in vitro, providing new ideas and methods for immobilization of enzyme without carrier.

  14. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    NASA Astrophysics Data System (ADS)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  15. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  16. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.

    PubMed

    Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang

    2016-08-14

    Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.

  18. Porous and non-porous water soluble polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Henselwood, Fred William

    porogens were extracted out of the polymer nanospheres resulting in pore formation. Perylene loading experiments revealed that the loading of the porous polymer nanospheres was 41% higher than that achieved for non-porous polymer nanospheres prepared from the same initial diblock copolymer. This indicates that the porous polymer nanospheres may be preferred over the non-porous polymer nanospheres in applications such as drug delivery.

  19. Plasmonic platforms of self-assembled silver nanostructures in application to fluorescence

    PubMed Central

    Luchowski, Rafal; Calander, Nils; Shtoyko, Tanya; Apicella, Elisa; Borejdo, Julian; Gryczynski, Zygmunt; Gryczynski, Ignacy

    2011-01-01

    Fluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment. The theoretical parts of the studies are supported with reports on detailed emission intensity changes which provided multiple fluorescence hot spots with 2–3 orders of enhancements. We study two kinds of the fluorophores: dye molecules and fluorescent nanospheres characterized with similar spectral emission regions. Using a lifetime-resolved fluorescence/reflection confocal microscopy technique, we find that the largest rate for enhancement (~1000-fold) comes from localized areas of silver nanostructures. PMID:21403765

  20. Guided self-assembly of nanostructured titanium oxide

    NASA Astrophysics Data System (ADS)

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D.; Yu, Yingda

    2012-02-01

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiOx nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiOx nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiOx nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiOx nanorods with rough surfaces are formed by the self-assembly of TiOx nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiOx nanorods shows stronger ER properties than that of the other nanostructured TiOx particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  1. Guided self-assembly of nanostructured titanium oxide.

    PubMed

    Wang, Baoxiang; Rozynek, Zbigniew; Fossum, Jon Otto; Knudsen, Kenneth D; Yu, Yingda

    2012-02-24

    A series of nanostructured titanium oxide particles were synthesized by a simple wet chemical method and characterized by means of small-angle x-ray scattering (SAXS)/wide-angle x-ray scattering (WAXS), atomic force microscope (AFM), scanning electron microscope (SEM), transmission electron microscope (TEM), thermal analysis, and rheometry. Tetrabutyl titanate (TBT) and ethylene glycol (EG) can be combined to form either TiO(x) nanowires or smooth nanorods, and the molar ratio of TBT:EG determines which of these is obtained. Therefore, TiO(x) nanorods with a highly rough surface can be obtained by hydrolysis of TBT with the addition of cetyl-trimethyl-ammonium bromide (CTAB) as surfactant in an EG solution. Furthermore, TiO(x) nanorods with two sharp ends can be obtained by hydrolysis of TBT with the addition of salt (LiCl) in an EG solution. The AFM results show that the TiO(x) nanorods with rough surfaces are formed by the self-assembly of TiO(x) nanospheres. The electrorheological (ER) effect was investigated using a suspension of titanium oxide nanowires or nanorods dispersed in silicone oil. Oil suspensions of titanium oxide nanowires or nanorods exhibit a dramatic reorganization when submitted to a strong DC electric field and the particles aggregate to form chain-like structures along the direction of applied electric field. Two-dimensional SAXS images from chains of anisotropically shaped particles exhibit a marked asymmetry in the SAXS patterns, reflecting the preferential self-assembly of the particles in the field. The suspension of rough TiO(x) nanorods shows stronger ER properties than that of the other nanostructured TiO(x) particles. We find that the particle surface roughness plays an important role in modification of the dielectric properties and in the enhancement of the ER effect.

  2. Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong

    2017-05-01

    In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.

  3. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  4. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    DOE PAGES

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; ...

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm 2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less

  5. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    NASA Astrophysics Data System (ADS)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  6. Self-Organization in Coordination-Driven Self-Assembly

    PubMed Central

    Northrop, Brian H.; Zheng, Yao-Rong; Chi, Ki-Whan; Stang, Peter J.

    2009-01-01

    Conspectus Self-assembly allows for the preparation of highly complex molecular and supramolecular systems from relatively simple starting materials. Typically, self-assembled supramolecules are constructed by combining complementary pairs of two highly symmetric molecular components, thus limiting the chances of forming unwanted side products. Combining asymmetric molecular components or multiple complementary sets of molecules in one complex mixture can produce myriad different ordered and disordered supramolecular assemblies. Alternatively, spontaneous self-organization phenomena can promote the formation of specific product(s) out of a collection of multiple possibilities. Self-organization processes are common throughout much of nature and are especially common in biological systems. Recently, researchers have studied self-organized self-assembly in purely synthetic systems. This Account describes our investigations of self-organization in the coordination-driven self-assembly of platinum(II)-based metallosupramolecules. The modularity of the coordination-driven approach to self-assembly has allowed us to systematically study a wide variety of different factors that can control the extent of supramolecular self-organization. In particular, we have evaluated the effects of the symmetry and polarity of ambidentate donor subunits, differences in geometrical parameters (e.g. the size, angularity, and dimensionality) of Pt(II)-based acceptors and organic donors, the influence of temperature and solvent, and the effects of intermolecular steric interactions and hydrophobic interactions on self-organization. Our studies have shown that the extent of self-organization in the coordination-driven self-assembly of both 2D polygons and 3D polyhedra ranges from no organization (a statistical mixture of multiple products), to amplified organization (wherein a particular product or products are favored over others), and all the way to the absolute self-organization of

  7. From self-organization to self-assembly: a new materialism?

    PubMed

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  8. Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs

    NASA Astrophysics Data System (ADS)

    Reis, Tiago C.; Correia, Ilídio J.; Aguiar-Ricardo, Ana

    2013-07-01

    The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive electrostatic forces between the positively charged aerial fibers and the already collected ones, which tend to acquire a negatively charged network oriented towards the nozzle. The in situ polarization degree is strengthened by higher amounts of clustered fibers, and therefore the initial high density fibrous regions are the preliminary motifs for the self-assembly mechanism. As such regions increase their in situ polarization electrostatic repulsive forces will appear, favoring a competitive growth of these self-assembled fibrous clusters. Highly polarized regions will evidence higher distances between consecutive micro-assembled fibers (MAFs). Different processing parameters - deposition time, electric field intensity, concentration of polymer solution, environmental temperature and relative humidity - were evaluated in an attempt to control material's design.The rational design of three-dimensional electrospun constructs (3DECs) can lead to striking topographies and tailored shapes of electrospun materials. This new generation of materials is suppressing some of the current limitations of the usual 2D non-woven electrospun fiber mats, such as small pore sizes or only flat shaped constructs. Herein, we pursued an explanation for the self-assembly of 3DECs based on electrodynamic simulations and experimental validation. We concluded that the self-assembly process is driven by the establishment of attractive

  9. Chemical reactions directed Peptide self-assembly.

    PubMed

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  10. Self-Assembly of Large Amyloid Fibers

    NASA Astrophysics Data System (ADS)

    Ridgley, Devin M.

    Functional amyloids found throughout nature have demonstrated that amyloid fibers are potential industrial biomaterials. This work introduces a new "template plus adder" cooperative mechanism for the spontaneous self-assembly of micrometer sized amyloid fibers. A short hydrophobic template peptide induces a conformation change within a highly alpha-helical adder protein to form beta-sheets that continue to assemble into micrometer sized amyloid fibers. This study utilizes a variety of proteins that have template or adder characteristics which suggests that this mechanism may be employed throughout nature. Depending on the amino acid composition of the proteins used the mixtures form amyloid fibers of a cylindrical ( 10 mum diameter, 2 GPa Young's modulus) or tape (5- 10 mum height, 10-20 mum width and 100-200 MPa Young's modulus) morphology. Processing conditions are altered to manipulate the morphology and structural characteristics of the fibers. Spectroscopy is utilized to identify certain amino acid groups that contribute to the self-assembly process. Aliphatic amino acids (A, I, V and L) are responsible for initiating conformation change of the adder proteins to assemble into amyloid tapes. Additional polyglutamine segments (Q-blocks) within the protein mixtures will form Q hydrogen bonds to reinforce the amyloid structure and form a cylindrical fiber of higher modulus. Atomic force microscopy is utilized to delineate the self-assembly of amyloid tapes and cylindrical fibers from protofibrils (15-30 nm width) to fibers (10-20 mum width) spanning three orders of magnitude. The aliphatic amino acid content of the adder proteins' alpha-helices is a good predictor of high density beta-sheet formation within the protein mixture. Thus, it is possible to predict the propensity of a protein to undergo conformation change into amyloid structures. Finally, Escherichia coli is genetically engineered to express a template protein which self-assembles into large amyloid

  11. Chemical Reactions Directed Peptide Self-Assembly

    PubMed Central

    Rasale, Dnyaneshwar B.; Das, Apurba K.

    2015-01-01

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly. PMID:25984603

  12. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Role of proton balance in formation of self-assembled chitosan nanoparticles.

    PubMed

    Dey, Anomitra; Kamat, Aditya; Nayak, Sonal; Danino, Dganit; Kesselman, Ellina; Dandekar, Prajakta; Jain, Ratnesh

    2018-06-01

    Researchers have explored the ability of chitosan to form nanoparticles, to suit varying applications, ranging from wound-healing to gene delivery. Ionic gelation is a widely used method for formulating chitosan nanoparticles, where self-assembly plays a crucial role. This self-assembly is initially promoted by hydrophilic-hydrophobic parity amongst individual chitosan residues, along with electrostatic and Van der Waals interactions with the cross-linker. However, until now the intrinsic ability of chitosan to self-assemble is not widely studied; hence, we investigate the self-assembly of chitosan, based on proton balance between its protonated and deprotonated residues, to promote facile nanoparticle synthesis. This is one of the first reports that highlights subtle but critical influence of proton balance in the chitosan polymer on the formation of chitosan nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction for logic operations and amplified biosensing.

    PubMed

    Bi, Sai; Yue, Shuzhen; Wu, Qiang; Ye, Jiayan

    2016-09-15

    Here we program an initiator-catalyzed self-assembly of duplex-looped DNA hairpin motif based on strand displacement reaction. Due to the recycling of initiator and performance in a cascade manner, this system is versatilely extended to logic operations, including the construction of concatenated logic circuits with a feedback function and a biocomputing keypad-lock security system. Compared with previously reported molecular security systems, the prominent feature of our keypad lock is that it can be spontaneously reset and recycled with no need of any external stimulus and human intervention. Moreover, through integrating with an isothermal amplification technique of rolling circle amplification (RCA), this programming catalytic DNA self-assembly strategy readily achieves sensitive and selective biosensing of initiator. Importantly, a magnetic graphene oxide (MGO) is introduced to remarkably reduced background, which plays an important role in enhancing the signal-to-noise ratio and improving the detection sensitivity. Therefore, the proposed sophisticated DNA strand displacement-based methodology with engineering dynamic functions may find broad applications in the construction of programming DNA nanostructures, amplification biosensing platform, and large-scale DNA circuits. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  16. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  17. Electrostatic self-assembly of polyions on charged substrates

    NASA Astrophysics Data System (ADS)

    Campbell, A.; Adams, W. W.; Bunning, T. J.; Visser, D.; Bliznyuk, V. N.; Tsukruk, V. V.

    1997-03-01

    The kinetics of formation of self-assembled monolayers is studied for polystyrene sulfonate(PSS) adsorbed on oppositely charged surfaces of amine terminated self-assembled monolayers(SAM) and polyallylamine(PAA). During the early stages of deposition in both cases, an inhomogeneous deposition is noted as measured by atomic force and friction force microscopy. Island formation of unperturbed PSS coils on defect sites is observed during the initial stage of deposition. Longer deposition times result in an equilibration of the polymer layers into highly flattened macromolecular chains. AFM and FFM measurements are combined with ellipsometer and X-ray reflectivity results to quantitate the layer thicknesses and roughness with time.

  18. Self-assembled phytosterol-fructose-chitosan nanoparticles as a carrier of anticancer drug.

    PubMed

    Qiu, Yeyan; Zhu, Jun; Wang, Jianting; Gong, Renmin; Zheng, Mingming; Huang, Fenghong

    2013-08-01

    Self-assembled nanoparticles were synthesized from water-soluble fructose-chitosan, substituted by succinyl linkages with phytosterols as hydrophobic moieties for self-assembly. The physicochemical properties of the prepared self-assembled nanoparticles were characterized by Fourier transform infrared spectroscopy, fluorescence spectroscopy, and transmission electron microscopy. Doxorubicin (DOX), as a model anticancer drug, was physically entrapped inside prepared self-assembled nanoparticles by the dialysis method. With increasing initial levels of the drug, the drug loading content increased, but the encapsulation efficiency decreased. The release profiles in vitro demonstrated that the DOX showed slow sustained released over 48 h, and the release rate in phosphate buffered saline (PBS) solution (pH 7.4) was much slower than in PBS solution (pH 5.5 and pH 6.5), indicating the prepared self-assembled nanoparticles had the potential to be used as a carrier for targeted delivery of hydrophobic anticancer drugs with declined cytotoxicity to normal tissues.

  19. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.

    PubMed

    Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru

    2018-02-26

    Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.

  20. Reversible Self-Assembly of 3D Architectures Actuated by Responsive Polymers.

    PubMed

    Zhang, Cheng; Su, Jheng-Wun; Deng, Heng; Xie, Yunchao; Yan, Zheng; Lin, Jian

    2017-11-29

    An assembly of three-dimensional (3D) architectures with defined configurations has important applications in broad areas. Among various approaches of constructing 3D structures, a stress-driven assembly provides the capabilities of creating 3D architectures in a broad range of functional materials with unique merits. However, 3D architectures built via previous methods are simple, irreversible, or not free-standing. Furthermore, the substrates employed for the assembly remain flat, thus not involved as parts of the final 3D architectures. Herein, we report a reversible self-assembly of various free-standing 3D architectures actuated by the self-folding of smart polymer substrates with programmed geometries. The strategically designed polymer substrates can respond to external stimuli, such as organic solvents, to initiate the 3D assembly process and subsequently become the parts of the final 3D architectures. The self-assembly process is highly controllable via origami and kirigami designs patterned by direct laser writing. Self-assembled geometries include 3D architectures such as "flower", "rainbow", "sunglasses", "box", "pyramid", "grating", and "armchair". The reported self-assembly also shows wide applicability to various materials including epoxy, polyimide, laser-induced graphene, and metal films. The device examples include 3D architectures integrated with a micro light-emitting diode and a flex sensor, indicting the potential applications in soft robotics, bioelectronics, microelectromechanical systems, and others.

  1. Self-Assembly: How Nature Builds

    ERIC Educational Resources Information Center

    Jones, M. Gail; Falvo, Michael R.; Broadwell, Bethany; Dotger, Sharon

    2006-01-01

    Self-assembly or spontaneous assembly is a process in which materials build themselves without assistance. This process plays a central role in the construction of biological structures and materials such as cells, viruses, and bone, and also in abiotic processes like phase transitions and crystal formation. The principles of self-assembly help…

  2. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, Kenneth C.

    1987-01-01

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensil specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen irregardless whether there is initial misalignment between the specimen load column assembly and housing axis.

  3. Inverse Problem in Self-assembly

    NASA Astrophysics Data System (ADS)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  4. Controlling Self-Assembly of Engineered Peptides on Graphite by Rational Mutation

    PubMed Central

    So, Christopher R.; Hayamizu, Yuhei; Yazici, Hilal; Gresswell, Carolyn; Khatayevich, Dmitriy; Tamerler, Candan; Sarikaya, Mehmet

    2012-01-01

    Self-assembly of proteins on surfaces is utilized in many fields to integrate intricate biological structures and diverse functions with engineered materials. Controlling proteins at bio-solid interfaces relies on establishing key correlations between their primary sequences and resulting spatial organizations on substrates. Protein self-assembly, however, remains an engineering challenge. As a novel approach, we demonstrate here that short dodecapeptides selected by phage display are capable of self-assembly on graphite and form long-range ordered biomolecular nanostructures. Using atomic force microscopy and contact angle studies, we identify three amino-acid domains along the primary sequence that steer peptide ordering and lead to nanostructures with uniformly displayed residues. The peptides are further engineered via simple mutations to control fundamental interfacial processes, including initial binding, surface aggregation and growth kinetics, and intermolecular interactions. Tailoring short peptides via their primary sequence offers versatile control over molecular self-assembly, resulting in well-defined surface properties essential in building engineered, chemically rich, bio-solid interfaces. PMID:22233341

  5. Stereochemistry in subcomponent self-assembly.

    PubMed

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    incorporated in self-assembly reactions to control the stereochemistry of increasingly complex architectures. This strategy has also allowed exploration of the degree to which stereochemical information is propagated through tetrahedral frameworks cooperatively, leading to the observation of stereochemical coupling across more than 2 nm between metal stereocenters and the enantioselective synthesis of a face-capped tetrahedron containing no carbon stereocenters via a stereochemical memory effect. Several studies on the communication of stereochemistry between the configurationally flexible metal centers in tetrahedral metal-organic cages have shed light on the factors governing this process, allowing the synthesis of an asymmetric cage, obtained in racemic form, in which all symmetry elements have been broken. Finally, we discuss how stereochemical diversity leads to structural complexity in the structures prepared through subcomponent self-assembly. Initial use of octahedral metal templates with facial stereochemistry in subcomponent self-assembly, which predictably gave rise to structures of tetrahedral symmetry, was extended to meridional metal centers. These lower-symmetry linkages have allowed the assembly of a series of increasingly intricate 3D architectures of varying functionality. The knowledge gained from investigating different aspects of the stereochemistry of metal-templated assemblies thus not only leads to new means of structural control but also opens pathways toward functions such as stereoselective guest binding and transformation.

  6. Self-assembled biomimetic nanoreactors I: Polymeric template

    NASA Astrophysics Data System (ADS)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  7. Self-Assembly at the Colloidal Scale

    NASA Astrophysics Data System (ADS)

    Zhong, Xiao

    The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.

  8. Self-aligning hydraulic piston assembly for tensile testing of ceramic

    DOEpatents

    Liu, K.C.

    1987-08-18

    The present invention is directed to a self-aligning grip housing assembly that can transmit an uniaxial load to a tensile specimen without introducing bending stresses into the specimen. Disposed inside said grip housing assembly are a multiplicity of supporting pistons connected to a common source of pressurized oil that carry equal shares of the load applied to the specimen regardless whether there is initial misalignment between the specimen load column assembly and housing axis. 4 figs.

  9. Measurement of molecular length of self-assembled monolayer probed by localized surface plasmon resonance

    NASA Astrophysics Data System (ADS)

    Ito, Juri; Kajikawa, Kotaro

    2016-02-01

    We propose a method to measure the variation of the molecular length of self-assembled monolayers (SAMs) when it is exposed to solutions at different pH conditions. The surface immobilized gold nanospheres (SIGNs) shows strong absorption peak at the wavelengths of 600-800 nm when p-polarized light is illuminated. The peak wavelength depends on the length of the gap distance between the SIGNs and the substrate. The gap is supported by the SAM molecules. According to the analytical calculation based on multiple expansion, the relation between the peak wavelength of the SIGN structures and the gap distance is calculated, to evaluate the molecular length of the SAM through the optical absorption spectroscopy for the SIGN structures. The molecular length of the SIGN structure was measured in air, water, acidic, and basic solutions. It was found that the molecular lengths are longer in acidic solutions.

  10. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    PubMed Central

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-01-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena. PMID:28266537

  11. Mineral Surface Chemistry and Nanoparticle-aggregation Control Membrane Self-Assembly

    NASA Astrophysics Data System (ADS)

    Sahai, Nita; Kaddour, Hussein; Dalai, Punam; Wang, Ziqiu; Bass, Garrett; Gao, Min

    2017-03-01

    The self-assembly of lipid bilayer membranes to enclose functional biomolecules, thus defining a “protocell,” was a seminal moment in the emergence of life on Earth and likely occurred at the micro-environment of the mineral-water interface. Mineral-lipid interactions are also relevant in biomedical, industrial and technological processes. Yet, no structure-activity relationships (SARs) have been identified to predict lipid self-assembly at mineral surfaces. Here we examined the influence of minerals on the self-assembly and survival of vesicles composed of single chain amphiphiles as model protocell membranes. The apparent critical vesicle concentration (CVC) increased in the presence of positively-charged nanoparticulate minerals at high loadings (mg/mL) suggesting unfavorable membrane self-assembly in such situations. Above the CVC, initial vesicle formation rates were faster in the presence of minerals. Rates were correlated with the mineral’s isoelectric point (IEP) and reactive surface area. The IEP depends on the crystal structure, chemical composition and surface hydration. Thus, membrane self-assembly showed rational dependence on fundamental mineral properties. Once formed, membrane permeability (integrity) was unaffected by minerals. Suggesting that, protocells could have survived on rock surfaces. These SARs may help predict the formation and survival of protocell membranes on early Earth and other rocky planets, and amphiphile-mineral interactions in diverse other phenomena.

  12. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    NASA Astrophysics Data System (ADS)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  13. Equilibrium polymerization models of re-entrant self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  14. Self assembling proteins

    DOEpatents

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  15. Self-assembled nanolaminate coatings (SV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflectivemore » coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber, UAV

  16. Self-assembled DNA Structures for Nanoconstruction

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  17. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models

    PubMed Central

    Rajasekaran, Sanguthevar

    2013-01-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is Ω(log(n)log(log(n))) (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing Θ(log(n)log(log(n))) unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio (α:β), with high probability, using Θ(α + β) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85–94, 2009)—which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling. This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP ’09, Springer-Verlag, pp 235

  18. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    PubMed

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  19. Hydrogels constructed via self-assembly of beta-hairpin molecules

    NASA Astrophysics Data System (ADS)

    Ozbas, Bulent

    There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic

  20. Self-assembling membranes and related methods thereof

    DOEpatents

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  1. Self-assembled single-crystal silicon circuits on plastic

    PubMed Central

    Stauth, Sean A.; Parviz, Babak A.

    2006-01-01

    We demonstrate the use of self-assembly for the integration of freestanding micrometer-scale components, including single-crystal, silicon field-effect transistors (FETs) and diffusion resistors, onto flexible plastic substrates. Preferential self-assembly of multiple microcomponent types onto a common platform is achieved through complementary shape recognition and aided by capillary, fluidic, and gravitational forces. We outline a microfabrication process that yields single-crystal, silicon FETs in a freestanding, powder-like collection for use with self-assembly. Demonstrations of self-assembled FETs on plastic include logic inverters and measured electron mobility of 592 cm2/V-s. Finally, we extend the self-assembly process to substrates each containing 10,000 binding sites and realize 97% self-assembly yield within 25 min for 100-μm-sized elements. High-yield self-assembly of micrometer-scale functional devices as outlined here provides a powerful approach for production of macroelectronic systems. PMID:16968780

  2. Self-assembly micro optical filter

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  3. Improvement of light extraction of LYSO scintillator by using a combination of self-assembly of nanospheres and atomic layer deposition.

    PubMed

    Zhu, Zhichao; Liu, Bo; Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei; Wu, Shuang; Gu, Mu; Chen, Hong

    2015-03-23

    The self-assembled monolayer periodic array of polystyrene spheres conformally coated with TiO₂ layer using atomic layer deposition is designed to obtain a further enhancement of light extraction for LYSO scintillator. The maximum enhancement is 149% for the sample with polystyrene spheres conformally coated with TiO₂ layer, while the enhancement is only 76% for the sample with only polystyrene spheres. Such further enhancement could be contributed from the additional modes forming by TiO₂ layer due to its high refractive index, which can be approved by the simulation of electric field distribution. The experimental results are agreement with the simulated results. Furthermore, the prepared structured layer exhibits an excellent combination with the surface of scintillator, which is in favor of the practical application. Therefore, it is safely concluded that the combination of self-assembly method and atomic layer deposition is a promising approach to obtain a significant enhancement of light extraction for a large area. This method can be extended to many other luminescent materials and devices.

  4. Self-Organization and the Self-Assembling Process in Tissue Engineering

    PubMed Central

    Eswaramoorthy, Rajalakshmanan; Hadidi, Pasha; Hu, Jerry C.

    2015-01-01

    In recent years, the tissue engineering paradigm has shifted to include a new and growing subfield of scaffoldless techniques which generate self-organizing and self-assembling tissues. This review aims to provide a cogent description of this relatively new research area, with special emphasis on applications toward clinical use and research models. Particular emphasis is placed on providing clear definitions of self-organization and the self-assembling process, as delineated from other scaffoldless techniques in tissue engineering and regenerative medicine. Significantly, during formation, self-organizing and self-assembling tissues display biological processes similar to those that occur in vivo. These help lead to the recapitulation of native tissue morphological structure and organization. Notably, functional properties of these tissues also approach native tissue values; some of these engineered tissues are already in clinical trials. This review aims to provide a cohesive summary of work in this field, and to highlight the potential of self-organization and the self-assembling process to provide cogent solutions to current intractable problems in tissue engineering. PMID:23701238

  5. Self-assembly of single-wall carbon nanotubes during the cooling process of hot carbon gas.

    PubMed

    Wen, Yushi; Zheng, Ke; Long, Xinping; Li, Ming; Xue, Xianggui; Dai, Xiaogan; Deng, Chuan

    2018-04-25

    In this work, self-assembly mechanism of single-wall carbon nanotube (SWCNT) during the annealing process of hot gaseous carbon is presented using reactive force field (ReaxFF)-based reactive molecular simulations. A series of simulations were performed on the evolution of reactive carbon gas. The simulation results show that the reactive carbon gas can be assembled into regular SWCNT without a catalyst. Five distinct stages of SWCNT self-assembly are proposed. For some initial configurations, the CNT was found to spin at an ultra-high rate after the nucleation. Graphical abstract Self-assembly process of single-wall carbon nanotube from the annealing of hot gaseous carbon.

  6. Hierarchical and Helical Self-assembly of ADP-ribosyl Cyclase into Large-scale Protein Microtubes

    PubMed Central

    Liu, Qun; Kriksunov, Irina A.; Wang, Zhongwu; Graeff, Richard; Lee, Hon Cheung; Hao, Quan

    2013-01-01

    Proteins are macromolecules with characteristic structures and biological functions. It is extremely challenging to obtain protein microtube structures through self-assembly as proteins are very complex and flexible. Here we present a strategy showing how a specific protein, ADP-ribosyl cyclase, helically self-assembles from monomers into hexagonal nanochains and further to highly ordered crystalline microtubes. The structures of protein nanochains and consequently self-assembled superlattice were determined by X-ray crystallography at 4.5 Å resolution and imaged by Scanning Electron Microscopy. The protein initially forms into dimers that have a fixed size of 5.6 nm, and then, helically self-assembles into 35.6 nm long hexagonal nanochains. One such nanochain consists of six dimers (12 monomers) that stack in order by a pseudo P61 screw axis. Seven nanochains produce a series of largescale assemblies, nanorods, forming the building blocks for microrods. A proposed aging process of microrods results in the formation of hollow microstructures. Synthesis and characterization of large scale self-assembled protein microtubes may pave a new pathway, capable of not only understanding the self-assembly dynamics of biological materials, but also directing design and fabrication of multifunctional nanobuilding blocks with particular applications in biomedical engineering. PMID:18956900

  7. Physical principles for DNA tile self-assembly.

    PubMed

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  8. Plasmon-Polariton Properties in Metallic Nanosphere Chains

    PubMed Central

    Jacak, Witold Aleksander; Krasnyj, Jurij; Chepok, Andrej

    2015-01-01

    The propagation of collective wave type plasmonic excitations along infinite chains of metallic nanospheres has been analyzed, including near-, medium- and far-field contributions to the plasmon dipole interaction with all retardation effects taken into account. It is proven that there exist weakly-damped self-modes of plasmon-polaritons in the chain for which the propagation range is limited by relatively small Ohmic losses only. In this regime, the Lorentz friction irradiation losses on each nanosphere in the chain are ideally compensated by the energy income from the rest of the chain. The completely undamped collective waves were identified in the case of the presence of persistent external excitation of some fragment of the chain. The obtained characteristics of these excitations fit the experimental observations well. PMID:28793415

  9. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

    PubMed

    Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo

    2014-10-01

    Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Self-Assembly of Octopus Nanoparticles into Pre-Programmed Finite Clusters

    NASA Astrophysics Data System (ADS)

    Halverson, Jonathan; Tkachenko, Alexei

    2012-02-01

    The precise control of the spatial arrangement of nanoparticles (NP) is often required to take full advantage of their novel optical and electronic properties. NPs have been shown to self-assemble into crystalline structures using either patchy surface regions or complementary DNA strands to direct the assembly. Due to a lack of specificity of the interactions these methods lead to only a limited number of structures. An emerging approach is to bind ssDNA at specific sites on the particle surface making so-called octopus NPs. Using octopus NPs we investigate the inverse problem of the self-assembly of finite clusters. That is, for a given target cluster (e.g., arranging the NPs on the vertices of a dodecahedron) what are the minimum number of complementary DNA strands needed for the robust self-assembly of the cluster from an initially homogeneous NP solution? Based on the results of Brownian dynamics simulations we have compiled a set of design rules for various target clusters including cubes, pyramids, dodecahedrons and truncated icosahedrons. Our approach leads to control over the kinetic pathway and has demonstrated nearly perfect yield of the target.

  11. Peptide-directed self-assembly of hydrogels

    PubMed Central

    Kopeček, Jindřich; Yang, Jiyuan

    2009-01-01

    This review focuses on the self-assembly of macromolecules mediated by the biorecognition of peptide/protein domains. Structures forming α-helices and β-sheets have been used to mediate self-assembly into hydrogels of peptides, reactive copolymers and peptide motifs, block copolymers, and graft copolymers. Structural factors governing the self-assembly of these molecules into precisely defined three-dimensional structures (hydrogels) are reviewed. The incorporation of peptide motifs into hybrid systems, composed of synthetic and natural macromolecules, enhances design opportunities for new biomaterials when compared to individual components. PMID:18952513

  12. Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres.

    PubMed

    Zhang, Haijiao; Li, Xia

    2015-08-15

    In our work, two kinds of hollow carbon nanospheres with controlled morphologies have been successfully prepared from low-cost and nontoxic glucose as the sole carbon precursor under neutral aqueous medium via a simple hydrothermal route. During the process, sodium dodecylbenzene sulfonate (SDBS) and triblock copolymer P123 ((EO)20(PO)70(EO)20) was skillfully selected as the structure-directing agent, respectively. SEM, TEM and AFM results revealed that the two products showed bowl-like and deflated-balloon-like morphology with uniform particle sizes, respectively. Based on the experimental observations, a possible formation mechanism was also discussed, in which the growth of the carbon nanospheres involved an interface-medicated assembly process. The present method was easy, green and mild. Apart from the unique nanostructure, the obtained bowl-like hollow carbon nanospheres exhibited excellent biocompatibility. In particular, it should be mentioned that the open window formed by the bowl-like morphology can facilitate ion transport, thus improving their performances. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Induced-Dipole-Directed, Cooperative Self-Assembly of a Benzotrithiophene.

    PubMed

    Ikeda, Toshiaki; Adachi, Hiroaki; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Haino, Takeharu

    2017-10-06

    A benzotrithiophene derivative possessing phenylisoxazoles self-assembled to form stacks. The molecule isodesmically self-assembled in chloroform, whereas it self-assembled in a cooperative fashion in decalin and in methylcyclohexane. Thermodynamic studies based on isodesmic, van der Schoot, and Goldstein-Stryer mathematical models revealed that the self-assembly processes are enthalpically driven and entropically opposed. An enthalpy-entropy compensation plot indicates that the assembly processes in chloroform, decalin, and methylcyclohexane are closely related. The enthalpic gains in less-polar solvents are greater than those in more-polar solvents, resulting in the formation of large assemblies in decalin and in methylcyclohexane. The formation of large assemblies leads to cooperative assemblies. The elongation process is enthalpically more favored than the nucleation process, which drives the cooperativity of the self-assembly. DFT calculations suggested that a hexameric assembly is more stable than tetrameric or dimeric assemblies. Cooperative self-assemblies based on intermolecular interactions other than hydrogen bonding have rarely been reported. It is demonstrated herein that van der Waals interactions, including induced dipole-dipole interactions, can drive the cooperative assembly of planar π-conjugated molecules.

  14. A Theoretical and Experimental Study of DNA Self-assembly

    NASA Astrophysics Data System (ADS)

    Chandran, Harish

    providing detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates via enzyme-free DNA hybridization reaction cascades. We use the Visual DSD simulation software in conjunction with localized reaction rates obtained from biophysical modeling to create chemical reaction networks of localized hybridization circuits that are then model checked using the PRISM model checking software. We develop a DNA detection system employing the triggered self-assembly of a novel DNA dendritic nanostructure. Detection begins when a specific, single-stranded target DNA strand triggers a hybridization chain reaction between two distinct DNA hairpins. Each hairpin opens and hybridizes up to two copies of the other, and hence each layer of the growing dendritic nanostructure can in principle accommodate an exponentially increasing number of cognate molecules, generating a nanostructure with high molecular weight. We build linear activatable assemblies employing a novel protection/deprotection strategy to strictly enforce the direction of tiling assembly growth to ensure the robustness of the assembly process. Our system consists of two tiles that can form a linear co-polymer. These tiles, which are initially protected such that they do not react with each other, can be activated to form linear co-polymers via the use of a strand displacing enzyme.

  15. Microfluidic preparation of polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Kucuk, Israfil; Edirisinghe, Mohan

    2014-12-01

    In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5-50 wt%) and flow rates of the feeds (50-300 µl min-1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80-920 nm with a polydispersity index of 11-19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.

  16. Self-assembled nanogaps for molecular electronics.

    PubMed

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  17. Colloidosome like structures: self-assembly of silica microrods

    DOE PAGES

    Datskos, P.; Polizos, G.; Bhandari, M.; ...

    2016-03-07

    Self-assembly of one-dimensional structures is attracting a great deal of interest because assembled structures can provide better properties compared to individual building blocks. We demonstrate silica microrod self-assembly by exploiting Pickering emulsion based strategy. Micron-sized silica rods were synthesized employing previously reported methods based on polyvinylpyrrolidone/ pentanol emulsion droplets. Moreover, rods self-assembled to make structures in the range of z10 40 mm. Smooth rods assembled better than segmented rods. Finally, the assembled structures were bonded by weak van der Waals forces.

  18. Self-Assembly of Optical Molecules with Supramolecular Concepts

    PubMed Central

    Okamoto, Ken; Chithra, Parayalil; Richards, Gary J.; Hill, Jonathan P.; Ariga, Katsuhiko

    2009-01-01

    Fabrication of nano-sized objects is one of the most important issues in nanoscience and nanotechnology. Soft nanomaterials with flexible properties have been given much attention and can be obtained through bottom-up processing from functional molecules, where self-assembly based on supramolecular chemistry and designed assembly have become crucial processes and techniques. Among the various functional molecules, dyes have become important materials in certain areas of nanotechnology and their self-assembling behaviors have been actively researched. In this short review, we briefly introduce recent progress in self-assembly of optical molecules and dyes, based mainly on supramolecular concepts. The introduced examples are classified into four categories: self-assembly of (i) low-molecular-weight dyes and (ii) polymeric dyes and dye self-assembly (iii) in nanoscale architectures and (iv) at surfaces. PMID:19564931

  19. Tuning peptide self-assembly by an in-tether chiral center

    PubMed Central

    Hu, Kuan; Xiong, Wei; Li, Hu; Zhang, Pei-Yu; Yin, Feng; Zhang, Qianling; Jiang, Fan; Li, Zigang

    2018-01-01

    The self-assembly of peptides into ordered nanostructures is important for understanding both peptide molecular interactions and nanotechnological applications. However, because of the complexity and various self-assembling pathways of peptide molecules, design of self-assembling helical peptides with high controllability and tunability is challenging. We report a new self-assembling mode that uses in-tether chiral center-induced helical peptides as a platform for tunable peptide self-assembly with good controllability. It was found that self-assembling behavior was governed by in-tether substitutional groups, where chirality determined the formation of helical structures and aromaticity provided the driving force for self-assembly. Both factors were essential for peptide self-assembly to occur. Experiments and theoretical calculations indicate long-range crystal-like packing in the self-assembly, which was stabilized by a synergy of interpeptide π-π and π-sulfur interactions and hydrogen bond networks. In addition, the self-assembled peptide nanomaterials were demonstrated to be promising candidate materials for applications in biocompatible electrochemical supercapacitors.

  20. Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems.

    PubMed

    Phuengkham, Hathaichanok; Teeranachaideekul, Veerawat; Chulasiri, Malyn; Nasongkla, Norased

    2016-01-01

    Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.2%), encapsulation efficiency (88.0%) and yield (91.6%). Moreover, encapsulation of chlorophene in nanospheres was able to prolong and sustain drug release over one month. Chlorophene-loaded nanospheres were effective against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the main cause of hospital-acquired infections. Chlorophene-loaded nanospheres were effective against S. aureus (>46 µg/mL) and C. albicans (>184 µg/mL). These nanospheres appeared to have profound effect on the time-dependent hemolytic activity due to gradual release of chlorophene. At the concentration of 46 µg/mL, nearly no HRBC hemolysis in 24 h compared to 80% of hemolysis from free drug. In conclusion, polymeric nanospheres were successfully fabricated to encapsulate chlorophene which can eliminate inherent toxicity of drugs and have potential uses in prolonged release of antimicrobial.

  1. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator.

    PubMed

    Tanaka, Akiko; Fukuoka, Yuki; Morimoto, Yuka; Honjo, Takafumi; Koda, Daisuke; Goto, Masahiro; Maruyama, Tatsuo

    2015-01-21

    We report cancer cell death initiated by the intracellular molecular self-assembly of a peptide lipid, which was derived from a gelator precursor. The gelator precursor was designed to form nanofibers via molecular self-assembly, after cleavage by a cancer-related enzyme (matrix metalloproteinase-7, MMP-7), leading to hydrogelation. The gelator precursor exhibited remarkable cytotoxicity to five different cancer cell lines, while the precursor exhibited low cytotoxicity to normal cells. Cancer cells secrete excessive amounts of MMP-7, which converted the precursor into a supramolecular gelator prior to its uptake by the cells. Once inside the cells, the supramolecular gelator formed a gel via molecular self-assembly, exerting vital stress on the cancer cells. The present study thus describes a new drug where molecular self-assembly acts as the mechanism of cytotoxicity.

  2. Self-assembled lipid bilayer materials

    DOEpatents

    Sasaki, Darryl Y.; Waggoner, Tina A.; Last, Julie A.

    2005-11-08

    The present invention is a self-assembling material comprised of stacks of lipid bilayers formed in a columnar structure, where the assembly process is mediated and regulated by chemical recognition events. The material, through the chemical recognition interactions, has a self-regulating system that corrects the radial size of the assembly creating a uniform diameter throughout most of the structure. The materials form and are stable in aqueous solution. These materials are useful as structural elements for the architecture of materials and components in nanotechnology, efficient light harvesting systems for optical sensing, chemical processing centers, and drug delivery vehicles.

  3. Self-assembly concepts for multicompartment nanostructures

    NASA Astrophysics Data System (ADS)

    Gröschel, André H.; Müller, Axel H. E.

    2015-07-01

    Compartmentalization is ubiquitous to many biological and artificial systems, be it for the separate storage of incompatible matter or to isolate transport processes. Advancements in the synthesis of sequential block copolymers offer a variety of tools to replicate natural design principles with tailor-made soft matter for the precise spatial separation of functionalities on multiple length scales. Here, we review recent trends in the self-assembly of amphiphilic block copolymers to multicompartment nanostructures (MCNs) under (semi-)dilute conditions, with special emphasis on ABC triblock terpolymers. The intrinsic immiscibility of connected blocks induces short-range repulsion into discrete nano-domains stabilized by a third, soluble block or molecular additive. Polymer blocks can be synthesized from an arsenal of functional monomers directing self-assembly through packing frustration or response to various fields. The mobility in solution further allows the manipulation of self-assembly processes into specific directions by clever choice of environmental conditions. This review focuses on practical concepts that direct self-assembly into predictable nanostructures, while narrowing particle dispersity with respect to size, shape and internal morphology. The growing understanding of underlying self-assembly mechanisms expands the number of experimental concepts providing the means to target and manipulate progressively complex superstructures.

  4. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking

  5. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  6. From Solvolysis to Self-Assembly*

    PubMed Central

    Stang, Peter J.

    2009-01-01

    My sojourn from classical physical-organic chemistry and solvolysis to self-assembly and supramolecular chemistry, over the last forty years, is described. My contributions to unsaturated reactive intermediates, namely vinyl cations and unsaturated carbenes, along with my decade long involvement with polyvalent iodine chemistry, especially alkynyliodonium salts, as well as my more recent research with metal-ligand, coordination driven and directed self-assembly of finite supramolecular ensembles are discussed. PMID:19111062

  7. Building polyhedra by self-assembly: theory and experiment.

    PubMed

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  8. Self-Assembly Behavior of Pullulan Abietate

    NASA Astrophysics Data System (ADS)

    Gradwell, Sheila; Esker, Alan; Glasser, Wolgang; Heinze, Thomas

    2003-03-01

    Wood is one of nature's most fascinating biological composites due to its toughness and resistance to fracture properties. These properties stem from the self-assembly of cellulose microfibrils in an amorphous matrix of hemicellulose and lignin. In recent years, science has looked to nature for guidance in preparing synthetic materials with desirable physical properties. In order to study the self-assembly process in wood, a model system composed of a polysaccharide, pullulan abietate, and a biomimetic cellulose substrate prepared by the Langmuir-Blodgett technique has been developed. Interfacial tension and surface plasmon resonance measurements used to study the self-assembly process will be discussed for different pullulan derivatives.

  9. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model

    NASA Astrophysics Data System (ADS)

    Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu

    2012-09-01

    Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic

  10. The Self-Assembly of Nanogold for Optical Metamaterials

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  11. Controlling self-assembly of microtubule spools via kinesin motor density

    PubMed Central

    Lam, A.T.; Curschellas, C.; Krovvidi, D.; Hess, H.

    2014-01-01

    Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 105 kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation. PMID:25269076

  12. Controlling self-assembly of microtubule spools via kinesin motor density.

    PubMed

    Lam, A T; Curschellas, C; Krovvidi, D; Hess, H

    2014-11-21

    Active self-assembly, in which non-thermal energy is consumed by the system to put together building blocks, allows the creation of non-equilibrium structures and active materials. Microtubule spools assembled in gliding assays are one example of such non-equilibrium structures, capable of storing bending energies on the order of 10(5) kT. Although these structures arise spontaneously in experiments, the origin of microtubule spooling has long been debated. Here, using a stepwise kinesin gradient, we demonstrate that spool assembly can be controlled by the surface density of kinesin motors, showing that pinning of microtubules due to dead motors plays a dominant role in spool initiation.

  13. Active control of complex, multicomponent self-assembly processes

    NASA Astrophysics Data System (ADS)

    Schulman, Rebecca

    The kinetics of many complex biological self-assembly processes such as cytoskeletal assembly are precisely controlled by cells. Spatiotemporal control over rates of filament nucleation, growth and disassembly determine how self-assembly occurs and how the assembled form changes over time. These reaction rates can be manipulated by changing the concentrations of the components needed for assembly by activating or deactivating them. I will describe how we can use these principles to design driven self-assembly processes in which we assemble and disassemble multiple types of components to create micron-scale networks of semiflexible filaments assembled from DNA. The same set of primitive components can be assembled into many different, structures depending on the concentrations of different components and how designed, DNA-based chemical reaction networks manipulate these concentrations over time. These chemical reaction networks can in turn interpret environmental stimuli to direct complex, multistage response. Such a system is a laboratory for understanding complex active material behaviors, such as metamorphosis, self-healing or adaptation to the environment that are ubiquitous in biological systems but difficult to quantitatively characterize or engineer.

  14. In situ template synthesis of hollow nanospheres assembled from NiCo2S4@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2017-05-10

    Transition-metal sulfide hollow nanostructures have received intensive attention in energy-related applications due to their unique structural features and high electrochemical activities. Here, a well-designed composite of NiCo 2 S 4 @C is successfully fabricated using a facile in situ template removal method. The obtained composite shows unique microstructures of hollow nanospheres (∼650 nm in diameter) assembled from ultrathin NiCo 2 S 4 @C nanosheets, in which numerous scattered NiCo 2 S 4 nanoparticles are embedded in ultrathin carbon nanosheets, exhibiting mesoporous features with a high surface area of 247.25 m 2 g -1 . When used as anode materials for LIBs, NiCo 2 S 4 @C hollow nanospheres exhibit a high reversible capacity of 1592 mA h g -1 at a current density of 500 mA g -1 , enhanced cycling performance maintaining a capacity of 1178 mA h g -1 after 200 cycles, and a remarkable rate capability. Meanwhile, the hollow nanospheres display excellent catalytic activity as ORR catalysts with a four-electron pathway and superior durability to that of commercial Pt/C catalysts. Their excellent lithium storage and ORR catalysis performance can be attributed to the rational incorporation of high-activity NiCo 2 S 4 and ultrathin carbon nanosheets, as well as unique hollow microstructures, which offer efficient electron/ion transport, an enhanced electroactive material/electrolyte contact area, numerous active sites, and excellent structural stability.

  15. Hyper-Assembly of Self-Assembled Glycoclusters Mediated by Specific Carbohydrate-Carbohydrate Interactions.

    PubMed

    Yan, Gengwei; Yamaguchi, Takumi; Suzuki, Tatsuya; Yanaka, Saeko; Sato, Sota; Fujita, Makoto; Kato, Koichi

    2017-05-04

    Hybridization of a self-assembled, spherical complex with oligosaccharides containing Lewis X, a functional trisaccharide displayed on various cell surfaces, yielded well-defined glycoclusters. The self-assembled glycoclusters exhibited homophilic hyper-assembly in aqueous solution in a Ca 2+ -dependent manner through specific carbohydrate-carbohydrate interactions, offering a structural scaffold for functional biomimetic systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum.

    PubMed

    Wang, Yu; Cui, Min; Jiao, Mingxia; Luo, Xiliang

    2018-06-25

    Accurate detection of protein biomarkers in complex media remains a challenge due to severe nonspecific adsorption and biofouling, and sensing interfaces that combine the high sensitivity and antifouling ability are highly desirable. Herein, an antifouling sensing interface capable of sensitively assaying immunoglobulin E (IgE) in biological samples was constructed. The sensing interface was fabricated through the self-assembly of a zwitterionic peptide and the IgE aptamer onto a macroporous Au substrate, which was electrochemically fabricated with the aid of multilayer polystyrene nanospheres self-assembled on glassy carbon electrode. Due to the huge surface area arising from porous morphology and high specificity of aptamer, the developed electrochemical biosensor exhibits ultrahigh sensitivity and selectivity towards IgE, with the linear range of 0.1-10 pg mL -1 , and a very low limit of detection down to 42 fg mL -1 . Interestingly, owing to the presence of the zwitterionic peptide, the biosensing interface can satisfyingly reduce the nonspecific adsorption and fouling effect. Consequently, the biosensor was successfully applied to detect IgE in complex biological samples, indicating great promise of this peptide-based sensing interface for antifouling assays. Graphical abstract ᅟ.

  17. Self-assembling biomolecular catalysts for hydrogen production

    NASA Astrophysics Data System (ADS)

    Jordan, Paul C.; Patterson, Dustin P.; Saboda, Kendall N.; Edwards, Ethan J.; Miettinen, Heini M.; Basu, Gautam; Thielges, Megan C.; Douglas, Trevor

    2016-02-01

    The chemistry of highly evolved protein-based compartments has inspired the design of new catalytically active materials that self-assemble from biological components. A frontier of this biodesign is the potential to contribute new catalytic systems for the production of sustainable fuels, such as hydrogen. Here, we show the encapsulation and protection of an active hydrogen-producing and oxygen-tolerant [NiFe]-hydrogenase, sequestered within the capsid of the bacteriophage P22 through directed self-assembly. We co-opted Escherichia coli for biomolecular synthesis and assembly of this nanomaterial by expressing and maturing the EcHyd-1 hydrogenase prior to expression of the P22 coat protein, which subsequently self assembles. By probing the infrared spectroscopic signatures and catalytic activity of the engineered material, we demonstrate that the capsid provides stability and protection to the hydrogenase cargo. These results illustrate how combining biological function with directed supramolecular self-assembly can be used to create new materials for sustainable catalysis.

  18. Self-assembled peptide nanostructures for functional materials

    NASA Astrophysics Data System (ADS)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  19. An exactly solvable model of hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-06-01

    Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.

  20. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wu, Haijun; Li, Chunmei; Che, Huinan; Hu, Hao; Hu, Wei; Liu, Chunbo; Ai, Junzhe; Dong, Hongjun

    2018-05-01

    The Co3O4/g-C3N4 Z-scheme system is constructed by decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on the surface of g-C3N4, which dramatically improves the photocatalytic activity for degrading tetracycline hydrochloride (TC) compared with single g-C3N4. The microstructure investigations evidence the mesoporous structure and enlarged specific surface area of Co3O4/g-C3N4 Z-scheme system, which implies the increase of surface active sites and adsorption ability for reactant molecules. Moreover, by virtue of analyzing physical and photoelectrochemical properties, it evidences that the decoration effect of mesoporous Co3O4 nanospheres on the surface of g-C3N4 obviously improves the transfer and separation efficiency of charge carriers between two phase interfaces and broadens light harvest range. These important factors are beneficial to enhancing photocatalytic activity of Co3O4/g-C3N4 Z-scheme system. In addition, the photocatalityc reaction mechanism is also revealed in depth.

  1. S-Layer Protein Self-Assembly

    PubMed Central

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  2. Toward a molecular programming language for algorithmic self-assembly

    NASA Astrophysics Data System (ADS)

    Patitz, Matthew John

    Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is

  3. Stochastic dynamics of virus capsid formation: direct versus hierarchical self-assembly

    PubMed Central

    2012-01-01

    Background In order to replicate within their cellular host, many viruses have developed self-assembly strategies for their capsids which are sufficiently robust as to be reconstituted in vitro. Mathematical models for virus self-assembly usually assume that the bonds leading to cluster formation have constant reactivity over the time course of assembly (direct assembly). In some cases, however, binding sites between the capsomers have been reported to be activated during the self-assembly process (hierarchical assembly). Results In order to study possible advantages of such hierarchical schemes for icosahedral virus capsid assembly, we use Brownian dynamics simulations of a patchy particle model that allows us to switch binding sites on and off during assembly. For T1 viruses, we implement a hierarchical assembly scheme where inter-capsomer bonds become active only if a complete pentamer has been assembled. We find direct assembly to be favorable for reversible bonds allowing for repeated structural reorganizations, while hierarchical assembly is favorable for strong bonds with small dissociation rate, as this situation is less prone to kinetic trapping. However, at the same time it is more vulnerable to monomer starvation during the final phase. Increasing the number of initial monomers does have only a weak effect on these general features. The differences between the two assembly schemes become more pronounced for more complex virus geometries, as shown here for T3 viruses, which assemble through homogeneous pentamers and heterogeneous hexamers in the hierarchical scheme. In order to complement the simulations for this more complicated case, we introduce a master equation approach that agrees well with the simulation results. Conclusions Our analysis shows for which molecular parameters hierarchical assembly schemes can outperform direct ones and suggests that viruses with high bond stability might prefer hierarchical assembly schemes. These insights increase

  4. Self-assembling amphiphilic peptides†

    PubMed Central

    Dehsorkhi, Ashkan; Castelletto, Valeria; Hamley, Ian W

    2014-01-01

    The self-assembly of several classes of amphiphilic peptides is reviewed, and selected applications are discussed. We discuss recent work on the self-assembly of lipopeptides, surfactant-like peptides and amyloid peptides derived from the amyloid-β peptide. The influence of environmental variables such as pH and temperature on aggregate nanostructure is discussed. Enzyme-induced remodelling due to peptide cleavage and nanostructure control through photocleavage or photo-cross-linking are also considered. Lastly, selected applications of amphiphilic peptides in biomedicine and materials science are outlined. © 2014 The Authors. Journal of Peptide Science published by European Peptide Society and John Wiley & Sons, Ltd. PMID:24729276

  5. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles

    NASA Astrophysics Data System (ADS)

    Xia, Yunsheng; Nguyen, Trung Dac; Yang, Ming; Lee, Byeongdu; Santos, Aaron; Podsiadlo, Paul; Tang, Zhiyong; Glotzer, Sharon C.; Kotov, Nicholas A.

    2011-09-01

    Nanoparticles are known to self-assemble into larger structures through growth processes that typically occur continuously and depend on the uniformity of the individual nanoparticles. Here, we show that inorganic nanoparticles with non-uniform size distributions can spontaneously assemble into uniformly sized supraparticles with core-shell morphologies. This self-limiting growth process is governed by a balance between electrostatic repulsion and van der Waals attraction, which is aided by the broad polydispersity of the nanoparticles. The generic nature of the interactions creates flexibility in the composition, size and shape of the constituent nanoparticles, and leads to a large family of self-assembled structures, including hierarchically organized colloidal crystals.

  6. Challenges and breakthroughs in recent research on self-assembly

    PubMed Central

    Ariga, Katsuhiko; Hill, Jonathan P; Lee, Michael V; Vinu, Ajayan; Charvet, Richard; Acharya, Somobrata

    2008-01-01

    The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i) types of self-assembly in bulk media; (ii) types of components for self-assembly in bulk media; and (iii) self-assembly at interfaces. PMID:27877935

  7. Hierarchical self-assembly of a bow-shaped molecule bearing self-complementary hydrogen bonding sites into extended supramolecular assemblies.

    PubMed

    Ikeda, Masato; Nobori, Tadahito; Schmutz, Marc; Lehn, Jean-Marie

    2005-01-07

    The bow-shaped molecule 1 bearing a self-complementary DAAD-ADDA (D=donor A=acceptor) hydrogen-bonding array generates, in hydrocarbon solvents, highly ordered supramolecular sheet aggregates that subsequently give rise to gels by formation of an entangled network. The process of hierarchical self-assembly of compound 1 was investigated by the concentration and temperature dependence of UV-visible and (1)H NMR spectra, fluorescence spectra, and electron microscopy data. The temperature dependence of the UV-visible spectra indicates a highly cooperative process for the self-assembly of compound 1 in decaline. The electron micrograph of the decaline solution of compound 1 (1.0 mM) revealed supramolecular sheet aggregates forming an entangled network. The selected area electronic diffraction patterns of the supramolecular sheet aggregates were typical for single crystals, indicative of a highly ordered assembly. The results exemplify the generation, by hierarchical self-assembly, of highly organized supramolecular materials presenting novel collective properties at each level of organization.

  8. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    PubMed

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  9. The Self-Assembly of Particles with Multipolar Interactions

    DTIC Science & Technology

    2004-01-01

    the LATEX template in which this thesis has been written. I also thank Kevin Van Workum and Jack Douglas for contributing simulation work and some...of the computational expense of simulating such complex self-assembly systems at the molecular level and a desire to understand the self-assembly at...Dissertation directed by: Professor Wolfgang Losert Department of Physics In this thesis , we describe results from investigations of the self-assembly of

  10. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres.

    PubMed

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10-20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment

  11. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres

    PubMed Central

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10–20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment

  12. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design.

    PubMed

    Okesola, Babatunde O; Mata, Alvaro

    2018-05-21

    Nature is enriched with a wide variety of complex, synergistic, and highly functional protein-based multicomponent assemblies. As such, nature has served as a source of inspiration for using multicomponent self-assembly as a platform to create highly ordered, complex, and dynamic protein and peptide-based nanostructures. Such an assembly system relies on the initial interaction of distinct individual building blocks leading to the formation of a complex that subsequently assembles into supramolecular architectures. This approach not only serves as a powerful platform for gaining insight into how proteins co-assemble in nature but also offers huge opportunities to harness new properties not inherent in the individual building blocks. In the past decades, various multicomponent self-assembly strategies have been used to extract synergistic properties from proteins and peptides. This review highlights the updates in the field of multicomponent self-assembly of proteins and peptides and summarizes various strategies, including covalent conjugation, ligand-receptor interactions, templated/directed assembly and non-specific co-assembly, for driving the self-assembly of multiple proteins and peptide-based building blocks into functional materials. In particular, we focus on peptide- or protein-containing multicomponent systems that, upon self-assembly, enable the emergence of new properties or phenomena. The ultimate goal of this review is to highlight the importance of multicomponent self-assembly in protein and peptide engineering, and to advocate its growth in the fields of materials science and nanotechnology.

  13. Quantifying quality in DNA self-assembly

    PubMed Central

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  14. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  15. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    NASA Astrophysics Data System (ADS)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  16. Self-assembly of ordered nanostructures

    NASA Astrophysics Data System (ADS)

    Yin, Jinsong

    2000-10-01

    Several different kinds of nanostructure materials were studied in this thesis: self-assembled monodispersive nanocrystals, photonic crystals, ordered mesoporous silica and hierarchically ordered nanostructured materials. Tetrahedral nanocrystals of CoO, with edge-lengths of 4.4 +/- 0.2 nm, were synthesized at high purity and monodispersity. The size, shape and phase selections of the nanocrystals were performed using a novel magnetic field separation technique. These nanocrystals behave like molecules, forming a face-centered cubic self-assembly of nanocrystal superlattices. In-situ behavior of self-assembled CoO nanocrystal arrays was also analyzed using transmission electron microscopy and associated techniques. The surface passivation layer started to evaporate/decompose at temperatures as low as ˜200°C, but the exposed cores of nanocrystals preserved the geometrical configuration of the assembly due to the strong adhesion of the carbon substrate. As the temperature is further increased from 300 to 600°C, the intrinsic crystal structure of the CoO nanoparticles experiences a replacement reaction, resulting in the formation of cobalt carbides. Two-dimensional self-assembling of cobalt nanocrystals with an average particle size of 9.2 nm and polydispersity of 9% is processed. Phtonic crystals were processed by a template-assisted method. Ordered self-assembly of pores of titania nanocrystals formed a face-centered cubic packing structure. The walls of the pores were made of anatase nanocrystals of ˜8 nm in diameter. Cobalt can be doped into the walls of the pores by solution infiltration of cobalt carbonyl. Cobalt titanium oxide may be formed on the internal surface of the ordered pore structure. This type of structure is likely to be an excellent supporting material for catalysis. The experimental results suggest that transition metal elements can be incorporated into porous titania without blocking the interconnected pores. Hierarchically ordered

  17. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    NASA Astrophysics Data System (ADS)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  18. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.

    PubMed

    Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-08-01

    The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Self-assembly of active amphiphilic Janus particles

    NASA Astrophysics Data System (ADS)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  20. Self-assembling holographic biosensors and biocomputers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Yooli Kim; Bachand, George David; Schoeniger, Joseph S.

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins andmore » amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.« less

  1. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers

    NASA Astrophysics Data System (ADS)

    Begum Dikecoglu, F.; Topal, Ahmet E.; Ozkan, Alper D.; Deniz Tekin, E.; Tekinay, Ayse B.; Guler, Mustafa O.; Dana, Aykutlu

    2018-07-01

    Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.

  2. Force and time-dependent self-assembly, disruption and recovery of supramolecular peptide amphiphile nanofibers.

    PubMed

    Dikecoglu, F Begum; Topal, Ahmet E; Ozkan, Alper D; Tekin, E Deniz; Tekinay, Ayse B; Guler, Mustafa O; Dana, Aykutlu

    2018-07-13

    Biological feedback mechanisms exert precise control over the initiation and termination of molecular self-assembly in response to environmental stimuli, while minimizing the formation and propagation of defects through self-repair processes. Peptide amphiphile (PA) molecules can self-assemble at physiological conditions to form supramolecular nanostructures that structurally and functionally resemble the nanofibrous proteins of the extracellular matrix, and their ability to reconfigure themselves in response to external stimuli is crucial for the design of intelligent biomaterials systems. Here, we investigated real-time self-assembly, deformation, and recovery of PA nanofibers in aqueous solution by using a force-stabilizing double-pass scanning atomic force microscopy imaging method to disrupt the self-assembled peptide nanofibers in a force-dependent manner. We demonstrate that nanofiber damage occurs at tip-sample interaction forces exceeding 1 nN, and the damaged fibers subsequently recover when the tip pressure is reduced. Nanofiber ends occasionally fail to reconnect following breakage and continue to grow as two individual nanofibers. Energy minimization calculations of nanofibers with increasing cross-sectional ellipticity (corresponding to varying levels of tip-induced fiber deformation) support our observations, with high-ellipticity nanofibers exhibiting lower stability compared to their non-deformed counterparts. Consequently, tip-mediated mechanical forces can provide an effective means of altering nanofiber integrity and visualizing the self-recovery of PA assemblies.

  3. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    NASA Astrophysics Data System (ADS)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  4. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    PubMed

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  5. Quantitative computational models of molecular self-assembly in systems biology

    PubMed Central

    Thomas, Marcus; Schwartz, Russell

    2017-01-01

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally. PMID:28535149

  6. Quantitative computational models of molecular self-assembly in systems biology.

    PubMed

    Thomas, Marcus; Schwartz, Russell

    2017-05-23

    Molecular self-assembly is the dominant form of chemical reaction in living systems, yet efforts at systems biology modeling are only beginning to appreciate the need for and challenges to accurate quantitative modeling of self-assembly. Self-assembly reactions are essential to nearly every important process in cell and molecular biology and handling them is thus a necessary step in building comprehensive models of complex cellular systems. They present exceptional challenges, however, to standard methods for simulating complex systems. While the general systems biology world is just beginning to deal with these challenges, there is an extensive literature dealing with them for more specialized self-assembly modeling. This review will examine the challenges of self-assembly modeling, nascent efforts to deal with these challenges in the systems modeling community, and some of the solutions offered in prior work on self-assembly specifically. The review concludes with some consideration of the likely role of self-assembly in the future of complex biological system models more generally.

  7. Guided molecular self-assembly: a review of recent efforts

    NASA Astrophysics Data System (ADS)

    Huie, Jiyun C.

    2003-04-01

    This paper serves as an introductory review of significant and novel successes achieved in the fields of nanotechnology, particularly in the formation of nanostructures using guided molecular self-assembly methods. Self-assembly is a spontaneous process by which molecules and nanophase entities may materialize into organized aggregates or networks. Through various interactive mechanisms of self-assembly, such as electrostatics, chemistry, surface properties, and via other mediating agents, the technique proves indispensable to recent functional materials and device realizations. The discussion will extend to spontaneous and Langmuir-Blodgett formation of self-assembled monolayers on various substrates, and a number of different categories of self-assembly techniques based on the type of interaction exploited. Combinatorial techniques, known as soft lithography, of micro-contact printing and dip-pen nanolithography, which can be effectively used to up-size nanostructured molecular assemblies to submicrometer and micrometer scale patterns, will also be mentioned.

  8. CHEMO/mechanical energy conversiona via supramolecular self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, David G.; Conticello, Vincent

    With the assembly codes for protein/peptide self-assembly sufficiently developed to control these phases, we are positioned to address critical requirements for generating unique self-propagating functional assemblies such as chemical batteries and engines that can be used to extend the capability of living cells. These integrative functional assemblies can then be used within cells to create new functions that will address the world’s energy challenges.

  9. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  10. Centrioles: some self-assembly required.

    PubMed

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  11. DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly.

    PubMed

    Zhang, Cheng; Yang, Jing; Jiang, Shuoxing; Liu, Yan; Yan, Hao

    2016-01-13

    Controlling DNA self-assembly processes using rationally designed logic gates is a major goal of DNA-based nanotechnology and programming. Such controls could facilitate the hierarchical engineering of complex nanopatterns responding to various molecular triggers or inputs. Here, we demonstrate the use of a series of DNAzyme-based logic gates to control DNA tile self-assembly onto a prescribed DNA origami frame. Logic systems such as "YES," "OR," "AND," and "logic switch" are implemented based on DNAzyme-mediated tile recognition with the DNA origami frame. DNAzyme is designed to play two roles: (1) as an intermediate messenger to motivate downstream reactions and (2) as a final trigger to report fluorescent signals, enabling information relay between the DNA origami-framed tile assembly and fluorescent signaling. The results of this study demonstrate the plausibility of DNAzyme-mediated hierarchical self-assembly and provide new tools for generating dynamic and responsive self-assembly systems.

  12. Kinetics of Surface-Driven Self-Assembly and Fatigue-Induced Disassembly of a Virus-Based Nanocoating.

    PubMed

    Valbuena, Alejandro; Mateu, Mauricio G

    2017-02-28

    Self-assembling protein layers provide a "bottom-up" approach for precisely organizing functional elements at the nanoscale over a large solid surface area. The design of protein sheets with architecture and physical properties suitable for nanotechnological applications may be greatly facilitated by a thorough understanding of the principles that underlie their self-assembly and disassembly. In a previous study, the hexagonal lattice formed by the capsid protein (CA) of human immunodeficiency virus (HIV) was self-assembled as a monomolecular layer directly onto a solid substrate, and its mechanical properties and dynamics at equilibrium were analyzed by atomic force microscopy. Here, we use atomic force microscopy to analyze the kinetics of self-assembly of the planar CA lattice on a substrate and of its disassembly, either spontaneous or induced by materials fatigue. Both self-assembly and disassembly of the CA layer are cooperative reactions that proceed until a phase equilibrium is reached. Self-assembly requires a critical protein concentration and is initiated by formation of nucleation points on the substrate, followed by lattice growth and eventual merging of CA patches into a continuous monolayer. Disassembly of the CA layer showed hysteresis and appears to proceed only after large enough defects (nucleation points) are formed in the lattice, whose number is largely increased by inducing materials fatigue that depends on mechanical load and its frequency. Implications of the kinetic results obtained for a better understanding of self-assembly and disassembly of the HIV capsid and protein-based two-dimensional nanomaterials and the design of anti-HIV drugs targeting (dis)assembly and biocompatible nanocoatings are discussed. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Freezing-induced self-assembly of amphiphilic molecules

    NASA Astrophysics Data System (ADS)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  14. Freezing-induced self-assembly of amphiphilic molecules.

    PubMed

    Albouy, P A; Deville, S; Fulkar, A; Hakouk, K; Impéror-Clerc, M; Klotz, M; Liu, Q; Marcellini, M; Perez, J

    2017-03-01

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0 °C.

  15. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.

    2016-03-01

    Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.

  16. Oxide nanostructures through self-assembly

    NASA Astrophysics Data System (ADS)

    Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.

    2001-03-01

    A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.

  17. Dynamics of self-assembled cytosine nucleobases on graphene

    NASA Astrophysics Data System (ADS)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  18. Self-assembly in the ferritin nano-cage protein superfamily.

    PubMed

    Zhang, Yu; Orner, Brendan P

    2011-01-01

    Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  19. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.

    PubMed

    Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun

    2015-10-07

    A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.

  20. Regulating DNA Self-assembly by DNA-Surface Interactions.

    PubMed

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly

    PubMed Central

    Moore, Tyler G.; Garzon, Max H.; Deaton, Russell J.

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are “strong” assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly

  2. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  3. Self Assembly of Hard, Space-Filling Polytopes

    NASA Astrophysics Data System (ADS)

    Schultz, Benjamin; Damasceno, Pablo; Engel, Michael; Glotzer, Sharon

    2012-02-01

    The thermodynamic behavior of systems of hard particles in the limit of infinite pressure is known to yield the densest possible packing [1,2]. Hard polytopes that tile or fill space in two or three spatial dimensions are guaranteed to obtain packing fractions of unity in the infinite pressure limit. Away from this limit, however, other structures may be possible [3]. We present the results of a simulation study of the thermodynamic self-assembly of hard, space-filling particles from disordered initial conditions. We show that for many polytopes, the infinite pressure structure readily assembles at intermediate pressures and packing fractions significantly less than one; in others, assembly of the infinite pressure structure is foiled by mesophases, jamming and phase separation. Common features of these latter systems are identified and strategies for enhancing assembly of the infinite pressure structure at intermediate pressures through building block modification are discussed.[4pt] [1] P. F. Damasceno, M. Engel, S.C. Glotzer arXiv:1109.1323v1 [cond-mat.soft][0pt] [2] A. Haji-Akbari, M. Engel, S.C. Glotzer arXiv:1106.4765v2 [cond-mat.soft][0pt] [3] U. Agarwal, F.A. Escobedo, Nature Materials 10, 230--235 (2011)

  4. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    PubMed

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Albumin binds self-assembling dyes as specific polymolecular ligands.

    PubMed

    Stopa, Barbara; Rybarska, Janina; Drozd, Anna; Konieczny, Leszek; Król, Marcin; Lisowski, Marek; Piekarska, Barbara; Roterman, Irena; Spólnik, Paweł; Zemanek, Grzegorz

    2006-12-15

    Self-assembling dyes with a structure related to Congo red (e.g. Evans blue) form polymolecular complexes with albumin. The dyes, which are lacking a self-assembling property (Trypan blue, ANS) bind as single molecules. The supramolecular character of dye ligands bound to albumin was demonstrated by indicating the complexation of dye molecules outnumbering the binding sites in albumin and by measuring the hydrodynamic radius of albumin which is growing upon complexation of self-assembling dye in contrast to dyes lacking this property. The self-assembled character of Congo red was also proved using it as a carrier introducing to albumin the intercalated nonbonding foreign compounds. Supramolecular, ordered character of the dye in the complex with albumin was also revealed by finding that self-assembling dyes become chiral upon complexation. Congo red complexation makes albumin less resistant to low pH as concluded from the facilitated N-F transition, observed in studies based on the measurement of hydrodynamic radius. This particular interference with protein stability and the specific changes in digestion resulted from binding of Congo red suggest that the self-assembled dye penetrates the central crevice of albumin.

  6. Bioinspired Photonic Pigments from Colloidal Self-Assembly.

    PubMed

    Goerlitzer, Eric S A; Klupp Taylor, Robin N; Vogel, Nicolas

    2018-05-07

    The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Bacterial expression of self-assembling peptide hydrogelators

    NASA Astrophysics Data System (ADS)

    Sonmez, Cem

    For tissue regeneration and drug delivery applications, various architectures are explored to serve as biomaterial tools. Via de novo design, functional peptide hydrogel materials have been developed as scaffolds for biomedical applications. The objective of this study is to investigate bacterial expression as an alternative method to chemical synthesis for the recombinant production of self-assembling peptides that can form rigid hydrogels under physiological conditions. The Schneider and Pochan Labs have designed and characterized a 20 amino acid beta-hairpin forming amphiphilic peptide containing a D-residue in its turn region (MAX1). As a result, this peptide must be prepared chemically. Peptide engineering, using the sequence of MAX1 as a template, afforded a small family of peptides for expression (EX peptides) that have different turn sequences consisting of natural amino acids and amenable to bacterial expression. Each sequence was initially chemically synthesized to quickly assess the material properties of its corresponding gel. One model peptide EX1, was chosen to start the bacterial expression studies. DNA constructs facilitating the expression of EX1 were designed in such that the peptide could be expressed with different fusion partners and subsequently cleaved by enzymatic or chemical means to afford the free peptide. Optimization studies were performed to increase the yield of pure peptide that ultimately allowed 50 mg of pure peptide to be harvested from one liter of culture, providing an alternate means to produce this hydrogel-forming peptide. Recombinant production of other self-assembling hairpins with different turn sequences was also successful using this optimized protocol. The studies demonstrate that new beta-hairpin self-assembling peptides that are amenable to bacterial production and form rigid hydrogels at physiological conditions can be designed and produced by fermentation in good yield at significantly reduced cost when compared to

  8. Self-assembled software and method of overriding software execution

    DOEpatents

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  9. Self-Assembly of Human Serum Albumin: A Simplex Phenomenon

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Jiang, Keren; Thundat, Thomas

    2017-01-01

    Spontaneous self-assemblies of biomolecules can generate geometrical patterns. Our findings provide an insight into the mechanism of self-assembled ring pattern generation by human serum albumin (HSA). The self-assembly is a process guided by kinetic and thermodynamic parameters. The generated protein ring patterns display a behavior which is geometrically related to a n-simplex model and is explained through thermodynamics and chemical kinetics. PMID:28930179

  10. Elucidating dominant pathways of the nano-particle self-assembly process.

    PubMed

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  11. Cytoskeletal motor-driven active self-assembly in in vitro systems

    DOE PAGES

    Lam, A. T.; VanDelinder, V.; Kabir, A. M. R.; ...

    2015-11-11

    Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. Lastly, we focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode whichmore » complements robotic manipulation and passive self-assembly.« less

  12. Ionic self-assembly for functional hierarchical nanostructured materials.

    PubMed

    Faul, Charl F J

    2014-12-16

    CONSPECTUS: The challenge of constructing soft functional materials over multiple length scales can be addressed by a number of different routes based on the principles of self-assembly, with the judicious use of various noncovalent interactions providing the tools to control such self-assembly processes. It is within the context of this challenge that we have extensively explored the use of an important approach for materials construction over the past decade: exploiting electrostatic interactions in our ionic self-assembly (ISA) method. In this approach, cooperative assembly of carefully chosen charged surfactants and oppositely charged building blocks (or tectons) provides a facile noncovalent route for the rational design and production of functional nanostructured materials. Generally, our research efforts have developed with an initial focus on establishing rules for the construction of novel noncovalent liquid-crystalline (LC) materials. We found that the use of double-tailed surfactant species (especially branched double-tailed surfactants) led to the facile formation of thermotropic (and, in certain cases, lyotropic) phases, as demonstrated by extensive temperature-dependent X-ray and light microscopy investigations. From this core area of activity, research expanded to cover issues beyond simple construction of anisotropic materials, turning to the challenge of inclusion and exploitation of switchable functionality. The use of photoactive azobenzene-containing ISA materials afforded opportunities to exploit both photo-orientation and surface relief grating formation. The preparation of these anisotropic LC materials was of interest, as the aim was the facile production of disposable and low-cost optical components for display applications and data storage. However, the prohibitive cost of the photo-orientation processes hampered further exploitation of these materials. We also expanded our activities to explore ISA of biologically relevant tectons

  13. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  14. Nonequilibrium Self-Assembly of π-Conjugated Oligopeptides in Solution.

    PubMed

    Li, Bo; Li, Songsong; Zhou, Yuecheng; Ardoña, Herdeline Ann M; Valverde, Lawrence R; Wilson, William L; Tovar, John D; Schroeder, Charles M

    2017-02-01

    Supramolecular assembly is a powerful method that can be used to generate materials with well-defined structures across multiple length scales. Supramolecular assemblies consisting of biopolymer-synthetic polymer subunits are specifically known to exhibit exceptional structural and functional diversity as well as programmable control of noncovalent interactions through hydrogen bonding in biopolymer subunits. Despite recent progress, there is a need to control and quantitatively understand assembly under nonequilibrium conditions. In this work, we study the nonequilibrium self-assembly of π-conjugated synthetic oligopeptides using a combination of experiments and analytical modeling. By isolating an aqueous peptide solution droplet within an immiscible organic layer, the rate of peptide assembly in the aqueous solution can be controlled by tuning the transport rate of acid that is used to trigger assembly. Using this approach, peptides are guided to assemble under reaction-dominated and diffusion-dominated conditions, with results showing a transition from a diffusion-limited reaction front to spatially homogeneous assembly as the transport rate of acid decreases. Interestingly, our results show that the morphology of self-assembled peptide fibers is controlled by the assembly kinetics such that increasingly homogeneous structures of self-assembled synthetic oligopeptides were generally obtained using slower rates of assembly. We further developed an analytical reaction-diffusion model to describe oligopeptide assembly, and experimental results are compared to the reaction-diffusion model across a range of parameters. Overall, this work highlights the importance of molecular self-assembly under nonequilibrium conditions, specifically showing that oligopeptide assembly is governed by a delicate balance between reaction kinetics and transport processes.

  15. Generic concept to program the time domain of self-assemblies with a self-regulation mechanism.

    PubMed

    Heuser, Thomas; Steppert, Ann-Kathrin; Lopez, Catalina Molano; Zhu, Baolei; Walther, Andreas

    2015-04-08

    Nature regulates complex structures in space and time via feedback loops, kinetically controlled transformations, and under energy dissipation to allow non-equilibrium processes. Although man-made static self-assemblies realize excellent control over hierarchical structures via molecular programming, managing their temporal destiny by self-regulation is a largely unsolved challenge. Herein, we introduce a generic concept to control the time domain by programming the lifetimes of switchable self-assemblies in closed systems. We conceive dormant deactivators that, in combination with fast promoters, enable a unique kinetic balance to establish an autonomously self-regulating, transient pH-state, whose duration can be programmed over orders of magnitude-from minutes to days. Coupling this non-equilibrium state to pH-switchable self-assemblies allows predicting their assembly/disassembly fate in time, similar to a precise self-destruction mechanism. We demonstrate a platform approach by programming self-assembly lifetimes of block copolymers, nanoparticles, and peptides, enabling dynamic materials with a self-regulation functionality.

  16. Nanosphere lithography applied to magnetic thin films

    NASA Astrophysics Data System (ADS)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  17. Three Dimensional Assembly in Directed Self-assembly of Block Copolymers

    DOE PAGES

    Segal-Peretz, Tamar; Zhou, Chun; Ren, Jiaxing; ...

    2016-09-02

    The three-dimensional assembly of poly (styrene-b-methyl methacrylate) (PS-b-PMMA) in chemoepitaxy and graphoepitaxy directed self-assembly (DSA) was investigated using scanning transmission electron microscopy (STEM) tomography. The tomographic characterization revealed hidden morphologies and defects at the BCP- chemical pattern interface in lamellar DSA, and probed the formation of cylinders at the bottom of cylindrical DSA for contact hole shrink. Lastly, future work will include control over 3D assembly in sub-10 nm processes.

  18. Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M.

    2016-10-01

    Core-shell carbon-TiO2 composite and hollow TiO2 nanospheres were prepared using carbon nanospheres as hard-templates, coating them with TiO2 using atomic layer deposition, and subsequent burning out of the carbon cores. The bare carbon, the composite carbon-TiO2 and the hollow TiO2 nanospheres were characterized with TG/DTA-MS, FTIR, XRD and SEM-EDX.

  19. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting.

    PubMed

    Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S; Li, Gang; Cheng, Yu

    2017-01-01

    Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment.

  20. Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.

    PubMed

    Wang, Jun; Zhang, Kai; Zhu, Yuejin

    2005-05-01

    A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.

  1. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiong, Yachao; Zhou, Min; Chen, Hao; Feng, Lei; Wang, Zhao; Yan, Xinzhu; Guan, Shiyou

    2015-12-01

    Improving the electrochemical performance of manganese dioxide (MnO2) electrodes is of great significance for supercapacitors. In this study, a novel honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites has been fabricated through freeze-drying method. The honeycomb MnO2 nanospheres are well inserted and dispersed on the graphene. Carbon nanoparticles in the composites act as spacers to effectively prevent graphene from restacking and agglomeration, construct efficient 3D conducting architecture with graphene for honeycomb MnO2 nanospheres, and alleviate the aggregation of honeycomb MnO2 nanospheres by separating them from each other. As a result, such honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites display much improved electrochemical capacitive performance of 255 F g-1 at a current density of 0.5 A g-1, outstanding rate capability (150 F g-1 remained at a current density of 20 A g-1) and good cycling stability (83% of the initial capacitance retained after 1000 charge/discharge cycles). The strategy for the synthesis of these composites is very effective.

  2. Photoinitiated Polymerization-Induced Self-Assembly (Photo-PISA): New Insights and Opportunities.

    PubMed

    Yeow, Jonathan; Boyer, Cyrille

    2017-07-01

    The polymerization-induced self-assembly (PISA) process is a useful synthetic tool for the efficient synthesis of polymeric nanoparticles of different morphologies. Recently, studies on visible light initiated PISA processes have offered a number of key research opportunities that are not readily accessible using traditional thermally initiated systems. For example, visible light mediated PISA (Photo-PISA) enables a high degree of control over the dispersion polymerization process by manipulation of the wavelength and intensity of incident light. In some cases, the final nanoparticle morphology of a single formulation can be modulated by simple manipulation of these externally controlled parameters. In addition, temporal (and in principle spatial) control over the Photo-PISA process can be achieved in most cases. Exploitation of the mild room temperature polymerizations conditions can enable the encapsulation of thermally sensitive therapeutics to occur without compromising the polymerization rate and their activities. Finally, the Photo-PISA process can enable further mechanistic insights into the morphological evolution of nanoparticle formation such as the effects of temperature on the self-assembly process. The purpose of this mini-review is therefore to examine some of these recent advances that have been made in Photo-PISA processes, particularly in light of the specific advantages that may exist in comparison with conventional thermally initiated systems.

  3. Meshing complex macro-scale objects into self-assembling bricks

    PubMed Central

    Hacohen, Adar; Hanniel, Iddo; Nikulshin, Yasha; Wolfus, Shuki; Abu-Horowitz, Almogit; Bachelet, Ido

    2015-01-01

    Self-assembly provides an information-economical route to the fabrication of objects at virtually all scales. However, there is no known algorithm to program self-assembly in macro-scale, solid, complex 3D objects. Here such an algorithm is described, which is inspired by the molecular assembly of DNA, and based on bricks designed by tetrahedral meshing of arbitrary objects. Assembly rules are encoded by topographic cues imprinted on brick faces while attraction between bricks is provided by embedded magnets. The bricks can then be mixed in a container and agitated, leading to properly assembled objects at high yields and zero errors. The system and its assembly dynamics were characterized by video and audio analysis, enabling the precise time- and space-resolved characterization of its performance and accuracy. Improved designs inspired by our system could lead to successful implementation of self-assembly at the macro-scale, allowing rapid, on-demand fabrication of objects without the need for assembly lines. PMID:26226488

  4. The self-assembled behavior of DNA bases on the interface.

    PubMed

    Liu, Lei; Xia, Dan; Klausen, Lasse H; Dong, Mingdong

    2014-01-27

    A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface.

  5. The Self-Assembled Behavior of DNA Bases on the Interface

    PubMed Central

    Liu, Lei; Xia, Dan; Klausen, Lasse H.; Dong, Mingdong

    2014-01-01

    A successful example of self-assembly in a biological system is that DNA can be an excellent agent to self-assemble into desirable two and three-dimensional nanostructures in a well-ordered manner by specific hydrogen bonding interactions between the DNA bases. The self-assembly of DNA bases have played a significant role in constructing the hierarchical nanostructures. In this review article we will introduce the study of nucleic acid base self-assembly by scanning tunneling microscopy (STM) at vacuum and ambient condition (the liquid/solid interface), respectively. From the ideal condition to a more realistic environment, the self-assembled behaviors of DNA bases are introduced. In a vacuum system, the energetic advantages will dominate the assembly formation of DNA bases, while at ambient condition, more factors such as conformational freedom and the biochemical environment will be considered. Therefore, the assemblies of DNA bases at ambient condition are different from the ones obtained under vacuum. We present the ordered nanostructures formed by DNA bases at both vacuum and ambient condition. To construct and tailor the nanostructure through the interaction between DNA bases, it is important to understand the assembly behavior and features of DNA bases and their derivatives at ambient condition. The utilization of STM offers the advantage of investigating DNA base self-assembly with sub-molecular level resolution at the surface. PMID:24473140

  6. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    PubMed

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  7. Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems

    NASA Astrophysics Data System (ADS)

    Li, Mao; Ishihara, Shinsuke; Ji, Qingmin; Akada, Misaho; Hill, Jonathan P.; Ariga, Katsuhiko

    2012-10-01

    Current nanotechnology based on top-down nanofabrication may encounter a variety of drawbacks in the near future so that development of alternative methods, including the so-called bottom-up approach, has attracted considerable attention. However, the bottom-up strategy, which often relies on spontaneous self-assembly, might be inefficient in the development of the requisite functional materials and systems. Therefore, assembly processes controlled by external stimuli might be a plausible strategy for the development of bottom-up nanotechnology. In this review, we demonstrate a paradigm shift from self-assembly to commanded assembly by describing several examples of assemblies of typical functional molecules, i.e. porphyrins and fullerenes. In the first section, we describe recent progress in the design and study of self-assembled and co-assembled supramolecular architectures of porphyrins and fullerenes. Then, we show examples of assembly induced by external stimuli. We emphasize the paradigm shift from self-assembly to commanded assembly by describing the recently developed electrochemical-coupling layer-by-layer (ECC-LbL) methodology.

  8. Self-assembly of silica microparticles in magnetic multiphase flows: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Niu, Xiao-Dong; Li, You; Chen, Mu-Feng

    2018-04-01

    Dynamic self-assembly, especially self-assembly under magnetic field, is vital not only for its marvelous phenomenon but also for its mechanisms. Revealing the underlying mechanisms is crucial for a deeper understanding of self-assembly. In this paper, several magnetic induced self-assembly experiments by using the mixed magnetic multiphase fluids comprised of silica microspheres were carried out. The relations of the strength of external magnetic field, the inverse magnetorheological effect, and the structures of self-assembled particles were investigated. In addition, a momentum-exchanged immersed boundary-based lattice Boltzmann method (MEIB-LBM) for modeling multi-physical coupling multiphase flows was employed to numerically study the magnetic induced self-assembly process in detail. The present work showed that the external magnetic field can be used to control the form of self-assembly of nonmagnetic microparticles in a chain-like structure, and the self-assembly process can be classified into four stages with magnetic hysteresis, magnetization of nonmagnetic microparticles, self-assembly in chain-like structures, and the stable chain state. The combination of experimental and numerical results could offer a method to control the self-assembled nonmagnetic microparticles, which can provide the technical and theoretical support for the design and fabrication of micro/nanomaterials.

  9. Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications.

    PubMed

    Nguyen, Hiep Thi; Luong, Hien Thu; Nguyen, Hai Dai; Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van

    2017-01-01

    Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of -80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of -80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold.

  10. Investigate the Effect of Thawing Process on the Self-Assembly of Silk Protein for Tissue Applications

    PubMed Central

    Tran, Hien Anh; Huynh, Khon Chan; Vo, Toi Van

    2017-01-01

    Biological self-assembly is a process in which building blocks autonomously organize to form stable supermolecules of higher order and complexity through domination of weak, noncovalent interactions. For silk protein, the effect of high incubating temperature on the induction of secondary structure and self-assembly was well investigated. However, the effect of freezing and thawing on silk solution has not been studied. The present work aimed to investigate a new all-aqueous process to form 3D porous silk fibroin matrices using a freezing-assisted self-assembly method. This study proposes an experimental investigation and optimization of environmental parameters for the self-assembly process such as freezing temperature, thawing process, and concentration of silk solution. The optical images demonstrated the possibility and potential of −80ST48 treatment to initialize the self-assembly of silk fibroin as well as controllably fabricate a porous scaffold. Moreover, the micrograph images illustrate the assembly of silk protein chain in 7 days under the treatment of −80ST48 process. The surface morphology characterization proved that this method could control the pore size of porous scaffolds by control of the concentration of silk solution. The animal test showed the support of silk scaffold for cell adhesion and proliferation, as well as the cell migration process in the 3D implantable scaffold. PMID:28367442

  11. Directed self-assembly of proteins into discrete radial patterns

    PubMed Central

    Thakur, Garima; Prashanthi, Kovur; Thundat, Thomas

    2013-01-01

    Unlike physical patterning of materials at nanometer scale, manipulating soft matter such as biomolecules into patterns is still in its infancy. Self-assembled monolayer (SAM) with surface density gradient has the capability to drive biomolecules in specific directions to create hierarchical and discrete structures. Here, we report on a two-step process of self-assembly of the human serum albumin (HSA) protein into discrete ring structures based on density gradient of SAM. The methodology involves first creating a 2-dimensional (2D) polyethylene glycol (PEG) islands with responsive carboxyl functionalities. Incubation of proteins on such pre-patterned surfaces results in direct self-assembly of protein molecules around PEG islands. Immobilization and adsorption of protein on such structures over time evolve into the self-assembled patterns. PMID:23719678

  12. Self-assembling electroactive hydrogels for flexible display technology

    NASA Astrophysics Data System (ADS)

    Jones, Scott L.; Hou Wong, Kok; Thordarson, Pall; Ladouceur, François

    2010-12-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  13. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    PubMed

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  14. Nanoparticle string formation on self-assembled copolymer films

    NASA Astrophysics Data System (ADS)

    Jenczyk, J.; Woźniak-Budych, M.; Jarek, M.; Grzeszkowiak, M.; Nowaczyk, G.; Jurga, S.

    2017-06-01

    Nanoparticles (NP) string formations on self-assembled copolymeric substrates has been observed. These "thread of beads" like structures develop via simple colloidal droplet evaporation during meniscus rim withdrawal on polystyrene-block-poly(ethylene oxide) (PS-PEO) copolymer surfaces. It is shown that the process is triggered by the presence of the substrate impurities, which lead to NP aggregate formations serving as string initiation sites. The growth mechanism of these linear structures seems to be capillarity-driven. Moreover, there is an exceptional alignment coupling between NP strips and the block copolymer (BC) domains observed. BC directed NP assembly stems from a gold nanocrystal surface functionalization, which introduces selective affinity for one particular type of BC domain. The presented results reveal a potential fabrication method of NP wires characterized by remarkably low width and thickness comparable with the size of the individual constituent NP.

  15. Peptide self-assembly: thermodynamics and kinetics.

    PubMed

    Wang, Juan; Liu, Kai; Xing, Ruirui; Yan, Xuehai

    2016-10-21

    Self-assembling systems play a significant role in physiological functions and have therefore attracted tremendous attention due to their great potential for applications in energy, biomedicine and nanotechnology. Peptides, consisting of amino acids, are among the most popular building blocks and programmable molecular motifs. Nanostructures and materials assembled using peptides exhibit important potential for green-life new technology and biomedical applications mostly because of their bio-friendliness and reversibility. The formation of these ordered nanostructures pertains to the synergistic effect of various intermolecular non-covalent interactions, including hydrogen-bonding, π-π stacking, electrostatic, hydrophobic, and van der Waals interactions. Therefore, the self-assembly process is mainly driven by thermodynamics; however, kinetics is also a critical factor in structural modulation and function integration. In this review, we focus on the influence of thermodynamic and kinetic factors on structural assembly and regulation based on different types of peptide building blocks, including aromatic dipeptides, amphiphilic peptides, polypeptides, and amyloid-relevant peptides.

  16. Self-assembly from milli- to nanoscales: methods and applications

    PubMed Central

    Mastrangeli, M; Abbasi, S; Varel, C; Van Hoof, C; Celis, J-P; Böhringer, K F

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. PMID:20209016

  17. Self-recognition in the coordination driven self-assembly of 2-D polygons.

    PubMed

    Addicott, Chris; Das, Neeladri; Stang, Peter J

    2004-08-23

    Self-recognition in the transition-metal-mediated self-assembly of some 2-D polygons is presented. Prolonged heating of two or three organoplatinum reagents with 4,4'-dipyridyl in aqueous acetone results in the predominant formation of a rectangle, triangle, and/or square. All mixtures are characterized with NMR and electrospray ionization mass spectrometry (ESIMS). Despite the potential for ill-defined oligomeric products, these mixed ligand systems prefer to self-assemble into discrete species.

  18. Self-assembly of inorganic nanoparticles: Ab ovo

    NASA Astrophysics Data System (ADS)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  19. Self-assembly of chlorophenols in water

    PubMed Central

    Rogalska, Ewa; Rogalski, Marek; Gulik-Krzywicki, Tadeusz; Gulik, Annette; Chipot, Christophe

    1999-01-01

    In saturated solutions of some di- and trichlorophenols, structures with complex morphologies, consisting of thin, transparent sheets often coiling into helices and ultimately twisting into filaments, were observed under the optical microscope. Freeze-fracture electron microscopy, x-ray diffraction, phase diagrams, and molecular modeling were performed to elucidate the observed phenomena. Here, we present evidence that the chlorophenols studied, when interacting with water, self-assemble into bilayers. The fact that some chlorophenols form the same supramolecular structures as those described previously for structurally nonrelated surfactants sheds light on the mechanisms of self-assembly. PMID:10359753

  20. Self-assembly of knots and links

    NASA Astrophysics Data System (ADS)

    Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian

    2017-03-01

    Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.

  1. Light-induced Self-Assembly and Diffusion of Nanoclusters

    NASA Astrophysics Data System (ADS)

    Lian, Wenxuan

    Novel methods to build multiple types of three-dimensional structures from various nanoscale components are the most exciting and challenging questions in nano-science. The properties of the assembled structures can be potentially and designed, but the development of such approaches is challenging. In order to realize such rational assembly, a tunable interaction medium is often introduced into the system. Soft matter, such as polymers, surfactants and biomolecules are used to modify the surfaces of the nanoscale building blocks. Deoxyribonucleic acid (DNA) strands are known as polynucleotides since they are composed of simpler units called nucleotides. There are unique base pairing rules that are predictable and programmable, which can be used to regulate self-assembly process with high degree of control. Besides controlling static structure, it is important to develop methods for controlling systems in dynamic matter, with chemical stimuli or external fields. For example, here we study the use of azobezene-trimethylammonium bromide (AzoTAB) as a molecular agent that can control self-assembly via light excitation. In this thesis, DNA assisted self-assembly was conducted. The ability of AzoTAB as a light induced surfactant to control DNA assisted self-assembly was confirmed. The mechanism of AzoTAB as a light controlled self-assembly promoter was studied. In the second project, diffusion of nanoclusters was studied. The presence of polymers brings strong entanglement with nanoclusters. This entanglement is more obvious when the nanocluster is a framed structure like the octahedron in the study. The diffusion coefficient of the octahedron becomes larger during traveling. The following up studies are required to elucidate the origin of the observed effect.

  2. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  3. Multicomponent Supramolecular Systems: Self-Organization in Coordination-Driven Self-Assembly

    PubMed Central

    Zheng, Yao-Rong; Yang, Hai-Bo; Ghosh, Koushik; Zhao, Liang; Stang, Peter J.

    2009-01-01

    The self-organization of multicomponent supramolecular systems involving a variety of two-dimensional (2-D) polygons and three-dimensional (3-D) cages is presented. Nine self-organizing systems, SS1–SS9, have been studied. Each involving the simultaneous mixing of organoplatinum acceptors and pyridyl donors of varying geometry and their selective self-assembly into three to four specific 2-D (rectangular, triangular, and rhomboid) and/or 3-D (triangular prism and distorted and nondistorted trigonal bipyramidal) supramolecules. The formation of these discrete structures is characterized using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS). In all cases, the self-organization process is directed by: (1) the geometric information encoded within the molecular subunits and (2) a thermodynamically driven dynamic self-correction process. The result is the selective self-assembly of multiple discrete products from a randomly formed complex. The influence of key experimental variables – temperature and solvent – on the self-correction process and the fidelity of the resulting self-organization systems is also described. PMID:19544512

  4. Self-assembled nanotubes from single fluorescent amino acid

    NASA Astrophysics Data System (ADS)

    Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2017-04-01

    Self-assembly of biomolecules has gained increasing attention as it generates various supramolecular structural assemblies having potential applications principally in biomedical sciences. Here, we show that amino acid like tryptophan or tyrosine readily aggregates as nanotubes via a simple self-assembly process. These were characterized by FTIR, scanning electron microscopy, and by fluorescence microscopy. Nanotubes prepared from tryptophan are having 200 nm inner diameter and those from tyrosine are having the same around 50 nm diameter.

  5. A slippery molecular assembly allows water as a self-erasable security marker

    PubMed Central

    Thirumalai, Rajasekaran; Mukhopadhyay, Rahul Dev; Praveen, Vakayil K.; Ajayaghosh, Ayyappanpillai

    2015-01-01

    Protection of currency and valuable documents from counterfeit continues to be a challenge. While there are many embedded security features available for document safety, they are not immune to forgery. Fluorescence is a sensitive property, which responds to external stimuli such as solvent polarity, temperature or mechanical stress, however practical use in security applications is hampered due to several reasons. Therefore, a simple and specific stimuli responsive security feature that is difficult to duplicate is of great demand. Herein we report the design of a fluorescent molecular assembly on which water behaves as a self-erasable security marker for checking the authenticity of documents at point of care. The underlying principle involves the disciplined self-assembly of a tailor-made fluorescent molecule, which initially form a weak blue fluorescence (λem = 425 nm, Φf = 0.13) and changes to cyan emission (λem = 488 nm,Φf = 0.18) in contact with water due to a reversible molecular slipping motion. This simple chemical tool, based on the principles of molecular self-assembly and fluorescence modulation, allows creation of security labels and optically masked barcodes for multiple documents authentication. PMID:25940779

  6. A slippery molecular assembly allows water as a self-erasable security marker.

    PubMed

    Thirumalai, Rajasekaran; Mukhopadhyay, Rahul Dev; Praveen, Vakayil K; Ajayaghosh, Ayyappanpillai

    2015-05-05

    Protection of currency and valuable documents from counterfeit continues to be a challenge. While there are many embedded security features available for document safety, they are not immune to forgery. Fluorescence is a sensitive property, which responds to external stimuli such as solvent polarity, temperature or mechanical stress, however practical use in security applications is hampered due to several reasons. Therefore, a simple and specific stimuli responsive security feature that is difficult to duplicate is of great demand. Herein we report the design of a fluorescent molecular assembly on which water behaves as a self-erasable security marker for checking the authenticity of documents at point of care. The underlying principle involves the disciplined self-assembly of a tailor-made fluorescent molecule, which initially form a weak blue fluorescence (λem = 425 nm, Φf = 0.13) and changes to cyan emission (λem = 488 nm,Φf = 0.18) in contact with water due to a reversible molecular slipping motion. This simple chemical tool, based on the principles of molecular self-assembly and fluorescence modulation, allows creation of security labels and optically masked barcodes for multiple documents authentication.

  7. Enabling complex nanoscale pattern customization using directed self-assembly.

    PubMed

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  8. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less

  9. Surface-enhanced Raman spectroscopy substrate based on Ag-coated self-assembled polystyrene spheres

    NASA Astrophysics Data System (ADS)

    Mikac, Lara; Ivanda, Mile; Gotić, Marijan; Janicki, Vesna; Zorc, Hrvoje; Janči, Tibor; Vidaček, Sanja

    2017-10-01

    The silver (Ag) films were deposited on the monodispersed polystyrene spheres that were drop-coated on hydrophilic glass substrates in order to form a self-assembled 2D monolayer. Thus prepared Ag films over polystyrene nanospheres (AgFONs) were used to record the surface-enhanced Raman scattering (SERS) spectra of rhodamine 6G (R6G) and pyridine (λex = 514.5 nm). AgFONs were prepared by depositing 120, 180 and 240 nm thick Ag layer on the 1000 nm polystyrene spheres and 80, 120, 160 and 200 nm thick Ag layer on the 350 nm spheres as well as on their mixture (350 + 1000 nm). The silver was deposited by electron beam evaporation technique. The best enhancement of the Raman signal for both test molecules was obtained using 180 nm Ag film deposited on the 1000 nm spheres and using 80 nm Ag film deposited on the 350 nm polystyrene spheres. The lowest detectable concentrations of R6G and pyridine were 10-9 mol L-1 and 1.2 × 10-3 mol L-1, respectively. This study has shown that AgFONs could be regarded as good and reproducible SERS substrate for analytical detection of various organic molecules.

  10. Design of fluidic self-assembly bonds for precise component positioning

    NASA Astrophysics Data System (ADS)

    Ramadoss, Vivek; Crane, Nathan B.

    2008-02-01

    Self Assembly is a promising alternative to conventional pick and place robotic assembly of micro components. Its benefits include parallel integration of parts with low equipment costs. Various approaches to self assembly have been demonstrated, yet demanding applications like assembly of micro-optical devices require increased positioning accuracy. This paper proposes a new method for design of self assembly bonds that addresses this need. Current methods have zero force at the desired assembly position and low stiffness. This allows small disturbance forces to create significant positioning errors. The proposed method uses a substrate assembly feature to provide a high accuracy alignment guide to the part. The capillary bond region of the part and substrate are then modified to create a non-zero positioning force to maintain the part in the desired assembly position. Capillary force models show that this force aligns the part to the substrate assembly feature and reduces sensitivity of part position to process variation. Thus, the new configuration can substantially improve positioning accuracy of capillary self-assembly. This will result in a dramatic decrease in positioning errors in the micro parts. Various binding site designs are analyzed and guidelines are proposed for the design of an effective assembly bond using this new approach.

  11. Self-assembled Nanomaterials for Chemotherapeutic Applications

    NASA Astrophysics Data System (ADS)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  12. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries.

    PubMed

    Wu, Naiteng; Du, Wuzhou; Gao, Xu; Zhao, Liang; Liu, Guilong; Liu, Xianming; Wu, Hao; He, Yan-Bing

    2018-06-21

    The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (∼912 mA h g-1 after 500 cycles at 0.5 A g-1 and 652 mA h g-1 after 200 cycles at 1 A g-1) and superior rate capability (309 mA h g-1 at 10 A g-1). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.

  13. Cellular membrane enrichment of self-assembling D-peptides for cell surface engineering.

    PubMed

    Wang, Huaimin; Wang, Youzhi; Han, Aitian; Cai, Yanbin; Xiao, Nannan; Wang, Ling; Ding, Dan; Yang, Zhimou

    2014-06-25

    We occasionally found that several self-assembling peptides containing D-amino acids would be preferentially enriched in cellular membranes at self-assembled stages while distributed evenly in the cytoplasma of cells at unassembled stages. Self-assembling peptides containing only Lamino acids distributed evenly in cytoplasma of cells at both self-assembled and unassembled stages. The self-assembling peptides containing D-amino acids could therefore be applied for engineering cell surface with peptides. More importantly, by integrating a protein binding peptide (a PDZ domain binding hexapeptide of WRESAI) with the self-assembling peptide containing D-amino acids, protein could also be introduced to the cell surface. This study not only provided a novel approach to engineer cell surface, but also highlighted the unusual properties and potential applications of self-assembling peptides containing D-amino acids in regenerative medicine, drug delivery, and tissue engineering.

  14. Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves

    NASA Technical Reports Server (NTRS)

    Guemsey, Carl S.; Mizukami, Masashi; Zenz, Zac; Pender, Adam A.

    2009-01-01

    A solution was developed to mitigate the potential risk of ignition failures and burn-through in aluminum primer chamber assemblies on pyrovalves. This was accomplished by changing the assembly material from aluminum to steel, and reconfiguration of flame channels to provide more direct paths from initiators to boosters. With the geometric configuration of the channels changed, energy is more efficiently transferred from the initiators to the boosters. With the alloy change to steel, the initiator flame channels do not erode upon firing, eliminating the possibility of burn-through. Flight qualification tests have been successfully passed.

  15. Novel agrochemical conjugates with self-assembling behaviour.

    PubMed

    Liu, Qingtao; Graham, Bim; Hawley, Adrian; Dong, Yao-Da; Boyd, Ben J

    2018-02-15

    That conjugation of agrichemicals to pro-assembly hydrophobic moieties will enable enhanced compatibility and loading with host lyotropic liquid crystalline carrier matrix, and potentially self-assemble in their own right in aqueous environments. A series of lipid-like agrochemical-conjugates were synthesized using specific amphiphilic entities conjugated onto the agrochemicals, picloram and 2,4-dichlorophenoxyacetic acid (2,4-D). The self-assembly behaviour and compatibility of the novel entities when incorporated into phytantriol and monoolein-based liquid crystalline systems were examined using small angle X-ray scattering, cryo-TEM and polarized optical microscopy. Compared to agrochemical-conjugates with simple alkyl ester groups, the esterification of the agrochemicals with amphiphilic groups such as phytantriol and monoolein led to greater structural compatibility and consequently a greater loading of the agrochemicals in the liquid crystalline systems without destabilizing phase structure. Picloram-monoolein and picloram-monoelaidin can self-assemble to form lamellar structures in water. However, certain agrochemical-conjugates such as picloram-monoelaidin and picloram-PEGn-oleate showed poor compatibility with liquid crystalline systems, resulting in phase separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    PubMed

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  17. Self-assembled Nanofibrils for Immunomodulation

    NASA Astrophysics Data System (ADS)

    Zhao, Fan

    This thesis has been mainly focused on applying self-assembled nanofibrils as unique depots for controlled release to modulate immune system, with two major chapters on modulation of innate immunity in chapter 2 and adaptive immunity in chapter 3, respectively. There are 5 chapters in the thesis. Chapter 1 gives a detailed review on the discovery, synthesis and application of self-assembled nanofibrils of therapeutic agents (termed as "self-delivery drugs"), including bioactive molecules; Chapter 2 demonstrates the supramolecular hydrogel of chemotactic peptides as a prolonged inflammation model through proper molecular engineering; Chapter 3 reports a suppressive antibody response achieved by encapsulation of antigens by supramolecular hydrogel of glycopeptide; Chapter 4 illustrates an example of supramolecular hydrogel formation of molecules with extremely low solubility, based on the fact that many small organic drugs have poor solubility. Chapter 5 used beta-galatosidase as a model to study glycosidase-instructed supramolecular hydrogel formation, with potential to target cancer cells due to their distinct metabolic profile.

  18. Quantitative self-assembly prediction yields targeted nanomedicines

    NASA Astrophysics Data System (ADS)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  19. Imaging enzyme-triggered self-assembly of small molecules inside live cells

    PubMed Central

    Gao, Yuan; Shi, Junfeng; Yuan, Dan; Xu, Bing

    2012-01-01

    Self-assembly of small molecules in water to form nanofibers, besides generating sophisticated biomaterials, promises a simple system inside cells for regulating cellular processes. But lack of a convenient approach for studying the self-assembly of small molecules inside cells hinders the development of such systems. Here we report a method to image enzyme-triggered self-assembly of small molecules inside live cells. After linking a fluorophore to a self-assembly motif to make a precursor, we confirmed by 31P NMR and rheology that enzyme-triggered conversion of the precursor to a hydrogelator results in the formation of a hydrogel via self-assembly. The imaging contrast conferred by the nanofibers of the hydrogelators allowed the evaluation of intracellular self-assembly; the dynamics, and the localization of the nanofibers of the hydrogelators in live cells. This approach explores supramolecular chemistry inside cells and may lead to new insights, processes, or materials at the interface of chemistry and biology. PMID:22929790

  20. Waveguide electro-optic modulators based on intrinsically polar self-assembled superlattices (SASs)

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Ho, Seng Tiong; Chang, Seongsik; Zhao, Yiguang; Marks, Tobin J.; Kang, Hu; van der Boom, Milko E.; Zhu, Peiwang

    2002-12-01

    In this paper we describe methods of fabricating and characterizing organic electro-optic modulators based on intrinsically polar self-assembled superlattices. These structures are intrinsically acentric, and exhibit large second harmonic generation and electro-optic responses without the requirement of poling by an external electric field. A novel wet chemical protection-deprotection approach for the growth of self-assembled superlattices have been developed, and the refractive indices of self-assembled organic electro-optic superlattices may be tuned during the self-assembly process. Prototype electro-optic modulators based on chromophoric self-assembled superlattices have been designed and fabricated. The effective electro-optic coefficient of the self-assembled superlattice film in a phase modulator is estimated as about 20 pm/V at a wavelength of 1064 nm.

  1. Phenylalanine containing hydrophobic nanospheres for antibody purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil; Oztürk, Nevra; Akgöl, Sinan; Elkak, Assem

    2008-01-01

    In this study, novel hydrophobic nanospheres with an average size of 158 nm utilizing N-methacryloyl-(L)-phenylalanine methyl ester (MAPA) as a hydrophobic monomer were produced by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAPA conducted in an aqueous dispersion medium. MAPA was synthesized using methacryloyl chloride and L-phenylalanine methyl ester. Specific surface area of the nonporous nanospheres was found to be 1874 m2/g. Poly(HEMA-MAPA) nanospheres were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size, size distribution, and surface charge measurements were also performed. Elemental analysis of MAPA for nitrogen was estimated as 0.42 mmol/g polymer. Then, poly(HEMA-MAPA) nanospheres were used in the adsorption of immunoglobulin G (IgG) in batch system. Higher adsorption values (780 mg/g) were obtained when the poly (HEMA-MAPA) nanospheres were used from both aqueous solutions and human plasma. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It was observed that IgG could be repeatedly adsorbed and desorbed without significant loss in adsorption amount. These findings show considerable promise for this material as a hydrophobic support in industrial processes.

  2. An Active Approach to Colloidal Self-Assembly

    NASA Astrophysics Data System (ADS)

    Mallory, Stewart A.; Valeriani, Chantal; Cacciuto, Angelo

    2018-04-01

    In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.

  3. Sequential programmable self-assembly: Role of cooperative interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jonathan D. Halverson; Tkachenko, Alexei V.

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  4. Sequential programmable self-assembly: Role of cooperative interactions

    DOE PAGES

    Jonathan D. Halverson; Tkachenko, Alexei V.

    2016-03-04

    Here, we propose a general strategy of “sequential programmable self-assembly” that enables a bottom-up design of arbitrary multi-particle architectures on nano- and microscales. We show that a naive realization of this scheme, based on the pairwise additive interactions between particles, has fundamental limitations that lead to a relatively high error rate. This can be overcome by using cooperative interparticle binding. The cooperativity is a well known feature of many biochemical processes, responsible, e.g., for signaling and regulations in living systems. Here we propose to utilize a similar strategy for high precision self-assembly, and show that DNA-mediated interactions provide a convenientmore » platform for its implementation. In particular, we outline a specific design of a DNA-based complex which we call “DNA spider,” that acts as a smart interparticle linker and provides a built-in cooperativity of binding. We demonstrate versatility of the sequential self-assembly based on spider-functionalized particles by designing several mesostructures of increasing complexity and simulating their assembly process. This includes a number of finite and repeating structures, in particular, the so-called tetrahelix and its several derivatives. Due to its generality, this approach allows one to design and successfully self-assemble virtually any structure made of a “GEOMAG” magnetic construction toy, out of nanoparticles. According to our results, once the binding cooperativity is strong enough, the sequential self-assembly becomes essentially error-free.« less

  5. Self-Assembly of Gold Nanoparticles Shows Microenvironment-Mediated Dynamic Switching and Enhanced Brain Tumor Targeting

    PubMed Central

    Feng, Qishuai; Shen, Yajing; Fu, Yingjie; Muroski, Megan E.; Zhang, Peng; Wang, Qiaoyue; Xu, Chang; Lesniak, Maciej S.; Li, Gang; Cheng, Yu

    2017-01-01

    Inorganic nanoparticles with unique physical properties have been explored as nanomedicines for brain tumor treatment. However, the clinical applications of the inorganic formulations are often hindered by the biological barriers and failure to be bioeliminated. The size of the nanoparticle is an essential design parameter which plays a significant role to affect the tumor targeting and biodistribution. Here, we report a feasible approach for the assembly of gold nanoparticles into ~80 nm nanospheres as a drug delivery platform for enhanced retention in brain tumors with the ability to be dynamically switched into the single formulation for excretion. These nanoassemblies can target epidermal growth factor receptors on cancer cells and are responsive to tumor microenvironmental characteristics, including high vascular permeability and acidic and redox conditions. Anticancer drug release was controlled by a pH-responsive mechanism. Intracellular L-glutathione (GSH) triggered the complete breakdown of nanoassemblies to single gold nanoparticles. Furthermore, in vivo studies have shown that nanospheres display enhanced tumor-targeting efficiency and therapeutic effects relative to single-nanoparticle formulations. Hence, gold nanoassemblies present an effective targeting strategy for brain tumor treatment. PMID:28638474

  6. Self-assembly of a supramolecular hexagram and a supramolecular pentagram

    NASA Astrophysics Data System (ADS)

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan

    2017-05-01

    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium-terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+ however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature.

  7. Self-assembly of a supramolecular hexagram and a supramolecular pentagram

    PubMed Central

    Jiang, Zhilong; Li, Yiming; Wang, Ming; Song, Bo; Wang, Kun; Sun, Mingyu; Liu, Die; Li, Xiaohong; Yuan, Jie; Chen, Mingzhao; Guo, Yuan; Yang, Xiaoyu; Zhang, Tong; Moorefield, Charles N.; Newkome, George R.; Xu, Bingqian; Li, Xiaopeng; Wang, Pingshan

    2017-01-01

    Five- and six-pointed star structures occur frequently in nature as flowers, snow-flakes, leaves and so on. These star-shaped patterns are also frequently used in both functional and artistic man-made architectures. Here following a stepwise synthesis and self-assembly approach, pentagonal and hexagonal metallosupramolecules possessing star-shaped motifs were prepared based on the careful design of metallo-organic ligands (MOLs). In the MOL design and preparation, robust ruthenium–terpyridyl complexes were employed to construct brominated metallo-organic intermediates, followed by a Suzuki coupling reaction to achieve the required ensemble. Ligand LA (VRu2+X, V=bisterpyridine, X=tetraterpyridine, Ru=Ruthenium) was initially used for the self-assembly of an anticipated hexagram upon reaction with Cd2+ or Fe2+; however, unexpected pentagonal structures were formed, that is, [Cd5LA5]30+ and [Fe5LA5]30+. In our redesign, LB [V(Ru2+X)2] was synthesized and treated with 60° V-shaped bisterpyridine (V) and Cd2+ to create hexagonal hexagram [Cd12V3LB3]36+ along with traces of the triangle [Cd3V3]6+. Finally, a pure supramolecular hexagram [Fe12V3LB3]36+ was successfully isolated in a high yield using Fe2+ with a higher assembly temperature. PMID:28524876

  8. Watching Nanoscale Self-Assembly Kinetics of Gold Prisms in Liquids

    NASA Astrophysics Data System (ADS)

    Kim, Juyeong; Ou, Zihao; Jones, Matthew R.; Chen, Qian

    We use liquid-phase transmission electron microscopy to watch self-assembly of gold triangular prisms into polymer-like structures. The in situ dynamics monitoring enabled by liquid-phase transmission electron microscopy, single nanoparticle tracking, and the marked conceptual similarity between molecular reactions and nanoparticle self-assembly combined elucidate the following mechanistic understanding: a step-growth polymerization based assembly statistics, kinetic pathways sampling particle curvature dependent energy minima and their interconversions, and directed assembly into polymorphs (linear or cyclic chains) through in situ modulation of the prism bonding geometry. Our study bridges the constituent kinetics on the molecular and nanoparticle length scales, which enriches the design rules in directed self-assembly of anisotropic nanoparticles.

  9. Student Learning about Biomolecular Self-Assembly Using Two Different External Representations

    PubMed Central

    Höst, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.

    2013-01-01

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition. PMID:24006395

  10. Student learning about biomolecular self-assembly using two different external representations.

    PubMed

    Höst, Gunnar E; Larsson, Caroline; Olson, Arthur; Tibell, Lena A E

    2013-01-01

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning about the process of self-assembly in a group exercise. A conceptual analysis of self-assembly into a set of facets was performed to support study design and analysis. Written responses were collected in a pretest/posttest experimental design with 32 Swedish university students. A quantitative analysis of close-ended items indicated that the students improved their scores between pretest and posttest, with no significant difference between the conditions (tangible model/image). A qualitative analysis of an open-ended item indicated students were unfamiliar with self-assembly prior to the study. Students in the tangible model condition used the facets of self-assembly in their open-ended posttest responses more frequently than students in the image condition. In particular, it appears that the dynamic properties of the tangible model may support student understanding of self-assembly in terms of the random and reversible nature of molecular interactions. A tentative difference was observed in response complexity, with more multifaceted responses in the tangible model condition.

  11. Opal-like Multicolor Appearance of Self-Assembled Photonic Array.

    PubMed

    Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud

    2018-06-20

    Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.

  12. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  13. Construction of energy transfer pathways self-assembled from DNA-templated stacks of anthracene.

    PubMed

    Iwaura, Rika; Yui, Hiroharu; Someya, Yuu; Ohnishi-Kameyama, Mayumi

    2014-01-05

    We describe optical properties of anthracene stacks formed from single-component self-assembly of thymidylic acid-appended anthracene 2,6-bis[5-(3'-thymidylic acid)pentyloxy] anthracene (TACT) and the binary self-assembly of TACT and complementary 20-meric oligoadenylic acid (TACT/dA20) in an aqueous buffer. UV-Vis and emission spectra for the single-component self-assembly of TACT and the binary self-assembly of TACT/dA20 were very consistent with stacked acene moieties in both self-assemblies. Interestingly, time-resolved fluorescence spectra from anthracene stacks exhibited very different features of the single-component and binary self-assemblies. In the single-component self-assembly of TACT, a dynamic Stokes shift (DSS) and relatively short fluorescence lifetime (τ=0.35ns) observed at around 450nm suggested that the anthracene moieties were flexible. Moreover, a broad emission at 530nm suggested the formation of an excited dimer (excimer). In the binary self-assembly of TACT/dA20, we detected a broad, red-shifted emission component at 534nm with a lifetime (τ=0.4ns) shorter than that observed in the TACT single-component self-assembly. Combining these results with the emission spectrum of the binary self-assembly of TACT/5'-HEX dA20, we concluded that the energy transfer pathway was constructed by columnar anthracene stacks formed from the DNA-templated self-assembly of TACT. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Controlling Self-Assembly in Al(110) Homoepitaxy

    NASA Astrophysics Data System (ADS)

    Tiwary, Yogesh; Fichthorn, Kristen

    2010-03-01

    Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).

  15. Mechanisms of kinetic trapping in self-assembly and phase transformation

    PubMed Central

    Hagan, Michael F.; Elrad, Oren M.; Jack, Robert L.

    2011-01-01

    In self-assembly processes, kinetic trapping effects often hinder the formation of thermodynamically stable ordered states. In a model of viral capsid assembly and in the phase transformation of a lattice gas, we show how simulations in a self-assembling steady state can be used to identify two distinct mechanisms of kinetic trapping. We argue that one of these mechanisms can be adequately captured by kinetic rate equations, while the other involves a breakdown of theories that rely on cluster size as a reaction coordinate. We discuss how these observations might be useful in designing and optimising self-assembly reactions. PMID:21932884

  16. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  17. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  18. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  19. Rapid self-assembly of DNA on a microfluidic chip

    PubMed Central

    Zheng, Yao; Footz, Tim; Manage, Dammika P; Backhouse, Christopher James

    2005-01-01

    Background DNA self-assembly methods have played a major role in enabling methods for acquiring genetic information without having to resort to sequencing, a relatively slow and costly procedure. However, even self-assembly processes tend to be very slow when they rely upon diffusion on a large scale. Miniaturisation and integration therefore hold the promise of greatly increasing this speed of operation. Results We have developed a rapid method for implementing the self-assembly of DNA within a microfluidic system by electrically extracting the DNA from an environment containing an uncharged denaturant. By controlling the parameters of the electrophoretic extraction and subsequent analysis of the DNA we are able to control when the hybridisation occurs as well as the degree of hybridisation. By avoiding off-chip processing or long thermal treatments we are able to perform this hybridisation rapidly and can perform hybridisation, sizing, heteroduplex analysis and single-stranded conformation analysis within a matter of minutes. The rapidity of this analysis allows the sampling of transient effects that may improve the sensitivity of mutation detection. Conclusions We believe that this method will aid the integration of self-assembly methods upon microfluidic chips. The speed of this analysis also appears to provide information upon the dynamics of the self-assembly process. PMID:15717935

  20. Directed Self-Assembly of Star-Block Copolymers by Topographic Nanopatterns through Nucleation and Growth Mechanism.

    PubMed

    Krishnan, Mohan Raj; Lu, Kai-Yuan; Chiu, Wen-Yu; Chen, I-Chen; Lin, Jheng-Wei; Lo, Ting-Ya; Georgopanos, Prokopios; Avgeropoulos, Apostolos; Lee, Ming-Chang; Ho, Rong-Ming

    2018-04-01

    Exploring the ordering mechanism and dynamics of self-assembled block copolymer (BCP) thin films under confined conditions are highly essential in the application of BCP lithography. In this study, it is aimed to examine the self-assembling mechanism and kinetics of silicon-containing 3-arm star-block copolymer composed of polystyrene (PS) and poly(dimethylsiloxane) blocks as nanostructured thin films with perpendicular cylinders and controlled lateral ordering by directed self-assembly using topographically patterned substrates. The ordering process of the star-block copolymer within fabricated topographic patterns with PS-functionalized sidewall can be carried out through the type of secondary (i.e., heterogeneous) nucleation for microphase separation initiated from the edge and/or corner of the topographic patterns, and directed to grow as well-ordered hexagonally packed perpendicular cylinders. The growth rate for the confined microphase separation is highly dependent upon the dimension and also the geometric texture of the preformed pattern. Fast self-assembly for ordering of BCP thin film can be achieved by lowering the confinement dimension and also increasing the concern number of the preformed pattern, providing a new strategy for the design of BCP lithography from the integration of top-down and bottom-up approaches. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Polymeric amphiphile branching leads to rare nanodisc shaped planar self-assemblies.

    PubMed

    Qu, Xiaozhong; Omar, Leila; Le, Thi Bich Hang; Tetley, Laurence; Bolton, Katherine; Chooi, Kar Wai; Wang, Wei; Uchegbu, Ijeoma F

    2008-09-16

    Self-assembly is fundamental to the biological function of cells and the fabrication of nanomaterials. However, the origin of the shape of various self-assemblies, such as the shape of cells, is not altogether clear. Polymeric, oligomeric, or low molecular weight amphiphiles are a rich source of nanomaterials, and controlling their self-assembly is the route to tailored nanosystems with specific functionalities. Here, we provide direct evidence that a particular molecular architecture, polymeric branching, leads to a rare form of self-assembly, the planar nanodisc. Cholesterol containing self-assemblies formed from amphiphilic linear or branched cetyl poly(ethylenimine) (Mn approximately 1000 Da) or amphiphilic cetyl poly(propylenimine) dendrimer derivatives (Mn approximately 2000 Da) show that branching, by reducing the hydrophilic headgroup area, alters the shape of the self-assemblies transforming closed 60 nm spherical bilayer vesicles to rare 50 nm x 10 nm planar bilayer discs. Increasing the hydrophilic headgroup area, by the inclusion of methoxy poly(ethylene glycol) moieties into the amphiphilic headgroup, transforms the planar discs to 100 nm spherical bilayer vesicles. This study provides insight into the key role played by molecular shape on molecular self-organization into rare nanodiscs.

  2. Self-assembled liposomal nanoparticles in photodynamic therapy

    PubMed Central

    Sadasivam, Magesh; Avci, Pinar; Gupta, Gaurav K.; Lakshmanan, Shanmugamurthy; Chandran, Rakkiyappan; Huang, Ying-Ying; Kumar, Raj; Hamblin, Michael R.

    2013-01-01

    Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT. PMID:24348377

  3. Integrating DNA strand-displacement circuitry with DNA tile self-assembly

    PubMed Central

    Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik

    2013-01-01

    DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381

  4. Balancing the intermolecular forces in peptide amphiphiles for controlling self-assembly transitions.

    PubMed

    Buettner, C J; Wallace, A J; Ok, S; Manos, A A; Nicholl, M J; Ghosh, A; Tweedle, M F; Goldberger, J E

    2017-06-21

    While the influence of alkyl chain length and headgroup size on self-assembly behaviour has been well-established for simple surfactants, the rational control over the pH- and concentration-dependent self-assembly behaviour in stimuli responsive peptides remains an elusive goal. Here, we show that different amphiphilic peptides can have similar self-assembly phase diagrams, providing the relative strengths of the attractive and repulsive forces are balanced. Using palmitoyl-YYAAEEEEK(DO3A:Gd)-NH 2 and palmitoyl-YAAEEEEK(DO3A:Gd)-NH 2 as controls, we show that reducing hydrophobic attractive forces through fewer methylene groups in the alkyl chain will lead to a similar self-assembly phase diagram as increasing the electrostatic repulsive forces via the addition of a glutamic acid residue. These changes allow creation of self-assembled MRI vehicles with slightly different micelle and nanofiber diameters but with minimal changes in the spin-lattice T 1 relaxivity. These findings reveal a powerful strategy to design self-assembled vehicles with different sizes but with similar self-assembly profiles.

  5. Modeling Protein Self Assembly

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton Buck; Hull, Elizabeth

    2004-01-01

    Understanding the structure and function of proteins is an important part of the standards-based science curriculum. Proteins serve vital roles within the cell and malfunctions in protein self assembly are implicated in degenerative diseases. Experience indicates that this topic is a difficult one for many students. We have found that the concept…

  6. Self-Assembly of Supramolecular Composites under Cylindrical Confinement

    NASA Astrophysics Data System (ADS)

    Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting

    2014-03-01

    Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.

  7. Directed Self-Assembly of Diblock Copolymer Thin Films on Prepatterned Metal Nanoarrays.

    PubMed

    Chang, Tongxin; Huang, Haiying; He, Tianbai

    2016-01-01

    The sequential layer by layer self-assembly of block copolymer (BCP) nanopatterns is an effective approach to construct 3D nanostructures. Here large-scale highly ordered metal nano-arrays prepared from solvent annealed thin films of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) diblock copolymer are used to direct the assembly of the same BCP. The influence of initial loading concentration of metal precursor, the type of metal nanoparticle (gold, platinum, and silver), and the nanoparticle-substrate interaction on the directed assembly behavior of the upper BCP layer have been focused. It is found that the upper BCP film can be completely directed by the gold nanoarray with P2VP domain exclusively located between two adjacent gold nanowires or nanodots, which behaves the same way as on the platinum nanoarray. While the silver nanoarray can be destroyed during the upper BCP self-assembly with the silver nanoparticles assembled into the P2VP domain. Based on the discussions of the surface energy of nanoparticles and the interplay between nanoparticle-substrate interaction and nanoparticle-polymer interaction, it is concluded that the effect of immobilization of nanoparticles on the substrate, together with entropy effect to minimize the energetically unfavorable chain stretching contributes to the most effective alignment between each layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Self-assembling peptide-based building blocks in medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less

  9. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  10. Nanosystem self-assembly pathways discovered via all-atom multiscale analysis.

    PubMed

    Pankavich, Stephen D; Ortoleva, Peter J

    2012-07-26

    We consider the self-assembly of composite structures from a group of nanocomponents, each consisting of particles within an N-atom system. Self-assembly pathways and rates for nanocomposites are derived via a multiscale analysis of the classical Liouville equation. From a reduced statistical framework, rigorous stochastic equations for population levels of beginning, intermediate, and final aggregates are also derived. It is shown that the definition of an assembly type is a self-consistency criterion that must strike a balance between precision and the need for population levels to be slowly varying relative to the time scale of atomic motion. The deductive multiscale approach is complemented by a qualitative notion of multicomponent association and the ensemble of exact atomic-level configurations consistent with them. In processes such as viral self-assembly from proteins and RNA or DNA, there are many possible intermediates, so that it is usually difficult to predict the most efficient assembly pathway. However, in the current study, rates of assembly of each possible intermediate can be predicted. This avoids the need, as in a phenomenological approach, for recalibration with each new application. The method accounts for the feedback across scales in space and time that is fundamental to nanosystem self-assembly. The theory has applications to bionanostructures, geomaterials, engineered composites, and nanocapsule therapeutic delivery systems.

  11. Self-Assembly of Nanostructured Electronic Devices (454th Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Black, Charles

    2009-12-16

    Given suitable atmospheric conditions, water vapor from the air will crystallize into beautiful structures: snowflakes. Nature provides many other examples of spontaneous organization of materials into regular patterns, which is a process known as self-assembly. Since self-assembly works at all levels, it can be a useful tool for organizing materials on the nanometer scale. In particular, self-assembly provides a precise method for designing materials with improved electronic properties, thereby enabling advances in semiconductor electronics and solar devices. On Wednesday, December 16, at 4 p.m. in Berkner Hall, Charles Black of the Center for Functional Nanomaterials (CFN) will explore this topicmore » during the 454th Brookhaven Lecture, entitled “Self-Assembly of Nanostructured Electronic Devices.” Refreshments will be offered before and after the lecture. To attend this open-to-the-public event, visitors to the Lab ages 16 and older must present photo ID at the Main Gate. During this talk, Dr. Black will discuss examples of how self-assembly is being integrated into semiconductor microelectronics, as advances in the ability to define circuit elements at higher resolution have fueled more than 40 years of performance improvements. Self-assembly also promises advances in the performance of solar devices; thus he will describe his group’s recent results with nanostructured photovoltaic devices.« less

  12. Micellar Self-Assembly of Recombinant Resilin-/Elastin-Like Block Copolypeptides.

    PubMed

    Weitzhandler, Isaac; Dzuricky, Michael; Hoffmann, Ingo; Garcia Quiroz, Felipe; Gradzielski, Michael; Chilkoti, Ashutosh

    2017-08-14

    Reported here is the synthesis of perfectly sequence defined, monodisperse diblock copolypeptides of hydrophilic elastin-like and hydrophobic resilin-like polypeptide blocks and characterization of their self-assembly as a function of structural parameters by light scattering, cryo-TEM, and small-angle neutron scattering. A subset of these diblock copolypeptides exhibit lower critical solution temperature and upper critical solution temperature phase behavior and self-assemble into spherical or cylindrical micelles. Their morphologies are dictated by their chain length, degree of hydrophilicity, and hydrophilic weight fraction of the ELP block. We find that (1) independent of the length of the corona-forming ELP block there is a minimum threshold in the length of the RLP block below which self-assembly does not occur, but that once that threshold is crossed, (2) the RLP block length is a unique molecular parameter to independently tune self-assembly and (3) increasing the hydrophobicity of the corona-forming ELP drives a transition from spherical to cylindrical morphology. Unlike the self-assembly of purely ELP-based block copolymers, the self-assembly of RLP-ELPs can be understood by simple principles of polymer physics relating hydrophilic weight fraction and polymer-polymer and polymer-solvent interactions to micellar morphology, which is important as it provides a route for the de novo design of desired nanoscale morphologies from first principles.

  13. Self-assembly of tetravalent Goldberg polyhedra from 144 small components

    NASA Astrophysics Data System (ADS)

    Fujita, Daishi; Ueda, Yoshihiro; Sato, Sota; Mizuno, Nobuhiro; Kumasaka, Takashi; Fujita, Makoto

    2016-12-01

    Rational control of the self-assembly of large structures is one of the key challenges in chemistry, and is believed to become increasingly difficult and ultimately impossible as the number of components involved increases. So far, it has not been possible to design a self-assembled discrete molecule made up of more than 100 components. Such molecules—for example, spherical virus capsids—are prevalent in nature, which suggests that the difficulty in designing these very large self-assembled molecules is due to a lack of understanding of the underlying design principles. For example, the targeted assembly of a series of large spherical structures containing up to 30 palladium ions coordinated by up to 60 bent organic ligands was achieved by considering their topologies. Here we report the self-assembly of a spherical structure that also contains 30 palladium ions and 60 bent ligands, but belongs to a shape family that has not previously been observed experimentally. The new structure consists of a combination of 8 triangles and 24 squares, and has the symmetry of a tetravalent Goldberg polyhedron. Platonic and Archimedean solids have previously been prepared through self-assembly, as have trivalent Goldberg polyhedra, which occur naturally in the form of virus capsids and fullerenes. But tetravalent Goldberg polyhedra have not previously been reported at the molecular level, although their topologies have been predicted using graph theory. We use graph theory to predict the self-assembly of even larger tetravalent Goldberg polyhedra, which should be more stable, enabling another member of this polyhedron family to be assembled from 144 components: 48 palladium ions and 96 bent ligands.

  14. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    PubMed

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  15. Self-assembly of convex particles on spherocylindrical surfaces.

    PubMed

    Lázaro, Guillermo R; Dragnea, Bogdan; Hagan, Michael F

    2018-05-25

    The precise control of assembly and packing of proteins and colloids on curved surfaces has fundamental implications in nanotechnology. In this paper, we describe dynamical simulations of the self-assembly of conical subunits around a spherocylindrical template, and a continuum theory for the bending energy of a triangular lattice with spontaneous curvature on a surface with arbitrary curvature. We find that assembly depends sensitively on mismatches between subunit spontaneous curvature and the mean curvature of the template, as well as anisotropic curvature of the template (mismatch between the two principal curvatures). Our simulations predict assembly morphologies that closely resemble those observed in experiments in which virus capsid proteins self-assemble around metal nanorods. Below a threshold curvature mismatch, our simulations identify a regime of optimal assembly leading to complete, symmetrical particles. Outside of this regime we observe defective particles, whose morphologies depend on the degree of curvature mismatch. To learn how assembly is affected by the nonuniform curvature of a spherocylinder, we also study the simpler cases of assembly around spherical and cylindrical cores. Our results show that both the intrinsic (Gaussian) and extrinsic (mean) curvatures of a template play significant roles in guiding the assembly of anisotropic subunits, providing a rich design space for the formation of nanoscale materials.

  16. Self-assembly processes in the prebiotic environment

    PubMed Central

    Deamer, David; Singaram, Sara; Rajamani, Sudha; Kompanichenko, Vladimir; Guggenheim, Stephen

    2006-01-01

    An important question guiding research on the origin of life concerns the environmental conditions where molecular systems with the properties of life first appeared on the early Earth. An appropriate site would require liquid water, a source of organic compounds, a source of energy to drive polymerization reactions and a process by which the compounds were sufficiently concentrated to undergo physical and chemical interactions. One such site is a geothermal setting, in which organic compounds interact with mineral surfaces to promote self-assembly and polymerization reactions. Here, we report an initial study of two geothermal sites where mixtures of representative organic solutes (amino acids, nucleobases, a fatty acid and glycerol) and phosphate were mixed with high-temperature water in clay-lined pools. Most of the added organics and phosphate were removed from solution with half-times measured in minutes to a few hours. Analysis of the clay, primarily smectite and kaolin, showed that the organics were adsorbed to the mineral surfaces at the acidic pH of the pools, but could subsequently be released in basic solutions. These results help to constrain the range of possible environments for the origin of life. A site conducive to self-assembly of organic solutes would be an aqueous environment relatively low in ionic solutes, at an intermediate temperature range and neutral pH ranges, in which cyclic concentration of the solutes can occur by transient dry intervals. PMID:17008220

  17. Self-assembled three-dimensional chiral colloidal architecture

    NASA Astrophysics Data System (ADS)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  18. Self-assembly and photoluminescence evolution of hydrophilic and hydrophobic quantum dots in sol–gel processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn; Matras-Postolek, Katarzyna; Song, Xueling

    2015-10-15

    Graphical abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL) wavelength were assembled into various morphologies including chain, hollow spheres, fibers, and ring structures through sol–gel processes. The PL properties during assembly as investigated. - Highlights: • Highly luminescent quantum dots (QDs) were synthesized from several ligands. • The evolution of PL in self-assembly via sol–gel processes was investigated. • CdTe QDs were assembled into a chain by controlling hydrolysis and condensation reactions. • Hollow spheres, fibers, and ring structures were created via CdSe/ZnS QDs in sol–gel processes. - Abstract: Highly luminescent quantum dots (QDs) with tunable photoluminescence (PL)more » wavelength were synthesized from several ligands to investigate the PL evolution in QD self-assembly via sol–gel processes. After ligand exchange, CdTe QDs were assembled into a chain by controlling the hydrolysis and condensation reaction of 3-mercaptopropyl-trimethoxysilane. The chain was then coated with a SiO{sub 2} shell from tetraethyl orthosilicate (TEOS). Hollow spheres, fibers, and ring structures were created from CdSe/ZnS QDs via various sol–gel processes. CdTe QDs revealed red-shifted and narrowed PL spectrum after assembly compared with their initial one. In contrast, the red-shift of PL spectra of CdSe/ZnS QDs is small. By optimizing experimental conditions, SiO{sub 2} spheres with multiple CdSe/ZnS QDs were fabricated using TEOS and MPS. The QDs in these SiO{sub 2} spheres retained their initial PL properties. This result is useful for application because of their high stability and high PL efficiency of 33%.« less

  19. Ferromagnetic nanowires: Field-induced self-assembly, magnetotransport and biological applications

    NASA Astrophysics Data System (ADS)

    Tanase, Monica

    In this dissertation, a series of experiments on magnetic nanowires are described. Magnetic nanowires suspended in fluid solutions can be assembled and ordered by taking advantage of their large shape anisotropy. Magnetic manipulation and assembly techniques were developed, using electrodeposited Ni nanowires. Preorienting nanowires in a small magnetic field induced their self-assembly in continuous chains. A new technique of magnetic trapping allowed capture of single nanowires from fluid suspension on lithographically fabricated micromagnets. As described herein, the presence of an external magnetic field plays a fundamental role in all fluid assembly methods used. The dynamics of both chaining and trapping processes is described quantitatively in terms of the interplay of magnetic forces and fluid drag at low Reynolds number. Lithographic methods for addressing single nanowires for transport characterization were developed. Magnetotransport measurements were performed on individual straight and bent PtNiPt nanowires. The Pt end segments provided an oxide-free interface to the magnetic central segment. In straight nanowires, domain reversal was observed to occur via curling mode initiated in a small nucleation volume. Magnetotransport in bent nanowires allowed the investigation of a domain wall trapped at the bend. Magnetic trapping of nanowires on pre-fabricated electrodes was adapted as a successful alternative contacting technique to lithography. The self-assembly and manipulation techniques were adapted for manipulation of cells as nanowires were found to bind to cells through nonspecific adhesion mechanisms. Ni nanowires were found to outperform superparamagnetic beads in magnetic cell separations. Additionally, the large remnant magnetization of the nanowires allowed for low-field manipulation techniques. Self-assembled chains of cells were formed and single cells were localized on substrates patterned with micromagnets. A fluid flow method was developed to

  20. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  1. Multilayer block copolymer meshes by orthogonal self-assembly

    PubMed Central

    Tavakkoli K. G., Amir; Nicaise, Samuel M.; Gadelrab, Karim R.; Alexander-Katz, Alfredo; Ross, Caroline A.; Berggren, Karl K.

    2016-01-01

    Continued scaling-down of lithographic-pattern feature sizes has brought templated self-assembly of block copolymers (BCPs) into the forefront of nanofabrication research. Technologies now exist that facilitate significant control over otherwise unorganized assembly of BCP microdomains to form both long-range and locally complex monolayer patterns. In contrast, the extension of this control into multilayers or 3D structures of BCP microdomains remains limited, despite the possible technological applications in next-generation devices. Here, we develop and analyse an orthogonal self-assembly method in which multiple layers of distinct-molecular-weight BCPs naturally produce nanomesh structures of cylindrical microdomains without requiring layer-by-layer alignment or high-resolution lithographic templating. The mechanisms for orthogonal self-assembly are investigated with both experiment and simulation, and we determine that the control over height and chemical preference of templates are critical process parameters. The method is employed to produce nanomeshes with the shapes of circles and Y-intersections, and is extended to produce three layers of orthogonally oriented cylinders. PMID:26796218

  2. Self-Assembly of Two-Dimensional Patchy Colloidal Dumbbells

    NASA Astrophysics Data System (ADS)

    Nakamura, Kanji; Sato, Masahide

    2018-06-01

    We study the self-assembly of two-dimensional patchy colloidal dumbbells, which are composed of attractive and repulsive circles. The shape of a colloidal dumbbell is characterized by the ratio of the diameters of the two circles forming it, q, and the dimensionless distance between the centers of mass of the two circles, l. We carry out Monte Carlo simulations and show that various self-assembled structures, micelles, elongated micelles, straight string, a meshlike structure, and large clusters with voids, are formed by changing the combination of q and l. q represents the steric effect of the repulsive part of colloidal dumbbells. l represents the anisotropy of the particle shape and increasing the periphery of attractive part. From our simulations, we find that the shapes of self-assembled structures are more sensitive to q than to l.

  3. Lag periods during the self-assembly of {Mo(72)Fe(30)} macroions: connection to the virus capsid formation process.

    PubMed

    Zhang, Jie; Li, Dong; Liu, Guang; Glover, Kerney Jebrell; Liu, Tianbo

    2009-10-28

    The kinetic properties of the self-assembly of hydrophilic Keplerate-type polyoxometalate (POM) {Mo(72)Fe(30)} macroanions into single-layer, vesicle-like blackberry structures in solutions were monitored by the static and dynamic laser light scattering techniques. In the presence of additional electrolytes, an obvious lag period at the initial stage of self-assembly was observed, followed by a fast increase of the scattered intensity. The whole kinetic curve is sigmoidal with a lag phase. A two-step nucleation-growth mechanism is proposed to explain this lag phase: the {Mo(72)Fe(30)} macroanions slowly associate into oligomers (mostly dimers), which are the thermodynamically unfavorable intermediates, at the initial stage; once the oligomers reach a critical concentration, the blackberry formation process is accelerated. Analytical ultracentrifugation (AUC) was used to confirm the oligomeric state in {Mo(72)Fe(30)} solution during the lag period. The length of the lag period is dependent on temperature, ionic strength, and the valent states of the additional salts, as well as the solvent content. The kinetics (including the lag period) of the blackberry formation of the {Mo(72)Fe(30)} macroanions show similarities to the self-assembly of virus capsid proteins (which are also soluble macroions) into spherical capsid shells, suggesting possible connections between the self-assembly behaviors of inorganic species and biological macromolecules.

  4. Self-assembling DNA nanotubes to connect molecular landmarks

    NASA Astrophysics Data System (ADS)

    Mohammed, Abdul M.; Šulc, Petr; Zenk, John; Schulman, Rebecca

    2017-05-01

    Within cells, nanostructures are often organized using local assembly rules that produce long-range order. Because these rules can take into account the cell's current structure and state, they can enable complexes, organelles or cytoskeletal structures to assemble around existing cellular components to form architectures. Although many methods for self-assembling biomolecular nanostructures have been developed, few can be programmed to assemble structures whose form depends on the identity and organization of structures already present in the environment. Here, we demonstrate that DNA nanotubes can grow to connect pairs of molecular landmarks with different separation distances and relative orientations. DNA tile nanotubes nucleate at these landmarks and grow while their free ends diffuse. The nanotubes can then join end to end to form stable connections, with unconnected nanotubes selectively melted away. Connections form between landmark pairs separated by 1-10 µm in more than 75% of cases and can span a surface or three dimensions. This point-to-point assembly process illustrates how self-assembly kinetics can be designed to produce structures with a desired physical property rather than a specific shape.

  5. Microemulsion based approach for nanospheres assembly into anisotropic nanostructures of NiMnO3 and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Jha, Menaka; Kumar, Sandeep; Garg, Neha; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K.

    2018-02-01

    The present study focuses on synthesis of anisotropic nanostructures of nickel manganese oxide (NiMnO3) obtained by thermal decomposition of nanocrystalline nickel manganese oxalate precursor, Ni0.5Mn0.5(C2O4)·2H2O which crystallized as nanorods. The synthesis of the oxalate precursor has been carried out via microemulsion-mediated process with cationic and non-ionic surfactants. The microemulsion led to reverse micelles, and the film flexibility of the micelle in presence of non-ionic surfactant (Tergitol) was reduced by increasing the chain length of the co-surfactant (1-butanol, 1-hexanol and 1-octanol) which led to the increase in reaction rate and hence increase in the aspect ratio of the nickel manganese oxalate by up to four times. However, in the presence of cationic surfactant, highly uniform nickel manganese oxalate nanorods were obtained. Further, the decomposition of the oxalate precursor was optimized to maintain the anisotropy of the rods of ternary metal oxide (NiMnO3). An electron microscopy study showed that the rods were made up of an assembly of ultrafine nanospheres. The NiMnO3 nanostructures were all ferrimagnetic with Curie temperature ranging between 437 and 467 K showing increasing saturation magnetization with increase in aspect ratio of the nanorods.

  6. Crystal-Structure-Guided Design of Self-Assembling RNA Nanotriangles.

    PubMed

    Boerneke, Mark A; Dibrov, Sergey M; Hermann, Thomas

    2016-03-14

    RNA nanotechnology uses RNA structural motifs to build nanosized architectures that assemble through selective base-pair interactions. Herein, we report the crystal-structure-guided design of highly stable RNA nanotriangles that self-assemble cooperatively from short oligonucleotides. The crystal structure of an 81 nucleotide nanotriangle determined at 2.6 Å resolution reveals the so-far smallest circularly closed nanoobject made entirely of double-stranded RNA. The assembly of the nanotriangle architecture involved RNA corner motifs that were derived from ligand-responsive RNA switches, which offer the opportunity to control self-assembly and dissociation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    PubMed

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  8. Polymer adsorption-driven self-assembly of nanostructures.

    PubMed

    Chakraborty, A K; Golumbfskie, A J

    2001-01-01

    Driven by prospective applications, there is much interest in developing materials that can perform specific functions in response to external conditions. One way to design such materials is to create systems which, in response to external inputs, can self-assemble to form structures that are functionally useful. This review focuses on the principles that can be employed to design macromolecules that when presented with an appropriate two-dimensional surface, will self-assemble to form nanostructures that may be functionally useful. We discuss three specific examples: (a) biomimetic recognition between polymers and patterned surfaces. (b) control and manipulation of nanomechanical motion generated by biopolymer adsorption and binding, and (c) creation of patterned nanostructuctures by exposing molten diblock copolymers to patterned surfaces. The discussion serves to illustrate how polymer sequence can be manipulated to affect self-assembly characteristics near adsorbing surfaces. The focus of this review is on theoretical and computational work aimed toward elucidating the principles underlying the phenomena pertinent to the three topics noted above. However, synergistic experiments are also described in the appropriate context.

  9. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  10. Composition and method for self-assembly and mineralization of peptide amphiphiles

    DOEpatents

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Houston, TX

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  11. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  12. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    NASA Astrophysics Data System (ADS)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  13. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  14. Creating Prebiotic Sanctuary: Self-Assembling Supramolecular Peptide Structures Bind and Stabilize RNA

    NASA Astrophysics Data System (ADS)

    Carny, Ohad; Gazit, Ehud

    2011-04-01

    Any attempt to uncover the origins of life must tackle the known `blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.

  15. Creating prebiotic sanctuary: self-assembling supramolecular Peptide structures bind and stabilize RNA.

    PubMed

    Carny, Ohad; Gazit, Ehud

    2011-04-01

    Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.

  16. Supramolecular domains in mixed peptide self-assembled monolayers on gold nanoparticles.

    PubMed

    Duchesne, Laurence; Wells, Geoff; Fernig, David G; Harris, Sarah A; Lévy, Raphaël

    2008-09-01

    Self-organization in mixed self-assembled monolayers of small molecules provides a route towards nanoparticles with complex molecular structures. Inspired by structural biology, a strategy based on chemical cross-linking is introduced to probe proximity between functional peptides embedded in a mixed self-assembled monolayer at the surface of a nanoparticle. The physical basis of the proximity measurement is a transition from intramolecular to intermolecular cross-linking as the functional peptides get closer. Experimental investigations of a binary peptide self-assembled monolayer show that this transition happens at an extremely low molar ratio of the functional versus matrix peptide. Molecular dynamics simulations of the peptide self-assembled monolayer are used to calculate the volume explored by the reactive groups. Comparison of the experimental results with a probabilistic model demonstrates that the peptides are not randomly distributed at the surface of the nanoparticle, but rather self-organize into supramolecular domains.

  17. Self assembly and shear induced morphologies of asymmetric block copolymers with spherical domains

    NASA Astrophysics Data System (ADS)

    Mandare, Prashant N.

    2007-12-01

    Microphase separated block copolymers have been subject of investigation for past two decades. While most of the work is focused on classical phases of lamellae or cylinders, spherical phases have received less attention. The present study deals with the self-assembly in spherical phases of block copolymers that results into formation of a three-dimensional cubic lattice. A model triblock copolymer with several transition temperatures is chosen. Solidification in this model system results from either the arrangement of nanospheres of minor block on a BCC lattice or by formation of physical network where the nanospheres act as crosslinks. The solid-like behavior is characterized by extremely slow relaxation modes. Long time stress relaxation of the model material was examined to distinguish between the solid and liquid behavior. Stress relaxation data from a conventional rheometer was extended to very long times by using a newly built instrument, Relaxometer. The BCC lattice structure of the material behaves as liquid over long time except at low temperatures where an equilibrium modulus is observed. This long time behavior was extended to low shear rate behavior using steady shear rheology. The zero shear viscosity observed at extremely low shear rates has a very high value that is close to the viscosity calculated from stress relaxation experiments. The steady shear viscosity decreases by several orders of magnitude over a small range of shear rates. SAXS experiments on samples sheared even at very low rates indicated loss of the BCC order that was present in the annealed samples before shearing. In the second part, response of the BCC microstructure to large stress was explored. Shearing at constant rate and with LAOS at low frequencies lead to destruction of BCC lattice. The structure recovers upon cessation of the shear with kinetics similar to the one following thermal quench. Under certain conditions, LAOS leads to formation of monodomain textures. At low

  18. Selective chromogenic detection of thiol-containing biomolecules using carbonaceous nanospheres loaded with silver nanoparticles as carrier.

    PubMed

    Hu, Bo; Zhao, Yang; Zhu, Hai-Zhou; Yu, Shu-Hong

    2011-04-26

    Thiol-containing biomolecules show strong affinity with noble metal nanostructures and could not only stably protect them but also control the self-assembly process of these special nanostructures. A highly selective and sensitive chromogenic detection method has been designed for the low and high molecular weight thiol-containing biomolecules, including cysteine, glutathione, dithiothreitol, and bovine serum albumin, using a new type of carbonaceous nanospheres loaded with silver nanoparticles (Ag NPs) as carrier. This strategy relies upon the place-exchange process between the reporter dyes on the surface of Ag NPs and the thiol groups of thiol-containing biomolecules. The concentration of biomolecules can be determined by monitoring with the fluorescence intensity of reporter dyes dispersed in solution. This new chromogenic assay method could selectively detect these biomolecules in the presence of various other amino acids and monosaccharides and even sensitively detect the thiol-containing biomolecules with different molecular weight, even including proteins.

  19. Multifunctional Self-Assembled Monolayers for Organic Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Cernetic, Nathan

    Organic field effect transistors (OFETs) have the potential to reach commercialization for a wide variety of applications such as active matrix display circuitry, chemical and biological sensing, radio-frequency identification devices and flexible electronics. In order to be commercially competitive with already at-market amorphous silicon devices, OFETs need to approach similar performance levels. Significant progress has been made in developing high performance organic semiconductors and dielectric materials. Additionally, a common route to improve the performance metric of OFETs is via interface modification at the critical dielectric/semiconductor and electrode/semiconductor interface which often play a significant role in charge transport properties. These metal oxide interfaces are typically modified with rationally designed multifunctional self-assembled monolayers. As means toward improving the performance metrics of OFETs, rationally designed multifunctional self-assembled monolayers are used to explore the relationship between surface energy, SAM order, and SAM dipole on OFET performance. The studies presented within are (1) development of a multifunctional SAM capable of simultaneously modifying dielectric and metal surface while maintaining compatibility with solution processed techniques (2) exploration of the relationship between SAM dipole and anchor group on graphene transistors, and (3) development of self-assembled monolayer field-effect transistor in which the traditional thick organic semiconductor is replaced by a rationally designed self-assembled monolayer semiconductor. The findings presented within represent advancement in the understanding of the influence of self-assembled monolayers on OFETs as well as progress towards rationally designed monolayer transistors.

  20. Self assembled materials: design strategies and drug delivery perspectives.

    PubMed

    Verma, Gunjan; Hassan, P A

    2013-10-28

    Self assembly of small molecules in complex supramolecular structures provides a new avenue in the development of materials for drug delivery applications. Owing to the low aqueous solubility of various drugs, an effective delivery system is often required to reach sufficient drug bioavailability and/or to facilitate clinical use. Micelles, amphiphilic gels, vesicles (liposomes), nanodisks, cubosomes, colloidosomes, tubules, microemulsions, lipid particles, polyelectrolyte capsules etc. are some of the intriguing structures formed via self assembly. As well as enabling improved solubilization, such materials can be tuned to offer a range of other advantages, including controlled or stimuli sensitive drug release, protection from drug hydrolysis and chemical or enzymatic degradation, a reduction in toxicity, improvement of drug availability, prevention of RES uptake or selective targeting to organelles etc. Such multiple functionalities can be brought together by self assembly of different functional molecules. This route offers a cost effective means of developing drug delivery carriers tailored to specific needs. Our current understanding of the microstructure evolution of self assembled materials will go a long way towards designing/selecting molecules to create well defined structures. We believe that most of the potential resources mentioned above are untapped and that there is a need to further strengthen research in this area to fully exploit their potential. Selective cross linking of core or shell, stimuli sensitive amphiphiles, prodrug amphiphiles, antibody coupled amphiphiles etc. are only some of the new approaches for the development of effective drug delivery systems via self assembly.

  1. Self-assembled tunable networks of sticky colloidal particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  2. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity

    PubMed Central

    Corbin, Perry S.; Lawless, Laurence J.; Li, Zhanting; Ma, Yuguo; Witmer, Melissa J.; Zimmerman, Steven C.

    2002-01-01

    Hydrogen bond-mediated self-assembly is a powerful strategy for creating nanoscale structures. However, little is known about the fidelity of assembly processes that must occur when similar and potentially competing hydrogen-bonding motifs are present. Furthermore, there is a continuing need for new modules and strategies that can amplify the relatively weak strength of a hydrogen bond to give more stable assemblies. Herein we report quantitative complexation studies on a ureidodeazapterin-based module revealing an unprecedented stability for dimers of its self-complementary acceptoracceptor-donor-donor (AADD) array. Linking two such units together with a semirigid spacer that carries a first-, second-, or third-generation Fréchet-type dendron affords a ditopic structure programmed to self assemble. The specific structure that is formed depends both on the size of the dendron and the solvent, but all of the assemblies have exceptionally high stability. The largest discrete nanoscale assembly is a hexamer with a molecular mass of about 17.8 kDa. It is stabilized by 30 hydrogen bonds, including six AADD⋅DDAA contacts. The hexamer forms and is indefinitely stable in the presence of a hexamer containing six ADD⋅DAA hydrogen-bonding arrays. PMID:11917113

  3. Minimalist Prion-Inspired Polar Self-Assembling Peptides.

    PubMed

    Díaz-Caballero, Marta; Navarro, Susanna; Fuentes, Isabel; Teixidor, Francesc; Ventura, Salvador

    2018-06-04

    Nature provides copious examples of self-assembling supramolecular nanofibers. Among them, amyloid structures have found amazing applications as advanced materials in fields such as biomedicine and nanotechnology. Prions are a singular subset of proteins able to switch between a soluble conformation and an amyloid state. The ability to transit between these two conformations is encoded in the so-called prion domains (PrDs), which are long and disordered regions of low complexity, enriched in polar and uncharged amino acids such as Gln, Asn, Tyr, Ser, and Gly. The polar nature of PrDs results in slow amyloid formation, which allows kinetic control of fiber assembly. This approach has been exploited for fabrication of multifunctional materials because in contrast to most amyloids, PrDs lack hydrophobic stretches that can nucleate their aggregation, their assembly depends on the establishment of a large number of weak interactions along the complete domain. The length and low complexity of PrDs make their chemical synthesis for applied purposed hardly affordable. Here, we designed four minimalist polar binary patterned peptides inspired in PrDs, which include the [Q/N/G/S]-Y-[Q/N/G/S] motif frequently observed in these domains: NYNYNYN, QYQYQYQ, SYSYSYS, and GYGYGYG. Despite their small size, they all recapitulate the properties of full-length PrDs, self-assembling into nontoxic amyloids under physiological conditions. Thus, they constitute small building blocks for the construction of tailored prion-inspired nanostructures. We exploited Tyr residues in these peptides to generate highly stable dityrosine cross-linked assemblies for the immobilization of metal nanoparticles in the fibrils surface and to develop an electrocatalytic amyloid scaffold. Moreover, we show that the shorter and more polar NYNNYN, QYQQYQ, and SYSSYS hexapeptides also self-assemble into amyloid-like structures, consistent with the presence of these tandem motifs in human prion-like proteins.

  4. Self-Assembly of Nanoclusters into Mono-, Few-, and Multilayered Sheets via Dipole-Induced Asymmetric van der Waals Attraction.

    PubMed

    Wu, Zhennan; Liu, Jiale; Li, Yanchun; Cheng, Ziyi; Li, Tingting; Zhang, Hao; Lu, Zhongyuan; Yang, Bai

    2015-06-23

    Two-dimensional (2D) nanomaterials possessing regular layered structures and versatile chemical composition are highly expected in many applications. Despite the importance of van der Waals (vdW) attraction in constructing and maintaining layered structures, the origin of 2D anisotropy is not fully understood, yet. Here, we report the 2D self-assembly of ligand-capped Au15 nanoclusters into mono-, few-, and multilayered sheets in colloidal solution. Both the experimental results and computer simulation reveal that the 2D self-assembly is initiated by 1D dipolar attraction common in nanometer-sized objects. The dense 1D attachment of Au15 leads to a redistribution of the surface ligands, thus generating asymmetric vdW attraction. The deliberate control of the coordination of dipolar and vdW attraction further allows to manipulate the thickness and morphologies of 2D self-assembly architectures.

  5. Self-assembly of cinnamic acid-capped gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wei, Gang; Sun, Lanlan; Liu, Zhiguo; Song, Yonghai; Yang, Tao; Sun, Yujing; Guo, Cunlan; Li, Zhuang

    2006-06-01

    In this work, a new capping agent, cinnamic acid (CA) was used to synthesize Au nanoparticles (NPs) under ambient conditions. The size of the NPs can be controlled by adjusting the concentration of reductant (in our experiment sodium borohydride was used) or CA. The CA-stabilized Au NPs can self-assemble into 'nanowire-like' or 'pearl-necklace-like' nanostructures by adjusting the molar ratio of CA to HAuCl4 or by tuning the pH value of the Au colloidal solution. The process of Au NPs self-assembly was investigated by UV-vis spectroscopy and transmission electron microscopy. The results reveal that the induced dipole-dipole interaction is the driving force of Au NP linear assemblies.

  6. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery.

    PubMed

    Habibi, Neda; Kamaly, Nazila; Memic, Adnan; Shafiee, Hadi

    2016-02-01

    Self-assembly of peptides can yield an array of well-defined nanostructures that are highly attractive nanomaterials for many biomedical applications such as drug delivery. Some of the advantages of self-assembled peptide nanostructures over other delivery platforms include their chemical diversity, biocompatibility, high loading capacity for both hydrophobic and hydrophilic drugs, and their ability to target molecular recognition sites. Furthermore, these self-assembled nanostructures could be designed with novel peptide motifs, making them stimuli-responsive and achieving triggered drug delivery at disease sites. The goal of this work is to present a comprehensive review of the most recent studies on self-assembled peptides with a focus on their "smart" activity for formation of targeted and responsive drug-delivery carriers.

  7. Directed Self-Assembly of Gradient Concentric Carbon Nanotube Rings

    NASA Astrophysics Data System (ADS)

    Hong, Suck Won; Jeong, Wonje; Ko, Hyunhyub; Tsukruk, Vladimir; Kessler, Michael; Lin, Zhiqun

    2008-03-01

    Hundreds of gradient concentric rings of linear conjugated polymer, (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4- phenylenevinylene], i.e., MEH-PPV) with remarkable regularity over large areas were produced by controlled, repetitive ``stick- slip'' motions of the contact line in a confined geometry consisting of a sphere on a flat substrate (i.e., sphere-on-flat geometry). Subsequently, MEH-PPV rings exploited as template to direct the formation of gradient concentric rings of multiwalled carbon nanotubes (MWNTs) with controlled density. This method is simple, cost effective, and robust, combining two consecutive self-assembly processes, namely, evaporation-induced self- assembly of polymers in a sphere-on-flat geometry, followed by subsequent directed self-assembly of MWNTs on the polymer- templated surfaces.

  8. Self-assembled virus-membrane complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lihua; Liang, Hongjun; Angelini, Thomas

    Anionic polyelectrolytes and cationic lipid membranes can self-assemble into lamellar structures ranging from alternating layers of membranes and polyelectrolytes to 'missing layer' superlattice structures. We show that these structural differences can be understood in terms of the surface-charge-density mismatch between the polyelectrolyte and membrane components by examining complexes between cationic membranes and highly charged M13 viruses, a system that allowed us to vary the polyelectrolyte diameter independently of the charge density. Such virus-membrane complexes have pore sizes that are about ten times larger in area than DNA-membrane complexes, and can be used to package and organize large functional molecules; correlatedmore » arrays of Ru(bpy){sub 3}{sup 2+} macroionic dyes have been directly observed within the virus-membrane complexes using an electron-density reconstruction. These observations elucidate fundamental design rules for rational control of self-assembled polyelectrolyte-membrane structures, which have applications ranging from non-viral gene therapy to biomolecular templates for nanofabrication.« less

  9. Proteins evolve on the edge of supramolecular self-assembly.

    PubMed

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D

    2017-08-10

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  10. Proteins evolve on the edge of supramolecular self-assembly

    NASA Astrophysics Data System (ADS)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  11. Guided and magnetic self-assembly of tunable magnetoceptive gels

    NASA Astrophysics Data System (ADS)

    Tasoglu, S.; Yu, C. H.; Gungordu, H. I.; Guven, S.; Vural, T.; Demirci, U.

    2014-09-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents.

  12. Guided and magnetic self-assembly of tunable magnetoceptive gels

    PubMed Central

    Tasoglu, S.; Yu, C.H.; Gungordu, H.I.; Guven, S.; Vural, T.; Demirci, U.

    2014-01-01

    Self-assembly of components into complex functional patterns at microscale is common in nature, and used increasingly in numerous disciplines such as optoelectronics, microfabrication, sensors, tissue engineering and computation. Here, we describe the use of stable radicals to guide the self-assembly of magnetically tunable gels, which we call ‘magnetoceptive’ materials at the scale of hundreds of microns to a millimeter, each can be programmed by shape and composition, into heterogeneous complex structures. Using paramagnetism of free radicals as a driving mechanism, complex heterogeneous structures are built in the magnetic field generated by permanent magnets. The overall magnetic signature of final structure is erased via an antioxidant vitamin E, subsequent to guided self-assembly. We demonstrate unique capabilities of radicals and antioxidants in fabrication of soft systems with heterogeneity in material properties, such as porosity, elastic modulus and mass density; then in bottom-up tissue engineering and finally, levitational and selective assembly of microcomponents. PMID:25175148

  13. TOPICAL REVIEW: Self-assembly from milli- to nanoscales: methods and applications

    NASA Astrophysics Data System (ADS)

    Mastrangeli, M.; Abbasi, S.; Varel, C.; Van Hoof, C.; Celis, J.-P.; Böhringer, K. F.

    2009-08-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed.

  14. A proposed simulation method for directed self-assembly of nanographene

    NASA Astrophysics Data System (ADS)

    Geraets, J. A.; Baldwin, J. P. C.; Twarock, R.; Hancock, Y.

    2017-09-01

    A methodology for predictive kinetic self-assembly modeling of bottom-up chemical synthesis of nanographene is proposed. The method maintains physical transparency in using a novel array format to efficiently store molecule information and by using array operations to determine reaction possibilities. Within a minimal model approach, the parameter space for the bond activation energies (i.e. molecule functionalization) at fixed reaction temperature and initial molecule concentrations is explored. Directed self-assembly of nanographene from functionalized tetrabenzanthracene and benzene is studied with regions in the activation energy phase-space showing length-to-width ratio tunability. The degree of defects and reaction reproducibility in the simulations is also determined, with the rate of functionalized benzene addition providing additional control of the dimension and quality of the nanographene. Comparison of the reaction energetics to available density functional theory data suggests the synthesis may be experimentally tenable using aryl-halide cross-coupling and noble metal surface-assisted catalysis. With full access to the intermediate reaction network and with dynamic coupling to density functional theory-informed tight-binding simulation, the method is proposed as a computationally efficient means towards detailed simulation-driven design of new nanographene systems.

  15. Dynamic and programmable self-assembly of micro-rafts at the air-water interface

    PubMed Central

    Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin

    2017-01-01

    Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future. PMID:28560332

  16. Dynamic and programmable self-assembly of micro-rafts at the air-water interface.

    PubMed

    Wang, Wendong; Giltinan, Joshua; Zakharchenko, Svetlana; Sitti, Metin

    2017-05-01

    Dynamic self-assembled material systems constantly consume energy to maintain their spatiotemporal structures and functions. Programmable self-assembly translates information from individual parts to the collective whole. Combining dynamic and programmable self-assembly in a single platform opens up the possibilities to investigate both types of self-assembly simultaneously and to explore their synergy. This task is challenging because of the difficulty in finding suitable interactions that are both dissipative and programmable. We present a dynamic and programmable self-assembling material system consisting of spinning at the air-water interface circular magnetic micro-rafts of radius 50 μm and with cosinusoidal edge-height profiles. The cosinusoidal edge-height profiles not only create a net dissipative capillary repulsion that is sustained by continuous torque input but also enable directional assembly of micro-rafts. We uncover the layered arrangement of micro-rafts in the patterns formed by dynamic self-assembly and offer mechanistic insights through a physical model and geometric analysis. Furthermore, we demonstrate programmable self-assembly and show that a 4-fold rotational symmetry encoded in individual micro-rafts translates into 90° bending angles and square-based tiling in the assembled structures of micro-rafts. We anticipate that our dynamic and programmable material system will serve as a model system for studying nonequilibrium dynamics and statistical mechanics in the future.

  17. Self-Assembly of Nanoparticles and Origin of Life

    NASA Astrophysics Data System (ADS)

    Kotov, Nicholas

    Inorganic nanoparticles (NPs) have the ability to self-organize into variety of extended and terminal structures, as do many molecular and nanoscale compounds, given a sufficient number of translational and rotational degrees of freedom. Analysis of experimental data for all NPs (metal, semiconductor, ceramic ..) indicate a general trend of self-assembly under a much wider range of conditions and having much broader structural variability than building blocks from organic matter. Remarkably, the internal organization of self-assembled structures spontaneously produced by NPs rival in complexity and functional sophistication to those found in biology. Multiscale collective effects make NP-NP interactions no less fascinating than those of naturally occurring proteins. In this talk, I will address the following questions: 1. What are the differences and similarities of NP self-organization compared with similar phenomena involving organic and biological building blocks? 2. What are the forces and related theoretical assumptions essential for NP interactions? 3. What is the significance of NP self-assembly for understanding emergence of life? In this context, self-organization of chiral nanostructures will illustrate the importance of subtle anisotropic effects stemming from collective behavior of NPs and non-additivity of their interactions. Chirality transfer from circularly-polarized photons to NPs and its relationship to the origin of homochirality on Earth, spontaneous compartmentalization (protocells), and out-of-equilibrium chemical synthesis in nanoassemblies.

  18. Emergence of reconfigurable wires and spinners via dynamic self-assembly

    DOE PAGES

    Kokot, Gasper; Piet, David; Whitesides, George M.; ...

    2015-03-26

    Dissipative colloidal materials use energy to generate and maintain structural complexity. The energy injection rate, and properties of the environment are important control parameters that influence the outcome of dynamic self-assembly. Here we demonstrate that dispersions of magnetic microparticles confined at the air-liquid interface, and energized by a uniaxial in-plane alternating magnetic field, self-assemble into a variety of structures that range from pulsating clusters and single-particle-thick wires to dynamic arrays of spinners (self-assembled short chains) rotating in either direction. The spinners emerge via spontaneous breaking of the uniaxial symmetry of the energizing magnetic field. Demonstration of the formation and disaggregationmore » of particle assemblies suggests strategies to form new meso-scale structures with the potential to perform functions such as mixing and sensing.« less

  19. Long-range energy transfer in self-assembled quantum dot-DNA cascades

    NASA Astrophysics Data System (ADS)

    Goodman, Samuel M.; Siu, Albert; Singh, Vivek; Nagpal, Prashant

    2015-11-01

    The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient transport of energy across QD-DNA thin films.The size-dependent energy bandgaps of semiconductor nanocrystals or quantum dots (QDs) can be utilized in converting broadband incident radiation efficiently into electric current by cascade energy transfer (ET) between layers of different sized quantum dots, followed by charge dissociation and transport in the bottom layer. Self-assembling such cascade structures with angstrom-scale spatial precision is important for building realistic devices, and DNA-based QD self-assembly can provide an important alternative. Here we show long-range Dexter energy transfer in QD-DNA self-assembled single constructs and ensemble devices. Using photoluminescence, scanning tunneling spectroscopy, current-sensing AFM measurements in single QD-DNA cascade constructs, and temperature-dependent ensemble devices using TiO2 nanotubes, we show that Dexter energy transfer, likely mediated by the exciton-shelves formed in these QD-DNA self-assembled structures, can be used for efficient

  20. Self-assembly strategies for the synthesis of functional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  1. Naturally engineered glycolipid biosurfactants leading to distinctive self-assembled structures.

    PubMed

    Imura, Tomohiro; Ohta, Noboru; Inoue, Katsuaki; Yagi, Naoto; Negishi, Hideyuki; Yanagishita, Hiroshi; Kitamoto, Dai

    2006-03-08

    Self-assembling properties of "natural" glycolipid biosurfactants, mannosyl-erythritol lipids A and B (MEL-A, MEL-B), which are abundantly produced from yeast strains, were investigated by using the fluorescence-probe method, dynamic light-scattering (DLS) analysis, freeze-fracture transmission electron microscopy (FF-TEM), and synchrotron small/wide-angle X-ray scattering (SAXS/WAXS) analysis, among other methods. Both MEL-A and MEL-B exhibit excellent self-assembly properties at extremely low concentrations; they self-assemble into large unilamellar vesicles (LUV) just above their critical-aggregation concentration (CAC). The CAC(I) value was found to be 4.0x10(-6) M for MEL-A and 6.0x10(-6) M for MEL-B. Moreover, the self-assembled structure of MEL-A above a CAC(II) value of 2.0x10(-5) M was found to drastically change into sponge structures (L3) composed of a network of randomly connected bilayers that are usually obtained from a complicated multicomponent "synthetic" surfactant system. Interestingly, the average water-channel diameter of the sponge structure was 100 nm. This is relatively large compared with those obtained from "synthetic" surfactant systems. In addition, MEL-B, which has a hydroxyl group at the C-4' position on mannose instead of an acetyl group, gives only one CAC; the self-assembled structure of MEL-B seems to gradually move from LUV to multilamellar vesicles (MLV) with lattice constants of 4.4 nm, depending on the concentration. Furthermore, the lyotropic-liquid-crystal-phase observation at high concentrations demonstrates the formation of an inverted hexagonal phase (H2) for MEL-A, together with a lamella phase (L(alpha)) for MEL-B, indicating a difference between MEL-A and MEL-B molecules in the spontaneous curvature of the assemblies. These results clearly show that the difference in spontaneous curvature caused by the single acetyl group on the head group probably decides the direction of self-assembly of glycolipid biosurfactants. The

  2. Calculation of noncontact forces between silica nanospheres.

    PubMed

    Sun, Weifu; Zeng, Qinghua; Yu, Aibing

    2013-02-19

    Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.

  3. Molecular Motions in Functional Self-Assembled Nanostructures

    PubMed Central

    Dhotel, Alexandre; Chen, Ziguang; Delbreilh, Laurent; Youssef, Boulos; Saiter, Jean-Marc; Tan, Li

    2013-01-01

    The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted. PMID:23348927

  4. Self-assembly patterning of organic molecules on a surface

    DOEpatents

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  5. Self-assembled containers based on extended tetrathiafulvalene.

    PubMed

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  6. Servo-integrated patterned media by hybrid directed self-assembly.

    PubMed

    Xiao, Shuaigang; Yang, Xiaomin; Steiner, Philip; Hsu, Yautzong; Lee, Kim; Wago, Koichi; Kuo, David

    2014-11-25

    A hybrid directed self-assembly approach is developed to fabricate unprecedented servo-integrated bit-patterned media templates, by combining sphere-forming block copolymers with 5 teradot/in.(2) resolution capability, nanoimprint and optical lithography with overlay control. Nanoimprint generates prepatterns with different dimensions in the data field and servo field, respectively, and optical lithography controls the selective self-assembly process in either field. Two distinct directed self-assembly techniques, low-topography graphoepitaxy and high-topography graphoepitaxy, are elegantly integrated to create bit-patterned templates with flexible embedded servo information. Spinstand magnetic test at 1 teradot/in.(2) shows a low bit error rate of 10(-2.43), indicating fully functioning bit-patterned media and great potential of this approach for fabricating future ultra-high-density magnetic storage media.

  7. Self-assembled graphene hydrogel via a one-step hydrothermal process.

    PubMed

    Xu, Yuxi; Sheng, Kaixuan; Li, Chun; Shi, Gaoquan

    2010-07-27

    Self-assembly of two-dimensional graphene sheets is an important strategy for producing macroscopic graphene architectures for practical applications, such as thin films and layered paperlike materials. However, construction of graphene self-assembled macrostructures with three-dimensional networks has never been realized. In this paper, we prepared a self-assembled graphene hydrogel (SGH) via a convenient one-step hydrothermal method. The SGH is electrically conductive, mechanically strong, and thermally stable and exhibits a high specific capacitance. The high-performance SGH with inherent biocompatibility of carbon materials is attractive in the fields of biotechnology and electrochemistry, such as drug-delivery, tissue scaffolds, bionic nanocomposites, and supercapacitors.

  8. Dynamic self-assembly and self-organized transport of magnetic micro-swimmers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Kolmakov, German V.; Aranson, Igor S.

    We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. As a result, the morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.

  9. Dynamic self-assembly and self-organized transport of magnetic micro-swimmers

    DOE PAGES

    Kokot, Gasper; Kolmakov, German V.; Aranson, Igor S.; ...

    2017-11-07

    We demonstrate experimentally and in computer simulations that magnetic microfloaters can self-organize into various functional structures while energized by an external alternating (ac) magnetic field. The structures exhibit self-propelled motion and an ability to carry a cargo along a pre-defined path. As a result, the morphology of the self-assembled swimmers is controlled by the frequency and amplitude of the magnetic field.

  10. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    PubMed Central

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  11. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.

    PubMed

    Tsutsumi, Takanobu; Asakawa, Takeshi; Kanegami, Akemi; Okada, Takao; Tahira, Tomoko; Hayashi, Kenshi

    2014-01-01

    DNA has been recognized as an ideal material for bottom-up construction of nanometer scale structures by self-assembly. The generation of sequences optimized for unique self-assembly (GENESUS) program reported here is a straightforward method for generating sets of strand sequences optimized for self-assembly of arbitrarily designed DNA nanostructures by a generate-candidates-and-choose-the-best strategy. A scalable procedure to prepare single-stranded DNA having arbitrary sequences is also presented. Strands for the assembly of various structures were designed and successfully constructed, validating both the program and the procedure.

  12. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  13. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    PubMed

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa

    2017-02-01

    The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.

  15. Investigating the effects of peptoid substitutions in self-assembly of Fmoc-diphenylalanine derivatives.

    PubMed

    Rajbhandary, Annada; Nilsson, Bradley L

    2017-03-01

    Low molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs. Peptoids are peptidomimetics that shift display of side chain functionality from the α-carbon to the terminal nitrogen. This alters the hydrogen bonding capacity, the side chain presentation geometry, amide cis/trans isomerization equilibrium, and β-sheet potential of the peptoid relative to the corresponding amino acid in the context of peptidic polymers. It was found that amino acid/peptoid hybrids Fmoc-Phe-Nphe and Fmoc-Nphe-Phe have altered fibril self-assembly propensity and reduced hydrogelation capacity relative to the parent dipeptide, and that fibril self-assembly of the dipeptoid, Fmoc-Nphe-Nphe, is completely curtailed. These findings provide insight into the potential of low molecular weight peptoids and peptide/peptoid hybrids as hydrogelation agents and illuminate the importance of hydrogen bonding and π-π interaction geometry in facilitating self-assembly of Fmoc-Phe-Phe. © 2016 Wiley Periodicals, Inc.

  16. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M.; Schwartz, Russell

    2010-12-01

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  17. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly.

    PubMed

    Kumar, M Senthil; Schwartz, Russell

    2010-12-09

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  18. Directed self-assembly of nanogold using a chemically modified nanopatterned surface

    NASA Astrophysics Data System (ADS)

    Nidetz, Robert; Kim, Jinsang

    2012-02-01

    Electron-beam lithography (EBL) was used to define an aminosilane nanopatterned surface in order to electrostatically self-assemble gold nanoparticles (Au NPs). The chemically modified nanopatterned surfaces were immersed into a Au NP solution to allow the Au NPs to self-assemble. Equilibrium self-assembly was achieved in only 20 min. The number of Au NPs that self-assembled on an aminosilane dot was controlled by manipulating the diameters of both the Au NPs and the dots. Adding salt to the Au NP solution enabled the Au NPs to self-assemble in greater numbers on the same sized dot. However, the preparation of the Au NP solution containing salt was sensitive to spikes in the salt concentration. These spikes led to aggregation of the Au NPs and non-specific deposition of Au NPs on the substrate. The Au NP patterned surfaces were immersed in a sodium hydroxide solution in order to lift-off the patterned Au NPs, but no lift-off was observed without adequate physical agitation. The van der Waals forces are too strong to allow for lift-off despite the absence of electrostatic forces.

  19. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    PubMed

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  20. Light-assisted, templated self-assembly using a photonic-crystal slab.

    PubMed

    Jaquay, Eric; Martínez, Luis Javier; Mejia, Camilo A; Povinelli, Michelle L

    2013-05-08

    We experimentally demonstrate the technique of light-assisted, templated self-assembly (LATS). We excite a guided-resonance mode of a photonic-crystal slab with 1.55 μm laser light to create an array of optical traps. We demonstrate assembly of a square lattice of 520 nm diameter polystyrene particles spaced by 860 nm. Our results demonstrate how LATS can be used to fabricate reconfigurable structures with symmetries different from traditional colloidal self-assembly, which is limited by free energetic constraints.

  1. Evolving self-assembly in autonomous homogeneous robots: experiments with two physical robots.

    PubMed

    Ampatzis, Christos; Tuci, Elio; Trianni, Vito; Christensen, Anders Lyhne; Dorigo, Marco

    2009-01-01

    This research work illustrates an approach to the design of controllers for self-assembling robots in which the self-assembly is initiated and regulated by perceptual cues that are brought forth by the physical robots through their dynamical interactions. More specifically, we present a homogeneous control system that can achieve assembly between two modules (two fully autonomous robots) of a mobile self-reconfigurable system without a priori introduced behavioral or morphological heterogeneities. The controllers are dynamic neural networks evolved in simulation that directly control all the actuators of the two robots. The neurocontrollers cause the dynamic specialization of the robots by allocating roles between them based solely on their interaction. We show that the best evolved controller proves to be successful when tested on a real hardware platform, the swarm-bot. The performance achieved is similar to the one achieved by existing modular or behavior-based approaches, also due to the effect of an emergent recovery mechanism that was neither explicitly rewarded by the fitness function, nor observed during the evolutionary simulation. Our results suggest that direct access to the orientations or intentions of the other agents is not a necessary condition for robot coordination: Our robots coordinate without direct or explicit communication, contrary to what is assumed by most research works in collective robotics. This work also contributes to strengthening the evidence that evolutionary robotics is a design methodology that can tackle real-world tasks demanding fine sensory-motor coordination.

  2. Self-Assembly of Trimer Colloids: Effect of Shape and Interaction Range†

    PubMed Central

    Hatch, Harold W.; Yang, Seung-Yeob; Mittal, Jeetain; Shen, Vincent K.

    2016-01-01

    Trimers with one attractive bead and two repulsive beads, similar to recently synthesized trimer patchy colloids, were simulated with flat-histogram Monte Carlo methods to obtain the stable self-assembled structures for different shapes and interaction potentials. Extended corresponding states principle was successfully applied to self-assembling systems in order to approximately collapse the results for models with the same shape, but different interaction range. This helps us directly compare simulation results with previous experiment, and good agreement was found between the two. In addition, a variety of self-assembled structures were observed by varying the trimer geometry, including spherical clusters, elongated clusters, monolayers, and spherical shells. In conclusion, our results help to compare simulations and experiments, via extended corresponding states, and we predict the formation of self-assembled structures for trimer shapes that have not been experimentally synthesized. PMID:27087490

  3. On-chip self-assembly of cell embedded microstructures to vascular-like microtubes.

    PubMed

    Yue, Tao; Nakajima, Masahiro; Takeuchi, Masaru; Hu, Chengzhi; Huang, Qiang; Fukuda, Toshio

    2014-03-21

    Currently, research on the construction of vascular-like tubular structures is a hot area of tissue engineering, since it has potential applications in the building of artificial blood vessels. In this paper, we report a fluidic self-assembly method using cell embedded microstructures to construct vascular-like microtubes. A novel 4-layer microfluidic device was fabricated using polydimethylsiloxane (PDMS), which contains fabrication, self-assembly and extraction areas inside one channel. Cell embedded microstructures were directly fabricated using poly(ethylene glycol) diacrylate (PEGDA) in the fabrication area, namely on-chip fabrication. Self-assembly of the fabricated microstructures was performed in the assembly area which has a micro well. Assembled tubular structures (microtubes) were extracted outside the channel into culture dishes using a normally closed (NC) micro valve in the extraction area. The self-assembly mechanism was experimentally demonstrated. The performance of the NC micro valve and embedded cell concentration were both evaluated. Fibroblast (NIH/3T3) embedded vascular-like microtubes were constructed inside this reusable microfluidic device.

  4. Sambot II: A self-assembly modular swarm robot

    NASA Astrophysics Data System (ADS)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  5. Silica-Coated Core-Shell Structured Polystyrene Nanospheres and Their Size-Dependent Mechanical Properties.

    PubMed

    Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin

    2017-08-22

    The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.

  6. Scalable Directed Self-Assembly Using Ultrasound Waves

    DTIC Science & Technology

    2015-09-04

    SECURITY CLASSIFICATION OF: We aim to understand how ultrasound waves can be used to create organized patterns of nanoparticles in a host medium such...as a polymer matrix material. The critical difference between the ultrasound technology studied in this project, and other directed self-assembly...of nanoparticles dispersed in a host medium are assembled by means of standing ultrasound waves. Additionally, we have obtained experimental

  7. Nonionic amphiphile nanoarchitectonics: self-assembly into micelles and lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Shrestha, Lok Kumar; Strzelczyk, Karolina Maria; Goswami Shrestha, Rekha; Ichikawa, Kotoko; Aramaki, Kenji; Hill, Jonathan P.; Ariga, Katsuhiko

    2015-05-01

    Amphiphiles, molecules that possess both hydrophilic and hydrophobic moieties, are architecturally simple molecules that can spontaneously self-assemble into complex hierarchical structures from lower to higher dimensions either in the bulk phase or at an interface. Recent developments in multifunctional nanostructure design using the advanced concept of nanoarchitectonics utilize this simple process of assembly. Amphiphilic self-assemblies involving lipids or proteins mimic the structure of biological systems, thus highlighting the necessity of a fundamental physical understanding of amphiphilic self-assembly towards a realization of the complex mechanisms operating in nature. Herein, we describe self-assembled microstructures of biocompatible and biodegradable tetraglycerol lauryl ether (C12G4) nonionic surfactant in an aqueous solvent system. Temperature-composition analyses of equilibrium phases identified by using small-angle x-ray scattering (SAXS) provide strong evidence of various spontaneously self-assembled mesostructures, such as normal micelles (Wm), hexagonal liquid crystal (H1), and reverse micelles (Om). In contrast to conventional poly(oxyethylene) nonionic surfactants, C12G4 did not exhibit the clouding phenomenon at higher temperatures (phase separation was not observed up to 100 °C), demonstrating the greater thermal stability of the self-assembled mesophases. Generalized indirect Fourier transformation (GIFT) evaluation of the SAXS data confirmed the formation of core-shell-type spherical micelles with a maximum dimension ca. 8.7 nm. The shape and size of the C12G4 micelles remained apparently unchanged over a wide range of concentrations (up to 20%), but intermicellar interactions increased and could be described by the Percus-Yevick (PY) theory (after Carnahan and Starling), which provides a very accurate analytical expression for the osmotic pressure of a monodisperse hard sphere.

  8. Protein-like Nanoparticles Based on Orthogonal Self-Assembly of Chimeric Peptides.

    PubMed

    Jiang, Linhai; Xu, Dawei; Namitz, Kevin E; Cosgrove, Michael S; Lund, Reidar; Dong, He

    2016-10-01

    A novel two-component self-assembling chimeric peptide is designed where two orthogonal protein folding motifs are linked side by side with precisely defined position relative to one another. The self-assembly is driven by a combination of symmetry controlled molecular packing, intermolecular interactions, and geometric constraint to limit the assembly into compact dodecameric protein nanoparticles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Liu, Jun [West Richland, WA; Shin, Yongsoon [Richland, WA

    2003-03-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  10. Self-assembled monolayer and method of making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-05-11

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  11. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2004-06-22

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  12. Self-Assembled Monolayer And Method Of Making

    DOEpatents

    Fryxell, Glen E.; Zemanian, Thomas S.; Liu, Jun; Shin, Yongsoon

    2005-01-25

    According to the present invention, the previously known functional material having a self-assembled monolayer on a substrate has a plurality of assembly molecules each with an assembly atom with a plurality of bonding sites (four sites when silicon is the assembly molecule) wherein a bonding fraction (or fraction) of fully bonded assembly atoms (the plurality of bonding sites bonded to an oxygen atom) has a maximum when made by liquid solution deposition, for example a maximum of 40% when silicon is the assembly molecule, and maximum surface density of assembly molecules was 5 silanes per square nanometer. Note that bonding fraction and surface population are independent parameters. The method of the present invention is an improvement to the known method for making a siloxane layer on a substrate, wherein instead of a liquid phase solution chemistry, the improvement is a supercritical phase chemistry. The present invention has the advantages of greater fraction of oxygen bonds, greater surface density of assembly molecules and reduced time for reaction of about 5 minutes to about 24 hours.

  13. Self-assembly of hierarchically ordered structures in DNA nanotube systems

    NASA Astrophysics Data System (ADS)

    Glaser, Martin; Schnauß, Jörg; Tschirner, Teresa; Schmidt, B. U. Sebastian; Moebius-Winkler, Maximilian; Käs, Josef A.; Smith, David M.

    2016-05-01

    The self-assembly of molecular and macromolecular building blocks into organized patterns is a complex process found in diverse systems over a wide range of size and time scales. The formation of star- or aster-like configurations, for example, is a common characteristic in solutions of polymers or other molecules containing multi-scaled, hierarchical assembly processes. This is a recurring phenomenon in numerous pattern-forming systems ranging from cellular constructs to solutions of ferromagnetic colloids or synthetic plastics. To date, however, it has not been possible to systematically parameterize structural properties of the constituent components in order to study their influence on assembled states. Here, we circumvent this limitation by using DNA nanotubes with programmable mechanical properties as our basic building blocks. A small set of DNA oligonucleotides can be chosen to hybridize into micron-length DNA nanotubes with a well-defined circumference and stiffness. The self-assembly of these nanotubes to hierarchically ordered structures is driven by depletion forces caused by the presence of polyethylene glycol. This trait allowed us to investigate self-assembly effects while maintaining a complete decoupling of density, self-association or bundling strength, and stiffness of the nanotubes. Our findings show diverse ranges of emerging structures including heterogeneous networks, aster-like structures, and densely bundled needle-like structures, which compare to configurations found in many other systems. These show a strong dependence not only on concentration and bundling strength, but also on the underlying mechanical properties of the nanotubes. Similar network architectures to those caused by depletion forces in the low-density regime are obtained when an alternative hybridization-based bundling mechanism is employed to induce self-assembly in an isotropic network of pre-formed DNA nanotubes. This emphasizes the universal effect inevitable

  14. Improving Self-Assembly by Varying the Temperature Periodically with Time

    NASA Astrophysics Data System (ADS)

    Raz, Oren; Jarzynski, Christopher

    Self-assembly (SA) is the process by which basic components organize into a larger structure without external guidance. These processes are common in Nature, and also have technological applications, e.g. growing a crystal with a specific structure. So far, artificial SA processes have been designed mostly using diffusive building blocks with high specificity and directionality. The formation of the self-assembled structures is then driven by free-energy minimization into a thermodynamically stable state. In an alternative approach to SA, macroscopic parameters such as temperature, pressure, pH, magnetic field etc., are varied periodically with time. In this case, the SA structures are the stable periodic states of the driven system. Currently there are no design principles for periodically driven SA, other than in the limits of fast or weak driving. We present guiding ideas for self-assembly under periodic driving. As an example, we show a particular case in which self-assembly errors can be dramatically reduced by varying a system's temperature periodically with time. James S. McDonnell Foundation, and the US National Science Foundation: DMR-1506969.

  15. Self-assembled nanocages based on the coiled coil bundle motif

    NASA Astrophysics Data System (ADS)

    Sinha, Nairiti; Villegas, Jose; Saven, Jeffery; Kiick, Kristi; Pochan, Darrin

    Computational design of coiled coil peptide bundles that undergo solution phase self-assembly presents a diverse toolbox for engineering new materials with tunable and pre-determined nanostructures that can have various end applications such as in drug delivery, biomineralization and electronics. Self-assembled cages are especially advantageous as the cage geometry provides three distinct functional sites: the interior, the exterior and the solvent-cage interface. In this poster, syntheses and characterization of a peptide cage based on computationally designed homotetrameric coiled coil bundles as building blocks is discussed. Techniques such as Transmission Electron Microscopy (TEM), Small-Angle Neutron Scattering (SANS) and Analytical Ultracentrifugation (AUC) are employed to characterize the size, shape and molecular weight of the self-assembled peptide cages under different pH and temperature conditions. Various self-assembly pathways such as dialysis and thermal quenching are shown to have a significant impact on the final structure of these peptides in solution. Comparison of results with the target cage design can be used to iteratively improve the peptide design and provide greater understanding of its interactions and folding.

  16. Supramolecule-to-supramolecule transformations of coordination-driven self-assembled polygons.

    PubMed

    Zhao, Liang; Northrop, Brian H; Stang, Peter J

    2008-09-10

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6 + 6] hexagon is transformed into two [3 + 3] hexagons, and a triangle-square mixture is converted into [2 + 2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons.

  17. Supramolecule-to-Supramolecule Transformations of Coordination-Driven Self-Assembled Polygons

    PubMed Central

    Zhao, Liang; Northrop, Brian H.; Stang, Peter J.

    2009-01-01

    Two types of supramolecular transformations, wherein a self-assembled Pt(II)-pyridyl metal-organic polygon is controllably converted into an alternative polygon, have been achieved through the reaction between cobalt carbonyl and the acetylene moiety of a dipyridyl donor ligand. A [6+6] hexagon is transformed into two [3+3] hexagons and a triangle-square mixture is converted into [2+2] rhomboids. 1H and 31P NMR spectra are used to track the transformation process and evaluate the yield of new self-assembled polygons. Such transformed species are identified by electrospray ionization (ESI) mass spectrometry. This new kind of supramolecule-to-supramolecule transformations provides a viable means for constructing, and then converting, new self-assembled polygons. PMID:18702485

  18. Self-assembled three-dimensional chiral colloidal architecture.

    PubMed

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C; Sha, Ruojie; Seeman, Nadrian C; Chaikin, Paul M

    2017-11-03

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Development of self-assembling nanowires containing electronically active oligothiophenes

    NASA Astrophysics Data System (ADS)

    Tsai, Wei-Wen

    This dissertation discusses the development of conductive one-dimensional nanowires from self-assembling oligothiophene molecules. Self-assembly has been demonstrated to be a promising alternative approach towards high performance, solution processable, and low-cost organic electronics. One of the many challenges in this field is the control of supramolecular morphologies of ordered structures containing pi-conjugated moieties. This research demonstrated several successful strategies to achieve self assembly of conductive nanowires using synergistic interactions combining pi stacking and hydrogen bonding. The first approach used was to develop a hairpin-shaped sexithiophene molecule, which features two arms of the conjugated structure. The diamidocyclohexyl headgroup of this molecule successfully directs the self-assembly from hydrogen bonding among the amides, forming high-aspect-ratio one-dimensional nanowires with well-defined diameters of 3.0 +/- 0.3 nm. The molecular orientation in the nanostructures promotes formation of sexithiophene H and J aggregates that facilitate efficient charge transport. Organic field-effect transistors were fabricated to reveal improved intrinsic hole mobility from films of the nanostructures, 3.46 x 10-6 cm2V-1s-1, which is one order of magnitude higher than films cast from unassembled molecules. Bulk heterojunction solar cells were developed from this molecule and fullerenes utilizing solution-phase fabrication methods. Intimate mix of the molecule and phenyl-C61-butyric acid methyl ester creates structured interfaces for efficient exciton splitting. The charge carrier mobilities of each material are improved by self-assembly in solution and thermal-energy assisted phase separation.The photovoltaic devices achieved the highest open-circuit voltage of 0.62 V, short-circuit current of 1.79 mA/cm2, fill factor of 35%, and power conversion efficiency of 0.48%. Another strategy to one-dimensional nanowires studied here involved the

  20. Simulation of macromolecule self-assembly in solution: A multiscale approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: fullmore » atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.« less

  1. The self-assembling process and applications in tissue engineering

    PubMed Central

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  2. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions.

    PubMed

    Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi

    2016-10-04

    The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.

  3. Self-assembly of nucleic acids, silk and hybrid materials thereof.

    PubMed

    Humenik, Martin; Scheibel, Thomas

    2014-12-17

    Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here,we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.

  4. Self-assembly of nucleic acids, silk and hybrid materials thereof

    NASA Astrophysics Data System (ADS)

    Humenik, Martin; Scheibel, Thomas

    2014-12-01

    Top-down approaches based on etching techniques have almost reached their limits in terms of dimension. Therefore, novel assembly strategies and types of nanomaterials are required to allow technological advances. Self-assembly processes independent of external energy sources and unlimited in dimensional scaling have become a very promising approach. Here, we highlight recent developments in self-assembled DNA-polymer, silk-polymer and silk-DNA hybrids as promising materials with biotic and abiotic moieties for constructing complex hierarchical materials in ‘bottom-up’ approaches. DNA block copolymers assemble into nanostructures typically exposing a DNA corona which allows functionalization, labeling and higher levels of organization due to its specific addressable recognition properties. In contrast, self-assembly of natural silk proteins as well as their recombinant variants yields mechanically stable β-sheet rich nanostructures. The combination of silk with abiotic polymers gains hybrid materials with new functionalities. Together, the precision of DNA hybridization and robustness of silk fibrillar structures combine in novel conjugates enable processing of higher-order structures with nanoscale architecture and programmable functions.

  5. DNA assisted self-assembly of PAMAM dendrimers.

    PubMed

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  6. SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Guo, Wenbin; Wang, Yong; Li, Qingyuan; Wang, Dongxia; Zhang, Fanchao; Yang, Yiqing; Yu, Yang

    2018-05-02

    Porous SnO 2 @C@VO 2 composite hollow nanospheres were ingeniously constructed through the combination of layer-by-layer deposition and redox reaction. Moreover, to optimize the electrochemical properties, SnO 2 @C@VO 2 composite hollow nanospheres with different contents of the external VO 2 were also studied. On the one hand, the elastic and conductive carbon as interlayer in the SnO 2 @C@VO 2 composite can not only buffer the huge volume variation during repetitive cycling but also effectively improve electronic conductivity and enhance the utilizing rate of SnO 2 and VO 2 with high theoretical capacity. On the other hand, hollow nanostructures of the composite can be consolidated by the multilayered nanocomponents, resulting in outstanding cyclic stability. In virtue of the above synergetic contribution from individual components, SnO 2 @C@VO 2 composite hollow nanospheres exhibit a large initial discharge capacity (1305.6 mAhg -1 ) and outstanding cyclic stability (765.1 mAhg -1 after 100 cycles). This design of composite hollow nanospheres may be extended to the synthesis of other nanomaterials for electrochemical energy storage.

  7. Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Neil P.; Sheffler, William; Sawaya, Michael R.

    2015-09-17

    We describe a general computational method for designing proteins that self-assemble to a desired symmetric architecture. Protein building blocks are docked together symmetrically to identify complementary packing arrangements, and low-energy protein-protein interfaces are then designed between the building blocks in order to drive self-assembly. We used trimeric protein building blocks to design a 24-subunit, 13-nm diameter complex with octahedral symmetry and a 12-subunit, 11-nm diameter complex with tetrahedral symmetry. The designed proteins assembled to the desired oligomeric states in solution, and the crystal structures of the complexes revealed that the resulting materials closely match the design models. The method canmore » be used to design a wide variety of self-assembling protein nanomaterials.« less

  8. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2017-08-01

    Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, T.L.

    1998-05-05

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  10. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    1998-01-01

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the preformed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  11. Lightweight, self-ballasting photovoltaic roofing assembly

    DOEpatents

    Dinwoodie, Thomas L.

    2006-02-28

    A photovoltaic roofing assembly comprises a roofing membrane (102), a plurality of photovoltaic modules (104, 106, 108) disposed as a layer on top of the roofing membrane (102), and a plurality of pre-formed spacers, pedestals or supports (112, 114, 116, 118, 120, 122) which are respectively disposed below the plurality of photovoltaic modules (104, 106, 108) and integral therewith, or fixed thereto. Spacers (112, 114, 116, 118, 120, 122) are disposed on top of roofing membrane (102). Membrane (102) is supported on conventional roof framing, and attached thereto by conventional methods. In an alternative embodiment, the roofing assembly may have insulation block (322) below the spacers (314, 314', 315, 315'). The geometry of the pre-formed spacers (112, 114, 116, 118, 120, 122, 314, 314', 315, 315') is such that wind tunnel testing has shown its maximum effectiveness in reducing net forces of wind uplift on the overall assembly. Such construction results in a simple, lightweight, self-ballasting, readily assembled roofing assembly which resists the forces of wind uplift using no roofing penetrations.

  12. Self-assembly of smallest magnetic particles

    PubMed Central

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M.; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-01-01

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole–dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained. PMID:26554000

  13. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed.

    PubMed

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-18

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  14. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    PubMed Central

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-01-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process. PMID:27188258

  15. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    NASA Astrophysics Data System (ADS)

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  16. Detoxification of blood using injectable magnetic nanospheres: A conceptual technology description

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael D.; Rosengart, Axel J.

    2005-05-01

    We describe injectable magnetic nanospheres as a vehicle for selective detoxification of blood borne toxins. Surface receptors on the freely circulating nanospheres bind to toxins. A hand-held extracorporeal magnetic filter separates the toxin-loaded nanospheres from the clean blood, which is returned to the patient. Details of the technology concept are given and include a state-of-knowledge and research needs.

  17. Self-Assembled Cu-Sn-S Nanotubes with High (De)Lithiation Performance.

    PubMed

    Lin, Jie; Lim, Jin-Myoung; Youn, Duck Hyun; Kawashima, Kenta; Kim, Jun-Hyuk; Liu, Yang; Guo, Hang; Henkelman, Graeme; Heller, Adam; Mullins, Charles Buddie

    2017-10-24

    Through a gelation-solvothermal method without heteroadditives, Cu-Sn-S composites self-assemble to form nanotubes, sub-nanotubes, and nanoparticles. The nanotubes with a Cu 3-4 SnS 4 core and Cu 2 SnS 3 shell can tolerate long cycles of expansion/contraction upon lithiation/delithiation, retaining a charge capacity of 774 mAh g -1 after 200 cycles with a high initial Coulombic efficiency of 82.5%. The importance of the Cu component for mitigation of the volume expansion and structural evolution upon lithiation is informed by density functional theory calculations. The self-generated template and calculated results can inspire the design of analogous Cu-M-S (M = metal) nanotubes for lithium batteries or other energy storage systems.

  18. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.

    PubMed

    Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C

    2014-03-25

    Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.

  19. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    PubMed

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings.

    PubMed

    Ma, Hongmin; Hao, Jingcheng

    2011-11-01

    Self-assembly is now being intensively studied in chemistry, physics, biology, and materials engineering and has become an important "bottom-up" approach to create intriguing structures for different applications. Self-assembly is not only a practical approach for creating a variety of nanostructures, but also shows great superiority in building hierarchical structures with orders on different length scales. The early work in self-assembly focused on molecular self-assembly in bulk solution, including the resultant dye aggregates, liposomes, vesicles, liquid crystals, gels and so on. Interfacial self-assembly has been a great concern over the last two decades, largely because of the unique and ingenious roles of this method for constructing materials at interfaces, such as self-assembled monolayers, Langmuir-Blodgett films, and capsules. Nanocrystal superlattices, honeycomb films and coffee rings are intriguing structural materials with more complex features and can be prepared by interfacial self-assembly on different length scales. In this critical review, we outline the recent development in the preparation and application of colloidal nanocrystal superlattices, honeycomb-patterned macroporous structures by the breath figure method, and coffee-ring-like patterns (247 references). This journal is © The Royal Society of Chemistry 2011

  1. Predicting supramolecular self-assembly on reconstructed metal surfaces

    NASA Astrophysics Data System (ADS)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  2. Challenges and advances in the field of self-assembled membranes.

    PubMed

    van Rijn, Patrick; Tutus, Murat; Kathrein, Christine; Zhu, Leilei; Wessling, Matthias; Schwaneberg, Ulrich; Böker, Alexander

    2013-08-21

    Self-assembled membranes are of vital importance in biological systems e.g. cellular and organelle membranes, however, more focus is being put on synthetic self-assembled membranes not only as an alternative for lipid membranes but also as an alternative for lithographic methods. More investigations move towards self-assembly processes because of the low-cost preparations, structural self-regulation and the ease of creating composite materials and tunable properties. The fabrication of new smart membrane materials via self-assembly is of interest for delivery vessels, size selective separation and purification, controlled-release materials, sensors and catalysts, scaffolds for tissue engineering, low dielectric constant materials for microelectronic devices, antireflective coatings and proton exchange membranes for polymer electrolyte membrane fuel cells. Polymers and nanoparticles offer the most straightforward approaches to create membrane structures. However, alternative approaches using small molecules or composite materials offer novel ultra-thin membranes or multi-functional membranes, respectively. Especially, the composite material membranes are regarded as highly promising since they offer the possibility to combine properties of different systems. The advantages of polymers which provide elastic and flexible yet stable matrices can be combined with nanoparticles being either inorganic, organic or even protein-based which offers pore-size control, catalytic activity or permeation regulation. It is therefore believed that at the interface of different disciplines with each offering different materials or approaches, the most novel and interesting membrane structures are going to be produced. The combinations and approaches presented in this review offer non-conventional self-assembled membrane materials which exhibit a high potential to advance membrane science and find more practical applications.

  3. Self-Assembled Chiral Photonic Crystals from a Colloidal Helix Racemate.

    PubMed

    Lei, Qun-Li; Ni, Ran; Ma, Yu-Qiang

    2018-06-20

    Chiral crystals consisting of microhelices have many optical properties, while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of a colloidal helix racemate. With increasing the density, the system undergoes an entropy-driven cocrystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in binary honeycomb and square lattices, which are essentially composed of two sets of opposite-handed chiral crystals. Photonic calculations show that these chiral structures can have large complete photonic band gaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization band gaps that selectively forbid the propagation of circularly polarized light of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.

  4. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    PubMed

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  5. Self-Assembly of Tetraphenylalanine Peptides.

    PubMed

    Mayans, Enric; Ballano, Gema; Casanovas, Jordi; Díaz, Angélica; Pérez-Madrigal, Maria M; Estrany, Francesc; Puiggalí, Jordi; Cativiela, Carlos; Alemán, Carlos

    2015-11-16

    Three different tetraphenylalanine (FFFF) based peptides that differ at the N- and C-termini have been synthesized by using standard procedures to study their ability to form different nanoassemblies under a variety of conditions. The FFFF peptide assembles into nanotubes that show more structural imperfections at the surface than those formed by the diphenylalanine (FF) peptide under the same conditions. Periodic DFT calculations (M06L functional) were used to propose a model that consists of three FFFF molecules defining a ring through head-to-tail NH3(+)⋅⋅⋅(-)OOC interactions, which in turn stack to produce deformed channels with internal diameters between 12 and 16 Å. Depending on the experimental conditions used for the peptide incubation, N-fluorenylmethoxycarbonyl (Fmoc) protected FFFF self-assembles into a variety of polymorphs: ultra-thin nanoplates, fibrils, and star-like submicrometric aggregates. DFT calculations indicate that Fmoc-FFFF prefers a parallel rather than an antiparallel β-sheet assembly. Finally, coexisting multiple assemblies (up to three) were observed for Fmoc-FFFF-OBzl (OBzl = benzyl ester), which incorporates aromatic protecting groups at the two peptide terminals. This unusual and noticeable feature is attributed to the fact that the assemblies obtained by combining the Fmoc and OBzl groups contained in the peptide are isoenergetic. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Direct observation of ultrafast coherent exciton dynamics in helical π-stacks of self-assembled perylene bisimides

    PubMed Central

    Sung, Jooyoung; Kim, Pyosang; Fimmel, Benjamin; Würthner, Frank; Kim, Dongho

    2015-01-01

    Ever since the discovery of dye self-assemblies in nature, there have been tremendous efforts to exploit biomimetic supramolecular assemblies for tailored artificial photon processing materials. This feature necessarily has resulted in an increasing demand for understanding exciton dynamics in the dye self-assemblies. In a sharp contrast with J-type aggregates, however, the detailed observation of exciton dynamics in H-type aggregates has remained challenging. In this study, as we succeed in measuring transient fluorescence from Frenkel state of π-stacked perylene tetracarboxylic acid bisimide dimer and oligomer aggregates, we present an experimental demonstration on Frenkel exciton dynamics of archetypal columnar π–π stacks of dyes. The analysis of the vibronic peak ratio of the transient fluorescence spectra reveals that unlike the simple π-stacked dimer, the photoexcitation energy in the columnar π-stacked oligomer aggregates is initially delocalized over at least three molecular units and moves coherently along the chain in tens of femtoseconds, preceding excimer formation process. PMID:26492820

  7. Polymer Self-Assembled Nanostructures as Innovative Drug Nanocarrier Platforms.

    PubMed

    Pippa, Natassa; Pispas, Stergios; Demetzos, Costas

    2016-01-01

    Polymer self-assembled nanostructures are used in pharmaceutical sciences as bioactive molecules' delivery systems for therapeutic and diagnostic purposes. Micelles, polyelectrolyte complexes, polymersomes, polymeric nanoparticles, nanogels and polymer grafted liposomes represent delivery vehicles that are marketed and/or under clinical development, as drug formulations. In this mini-review, these, recently appeared in the literature, innovative polymer drug nanocarrier platforms are discussed, starting from their technological development in the laboratory to their potential clinical use, through studies of their biophysics, thermodynamics, physical behavior, morphology, bio-mimicry, therapeutic efficacy and safety. The properties of an ideal drug delivery system are the structural control over size and shape of drug or imaging agent cargo/domain, biocompatibility, nontoxic polymer/ pendant functionality and the precise, nanoscale container and/or scaffolding properties with high drug or imaging agent capacity features. Self-assembled polymer nanostructures exhibit all these properties and could be considered as ideal drug nanocarriers through control of their size, structure and morphology, with the aid of a large variety of parameters, in vitro and in vivo. These modern trends reside at the interface of soft matter self-assembly and pharmaceutical sciences and the technologies for health. Great advantages related to basic science and applications are expected by understanding the self-assembly behavior of these polymeric nanotechnological drug delivery systems, created through bio-inspiration and biomimicry and have potential utilization into clinical applications.

  8. Computational studies of the 2D self-assembly of bacterial microcompartment shell proteins

    NASA Astrophysics Data System (ADS)

    Mahalik, Jyoti; Brown, Kirsten; Cheng, Xiaolin; Fuentes-Cabrera, Miguel

    Bacterial microcomartments (BMCs) are subcellular organelles that exist within wide variety of bacteria and function like nano-reactors. Among the different types of BMCs known, the carboxysome has been studied the most. The carboxysomes plays an important role in the transport of metabolites across its outer proteinaceous shell. Plenty of studies have investigated the structure of this shell, yet little is known about its self-assembly . Understanding the self-assembly process of BMCs' shell might allow disrupting their functioning and designing new synthetic nano-reactors. We have investigated the self-assembly process of a major protein component of the carboxysome's shell using a Monte Carlo technique that employed a coarse-grained protein model that was calibrated with the all-atomistic potential of mean force. The simulations reveal that this protein self-assembles into clusters that resemble what were seen experimentally in 2D layers. Further analysis of the simulation results suggests that the 2D self-assembly of carboxysome's facets is driven by nucleation-growth process, which in turn could play an important role in the hierarchical self-assembly of BMCs' shell in general. 1. Science Undergraduate Laboratory Internships, ORNL 2. Oak Ridge Leadership Computing Facility, ORNL.

  9. In situ microscopy of the self-assembly of branched nanocrystals in solution

    DOE PAGES

    Sutter, Eli; Tkachenko, Alexei V.; Sutter, Peter; ...

    2016-04-04

    Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifiesmore » the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.« less

  10. In situ microscopy of the self-assembly of branched nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  11. Charge transport in vertically aligned, self-assembled peptide nanotube junctions.

    PubMed

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-21

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å(-1), which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  12. Nondeterministic self-assembly of two tile types on a lattice.

    PubMed

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  13. Grooved nanowires from self-assembling hairpin molecules for solar cells.

    PubMed

    Tevis, Ian D; Tsai, Wei-Wen; Palmer, Liam C; Aytun, Taner; Stupp, Samuel I

    2012-03-27

    One of the challenges facing bulk heterojunction organic solar cells is obtaining organized films during the phase separation of intimately mixed donor and acceptor components. We report here on the use of hairpin-shaped sexithiophene molecules to generate by self-assembly grooved nanowires as the donor component in bulk heterojunction solar cells. Photovoltaic devices were fabricated via spin-casting to produce by solvent evaporation a percolating network of self-assembled nanowires and fullerene acceptors. Thermal annealing was found to increase power conversion efficiencies by promoting domain growth while still maintaining this percolating network of nanostructures. The benefits of self-assembly and grooved nanowires were examined by building devices from a soluble sexithiophene derivative that does not form one-dimensional structures. In these systems, excessive phase separation caused by thermal annealing leads to the formation of defects and lower device efficiencies. We propose that the unique hairpin shape of the self-assembling molecules allows the nanowires as they form to interact well with the fullerenes in receptor-ligand type configurations at the heterojunction of the two domains, thus enhancing device efficiencies by 23%. © 2012 American Chemical Society

  14. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-12-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  15. Monodisperse self-assembly in a model with protein-like interactions

    NASA Astrophysics Data System (ADS)

    Wilber, Alex W.; Doye, Jonathan P. K.; Louis, Ard A.; Lewis, Anna C. F.

    2009-11-01

    We study the self-assembly behavior of patchy particles with "proteinlike" interactions that can be considered as a minimal model for the assembly of viral capsids and other shell-like protein complexes. We thoroughly explore the thermodynamics and dynamics of self-assembly as a function of the parameters of the model and find robust assembly of all target structures considered. Optimal assembly occurs in the region of parameter space where a free energy barrier regulates the rate of nucleation, thus preventing the premature exhaustion of the supply of monomers that can lead to the formation of incomplete shells. The interactions also need to be specific enough to prevent the assembly of malformed shells, but while maintaining kinetic accessibility. Free energy landscapes computed for our model have a funnel-like topography guiding the system to form the target structure and show that the torsional component of the interparticle interactions prevents the formation of disordered aggregates that would otherwise act as kinetic traps.

  16. Self-assembly programming of DNA polyominoes.

    PubMed

    Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2016-10-20

    Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuki; Endo, Masayuki; Sugiyama, Hiroshi

    2015-08-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed `lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space.

  18. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures

    PubMed Central

    Endo, Masayuki; Sugiyama, Hiroshi

    2015-01-01

    Self-assembly is a ubiquitous approach to the design and fabrication of novel supermolecular architectures. Here we report a strategy termed ‘lipid-bilayer-assisted self-assembly' that is used to assemble DNA origami nanostructures into two-dimensional lattices. DNA origami structures are electrostatically adsorbed onto a mica-supported zwitterionic lipid bilayer in the presence of divalent cations. We demonstrate that the bilayer-adsorbed origami units are mobile on the surface and self-assembled into large micrometre-sized lattices in their lateral dimensions. Using high-speed atomic force microscopy imaging, a variety of dynamic processes involved in the formation of the lattice, such as fusion, reorganization and defect filling, are successfully visualized. The surface modifiability of the assembled lattice is also demonstrated by in situ decoration with streptavidin molecules. Our approach provides a new strategy for preparing versatile scaffolds for nanofabrication and paves the way for organizing functional nanodevices in a micrometer space. PMID:26310995

  19. Student Learning about Biomolecular Self-Assembly Using Two Different External Representations

    ERIC Educational Resources Information Center

    Host, Gunnar E.; Larsson, Caroline; Olson, Arthur; Tibell, Lena A. E.

    2013-01-01

    Self-assembly is the fundamental but counterintuitive principle that explains how ordered biomolecular complexes form spontaneously in the cell. This study investigated the impact of using two external representations of virus self-assembly, an interactive tangible three-dimensional model and a static two-dimensional image, on student learning…

  20. Dynamics of dissipative self-assembly of particles interacting through oscillatory forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tagliazucchi, M.; Szleifer, I.

    Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of themore » system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.« less

  1. Neural tissue engineering: Bioresponsive nanoscaffolds using engineered self-assembling peptides.

    PubMed

    Koss, K M; Unsworth, L D

    2016-10-15

    Rescuing or repairing neural tissues is of utmost importance to the patient's quality of life after an injury. To remedy this, many novel biomaterials are being developed that are, ideally, non-invasive and directly facilitate neural wound healing. As such, this review surveys the recent approaches and applications of self-assembling peptides and peptide amphiphiles, for building multi-faceted nanoscaffolds for direct application to neural injury. Specifically, methods enabling cellular interactions with the nanoscaffold and controlling the release of bioactive molecules from the nanoscaffold for the express purpose of directing endogenous cells in damaged or diseased neural tissues is presented. An extensive overview of recently derived self-assembling peptide-based materials and their use as neural nanoscaffolds is presented. In addition, an overview of potential bioactive peptides and ligands that could be used to direct behaviour of endogenous cells are categorized with their biological effects. Finally, a number of neurotrophic and anti-inflammatory drugs are described and discussed. Smaller therapeutic molecules are emphasized, as they are thought to be able to have less potential effect on the overall peptide self-assembly mechanism. Options for potential nanoscaffolds and drug delivery systems are suggested. Self-assembling nanoscaffolds have many inherent properties making them amenable to tissue engineering applications: ease of synthesis, ease of customization with bioactive moieties, and amenable for in situ nanoscaffold formation. The combination of the existing knowledge on bioactive motifs for neural engineering and the self-assembling propensity of peptides is discussed in specific reference to neural tissue engineering. Copyright © 2016. Published by Elsevier Ltd.

  2. Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice

    NASA Astrophysics Data System (ADS)

    Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.

    2017-05-01

    The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.

  3. Free-Standing Self-Assemblies of Gallium Nitride Nanoparticles: A Review

    DOE PAGES

    Lan, Yucheng; Li, Jianye; Wong-Ng, Winnie; ...

    2016-08-23

    Gallium nitride (GaN) is an III-V semiconductor with a direct band-gap of 3.4eV . GaN has important potentials in white light-emitting diodes, blue lasers, and field effect transistors because of its super thermal stability and excellent optical properties, playing main roles in future lighting to reduce energy cost and sensors to resist radiations. GaN nanomaterials inherit bulk properties of the compound while possess novel photoelectric properties of nanomaterials. The review focuses on self-assemblies of GaN nanoparticles without templates, growth mechanisms of self-assemblies, and potential applications of the assembled nanostructures on renewable energy.

  4. RNA self-assembly and RNA nanotechnology.

    PubMed

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  5. Mesoscale Graphene-like Honeycomb Mono- and Multilayers Constructed via Self-Assembly of Coclusters.

    PubMed

    Hou, Xue-Sen; Zhu, Guo-Long; Ren, Li-Jun; Huang, Zi-Han; Zhang, Rui-Bin; Ungar, Goran; Yan, Li-Tang; Wang, Wei

    2018-02-07

    Honeycomb structure endows graphene with extraordinary properties. But could a honeycomb monolayer superlattice also be generated via self-assembly of colloids or nanoparticles? Here we report the construction of mono- and multilayer molecular films with honeycomb structure that can be regarded as self-assembled artificial graphene (SAAG). We construct fan-shaped molecular building blocks by covalently connecting two kinds of clusters, one polyoxometalate and four polyhedral oligomeric silsesquioxanes. The precise shape control enables these complex molecules to self-assemble into a monolayer 2D honeycomb superlattice that mirrors that of graphene but on the mesoscale. The self-assembly of the SAAG was also reproduced via coarse-grained molecular simulations of a fan-shaped building block. It revealed a hierarchical process and the key role of intermediate states in determining the honeycomb structure. Experimental images also show a diversity of bi- and trilayer stacking modes. The successful creation of SAAG and its stacks opens up prospects for the preparation of novel self-assembled nanomaterials with unique properties.

  6. Self-Assembly of Porphyrin J-Aggregates

    NASA Astrophysics Data System (ADS)

    Snitka, Valentinas; Rackaitis, Mindaugas; Navickaite, Gintare

    2006-03-01

    The porphyrin nanotubes were built by ionic self-assembly of two oppositely charged porphyrins in aqueous solution. The porphyrins in the acid aqueous solution self-assemble into J-aggregates, wheels or other structures. The electrostatic forces between these porphyrin blocks contribute to the formation of porphyrin aggregates in the form of nanotubes, enhance the structural stability of these nanostructures. The nanotubes were composed mixing aqueous solutions of the two porphyrins - anionic Meso-tetra(4- sulfonatophrnyl)porhine dihydrochloride (TPPS4) and cationic Meso-tetra(4-pyridyl)porphine (T4MPyP). The porphyrin nanotubes obtained are hollow structures with the length of 300 nm and diameter 50 nm. Photocatalytic porphyrins are used to reduce metal complexes from aqueous solution and to control the deposition of Au from AuHCl4 and Au nanoparticles colloid solutions onto porphyrin nanotubes. Porphyrin nanotubes are shown to reduce metal complexes and deposit the metal selectively onto the inner or outer surface of the tubes, leading to nanotube-metal composite structures.

  7. [Self-assembly tissue engineering fibrocartilage model of goat temporomandibular joint disc].

    PubMed

    Kang, Hong; Li, Zhen-Qiang; Bi, Yan-Da

    2011-06-01

    To construct self-assembly fibrocartilage model of goat temporomandibular joint disc and observe the biological characteristics of the self-assembled fibrocartilage constructs, further to provide a basis for tissue engineering of the temporomandibular joint disc and other fibrocartilage. Cells from temporomandibular joint discs of goats were harvested and cultured. 5.5 x 10(6) cells were seeded in each agarose well with diameter 5 mm x depth 10 mm, daily replace of medium, cultured for 2 weeks. One day after seeding, goat temporomandibular joint disc cells in agarose wells were gathered and began to self-assemble into a disc-shaped base, then gradually turned into a round shape. When cultured for 2 weeks, hematoxylin-eosin staining was conducted and observed that cells were round and wrapped around by the matrix. Positive Safranin-O/fast green staining for glycosaminoglycans was observed throughout the entire constructs, and picro-sirius red staining was examined and distribution of numerous type I collagen was found. Immunohistochemistry staining demonstrated brown yellow particles in cytoplasm and around extracellular matrix, which showed self-assembly construct can produce type I collagen as native temporomandibular joint disc tissue. Production of extracellular matrix in self-assembly construct as native temporomandibular joint disc tissue indicates that the use of agarose wells to construct engineered temporomandibular joint disc will be possible and practicable.

  8. Anisotropic nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening

    NASA Astrophysics Data System (ADS)

    de Graaf, J.

    2012-06-01

    we obtained a fascinating richness in crystal structures. For the octahedron we determined the equation of state and we obtained a liquid, a (metastable) body-centred-cubic rotator phase, and a crystal phase. (3.) - Octapod hierarchical self-assembly. We analysed the recently observed hierarchical self-assembly of octapod-shaped nanocrystals (octapods) into three-dimensional (3D) superstructures. We constructed an empirical simulation model capable of reproducing the initial chain-formation step of the self-assembly. The van-der-Waals (vdW) interactions between octapods suspended in an (a)polar medium were obtained by means of a Hamaker-de-Boer-type integration and the nature of these interactions allowed us to justify elements of our empirical model. We used the theoretical vdW calculation, together with the experimental and simulation results, to formulate a mechanism which explained the observed self-assembly in terms of the solvent-dependence and directionality of the octapod-octapod interactions. (4.) - Ionic screening of charged Janus particles. We studied the screening of charged Janus particles in an electrolyte by primitive-model Monte Carlo (MC) simulations for a wide variety of parameters. We also introduced a method to compare these results to the predictions of nonlinear Poisson-Boltzmann (PB) theory. The comparison of MC and PB results allowed us to probe the range of validity of the PB approximation. This range of validity corresponds well to the range that was predicted by field-theoretical studies of homogeneously charged flat surfaces.

  9. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic

  10. Self-assembly in Dipolar Fluids

    NASA Astrophysics Data System (ADS)

    Ronti, Michela; Kantorovich, Sofia

    We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).

  11. Crafting threads of diblock copolymer micelles via flow-enabled self-assembly.

    PubMed

    Li, Bo; Han, Wei; Jiang, Beibei; Lin, Zhiqun

    2014-03-25

    Hierarchically assembled amphiphilic diblock copolymer micelles were exquisitely crafted over large areas by capitalizing on two concurrent self-assembling processes at different length scales, namely, the periodic threads composed of a monolayer or a bilayer of diblock copolymer micelles precisely positioned by flow-enabled self-assembly (FESA) on the microscopic scale and the self-assembly of amphiphilic diblock copolymer micelles into ordered arrays within an individual thread on the nanometer scale. A minimum spacing between two adjacent threads λmin was observed. A model was proposed to rationalize the relationship between the thread width and λmin. Such FESA of diblock copolymer micelles is remarkably controllable and easy to implement. It opens up possibilities for lithography-free positioning and patterning of diblock copolymer micelles for various applications in template fabrication of periodic inorganic nanostructures, nanoelectronics, optoelectronics, magnetic devices, and biotechnology.

  12. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices

    DTIC Science & Technology

    1998-05-12

    SUBTITLE " Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices" 6. AUTHORS Michael B. Miller 5. FUNDING NUMBERS F49620-97...ii. Lü. Ionic Self-Assembled Monolayer (ISAM) Nonlinear Optical Thin Films and Devices Final Technical Report Performance Period: 15 August 1997...Investigator F&S. Inc.N ̂ 1. INTRODUCTION .’ 2 2. PROGRAM TASK REVIEW 2 3. BACKGROUND 4 3.1 NONLINEAR OPTICAL THIN FILMS 4 3.2 IONIC SELF

  13. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma.

    PubMed

    Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil

    2015-02-01

    The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.

  14. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA

    PubMed Central

    Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.

    1987-01-01

    An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868

  15. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    PubMed

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  16. Topological defects in liquid crystals and molecular self-assembly (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Abbott, Nicholas L.

    2017-02-01

    Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerizations, leading to a range of elastomers and gels with complex mechanical and optical properties. However, little is understood about molecular-level assembly processes within defects. This presentation will describe an experimental study that reveals that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, key signatures of molecular self-assembly of amphiphilic molecules in topological defects are observed - including cooperativity, reversibility, and controlled growth of the molecular assemblies. By using polymerizable amphiphiles, we also demonstrate preservation of molecular assemblies templated by defects, including nanoscopic "o-rings" synthesized from "Saturn-ring" disclinations. Our results reveal that topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly in a manner that is strongly analogous to other classes of macromolecular templates (e.g., polymer—surfactant complexes). Opportunities for the design of exquisitely responsive soft materials will be discussed using bacterial endotoxin as an example.

  17. Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules.

    PubMed

    Song, Jiankang; Klymov, Alexey; Shao, Jinlong; Zhang, Yang; Ji, Wei; Kolwijck, Eva; Jansen, John A; Leeuwenburgh, Sander C G; Yang, Fang

    2017-07-01

    Development of novel and effective drug delivery systems for controlled release of bioactive molecules is of critical importance in the field of regenerative medicine. Here, oppositely charged gelatin nanospheres are incorporated into silk fibroin nanofibers through a colloidal electrospinning technique. A novel fibrous nano-in-nano drug delivery system is fabricated without the use of any organic solvent. The distribution of fluorescently labeled gelatin A and B nanospheres inside the nanofibers can be fine-tuned by simple adjustment of the weight ratio between the nanospheres and the relative feeding rate of core and shell solutions containing nanospheres by using single and coaxial nozzle electrospinning, respectively. Incorporation of vancomycin-loaded gelatin B nanospheres into the silk fibroin nanofibrous membranes results in a more sustained release of vancomycin, compared to the gelatin nanospheres free membranes. In addition, these membranes exhibit excellent and prolonged antibacterial effects against Staphylococcus aureus. Moreover, these membranes support the attachment, spreading, and proliferation of periodontal ligament cells. These results suggest that the beneficial properties of gelatin nanospheres can be exploited to improve the biological functionality of electrospun nanofibrous silk fibroin membranes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  19. Self-assembling fluidic machines

    NASA Astrophysics Data System (ADS)

    Grzybowski, Bartosz A.; Radkowski, Michal; Campbell, Christopher J.; Lee, Jessamine Ng; Whitesides, George M.

    2004-03-01

    This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems ("machines"). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.

  20. Understanding the Elementary Steps in DNA Tile-Based Self-Assembly.

    PubMed

    Jiang, Shuoxing; Hong, Fan; Hu, Huiyu; Yan, Hao; Liu, Yan

    2017-09-26

    Although many models have been developed to guide the design and implementation of DNA tile-based self-assembly systems with increasing complexity, the fundamental assumptions of the models have not been thoroughly tested. To expand the quantitative understanding of DNA tile-based self-assembly and to test the fundamental assumptions of self-assembly models, we investigated DNA tile attachment to preformed "multi-tile" arrays in real time and obtained the thermodynamic and kinetic parameters of single tile attachment in various sticky end association scenarios. With more sticky ends, tile attachment becomes more thermostable with an approximately linear decrease in the free energy change (more negative). The total binding free energy of sticky ends is partially compromised by a sequence-independent energy penalty when tile attachment forms a constrained configuration: "loop". The minimal loop is a 2 × 2 tetramer (Loop4). The energy penalty of loops of 4, 6, and 8 tiles was analyzed with the independent loop model assuming no interloop tension, which is generalizable to arbitrary tile configurations. More sticky ends also contribute to a faster on-rate under isothermal conditions when nucleation is the rate-limiting step. Incorrect sticky end contributes to neither the thermostability nor the kinetics. The thermodynamic and kinetic parameters of DNA tile attachment elucidated here will contribute to the future improvement and optimization of tile assembly modeling, precise control of experimental conditions, and structural design for error-free self-assembly.

  1. Self-assembly of amphiphilic molecules in organic liquids

    NASA Astrophysics Data System (ADS)

    Tung, Shih-Huang

    2007-12-01

    Amphiphilic molecules are well-known for their ability to self-assemble in water to form structures such as micelles and vesicles. In comparison, much less is known about amphiphilic self-assembly in nonpolar organic liquids. Such "reverse" self assembly can produce many of the counterparts to structures found in water. In this dissertation, we focus on the formation and dynamics of such reverse structures. We seek to obtain fundamental insight into the driving forces for reverse self-assembly processes. Three specific types of reverse structures are studied: (a) reverse wormlike micelles, i.e., long, flexible micellar chains; (b) reverse vesicles, i.e., hollow containers enclosed by reverse bilayers; and (c) organogel networks. While our focus is on the fundamentals, we note that reverse structures can be useful in a variety of applications ranging from drug delivery, controlled release, hosts for enzymatic reactions, and templates for nanomaterials synthesis. In the first part of this study, we describe a new route for forming reverse wormlike micelles in nonpolar organic liquids. This route involves the addition of trace amounts of a bile salt to solutions of the phospholipid, lecithin. We show that bile salts, due to their unique "facially amphiphilic" structure, can promote the aggregation of lecithin molecules into these reverse micellar chains. The resulting samples are viscoelastic and show interesting rheological properties. Unusual trends are seen in the temperature dependence of their rheology, which indicates the importance of hydrogen-bonding interactions in the formation of these micelles. Another remarkable feature of their rheology is the presence of strain-stiffening, where the material becomes stiffer at high deformations. Strain-stiffening has been seen before for elastic gels of biopolymers; here, we demonstrate the same properties for viscoelastic micellar solutions. The second reverse aggregate we deal with is the reverse vesicle. We present a

  2. Graded porous inorganic materials derived from self-assembled block copolymer templates.

    PubMed

    Gu, Yibei; Werner, Jörg G; Dorin, Rachel M; Robbins, Spencer W; Wiesner, Ulrich

    2015-03-19

    Graded porous inorganic materials directed by macromolecular self-assembly are expected to offer unique structural platforms relative to conventional porous inorganic materials. Their preparation to date remains a challenge, however, based on the sparsity of viable synthetic self-assembly pathways to control structural asymmetry. Here we demonstrate the fabrication of graded porous carbon, metal, and metal oxide film structures from self-assembled block copolymer templates by using various backfilling techniques in combination with thermal treatments for template removal and chemical transformations. The asymmetric inorganic structures display mesopores in the film top layers and a gradual pore size increase along the film normal in the macroporous sponge-like support structure. Substructure walls between macropores are themselves mesoporous, constituting a structural hierarchy in addition to the pore gradation. Final graded structures can be tailored by tuning casting conditions of self-assembled templates as well as the backfilling processes. We expect that these graded porous inorganic materials may find use in applications including separation, catalysis, biomedical implants, and energy conversion and storage.

  3. Directed self-assembly of mesoscopic components for led applications

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anton

    Light-emitting diodes (LEDs) constitute a rapidly evolving and fast growing technology that promises to replace incandescent bulbs and compact fluorescent lights in many illumination applications. Large-area LED luminaires have a capability to transform lighting by providing a venue for development of smart lighting systems with additional benefits, such as visible light communications, sensing, health and productivity improvement through color temperature control, capability of creating "virtual sky" ceiling, and many others. The objective of this work is to explore directed self-assembly (DSA) approaches suitable for cost-effective assembly of large amount of LEDs and other mesoscopic (i.e. millimeter and sub-millimeter) electronic components and thus to enable manufacturing of smart lighting luminaires. Existing alternative approaches for assembly of semiconductor dies are examined including transfer printing, laser-assisted die transfer, and various directed self-assembly approaches using shape-recognition, magnetic and capillary forces, etc. After comparing their advantages and limitations, we developed two approaches to magnetic force-assisted DSA of LEDs on a large-area substrate in liquid and air medium. The first approach involves pick-up of buoyant and magnetic dies from the liquid surface onto the flexible substrate in a roll-to-roll process. The possibility of high-speed assembly of LED dies is demonstrated, but with a low yield due to the influence of the capillary force of the carrier liquid and the difficulty in ensuring reliable supply of dies to the assembly interface. To overcome the aforementioned challenges this process was modified to assemble the dies by sinking them onto the receiving substrate with a stencil mask on top, demonstrating LED assembly with a very low error rate but at a lower speed. A solder-assisted self-alignment is used to further improve placement precision and to ensure the proper orientation of the dies. The second

  4. Self-assembling semiconducting polymers--rods and gels from electronic materials.

    PubMed

    Clark, Andrew P-Z; Shi, Chenjun; Ng, Benny C; Wilking, James N; Ayzner, Alexander L; Stieg, Adam Z; Schwartz, Benjamin J; Mason, Thomas G; Rubin, Yves; Tolbert, Sarah H

    2013-02-26

    In an effort to favor the formation of straight polymer chains without crystalline grain boundaries, we have synthesized an amphiphilic conjugated polyelectrolyte, poly(fluorene-alt-thiophene) (PFT), which self-assembles in aqueous solutions to form cylindrical micelles. In contrast to many diblock copolymer assemblies, the semiconducting backbone runs parallel, not perpendicular, to the long axis of the cylindrical micelle. Solution-phase micelle formation is observed by X-ray and visible light scattering. The micelles can be cast as thin films, and the cylindrical morphology is preserved in the solid state. The effects of self-assembly are also observed through spectral shifts in optical absorption and photoluminescence. Solutions of higher-molecular-weight PFT micelles form gel networks at sufficiently high aqueous concentrations. Rheological characterization of the PFT gels reveals solid-like behavior and strain hardening below the yield point, properties similar to those found in entangled gels formed from surfactant-based micelles. Finally, electrical measurements on diode test structures indicate that, despite a complete lack of crystallinity in these self-assembled polymers, they effectively conduct electricity.

  5. Photoresponse of supramolecular self-assembled networks on graphene-diamond interfaces.

    PubMed

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V; Palma, Carlos-Andres

    2016-02-25

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm(-2) irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 10(2) μm(2), an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution.

  6. Photoresponse of supramolecular self-assembled networks on graphene–diamond interfaces

    PubMed Central

    Wieghold, Sarah; Li, Juan; Simon, Patrick; Krause, Maximilian; Avlasevich, Yuri; Li, Chen; Garrido, Jose A.; Heiz, Ueli; Samorì, Paolo; Müllen, Klaus; Esch, Friedrich; Barth, Johannes V.; Palma, Carlos-Andres

    2016-01-01

    Nature employs self-assembly to fabricate the most complex molecularly precise machinery known to man. Heteromolecular, two-dimensional self-assembled networks provide a route to spatially organize different building blocks relative to each other, enabling synthetic molecularly precise fabrication. Here we demonstrate optoelectronic function in a near-to-monolayer molecular architecture approaching atomically defined spatial disposition of all components. The active layer consists of a self-assembled terrylene-based dye, forming a bicomponent supramolecular network with melamine. The assembly at the graphene-diamond interface shows an absorption maximum at 740 nm whereby the photoresponse can be measured with a gallium counter electrode. We find photocurrents of 0.5 nA and open-circuit voltages of 270 mV employing 19 mW cm−2 irradiation intensities at 710 nm. With an ex situ calculated contact area of 9.9 × 102 μm2, an incident photon to current efficiency of 0.6% at 710 nm is estimated, opening up intriguing possibilities in bottom-up optoelectronic device fabrication with molecular resolution. PMID:26911248

  7. An Approach to Self-Assembling Swarm Robots Using Multitree Genetic Programming

    PubMed Central

    An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach. PMID:23861655

  8. An approach to self-assembling swarm robots using multitree genetic programming.

    PubMed

    Lee, Jong-Hyun; Ahn, Chang Wook; An, Jinung

    2013-01-01

    In recent days, self-assembling swarm robots have been studied by a number of researchers due to their advantages such as high efficiency, stability, and scalability. However, there are still critical issues in applying them to practical problems in the real world. The main objective of this study is to develop a novel self-assembling swarm robot algorithm that overcomes the limitations of existing approaches. To this end, multitree genetic programming is newly designed to efficiently discover a set of patterns necessary to carry out the mission of the self-assembling swarm robots. The obtained patterns are then incorporated into their corresponding robot modules. The computational experiments prove the effectiveness of the proposed approach.

  9. Multiscale and Multifunctional Emulsions by Host–Guest Interaction-Mediated Self-Assembly

    PubMed Central

    2018-01-01

    Emulsions are widely used in numerous fields. Therefore, there has been increasing interest in the development of new emulsification strategies toward emulsions with advanced functions. Herein we report the formation of diverse emulsions by host–guest interaction-mediated interfacial self-assembly under mild conditions. In this strategy, a hydrophilic diblock copolymer with one block containing β-cyclodextrin (β-CD) can assemble at the oil/water interface when its aqueous solution is mixed with an oil phase of benzyl alcohol (BA), by host–guest interactions between β-CD and BA. This results in significantly reduced interfacial tension and the formation of switchable emulsions with easily tunable droplet sizes. Furthermore, nanoemulsions with excellent stability are successfully prepared simply via vortexing. The self-assembled oil-in-water emulsions also show catastrophic phase inversion, which can generate stable bicontinuous phase and water-in-oil emulsions, thereby further extending phase structures that can be realized by this host–guest self-assembly approach. Moreover, the host–guest nanoemulsions are able to engineer different nanoparticles and microstructures as well as solubilize a diverse array of hydrophobic drugs and dramatically enhance their oral bioavailability. The host–guest self-assembly emulsification is facile, energetically friendly, and fully translatable to industry, therefore representing a conceptually creative approach toward advanced emulsions. PMID:29806006

  10. Logical NAND and NOR Operations Using Algorithmic Self-assembly of DNA Molecules

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Cui, Guangzhao; Zhang, Xuncai; Zheng, Yan

    DNA self-assembly is the most advanced and versatile system that has been experimentally demonstrated for programmable construction of patterned systems on the molecular scale. It has been demonstrated that the simple binary arithmetic and logical operations can be computed by the process of self assembly of DNA tiles. Here we report a one-dimensional algorithmic self-assembly of DNA triple-crossover molecules that can be used to execute five steps of a logical NAND and NOR operations on a string of binary bits. To achieve this, abstract tiles were translated into DNA tiles based on triple-crossover motifs. Serving as input for the computation, long single stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. Our method shows that engineered DNA self-assembly can be treated as a bottom-up design techniques, and can be capable of designing DNA computer organization and architecture.

  11. Thermal stability of self-assembled peptide vaccine materials.

    PubMed

    Sun, Tao; Han, Huifang; Hudalla, Gregory A; Wen, Yi; Pompano, Rebecca R; Collier, Joel H

    2016-01-01

    The majority of current vaccines depend on a continuous "cold chain" of storage and handling between 2 and 8°C. Vaccines experiencing temperature excursions outside this range can suffer from reduced potency. This thermal sensitivity results in significant losses of vaccine material each year and risks the administration of vaccines with diminished protective ability, issues that are heightened in the developing world. Here, using peptide self-assemblies based on the fibril-forming peptide Q11 and containing the epitopes OVA323-339 from ovalbumin or ESAT651-70 from Mycobacterium tuberculosis, the chemical, conformational, and immunological stability of supramolecular peptide materials were investigated. It was expected that these materials would exhibit advantageous thermal stability owing to their adjuvant-free and fully synthetic construction. Neither chemical nor conformational changes were observed for either peptide when stored at 45°C for 7days. ESAT651-70-Q11 was strongly immunogenic whether it was stored as a dry powder or as aqueous nanofibers, showing undiminished immunogenicity even when stored as long as six months at 45°C. This result was in contrast to ESAT651-70 conjugated to a protein carrier and adjuvanted with alum, which demonstrated marked thermal sensitivity in these conditions. Antibody titers and affinities were undiminished in mice for OVA323-339-Q11 if it was stored as assembled nanofibers, yet some diminishment was observed for material stored as a dry powder. The OVA study was done in a different mouse strain and with a different prime/boost regimen, and so it should not be compared directly with the study for the ESAT epitope. This work indicates that peptide self-assemblies can possess attractive thermal stability properties in the context of vaccine development. Almost all current vaccines must be maintained within a tight and refrigerated temperature range, usually between 2 and 8°C. This presents significant challenges for their

  12. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  13. Protein-directed self-assembly of a fullerene crystal.

    PubMed

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B; Acharya, Rudresh; DeGrado, William F; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-26

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  14. Multistep hierarchical self-assembly of chiral nanopore arrays

    PubMed Central

    Kim, Hanim; Lee, Sunhee; Shin, Tae Joo; Korblova, Eva; Walba, David M.; Clark, Noel A.; Lee, Sang Bok; Yoon, Dong Ki

    2014-01-01

    A series of simple hierarchical self-assembly steps achieve self-organization from the centimeter to the subnanometer-length scales in the form of square-centimeter arrays of linear nanopores, each one having a single chiral helical nanofilament of large internal surface area and interfacial interactions based on chiral crystalline molecular arrangements. PMID:25246585

  15. Titania nanospheres from supercritical fluids.

    PubMed

    Darr, J A; Kellici, S; Rehman, I U

    2005-06-01

    Surfactant-coated amorphous titania nanospheres have been synthesised using templating 'water-in-supercritical carbon dioxide' emulsion droplets; the process represents a clean and controlled method for the manufacture of high-purity nanoparticles.

  16. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  17. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    PubMed

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  18. Packing and self-assembly of truncated triangular bipyramids

    NASA Astrophysics Data System (ADS)

    Haji-Akbari, Amir; Chen, Elizabeth R.; Engel, Michael; Glotzer, Sharon C.

    2013-07-01

    Motivated by breakthroughs in the synthesis of faceted nano- and colloidal particles, as well as theoretical and computational studies of their packings, we investigate a family of truncated triangular bipyramids. We report dense periodic packings with small unit cells that were obtained via numerical and analytical optimization. The maximal packing fraction ϕmax changes continuously with the truncation parameter t. Eight distinct packings are identified based on discontinuities in the first and second derivatives of ϕmax(t). These packings differ in the number of particles in the fundamental domain (unit cell) and the type of contacts between the particles. In particular, we report two packings with four particles in the unit cell for which both ϕmax(t) and ϕmax'(t) are continuous and the discontinuity occurs in the second derivative only. In the self-assembly simulations that we perform for larger boxes with 2048 particles, only one out of eight packings is found to assemble. In addition, the degenerate quasicrystal reported previously for triangular bipyramids without truncation [Haji-Akbari , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.215702 107, 215702 (2011)] assembles for truncations as high as 0.45. The self-assembly propensities for the structures formed in the thermodynamic limit are explained using the isoperimetric quotient of the particles and the coordination number in the disordered fluid and in the assembled structure.

  19. Rational Self-Assembly of Nano-Colloids using DNA Interaction

    NASA Astrophysics Data System (ADS)

    Ung, Marie T.; Scarlett, Raynaldo; Sinno, Talid R.; Crocker, John C.

    2010-03-01

    DNA is an attractive tool to direct the rational self-assembly of nano-colloids since its interaction is specific and reversible. This tunable attractive interaction should lead to a diverse and rich phase diagram of higher ordered structures which would not otherwise be entropically favored.footnotetextTkachenko AV, Morphological Diversity of DNA-Colloidal Self-Assembly, Phys. Rev. Lett 89 (2002) We compare our latest experimental observations to a simulation framework that precisely replicates the experimental phase behavior and the crystal growth kinetics.footnotetextKim AJ, Scarlett R., Biancaniello PL, Sinno T, Crocker JC, Probing interfacial equilibration in microsphere crystals formed by DNA-directed assembly, Nature Materials 8, 52-55 (2009) We will discuss the crystallography of novel structures and address how particle size and heterogeneity affect nucleation and growth rates.

  20. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yao; He Xiaoyan; Cao Minhua

    2008-11-03

    ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.

  1. Intrinsically disordered proteins drive enamel formation via an evolutionarily conserved self-assembly motif.

    PubMed

    Wald, Tomas; Spoutil, Frantisek; Osickova, Adriana; Prochazkova, Michaela; Benada, Oldrich; Kasparek, Petr; Bumba, Ladislav; Klein, Ophir D; Sedlacek, Radislav; Sebo, Peter; Prochazka, Jan; Osicka, Radim

    2017-02-28

    The formation of mineralized tissues is governed by extracellular matrix proteins that assemble into a 3D organic matrix directing the deposition of hydroxyapatite. Although the formation of bones and dentin depends on the self-assembly of type I collagen via the Gly-X-Y motif, the molecular mechanism by which enamel matrix proteins (EMPs) assemble into the organic matrix remains poorly understood. Here we identified a Y/F-x-x-Y/L/F-x-Y/F motif, evolutionarily conserved from the first tetrapods to man, that is crucial for higher order structure self-assembly of the key intrinsically disordered EMPs, ameloblastin and amelogenin. Using targeted mutations in mice and high-resolution imaging, we show that impairment of ameloblastin self-assembly causes disorganization of the enamel organic matrix and yields enamel with disordered hydroxyapatite crystallites. These findings define a paradigm for the molecular mechanism by which the EMPs self-assemble into supramolecular structures and demonstrate that this process is crucial for organization of the organic matrix and formation of properly structured enamel.

  2. Electrostatically Tuned Self-Assembly of Branched Amphiphilic Peptides

    DOE PAGES

    Ting, Christina L.; Frischknecht, Amalie L.; Stevens, Mark J.; ...

    2014-06-19

    Electrostatics plays an important role in the self-assembly of amphiphilic peptides. To develop a molecular understanding of the role of the electrostatic interactions, we develop a coarse-grained model peptide and apply self-consistent field theory to investigate the peptide assembly into a variety of aggregate nanostructures. We find that the presence and distribution of charged groups on the hydrophilic branches of the peptide can modify the molecular configuration from extended to collapsed. This change in molecular configuration influences the packing into spherical micelles, cylindrical micelles (nanofibers), or planar bilayers. The effects of charge distribution therefore has important implications for the designmore » and utility of functional materials based on peptides.« less

  3. Self Assembled Structures by Directional Solidification of Eutectics

    NASA Technical Reports Server (NTRS)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  4. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-26

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li + at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g -1 at 100 mA g -1 and 879 mA h g -1 at 5 A g -1 for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li + adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li + diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li + ; and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  5. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yifan; Chan, Henry; Narayanan, Badri

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligandmore » coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.« less

  6. Amorphous Carbon Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Amorphous carbon nanosphere used as the anode material for Li-intercalation in Lithium-ion energy storage. This structure was obtained through a thermal annealing process at a temperature of 3000 degree Kelvin, simulated using the LAMMPS molecular dynamics code on the LCRC Fusion resource. Science: Kah Chun Lau and Larry Curtiss Visualization: Aaron Knoll, Mark Hereld and Michael E. Papka

  7. Managing lifelike behavior in a dynamic self-assembled system

    NASA Astrophysics Data System (ADS)

    Ropp, Chad; Bachelard, Nicolas; Wang, Yuan; Zhang, Xiang

    Self-organization can arise outside of thermodynamic equilibrium in a process of dynamic self-assembly. This is observed in nature, for example in flocking birds, but can also be created artificially with non-living entities. Such dynamic systems often display lifelike properties, including the ability to self-heal and adapt to environmental changes, which arise due to the collective and often complex interactions between the many individual elements. Such interactions are inherently difficult to predict and control, and limit the development of artificial systems. Here, we report a fundamentally new method to manage dynamic self-assembly through the direct external control of collective phenomena. Our system consists of a waveguide filled with mobile scattering particles. These particles spontaneously self-organize when driven by a coherent field, self-heal when mechanically perturbed, and adapt to changes in the drive wavelength. This behavior is governed by particle interactions that are completely mediated by coherent wave scattering. Compared to hydrodynamic interactions which lead to compact ordered structures, our system displays sinusoidal degeneracy and many different steady-state geometries that can be adjusted using the external field.

  8. Numerical approach on dynamic self-assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Ibrahimi, Muhamet; Ilday, Serim; Makey, Ghaith; Pavlov, Ihor; Yavuz, Özgàn; Gulseren, Oguz; Ilday, Fatih Omer

    Far from equilibrium systems of artificial ensembles are crucial for understanding many intelligent features in self-organized natural systems. However, the lack of established theory underlies a need for numerical implementations. Inspired by a novel work, we simulate a solution-suspended colloidal system that dynamically self assembles due to convective forces generated in the solvent when heated by a laser. In order to incorporate with random fluctuations of particles and continuously changing flow, we exploit a random-walk based Brownian motion model and a fluid dynamics solver prepared for games, respectively. Simulation results manage to fit to experiments and show many quantitative features of a non equilibrium dynamic self assembly, including phase space compression and an ensemble-energy input feedback loop.

  9. Self-Assembled Proteins and Peptides as Scaffolds for Tissue Regeneration.

    PubMed

    Loo, Yihua; Goktas, Melis; Tekinay, Ayse B; Guler, Mustafa O; Hauser, Charlotte A E; Mitraki, Anna

    2015-11-18

    Self-assembling proteins and peptides are increasingly gaining interest for potential use as scaffolds in tissue engineering applications. They self-organize from basic building blocks under mild conditions into supramolecular structures, mimicking the native extracellular matrix. Their properties can be easily tuned through changes at the sequence level. Moreover, they can be produced in sufficient quantities with chemical synthesis or recombinant technologies to allow them to address homogeneity and standardization issues required for applications. Here. recent advances in self-assembling proteins, peptides, and peptide amphiphiles that form scaffolds suitable for tissue engineering are reviewed. The focus is on a variety of motifs, ranging from minimalistic dipeptides, simplistic ultrashort aliphatic peptides, and peptide amphiphiles to large "recombinamer" proteins. Special emphasis is placed on the rational design of self-assembling motifs and biofunctionalization strategies to influence cell behavior and modulate scaffold stability. Perspectives for combination of these "bottom-up" designer strategies with traditional "top-down" biofabrication techniques for new generations of tissue engineering scaffolds are highlighted. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self assembly of nano metric metallic particles for realization of photonic and electronic nano transistors.

    PubMed

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-05-25

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles.

  11. Carbon/CuO nanosphere-anchored g-C3N4 nanosheets as ternary electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Vattikuti, S. V. Prabhakar; Reddy, B. Purusottam; Byon, Chan; Shim, Jaesool

    2018-06-01

    Novel electrode materials for supercapacitors comprised of carbon and copper oxide (CuO) nanospheres on graphitic carbon nitride (g-C3N4) nanosheets, denoted as C/CuO@g-C3N4 are self-assembled via a one-step co-pyrolysis decomposition method. The pure g-C3N4 and C/CuO@g-C3N4 were confirmed by powder X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), thermal gravimetric and differential thermal analysis (TG-DTA), X-ray photoelectron spectroscopy (XPS), N2 adsorption/desorption studies and Fourier-transform infrared spectroscopy (FTIR). The specific capacitance was 247.2 F g-1 in 0.5 M NaOH at a current density of 1 A g-1, and more than 92.1% of the capacitance was retained after 6000 cycles. The property enhancement was ascribed to the synergistic effects of the three components in the composite. These results suggest that C/CuO@g-C3N4 possessed an excellent cyclic stability with respect to their capacity performance as electrode materials.

  12. Stoichiometric Control of Multiple Different Tectons in Coordination-Driven Self-assembly

    PubMed Central

    Lee, Junseong; Ghosh, Koushik; Stang, Peter J.

    2009-01-01

    We present a general strategy for the synthesis of stable, multi-component fused polygon complexes where coordination-driven self-assembly allows for single supramolecular species can be formed from multi-component self-assembly and the shape of the obtained polygons can be controlled by simply changing the ratio of individual components. The compounds are characterized by Multinuclear NMR, ESI Mass spectrometry. PMID:19663439

  13. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  14. Interfacial Self-Assembly of Polyelectrolyte-Capped Gold Nanoparticles

    DOE PAGES

    Zhang, Honghu; Nayak, Srikanth; Wang, Wenjie; ...

    2017-10-06

    Here, we report on pH- and salt-responsive assembly of nanoparticles capped with polyelectrolytes at vapor–liquid interfaces. Two types of alkylthiol-terminated poly(acrylic acid) (PAAs, varying in length) are synthesized and used to functionalize gold nanoparticles (AuNPs) to mimic similar assembly effects of single-stranded DNA-capped AuNPs using synthetic polyelectrolytes. Using surface-sensitive X-ray scattering techniques, including grazing incidence small-angle X-ray scattering (GISAXS) and X-ray reflectivity (XRR), we demonstrate that PAA-AuNPs spontaneously migrate to the vapor–liquid interfaces and form Gibbs monolayers by decreasing the pH of the suspension. The Gibbs monoalyers show chainlike structures of monoparticle thickness. The pH-induced self-assembly is attributed to themore » protonation of carboxyl groups and to hydrogen bonding between the neighboring PAA-AuNPs. In addition, we show that adding MgCl 2 to PAA-AuNP suspensions also induces adsorption at the interface and that the high affinity between magnesium ions and carboxyl groups leads to two- and three-dimensional clusters that yield partial surface coverage and poorer ordering of NPs at the interface. We also examine the assembly of PAA-AuNPs in the presence of a positively charged Langmuir monolayer that promotes the attraction of the negatively charged capped NPs by electrostatic forces. Our results show that synthetic polyelectrolyte-functionalized nanoparticles exhibit interfacial self-assembly behavior similar to that of DNA-functionalized nanoparticles, providing a pathway for nanoparticle assembly in general.« less

  15. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin

    The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis ofmore » the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.« less

  16. Manipulating fluids: Advances in micro-fluidics, opto-fluidics and fluidic self assembly

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh

    This dissertation describes work in three inter-related areas---micro-fluidics, opto-fluidics and fluidic self-assembly. Micro-fluidics has gotten a boost in recent years with the development of multilayered elastomeric devices made of poly (dimethylsiloxane) (PDMS), allowing active elements like valves and pumps. However, while PDMS has many advantages, it is not resistant to organic solvents. New materials and/or new designs are needed for solvent resistance. I describe how novel fluorinated elastomers can replace PDMS when combined with the three dimensional (3-D) solid printing. I also show how another 3-D fabrication method, multilayer photo-lithography, allows for fabrication of devices integrating filters. In general, 3-D fabrications allow new kinds of micro-fluidic devices to be made that would be impossible to emulate with two dimensional chips. In opto-fluidics, I describe a number of experiments with quantum dots both inside and outside chips. Inside chips, I manipulate quantum dots using hydrodynamic focusing to pattern fine lines, like a barcode. Outside chips, I describe our attempts to create quantum dot composites with micro-spheres. I also show how evaporated gold films and chemical passivation can then be used to enhance the emission of quantum dots. Finally, within fluids, self assembly is an attractive way to manipulate materials, and I provide two examples: first, a DNA-based energy transfer molecule that relies on quantum mechanics and self-assembles inside fluids. This kind of molecular photonics mimics parts of the photosynthetic apparatus of plants and bacteria. The second example of self-assembly in fluids describes a new phenomena---the surface tension mediated self assembly of particles like quantum dots and micro-spheres into fine lines. This self assembly by capillary flows can be combined with photo-lithography, and is expected to find use in future nano- and micro-fabrication schemes. In conclusion, advances in fludics, integrating

  17. Two-dimensional honeycomb network through sequence-controlled self-assembly of oligopeptides.

    PubMed

    Abb, Sabine; Harnau, Ludger; Gutzler, Rico; Rauschenbach, Stephan; Kern, Klaus

    2016-01-12

    The sequence of a peptide programs its self-assembly and hence the expression of specific properties through non-covalent interactions. A large variety of peptide nanostructures has been designed employing different aspects of these non-covalent interactions, such as dispersive interactions, hydrogen bonding or ionic interactions. Here we demonstrate the sequence-controlled fabrication of molecular nanostructures using peptides as bio-organic building blocks for two-dimensional (2D) self-assembly. Scanning tunnelling microscopy reveals changes from compact or linear assemblies (angiotensin I) to long-range ordered, chiral honeycomb networks (angiotensin II) as a result of removal of steric hindrance by sequence modification. Guided by our observations, molecular dynamic simulations yield atomistic models for the elucidation of interpeptide-binding motifs. This new approach to 2D self-assembly on surfaces grants insight at the atomic level that will enable the use of oligo- and polypeptides as large, multi-functional bio-organic building blocks, and opens a new route towards rationally designed, bio-inspired surfaces.

  18. Ion-Specific Control of the Self-Assembly Dynamics of a Nanostructured Protein Lattice

    DOE PAGES

    Rad, Behzad; Haxton, Thomas K.; Shon, Albert; ...

    2014-12-10

    Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca 2+. These diagrams revealed amore » localized region of optimum yield of nanosheets at intermediate Ca 2+ concentration. Replacement of Mg 2+ or Ba 2+ for Ca 2+ indicates that Ca 2+ acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca 2+ bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. In conclusion, our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.« less

  19. Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.

    PubMed

    Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo

    2015-02-01

    The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

  20. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Chen, Zhaowei; Wang, Zhenzhen; Li, Wei; Ju, Enguo; Yan, Zhengqing; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal

  1. The Self-Assembly Properties of a Benzene-1,3,5-tricarboxamide Derivative

    ERIC Educational Resources Information Center

    Stals, Patrick J. M.; Haveman, Jan F.; Palmans, Anja R. A.; Schenning, Albertus P. H. J.

    2009-01-01

    A series of experiments involving the synthesis and characterization of a benzene-1,3,5-tricarboxamide derivative and its self-assembly properties are reported. These laboratory experiments combine organic synthesis, self-assembly, and physical characterization and are designed for upper-level undergraduate students to introduce the topic of…

  2. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  3. Self Assembly of Nano Metric Metallic Particles for Realization of Photonic and Electronic Nano Transistors

    PubMed Central

    Shahmoon, Asaf; Limon, Ofer; Girshevitz, Olga; Zalevsky, Zeev

    2010-01-01

    In this paper, we present the self assembly procedure as well as experimental results of a novel method for constructing well defined arrangements of self assembly metallic nano particles into sophisticated nano structures. The self assembly concept is based on focused ion beam (FIB) technology, where metallic nano particles are self assembled due to implantation of positive gallium ions into the insulating material (e.g., silica as in silicon on insulator wafers) that acts as intermediary layer between the substrate and the negatively charge metallic nanoparticles. PMID:20559513

  4. Backfilled, self-assembled monolayers and methods of making same

    DOEpatents

    Fryxell, Glen E [Kennewick, WA; Zemanian, Thomas S [Richland, WA; Addleman, R Shane [Benton City, WA; Aardahl, Christopher L [Sequim, WA; Zheng, Feng [Richland, WA; Busche, Brad [Raleigh, NC; Egorov, Oleg B [West Richland, WA

    2009-06-30

    Backfilled, self-assembled monolayers and methods of making the same are disclosed. The self-assembled monolayer comprises at least one functional organosilane species and a substantially random dispersion of at least one backfilling organosilane species among the functional organosilane species, wherein the functional and backfilling organosilane species have been sequentially deposited on a substrate. The method comprises depositing sequentially a first organosilane species followed by a backfilling organosilane species, and employing a relaxation agent before or during deposition of the backfilling organosilane species, wherein the first and backfilling organosilane species are substantially randomly dispersed on a substrate.

  5. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expandingmore » to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic

  6. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering.

    PubMed

    Zhang, Shichao; Xing, Malcolm; Li, Bingyun

    2018-06-01

    Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL) self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  7. Computational studies of sequence-specific driving forces in peptide self-assembly

    NASA Astrophysics Data System (ADS)

    Jeon, Joohyun

    Peptides are biopolymers made from various sequences of twenty different types of amino acids, connected by peptide bonds. There are practically an infinite number of possible sequences and tremendous possible combinations of peptide-peptide interactions. Recently, an increasing number of studies have shown a stark variety of peptide self-assembled nanomaterials whose detailed structures depend on their sequences and environmental factors; these have end uses in medical and bio-electronic applications, for example. To understand the underlying physics of complex peptide self-assembly processes and to delineate sequence specific effects, in this study, I use various simulation tools spanning all-atom molecular dynamics to simple lattice models and quantify the balance of interactions in the peptide self-assembly processes. In contrast to the existing view that peptides' aggregation propensities are proportional to the net sequence hydrophobicity and inversely proportional to the net charge, I show the more nuanced effects of electrostatic interactions, including the cooperative effects between hydrophobic and electrostatic interactions. Notably, I suggest rather unexpected, yet important roles of entropies in the small scale oligomerization processes. Overall, this study broadens our understanding of the role of thermodynamic driving forces in peptide self-assembly.

  8. Self-assembled Nanomaterials for Hybrid Electronic and Photonic Systems

    DTIC Science & Technology

    2015-05-15

    storage media.  Project 3. Self‐assembling Circuit Defect Modeling The self‐assembly of  nanoelectronic  devices provide an opportunity to achieve... nanoelectronics . This work will be useful in predicting the potential success of defect‐ tolerance techniques for DNA self‐assembled  nanoelectronic  substrates...program with integrated circuit emphasis simulations for DNA self-assembled nanoelectronics ." IET Computers and Digital Techniques 3, no. 6 (2009): 553-569.        

  9. Liquid crystal organization of self-assembling cyclic peptides.

    PubMed

    Amorín, Manuel; Pérez, Ana; Barberá, Joaquín; Ozores, Haxel Lionel; Serrano, José Luis; Granja, Juan R; Sierra, Teresa

    2014-01-21

    Self-assembling cyclic peptides decorated with mesogens form porous columnar mesophases in which, depending on the number of hydrocarbon chains, double or single channels are formed along each column.

  10. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles

    PubMed Central

    Wei, Xi; Syed, Abeer; Mao, Pan; Han, Jongyoon; Song, Yong-Ak

    2016-01-01

    Polydimethylsiloxane (PDMS) is the prevailing building material to make microfluidic devices due to its ease of molding and bonding as well as its transparency. Due to the softness of the PDMS material, however, it is challenging to use PDMS for building nanochannels. The channels tend to collapse easily during plasma bonding. In this paper, we present an evaporation-driven self-assembly method of silica colloidal nanoparticles to create nanofluidic junctions with sub-50 nm pores between two microchannels. The pore size as well as the surface charge of the nanofluidic junction is tunable simply by changing the colloidal silica bead size and surface functionalization outside of the assembled microfluidic device in a vial before the self-assembly process. Using the self-assembly of nanoparticles with a bead size of 300 nm, 500 nm, and 900 nm, it was possible to fabricate a porous membrane with a pore size of ~45 nm, ~75 nm and ~135 nm, respectively. Under electrical potential, this nanoporous membrane initiated ion concentration polarization (ICP) acting as a cation-selective membrane to concentrate DNA by ~1,700 times within 15 min. This non-lithographic nanofabrication process opens up a new opportunity to build a tunable nanofluidic junction for the study of nanoscale transport processes of ions and molecules inside a PDMS microfluidic chip. PMID:27023724

  11. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    PubMed

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  12. The Self- and Directed Assembly of Nanowires

    NASA Astrophysics Data System (ADS)

    Smith, Benjamin David

    This thesis explores the self- and directed assembly of nanowires. Specifically, we examine the driving forces behind nanowire self-assembly and the macro-structures that are formed. Particle-dense, oriented nanowire structures show promise in the fields of photonics, energy, sensing, catalysis, and electronics. Arrays of spherical particles have already found uses in electronic inks, sensing arrays, and many other commercial applications; but, it is a challenge to create specific arrays of morphologically and/or compositionally anisotropic particles. The following chapters illuminate the interactions that drive the assembly of anisotropic particles in high density solutions in the absence of applied fields or solution drying. Special emphasis is placed on the structures that are formed. The properties of micro- and nanoparticles and their assembly are introduced in Chapter 1. In particular, the properties of shape and material anisotropic particles are highlighted, while challenges in producing desired arrays are discussed. In this thesis, metallic nanowires of increasing complexity were used to examine the self-assembly behavior of both shape and material anisotropic particles. Nanowires were synthesized through templated electrodeposition. In this process, porous alumina membranes served as a template in which metal salts were reduced to form particles. Upon template dissolution, billions of nominally identical particles were released. We specifically focused on segmented, metallic nanowires 2-13 mum in length and 180 to 350 nm in diameter. Since these particles have strong van der Waals (VDWs) attractions, an electrostatically repulsive coating was necessary to prevent aggregation; we used small molecule, DNA, or amorphous silica coatings. Nanowires and their coatings were characterized by electron microscopy. In order to study self-assembly behavior, particle-dense aqueous suspensions were placed within an assembly chamber defined by a silicone spacer. The

  13. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    NASA Astrophysics Data System (ADS)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  14. Self-assembled clusters of spheres related to spherical codes.

    PubMed

    Phillips, Carolyn L; Jankowski, Eric; Marval, Michelle; Glotzer, Sharon C

    2012-10-01

    We consider the thermodynamically driven self-assembly of spheres onto the surface of a central sphere. This assembly process forms self-limiting, or terminal, anisotropic clusters (N-clusters) with well-defined structures. We use Brownian dynamics to model the assembly of N-clusters varying in size from two to twelve outer spheres and free energy calculations to predict the expected cluster sizes and shapes as a function of temperature and inner particle diameter. We show that the arrangements of outer spheres at finite temperatures are related to spherical codes, an ideal mathematical sequence of points corresponding to the densest possible sphere packings. We demonstrate that temperature and the ratio of the diameters of the inner and outer spheres dictate cluster morphology. We present a surprising result for the equilibrium structure of a 5-cluster, for which the square pyramid arrangement is preferred over a more symmetric structure. We show this result using Brownian dynamics, a Monte Carlo simulation, and a free energy approximation. Our results suggest a promising way to assemble anisotropic building blocks from constituent colloidal spheres.

  15. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  17. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  18. Self-assembling peptide amphiphile nanostructures for cancer therapy

    NASA Astrophysics Data System (ADS)

    Soukasene, Stephen

    The application of nanotechnology to cancer therapy shows great promise for reducing the burden of the disease. By virtue of their size, nanoscale objects preferentially accumulate in tumor tissue through an enhanced permeability and retention (EPR) effect. However, to fully overcome the issues that limit current cancer treatments, viable nanostructures must also impart multifunctionality and be fully compatible with their biological surrounds. The self-assembling peptide amphiphile (PA) materials studied extensively in the Stupp Research Group form very biocompatible high aspect ratio nanostructures that meet these criteria. This thesis investigates the development of PA nanostructures designed to treat cancer. We first look to use the PA as a drug delivery vehicle by entrapping a small hydrophobic anti-cancer drug, camptothecin, in the core of the nanostructures. Using a solvent evaporation technique to load the drug into the PA nanofibers, we are able to improve the aqueous solubility of the molecule by nearly 30-fold. TEM and AFM studies show that entrapment of drug molecules does not disrupt the self-assembled morphology of the nanofiber. In vitro and in vivo studies are also conducted to demonstrate the bioactivity of the drug after its entrapment. As a potential platform for novel therapeutics, we next develop techniques for using light irradiation to trigger self-assembly inside the confined space of liposomes. We encapsulate PA monomers that assemble under acidic conditions along with a photoacid generator inside liposomes. Upon exposure to 254 nm light, the PA monomers self assemble inside the liposome to form nanostructures, which we observe through a quick freeze/deep etch technique that allows us to look inside the liposomes by SEM and TEM. Last of all, the development and discovery of epitopes for targeting PA nanostructures to tumors are explored. Using phage display technology we generate two groups of peptide sequences, one of which can potentially

  19. The mechanisms for nanoparticle surface diffusion and chain self-assembly determined from real-time nanoscale kinetics in liquid

    DOE PAGES

    Woehl, Taylor J.; Prozorov, Tanya

    2015-08-20

    The mechanisms for nanoparticle self-assembly are often inferred from the morphology of the final nanostructures in terms of attractive and repulsive interparticle interactions. Understanding how nanoparticle building blocks are pieced together during self-assembly is a key missing component needed to unlock new strategies and mechanistic understanding of this process. Here we use real-time nanoscale kinetics derived from liquid cell transmission electron microscopy investigation of nanoparticle self-assembly to show that nanoparticle mobility dictates the pathway for self-assembly and final nanostructure morphology. We describe a new method for modulating nanoparticle diffusion in a liquid cell, which we employ to systematically investigate themore » effect of mobility on self-assembly of nanoparticles. We interpret the observed diffusion in terms of electrostatically induced surface diffusion resulting from nanoparticle hopping on the liquid cell window surface. Slow-moving nanoparticles self-assemble predominantly into linear 1D chains by sequential attachment of nanoparticles to existing chains, while highly mobile nanoparticles self-assemble into chains and branched structures by chain–chain attachments. Self-assembly kinetics are consistent with a diffusion-driven mechanism; we attribute the change in self-assembly pathway to the increased self-assembly rate of highly mobile nanoparticles. Furthermore, these results indicate that nanoparticle mobility can dictate the self-assembly mechanism and final nanostructure morphology in a manner similar to interparticle interactions.« less

  20. Self-Assembly through Noncovalent Preorganization of Reactants: Explaining the Formation of a Polyfluoroxometalate.

    PubMed

    Schreiber, Roy E; Avram, Liat; Neumann, Ronny

    2018-01-09

    High-order elementary reactions in homogeneous solutions involving more than two molecules are statistically improbable and very slow to proceed. They are not generally considered in classical transition-state or collision theories. Yet, rather selective, high-yield product formation is common in self-assembly processes that require many reaction steps. On the basis of recent observations of crystallization as well as reactions in dense phases, it is shown that self-assembly can occur by preorganization of reactants in a noncovalent supramolecular assembly, whereby directing forces can lead to an apparent one-step transformation of multiple reactants. A simple and general kinetic model for multiple reactant transformation in a dense phase that can account for many-bodied transformations was developed. Furthermore, the self-assembly of polyfluoroxometalate anion [H 2 F 6 NaW 18 O 56 ] 7- from simple tungstate Na 2 WO 2 F 4 was demonstrated by using 2D 19 F- 19 F NOESY, 2D 19 F- 19 F COSY NMR spectroscopy, a new 2D 19 F{ 183 W} NMR technique, as well as ESI-MS and diffusion NMR spectroscopy, and the crucial involvement of a supramolecular assembly was found. The deterministic kinetic reaction model explains the reaction in a dense phase and supports the suggested self-assembly mechanism. Reactions in dense phases may be of general importance in understanding other self-assembly reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Self-Assembly Driven Aggregation-Induced Emission of Copper Nanoclusters: A Novel Technology for Lighting.

    PubMed

    Liu, Yi; Yao, Dong; Zhang, Hao

    2018-04-18

    Because of the specific properties including HOMO-LUMO electronic transition, size-dependent fluorescent emission, and intense light absorption, metal nanoclusters (NCs) have been considered to be one of the most competitive color conversion materials in light-emitting diodes (LEDs). However, the monotonous emission color and the low emission stability and intensity of individual metal NCs strongly limit their universal application. Inspired by the concept of "aggregation-induced emission" (AIE), the utilization of highly ordered metal NC assemblies opens a door to resolve these problems. After self-assembly, the emission stability and intensity of metal NC assemblies are enhanced. At the same time, the emission color of metal NC assemblies become tunable. We termed this process as self-assembly driven AIE of metal NCs. In this review, we use Cu NCs as the example to convey the concept that the compact and ordered arrangement can efficiently improve the metal NCs' emission stability, tunability, and intensity. We first introduce the synthesis of 2D Cu NC self-assemblies and their emissions. We further summarize some of the factors that can affect the emissions of 2D Cu NC self-assemblies. We then discuss the utilization of 2D Cu NC self-assemblies as color conversion materials for LEDs. At last, we outline current challenges and our perspectives on the development of this area.

  2. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  3. Modulating β-lactoglobulin nanofibril self-assembly at pH 2 using glycerol and sorbitol.

    PubMed

    Dave, Anant C; Loveday, Simon M; Anema, Skelte G; Jameson, Geoffrey B; Singh, Harjinder

    2014-01-13

    β-Lactoglobulin (β-lg) forms fibrils when heated at 80 °C, pH 2, and low ionic strength (<0.015 mM). When formed at protein concentrations <3%, these fibrils are made up of peptides produced from the acid hydrolysis of the β-lg monomer. The present study investigated the effects of the polyhydroxy alcohols (polyols) glycerol and sorbitol (0-50% w/v) on β-lg self-assembly at pH 2. Glycerol and sorbitol stabilize native protein structure and modulate protein functionality by preferential exclusion. In our study, both polyols decreased the rate of β-lg self-assembly but had no effect on the morphology of fibrils. The mechanism of these effects was studied using circular dichroism spectroscopy and SDS-PAGE. Sorbitol inhibited self-assembly by stabilizing β-lg against unfolding and hydrolysis, resulting in fewer fibrillogenic species, whereas glycerol inhibited nucleation without inhibiting hydrolysis. Both polyols increased the viscosity of the solutions, but viscosity appeared to have little effect on fibril assembly, and we believe that self-assembly was not diffusion-limited under these conditions. This is in agreement with previous reports for other proteins assembling under different conditions. The phenomenon of peptide self-assembly can be decoupled from protein hydrolysis using glycerol.

  4. Computational Modeling of Tissue Self-Assembly

    NASA Astrophysics Data System (ADS)

    Neagu, Adrian; Kosztin, Ioan; Jakab, Karoly; Barz, Bogdan; Neagu, Monica; Jamison, Richard; Forgacs, Gabor

    As a theoretical framework for understanding the self-assembly of living cells into tissues, Steinberg proposed the differential adhesion hypothesis (DAH) according to which a specific cell type possesses a specific adhesion apparatus that combined with cell motility leads to cell assemblies of various cell types in the lowest adhesive energy state. Experimental and theoretical efforts of four decades turned the DAH into a fundamental principle of developmental biology that has been validated both in vitro and in vivo. Based on computational models of cell sorting, we have developed a DAH-based lattice model for tissues in interaction with their environment and simulated biological self-assembly using the Monte Carlo method. The present brief review highlights results on specific morphogenetic processes with relevance to tissue engineering applications. Our own work is presented on the background of several decades of theoretical efforts aimed to model morphogenesis in living tissues. Simulations of systems involving about 105 cells have been performed on high-end personal computers with CPU times of the order of days. Studied processes include cell sorting, cell sheet formation, and the development of endothelialized tubes from rings made of spheroids of two randomly intermixed cell types, when the medium in the interior of the tube was different from the external one. We conclude by noting that computer simulations based on mathematical models of living tissues yield useful guidelines for laboratory work and can catalyze the emergence of innovative technologies in tissue engineering.

  5. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    PubMed

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  6. Classification of coordination polygons and polyhedra according to their mode of self-assembly.

    PubMed

    Swiegers, G F; Malefetse, T J

    2001-09-03

    This work extends techniques for the controlled formation of synthetic molecular containers by metal-mediated self-assembly. A new classification system based on the self-assembly of such species is proposed. The system: 1) allows a systematic identification of suitable acceptor-donor combinations, 2) widens the variety of design possibilities available, 3) allows a ready comparison of the self-assembly of different compounds, 4) reveals useful commonalities between different compounds, 5) aids in the development of novel architectures, and 6) permits identification of systems capable of being switched back-and-forth between architectures.

  7. Nanomesh of Cu fabricated by combining nanosphere lithography and high power pulsed magnetron sputtering and a preliminary study about its function

    NASA Astrophysics Data System (ADS)

    Xie, Wanchuan; Chen, Jiang; Jiang, Lang; Yang, Ping; Sun, Hong; Huang, Nan

    2013-10-01

    The Cu nanomesh was obtained by a combination of nanosphere lithography (NSL) and high power pulsed magnetron sputtering (HiPPMS). A deposition mask was formed on TiO2 substrates by the self-assembly of polystyrene latex spheres with a diameter of 1 μm, then Cu nanomesh structure was produced on the substrate using sputtering. The structures were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The results show the increase of temperature of the polystyrene mask caused by the thermal radiation from the target and the bombardment of sputtering particles would affect the quality of the final nanopattern. The tests of photocatalytic degradation, platelet adhesion and human umbilical artery smooth muscle cells (HUASMCs) culture show Cu deposition could promote the photocatalytic efficiency of TiO2, affect platelet adhesion and inhibit smooth muscle cell adhesion and proliferation. It is highlighted that these findings may serve as a guide for the research of multifunctional surface structure.

  8. Self-assembly and speed distributions of active granular particles

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  9. Modelling Polar Self Assembly

    NASA Astrophysics Data System (ADS)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  10. Crystalline modification of a rare earth nucleating agent for isotactic polypropylene based on its self-assembly.

    PubMed

    Zhang, Yuanming; Sun, Tingting; Jiang, Wei; Han, Guangting

    2018-05-01

    In this paper, the crystalline modification of a rare earth nucleating agent (WBG) for isotactic polypropylene (PP) based on its supramolecular self-assembly was investigated by differential scanning calorimetry, wide-angle X-ray diffraction and polarized optical microscopy. In addition, the relationship between the self-assembly structure of the nucleating agent and the crystalline structure, as well as the possible reason for the self-assembly behaviour, was further studied. The structure evolution of WBG showed that the self-assembly structure changed from a needle-like structure to a dendritic structure with increase in the content of WBG. When the content of WBG exceeded a critical value (0.4 wt%), it self-assembled into a strip structure. This revealed that the structure evolution of WBG contributed to the K β and the crystallization morphology of PP with different content of WBG. In addition, further studies implied that the behaviour of self-assembly was a liquid-solid transformation of WBG, followed by a liquid-liquid phase separation of molten isotactic PP and WBG. The formation of the self-assembly structure was based on the free molecules by hydrogen bond dissociation while being heated, followed by aggregation into another structure by hydrogen bond association while being cooled. Furthermore, self-assembly behaviour depends largely on the interaction between WBG themselves.

  11. Molecular Effects on Coacervate-Driven Block Copolymer Self Assembly

    NASA Astrophysics Data System (ADS)

    Lytle, Tyer; Radhakrishna, Mithun; Sing, Charles

    Two oppositely charged polymers can undergo associative phase separation in a salt solution in a process known as \\x98complex coacervation. Recent work has used this as a motif to control the self-assembly behavior of a mixture of oppositely-charged block copolymers which form nanoscale structures. The materials formed from these complex coacervate-block copolymers (BCPs) have potential use as drug delivery systems, gels, and sensors. We have developed a hybrid Monte Carlo-Single Chain in a Mean Field (MC-SCMF) simulation method that is able to determine morphological phase diagrams for BCPs. This technique is an efficient way to calculate morphological phase diagrams and provides a clear link between molecular level features and self-assembly behaviors. Morphological phase diagrams showing the effects of polymer concentration, salt concentration, chain length, and charge-block fraction at large charge densities on self-assembly behavior have been determined. An unexpected phase transition from disorder to hexagonal packing at large salt concentrations has been observed for charge-block fractions equal to and larger than 0.5. This is attributed to the salt filling space stabilizing the morphology of the BCP.

  12. Non-additive simple potentials for pre-programmed self-assembly

    NASA Astrophysics Data System (ADS)

    Mendoza, Carlos

    2015-03-01

    A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.

  13. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors.

    PubMed

    Zhu, Jiayi; He, Junhui

    2012-03-01

    Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society

  14. Nano-Assemblies of Modified Cyclodextrins and Their Complexes with Guest Molecules: Incorporation in Nanostructured Membranes and Amphiphile Nanoarchitectonics Design

    PubMed Central

    Zerkoune, Leïla; Angelova, Angelina; Lesieur, Sylviane

    2014-01-01

    A variety of cyclodextrin-based molecular structures, with substitutions of either primary or secondary faces of the natural oligosaccharide macrocycles of α-, β-, or γ-cyclodextrins, have been designed towards innovative applications of self-assembled cyclodextrin nanomaterials. Amphiphilic cyclodextrins have been obtained by chemical or enzymatic modifications of their macrocycles using phospholipidyl, peptidolipidyl, cholesteryl, and oligo(ethylene oxide) anchors as well as variable numbers of grafted hydrophobic hydrocarbon or fluorinated chains. These novel compounds may self-assemble in an aqueous medium into different types of supramolecular nanoassemblies (vesicles, micelles, nanorods, nanospheres, and other kinds of nanoparticles and liquid crystalline structures). This review discusses the supramolecular nanoarchitectures, which can be formed by amphiphilic cyclodextrin derivatives in mixtures with other molecules (phospholipids, surfactants, and olygonucleotides). Biomedical applications are foreseen for nanoencapsulation of drug molecules in the hydrophobic interchain volumes and nanocavities of the amphiphilic cyclodextrins (serving as drug carriers or pharmaceutical excipients), anticancer phototherapy, gene delivery, as well as for protection of instable active ingredients through inclusion complexation in nanostructured media. PMID:28344245

  15. Electrostatically Directed Self-Assembly of Ultrathin Supramolecular Polymer Microcapsules

    PubMed Central

    Parker, Richard M; Zhang, Jing; Zheng, Yu; Coulston, Roger J; Smith, Clive A; Salmon, Andrew R; Yu, Ziyi; Scherman, Oren A; Abell, Chris

    2015-01-01

    Supramolecular self-assembly offers routes to challenging architectures on the molecular and macroscopic scale. Coupled with microfluidics it has been used to make microcapsules—where a 2D sheet is shaped in 3D, encapsulating the volume within. In this paper, a versatile methodology to direct the accumulation of capsule-forming components to the droplet interface using electrostatic interactions is described. In this approach, charged copolymers are selectively partitioned to the microdroplet interface by a complementary charged surfactant for subsequent supramolecular cross-linking via cucurbit[8]uril. This dynamic assembly process is employed to selectively form both hollow, ultrathin microcapsules and solid microparticles from a single solution. The ability to dictate the distribution of a mixture of charged copolymers within the microdroplet, as demonstrated by the single-step fabrication of distinct core–shell microcapsules, gives access to a new generation of innovative self-assembled constructs. PMID:26213532

  16. Catalytic diversity in self-propagating peptide assemblies

    NASA Astrophysics Data System (ADS)

    Omosun, Tolulope O.; Hsieh, Ming-Chien; Childers, W. Seth; Das, Dibyendu; Mehta, Anil K.; Anthony, Neil R.; Pan, Ting; Grover, Martha A.; Berland, Keith M.; Lynn, David G.

    2017-08-01

    The protein-only infectious agents known as prions exist within cellular matrices as populations of assembled polypeptide phases ranging from particles to amyloid fibres. These phases appear to undergo Darwinian-like selection and propagation, yet remarkably little is known about their accessible chemical and biological functions. Here we construct simple peptides that assemble into well-defined amyloid phases and define paracrystalline surfaces able to catalyse specific enantioselective chemical reactions. Structural adjustments of individual amino acid residues predictably control both the assembled crystalline order and their accessible catalytic repertoire. Notably, the density and proximity of the extended arrays of enantioselective catalytic sites achieve template-directed polymerization of new polymers. These diverse amyloid templates can now be extended as dynamic self-propagating templates for the construction of even more complex functional materials.

  17. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole

    DOE PAGES

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  18. Synthetic Molecular Machines for Active Self-Assembly: Prototype Algorithms, Designs, and Experimental Study

    NASA Astrophysics Data System (ADS)

    Dabby, Nadine L.

    behaviors. This class of behaviors includes any behavior where a passive physical system simply does not have enough physical energy to perform the specified tasks in the requisite amount of time. As we will demonstrate and prove, a sufficiently expressive implementation of an "active" molecular self-assembly approach can achieve these behaviors. Using an external source of fuel solves part of the problem, so the system is not "energetically incomplete." But the programmable system also needs to have sufficient expressive power to achieve the specified behaviors. Perhaps surprisingly, some of these systems do not even require Turing completeness to be sufficiently expressive. Building on a large variety of work by other scientists in the fields of DNA nanotechnology, chemistry and reconfigurable robotics, this thesis introduces several research contributions in the context of active self-assembly. We show that simple primitives such as insertion and deletion are able to generate complex and interesting results such as the growth of a linear polymer in logarithmic time and the ability of a linear polymer to treadmill. To this end we developed a formal model for active-self assembly that is directly implementable with DNA molecules. We show that this model is computationally equivalent to a machine capable of producing strings that are stronger than regular languages and, at most, as strong as context-free grammars. This is a great advance in the theory of active self-assembly as prior models were either entirely theoretical or only implementable in the context of macro-scale robotics. We developed a chain reaction method for the autonomous exponential growth of a linear DNA polymer. Our method is based on the insertion of molecules into the assembly, which generates two new insertion sites for every initial one employed. The building of a line in logarithmic time is a first step toward building a shape in logarithmic time. We demonstrate the first construction of a synthetic

  19. Self-assembling choline mimicks with enhanced binding affinities to C-LytA protein

    PubMed Central

    Shi, Yang; Zhou, Hao; Zhang, Xiaoli; Wang, Jingyu; Long, Jiafu; Yang, Zhimou; Ding, Dan

    2014-01-01

    Streptococcus pneumoniae (pneumococcus) causes multiple illnesses in humans. Exploration of effective inhibitors with multivalent attachment sites for choline-binding modules is of great importance to reduce the pneumococcal virulence. In this work, we successfully developed two self-assembling choline mimicks, Ada-GFFYKKK' and Nap-GFFYKKK', which have the abilities to self-assemble into nanoparticles and nanofibers, respectively, yielding multivalent architectures. Additionally, the best characterized choline-binding module, C-terminal moiety of the pneumococcal cell-wall amidase LytA (C-LytA) was also produced with high purity. The self-assembling Ada-GFFYKKK' and Nap-GFFYKKK' show strong interactions with C-LytA, which possess much higher association constant values to the choline-binding modules as compared to the individual peptide Fmoc-K'. This study thus provides a self-assembly approach to yield inhibitors that are very promising for reducing the pneumococcal virulence. PMID:25315737

  20. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly.

    PubMed

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-11-10

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field-a relationship which we capture, along with other features of the assembly process, in a 'phase diagram'. In doing so, we set out initial design rules to build custom made assemblies. Moreover, these assemblies can be made flexible thanks to the hinged contacts of their particle building blocks. This flexibility, combined with the superparamagnetic nature of the architectures, renders our assembly method particularly appropriate for the construction of complex actuators at a scale hitherto not possible.