Sample records for nanospheres facile synthesis

  1. Facile synthesis of PdSx/C porous nanospheres and their applications for ethanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Zhang, Fuhua; Ma, Xuemei; Zheng, Yiqun; Hou, Shifeng

    2016-12-01

    We report a facile approach for the synthesis of carbon-supported palladium polysulphide porous nanospheres (PdSx/C) and their applications for ethanol oxidation reaction. Typical synthesis started with generation of palladium/poly (3,4-ethylenedioxythiophene)(Pd/PEDOT) nanospheres, followed by a calcination process at an optimized temperature to form PdSx/C, with an average size of 2.47 ± 0.60 and 50 nm of PdSx nanoparticles and carbon porous nanospheres, respectively. Various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electrochemical techniques were performed to characterize their morphologies, compositions and structures. In contrary to most Pd-based electrochemical catalysts that could be easily poised with trace sulfur during the catalytic oxidation process, the as-prepared PdSx/C porous nanospheres exhibited high electrocatalytic activities and stabilities for the electrochemical catalytic oxidation of ethanol in alkaline medium. In particular, the forward peak current intensity achieved 162.1 mA mg-1 and still maintained at 46.7 mA mg-1 even after 1000 cycles. This current work not only offers a novel type of fuel-cell catalyst for ethanol oxidation reaction, but also provides a possible route for solving the sulfur-poisoning problem in catalysis.

  2. A facile and green approach for the controlled synthesis of porous SnO₂ nanospheres: application as an efficient photocatalyst and an excellent gas sensing material.

    PubMed

    Manjula, P; Boppella, Ramireddy; Manorama, Sunkara V

    2012-11-01

    A facile and elegant methodology invoking the principles of Green Chemistry for the synthesis of porous tin dioxide nanospheres has been described. The low-temperature (∼50 °C) synthesis of SnO₂ nanoparticles and their self-assembly into organized, uniform, and monodispersed porous nanospheres with high surface area is facilitated by controlling the concentration of glucose, which acts as a stabilizing as well as structure-directing agent. A systematic control on the stannate to glucose molar concentration ratio determines the exact conditions to obtain monodispersed nanospheres, preferentially over random aggregation. Detailed characterization of the structure, morphology, and chemical composition reveals that the synthesized material, 50 nm SnO₂ porous nanospheres possess BET surface area of about 160 m²/g. Each porous nanosphere consists of a few hundred nanoparticles ∼2-3 nm in diameter with tetragonal cassiterite crystal structure. The SnO₂ nanospheres exhibit elevated photocatalytic activity toward methyl orange with good recyclability. Because of the high activity and stability of this photocatalyst, the material is ideal for applications in environmental remediation. Moreover, SnO₂ nanospheres display excellent gas sensing capabilities toward hydrogen. Surface modification of the nanospheres with Pd transforms this sensing material into a highly sensitive and selective room-temperature hydrogen sensor.

  3. Water-in-Water Emulsion Based Synthesis of Hydrogel Nanospheres with Tunable Release Kinetics

    NASA Astrophysics Data System (ADS)

    Aydın, Derya; Kızılel, Seda

    2017-07-01

    Poly(ethylene glycol) (PEG) micro/nanospheres have several unique advantages as polymer based drug delivery systems (DDS) such as tunable size, large surface area to volume ratio, and colloidal stability. Emulsification is one of the widely used methods for facile synthesis of micro/nanospheres. Two-phase aqueous system based on polymer-polymer immiscibility is a novel approach for preparation of water-in-water (w/w) emulsions. This method is promising for the synthesis of PEG micro/nanospheres for biological systems, since the emulsion is aqueous and do not require organic solvents or surfactants. Here, we report the synthesis of nano-scale PEG hydrogel particles using w/w emulsions using phase separation of dextran and PEG prepolymer. Dynamic light scattering (DLS) and scaning electron microscopy (SEM) results demonstrated that nano-scale hydrogel spheres could be obtained with this approach. We investigated the release kinetics of a model drug, pregabalin (PGB) from PEG nanospheres and demonstrated the influence of polymerization conditions on loading and release of the drug as well as the morphology and size distribution of PEG nanospheres. The experimental drug release data was fitted to a stretched exponential function which suggested high correlation with experimental results to predict half-time and drug release rates from the model equation. The biocompatibility of nanospheres on human dermal fibroblasts using cell-survival assay suggested that PEG nanospheres with altered concentrations are non-toxic, and can be considered for controlled drug/molecule delivery.

  4. Facile synthesis of porous Pt-Pd nanospheres supported on reduced graphene oxide nanosheets for enhanced methanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Li, Shan-Shan; Lv, Jing-Jing; Hu, Yuan-Yuan; Zheng, Jie-Ning; Chen, Jian-Rong; Wang, Ai-Jun; Feng, Jiu-Ju

    2014-02-01

    In this study, a simple, facile, and effective wet-chemical strategy was developed in the synthesis of uniform porous Pt-Pd nanospheres (Pt-Pd NSs) supported on reduced graphene oxide nanosheets (RGOs) under ambient temperature, where octylphenoxypolye thoxyethanol (NP-40) is used as a soft template, without any seed, organic solvent or special instruments. The as-prepared nanocomposites display enhanced electrocatalytic activity and good stability toward methanol oxidation, compared with commercial Pd/C and Pt/C catalysts. This strategy may open a new route to design and prepare advanced electrocatalysts for fuel cells.

  5. Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania

    NASA Astrophysics Data System (ADS)

    Cendrowski, K.; Chen, X.; Zielinska, B.; Kalenczuk, R. J.; Rümmeli, M. H.; Büchner, B.; Klingeler, R.; Borowiak-Palen, E.

    2011-11-01

    The facile bulk synthesis of silica nanospheres makes them an attractive support for the transport of chemical compounds such as nanocrystalline titanium dioxide. In this contribution we present a promising route for the synthesis of mesoporous silica nanospheres (m-SiO2) with diameter in range 200 nm, which are ideal supports for nanocrystalline titanium dioxide (TiO2). The detailed microscopic and spectroscopic characterizations of core/shell structure (m-SiO2/TiO2) were conducted. Moreover, the photocatalytic potential of the nanostructures was investigated via phenol decomposition and hydrogen generation. A clear enhancement of photoactivity in both reactions as compared to commercial TiO2-Degussa P25 catalyst is detected.

  6. Facile synthesis of Fe3O4@C hollow nanospheres and their application in polluted water treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Yuanguang; Xu, Shihao; Xia, Hongyu; Zheng, Fangcai

    2016-11-01

    Nanostructured carbon-based materials, such as carbon nanotube arrays have shown respectable removal ability for heavy metal ions and organic dyes in aqueous solution. Although the carbon-based materials exhibited excellent removal ability, the separation of them from the aqueous solution is difficult and time-consuming. Here we demonstrated a novel and facile route for the large-scale fabrication of Fe3O4@C hollow nanospheres, with using ferrocene as a single reagent and SiO2 as a template. The as-prepared Fe3O4@C hollow nanospheres exhibited adsorption ability for heavy metal ions and organic dyes from aqueous solution, and can be easily separated by an external magnet. When the as-prepared Fe3O4@C hollow nanospheres were mixed with the aqueous solution of Hg2+ within 15 min, the removal efficiency was 90.3%. The as-prepared Fe3O4@C hollow nanospheres were also exhibited a high adsorption capacity (100%) as the adsorbent for methylene blue (MB). In addition, the as-prepared Fe3O4@C hollow nanospheres can be used as the recyclable sorbent for water treatment via a simple magnetic separation.

  7. Microwave assisted synthesis of amorphous magnesium phosphate nanospheres.

    PubMed

    Zhou, Huan; Luchini, Timothy J F; Bhaduri, Sarit B

    2012-12-01

    Magnesium phosphate (MgP) materials have been investigated in recent years for tissue engineering applications, attributed to their biocompatibility and biodegradability. This paper describes a novel microwave assisted approach to produce amorphous magnesium phosphate (AMP) in a nanospherical form from an aqueous solution containing Mg(2+) and HPO(4) (2-)/PO(4) (3-). Some synthesis parameters such as pH, Mg/P ratio, solution composition were studied and the mechanism of AMP precursors was also demonstrated. The as-produced AMP nanospheres were characterized and tested in vitro. The results proved these AMP nanospheres can self-assemble into mature MgP materials and support cell proliferation. It is expected such AMP has potential in biomedical applications.

  8. Synthesis of sulfonated porous carbon nanospheres solid acid by a facile chemical activation route

    NASA Astrophysics Data System (ADS)

    Chang, Binbin; Guo, Yanzhen; Yin, Hang; Zhang, Shouren; Yang, Baocheng

    2015-01-01

    Generally, porous carbon nanospheres materials are usually prepared via a template method, which is a multi-steps and high-cost strategy. Here, we reported a porous carbon nanosphere solid acid with high surface area and superior porosity, as well as uniform nanospheical morphology, which prepared by a facile chemical activation with ZnCl2 using resorcinol-formaldehyde (RF) resins spheres as precursor. The activation of RF resins spheres by ZnCl2 at 400 °C brought high surface area and large volume, and simultaneously retained numerous oxygen-containing and hydrogen-containing groups due to the relatively low processing temperature. The presence of these functional groups is favorable for the modification of -SO3H groups by a followed sulfonation treating with sulphuric acid and organic sulfonic acid. The results of N2 adsorption-desorption and electron microscopy clearly showed the preservation of porous structure and nanospherical morphology. Infrared spectra certified the variation of surface functional groups after activation and the successful modification of -SO3H groups after sulfonation. The acidities of catalysts were estimated by an indirect titration method and the modified amount of -SO3H groups were examined by energy dispersive spectra. The results suggested sulfonated porous carbon nanospheres catalysts possessed high acidities and -SO3H densities, which endowed their significantly catalytic activities for biodiesel production. Furthermore, their excellent stability and recycling property were also demonstrated by five consecutive cycles.

  9. Synthesis of nickel oxide nanospheres by a facile spray drying method and their application as anode materials for lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    2015-10-15

    Graphical abstract: NiO nanospheres prepared by a facile spray drying method show high lithium ion storage performance as anode of lithium ion battery. - Highlights: • NiO nanospheres are prepared by a spray drying method. • NiO nanospheres are composed of interconnected nanoparticles. • NiO nanospheres show good lithium ion storage properties. - Abstract: Fabrication of advanced anode materials is indispensable for construction of high-performance lithium ion batteries. In this work, nickel oxide (NiO) nanospheres are fabricated by a facial one-step spray drying method. The as-prepared NiO nanospheres show diameters ranging from 100 to 600 nm and are composed ofmore » nanoparticles of 30–50 nm. As an anode for lithium ion batteries, the electrochemical properties of the NiO nanospheres are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. The specific reversible capacity of NiO nanospheres is 656 mA h g{sup −1} at 0.1 C, and 476 mA h g{sup −1} at 1 C. The improvement of electrochemical properties is attributed to nanosphere structure with large surface area and short ion/electron transfer path.« less

  10. Preparation of ultrasmall porous carbon nanospheres by reverse microemulsion-hydrothermal method

    NASA Astrophysics Data System (ADS)

    Wang, Jiasheng; Zhao, Yahong; Wang, Wan-Hui; Bao, Ming

    Porous carbon nanospheres (CNSs) have wide applications. A big challenge in materials science is synthesis of discrete ultrasmall porous carbon nanospheres. Herein, we report a facile reverse microemulsion-hydrothermal method to prepare discrete porous CNSs. The obtained CNSs possess an average diameter of 20nm and pores of 0.7nm and 3.4nm. Our work has provided a convenient method for the controllable synthesis of ultrasmall porous CNSs with potential applications.

  11. Synthesis and Characteristics of ZnS Nanospheres for Heterojunction Photovoltaic Device

    NASA Astrophysics Data System (ADS)

    Chou, Sheng-Hung; Hsiao, Yu-Jen; Fang, Te-Hua; Chou, Po-Hsun

    2015-06-01

    The synthesis of ZnS nanospheres produced using the microwave hydrothermal method was studied. The microstructure and surface and optical properties of ZnS nanospheres on glass were characterized using scanning electron microscopy, high-resolution transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. The influence of deposition time on the transmission and photovoltaic performance was determined. The power conversion efficiency of an Al-doped ZnO/ZnS nanosphere/textured p-Si device improved from 0.93 to 1.77% when the thickness of the ZnS nanostructured film was changed from 75 to 150 nm.

  12. Facile one-step synthesis of Ag@Fe3O4 core-shell nanospheres for reproducible SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Lijuan; He, Jiang; An, Songsong; Zhang, Junwei; Ren, Dong

    2013-08-01

    A facile approach has been developed to synthesize Ag@Fe3O4 core-shell nanospheres, in which the Ag nanoparticle core was well wrapped by a permeable Fe3O4 shell. An in situ reduction of AgNO3 and Fe(NO3)3 was the basis of this one-step method with ethylene glycol as the reducing agent. The as-obtained Ag@Fe3O4 nanospheres were a highly efficient surface-enhanced Raman scattering (SERS) substrate; high reproducibility, stability, and reusability were obtained by employing 4-aminothiophenol (4-ATP) and rhodamine 6G (R6G) as the Raman probe molecules. It was revealed that the SERS signals of 4-ATP and R6G on the Ag@Fe3O4 nanospheres were much stronger than those on the pure Ag nanoparticles, demonstrating that the magnetic enrichment procedures can improve SERS detection sensitivity efficiently. A highly efficient and recyclable SERS substrate was produced by the new model system that has potential applications in chemical and biomolecular assays.

  13. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage

    PubMed Central

    Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai

    2015-01-01

    Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734

  14. Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.

    PubMed

    Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo

    2015-02-01

    The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

  15. Synthesis of poly(3-hydroxybutyrate) nanospheres and deposition thereof into porous thin film

    NASA Astrophysics Data System (ADS)

    Abid, S.; Raza, Z. A.; Rehman, A.

    2016-10-01

    Polymeric nanostructures have gained importance in medical science as drug delivery carriers due to their biocompatibility and biodegradability. Polyhydroxybutyrate (PHB) is one of the natural biodegradable polymers used to deliver drugs in the form of nano/microcapsules. In this study, solvent evaporation method has been used for the synthesis of PHB nanospheres using poly(vinyl) alcohol (PVA) both as emulsifier and stabilizer. The produced PHB nanospheres were analyzed using dynamic light scattering and scanning electron microscopy. The size of nanospheres decreased whereas the zeta potential increased on increasing the concentration of emulsifier. The PHB nanospheres were then deposited into porous thin film on a glass surface and characterized against bulk PHB film by using atomic force microscopy, contact angle measurement and x-ray diffraction.

  16. Size-tailored synthesis of silver quasi-nanospheres by kinetically controlled seeded growth.

    PubMed

    Liu, Xiaxia; Yin, Yadong; Gao, Chuanbo

    2013-08-20

    This paper describes a simple and convenient procedure to synthesize monodisperse silver (Ag) quasi-nanospheres with size tunable in a range of 19-140 nm through a one-step seeded growth strategy. Acetonitrile was employed as a coordinating ligand of a Ag(I) salt in order to achieve a low concentration of elemental Ag after reduction and thus suppression of new nucleation events. Since the addition of the seeds significantly accelerates the reduction reaction of Ag(I) by ascorbic acid, the reaction kinetics was further delicately balanced by tuning the reaction temperature, which proved to be critical in producing Ag quasi-nanospheres with uniform size and shape. This synthesis is highly scalable, so that it provides a simple yet very robust process for producing Ag quasi-nanospheres for many biological, analytical, and catalytic applications which often demand samples in large quantity and widely tunable particle sizes.

  17. Efficient one-pot sonochemical synthesis of thickness-controlled silica-coated superparamagnetic iron oxide (Fe3O4/SiO2) nanospheres

    NASA Astrophysics Data System (ADS)

    Abbas, Mohamed; Abdel-Hamed, M. O.; Chen, Jiangang

    2017-12-01

    A facile and eco-friendly efficient sonochemical approach was designed for the synthesis of highly crystalline Fe3O4 and Fe3O4/SiO2 core/shell nanospheres in single reaction. The generated physical properties (shock waves, microjets, and turbulent flows) from ultrasonication as a consequence of the collapse of microbubbles and polyvinylpyrrolidone (PVP) as a chemical linker were found to play a crucial role in the successful formation of the core/shell NPs within short time than the previously reported methods. Transmission electron microscopy revealed that a uniform SiO2 shell is successfully coated over Fe3O4 nanospheres, and the thickness of the silica shell could be easily controlled in the range from 5 to 15 nm by adjusting the reaction parameters. X-ray diffraction data were employed to confirm the formation of highly crystalline and pure phase of a cubic inverse spinel structure for magnetite (Fe3O4) nanospheres. The magnetic properties of the as-synthesized Fe3O4 and Fe3O4/SiO2 core/shell nanospheres were measured at room temperature using vibrating sample magnetometer, and the results demonstrated a high magnetic moment values with superparamagnetic properties.

  18. Facile synthesis of hollow Sn-Co@PMMA nanospheres as high performance anodes for lithium-ion batteries via galvanic replacement reaction and in situ polymerization

    NASA Astrophysics Data System (ADS)

    Yu, Xiaohui; Jiang, Anni; Yang, Hongyan; Meng, Haowen; Dou, Peng; Ma, Daqian; Xu, Xinhua

    2015-08-01

    Polymethyl methacrylate (PMMA)-coated hollow Sn-Co nanospheres (Sn-Co@PMMA) with superior electrochemical performance had been synthesized via a facile galvanic replacement method followed by an in situ emulsion polymerization route. The properties were investigated in detail and results show that the hollow Sn-Co nanospheres were evenly coated with PMMA. Benefiting from the protection of the PMMA layers, the hollow Sn-Co@PMMA nanocomposite is capable of retaining a high capacity of 590 mAh g-1 after 100 cycles with a coulomb efficiency above 98%, revealing better electrochemical properties compared with hollow Sn-Co anodes. The PMMA coating could help accommodate the mechanical strain caused by volume expansion and stabilize the solid electrolyte interphase (SEI) film formed on the electrode. Such a facile process could be further extended to other anode materials for lithium-ion batteries.

  19. Facile polyol synthesis of CoFe2O4 nanosphere clusters and investigation of their electrochemical behavior in different aqueous electrolytes

    NASA Astrophysics Data System (ADS)

    Malaie, K.; Ganjali, M. R.; Alizadeh, T.; Norouzi, P.

    2018-04-01

    CoFe2O4 nanosphere clusters (CFNCs) with good crystallinity were synthesized through a facile polyol process without using any surfactant or template. FESEM images show cobalt ferrite clusters with a diameter of 200-400 nm with nanospheres grown on the surface. The electrochemical behavior of the CFNCs was investigated in different electrolytes of KOH, K2SO4, and Na2SO3 in the negative potential window of - 0.3 to - 1.3 V for possible application in supercapacitor electrodes. CFNCs exhibited best performance in KOH electrolyte with a specific capacitance of 151 F g-1 in 5 mV s-1 and a cycling stability of 87% over 1000 voltammetric cycles. These studies indicate the potential application of the as-obtained CFNCs as negative electrodes in alkaline supercapacitors.

  20. Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Xiong, Yachao; Zhou, Min; Chen, Hao; Feng, Lei; Wang, Zhao; Yan, Xinzhu; Guan, Shiyou

    2015-12-01

    Improving the electrochemical performance of manganese dioxide (MnO2) electrodes is of great significance for supercapacitors. In this study, a novel honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites has been fabricated through freeze-drying method. The honeycomb MnO2 nanospheres are well inserted and dispersed on the graphene. Carbon nanoparticles in the composites act as spacers to effectively prevent graphene from restacking and agglomeration, construct efficient 3D conducting architecture with graphene for honeycomb MnO2 nanospheres, and alleviate the aggregation of honeycomb MnO2 nanospheres by separating them from each other. As a result, such honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites display much improved electrochemical capacitive performance of 255 F g-1 at a current density of 0.5 A g-1, outstanding rate capability (150 F g-1 remained at a current density of 20 A g-1) and good cycling stability (83% of the initial capacitance retained after 1000 charge/discharge cycles). The strategy for the synthesis of these composites is very effective.

  1. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts

    NASA Astrophysics Data System (ADS)

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P.; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-03-01

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the ``I+X-S+'' mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions

  2. Polymeric micelle assembly for the smart synthesis of mesoporous platinum nanospheres with tunable pore sizes.

    PubMed

    Li, Yunqi; Bastakoti, Bishnu Prasad; Malgras, Victor; Li, Cuiling; Tang, Jing; Kim, Jung Ho; Yamauchi, Yusuke

    2015-09-14

    A facile method for the fabrication of well-dispersed mesoporous Pt nanospheres involves the use of a polymeric micelle assembly. A core-shell-corona type triblock copolymer [poly(styrene-b-2-vinylpyridine-b-ethylene oxide), PS-b-P2VP-b-PEO] is employed as the pore-directing agent. Negatively charged PtCl4 (2-) ions preferably interact with the protonated P2VP(+) blocks while the free PEO chains prevent the aggregation of the Pt nanospheres. The size of the mesopores can be finely tuned by varying the length of the PS chain. Furthermore, it is demonstrated that the metallic mesoporous nanospheres thus obtained are promising candidates for applications in electrochemistry. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile preparation of core-shell magnetic metal-organic framework nanospheres for the selective enrichment of endogenous peptides.

    PubMed

    Xiong, Zhichao; Ji, Yongsheng; Fang, Chunli; Zhang, Quanqing; Zhang, Lingyi; Ye, Mingliang; Zhang, Weibing; Zou, Hanfa

    2014-06-10

    Facile preparation of core-shell magnetic metal-organic framework nanospheres by a layer-by-layer approach is presented. The nanospheres have high surface area (285.89 cm(2)  g(-1)), large pore volume (0.18 cm(3)  g(-1)), two kinds of mesopores (2.50 and 4.72 nm), excellent magnetic responsivity (55.65 emu g(-1)), structural stability, and good dispersibility. The combination of porosity, hydrophobicity, and uniform magnetism was exploited for effective enrichment of peptides with simultaneous exclusion of high molecular weight proteins. The nanospheres were successfully applied in the selective enrichment of endogenous peptides in human serum. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Hydroxide ion-mediated synthesis of monodisperse dopamine-melanin nanospheres.

    PubMed

    Cho, Soojeong; Kim, Shin-Hyun

    2015-11-15

    Dopamine-melanin nanospheres are promising materials for photoprotection, structural coloration, and thermoregulation due to their unusual optical and chemical properties. Here, we report the experimental parameters which influence size of dopamine-melanin nanospheres and uniformity. Dopamine precursors are oxidatively polymerized in basic aqueous medium. Therefore, concentration of hydroxide ions significantly influences reaction rate and size of nanospheres. To investigate the effect of hydroxide ions, we adjust three different parameters which affect pH of medium: concentration of sodium hydroxide and dopamine hydrochloride, and reaction temperature. At constant temperature, concentration of hydroxide ions is linearly proportional to initial reaction rates which determine the number of nuclei for nanosphere growth. Temperature alters not only initial reaction rate but also diffusivity of molecules, leading to deviation from the relation between the reaction rate and the number of nuclei. The diameter of dopamine-melanin nanospheres can be readily controlled in a range of 80-490nm through adjusting concentration of dopamine precursor, while maintaining uniform-size distribution and dispersion stability. The synthesized nanospheres are analyzed to confirm the chemical structure, which is composed of approximately 6 indole units. Moreover, surface and chemical properties of the nanospheres are characterized to provide valuable information for surface modification and application. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Controllable synthesis of mesoporous carbon nanospheres and Fe-N/carbon nanospheres as efficient oxygen reduction electrocatalysts.

    PubMed

    Wei, Jing; Liang, Yan; Zhang, Xinyi; Simon, George P; Zhao, Dongyuan; Zhang, Jin; Jiang, Sanping; Wang, Huanting

    2015-04-14

    The synthesis of mesoporous carbon nanospheres (MCNs), especially with diameters below 200 nm remains a great challenge due to weak interactions between the carbon precursors and soft templates, as well as the uncontrollable cross-linking rate of carbon precursors. Herein, we demonstrate a simple acid-assisted, hydrothermal synthesis approach to synthesizing such uniform MCNs with well controlled diameters ranging from 20 to 150 nm under highly acidic conditions (2 M HCl). Both the carbon precursor and the template are partly protonated under such conditions and show additional Coulombic interactions with chloride ions (acts as mediators). This kind of enhanced interaction is similar to that of the "I(+)X(-)S(+)" mechanism in the synthesis of mesoporous metal oxide, which can effectively retard the cross-linking rate of resol molecules and avoid macroscopic phase separation during the hydrothermal synthesis. Due to their uniform spherical morphology, small diameter, and high surface areas, MCNs can be modified with Fe and N species via impregnation of cheap precursors (ferric nitrate and dicyandiamide), which are further converted into nonprecious electrocatalysts for oxygen reduction reactions. The resulting Fe-N/MCNs exhibit high catalytic activities, long-term stability and improved methanol tolerance under alkaline conditions, which can be potentially used in direct methanol fuel cells and metal-air batteries.

  6. Synthesis of core-shell AlOOH hollow nanospheres by reacting Al nanoparticles with water

    NASA Astrophysics Data System (ADS)

    Lozhkomoev, A. S.; Glazkova, E. A.; Bakina, O. V.; Lerner, M. I.; Gotman, I.; Gutmanas, E. Y.; Kazantsev, S. O.; Psakhie, S. G.

    2016-05-01

    A novel route for the synthesis of boehmite nanospheres with a hollow core and the shell composed of highly crumpled AlOOH nanosheets by oxidizing Al nanopowder in pure water under mild processing conditions is described. The stepwise events of Al transformation into boehmite are followed by monitoring the pH in the reaction medium. A mechanism of formation of hollow AlOOH nanospheres with a well-defined shape and crystallinity is proposed which includes the hydration of the Al oxide passivation layer, local corrosion of metallic Al accompanied by hydrogen evolution, the rupture of the protective layer, the dissolution of Al from the particle interior and the deposition of AlOOH nanosheets on the outer surface. In contrast to previously reported methods of boehmite nanoparticle synthesis, the proposed method is simple, and environmentally friendly and allows the generation of hydrogen gas as a by-product. Due to their high surface area and high, slit-shaped nanoporosity, the synthesized AlOOH nanostructures hold promise for the development of more effective catalysts, adsorbents, vaccines and drug carriers.

  7. Synthesis, characterization and adsorptive performance of MgFe2O4 nanospheres for SO2 removal.

    PubMed

    Zhao, Ling; Li, Xinyong; Zhao, Qidong; Qu, Zhenping; Yuan, Deling; Liu, Shaomin; Hu, Xijun; Chen, Guohua

    2010-12-15

    A type of uniform Mg ferrite nanospheres with excellent SO(2) adsorption capacity could be selectively synthesized via a facile solvothermal method. The size of the MgFe(2)O(4) nanospheres was controlled to be 300-400 nm in diameter. The structural, textural, and surface properties of the adsorbent have been fully characterized by a variety of techniques (Brunauer-Emmett-Teller, BET; X-ray diffraction analysis, XRD; scanning electron microscopy, SEM; and energy-dispersive X-ray spectroscopy, EDS). The valence states and the surface chemical compositions of MgFe(2)O(4) nanospheres were further identified by X-ray photoelectron spectroscopy (XPS). The behaviors of SO(2) oxidative adsorption on MgFe(2)O(4) nanospheres were studied using Fourier transform infrared spectroscopy (FTIR). Both the sulfite and sulfate species could be formed on the surface of MgFe(2)O(4). The adsorption equilibrium isotherm of SO(2) was analyzed using a volumetric method at 298 K and 473 K. The results indicate that MgFe(2)O(4) nanospheres possess a good potential as the solid-state SO(2) adsorbent for applications in hot fuel gas desulfurization. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Synthesis and characterization of ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres

    NASA Astrophysics Data System (ADS)

    Koc, Kenan; Karakus, Baris; Rajar, Kausar; Alveroglu, Esra

    2017-10-01

    Herein, we synthesized and characterized fluorescent and super paramagnetic ZnS@Fe3O4 nanospheres. First, (3-mercaptopropyl) trimethoxysilane (MPS) capped ZnS quantum dots (QDs) and SiO2 coated Fe3O4 nanoparticles were synthesized separately by using solution growth and co-precipitation techniques. After synthesis and characterization of these two nanoparticles, they were conglutinated together in a nano sized sphere. The QDs were attached to the surface of the Fe3O4 nanoparticles by Sisbnd Osbnd Si bonds and so Sisbnd Osbnd Si bonds created a SiO2 network around the nanoparticles during the formation of the ZnS@Fe3O4 nanospheres. The synthesized MPS capped ZnS fluorescent QDs, SiO2 coated magnetite super paramagnetic nanoparticles and ZnS@Fe3O4 fluorescent-magnetic bifunctional nanospheres were characterized by using UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, X-ray analysis, Vibrating Sample Magnetometer analysis, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy, Scanning Electron Microscope and Energy-dispersive X-ray spectroscopy. ZnS@Fe3O4 bifunctional nanospheres were shown to retain the magnetic properties of magnetite, while exhibiting the luminescent optical properties of ZnS nanoparticles. The combination of fluorescent and magnetic behaviors of nano composites make them useful for potential applications in the field of bio-medical and environmental.

  9. Facile synthesis of graphene-wrapped honeycomb MnO2 nanospheres and their application in supercapacitors.

    PubMed

    Zhu, Jiayi; He, Junhui

    2012-03-01

    Graphene-wrapped MnO(2) nanocomposites were first fabricated by coassembly between honeycomb MnO(2) nanospheres and graphene sheets via electrostatic interaction. The materials were characterized by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, and thermogravimetric analysis. The novel MnO(2)/graphene hybrid materials were used for investigation of electrochemical capacitive behaviors. The hybrid materials displayed enhanced capacitive performance (210 F/g at 0.5 A/g). Additionally, over 82.4% of the initial capacitance was retained after repeating the cyclic voltammetry test for 1000 cycles. The improved electrochemical performance might be attributed to the combination of the pesudocapacitance of MnO(2) nanospheres with the honeycomb-like "opened" structure and good electrical conductivity of graphene sheets. © 2012 American Chemical Society

  10. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-07-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  11. Synthesis of Carbon Nanotubes and Nanospheres from Coconut Fibre and the Role of Synthesis Temperature on Their Growth

    NASA Astrophysics Data System (ADS)

    Adewumi, Gloria A.; Inambao, Freddie; Eloka-Eboka, Andrew; Revaprasadu, Neerish

    2018-04-01

    Carbon nanotubes (CNT) and carbon nanospheres were successfully synthesized from coconut fibre-activated carbon. The biomass was first carbonized then physically activated, followed by treatment using ethanol vapor at 700°C to 1100°C at 100°C intervals. The effect of synthesis temperature on the formation of the nanomaterials was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectrometry, x-ray diffraction (XRD), Fourier transform infrared microscopy (FTIR) and thermogravimetric analysis. SEM analysis revealed that nanospheres were formed at higher temperatures of 1000°C and 1100°C, while lower temperatures of 800°C and 900°C favored the growth of CNT. At 700°C, however, no tubes or spheres were formed. TEM and FTIR were used to observe spectral features, such as the peak positions, intensity and bandwidth, which are linked to some structural properties of the samples investigated. All these observations provided facts on the nanosphere and nanotube dimensions, vibrational modes and the degree of purity of the obtained samples. The TEM results show spheres of diameter in the range 50 nm to 250 nm while the tubes had diameters between 50 nm to 100 nm. XRD analysis reveals the materials synthesized are amorphous in nature with a hexagonal graphite structure.

  12. Facile synthesis of poly(ionic liquid)-bonded magnetic nanospheres as a high-performance sorbent for the pretreatment and determination of phenolic compounds in water samples.

    PubMed

    Bi, Wentao; Wang, Man; Yang, Xiaodi; Row, Kyung Ho

    2014-07-01

    Poly(ionic liquid)-bonded magnetic nanospheres were easily synthesized and applied to the pretreatment and determination of phenolic compounds in water samples, which have detrimental effects on water quality and the health of living beings. The high affinity of poly(ionic liquid)s toward the target compounds as well as the magnetic behavior of Fe3 O4 were combined in this material to provide an efficient and simple magnetic solid-phase extraction approach. The adsorption behavior of the poly(ionic liquid)-bonded magnetic nanospheres was examined to optimize the synthesis. Different parameters affecting the magnetic solid-phase extraction of phenolic compounds were assessed in terms of adsorption and recovery. Under the optimal conditions, the proposed method showed excellent detection sensitivity with limits of detection in the range of 0.3-0.8 ng/mL and precision in the range of 1.2-3.3%. This method was also applied successfully to the analysis of real water samples; good spiked recoveries over the range of 82.5-99.2% were obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Double enzymatic cascade reactions within FeSe-Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose.

    PubMed

    Qiao, Fengmin; Wang, Zhenzhen; Xu, Ke; Ai, Shiyun

    2015-10-07

    A facile process was developed for the synthesis of FeSe-Pt@SiO2 nanospheres based on the hydrothermal treatment of FeCl3·6H2O, selenium and NaBH4 in ethanolamine solvent, followed by reducing HPtCl4 with NaBH4 in the presence of FeSe particles to obtain FeSe coated with Pt NPs (FeSe-Pt), ending with a surfactant assembled sol-gel process to obtain FeSe-Pt@SiO2. The morphology and composition of FeSe-Pt@SiO2 were characterized by transmission electron microscopy, high resolution TEM, X-ray diffraction and Fourier transform infrared spectroscopy. Structural analyses revealed that FeSe-Pt@SiO2 nanospheres were of regular spherical shape with smooth surfaces due to the SiO2 shells, compared with FeSe particles with 150 nm lateral diameter. The prepared FeSe-Pt@SiO2 nanospheres possessed both intrinsic glucose oxidase (GOx-) and peroxidase-mimic activities, and we engineered an artificial enzymatic cascade system with high activity and stability based on this nanostructure. The good catalytic performance of the composites could be attributed to the synergy between the functions of FeSe particles and Pt NPs. Significantly, the FeSe-Pt@SiO2 nanospheres as robust nanoreactors can catalyze a self-organized cascade reaction, which includes oxidation of glucose by oxygen to yield gluconic acid and H2O2, and then oxidation of 3,3,5,5-tetramethylbenzidine (TMB) by H2O2 to produce a colour change. Colorimetric detection of H2O2 and glucose using the FeSe-Pt@SiO2 nanospheres was conducted with high detection sensitivities, 0.227 nM and 1.136 nM, respectively, demonstrating the feasibility of practical sensing applications. It is therefore believed that our findings in this study could open up the possibility of utilizing FeSe-Pt@SiO2 nanospheres as enzymatic mimics in diagnostic and biotechnology fields.

  14. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors.

    PubMed

    Xu, Kaibing; Yang, Jianmao; Hu, Junqing

    2018-02-01

    Hollow micro-/nanostructured electrode materials with high active surface area are highly desirable for achieving outstanding electrochemical properties. Herein, we report the successful synthesis of hierarchical hollow NiCo 2 O 4 nanospheres with high surface area as electrode materials for supercapacitors. Electrochemical measurements prove that such electrode materials exhibit excellent electrochemical behavior with a specific capacitance reaching 1229 F/g at 1 A/g, remarkable rate performance (∼83.6% retention from 1 to 25 A/g) and good cycling performance (86.3% after 3000 cycles). Furthermore, the asymmetric supercapacitor is fabricated with hollow NiCo 2 O 4 nanospheres electrode and activated carbon (AC) electrode as the positive and negative, respectively. This device exhibits a maximum energy density of 21.5 W h/kg, excellent cycling performance and coulombic efficiency. The results show that hollow NiCo 2 O 4 nanosphere electrode is a promising electrode material for the future application in high performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications

    NASA Astrophysics Data System (ADS)

    Kotsyuda, Sofiya S.; Tomina, Veronika V.; Zub, Yuriy L.; Furtat, Iryna M.; Lebed, Anastasia P.; Vaclavikova, Miroslava; Melnyk, Inna V.

    2017-10-01

    Spherical silica particles with bifunctional (tbnd Si(CH2)3NH2/tbnd SiC6H5) surface layers were synthesized by the Stöber method using ternary alkoxysilanes systems. The influence of the synthesis conditions, such as temperature and stirring time on the process of nanoparticles formation was studied. The presence of introduced functional groups was confirmed by FTIR. The composition of the surface layers examined by elemental analysis and acid-base titration was shown to be independent from the synthesis temperature. However, the size of the obtained particles depends on the synthesis temperature and, according to photon cross-correlation spectroscopy, can be varied from 50 to 846 nm. The variation of electric charges of N-functional groups was disclosed in obtained nanospheres and attributed to different surface location of these groups and their surrounding with other groups. The sorption of Cu(II) ions by functionalized silicas depends on the concentration of amino groups, which correlates with the isoelectric point values (determined to vary from 8.26 to 9.21). Bifunctional nanoparticles adsorb 99.0 mg/g of methylene blue, compared with 48.0 mg/g by silica sample with only amino groups. The nanospheres, both with and without adsorbed Cu2+, demonstrate reasonable antibacterial activity against S. aureus ATCC 25923, depending on particle concentration in water suspension.

  16. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B2: Catalytic Polymerisation of Aniline and Pyrrole

    EPA Science Inventory

    For the first time, we report green chemistry approach using vitamin B2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride (NaBH4) or hydroxylamine hydro...

  17. Micro-emulsion-assisted synthesis of ZnS nanospheres and their photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Yao; He Xiaoyan; Cao Minhua

    2008-11-03

    ZnS nanospheres with rough surface were synthesized by using a micro-emulsion-assisted solvothemal process. The molar ratio of [water]/[surfactant] played an important role in controlling the size of the ZnS nanospheres. X-ray powder diffraction (XRD), transmission electron microscopy (TEM), field emission-scanning electron microscope (FE-SEM), and selected area electron diffraction (SAED) were used for the characterization of the resulting ZnS nanospheres. A possible formation mechanism was proposed. These ZnS nanospheres exhibited a good photocatalytic activity for degradation of an aqueous p-nitrophenol solution and the total organic carbon (TOC) of the degradation product has also been investigated.

  18. Platinum-nanoparticle-supported core-shell polymer nanospheres with unexpected water stability and facile further modification

    NASA Astrophysics Data System (ADS)

    Yuan, Conghui; Xu, Yiting; Luo, Weiang; Zeng, Birong; Qiu, Wuhui; Liu, Jie; Huang, Huiling; Dai, Lizong

    2012-05-01

    Core-shell nanospheres (CSNSs) with hydrophobic cores and hydrophilic shells were fabricated via a simple mini-emulsion polymerization for the stabilization of platinum nanoparticles (Pt-NPs). The CSNSs showed extremely high loading capacity of Pt-NPs (the largest loading amount of the Pt-NPs was about 49.2 wt%). Importantly, the Pt-NPs/CSNSs nanocomposites had unexpected stability in aqueous solution. DLS results revealed that the CSNSs loaded with Pt-NPs exhibited almost no aggregation after standing for a long time . However, the Pt-NPs immobilized on the CSNSs were not straitlaced: they could transport and redistribute between CSNSs freely when the environmental temperature was higher than the melting point of the CSNS shell. Owing to their excellent stability in aqueous solution, the surface of the Pt-NPs/CSNSs nanocomposites could be further decorated easily. For example, polyaniline (PANI)-coated Pt-NPs/CSNSs, nickel (Ni)-coated Pt-NPs/CSNSs and PANI/Pt-NPs dual-layer hollow nanospheres were facilely fabricated from the Pt-NPs/CSNS nanocomposites.

  19. Photocatalytic hollow TiO2 and ZnO nanospheres prepared by atomic layer deposition.

    PubMed

    Justh, Nóra; Bakos, László Péter; Hernádi, Klára; Kiss, Gabriella; Réti, Balázs; Erdélyi, Zoltán; Parditka, Bence; Szilágyi, Imre Miklós

    2017-06-28

    Carbon nanospheres (CNSs) were prepared by hydrothermal synthesis, and coated with TiO 2 and ZnO nanofilms by atomic layer deposition. Subsequently, through burning out the carbon core templates hollow metal oxide nanospheres were obtained. The substrates, the carbon-metal oxide composites and the hollow nanospheres were characterized with TG/DTA-MS, FTIR, Raman, XRD, SEM-EDX, TEM-SAED and their photocatalytic activity was also investigated. The results indicate that CNSs are not beneficial for photocatalysis, but the crystalline hollow metal oxide nanospheres have considerable photocatalytic activity.

  20. Theophylline-assisted, eco-friendly synthesis of PtAu nanospheres at reduced graphene oxide with enhanced catalytic activity towards Cr(VI) reduction.

    PubMed

    Hu, Ling-Ya; Chen, Li-Xian; Liu, Meng-Ting; Wang, Ai-Jun; Wu, Lan-Ju; Feng, Jiu-Ju

    2017-05-01

    Theophylline as a naturally alkaloid is commonly employed to treat asthma and chronic obstructive pulmonary disorder. Herein, a facile theophylline-assisted green approach was firstly developed for synthesis of PtAu nanospheres/reduced graphene oxide (PtAu NSs/rGO), without any surfactant, polymer, or seed involved. The obtained nanocomposites were applied for the catalytic reduction and removal of highly toxic chromium (VI) using formic acid as a model reductant at 50°C, showing the significantly enhanced catalytic activity and improved recyclability when compared with commercial Pt/C (50%) and home-made Au nanocrystals supported rGO (Au NCs/rGO). It demonstrates great potential applications of the catalyst in wastewater treatment and environmental protection. The eco-friendly route provides a new platform to fabricate other catalysts with enhanced catalytic activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. GREEN AND CONTROLLED SYNTHESIS OF GOLD AND PLATINUM NANOMATERIALS USING VITAMIN B2: DENSITY-ASSISTED SELF-ASSEMBLY OF NANOSPHERES, WIRES AND RODS

    EPA Science Inventory

    For the first time, we report density-assisted self-assembly and efficient synthesis of gold (Au) and platinum (Pt) nanospheres, nanowires and nanorods using vitamin B2 (riboflavin) without employing any special capping or dispersing agent at room temperature; this env...

  2. Estrone specific molecularly imprinted polymeric nanospheres: synthesis, characterization and applications for electrochemical sensor development.

    PubMed

    Congur, Gulsah; Senay, Hilal; Turkcan, Ceren; Canavar, Ece; Erdem, Arzum; Akgol, Sinan

    2013-06-28

    The aim of this study is (i) to prepare estrone-imprinted nanospheres (nano-EST-MIPs) and (ii) to integrate them into the electrochemical sensor as a recognition layer. N-methacryloyl-(l)-phenylalanine (MAPA) was chosen as the complexing monomer. Firstly, estrone (EST) was complexed with MAPA and the EST-imprinted poly(2-hyroxyethylmethacrylate-co-N-methacryloyl-(l)-phenylalanine) [EST-imprinted poly(HEMA-MAPA)] nanospheres were synthesized by surfactant- free emulsion polymerization method. The specific surface area of the EST-imprinted poly(HEMA-MAPA) nanospheres was found to be 1275 m2/g with a size of 163.2 nm in diameter. According to the elemental analysis results, the nanospheres contained 95.3 mmole MAPA/g nanosphere. The application of EST specific MIP nanospheres for the development of an electrochemical biosensor was introduced for the first time in our study by using electrochemical impedance spectroscopy (EIS) technique. This nano-MIP based sensor presented a great specificity and selectivity for EST.

  3. Mesoporous block-copolymer nanospheres prepared by selective swelling.

    PubMed

    Mei, Shilin; Jin, Zhaoxia

    2013-01-28

    Block-copolymer (BCP) nanospheres with hierarchical inner structure are of great interest and importance due to their possible applications in nanotechnology and biomedical engineering. Mesoporous BCP nanospheres with multilayered inner channels are considered as potential drug-delivery systems and templates for multifunctional nanomaterials. Selective swelling is a facile pore-making strategy for BCP materials. Herein, the selective swelling-induced reconstruction of BCP nanospheres is reported. Two poly(styrene-block-2-vinylpyridine) (PS-b-P2VP) samples with different compositions (PS(23600)-b-P2VP(10400) and PS(27700)-b-P2VP(4300)) are used as model systems. The swelling reconstruction of PS-b-P2VP in ethanol, 1-pyrenebutyric acid (PBA)/ethanol, or HCl/ethanol (pH = 2.61) is characterized by scanning electron microscopy and transmission electron microscopy. It is observed that the length of the swellable block in BCP is a critical factor in determining the behavior and nanostructures of mesoporous BCP nanospheres in selective swelling. Moreover, it is demonstrated that the addition of PBA modifies the swelling structure of PS(23600)-b-P2VP(10400) through the interaction between PBA and P2VP blocks, which results in BCP nanospheres with patterned pores of controllable size. The patterned pores can be reversibly closed by annealing the mesoporous BCP nanospheres in different selective solvents. The controllable and reversible open/closed reconstruction of BCP nanospheres can be used to enclose functional nanoparticles or drugs inside the nanospheres. These mesoporous BCP nanospheres are further decorated with gold nanoparticles by UV photoreduction. The enlarged decoration area in mesoporous BCP nanospheres will enhance their activity and sensitivity as a catalyst and electrochemical sensor. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A Facile Strategy for In Situ Core-Template-Functionalizing Siliceous Hollow Nanospheres for Guest Species Entrapment

    PubMed Central

    2009-01-01

    The shell wall-functionalized siliceous hollow nanospheres (SHNs) with functional molecules represent an important class of nanocarriers for a rich range of potential applications. Herein, a self-templated approach has been developed for the synthesis of in situ functionalized SHNs, in which the biocompatible long-chain polycarboxylates (i.e., polyacrylate, polyaspartate, gelatin) provide the framework for silica precursor deposition by simply controlling chain conformation with divalent metal ions (i.e., Ca2+, Sr2+), without the intervention of any external templates. Metal ions play crucial roles in the formation of organic vesicle templates by modulating the long chains of polymers and preventing them from separation by washing process. We also show that, by in situ functionalizing the shell wall of SHNs, it is capable of entrapping nearly an eightfold quantity of vitamin Bc in comparison to the bare bulk silica nanospheres. These results confirm the feasibility of guest species entrapment in the functionalized shell wall, and SHNs are effective carriers of guest (bio-)molecules potentially for a variety of biomedical applications. By rationally choosing the functional (self-templating) molecules, this concept may represent a general strategy for the production of functionalized silica hollow structures. PMID:20596316

  5. Synthesis and characterization of hollow magnetic nanospheres modified with Au nanoparticles for bio-encapsulation

    NASA Astrophysics Data System (ADS)

    Seisno, Satoshi; Suga, Kent; Nakagawa, Takashi; Yamamoto, Takao A.

    2017-04-01

    Hollow magnetic nanospheres modified with Au nanoparticles were successfully synthesized. Au/SiO2 nanospheres fabricated by a radiochemical process were used as templates for ferrite templating. After the ferrite plating process, Au/SiO2 templates were fully coated with magnetite nanoparticles. Dissolution of the SiO2 core lead to the formation of hollow magnetic nanospheres with Au nanoparticles inside. The hollow magnetic nanospheres consisted of Fe3O4 grains, with an average diameter of 60 nm, connected to form the sphere wall, inside which Au grains with an average diameter of 7.2 nm were encapsulated. The Au nanoparticles immobilized on the SiO2 templates contributed to the adsorption of the Fe ion precursor and/or Fe3O4 seeds. These hollow magnetic nanospheres are proposed as a new type of nanocarrier, as the Au grains could specifically immobilize biomolecules inside the hollow sphere.

  6. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  7. Organic Dye Degradation Under Solar Irradiation by Hydrothermally Synthesized ZnS Nanospheres

    NASA Astrophysics Data System (ADS)

    Samanta, Dhrubajyoti; Chanu, T. Inakhunbi; Basnet, Parita; Chatterjee, Somenath

    2018-02-01

    The green synthesis of ZnS nanospheres using Citrus limetta (sweet lime) juice as a capping agent through a conventional hydrothermal method was studied. The particle size, morphology, chemical composition, band gap, and optical properties of the synthesized ZnS nanospheres were characterized using x-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and ultraviolet-visible spectroscopy. The photocatalytic activity of the ZnS nanospheres was evaluated by degradation of rhodamine B (RhB) and methyl orange (MO) under solar irradiation. Upon 150 min of solar irradiation, the extent of degradation was 94% and 77% for RhB and MO, respectively.

  8. Synthesis of Monodispersed Tantalum(V) oxide Nanospheres by an Ethylene Glycol Mediated Route

    EPA Science Inventory

    Tantalum(V) oxide (Ta2O5) nanospheres have been synthesized by a very simple ethylene glycol mediated route. The two-step process involves the formation of glycolate nanoparticles and their subsequent hydrolysis and calcination to generate the final Ta2O5 nanospheres. The synthes...

  9. Facile, general and template-free construction of monodisperse yolk-shell metal@carbon nanospheres.

    PubMed

    Xu, Fei; Lu, Yuheng; Ma, Junhao; Huang, Zhike; Su, Quanfei; Fu, Ruowen; Wu, Dingcai

    2017-11-07

    Herein, we report a general and template-free protocol to construct novel yolk-shell metal@carbon nanospheres based on confined interfacial copolymerization, which greatly simplifies the synthetic route, yields uniform nanospheres with controllable diameters, and results in highly porous carbon shells. The yolk-shell Au@carbon shows improved adsorption capacity and high catalytic ability due to the synergistic effect of Au and the porous carbon shell.

  10. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  11. Synthesis of ZnO nanosphere for picomolar level detection of bovine serum albumin.

    PubMed

    Sasmal, Milan; Maiti, Tapas Kumar; Bhattacharyya, Tarun Kanti

    2015-01-01

    In this paper, we demonstrate an electrical detection technique based on solution processed zinc oxide nanosphere for ultra-low level detection of bovine serum albumin (BSA). Our sensor device works on the basis of the variation of conductance of the ZnO nanosphere with different concentration of BSA. The morphological and structural characterizations of ZnO nanosphere were carried out by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). Circular dichroism (CD) spectroscopy was performed to investigate the chemical interaction between the BSA and zinc oxide nanosphere. Optical detection was performed using absorbance and Fourier transform infrared spectroscopy (FTIR) studies. Our device exhibits sensitivity 0.126 nA/pM, lower limit of detection (LOD) 10 pM and the fast response time around 5 s, confirming the highest sensitivity for BSA detection achieved so far. Sensing mechanism is governed on the basis of the charge transfer phenomenon between BSA and ZnO. All measurements were carried out at 1 V bias for low power operation.

  12. ATP-stabilized amorphous calcium carbonate nanospheres and their application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Lu, Bing-Qiang; Zhao, Xin-Yu; Zhao, Jing; Chen, Feng; Wu, Jin

    2014-05-28

    Calcium carbonate is a common substance found in rocks worldwide, and is the main biomineral formed in shells of marine organisms and snails, pearls and eggshells. Amorphous calcium carbonate (ACC) is the least stable polymorph of calcium carbonate, which is so unstable under normal conditions that it is difficult to be prepared in vitro because it rapidly crystallizes to form one of the more stable polymorphs in aqueous solution. Herein, we report the successful synthesis of highly stable ACC nanospheres in vitro using adenosine 5'-triphosphate disodium salt (ATP) as a stabilizer. The effect of ATP on the stability of ACC nanospheres is investigated. Our experiments show that ATP plays an unique role in the stabilization of ACC nanospheres in aqueous solution. Moreover, the as-prepared ACC nanospheres are highly stable in phosphate buffered saline for a relatively long period of time (12 days) even under relatively high concentrations of calcium and phosphate ions. The cytotoxicity tests show that the as-prepared highly stable ACC nanospheres have excellent biocompatibility. The highly stable ACC nanospheres have high protein adsorption capacity, implying that they are promising for applications in biomedical fields such as drug delivery and protein adsorption. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Plasma synthesis and HPHT consolidation of BN nanoparticles, nanospheres, and nanotubes to produce nanocrystalline cubic boron nitride

    NASA Astrophysics Data System (ADS)

    Stout, Christopher

    Plasma methods offer a variety of advantages to nanomaterials synthesis. The process is robust, allowing varying particle sizes and phases to be generated simply by modifying key parameters. The work here demonstrates a novel approach to nanopowder synthesis using inductively-coupled plasma to decompose precursor, which are then quenched to produce a variety of boron nitride (BN)-phase nanoparticles, including cubic phase, along with short-range-order nanospheres (e.g., nano-onions) and BN nanotubes. Cubic BN (c-BN) powders can be generated through direct deposition onto a chilled substrate. The extremely-high pyrolysis temperatures afforded by the equilibrium plasma offer a unique particle growth environment, accommodating long deposition times while exposing resulting powders to temperatures in excess of 5000K without any additional particle nucleation and growth. Such conditions can yield short-range ordered amorphous BN structures in the form of 20nm diameter nanospheres. Finally, when introducing a rapid-quenching counter-flow gas against the plasma jet, high aspect ratio nanotubes are synthesized, which are collected on substrate situated radially. The benefits of these morphologies are also evident in high-pressure/high-temperature consolidation experiments, where nanoparticle phases can offer a favorable conversion route to super-hard c-BN while maintaining nanocrystallinity. Experiments using these morphologies are shown to begin to yield c-BN conversion at conditions as low as 2.0 GPa and 1500°C when using micron sized c-BN seeding to create localized regions of high pressures due to Hertzian forces acting on the nanoparticles.

  14. Folate/NIR 797-Conjugated Albumin Magnetic Nanospheres: Synthesis, Characterisation, and In Vitro and In Vivo Targeting Evaluation

    PubMed Central

    Liu, Dongfang; Liu, Peidang; Zhang, Dongsheng

    2014-01-01

    A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN) was developed. For this strategy, Magnetic Albumin Nanospheres (MAN), composed of superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA), were covalently conjugated with folic acid (FA) ligands to enhance the targeting capability of the particles to folate receptor (FR) over-expressing tumours. Subsequently, a near-infrared (NIR) fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells). Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels. PMID:25188308

  15. Hydrothermal synthesis of flower-like MoS2 nanospheres for electrochemical supercapacitors.

    PubMed

    Zhou, Xiaoping; Xu, Bin; Lin, Zhengfeng; Shu, Dong; Ma, Lin

    2014-09-01

    Flower-like MoS2 nanospheres were synthesized by a hydrothermal route. The structure and surface morphology of the as-prepared MoS2 was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The supercapacitive behavior of MoS2 in 1 M KCl electrolyte was studied by means of cyclic voltammetry (CV), constant current charge-discharge cycling (CD) and electrochemical impedance spectroscopy (EIS). The XRD results indicate that the as-prepared MoS2 has good crystallinity. SEM images show that the MoS2 nanospheres have uniform sizes with mean diameter about 300 nm. Many nanosheets growing on the surface make the MoS2 nanospheres to be a flower-like structure. The specific capacitance of MoS2 is 122 F x g(-1) at 1 A x g(-1) or 114 F x g(-1) at 2 mv s(-1). All the experimental results indicate that MoS2 is a promising electrode material for electrochemical supercapacitors.

  16. Facile solid-state synthesis of highly dispersed Cu nanospheres anchored on coal-based activated carbons as an efficient heterogeneous catalyst for the reduction of 4-nitrophenol

    NASA Astrophysics Data System (ADS)

    Wang, Shan; Gao, Shasha; Tang, Yakun; Wang, Lei; Jia, Dianzeng; Liu, Lang

    2018-04-01

    Coal-based activated carbons (AC) were acted as the support, Cu/AC catalysts were synthesized by a facile solid-state reaction combined with subsequent heat treatment. In Cu/AC composites, highly dispersed Cu nanospheres were anchored on AC. The catalytic activity for 4-nitrophenol (4-NP) was investigated, the effects of activation temperature and copper loading on the catalytic performance were studied. The catalysts exhibited very high catalytic activity and moderate chemical stability due to the unique characteristics of the particle-assembled nanostructures, the high surface area and the porous structure of coal-based AC and the good dispersion of metal particles. Design and preparation of non-noble metal composite catalysts provide a new direction for improving the added value of coal.

  17. Polyethyleneglycol diacrylate hydrogels with plasmonic gold nanospheres incorporated via functional group optimization

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Kim, Seokbeom; Lee, Jungchul

    2017-12-01

    We present a facile method for the preparation of polyethyleneglycol diacrylate (PEG-DA) hydrogels with plasmonic gold (Au) nanospheres incorporated for various biological and chemical sensing applications. Plasmonic Au nanospheres were prepared ex situ using the standard citrate reduction method with an average diameter of 3.5 nm and a standard deviation of 0.5 nm, and evaluated for their surface functionalization process intended for uniform dispersion in polymer matrices. UV-Visible spectroscopy reveals the existence of plasmonic properties for pristine Au nanospheres, functionalized Au nanospheres, and PEG-DA with uniformly dispersed functionalized Au nanospheres (hybrid Au/PEG-DA hydrogels). Hybrid Au/PEG-DA hydrogels examined by using Fourier transform infra-red spectroscopy (FT-IR) exhibit the characteristic bands at 1635, 1732 and 2882 cm-1 corresponding to reaction products of OH- originating from oxidized product of citrate, -C=O stretching from ester bond, and C-H stretching of PEG-DA, respectively. Thermal studies of hybrid Au/PEG-DA hydrogels show three-stage decomposition with their stabilities up to 500 °C. Optical properties and thermal stabilities associated with the uniform dispersion of Au nanospheres within hydrogels reported herein will facilitate various biological and chemical sensing applications.

  18. Template-Free Hydrothermal Synthesis, Mechanism, and Photocatalytic Properties of Core-Shell CeO2 Nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Meng, Fanming; Gong, Jinfeng; Fan, Zhenghua; Qin, Rui

    2018-03-01

    CeO2 nanospheres with the core-shell nanostructure have been successfully synthesized by a template-free hydrothermal method. The structures, morphologies and optical properties of core-shell CeO2 nanospheres were analyzed by X-ray diffraction (XRD), TG, Fourier transform infrared spectroscopy, XRD, EDS, SAED, scanning electron microscopy and transmission electron microscopy, UV-Vis diffuse reflectance spectra, Raman analyses. The degradation efficiencies of core-shell CeO2 nanospheres for methyl orange were as high as 93.49, 95.67 and 98.28% within 160 min, and the rates of photo degradation of methyl orange by core-shell CeO2 nanospheres under UV-light were 0.01693, 0.01782 and 0.02375 min-1. Methyl orange was degraded in photocatalytic oxidation processes, which mainly gave the credit to a large number of reactive species including h+, surface superoxide species ·O2 -, and ·OH radicals. The core-shell structure, small crystallite size and the conversion between Ce3+ and Ce4+ of CeO2 nanospheres were of importance for its catalytic activity. These results demonstrated the possibility of improving the efficient catalysts of the earth abundant CeO2 catalysts.

  19. Structural and Spectral Features of Selenium Nanospheres Produced by Se-Respiring Bacteria

    USGS Publications Warehouse

    Oremland, R.S.; Herbel, M.J.; Blum, J.S.; Langley, S.; Beveridge, T.J.; Ajayan, P.M.; Sutto, T.; Ellis, A.V.; Curran, S.

    2004-01-01

    Certain anaerobic bacteria respire toxic selenium oxyanions and in doing so produce extracellular accumulations of elemental selenium [Se(0)]. We examined three physiologically and phylogenetically diverse species of selenate- and selenite-respiring bacteria, Sulfurospirillum barnesii, Bacillus selenitireducens, and Selenihalanaerobacter shriftii, for the occurrence of this phenomenon. When grown with selenium oxyanions as the electron acceptor, all of these organisms formed extracellular granules consisting of stable, uniform nanospheres (diameter, ???300 nm) of Se(0) having monoclinic crystalline structures. Intracellular packets of Se(0) were also noted. The number of intracellular Se(0) packets could be reduced by first growing cells with nitrate as the electron acceptor and then adding selenite ions to washed suspensions of the nitrate-grown cells. This resulted in the formation of primarily extracellular Se nanospheres. After harvesting and cleansing of cellular debris, we observed large differences in the optical properties (UV-visible absorption and Raman spectra) of purified extracellular nanospheres produced in this manner by the three different bacterial species. The spectral properties in turn differed substantially from those of amorphous Se(0) formed by chemical oxidation of H2Se and of black, vitreous Se(0) formed chemically by reduction of selenite with ascorbate. The microbial synthesis of Se(0) nanospheres results in unique, complex, compacted nanostructural arrangements of Se atoms. These arrangements probably reflect a diversity of enzymes involved in the dissimilatory reduction that are subtly different in different microbes. Remarkably, these conditions cannot be achieved by current methods of chemical synthesis.

  20. Synthesis and structure determination of uranyl peroxide nanospheres in the presence of organic structure directing agents

    NASA Astrophysics Data System (ADS)

    Forbes, T. Z.; Burns, P. C.

    2007-12-01

    Recently, actinyl peroxide nanoclusters containing 20, 24, 28, or 32 actinyl polyhedra have been synthesized and their structures identified with single crystal X-ray diffraction [1]. Most nanomaterials are composed of main group elements or transition metals, therefore, these actinyl nanospheres may display vastly different chemical and physical properties due to the presence of filled f-orbitals. A major goal of our research group is to create novel actinyl materials, focusing on nano- and mesoporous materials. The original nanosphere syntheses were limited to inorganic crystallization agents, such as monovalent cations. Over the last decade, the use of organic compounds and surfactants have received increased attention as structure-directing agents for the generation of novel inorganic materials. Using structure-directing organic amines we have successfully synthesized and determined the structures of uranyl nanospheres containing 40 and 50 uranyl polyhedra. The topology of the skeletal U-50 nanosphere is identical to the C50Cl10 fullerene [2]. The topographical relationship between the actinyl nanospheres and fullerene or fullerene-like material may provide additional insight into stable configurations for lower fullerenes. [1] Burns et al., Actinyl peroxide nanospheres. Angewandte Chemie, International Edition, 2005. 44(14): p. 2135. [2] Xie et al., Capturing the Labile Fullerene[50] as C50Cl10. Science, (2004) 305(5671): p. 699.

  1. Fast synthesis of porous NiCo2O4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Cao, Yang; Chen, Yong; Peng, Juan; Lai, Xiaoyong; Tu, Jinchun

    2017-02-01

    In this paper, we report the fast synthesis of porous NiCo2O4 hollow nanospheres via a polycrystalline Cu2O-templated route based on the elaborately designed "coordinating etching and precipitating" process. The composition and morphology of the porous NiCo2O4 hollow nanospheres were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. The electron-transfer capability and electrocatalytic activity of the materials were investigated by electrochemical impedance spectroscopy and cyclic voltammetry. NiCo2O4 was endowed with superior electron-transfer capability, large surface area, and abundant intrinsic redox couples of Ni2+/Ni3+ and Co2+/Co3+ ions; thus, the modified electrode exhibited excellent glucose-sensing properties, with a high sensitivity of 1917 μA·mM-1·cm-2 at a low concentration, a good linear range from 0.01 mM to 0.30 mM and from 0.30 mM to 2.24 mM, and a low detection limit of 0.6 μM (S/N = 3).

  2. A novel strategy for synthesis of hollow gold nanosphere and its application in electrogenerated chemiluminescence glucose biosensor.

    PubMed

    Zhong, Xia; Chai, Ya-Qin; Yuan, Ruo

    2014-10-01

    Well-distributed hollow gold nanospheres (Aushell@GOD) (20 ± 5 nm) were synthesized using the glucose oxidase (GOD) cross-linked with glutaraldehyde as a template. A glucose biosensor was prepared based on Aushell@GOD nanospheres for catalyzing luminol electrogenerated chemiluminescence (ECL). Firstly, chitosan was modified in a glassy carbon electrode which offered an interface of abundant amino-groups to assemble Aushell@GOD nanospheres. Then, glucose oxidase was adsorbed on the surface of Aushell@GOD nanospheres via binding interactions between Aushell and amino groups of GOD to construct a glucose biosensor. The Aushell@GOD nanospheres were investigated with TEM and UV-vis. The ECL behaviors of the biosensor were also investigated. Results showed that, the obtained Aushell@GOD nanospheres exhibited excellent catalytic effect towards the ECL of luminol-H2O2 system. The response of the prepared biosensor to glucose was linear with the glucose concentration in the range of 1.0 μM to 4.3mM (R=0.9923) with a detection limit of 0.3 μM (signal to noise=3). This ECL biosensor exhibited short response time and excellent stability for glucose. At the same time the prepared ECL biosensor showed good reproducibility, sensitivity and selectivity. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Synthesis and characterization of carbon nanospheres obtained by hydrothermal carbonization of wood-derived and other saccharides

    Treesearch

    Qiangu Yan; Rui Li; Hossein Toghiani; Zhiyong Cai; Jilei Zhang

    2015-01-01

    Carbon nanospheres were synthesized by hydrothermal carbonization (HTC) of four different carbon sources: xylose, glucose, sucrose, and pine wood derived saccharides. The obtained carbon nanospheres were characterized for particle morphology and size, and surface functional groups. Morphological and structural differences among these saccharides derived HTC carbons...

  4. Fabrication of Worm-Like Nanorods and Ultrafine Nanospheres of Silver Via Solid-State Photochemical Decomposition

    PubMed Central

    2009-01-01

    Worm-like nanorods and nanospheres of silver have been synthesized by photochemical decomposition of silver oxalate in water by UV irradiation in the presence of CTAB and PVP, respectively. No external seeds have been employed for the synthesis of Ag nanorods. The synthesized Ag colloids have been characterized by UV-visible spectra, powder XRD, HRTEM, and selected area electron diffraction (SAED). Ag nanospheres of average size around 2 nm have been obtained in the presence of PVP. XRD and TEM analyses revealed that top and basal planes of nanorods are bound with {111} facets. Williamson–Hall plot has revealed the presence of defects in the Ag nanospheres and nanorods. Formation of defective Ag nanocrystals is attributed to the heating effect of UV-visible irradiation. PMID:20596513

  5. Electrochemical Glucose Biosensor of Platinum Nanospheres Connected by Carbon Nanotubes

    PubMed Central

    Claussen, Jonathan C.; Kim, Sungwon S.; Haque, Aeraj ul; Artiles, Mayra S.; Porterfield, D. Marshall; Fisher, Timothy S.

    2010-01-01

    Background Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Method Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GOX) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Results Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GOX–CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H2O2 (7.4 μA/mM/cm2) and glucose (70 μA/mM/cm2), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t90%), respectively. The apparent Michaelis–Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GOX/nanomaterial complexes. Conclusions The GOX–CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. PMID:20307391

  6. Electrochemical glucose biosensor of platinum nanospheres connected by carbon nanotubes.

    PubMed

    Claussen, Jonathan C; Kim, Sungwon S; Haque, Aeraj Ul; Artiles, Mayra S; Porterfield, D Marshall; Fisher, Timothy S

    2010-03-01

    Glucose biosensors comprised of nanomaterials such as carbon nanotubes (CNTs) and metallic nanoparticles offer enhanced electrochemical performance that produces highly sensitive glucose sensing. This article presents a facile biosensor fabrication and biofunctionalization procedure that utilizes CNTs electrochemically decorated with platinum (Pt) nanospheres to sense glucose amperometrically with high sensitivity. Carbon nanotubes are grown in situ by microwave plasma chemical vapor deposition (MPCVD) and electro-chemically decorated with Pt nanospheres to form a CNT/Pt nanosphere composite biosensor. Carbon nanotube electrodes are immobilized with fluorescently labeled bovine serum albumin (BSA) and analyzed with fluorescence microscopy to demonstrate their biocompatibility. The enzyme glucose oxidase (GO(X)) is immobilized onto the CNT/Pt nanosphere biosensor by a simple drop-coat method for amperometric glucose sensing. Fluorescence microscopy demonstrates the biofunctionalization capability of the sensor by portraying adsorption of fluorescently labeled BSA unto MPCVD-grown CNT electrodes. The subsequent GO(X)-CNT/Pt nanosphere biosensor demonstrates a high sensitivity toward H(2)O(2) (7.4 microA/mM/cm(2)) and glucose (70 microA/mM/cm(2)), with a glucose detection limit and response time of 380 nM (signal-to-noise ratio = 3) and 8 s (t(90%)), respectively. The apparent Michaelis-Menten constant (0.64 mM) of the biosensor also reflects the improved sensitivity of the immobilized GO(X)/nanomaterial complexes. The GO(X)-CNT/Pt nanosphere biosensor outperforms similar CNT, metallic nanoparticle, and more conventional carbon-based biosensors in terms of glucose sensitivity and detection limit. The biosensor fabrication and biofunctionalization scheme can easily be scaled and adapted for microsensors for physiological research applications that require highly sensitive glucose sensing. (c) 2010 Diabetes Technology Society.

  7. Synthesis of magnetic nickel spinel ferrite nanospheres by a reverse emulsion-assisted hydrothermal process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jilin; Shi Jianxin, E-mail: chemshijx@163.co; Gong Menglian

    2009-08-15

    Nickel ferrite nanospheres were successfully synthesized by a reverse emulsion-assisted hydrothermal method. The reverse emulsion was composed of water, cetyltrimethyl ammonium bromide, polyoxyethylene(10)nonyl phenyl ether, iso-amyl alcohol and hexane. During the hydrothermal process, beta-FeO(OH) and Ni{sub 0.75}Fe{sub 0.25}(CO{sub 3}){sub 0.125}(OH){sub 2}.0.38H{sub 2}O (INCHH) nanorods formed first and then transformed into nickel spinel ferrite nanospheres. The phase transformation mechanism is proposed based on the results of X-ray powder diffraction, transmission electron microscopy and energy-dispersive X-ray spectroscopy, etc. Nickel ferrite may form at the end of the INCHH nanorods or from the solution accompanied by the dissolution of beta-FeO(OH) and INCHH nanorods.more » The X-ray photoelectron spectroscopy analysis shows that a few Fe{sup 3+} ions have been reduced to Fe{sup 2+} ions during the formation of nickel ferrite. The maximum magnetization of the nickel ferrite nanospheres obtained after hydrothermal reaction for 30 h is 55.01 emu/g, which is close to that of bulk NiFe{sub 2}O{sub 4}. - Graphical abstract: Nickel ferrite nanospheres were obtained through a reverse emulsion-assisted hydrothermal process. The phase transformation as a function of reaction time was studied based on the XRD, TEM and EDS analyses.« less

  8. Direct Synthesis of Silicon Nanowires, Silica Nanospheres, Wire-Like Nanosphere Agglomerates, and Silica-Based Nanotubes and Nanofiber Arrays

    DTIC Science & Technology

    2001-01-01

    decades, the vapor-liquid-solid (VLS) process, ’ 2 where gold particles act as a mediating solvent on a silicon substrate, forming a molten alloy, has...34Nanocatalysis: Selective Conversion of Ethanol to Acetaldehyde Using Monoatomically Dispersed Copper on Silica Nanospheres", Journal of Catalysis, submitted. 7.Sales literature, Cabot Corporation. C5.9.8 Nanoparticles in Biology

  9. A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Xu, Rui; Lin, Jianming; Wu, Jihuai; Huang, Miaoliang; Fan, Leqing; He, Xin; Wang, Yiting; Xu, Zedong

    2017-11-01

    In this work, a high-performance asymmetric supercapacitor device based on NiCo2S4/NiS hollow nanospheres as the positive electrode and the porous activated carbon as the negative electrode was successfully fabricated via a facile two-step hydrothermal synthesis approach. This NiCo2S4/NiS//activated carbon asymmetric supercapacitor achieved a high energy density of 43.7 Wh kg-1 at a power density of 160 W kg-1, an encouraging specific capacitance of 123 F g-1 at a current density of 1 mA cm-2, as well as a long-term performance with capacitance degradation of 5.2% after 3000 consecutive cycles at 1 mA cm-2. Moreover, the NiCo2S4/NiS electrode also demonstrated an excellent specific capacitance (1947.5 F g-1 at 3 mA cm-2) and an outstanding cycling stability (retaining 90.3% after 1000 cycles). The remarkable electrochemical performances may be attributed to the effect of NiS doping on NiCo2S4 which could enlarge the surface area and increase the surface roughness.

  10. Microfluidic preparation of polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Kucuk, Israfil; Edirisinghe, Mohan

    2014-12-01

    In this work, solid polymer nanospheres with their surface tailored for drug adhesion were prepared using a V-shaped microfluidic junction. The biocompatible polymer solutions were infused using two channels of the microfluidic junction which was also simultaneously fed with a volatile liquid, perfluorohexane using the other channel. The mechanism by which the nanospheres are generated is explained using high speed camera imaging. The polymer concentration (5-50 wt%) and flow rates of the feeds (50-300 µl min-1) were important parameters in controlling the nanosphere diameter. The diameter of the polymer nanospheres was found to be in the range of 80-920 nm with a polydispersity index of 11-19 %. The interior structure and surfaces of the nanospheres prepared were studied using advanced microscopy and showed the presence of fine pores and cracks on surface which can be used as drug entrapment locations.

  11. Carbonization-dependent nitrogen-doped hollow porous carbon nanospheres synthesis and electrochemical study for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, Lingyun; Xie, Guohong; Chen, Xiling

    2018-05-01

    In this paper, a nitrogen-doped hollow microporous carbon nanospheres was synthesized via the combination of hyper-crosslinking mediated self-assembly and further pyrolysis using polylactide-b-polystyrene (PLA-b-PS) copolymers and aniline monomers as precursor. The pore structure and the correlative electrochemical performance of nitrogen-doped hollow microporous carbon nanospheres were affected by the molar mass ratio of aniline and PS in block copolymers and the carbonization conditions. The electrochemical measurements results showed that the obtained PLA150-PS250-N4-900-10H sample with nitrogen content of 3.57% and the BET surface area of 945 m2 g-1 displays the best capacitance performance. At a current density of 1.0 Ag-1, the resultant specific capacitance is 250 Fg-1. In addition, it also exhibits high capacitance retention of 98% after charging-discharging 1500 times at 25 Ag-1. The results demonstrate the nitrogen-doped hollow microporous carbon nanospheres can be used as promising supercapacitor electrode materials for high performance energy storage devices.

  12. Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashuri, Maziar; He, Qianran; Liu, Yuzi

    In this study we have investigated the electrochemical properties of hollow silicon nanospheres encapsulated with a thin carbon shell, HSi@C, as a potential candidate for lithium-ion battery anodes. Hollow Si nanospheres are formed using a templating method which is followed by carbon coating via carbonization of a pyrrole precursor to form HSi@C. The synthesis conditions and the resulting structure of HSi@C have been studied in detail to obtain the target design of hollow Si nanospheres encapsulated with a carbon shell. The HSi@C obtained exhibits much better electrochemical cycle stability than both micro-and nano-size silicon anodes and deliver a stable specificmore » capacity of 700 mA h g(-1) after 100 cycles at a current density of 2 A g(-1) and 800 mA h g(-1) after 120 cycles at a current density of 1 A g(-1). The superior performance of HSi@C is attributed to the synergistic combination of the nanostructured material, the enhanced conductivity, and the presence of the central void space for Si expansion with little or no change in the volume of the entire HSi@C particle. This study is the first detailed investigation of the synthesis conditions to attain the desired structure of a hollow Si core with a conductive carbon shell. This study also offers guidelines to further enhance the specific capacity of HSi@C anodes in the future.« less

  13. Hollow Silicon Nanospheres Encapsulated with a Thin Carbon Shell: An Electrochemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashuri, Maziar; He, Qianran; Liu, Yuzi

    In this study we have investigated the electrochemical properties of hollow silicon nanospheres encapsulated with a thin carbon shell, HSi@C, as a potential candidate for lithium-ion battery anodes. Hollow Si nanospheres are formed using a templating method which is followed by carbon coating via carbonization of a pyrrole precursor to form HSi@C. The synthesis conditions and the resulting structure of HSi@C have been studied in detail to obtain the target design of hollow Si nanospheres encapsulated with a carbon shell. The HSi@C obtained exhibits much better electrochemical cycle stability than both micro-and nano-size silicon anodes and deliver a stable specificmore » capacity of 700 mA h g(-1) after 100 cycles at a current density of 2 A g(-1) and 800 mA h g(-1) after 120 cycles at a current density of 1 A g(-1). The superior performance of HSi@C is attributed to the synergistic combination of the nanostructured material, the enhanced conductivity, and the presence of the central void space for Si expansion with little or no change in the volume of the entire HSi@C particle. This study is the first detailed investigation of the synthesis conditions to attain the desired structure of a hollow Si core with a conductive carbon shell. This study also offers guidelines to further enhance the specific capacity of HSi@C anodes in the future. (C) 2016 Elsevier Ltd. All rights reserved.« less

  14. Porous and non-porous water soluble polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Henselwood, Fred William

    Water soluble polymer nanospheres have been prepared from the photo-cross-linking of diblock copolymer micelles formed either in water or in N,N-dimethylformamide/water mixtures. The diblock copolymers utilized in this study were poly(2-cinnamoyl-ethyl methacrylate)-block-poly(acrylic acid), poly ((2-cinnamoylethyl methacrylate)-random-(2-octanoylethyl methacrylate)) -block-poly(acrylic acid), and poly ((2-cinnamoyl-ethyl methacrylate)-random-(2-oleoylethyl methacrylate)) -block-poly(acrylic acid). These polymers were synthesized by the functionalization of diblock copolymers prepared by anionic polymerization. The photo-cross-linking was achieved through the dimerization of cinnamoyl groups by ultraviolet irradiation. Transmission electron microscopy confirmed that the polymer nanospheres had an inner core region formed by the cinnamoyl containing polymer blocks, and an outer shell layer formed by the acrylic acid polymer blocks. The hydrodynamic radius of the polymer nanospheres in water was approximately 50 to 75 nm as determined by dynamic light scattering. It has been found that the polymer nanospheres, when in water, could be readily impregnated with organic molecules. Fluorescence measurements showed that the polymer nanospheres could uptake polyaromatic hydrocarbons by the direct mixing of polyaromatic hydrocarbons with the polymer nanospheres in water. Perylene was found to be between 2.0 × 10sp5 and 4.0 × 10sp5 times more soluble in the core region of the polymer nanospheres than in water. The addition of divalent cations was shown to induce aggregation of the polymer nanospheres and resulted in the precipitation of the polymer nanospheres along with any captured perylene. This suggests that the polymer nanospheres may be useful in water remediation. Porous polymer nanospheres were prepared by the incorporation of low molecular weight polymeric porogens within the core region of the polymer nanospheres. Following photo-cross-linking the polymeric

  15. Naproxen-imprinted xerogels in the micro- and nanospherical formsby emulsion technique.

    PubMed

    Ornelas, Mariana; Azenha, Manuel; Pereira, Carlos; Silva, A Fernando

    2015-11-27

    Naproxen-imprinted xerogels in the microspherical and nanospherical forms were prepared by W/O emulsion and microemulsion, respectively. The work evolved from a sol–gel mixture previously reported for bulk synthesis. It was relatively simple to convert the original sol–gel mixture to one amenable to emulsion technique. The microspheres thus produced presented mean diameter of 3.7 μm, surface area ranging 220–340 m2/g, selectivity factor 4.3 (against ibuprofen) and imprinting factor 61. A superior capacity (9.4 μmol/g) was found, when comparing with imprints obtained from similar pre-gelification mixtures. However, slow mass transfer kinetics was deduced from column efficiency results. Concerning the nanospherical format, which constituted the first example of the production of molecularly imprinted xerogels in that format by microemulsion technique, adapting the sol–gel mixture was troublesome. In the end, nanoparticles with diameter in the order of 10 nm were finally obtained, exhibiting good indications of an efficient molecular imprinting process. Future refinements are necessary to solve serious aggregation issues, before moving to more accurate characterization of the binding characteristics or to real applications of the nanospheres.

  16. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries

    NASA Astrophysics Data System (ADS)

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-Ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance (29Si MAS NMR and 13CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and

  17. Recent Advances on Carbon Nanospheres. Synthetic Routes and Applications

    DOE PAGES

    Zhang, Pengfei; Qiao, Zhenan; Dai, Sheng

    2015-04-02

    Carbon-based materials are the most popular material types in both fundamental research and industrial applications, partly because of their well-controlled nano-morphologies. In the past two decades, we have witnessed a number of breakthroughs in carbon research: fullerenes, carbon nanotubes, and more recently graphene. Nowadays, carbon nanospheres are attracting more and more attention worldwide due to their excellent performance in various fields: drug delivery, heterogeneous catalysis, encapsulation of support and electrode materials. Actually, spherical carbon is an old material, whereas controlling carbon spheres in the nanometer range is a recent story. In the past 5 years, it has become possible tomore » precisely control the particle size, surface area, pore size, chemical composition, and dispersity of carbon nanospheres. Toward this end, a number of synthetic strategies are emerging, such as hydrothermal carbonization of biomass-based resources, extended Stöber synthesis, and organic–organic self-assembly via different binding methods. In this feature article, we summarize recent routes for carbon nanospheres and briefly touch on their applications to shed light on the potential of this field. Throughout this article, a special emphasis is placed on the possible modulation of spherical structures at the nanoscale, and we wish to inspire many more designs and applications of carbon nanostructures in the near future.« less

  18. Synthesis of supported silver nano-spheres on zinc oxide nanorods for visible light photocatalytic applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saoud, Khaled; Alsoubaihi, Rola; Bensalah, Nasr

    Highlights: • Synthesis of supported Ag NPs on ZnO nanorods using open vessel microwave reactor. • Use of the Ag/ZnO NPs as an efficient visible light photocatalyst. • Complete degradation of methylene blue in 1 h with 0.5 g/L Ag/ZnO NPs. - Abstract: We report the synthesis of silver (Ag) nano-spheres (NS) supported on zinc oxide (ZnO) nanorods through two step mechanism, using open vessel microwave reactor. Direct reduction of ZnO from zinc nitrates was followed by deposition precipitation of the silver on the ZnO nanorods. The supported Ag/ZnO nanoparticles were then characterized by electron microscopy, X-ray diffraction, FTIR, photoluminescencemore » and UV–vis spectroscopy. The visible light photocatalytic activity of Ag/ZnO system was investigated using a test contaminant, methylene blue (MB). Almost complete removal of MB in about 60 min for doses higher than 0.5 g/L of the Ag/ZnO photocatalyst was achieved. This significant improvement in the photocatalytic efficiency of Ag/ZnO photocatalyst under visible light irradiation can be attributed to the presence of Ag nanoparticles on the ZnO nanoparticles which greatly enhances absorption in the visible range of solar spectrum enabled by surface plasmon resonance effect from Ag nanoparticles.« less

  19. Broadband electromagnetic dipole scattering by coupled multiple nanospheres

    NASA Astrophysics Data System (ADS)

    Jing, Xufeng; Ye, Qiufeng; Hong, Zhi; Zhu, Dongshuo; Shi, Guohua

    2017-11-01

    With the development of nanotechnology, the ability to manipulate light at the nanoscale is critical to future optical functional devices. The use of high refractive index dielectric single silicon nanoparticle can achieve electromagnetic dipole resonant properties. Compared with single nanosphere, the use of dimer and trimer introduces an additional dimension (gap size) for improving the performance of dielectric optical devices through the coupling between closely connected silicon nanospheres. When changing the gap size between the nanospheres, the interaction between the particles can be from weak to strong. Compared with single nanospheres, dimerized or trimeric nanospheres exhibit more pronounced broadband scattering properties. In addition, by introducing more complex interaction, the trimericed silicon nanospheres exhibit a more significant increase in bandwidth than expected. In addition, the presence of the substrate will also contribute to the increase in the bandwidth of the nanospheres. The broadband response in dielectric nanostructures can be effectively applied to broadband applications such as dielectric nanoantennas or solar cells.

  20. Periodic organosilica hollow nanospheres as anode materials for lithium ion rechargeable batteries.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi; Gunawardhana, Nanda; Yokoi, Toshiyuki; Ito, Masanori; Inoue, Masamichi; Yusa, Shin-ichi; Yoshio, Masaki; Tatsumi, Takashi

    2011-11-01

    Polymeric micelles with core-shell-corona architecture have been found to be the efficient colloidal templates for synthesis of periodic organosilica hollow nanospheres over a broad pH range from acidic to alkaline media. In alkaline medium, poly (styrene-b-[3-(methacryloylamino)propyl] trimethylammonium chloride-b-ethylene oxide) (PS-PMAPTAC-PEO) micelles yield benzene-silica hollow nanospheres with molecular scale periodicity of benzene groups in the shell domain of hollow particles. Whereas, an acidic medium (pH 4) produces diverse hollow particles with benzene, ethylene, and a mixture of ethylene and dipropyldisulfide bridging functionalities using poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) micelles. These hollow particles were thoroughly characterized by powder X-ray diffraction (XRD), dynamic light scattering (DLS), thermogravimetric analysis (TG/DTA), Fourier transformation infrared (FTIR) spectroscopy, transmission electron microscopy (TEM), magic angle spinning-nuclear magnetic resonance ((29)Si MAS NMR and (13)CP-MAS NMR), Raman spectroscopy, and nitrogen adsorption/desorption analyses. The benzene-silica hollow nanospheres with molecular scale periodicity in the shell domain exhibit higher cycling performance of up to 300 cycles in lithium ion rechargeable batteries compared with micron-sized dense benzene-silica particles.

  1. Preparation of hollow silica nanospheres in O/W microemulsion system by hydrothermal temperature changes

    NASA Astrophysics Data System (ADS)

    Wang, Dandan; Li, Xiuyan; Liu, Zuohua; Shi, Xue; Zhou, Guowei

    2017-01-01

    Hollow silica nanospheres with wrinkled or smooth surfaces were successfully fabricated through a hydrothermal method. In this method, oil-in-water microemulsion (composed of cyclohexane, water, ethanol, and cetyltrimethylammonium bromide), and polyvinylpyrrolidone were utilized as template and capping agent, respectively. In such a facile synthesis, we can well realize the morphological transformation of spheres with radially oriented mesochannels to hollow structures of silica nanoparticle only by regulating the hydrothermal temperature from 100 °C to 200 °C. Synthesized samples with different mesostructures were then used as supports to immobilize Candida rugosa lipase (CRL). The immobilized CRL was employed as a new biocatalyst for biodiesel production through the esterification of heptanoic acid with ethanol. The conversion ratio of heptanoic acid with ethanol catalyzed by the immobilized CRL was also evaluated. Results of this study suggest that the prepared samples have potential applications in biocatalysis.

  2. Facile preparation of gold nanocages and hollow gold nanospheres via solvent thermal treatment and their surface plasmon resonance and photothermal properties.

    PubMed

    Wang, Haifei; Han, Jing; Lu, Wensheng; Zhang, Jianping; Li, Jinru; Jiang, Long

    2015-02-15

    Although template etching method is one of the most common ways of preparation of hollow gold nanostructures, this approach still requires further improvements to avoid the collapse of gold shells after the cores were removed. In this work, an improved template etching method, with which hollow gold nanostructure is fabricated by etching Polystyrene (PS) cores from PS@Au core-shell nanospheres with solvent thermal treatment in N,N-Dimethylformamide (DMF), is demonstrated. When PS cores were removed by a thermal treatment process, gold nanoshells reconstruct and the collapse of the nanoshells is avoided. Gold nanocages and hollow gold nanospheres are easily obtained from the various structures of PS@Au core-shell nanospheres. These hollow nanostructures represent special near infrared (NIR) optical property and photothermal property. Compared with hollow gold nanospheres, the gold nanocages show higher temperature increase at the same particle concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Mesoporous Cu2O-CeO2 composite nanospheres with enhanced catalytic activity for 4-nitrophenol reduction

    NASA Astrophysics Data System (ADS)

    Pang, Juanjuan; Li, Wenting; Cao, Zhenhao; Xu, Jingjing; Li, Xue; Zhang, Xiaokai

    2018-05-01

    In this paper, mesoporous Cu2O-CeO2 nanospheres were fabricated via a facile, low-temperature solution route in the presence of poly(2-vinylpyridine)-b-poly(ethylene Oxide) (P2VP-b-PEO) block copolymers. The prepared mesoporous Cu2O-CeO2 nanospheres were characterized systematically by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and nitrogen adsorption/desorption. The formation mechanism of mesoporous Cu2O-CeO2 nanospheres was discussed. The results show that the molar ratios of Ce3+/Cu2+ and the reaction time have an important influence on the nanostructure of Cu2O-CeO2 composite spheres. The resultant Cu2O-CeO2 nanospheres exhibit superior catalytic activities in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. The activity factor (K = k/m) for the Cu2O-CeO2 nanospheres prepared with the molar ratio of Ce3+/Cu2+ of 5/1 is 3006.6 s-1 g-1, which is much higher than reported values. This paper demonstrates a highly controllable approach to the production of mesoporous Cu2O-CeO2 nanospheres, which have potential applications in the areas of catalysis, adsorption, sensors and so on.

  4. Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth.

    PubMed

    Madaria, Anuj R; Yao, Maoqing; Chi, Chunyung; Huang, Ningfeng; Lin, Chenxi; Li, Ruijuan; Povinelli, Michelle L; Dapkus, P Daniel; Zhou, Chongwu

    2012-06-13

    Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.

  5. SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Guo, Wenbin; Wang, Yong; Li, Qingyuan; Wang, Dongxia; Zhang, Fanchao; Yang, Yiqing; Yu, Yang

    2018-05-02

    Porous SnO 2 @C@VO 2 composite hollow nanospheres were ingeniously constructed through the combination of layer-by-layer deposition and redox reaction. Moreover, to optimize the electrochemical properties, SnO 2 @C@VO 2 composite hollow nanospheres with different contents of the external VO 2 were also studied. On the one hand, the elastic and conductive carbon as interlayer in the SnO 2 @C@VO 2 composite can not only buffer the huge volume variation during repetitive cycling but also effectively improve electronic conductivity and enhance the utilizing rate of SnO 2 and VO 2 with high theoretical capacity. On the other hand, hollow nanostructures of the composite can be consolidated by the multilayered nanocomponents, resulting in outstanding cyclic stability. In virtue of the above synergetic contribution from individual components, SnO 2 @C@VO 2 composite hollow nanospheres exhibit a large initial discharge capacity (1305.6 mAhg -1 ) and outstanding cyclic stability (765.1 mAhg -1 after 100 cycles). This design of composite hollow nanospheres may be extended to the synthesis of other nanomaterials for electrochemical energy storage.

  6. A General Strategy for the Synthesis of PtM (M=Fe, Co, Ni) Decorated Three-Dimensional Hollow Graphene Nanospheres for Efficient Methanol Electrooxidation.

    PubMed

    Qiu, Xiaoyu; Li, Tiancheng; Deng, Sihui; Cen, Ke; Xu, Lin; Tang, Yawen

    2018-01-26

    A universal sacrificial template-based synthesis strategy was reported to prepare three dimensional (3D) reduced oxide graphene supported PtM (M=Fe, Co, Ni) hollow nanospheres (PtM/RGO HNSs). The inner 3D wrinkle-free graphene skeleton can promote electron and ion kinetics, resulting in enhancement for the permeation of small organic molecule in fuel cells. As inspired by this, the 3D PtM (M=Fe, Co, Ni)/RGO HNSs exhibit clearly enhanced electrocatalytic activity and durability towards the methanol oxidation reaction (MOR) in acidic medium compared with a commercial Pt/C catalyst. This study provides a versatile approach of realizing controlled synthesis of 3D graphene-metal hybrid nanostructures irrespective of the components of the metal domains, and will pave the way for the design of hetero-nanostructures with optimized morphologies and functions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanosphere lithography applied to magnetic thin films

    NASA Astrophysics Data System (ADS)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  8. Core-shell carbon nanosphere-TiO2 composite and hollow TiO2 nanospheres prepared by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Bakos, L. P.; Justh, N.; Hernádi, K.; Kiss, G.; Réti, B.; Erdélyi, Z.; Parditka, B.; Szilágyi, I. M.

    2016-10-01

    Core-shell carbon-TiO2 composite and hollow TiO2 nanospheres were prepared using carbon nanospheres as hard-templates, coating them with TiO2 using atomic layer deposition, and subsequent burning out of the carbon cores. The bare carbon, the composite carbon-TiO2 and the hollow TiO2 nanospheres were characterized with TG/DTA-MS, FTIR, XRD and SEM-EDX.

  9. Research on the biological activity and doxorubicin release behavior in vitro of mesoporous bioactive SiO2-CaO-P2O5 glass nanospheres

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Wang, Gen; Zhang, Ying

    2017-10-01

    Mesoporous bioactive glass (MBG) nanospheres have been synthesized by a facile method of sacrificing template using cetyl trimethyl ammonium bromide (CTAB) as surfactant. The prepared MBG nanospheres possess high specific surface area (632 m2 g-1) as well as uniform size (∼100 nm). In addition, MBG nanospheres exhibited a quick in vitro bioactive response in simulated body fluids (SBF) and excellent bioactivity of inducing hydroxyapatite (HA) forming on the surface of MBG nanospheres. Furthermore, MBG nanospheres can sustain release of doxorubicin (DOX) with a higher encapsulation efficiency (63.6%) and show distinct degradation in PBS by releasing Si and Ca ions. The encapsulation efficiency and DOX release of MBG nanospheres could be controlled by mesoporous structure and local pH environment. The greater surface area and pore volumes of prepared MBG nanospheres are conducive to bioactive response and drug release in vitro. The amino groups in DOX can be easily protonated at acidic medium to become positively charged NH+3, which allow these drug molecules to be desorbed from the surface of MBG nanospheres via electrostatic effect. Therefore, the synthesized MBG nanospheres have a pH-sensitive drug release capability. In addition, the cytotoxicity of MBG nanospheres was assessed using a cell counting kit-8 (CCK-8), and results showed that the synthesized MBG nanospheres had no significant cytotoxicity to MC3T3 cells. These all indicated that as-prepared MBG nanospheres are promising candidates for bone tissue engineering.

  10. Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

    PubMed Central

    Shi, Jingjing; Cao, Hongxia; Wang, Ruiyu

    2017-01-01

    CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with uniform size were fabricated by a general wet-chemical approach. It involved a non-equilibrium heat-treatment of Ce coordination polymer colloidal spheres (Ce-CPCSs) with a proper heating rate to produce CeO2 yolk–shell nanospheres, followed by a solvothermal treatment of as-synthesized CeO2 with M(CH3COO)2 in ethanol solution. During the solvothermal process, highly dispersed MOx species were decorated on the surface of CeO2 yolk–shell nanospheres to form CeO2–MOx composites. As a CO oxidation catalyst, the CeO2–MOx composite yolk–shell nanospheres showed strikingly higher catalytic activity than naked CeO2 due to the strong synergistic interaction at the interface sites between MOx and CeO2. Cycling tests demonstrate the good cycle stability of these yolk–shell nanospheres. The initial concentration of M(CH3COO)2·xH2O in the synthesis process played a significant role in catalytic performance for CO oxidation. Impressively, complete CO conversion as reached at a relatively low temperature of 145 °C over the CeO2–CuOx-2 sample. Furthermore, the CeO2–CuOx catalyst is more active than the CeO2–CoOx and CeO2–NiO catalysts, indicating that the catalytic activity is correlates with the metal oxide. Additionally, this versatile synthesis approach can be expected to create other ceria-based composite oxide systems with various structures for a broad range of technical applications. PMID:29234577

  11. Formation of nickel-doped magnetite hollow nanospheres with high specific surface area and superior removal capability for organic molecules

    NASA Astrophysics Data System (ADS)

    Li, Zhenhu; Ma, Yurong; Qi, Limin

    2016-12-01

    A strategy for the formation of magnetic Ni x Fe3-x O4 hollow nanospheres with very high specific surface areas was designed through a facile solvothermal method in mixed solvents of ethylene glycol and water in this work. The Ni/Fe ratios and the crystal phases of the Ni x Fe3-x O4 hollow nanocrystals can be readily tuned by changing the molar ratios of Ni to Fe in the precursors. An inside-out Ostwald ripening mechanism was proposed for the formation of uniform Ni x Fe3-x O4 hollow nanospheres. Moreover, the obtained Ni x Fe3-x O4 hollow nanospheres exhibited excellent adsorption capacity towards organic molecules such as Congo red in water. The maximum adsorption capacities of Ni x Fe3-x O4 hollow nanospheres for Congo red increase dramatically from 263 to 500 mg g-1 with the increase of the Ni contents (x) in Ni x Fe3-x O4 hollow nanospheres from 0.2 to 0.85. The synthesized Ni x Fe3-x O4 nanoparticles can be potentially applied for waste water treatment.

  12. Increase in stability of cellulase immobilized on functionalized magnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjuan; Qiu, Jianhui; Feng, Huixia; Zang, Limin; Sakai, Eiichi

    2015-02-01

    Functionalized magnetic nanospheres were prepared by co-condensation of tetraethylorthosilicate with three different amino-silanes: 3-(2-aminoethylamino propyl)-triethoxysilane (AEAPTES), 3-(2-aminoethylamino propyl)-trimethoxysilane (AEAPTMES) and 3-aminopropyltriethoxysilane (APTES). Then three functionalized magnetic nanospheres were used as supports for immobilization of cellulase. The three functionalized magnetic nanospheres with core-shell morphologies exhibited higher capacity for cellulase immobilization than unfunctionalized magnetic nanospheres. The increasing of surface charge of functionalized magnetic nanospheres leads to an enhancement of the capacity of cellulase immobilization. Particularly, AEAPTMES with methoxy groups was favored to be hydrolyzed and grafted on unfunctionalized magnetic nanospheres than the others. AEAPTMES functionalized magnetic nanospheres with the highest zeta potential (29 mV) exhibited 87% activity recovery and the maximum amount of immobilized cellulase was 112 mg/g support at concentration of initial cellulase of 8 mg/mL. Immobilized cellulase on AEAPTMES functionalized magnetic nanospheres had higher temperature stability and broader pH stability than other immobilized cellulases and free cellulase. In particular, it can be used in about 40 °C, demonstrating the potential of biofuel production using this immobilized cellulase.

  13. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    PubMed

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  14. Preparation of yolk-shell MoS2 nanospheres covered with carbon shell for excellent lithium-ion battery anodes

    NASA Astrophysics Data System (ADS)

    Guo, Bangjun; Feng, Yu; Chen, Xiaofan; Li, Bo; Yu, Ke

    2018-03-01

    Molybdenum disulfide is regarded as one of the most promising electrode materials for high performance lithium-ion batteries. Designing firm basal structure is a key point to fully utilize the high capacity of layered MoS2 nanomaterials. Here, yolk-shell structured MoS2 nanospheres is firstly designed and fabricated to meet this needs. This unique yolk-shell nanospheres are transformed from solid nanospheres by a simply weak alkaline etching method. Then, the yolk-shell MoS2/C is synthesized by a facile process to protect the outside MoS2 shell and promote the conductivity. Taking advantages of high capacity and well-defined cavity space, allowing the core MoS2 to expand freely without breaking the outer shells, yolk-shell MoS2/C nanospheres delivers long cycle life (94% of capacity retained after 200 cycles) and high rate behaviour (830 mA h g-1 at 5 A g-1). This design of yolk-shell structure may set up a new strategy for preparing next generation anode materials for LIBs.

  15. Synthesis of carbon nanospheres using fallen willow leaves and adsorption of Rhodamine B and heavy metals by them.

    PubMed

    Qu, Jiao; Zhang, Qian; Xia, Yunsheng; Cong, Qiao; Luo, Chunqiu

    2015-01-01

    This paper focuses on the synthesis of carbon nanospheres (CNSs) using fallen willow leaves as a low-cost precursor. The scanning electron microscopy (SEM) image and transmission electron microscopy (TEM) image demonstrated that the structure of synthesized CNSs was spherical, with a diameter of 100 nm. The crystal structure and chemical information were characterized by Raman spectrum and energy-dispersive spectrum (EDS), respectively. BET results showed that the CNSs had a larger specific surface area of 294.32 m(2) g(-1), which makes it a potentially superior adsorbent. Rh-B and heavy metal ions such as Cu(2+), Zn(2+), and Cr(6+) were used as targets to investigate the adsorption capacity of the CNSs. The effects of adsorption parameters such as adsorption equilibrium time, dose of CNSs, adsorption kinetics, and effect factors were also studied. These findings not only established a cost-effective method of synthesizing CNSs using fallen willow leaves but also broadened the potential application range of these CNSs.

  16. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials.

    PubMed

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; Wang, Bei; Bremer, Peer-Timo; Papka, Michael E; Curtiss, Larry A; Pascucci, Valerio

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.

  17. Phenylalanine containing hydrophobic nanospheres for antibody purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil; Oztürk, Nevra; Akgöl, Sinan; Elkak, Assem

    2008-01-01

    In this study, novel hydrophobic nanospheres with an average size of 158 nm utilizing N-methacryloyl-(L)-phenylalanine methyl ester (MAPA) as a hydrophobic monomer were produced by surfactant free emulsion polymerization of 2-hydroxyethyl methacrylate (HEMA) and MAPA conducted in an aqueous dispersion medium. MAPA was synthesized using methacryloyl chloride and L-phenylalanine methyl ester. Specific surface area of the nonporous nanospheres was found to be 1874 m2/g. Poly(HEMA-MAPA) nanospheres were characterized by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Average particle size, size distribution, and surface charge measurements were also performed. Elemental analysis of MAPA for nitrogen was estimated as 0.42 mmol/g polymer. Then, poly(HEMA-MAPA) nanospheres were used in the adsorption of immunoglobulin G (IgG) in batch system. Higher adsorption values (780 mg/g) were obtained when the poly (HEMA-MAPA) nanospheres were used from both aqueous solutions and human plasma. The adsorption phenomena appeared to follow a typical Langmuir isotherm. It was observed that IgG could be repeatedly adsorbed and desorbed without significant loss in adsorption amount. These findings show considerable promise for this material as a hydrophobic support in industrial processes.

  18. Formation of hollow silica nanospheres by reverse microemulsion

    NASA Astrophysics Data System (ADS)

    Lin, Cheng-Han; Chang, Jen-Hsuan; Yeh, Yi-Qi; Wu, Si-Han; Liu, Yi-Hsin; Mou, Chung-Yuan

    2015-05-01

    Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and water in a continuous oil phase (alkanes) coalesce into size-tunable silica nanoparticles via diffusion aggregation after the introduction of silica precursors. Here, we elucidate in detail the growth mechanism for silica nanoparticles via nucleation of ammonium-catalyzed silica oligomers from tetraethylorthosilicate (TEOS) and nanoporous aminopropyltrimethoxy silane (APTS) in the reverse microemulsion system. The formation pathway was studied in situ with small-angle X-ray scattering (SAXS). We find a four-stage process showing a sigmoidal growth behavior in time with a crossover from the induction period, early nucleation stage, coalescence growth and a final slowing down of growth. Various characterizations (TEM, N2 isotherm, dynamic light scattering, zeta potential, NMR, elemental analysis) reveal the diameters, scattering length density (SLD), mesoporosity, surface potentials and chemical compositions of the HSNs. Oil phases of alkanes with different alkyl chains are systematically employed to tune the sizes of HSNs by varying oil molar volumes, co-solvent amounts or surfactant mixture ratios. Silica condensation is incomplete in the core region, with the silica source of TEOS and APTS leading to the hollow silica nanosphere after etching with warm water.Uniform hollow silica nanospheres (HSNs) synthesized with reverse microemulsion have great application potential as nanoreactors because enzymes or nanocatalysts can be easily encapsulated de novo in synthesis. Water-in-oil (w/o) reverse microemulsions comprising the polymeric surfactant polyoxyethylene (5) isooctylphenyl ether (Igepal CA-520), ammonia and

  19. Size Dependent Mechanical Properties of Monolayer Densely Arranged Polystyrene Nanospheres.

    PubMed

    Huang, Peng; Zhang, Lijing; Yan, Qingfeng; Guo, Dan; Xie, Guoxin

    2016-12-13

    In contrast to macroscopic materials, the mechanical properties of polymer nanospheres show fascinating scientific and application values. However, the experimental measurements of individual nanospheres and quantitative analysis of theoretical mechanisms remain less well performed and understood. We provide a highly efficient and accurate method with monolayer densely arranged honeycomb polystyrene (PS) nanospheres for the quantitatively mechanical characterization of individual nanospheres on the basis of atomic force microscopy (AFM) nanoindentation. The efficiency is improved by 1-2 orders, and the accuracy is also enhanced almost by half-order. The elastic modulus measured in the experiments increases with decreasing radius to the smallest nanospheres (25-35 nm in radius). A core-shell model is introduced to predict the size dependent elasticity of PS nanospheres, and the theoretical prediction agrees reasonably well with the experimental results and also shows a peak modulus value.

  20. Simple synthesis and characteristics of Mo/MoS2 inorganic fullerene-like and actinomorphic nanospheres with core shell structure

    NASA Astrophysics Data System (ADS)

    Chang, Lianxia; Yang, Haibin; Li, Jixue; Fu, Wuyou; Du, Yonghui; Du, Kai; Yu, Qingjiang; Xu, Jing; Li, Minghui

    2006-08-01

    High yields of Mo/MoS2 inorganic fullerene-like and actinomorphic nanospheres with a core-shell structure have been successfully synthesized by the one-step reaction of sulfur and molybdenum nanospheres under a hydrogen atmosphere, in which the Mo nanospheres were prepared by the wire electrical explosion method. The shell thickness of MoS2 is about 4-10 nm and exhibit an expansion of about 4.2-1% along the c-axis. Observed from high-resolution transmission electron microscopy images, unreacted molybdenum lying between the (002) layers of MoS2 contributes to the larger expansion besides the strain in the bent layer and the crystal defects; the preferred growth orientations for MoS2 on the surface of Mo have two directions under different annealing temperatures: parallel to the (110) plane of Mo, presenting an actinomorphic phase, and perpendicular or having certain angles to the (110) plane, showing a fullerene-like phase. The actinomorphic Mo/MoS2 can be used for catalysis and intercalation. The fullerene-like phase can be applied as a solid lubricant to enhance the structural rigidity and load bearing capacity of hollow MoS2. In addition, the core-shell nanospheres exhibit a little higher onset temperature and a narrow temperature range against oxidation with a weaker exothermic peak than conventional 2H-MoS2.

  1. A bacterial process for selenium nanosphere assembly

    PubMed Central

    Debieux, Charles M.; Dridge, Elizabeth J.; Mueller, Claudia M.; Splatt, Peter; Paszkiewicz, Konrad; Knight, Iona; Florance, Hannah; Love, John; Titball, Richard W.; Lewis, Richard J.; Richardson, David J.; Butler, Clive S.

    2011-01-01

    During selenate respiration by Thauera selenatis, the reduction of selenate results in the formation of intracellular selenium (Se) deposits that are ultimately secreted as Se nanospheres of approximately 150 nm in diameter. We report that the Se nanospheres are associated with a protein of approximately 95 kDa. Subsequent experiments to investigate the expression and secretion profile of this protein have demonstrated that it is up-regulated and secreted in response to increasing selenite concentrations. The protein was purified from Se nanospheres, and peptide fragments from a tryptic digest were used to identify the gene in the draft T. selenatis genome. A matched open reading frame was located, encoding a protein with a calculated mass of 94.5 kDa. N-terminal sequence analysis of the mature protein revealed no cleavable signal peptide, suggesting that the protein is exported directly from the cytoplasm. The protein has been called Se factor A (SefA), and homologues of known function have not been reported previously. The sefA gene was cloned and expressed in Escherichia coli, and the recombinant His-tagged SefA purified. In vivo experiments demonstrate that SefA forms larger (approximately 300 nm) Se nanospheres in E. coli when treated with selenite, and these are retained within the cell. In vitro assays demonstrate that the formation of Se nanospheres upon the reduction of selenite by glutathione are stabilized by the presence of SefA. The role of SefA in selenium nanosphere assembly has potential for exploitation in bionanomaterial fabrication. PMID:21808043

  2. Facile modulation of cell adhesion to a poly(ethylene glycol) diacrylate film with incorporation of polystyrene nano-spheres.

    PubMed

    Yang, Wenguang; Yu, Haibo; Li, Gongxin; Wang, Yuechao; Liu, Lianqing

    2016-12-01

    Poly(ethylene glycol) diacrylate (PEGDA) is a common hydrogel that has been actively investigated for various tissue engineering applications owing to its biocompatibility and excellent mechanical properties. However, the native PEGDA films are known for their bio-inertness which can hinder cell adhesion, thereby limiting their applications in tissue engineering and biomedicine. Recently, nano composite technology has become a particularly hot topic, and has led to the development of new methods for delivering desired properties to nanomaterials. In this study, we added polystyrene nano-spheres (PS) into a PEGDA solution to synthesize a nano-composite film and evaluated its characteristics. The experimental results showed that addition of the nanospheres to the PEGDA film not only resulted in modification of the mechanical properties and surface morphology but further improved the adhesion of cells on the film. The tensile modulus showed clear dependence on the addition of PS, which enhanced the mechanical properties of the PEGDA-PS film. We attribute the high stiffness of the hybrid hydrogel to the formation of additional cross-links between polymeric chains and the nano-sphere surface in the network. The effect of PS on cell adhesion and proliferation was evaluated in L929 mouse fibroblast cells that were seeded on the surface of various PEGDA-PS films. Cells density increased with a larger PS concentration, and the cells displayed a spreading morphology on the hybrid films, which promoted cell proliferation. Impressively, cellular stiffness could also be modulated simply by tuning the concentration of nano-spheres. Our results indicate that the addition of PS can effectively tailor the physical and biological properties of PEGDA as well as the mechanical properties of cells, with benefits for biomedical and biotechnological applications.

  3. Facile Synthesis of Carbon Nanosphere/NiCo2O4 Core-shell Sub-microspheres for High Performance Supercapacitor

    PubMed Central

    Li, Delong; Gong, Youning; Zhang, Yupeng; Luo, Chengzhi; Li, Weiping; Fu, Qiang; Pan, Chunxu

    2015-01-01

    This paper introduced a process to prepare the carbon nanosphere (CNS)/NiCo2O4 core-shell sub-microspheres. That is: 1) CNSs were firstly prepared via a simple hydrothermal method; 2) a layer of NiCo2O4 precursor was coated on the CNS surface; 3) finally the composite was annealed at 350 °C for 2 hours in the air, and the CNS/NiCo2O4 core-shell sub-microspheres were obtained. This core-shell sub-microsphere was prepared with a simple, economical and environmental-friendly hydrothermal method, and was suitable for large-scale production, which expects a promising electrode candidate for high performance energy storage applications. Electrochemical experiments revealed that the composite exhibited remarkable electrochemical performances with high capacitance and desirable cycle life at high rates, such as: 1) the maximum specific capacitance was up to 1420 F/g at 1 A/g; 2) about 98.5% of the capacitance retained after 3000 charge-discharge cycles; 3) the capacitance retention was about 72% as the current density increase from 1 A/g to 10 A/g. PMID:26245982

  4. In situ template synthesis of hollow nanospheres assembled from NiCo2S4@C ultrathin nanosheets with high electrochemical activities for lithium storage and ORR catalysis.

    PubMed

    Wu, Xiaoyu; Li, Songmei; Wang, Bo; Liu, Jianhua; Yu, Mei

    2017-05-10

    Transition-metal sulfide hollow nanostructures have received intensive attention in energy-related applications due to their unique structural features and high electrochemical activities. Here, a well-designed composite of NiCo 2 S 4 @C is successfully fabricated using a facile in situ template removal method. The obtained composite shows unique microstructures of hollow nanospheres (∼650 nm in diameter) assembled from ultrathin NiCo 2 S 4 @C nanosheets, in which numerous scattered NiCo 2 S 4 nanoparticles are embedded in ultrathin carbon nanosheets, exhibiting mesoporous features with a high surface area of 247.25 m 2 g -1 . When used as anode materials for LIBs, NiCo 2 S 4 @C hollow nanospheres exhibit a high reversible capacity of 1592 mA h g -1 at a current density of 500 mA g -1 , enhanced cycling performance maintaining a capacity of 1178 mA h g -1 after 200 cycles, and a remarkable rate capability. Meanwhile, the hollow nanospheres display excellent catalytic activity as ORR catalysts with a four-electron pathway and superior durability to that of commercial Pt/C catalysts. Their excellent lithium storage and ORR catalysis performance can be attributed to the rational incorporation of high-activity NiCo 2 S 4 and ultrathin carbon nanosheets, as well as unique hollow microstructures, which offer efficient electron/ion transport, an enhanced electroactive material/electrolyte contact area, numerous active sites, and excellent structural stability.

  5. Controllable synthesis of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres via supercritical anti-solvent precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang Haoxi; Post-Doctor Station for Science and Technology of Chemical Engineering and Technology, Tianjin University, Tianjin 300072; Post-Doctor Workstation for Science and Technology, Shandong Haihua Group Co. Ltd, Weifang, Shandong 262737

    2012-01-15

    Nanocrystalline Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres were successfully synthesized via supercritical anti-solvent precipitation using supercritical CO{sub 2} as the anti-solvent. It was found that the as-produced samples exhibited hollow spherical structures with uniform diameters ranging from 30 to 50 nm and the sphere walls were composed of various oriented nanocrystallites, with sizes of 3-7 nm. The results of high-resolution transmission electron microscopy showed that the formation of the hollow structures could be controlled by adjusting the solution concentration. The results of temperature-programmed reduction and oxygen storage capacity measurements showed that the hollow nanospheres had enhanced redox properties. A possiblemore » mechanism for the formation of Ce{sub 1-x}Zr{sub x}O{sub 2} hollow nanospheres has also been proposed and experimental investigated.« less

  6. Synthesis of mesoporous hollow silica nanospheres using polymeric micelles as template and their application as a drug-delivery carrier.

    PubMed

    Sasidharan, Manickam; Zenibana, Haruna; Nandi, Mahasweta; Bhaumik, Asim; Nakashima, Kenichi

    2013-10-07

    Mesoporous hollow silica nanospheres with uniform particle sizes of 31-33 nm have been successfully synthesized by cocondensation of tetramethoxysilane (TMOS) and alkyltrimethoxysilanes [RSi(OR)3], where the latter also acts as a porogen. ABC triblock copolymer micelles of poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-PVP-PEO) with a core-shell-corona architecture have been employed as a soft template at pH 4. The cationic shell block with 2-vinyl pyridine groups facilitates the condensation of silica precursors under the sol-gel reaction conditions. Phenyltrimethoxysilane, octyltriethoxysilane, and octadecyltriethoxysilanes were used as porogens for generating mesopores in the shell matrix of hollow silica and the octadecyl precursor produced the largest mesopore among the different porogens, of dimension ca. 4.1 nm. The mesoporous hollow particles were thoroughly characterized by small-angle X-ray diffraction (SXRD), thermal (TG/DTA) and nitrogen sorption analyses, infra-red (FTIR) and nuclear magnetic resonance ((13)C-CP MAS NMR and (29)Si MAS NMR) spectroscopies, and transmission electron microscopy (TEM). The mesoporous hollow silica nanospheres have been investigated for drug-delivery application by an in vitro method using ibuprofen as a model drug. The hollow silica nanospheres exhibited higher storage capacity than the well-known mesoporous silica MCM-41. Propylamine functionalized hollow particles show a more sustained release pattern than their unfunctionalized counterparts, suggesting a huge potential of hollow silica nanospheres in the controlled delivery of small drug molecules.

  7. Magnetic polymer nanospheres for anticancer drug targeting

    NASA Astrophysics Data System (ADS)

    Juríková, A.; Csach, K.; Koneracká, M.; Závišová, V.; Múčková, M.; Tomašovičová, N.; Lancz, G.; Kopčanský, P.; Timko, M.; Miškuf, J.

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  8. Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase and catalase enzymes.

    PubMed

    Singh, Sushant; Singh, Abhay Narayan; Verma, Anil; Dubey, Vikash Kumar

    2013-12-01

    Biodegradable polycaprolactone (PCL) nanosphere encapsulating superoxide dismutase (SOD) and catalase (CAT) were successfully synthesized using double emulsion (w/o/w) solvent evaporation technique. Characterization of the nanosphere using dynamic light scattering, field emission scanning electron microscope, and Fourier transform infrared spectroscopy revealed a spherical-shaped nanosphere in a size range of 812 ± 64 nm with moderate protein encapsulation efficiency of 55.42 ± 3.7 % and high in vitro protein release. Human skin HaCat cells were used for analyzing antioxidative properties of SOD- and CAT-encapsulated PCL nanospheres. Oxidative stress condition in HaCat cells was optimized with exposure to hydrogen peroxide (H2O2; 1 mM) as external stress factor and verified through reactive oxygen species (ROS) analysis using H2DCFDA dye. PCL nanosphere encapsulating SOD and CAT together indicated better antioxidative defense against H2O2-induced oxidative stress in human skin HaCat cells in comparison to PCL encapsulating either SOD or CAT alone as well as against direct supplement of SOD and CAT protein solution. Increase in HaCat cells SOD and CAT activities after treatment hints toward uptake of PCL nanosphere into the human skin HaCat cells. The result signifies the role of PCL-encapsulating SOD and CAT nanosphere in alleviating oxidative stress.

  9. Interstitial and Interlayer Ion Diffusion Geometry Extraction in Graphitic Nanosphere Battery Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun

    2016-01-01

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  10. Interstitial and interlayer ion diffusion geometry extraction in graphitic nanosphere battery materials

    DOE PAGES

    Gyulassy, Attila; Knoll, Aaron; Lau, Kah Chun; ...

    2016-01-31

    Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes. To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure. In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry of a thermallymore » annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the interstitial diffusion structure as a single mesh. Lastly, our results provide a new approach to analyze the geometry of the simulated carbon nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge dynamics of these carbon based battery materials.« less

  11. A low cost preparation of WO3 nanospheres film with improved thermal stability of gasochromic and its application in smart windows

    NASA Astrophysics Data System (ADS)

    Zhou, Baoyu; Feng, Wei; Gao, Guohua; Wu, Guangming; Chen, Yue; Li, Wen

    2017-11-01

    Porous WO3 nanospheres film was successfully synthesized by employing a low-cost and facile template-assisted sol-gel method. The effects of template agent (Pluronic F127) on structure, morphology and specific surface area were systematically studied by Fourier transform infrared (FTIR), x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption. It was found that F127 played a significant role in governing the morphology of WO3 sol clusters, and the optimal post-processing for ‘naked’ WO3 nanospheres film is acetone extraction and subsequent annealing treatment at 350 °C. As anticipated, the relative fast coloring/bleaching rates of WO3 nanospheres film are believed to be the results of porous microstructure and nanocrystalline, where provides much surface active position (166 m2 g-1) and shortens the proton diffusion distance. We believe that this unique approach to synthesize nanospheres structure may has beneficial effects on applications which also are based on insertion/extraction and diffusion abilities, such as supercapacitor, batteries and gas sensors.

  12. Integrating nanosphere lithography in device fabrication

    NASA Astrophysics Data System (ADS)

    Laurvick, Tod V.; Coutu, Ronald A.; Lake, Robert A.

    2016-03-01

    This paper discusses the integration of nanosphere lithography (NSL) with other fabrication techniques, allowing for nano-scaled features to be realized within larger microelectromechanical system (MEMS) based devices. Nanosphere self-patterning methods have been researched for over three decades, but typically not for use as a lithography process. Only recently has progress been made towards integrating many of the best practices from these publications and determining a process that yields large areas of coverage, with repeatability and enabled a process for precise placement of nanospheres relative to other features. Discussed are two of the more common self-patterning methods used in NSL (i.e. spin-coating and dip coating) as well as a more recently conceived variation of dip coating. Recent work has suggested the repeatability of any method depends on a number of variables, so to better understand how these variables affect the process a series of test vessels were developed and fabricated. Commercially available 3-D printing technology was used to incrementally alter the test vessels allowing for each variable to be investigated individually. With these deposition vessels, NSL can now be used in conjunction with other fabrication steps to integrate features otherwise unattainable through current methods, within the overall fabrication process of larger MEMS devices. Patterned regions in 1800 series photoresist with a thickness of ~700nm are used to capture regions of self-assembled nanospheres. These regions are roughly 2-5 microns in width, and are able to control the placement of 500nm polystyrene spheres by controlling where monolayer self-assembly occurs. The resulting combination of photoresist and nanospheres can then be used with traditional deposition or etch methods to utilize these fine scale features in the overall design.

  13. Calculation of noncontact forces between silica nanospheres.

    PubMed

    Sun, Weifu; Zeng, Qinghua; Yu, Aibing

    2013-02-19

    Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.

  14. Enhanced photocatalytic activity and structural stability by hybridizing Ag3PO4 nanospheres with graphene oxide sheets.

    PubMed

    Liang, Qinghua; Shi, Yao; Ma, Wangjing; Li, Zhi; Yang, Xinmin

    2012-12-05

    Graphene oxide (GO)-Ag(3)PO(4) nanocomposites synthesized through a facile solution approach via electrostatic interaction were investigated as excellent photocatalysts for the degradation of rhodamine B (RhB) under visible light irradiation. SEM and TEM observations indicate that Ag(3)PO(4) nanospheres of ~120 nm in diameter were well dispersed and anchored onto the exfoliated GO sheets. The characterizations of FTIR and Raman demonstrated the existence of strong charge interactions between GO sheets and Ag(3)PO(4) nanospheres. As compared to Ag(3)PO(4) nanospheres alone, the attachments of GO sheets led to a band gap narrowing (2.10 eV) and a strong absorbance in the near infrared region (NIR). The photoluminescence (PL) analysis indicates a more efficient separation of electron-hole pairs in the GO-Ag(3)PO(4) nanocomposites. Notably, the incorporation of GO sheets not only significantly enhances the photocatalytic activity but also improves the structural stability of Ag(3)PO(4). The positive synergistic effects between Ag(3)PO(4) nanospheres and GO sheets are proposed to contribute to the improved photocatalytic properties. A possible photocatalytic mechanism of the GO-Ag(3)PO(4) nanocomposites was assumed as well. The integration of these advantages enables such GO-Ag(3)PO(4) hybrid material to be a nice photocatalyst for broad applications in a sewage treatment system.

  15. Sustained Ocular Delivery of Ciprofloxacin Using Nanospheres and Conventional Contact Lens Materials

    PubMed Central

    Garhwal, Rahul; Shady, Sally F.; Ellis, Edward J.; Ellis, Jeanne Y.; Leahy, Charles D.; McCarthy, Stephen P.; Crawford, Kathryn S.

    2012-01-01

    Purpose. To formulate conventional contact lenses that incorporate nanosphere-encapsulated antibiotic and demonstrate that the lenses provide for sustained antibacterial activity. Methods. A copolymer composed of pullulan and polycaprolactone (PCL) was used to synthesize core-shell nanospheres that encapsulated ciprofloxacin. Bactericidal activity of the nanosphere-encapsulated ciprofloxacin (nanosphere/cipro) was tested by using liquid cultures of either Staphylococcus aureus or Pseudomonas aeruginosa. Nanosphere/cipro was then incorporated into HEMA-based contact lenses that were tested for growth inhibition of S. aureus or P. aeruginosa in liquid cultures inoculated daily with fresh bacteria. Lens designs included thin or thick lenses incorporating nanosphere/cipro and ciprofloxacin-HCl-soaked Acuvue lenses (Acuvue; Johnson & Johnson Vision Care, Inc., Jacksonville, FL). Results. Less than 2 μg/mL of nanosphere/cipro effectively inhibited the proliferation of cultures inoculated with 107 or 108 bacteria/mL of S. aureus and P. aeruginosa, respectively. HEMA-based contact lenses polymerized with nanosphere/cipro were transparent, effectively inhibited the proliferation of greater than 107/mL of bacteria added daily over 3 days of culture, and killed up to 5 × 109 total microbes in a single inoculation. A thicker lens design provided additional inhibition of bacterial growth for up to 96 hours. Conclusions. Core-shell nanospheres loaded with an antibiotic can be incorporated into a conventional, transparent contact lens and provide for sustained and effective bactericidal activity and thereby provide a new drug delivery platform for widespread use in treating ocular disorders. PMID:22266514

  16. Ultra-small and anionic starch nanospheres: formation and vitro thrombolytic behavior study.

    PubMed

    Huang, Yinjuan; Ding, Shenglong; Liu, Mingzhu; Gao, Chunmei; Yang, Jinlong; Zhang, Xinjie; Ding, Bin

    2013-07-25

    This paper is considered as the first report on the investigation of nattokinase (NK) release from anionic starch nanospheres. The ultra-small and anionic starch nanospheres were prepared by the method of reverse micro-emulsion crosslinking in this work. Starch nanospheres were characterized through Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and dynamic light scattering (DLS). Effects of preparation conditions on particle size were studied. The cytotoxicity, biodegradable and vitro thrombolytic behaviors of nattokinase (NK) loaded anionic starch nanospheres were also studied. The results showed that the anionic starch nanospheres are non-toxic, biocompatible and biodegradable. Moreover, the anionic starch nanospheres can protect NK from fast biodegradation hence prolongs the circulation in vivo and can reduce the risk of acute hemorrhage complication by decreasing the thrombolysis rate. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Characterization of polylactic co-glycolic acid nanospheres modified with PVA and DDAB

    NASA Astrophysics Data System (ADS)

    Mulia, Kamarza; Satyapertiwi, Dwiantari; Devina, Ranee; Krisanti, Elsa

    2017-02-01

    The common treatment for diabetic retinopathy is corticosteroids intravitreal injection that sometimes lead to complications. Dexamethasone-loaded polylactic co-glycolic acid (PLGA) nanospheres, modified with dioctadecyldimethylammonium bromide (DDAB) as the cationic surfactant, is expected to prolong drug retention time. Zeta potential of the PLGA nanospheres prepared using non-ionic surfactant PVA and DDAB confirmed the cationic surfactant increase the surface charge of the PLGA nanospheres. The optimal formulation based on the particle size and high positive surface charge was the PLGA-DDAB nanospheres. SEM analysis showed spherical morphology of the nanospheres having diameter 626.9 ± 98.01 nm positive zeta potential of +22.5 mV.

  18. Fabrication of biomimetic dry-adhesion structures through nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Kuo, P. C.; Chang, N. W.; Suen, Y.; Yang, S. Y.

    2018-03-01

    Components with surface nanostructures suitable for biomimetic dry adhesion have a great potential in applications such as gecko tape, climbing robots, and skin patches. In this study, a nanosphere lithography technique with self-assembly nanospheres was developed to achieve effective and efficient fabrication of dry-adhesion structures. Self-assembled monolayer nanospheres with high regularity were obtained through tilted dip-coating. Reactive-ion etching of the self-assembled nanospheres was used to fabricate nanostructures of different shapes and aspect ratios by varying the etching time. Thereafter, nickel molds with inverse nanostructures were replicated using the electroforming process. Polydimethylsiloxane (PDMS) nanostructures were fabricated through a gas-assisted hot-embossing method. The pulling test was performed to measure the shear adhesion on the glass substrate of a sample, and the static contact angle was measured to verify the hydrophobic property of the structure. The enhancement of the structure indicates that the adhesion force increased from 1.2 to 4.05 N/cm2 and the contact angle increased from 118.6° to 135.2°. This columnar structure can effectively enhance the adhesion ability of PDMS, demonstrating the potential of using nanosphere lithography for the fabrication of adhesive structures.

  19. Silica-Coated Core-Shell Structured Polystyrene Nanospheres and Their Size-Dependent Mechanical Properties.

    PubMed

    Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin

    2017-08-22

    The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.

  20. Dual template effect of supercritical CO2 in ionic liquid to fabricate a highly mesoporous cobalt metal-organic framework.

    PubMed

    Yu, Huanan; Xu, Dongdong; Xu, Qun

    2015-08-28

    A hierarchical meso- and microporous metal-organic framework (MOF) was facilely fabricated in an ionic liquid (IL)/supercritical CO2 (SC CO2)/surfactant emulsion system. Notably, CO2 exerts a dual effect during the synthesis; that is, CO2 droplets act as a template for the cores of nanospheres while CO2-swollen micelles induce mesopores on nanospheres.

  1. Functionalization of Recombinant Amelogenin Nanospheres Allows Their Binding to Cellulose Materials.

    PubMed

    Butler, Samuel J; Bülow, Leif; Bonde, Johan

    2016-10-01

    Protein engineering to functionalize the self-assembling enamel matrix protein amelogenin with a cellulose binding domain (CBD) is used. The purpose is to examine the binding of the engineered protein, rh174CBD, to cellulose materials, and the possibility to immobilize self-assembled amelogenin nanospheres on cellulose. rh174CBD assembled to nanospheres ≈35 nm in hydrodynamic diameter, very similar in size to wild type amelogenin (rh174). Uniform particles are formed at pH 10 for both rh174 and rh174CBD, but only rh174CBD nanospheres showes significant binding to cellulose (Avicel). Cellulose binding of rh174CBD is promoted when the protein is self-assembled to nanospheres, compared to being in a monomeric form, suggesting a synergistic effect of the multiple CBDs on the nanospheres. The amount of bound rh174CBD nanospheres reached ≈15 mg/g Avicel, which corresponds to 4.2 to 6.3 × 10 -7 mole/m 2 . By mixing rh174 and rh174CBD, and then inducing self-assembly, composite nanospheres with a high degree of cellulose binding can be formed, despite a lower proportion of rh174CBD. This demonstrates that amelogenin variants like rh174 can be incorporated into the nanospheres, and still retain most of the binding to cellulose. Engineered amelogenin nanoparticles can thus be utilized to construct a range of new cellulose based hybrid materials, e.g. for wound treatment. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Nb{sub 2}O{sub 5} hollow nanospheres as anode material for enhanced performance in lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sasidharan, Manickam; Gunawardhana, Nanda; Yoshio, Masaki, E-mail: yoshio@cc.saga-u.ac.jp

    2012-09-15

    Graphical abstract: Nb{sub 2}O{sub 5} hollow nanosphere constructed electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles and maintains structural integrity and excellent cycling stability. Highlights: ► Nb{sub 2}O{sub 5} hollow nanospheres synthesis was synthesized by soft-template. ► Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode material in Li-ion battery. ► Nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles. ► The electrode maintains the structural integrity and excellent cycling stability. ► Nanosized shell domain facilitates fast lithium intercalation/deintercalation. -- Abstract: Nb{sub 2}O{sub 5} hollow nanospheres of average diameter ca. ∼29 nmmore » and hollow cavity size ca. 17 nm were synthesized using polymeric micelles with core–shell–corona architecture under mild conditions. The hollow particles were thoroughly characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), infrared spectroscopy (FTIR), thermal (TG/DTA) and nitrogen adsorption analyses. Thus obtained Nb{sub 2}O{sub 5} hollow nanospheres were investigated as anode materials for lithium ion rechargeable batteries for the first time. The nanostructured electrode delivers high capacity of 172 mAh g{sup −1} after 250 cycles of charge/discharge at a rate of 0.5 C. More importantly, the hollow particles based electrodes maintains the structural integrity and excellent cycling stability even after exposing to high current density 6.25 A g{sup −1}. The enhanced electrochemical behavior is ascribed to hollow cavity coupled with nanosized Nb{sub 2}O{sub 5} shell domain that facilitates fast lithium intercalation/deintercalation kinetics.« less

  3. Hollow Nanospheres Array Fabrication via Nano-Conglutination Technology.

    PubMed

    Zhang, Man; Deng, Qiling; Xia, Liangping; Shi, Lifang; Cao, Axiu; Pang, Hui; Hu, Song

    2015-09-01

    Hollow nanospheres array is a special nanostructure with great applications in photonics, electronics and biochemistry. The nanofabrication technique with high resolution is crucial to nanosciences and nano-technology. This paper presents a novel nonconventional nano-conglutination technology combining polystyrenes spheres (PSs) self-assembly, conglutination and a lift-off process to fabricate the hollow nanospheres array with nanoholes. A self-assembly monolayer of PSs was stuck off from the quartz wafer by the thiol-ene adhesive material, and then the PSs was removed via a lift-off process and the hollow nanospheres embedded into the thiol-ene substrate was obtained. Thiolene polymer is a UV-curable material via "click chemistry" reaction at ambient conditions without the oxygen inhibition, which has excellent chemical and physical properties to be attractive as the adhesive material in nano-conglutination technology. Using the technique, a hollow nanospheres array with the nanoholes at the diameter of 200 nm embedded into the rigid thiol-ene substrate was fabricated, which has great potential to serve as a reaction container, catalyst and surface enhanced Raman scattering substrate.

  4. Detoxification of blood using injectable magnetic nanospheres: A conceptual technology description

    NASA Astrophysics Data System (ADS)

    Kaminski, Michael D.; Rosengart, Axel J.

    2005-05-01

    We describe injectable magnetic nanospheres as a vehicle for selective detoxification of blood borne toxins. Surface receptors on the freely circulating nanospheres bind to toxins. A hand-held extracorporeal magnetic filter separates the toxin-loaded nanospheres from the clean blood, which is returned to the patient. Details of the technology concept are given and include a state-of-knowledge and research needs.

  5. Synthesis of TiC Nanoparticles Anchored on Hollow Carbon Nanospheres for Enhanced Polysulfide Adsorption in Li-S Batteries.

    PubMed

    Cao, Bokai; Chen, Yong; Li, De; Yin, Lihong; Mo, Yan

    2016-12-08

    A novel spatial confinement strategy based on a carbon/TiO 2 /carbon sandwich structure is proposed to synthesize TiC nanoparticles anchored on hollow carbon nanospheres (TiC@C) through a carbothermal reduction reaction. During the synthesis process, two carbon layers not only serve as reductant to convert TiO 2 into TiC nanoparticles, but also create a spatial confinement to suppress the aggregation of TiO 2 , resulting in the formation of well-dispersed TiC nanoparticles. This unique TiC@C structure shows an outstanding long-term cycling stability at high rates owing to the strong physical and chemical adsorption of lithium polysulfides (i.e., a high capacity of 732.6 mA h g -1 at 1600 mA g -1 ) and it retains a capacity of 443.2 mA h g -1 after 1000 cycles, corresponding to a decay rate of only 0.0395 % per cycle. Therefore, this unique TiC@C composite could be considered as an important candidate for the cathode material in Li-S batteries. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Facile phase transfer of gold nanorods and nanospheres stabilized with block copolymers

    PubMed Central

    Derikov, Yaroslav I; Shandryuk, Georgiy A; Talroze, Raisa V; Ezhov, Alexander A

    2018-01-01

    A fast route to transfer Au nanoparticles from aqueous to organic media is proposed based on the use of a high molecular mass diblock copolymer of styrene and 2-vinylpyridine for ligand exchange at the nanoparticle surface. The method enables the preparation of stable sols of Au nanorods with sizes of up to tens of nanometers or Au nanospheres in various organic solvents. By comparing the optical absorbance spectra of Au hydro- and organosols with the data of numerical simulations of the surface plasmon resonance, we find that nanoparticles do not aggregate and confirm the transmission electron microscopy data regarding their shape and size. The proposed approach can be effective in preparing hybrid composites without the use of strong thiol and amine surfactants. PMID:29527437

  7. Polymeric nanospheres as a displacement fluid in enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Hendraningrat, Luky; Zhang, Julien

    2015-12-01

    This paper presents the investigation of using nanoscale polyacrylamide-based spheres (nanospheres) as a displacement fluid in enhanced oil recovery (EOR). Coreflood experiments were conducted to evaluate the impact of nanospheres and its concentration dispersed in model formation water on oil recovery during a tertiary oil recovery process. The coreflood results showed that nanospheres can enhance residual oil recovery in the sandstone rock samples and its concentration showed a significant impact into incremental oil. By evaluating the contact angle, it was observed that wettability alteration also might be involved in the possible oil displacement mechanism in this process together with fluid behavior and permeability to water that might divert injected fluid into unswept oil areas and enhance the residual oil recovery. These investigations promote nanospheres aqueous disperse solution as a potential displacement fluid in EOR.

  8. K+-selective nanospheres: maximising response range and minimising response time.

    PubMed

    Ruedas-Rama, Maria Jose; Hall, Elizabeth A H

    2006-12-01

    Cross-linked K(+) ion-selective copolymer nanospheres have been prepared by free-radical photo-initiated polymerization of n-butyl acrylate (nBA) with hexanedioldiacrylate (HDDA). Nanospheres (<200 nm) containing H(+)-chromoionophore (ETH 5294) and lipophilic salt (KTClPB) for H(+)-sensors, or ETH 5294, a K(+)-selective ionophore (valinomycin) and anionic sites for K(+)-sensors were compared, and the effect of varying the normalised concentrations for beta (R(T)(-)/L(T)) and gamma (C(m)(T)/L(T)) was studied. Experimental data were fitted to theoretical curves for the dynamic response range, based on the effect of changes in the concentration of these lipophilic sensing components incorporated into the spheres, and conditions identified for maximising the response range. A complex valinomycin-K(+) formation constant, log K(IL) = 13.13 +/- 2.22, was obtained in the nBA matrix, and from the calibration curves the apparent acid-dissociation equilibrium constant (pK(a) = 12.92 +/- 0.03) was extracted for the H(+)-sensing system, and the equilibrium exchange constant (pK(exch) = 6.16 +/- 0.03, at pH 7) calculated for the K(+)-sensing nanospheres. A basis for establishing optimum performance was identified, whereby response range and response time were balanced with maximum fluorescence yield. Parameters for achieving nanospheres with a response time <5 minutes, covering 2-3 orders of magnitude change in activity were identified, demanding nanospheres with radius <300 nm and beta(crit) approximately 0.6. An RSD(%) approximately 3% was obtained in a study of the reproducibility of the response of the proposed nanospheres, and selectivity was also evaluated for a K(+)-selective nanosensor using several cations as interfering agents. In most cases, the fluorescent emission spectra showed no response to the cations tested, confirming the selectivity of nanospheres to potassium ion. The nanosensors were satisfactorily applied to the determination of K(+) in samples mimicking

  9. Controlled soft-template synthesis of ultrathin C@FeS nanosheets with high-Li-storage performance.

    PubMed

    Xu, Chen; Zeng, Yi; Rui, Xianhong; Xiao, Ni; Zhu, Jixin; Zhang, Wenyu; Chen, Jing; Liu, Weiling; Tan, Huiteng; Hng, Huey Hoon; Yan, Qingyu

    2012-06-26

    We report a facile approach to prepare carbon-coated troilite FeS (C@FeS) nanosheets via surfactant-assisted solution-based synthesis. 1-Dodecanethiol is used as both the sulfur source and the surfactant, which may form different-shaped micelles to direct the growth of nanostructures. Under appropriate growth conditions, the iron and sulfur atoms react to form thin layers of FeS while the hydrocarbon tails of 1-dodecanethiol separate the thin FeS layers, which turn to carbon after annealing in Ar. Such an approach can be extended to grow C@FeS nanospheres and nanoplates by modifying the synthesis parameters. The C@FeS nanosheets display excellent Li storage properties with high specific capacities and stable charge/discharge cyclability, especially at fast charge/discharge rates.

  10. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma.

    PubMed

    Gökay, Öznur; Karakoç, Veyis; Andaç, Müge; Türkmen, Deniz; Denizli, Adil

    2015-02-01

    The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.

  11. Electrospun Nanofibrous Silk Fibroin Membranes Containing Gelatin Nanospheres for Controlled Delivery of Biomolecules.

    PubMed

    Song, Jiankang; Klymov, Alexey; Shao, Jinlong; Zhang, Yang; Ji, Wei; Kolwijck, Eva; Jansen, John A; Leeuwenburgh, Sander C G; Yang, Fang

    2017-07-01

    Development of novel and effective drug delivery systems for controlled release of bioactive molecules is of critical importance in the field of regenerative medicine. Here, oppositely charged gelatin nanospheres are incorporated into silk fibroin nanofibers through a colloidal electrospinning technique. A novel fibrous nano-in-nano drug delivery system is fabricated without the use of any organic solvent. The distribution of fluorescently labeled gelatin A and B nanospheres inside the nanofibers can be fine-tuned by simple adjustment of the weight ratio between the nanospheres and the relative feeding rate of core and shell solutions containing nanospheres by using single and coaxial nozzle electrospinning, respectively. Incorporation of vancomycin-loaded gelatin B nanospheres into the silk fibroin nanofibrous membranes results in a more sustained release of vancomycin, compared to the gelatin nanospheres free membranes. In addition, these membranes exhibit excellent and prolonged antibacterial effects against Staphylococcus aureus. Moreover, these membranes support the attachment, spreading, and proliferation of periodontal ligament cells. These results suggest that the beneficial properties of gelatin nanospheres can be exploited to improve the biological functionality of electrospun nanofibrous silk fibroin membranes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Large-deformation and high-strength amorphous porous carbon nanospheres

    NASA Astrophysics Data System (ADS)

    Yang, Weizhu; Mao, Shimin; Yang, Jia; Shang, Tao; Song, Hongguang; Mabon, James; Swiech, Wacek; Vance, John R.; Yue, Zhufeng; Dillon, Shen J.; Xu, Hangxun; Xu, Baoxing

    2016-04-01

    Carbon is one of the most important materials extensively used in industry and our daily life. Crystalline carbon materials such as carbon nanotubes and graphene possess ultrahigh strength and toughness. In contrast, amorphous carbon is known to be very brittle and can sustain little compressive deformation. Inspired by biological shells and honeycomb-like cellular structures in nature, we introduce a class of hybrid structural designs and demonstrate that amorphous porous carbon nanospheres with a thin outer shell can simultaneously achieve high strength and sustain large deformation. The amorphous carbon nanospheres were synthesized via a low-cost, scalable and structure-controllable ultrasonic spray pyrolysis approach using energetic carbon precursors. In situ compression experiments on individual nanospheres show that the amorphous carbon nanospheres with an optimized structure can sustain beyond 50% compressive strain. Both experiments and finite element analyses reveal that the buckling deformation of the outer spherical shell dominates the improvement of strength while the collapse of inner nanoscale pores driven by twisting, rotation, buckling and bending of pore walls contributes to the large deformation.

  13. Titania nanospheres from supercritical fluids.

    PubMed

    Darr, J A; Kellici, S; Rehman, I U

    2005-06-01

    Surfactant-coated amorphous titania nanospheres have been synthesised using templating 'water-in-supercritical carbon dioxide' emulsion droplets; the process represents a clean and controlled method for the manufacture of high-purity nanoparticles.

  14. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  15. Amorphous Carbon Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Amorphous carbon nanosphere used as the anode material for Li-intercalation in Lithium-ion energy storage. This structure was obtained through a thermal annealing process at a temperature of 3000 degree Kelvin, simulated using the LAMMPS molecular dynamics code on the LCRC Fusion resource. Science: Kah Chun Lau and Larry Curtiss Visualization: Aaron Knoll, Mark Hereld and Michael E. Papka

  16. Large surface-enhanced Raman scattering from self-assembled gold nanosphere monolayers

    NASA Astrophysics Data System (ADS)

    Fontana, Jake; Livenere, John; Bezares, Francisco J.; Caldwell, Joshua D.; Rendell, Ronald; Ratna, Banahalli R.

    2013-05-01

    We demonstrate an average surface-enhanced Raman scattering enhancement on the order of 108 from benzenethiol molecules using self-assembled, macroscopic, and tunable gold nanosphere monolayers on non-templated substrates. The self-assembly of the nanosphere monolayers uses a simple and efficient technique that allows for the creation of a high-density, chemically functionalized gold nanosphere monolayers with enhancement factors comparable to those produced using top-down fabrication techniques. These films may provide an approach for the future development of portable chemical/biological sensors.

  17. Close-packed monolayer self-assembly of silica nanospheres assisted by infrared irradiation

    NASA Astrophysics Data System (ADS)

    Minh, Nguyen Van; Hue, Nguyen Thi; Lien, Nghiem Thi Ha; Hoang, Chu Manh

    2018-01-01

    In this paper, we report on a fast and cost-effective drop coating technique for the self-assembly of silica nano-spheres from a mono-dispersed colloidal suspension into close-packed monolayer (CMP) on hydrophilic single-crystal silicon substrate. The technique includes the self-assembly of silica nano-spheres on slanted silicon substrate and infrared irradiation during evaporation process of the coated droplet. The influence of the substrate slant angle and infrared irradiation on the formation of silica nano-sphere monolayer is investigated. This achievement is promising for various applications, such as a mask layer for nano-sphere lithography that is employed for producing fundamental elements in photonics, plasmonics, and solar cell. [Figure not available: see fulltext.

  18. Biomimetic Synthesis of Selenium Nanospheres by Bacterial Strain JS-11 and Its Role as a Biosensor for Nanotoxicity Assessment: A Novel Se-Bioassay

    PubMed Central

    Dwivedi, Sourabh; AlKhedhairy, Abdulaziz A.; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3 2−) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3 2− to insoluble red elemental selenium (Se0) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3 2− to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3 2− to elemental red Se0, a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3 2− bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point. PMID:23483909

  19. Biomimetic synthesis of selenium nanospheres by bacterial strain JS-11 and its role as a biosensor for nanotoxicity assessment: a novel se-bioassay.

    PubMed

    Dwivedi, Sourabh; Alkhedhairy, Abdulaziz A; Ahamed, Maqusood; Musarrat, Javed

    2013-01-01

    Selenium nanoparticles (Se-NPs) were synthesized by green technology using the bacterial isolate Pseudomonas aeruginosa strain JS-11. The bacteria exhibited significant tolerance to selenite (SeO3(2-)) up to 100 mM concentration with an EC50 value of 140 mM. The spent medium (culture supernatant) contains the potential of reducing soluble and colorless SeO3(2-) to insoluble red elemental selenium (Se(0)) at 37°C. Characterization of red Se° product by use of UV-Vis spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM) and transmission electron microscopy (TEM) with energy dispersive X-ray spectrum (EDX) analysis revealed the presence of stable, predominantly monodispersed and spherical selenium nanoparticles (Se-NPs) of an average size of 21 nm. Most likely, the metabolite phenazine-1-carboxylic acid (PCA) released by strain JS-11 in culture supernatant along with the known redox agents like NADH and NADH dependent reductases are responsible for biomimetic reduction of SeO3(2-) to Se° nanospheres. Based on the bioreduction of a colorless solution of SeO3(2-) to elemental red Se(0), a high throughput colorimetric bioassay (Se-Assay) was developed for parallel detection and quantification of nanoparticles (NPs) cytotoxicity in a 96 well format. Thus, it has been concluded that the reducing power of the culture supernatant of strain JS-11 could be effectively exploited for developing a simple and environmental friendly method of Se-NPs synthesis. The results elucidated that the red colored Se° nanospheres may serve as a biosensor for nanotoxicity assessment, contemplating the inhibition of SeO3(2-) bioreduction process in NPs treated bacterial cell culture supernatant, as a toxicity end point.

  20. Monodisperse NixFe3-xO4 nanospheres: Metal-ion-steered size/composition control mechanism, static magnetic and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Jiang, Kedan; Liu, Yun; Pan, Yefei; Wang, Ru; Hu, Panbing; He, Rujia; Zhang, Lingli; Tong, Guoxiu

    2017-05-01

    An easy metal-ion-steered solvothermal method was developed for the one-step synthesis of monodisperse, uniform NixFe3-xO4 polycrystalline nanospheres with tunable sphere diameter (40-400 nm) and composition (0 ≤ x ≤ 0.245) via changing just Ni2+/Fe3+ molar ratio (γ). With g increased from 0:1 to 2:1, sphere diameter gradually decreased and crystal size exhibited an inversed U-shaped change tendency, followed by increased Ni/Fe atom ratio from 0% to 0.0888%. An in situ-reduction, coordination-precipitation transformation mechanism was proposed to interpret the metal-ion-steered growth. Size- and composition-dependent static magnetic and microwave absorbing properties were systematically investigated. Saturation magnetization declines with g in a Boltzmann model due to the changes of crystal size, sphere diameter, and Ni content. The coercivity reaches a maximum at γ = 0.75:1 because of the critical size of Fe3O4 single domain (25 nm). Studies on microwave absorption reveal that 150-400 nm Fe3O4 nanospheres mainly obey the quarter-wavelength cancellation model with the single-band absorption; 40-135 nm NixFe3-xO4 nanospheres (0 ≤ x ≤ 0.245) obey the one and three quarter-wavelength cancellation model with the multi-band absorption. 150 nm Fe3O4 nanospheres exhibit the optimal EM wave-absorbing property with an absorbing band of 8.94 GHz and the maximum RL of -50.11 dB.

  1. Facile synthesis N-doped hollow carbon spheres from spherical solid silica.

    PubMed

    Wenelska, K; Ottmann, A; Moszyński, D; Schneider, P; Klingeler, R; Mijowska, E

    2018-02-01

    Nitrogen-doped core/shell carbon nanospheres (NHCS are prepared and their capability as an anode material in lithium-ion batteries is investigated. The synthesis methodology is based on a fast template route. The resulting molecular nanostructures are characterized by X-ray diffraction, transmission electron microscopy, thermal analysis, and nitrogen adsorption/desorption measurement as well as by cyclic voltammetry and galvanostatic cycling. The core/shell structure provides a rapid lithium transport pathway and boasts a highly reversible capacity. For undoped HCS the BET specific surface area is 623m 2 /g which increases up to 1000m 2 /g upon N-doping. While there is no significant effect of N-doping on the electrochemical performance at small scan rates, the doped NHCS shows better specific capacities than the pristine HCS at elevated rates. For instance, the discharge capacities in the 40th cycle, obtained at 1000mA/g, amount to 170mAh/g and 138mAh/g for NHCS and HCS, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Preparation and optimization of chlorophene-loaded nanospheres as controlled release antimicrobial delivery systems.

    PubMed

    Phuengkham, Hathaichanok; Teeranachaideekul, Veerawat; Chulasiri, Malyn; Nasongkla, Norased

    2016-01-01

    Chlorophene-loaded nanospheres with various formulation parameters were evaluated. The optimal formulation was found at 0.1% w/v of poloxamer 407, 15 mL of ethyl acetate and 20% initial chlorophene loading that provided the suitable size (179 nm), the highest loading content (19.2%), encapsulation efficiency (88.0%) and yield (91.6%). Moreover, encapsulation of chlorophene in nanospheres was able to prolong and sustain drug release over one month. Chlorophene-loaded nanospheres were effective against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans), the main cause of hospital-acquired infections. Chlorophene-loaded nanospheres were effective against S. aureus (>46 µg/mL) and C. albicans (>184 µg/mL). These nanospheres appeared to have profound effect on the time-dependent hemolytic activity due to gradual release of chlorophene. At the concentration of 46 µg/mL, nearly no HRBC hemolysis in 24 h compared to 80% of hemolysis from free drug. In conclusion, polymeric nanospheres were successfully fabricated to encapsulate chlorophene which can eliminate inherent toxicity of drugs and have potential uses in prolonged release of antimicrobial.

  3. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide.

    PubMed

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia; Li, Xiaoqiang; Chronakis, Ioannis S; Ge, Mingqiao

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ~127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Magnetic hyaluronic acid nanospheres via aqueous Diels-Alder chemistry to deliver dexamethasone for adipose tissue engineering.

    PubMed

    Jia, Yang; Fan, Ming; Chen, Huinan; Miao, Yuting; Xing, Lian; Jiang, Bohong; Cheng, Qifan; Liu, Dongwei; Bao, Weikang; Qian, Bin; Wang, Jionglu; Xing, Xiaodong; Tan, Huaping; Ling, Zhonghua; Chen, Yong

    2015-11-15

    Biopolymer-based nanospheres have great potential in the field of drug delivery and tissue regenerative medicine. In this work, we present a flexible way to conjugate a magnetic hyaluronic acid (HA) nanosphere system that are capable of vectoring delivery of adipogenic factor, e.g. dexamethasone, for adipose tissue engineering. Conjugation of nanospheres was established by aqueous Diels-Alder chemistry between furan and maleimide of HA derivatives. Simultaneously, a furan functionalized dexamethasone peptide, GQPGK, was synthesized and covalently immobilized into the nanospheres. The magnetic HA nanospheres were fabricated by encapsulating super-paramagnetic iron oxide nanoparticles, which exhibited quick magnetic sensitivity. The aqueous Diels-Alder chemistry made nanospheres high binding efficiency of dexamethasone, and the vectoring delivery of dexamethasone could be easily controlled by a external magnetic field. The potential application of the magnetic HA nanospheres on vectoring delivery of adipogenic factor was confirmed by co-culture of human adipose-derived stem cells (ASCs). In vitro cytotoxicity tests demonstrated that incorporation of dexamethasone into magnetic HA nanospheres showed high efficiency to promote ASCs viabilities, in particular under a magnetic field, which suggested a promising future for adipose regeneration applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Converting ceria polyhedral nanoparticles into single-crystal nanospheres.

    PubMed

    Feng, Xiangdong; Sayle, Dean C; Wang, Zhong Lin; Paras, M Sharon; Santora, Brian; Sutorik, Anthony C; Sayle, Thi X T; Yang, Yi; Ding, Yong; Wang, Xudong; Her, Yie-Shein

    2006-06-09

    Ceria nanoparticles are one of the key abrasive materials for chemical-mechanical planarization of advanced integrated circuits. However, ceria nanoparticles synthesized by existing techniques are irregularly faceted, and they scratch the silicon wafers and increase defect concentrations. We developed an approach for large-scale synthesis of single-crystal ceria nanospheres that can reduce the polishing defects by 80% and increase the silica removal rate by 50%, facilitating precise and reliable mass-manufacturing of chips for nanoelectronics. We doped the ceria system with titanium, using flame temperatures that facilitate crystallization of the ceria yet retain the titania in a molten state. In conjunction with molecular dynamics simulation, we show that under these conditions, the inner ceria core evolves in a single-crystal spherical shape without faceting, because throughout the crystallization it is completely encapsulated by a molten 1- to 2-nanometer shell of titania that, in liquid state, minimizes the surface energy. The principle demonstrated here could be applied to other oxide systems.

  6. Tunable optical metamaterial based on liquid crystal-gold nanosphere composite.

    PubMed

    Pratibha, R; Park, K; Smalyukh, I I; Park, W

    2009-10-26

    Effect of the surrounding anisotropic liquid crystal medium on the surface plasmon resonance (SPR) exhibited by concentrated suspensions of gold nanospheres has been investigated experimentally and compared with the Mie scattering theory. The observed polarization-sensitive SPR and the red-shift in the SPR wavelength with increasing concentration of the gold nanospheres in the liquid crystal matrix have been explained using calculations based on the Maxwell Garnet effective medium theory. Agglomeration of the gold nanospheres that could also lead to such a red-shift has been ruled out using Atomic force microscopy study of thin nanoparticle-doped smectic films obtained on solid substrates. Our study demonstrates feasibility of obtaining tunable optical bulk metamaterials based on smectic liquid crystal - nanoparticle composites.

  7. Monodisperse Carbon Nanospheres with Hierarchical Porous Structure as Electrode Material for Supercapacitor

    NASA Astrophysics Data System (ADS)

    Yang, Xiutao; Xia, Hui; Liang, Zhongguan; Li, Haiyan; Yu, Hongwen

    2017-09-01

    Carbon nanospheres with distinguishable microstructure were prepared by carbonization and subsequent KOH activation of F108/resorcinol-formaldehyde composites. The dosage of triblock copolymer Pluronic F108 is crucial to the microstructure differences. With the adding of F108, the polydisperse carbon nanospheres (PCNS) with microporous structure, monodisperse carbon nanospheres (MCNS) with hierarchical porous structure, and agglomerated carbon nanospheres (ACNS) were obtained. Their microstructure and capacitance properties were carefully compared. As a result of the synergetic effect of mono-dispersion spheres and hierarchical porous structures, the MCNS sample shows improved electrochemical performance, i.e., the highest specific capacitance of 224 F g-1 (0.2 A g-1), the best rate capability (73% retention at 20 A g-1), and the most excellent capacitance retention of 93% over 10,000 cycles, making it to be the promising electrode material for high-performance supercapacitors.

  8. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong [Albuquerque, NM; Song, Yujiang [Albuquerque, NM; Shelnutt, John A [Tijeras, NM; Medforth, Craig J [Winters, CA

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  9. In vitro/in vivo evaluation of agar nanospheres for pulmonary delivery of bupropion HCl.

    PubMed

    Varshosaz, Jaleh; Minaiyan, Mohsen; Zaki, Mohammad Reza; Fathi, Milad; Jaleh, Hossein

    2016-07-01

    Bupropion HCl is an atypical antidepressant drug with rapid and high first-pass metabolism. Sustained release dosage form of this drug is suggested for reducing its side effects which are mainly seizures. The aim of the present study was to design pulmonary agar nanospheres of bupropion HCl with effective systemic absorption and extended release properties. Bupropion HCl was encapsulated in agar nanospheres by ionic gelation, and characterized for physical and release properties. Pharmacokinetic studies on nanospheres were performed on rats by intratracheal spraying of 5 mg/kg of drug in form of nanospheres compared to intravenous and pulmonary delivery of the same dose as simple solution of the drug. The optimized nanoparticles showed particle size of 320 ± 90 nm with polydispersity index of 0.85, the zeta potential of -29.6 mV, drug loading efficiency of 43.1 ± 0.28% and release efficiency of 66.7 ± 2%. The area under the serum concentration-time profile for the pulmonary nanospheres versus simple solution was 10 237.84 versus 28.8 µg/ml min, Tmax of 360 versus 60 min and the Cmax of 1927.93 versus9.93 ng/ml, respectively. The absolute bioavailability of the drug was 86.69% for nanospheres and 0.25% for pulmonary simple solution. Our results indicate that pulmonary delivery of bupropion loaded agar nanospheres achieves systemic exposure and extends serum levels of the drug.

  10. Direct fabrication of hybrid nanofibres composed of SiO2-PMMA nanospheres via electrospinning.

    PubMed

    Zhang, Ran; Shang, Tinghua; Yang, Guang; Jia, Xiaolong; Cai, Qing; Yang, Xiaoping

    2016-08-01

    The direct fabrication of hybrid nanofibres composed of poly(methyl methacrylate)-grafted SiO2 (SiO2-PMMA) nanospheres via electrospinning was investigated in detail. SiO2-PMMA nanospheres were successfully prepared, with the SiO2 nanospheres synthesized via the Stober method, followed by in situ surface-initiated atom transfer radical polymerization of methyl methacrylate (MMA). Electrospinning was carried out with N,N-dimethylformamide (DMF) as the solvent to disperse SiO2-PMMA nanospheres. The size of the SiO2 core, the molecular weight of the PMMA shell and the concentration of the SiO2-PMMA/DMF solution all had substantial effects on the morphology and structure of electrospun nanofibres composed of SiO2-PMMA nanospheres. When these determining factors were well-tailored, it was found that one-dimensional necklace-like nanofibres were obtained, with SiO2-PMMA nanospheres aligned one by one along the fibre. The successful fabrication of nanofibres by directly electrospinning the SiO2-PMMA/DMF solution verified that polymer-grafted particles possess polymer-like characteristics, which endowed them with the ability to be processed into desirable shapes and structures. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. In vivo monitoring of nanosphere onsite delivery using fiber optic microprobe

    NASA Astrophysics Data System (ADS)

    Lo, Leu-Wei; Yang, Chung-Shi

    2005-02-01

    To recognize the information of ischemia-induced blood vessel permeability would be valuable to formulate the drugs for optimal local delivery, we constructed an implantable needle type fiber-optic microprobe for the monitoring of in vivo fluorescent substances in anesthetized rats. This fiber-optic microprobe was composed of coaxial optical fibers and catheterized using a thin wall tubing of stainless steel (~400 um O.D. and ~300 um I.D.). The central fiber, with 100 um core diameter and 20 um cladding, coated with a 30 um layer of gold, was surrounded by 10 fibers with 50 um cores. The central fiber carried the light from the 488 nm Argon laser to the tissue while the surrounding fibers collected the emitted fluorescence to the detector. When the fiber-optic microprobe was placed in the solutions containing various concentrations of fluorescent nanospheres (20 nm), either with or without 10% lipofundin as optical phantom, nanosphere concentration-dependent responses of the fluorescence intensity were observed. The microprobe was then implanted into the liver and the brain of anesthetized rats to monitor the in situ extravasation of pre-administered fluorescent nanospheres from vasculature following the ischemic insults. Both the hepatic and cerebral ischemic insults showed immediate increases of the extracellular 20 nm fluorescent nanospheres. The implantable fiber-optic microprobe constructed in present study provides itself as a minimally-invasive technique capable of investigating the vascular permeability for in vivo nanosphere delivery in both ischemic liver and brain.

  12. Comparison of FDTD numerical computations and analytical multipole expansion method for plasmonics-active nanosphere dimers.

    PubMed

    Dhawan, Anuj; Norton, Stephen J; Gerhold, Michael D; Vo-Dinh, Tuan

    2009-06-08

    This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as "hot spots" between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

  13. Sympathetic cooling of nanospheres with cold atoms

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Ranjit, Gambhir; Casey, Kirsten; Kitching, John; Geraci, Andrew

    2016-05-01

    Ground state cooling of mesoscopic mechanical structures could enable new hybrid quantum systems where mechanical oscillators act as transducers. Such systems could provide coupling between photons, spins and charges via phonons. It has recently been shown theoretically that optically trapped dielectric nanospheres could reach the ground state via sympathetic cooling with trapped cold atoms. This technique can be beneficial in cases where cryogenic operation of the oscillator is not practical. We describe experimental advances towards coupling an optically levitated dielectric nanosphere to a gas of cold Rubidium atoms. The sphere and the cold atoms are in separate vacuum chambers and are coupled using a one-dimensional optical lattice. This work is partially supported by NSF, Grant Nos. PHY-1205994,PHY-1506431.

  14. WE-G-BRE-08: Radiosensitization by Olaparib Eluting Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tangutoori, S; Kumar, R; Sridhar, S

    2014-06-15

    Purpose: Permanent prostate brachytherapy often uses inert bio-absorbable spacers to achieve the desired geometric distribution of sources within the prostate. Transforming these spacers into implantable nanoplatforms for chemo-radiation therapy (INCeRT) provides a means of providing sustained in-situ release of radiosensitizers in the prostate to enhance the therapeutic ratio of the procedure. Olaparib, a PARP inhibitor, suppresses DNA repair processes present during low dose rate continuous irradiation. This work investigates the radiosensitizing/DNA damage repair inhibition by NanoOlaparib eluting nanospheres. Methods: Human cell line PC3 (from ATCC), was maintained in F12-k medium supplemented with fetal bovine serum. Clonogenic assay kit (from Fischermore » Scientific) was used to fix and stain the cells to determine the long term effects of irradiation. Nanoparticle size and zeta potential of nanospheres were determined using a Zeta particle size analyzer. The incorporation of Olaparib in nanospheres was evaluated by HPLC. Irradiation was performed in a small animal irradiator operating at 220 KeV.The long term effects of radio-sensitization with olaparib and nanoolaparib was determined using the clonogenic assay at 2 Gy and 4 Gy doses. The cells were allowed to grow for around 10 doubling cycles, The colonies were fixed and stained using clonogenic assay kit. The excess stain was washed off using DI water and the images were taken using a digital camera. Results: Radiosensitization studies were carried out in prostate cancer cell line, PC3 radiation at 0, 2 and 4Gy doses. Strongest dose response was observed with nanoolaparib treated cells compared to untreated cells. Conclusion: A two stage drug release of drug eluting nanospheres from a biodegradable spacer has been suggested for sustained in-situ release of Olaparib to suppress DNA repair processes during prostate brachytherapy. The Olaparib eluting nanospheres had the same in-vitro radiosensitizing

  15. [Preparation and release exam of magnetic chitosan nano-spheres of doxorubicin].

    PubMed

    Han, Tao; Xiao, Qingping; Zhang, Yuanming

    2010-02-01

    Magnetic chitosan (CS) nano-spheres were prepared by the modified suspension cross-linking technique. The results demonstrated that the magnetic drug nano-spheres are mainly spherical in form with a size of 200 to 800 nm, and show good magnetic responsivity. Here, Doxorubicin was used as exam drug. Glutaraldehyde connects Doxorubicin to CS by the chemical bond (-N = C-), and the drug content is in range of 1% to 15% (w/w). The chemical bond is broken depending on pH, so pH is the important factor for the release of doxorubicin. The doxorubicin release was 22.0%, 13.4%, and 4.1% in the space of 7d, when pH was 1, 2, 4. So the nano-spheres are pH-sensitive magnetic targeting drug micro-spheres.

  16. [Synthesis and Study on Adsorption Property of Congo Red Molecularly Imprinted Polymer Nanospheres].

    PubMed

    Chang, Zi-qiang; Chen, Fu-bin; Zhang, Yu; Shi, Zuo-long; Yang, Chun-yan; Zhang, Zhu-jun

    2015-07-01

    Molecularly imprinted polymer nanospheres (MIP) were prepared with Congo red as the template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as the cross linker, azodiisobutyronitrile (AIBN) as an initiator, and acetonitrile as the porogen by precipitation polymerization. The morphology of MIP was characterized by SEM and TEM which showed that the diameter of MIP was nanometer grade (90 nm) and the shape was homogeneous. The specific surface area and pore volumes of MIP and NIP were examined through Brunauer-Emett-Teller method of nitrogen adsorption experiments. Then, the adsorption and selective recognition ability of MIPs were evaluated using the equilibrium rebinding experiments. The results indicated that the prepared MIP showed a good selectivity recognition ability to its template. It concluded that MIP could be employed as an effective material for removing Congo red from waste water.

  17. Plasmon-Polariton Properties in Metallic Nanosphere Chains

    PubMed Central

    Jacak, Witold Aleksander; Krasnyj, Jurij; Chepok, Andrej

    2015-01-01

    The propagation of collective wave type plasmonic excitations along infinite chains of metallic nanospheres has been analyzed, including near-, medium- and far-field contributions to the plasmon dipole interaction with all retardation effects taken into account. It is proven that there exist weakly-damped self-modes of plasmon-polaritons in the chain for which the propagation range is limited by relatively small Ohmic losses only. In this regime, the Lorentz friction irradiation losses on each nanosphere in the chain are ideally compensated by the energy income from the rest of the chain. The completely undamped collective waves were identified in the case of the presence of persistent external excitation of some fragment of the chain. The obtained characteristics of these excitations fit the experimental observations well. PMID:28793415

  18. Potentiating the antibacterial effect of silver nanospheres by surface-capping with chlorhexidine gluconate

    NASA Astrophysics Data System (ADS)

    Priyadarshini, Balasankar Meera; Fawzy, Amr S.

    2017-04-01

    In this work, the commercial polyvinylpyrrolidone (PVP)-capped silver nanospheres (Ag-NSP) were surface decorated with chlorhexidine gluconate (CHXg) for potentiating the antibacterial properties of Ag-NSP. Different formulations of CHXg-loaded Ag-NSP (Ag-NSP/CHXg) were prepared by varying the incubation times (0.5, 1.5, and 3 h). A thorough characterization of Ag-NSP/CHXg nanospheres has been carried out by dynamic light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive surface elemental composition spectral analysis (SEM/EDX), Fourier transform infrared spectroscopy (FTIR), percentage (%) CHXg loading efficiency (LE), in vitro CHXg and Ag+ ion release, antibacterial/biofilm inhibition assay, and human mesenchymal stem cells (hMSCs) cytotoxicity evaluation. DLS measured nanospheres to be <160 nm and indicated that CHXg treatment drastically shifted the surface charge from negative to high positive values, with homogenous distribution. TEM revealed spherical Ag-NSP/CHXg nanospheres with a clearly visible surface coating of CHXg. FTIR confirmed association of CHXg with Ag-NSP nanospheres, whereas SEM/EDX data verified presence of spectral peaks specific to silver (Ag), CHXg, and PVP. The %LE gradually increased with increasing incubation times. In vitro CHXg release exhibited a bi-phasic fashion showing maximum release of 74.83 ± 20.67% from Ag-NSP/CHXg-3h at 14 days. A slow release of Ag+ ions was detected; however, the surface decoration of Ag-NSP substantially hampered/restricted the liberation of ions. Agar well diffusion, MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium), and crystal violet assay suggested good antibacterial/antibiofilm activity of Ag-NSP/CHXg that correlated with the increasing %LE of nanospheres. hMSCs cytotoxicity study showed low toxicity properties of all nanosphere formulations, except for Ag-NSP/CHXg-3h, affecting the cell viability at all proposed concentrations and

  19. Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach.

    PubMed

    Ali, Gomaa A M; Divyashree, A; Supriya, S; Chong, Kwok Feng; Ethiraj, Anita S; Reddy, M V; Algarni, H; Hegde, Gurumurthy

    2017-10-17

    Carbon nanospheres derived from a natural source using a green approach were reported. Lablab purpureus seeds were pyrolyzed at different temperatures to produce carbon nanospheres for supercapacitor electrode materials. The synthesized carbon nanospheres were analyzed using SEM, TEM, FTIR, TGA, Raman spectroscopy, BET and XRD. They were later fabricated into electrodes for cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy testing. The specific capacitances were found to be 300, 265 and 175 F g -1 in 5 M KOH electrolyte for carbon nanospheres synthesized at 800, 700 and 500 °C, respectively. These are on a par with those of prior electrodes made of biologically derived carbon nanospheres but the cycle lives were remarkably higher than those of any previous efforts. The electrodes showed 94% capacitance retention even after 5200 charge/discharge cycles entailing excellent recycling durability. In addition, the practical symmetrical supercapacitor showed good electrochemical behaviour under a potential window up to 1.7 V. This brings us one step closer to fabricating a commercial green electrode which exhibits high performance for supercapacitors. This is also a waste to wealth approach based carbon material for cost effective supercapacitors with high performance for power storage devices.

  20. SiO{sub 2} nanospheres with tailorable interiors by directly controlling Zn{sup 2+} and NH{sub 3}.H{sub 2}O species in an emulsion process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao Yuchao; Graduate University of Chinese Academy of Sciences, Beijing 100049; Wu Xiaofeng

    2011-07-15

    SiO{sub 2} nanospheres with tailorable interiors were synthesized by a facile one-spot microemulsion process using TEOS as silica source, wherein cyclohexane including triton X-100 and n-octanol as oil phase and Zn{sup 2+} or NH{sub 3}.H{sub 2}O aqueous solution as dispersive phase, respectively. The products were characterized by Scanning Electron Microscopy, Transmission Electron Microscopy and X-ray Powder Diffraction. It was suggested that the as-synthesized silica nanospheres possessed grape-stone-like porous or single hollow interior, and also found that the ammonia dosage and aging time played key roles in controlling the size and structure of silica nanospheres. Furthermore, the comparative results confirmed thatmore » in-situ zinc species [ZnO/Zn(OH){sub 2}] acted as the temporary templates to construct grape-stone-like interior, and a simultaneously competing etching process occurred owing to the soluble Zn(NH{sub 3}){sub 4}{sup 2+} complex formation while the additional excessive ammonia was introduced. With the aging time being extended, the in-situ nanocrystals tended to grow into bigger ones by Ostwald Ripening, producing single hollow interior. - Graphical Abstract: Formation process of SiO{sub 2} nanospheres with porous and single hollow interior. Highlights: > ZnO/Zn(OH){sub 2} nanocrystals as the temporary templates shape the interior structures of SiO{sub 2} nanospheres. > Fabrication of porous and single hollow interiors needs no additional processes such as roasting or dissolving. > Tailorable interiors can be easily obtained through adjusting the aging time of temporary templates.« less

  1. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    NASA Astrophysics Data System (ADS)

    Koneracká, M.; Múčková, M.; Závišová, V.; Tomašovičová, N.; Kopčanský, P.; Timko, M.; Juríková, A.; Csach, K.; Kavečanský, V.; Lancz, G.

    2008-05-01

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  2. One-Pot Synthesis of Tunable Crystalline Ni3 S4 @Amorphous MoS2 Core/Shell Nanospheres for High-Performance Supercapacitors.

    PubMed

    Zhang, Yu; Sun, Wenping; Rui, Xianhong; Li, Bing; Tan, Hui Teng; Guo, Guilue; Madhavi, Srinivasan; Zong, Yun; Yan, Qingyu

    2015-08-12

    Transition metal sulfides gain much attention as electrode materials for supercapacitors due to their rich redox chemistry and high electrical conductivity. Designing hierarchical nanostructures is an efficient approach to fully utilize merits of each component. In this work, amorphous MoS(2) is firstly demonstrated to show specific capacitance 1.6 times as that of the crystalline counterpart. Then, crystalline core@amorphous shell (Ni(3)S(4)@MoS(2)) is prepared by a facile one-pot process. The diameter of the core and the thickness of the shell can be independently tuned. Taking advantages of flexible protection of amorphous shell and high capacitance of the conductive core, Ni(3)S(4) @amorphous MoS(2) nanospheres are tested as supercapacitor electrodes, which exhibit high specific capacitance of 1440.9 F g(-1) at 2 A g(-1) and a good capacitance retention of 90.7% after 3000 cycles at 10 A g(-1). This design of crystalline core@amorphous shell architecture may open up new strategies for synthesizing promising electrode materials for supercapacitors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Hollow PdCo alloy nanospheres with mesoporous shells as high-performance catalysts for methanol oxidation.

    PubMed

    Sheng, Guoqing; Chen, Jiahui; Ye, Huangqing; Hu, Zhixiong; Fu, Xian-Zhu; Sun, Rong; Huang, Weixin; Wong, Ching-Ping

    2018-07-15

    Monodisperse hollow mesoporous PdCo alloy nanospheres are prepared via a simple galvanic replacement reaction. The as-prepared PdCo hollow nanospheres have small diameter, such as Pd 78 Co 22 nanospheres of diameter about 25 nm and mesoporous shells about 4-5 nm. The Pd 78 Co 22 hollow mesoporous nanospheres possess the largest electrochemical active surface areas (ECSA, 53.91 m 2  g -1 ), mass activity (1488 mA mg -1 ) and specific activity (2.76 mA cm -2 ) towards to methanol oxidation relative to the Pd 68 Co 32 , Pd 92 Co 8 hollow mesoporous nanospheres and commercial Pd/C catalysts. Moreover, the activity of Pd 78 Co 22 after long-term stability tests is still the best and even better than those of fresh Pd 68 Co 32 and commercial Pd/C catalysts. The PdCo catalysts not only effectively reduce the Pd usage by forming hollow structure, but also fully realize the Pd-Co alloying effects for enhancing the methanol oxidation catalytic performance. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Poly(hydroxyethyl methacrylate-co-methacryloylglutamic acid) nanospheres for adsorption of Cd2+ ions from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Esen, Cem; Şenay, Raziye Hilal; Feyzioğlu, Esra; Akgöl, Sinan

    2014-02-01

    Poly(2-hydroxyethyl methacrylate-co- N-methacryloyl-( l)-glutamic acid) p(HEMA-MAGA) nanospheres have been synthesized, characterized, and used for the adsorption of Cd2+ ions from aqueous solutions. Nanospheres were prepared by surfactant free emulsion polymerization. The p(HEMA-MAGA) nanospheres were characterized by SEM, FTIR, zeta size, and elemental analysis. The specific surface area of nanospheres was found to be 1,779 m2/g. According to zeta size analysis results, average size of nanospheres is 147.3 nm with poly-dispersity index of 0.200. The goal of this study was to evaluate the adsorption performance of p(HEMA-MAGA) nanospheres for Cd2+ ions from aqueous solutions by a series of batch experiments. The Cd2+ concentration was determined by inductively coupled plasma-optical emission spectrometer. Equilibrium sorption experiments indicated a Cd2+ uptake capacity of 44.2 mg g-1 at pH 4.0 at 25 °C. The adsorption of Cd2+ ions increased with increasing pH and reached a plateau value at around pH 4.0. The data were successfully modeled with a Langmuir equation. A series of kinetics experiments was then carried out and a pseudo-second order equation was used to fit the experimental data. Desorption experiments which were carried out with nitric acid showed that the p(HEMA-MAGA) nanospheres could be reused without significant losses of their initial properties in consecutive adsorption and elution operations.

  5. Auxiliary-cavity-assisted ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime

    NASA Astrophysics Data System (ADS)

    Feng, Jin-Shan; Tan, Lei; Gu, Huai-Qiang; Liu, Wu-Ming

    2017-12-01

    We theoretically analyze the ground-state cooling of an optically levitated nanosphere in the unresolved-sideband regime by introducing a coupled high-quality-factor cavity. On account of the quantum interference stemming from the presence of the coupled cavity, the spectral density of the optical force exerting on the nanosphere gets changed and then the symmetry between the heating and the cooling processes is broken. Through adjusting the detuning of a strong-dissipative cavity mode, one obtains an enhanced net cooling rate for the nanosphere. It is illustrated that the ground-state cooling can be realized in the unresolved sideband regime even if the effective optomechanical coupling is weaker than the frequency of the nanosphere, which can be understood by the picture that the effective interplay of the nanosphere and the auxiliary cavity mode brings the system back to an effective resolved regime. Besides, the coupled cavity refines the dynamical stability of the system.

  6. Nanorods, nanospheres, nanocubes: Synthesis, characterization and catalytic activity of nanoferrites of Mn, Co, Ni, Part-89

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Supriya; Srivastava, Pratibha; Singh, Gurdip, E-mail: gsingh4us@yahoo.com

    2013-02-15

    Graphical abstract: Prepared nanoferrites were characterized by FE-SEM and bright field TEM micrographs. The catalytic effect of these nanoferrites was evaluated on the thermal decomposition of ammonium perchlorate using TG and TG–DSC techniques. The kinetics of thermal decomposition of AP was evaluated using isothermal TG data by model fitting as well as isoconversional method. Display Omitted Highlights: ► Synthesis of ferrite nanostructures (∼20.0 nm) by wet-chemical method under different synthetic conditions. ► Characterization using XRD, FE-SEM, EDS, TEM, HRTEM and SAED pattern. ► Catalytic activity of ferrite nanostructures on AP thermal decomposition by thermal techniques. ► Burning rate measurements ofmore » CSPs with ferrite nanostructures. ► Kinetics of thermal decomposition of AP + nanoferrites. -- Abstract: In this paper, the nanoferrites of Mn, Co and Ni were synthesized by wet chemical method and characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive, X-ray spectra (EDS), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HR-TEM). It is catalytic activity were investigated on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellants (CSPs) using thermogravimetry (TG), TG coupled with differential scanning calorimetry (TG–DSC) and ignition delay measurements. Kinetics of thermal decomposition of AP + nanoferrites have also been investigated using isoconversional and model fitting approaches which have been applied to data for isothermal TG decomposition. The burning rate of CSPs was considerably enhanced by these nanoferrites. Addition of nanoferrites to AP led to shifting of the high temperature decomposition peak toward lower temperature. All these studies reveal that ferrite nanorods show the best catalytic activity superior to that of nanospheres and nanocubes.« less

  7. Facile, eco-friendly, catalyst-free synthesis of polyfunctionalized quinoxalines.

    PubMed

    Zhang, Yaohong; Luo, Mengqiang; Li, Yan; Wang, Hai; Ren, Xiaorong; Qi, Chenze

    2018-02-01

    A novel, facile and eco-friendly synthesis of quinoxalines from [Formula: see text] and 1,2-diamines was developed. An attractive feature of this protocol is that the desired products could be generated efficiently in water and without any catalyst, which is in accordance with the aim of green chemistry. A plausible mechanism has been proposed.

  8. Hierarchical assembly of Sm2Co7/Co magnetic nanoparticles into highly stable and uniform nanospheres.

    PubMed

    Saravanan, P; Sreedhar, B; Mishra, D; Perumal, A; Chandrasekaran, V

    2011-04-01

    Hierarchical assembly of colloidal Sm2Co7/Co clusters in the form of nanospheres has been processed through a polyol process. The SmCo nanospheres are found to be robust, uniform ( 100 nm) and tend to self-assemble in the form of ordered superstructures. Each nanosphere consists of large number of discrete fine particles ( 6.0 nm), having two-phase structure of both Sm2Co7 and Co-phases. Upon annealing, these phases transform into Sm2Co17 phase with very high magnetization (169 emu/g). A possible mechanism on the formation of nanospheres from the individual Sm2Co2o7 and Co nanoparticles is also discussed.

  9. Hierarchically-structured hollow NiO nanospheres/nitrogen-doped graphene hybrid with superior capacity retention and enhanced rate capability for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Chen, Jiayuan; Wu, Xiaofeng; Liu, Ya; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Tan, Qiangqiang; Chen, Yunfa

    2017-12-01

    A facile template-free synthesis strategy is demonstrated to fabricate nanostructured NiO/N-doped graphene hybrid, in which NiO hollow nanospheres with hierarchically mesoporous structure are tightly anchored on N-doped graphene matrix. The mesoporous shell of NiO can not only provide sufficient electrode/electrolyte contact areas to accelerate ion diffusion and electron exchange, but also efficiently mitigate the volume change that occurs during long-time reactions. Simultaneously, the reduced graphene oxide with doping nitrogen atoms are employed as effectively conductive backbone, further enhancing the electrochemical performances. When used as anodic material for lithium ion batteries, the synergistic system delivers a reversible capacity up to 1104.6 mAh g-1 after 150 cycles at a current density of 0.08 A g-1 and 422.3 mAh g-1 at a high charging rate of 4 A g-1, which is better than those of the bare counterparts and most other NiO-based materials reported in the previous literatures. The hierarchically hollow NiO nanostructure combined with N-doped graphene matrix provides a promising candidate applied in advanced anode materials for lithium ion batteries.

  10. Facile synthesis and application of a carbon foam with large mesopores.

    PubMed

    Fu, Liling; Qi, Genggeng; Sahore, Ritu; Sougrat, Rachid; DiSalvo, Francis J; Giannelis, Emmanuel P

    2013-11-28

    By combining elements of hard- and soft-templating, a facile synthesis method for carbon foams with large mesopores has been demonstrated. A commercial Pluronic surfactant was used as the structure-directing agent as well as the carbon precursor. No micelle swelling agent or post treatment is necessary to enlarge mesopores. As such this method requires fewer synthesis steps and is highly scalable. The as-synthesized meso-carbons showed potential applications in the fields of carbon oxide capture and lithium-sulfur batteries.

  11. Synthesis of a multi-functional DNA nanosphere barcode system for direct cell detection.

    PubMed

    Han, Sangwoo; Lee, Jae Sung; Lee, Jong Bum

    2017-09-28

    Nucleic acid-based technologies have been applied to numerous biomedical applications. As a novel material for target detection, DNA has been used to construct a barcode system with a range of structures. This paper reports multi-functionalized DNA nanospheres (DNANSs) by rolling circle amplification (RCA) with several functionalized nucleotides. DNANSs with a barcode system were designed to exhibit fluorescence for coding enhanced signals and contain biotin for more functionalities, including targeting through the biotin-streptavidin (biotin-STA) interaction. Functionalized deoxynucleotide triphosphates (dNTPs) were mixed in the RCA process and functional moieties can be expressed on the DNANSs. The anti-epidermal growth factor receptor antibodies (anti-EGFR Abs) can be conjugated on DNANSs for targeting cancer cells specifically. As a proof of concept, the potential of the multi-functional DNANS barcode was demonstrated by direct cell detection as a simple detection method. The DNANS barcode provides a new route for the simple and rapid selective recognition of cancer cells.

  12. Soft-Template Synthesis of Mesoporous Anatase TiO₂ Nanospheres and Its Enhanced Photoactivity.

    PubMed

    Li, Xiaojia; Zou, Mingming; Wang, Yang

    2017-11-10

    Highly crystalline mesoporous anatase TiO₂ nanospheres with high surface area (higher than P25 and anatase TiO₂) are prepared by a soft-template method. Despite the high specific surface area, these samples have three times lower equilibrium adsorption (<2%) than Degussa P25. The rate constant of the mesoporous anatase TiO₂ (0.024 min -1 ) reported here is 364% higher than that of P25 (0.0066 min -1 ), for the same catalytic loading. The results of oxidation-extraction photometry using several reactive oxygen species (ROS) scavengers indicated that mesoporous anatase TiO₂ generates more ROS than P25 under UV-light irradiation. This significant improvement in the photocatalytic performance of mesoporous spherical TiO₂ arises from the following synergistic effects in the reported sample: (i) high surface area; (ii) improved crystallinity; (iii) narrow pore wall thicknesses (ensuring the rapid migration of photogenerated carriers to the surface of the material); and (iv) greater ROS generation under UV-light.

  13. Formulation, characterization and evaluation of cyclodextrin-complexed bendamustine-encapsulated PLGA nanospheres for sustained delivery in cancer treatment.

    PubMed

    Gidwani, Bina; Vyas, Amber

    2016-03-01

    PLGA nanospheres are considered to be promising drug carrier in the treatment of cancer. Inclusion complex of bendamustine (BM) with epichlorohydrin beta cyclodextrin polymer was prepared by freeze-drying method. Phase solubility study revealed formation of AL type complex with stability constant (Ks = 645 M(-1)). This inclusion complex was encapsulated into PLGA nanospheres using solid-in-oil-in-water (S/O/W) technique. The particle size and zeta potential of PLGA nanospheres loaded with cyclodextrin-complexed BM were about 151.4 ± 2.53 nm and - 31.9 ± (-3.08) mV. In-vitro release study represented biphasic release pattern with 20% burst effect and sustained slow release. DSC studies indicated that inclusion complex incorporated in PLGA nanospheres was not in a crystalline state but existed in an amorphous or molecular state. The cytotoxicity experiment was studied in Z-138 cells and IC50 value was found to be 4.3 ± 0.11 µM. Cell viability studies revealed that the PLGA nanospheres loaded with complex exerts a more pronounced effect on the cancer cells as compared to the free drug. In conclusion, PLGA nanospheres loaded with inclusion complex of BM led to sustained drug delivery. The nanospheres were stable after 3 months of storage conditions with slight change in their particle size, zeta potential and entrapment efficiency.

  14. Nanospheric Chemotherapeutic and Chemoprotective Agents

    DTIC Science & Technology

    2008-09-01

    Rutgers scientists led by Prof. Joachim Kohn and TyRx Pharma, Inc., announced the FDA’s clearance of a new medical device for hernia repair that...significant decrease of the cell metabolic activity of KB cervical carcinoma cells was detected, confirming that these nanospheres do not induce any short...term cytotoxicity. Cell viability was analyzed by MTS colorimetric assay after 3 days. Figure 11: Metabolic activity of KB cervical carcinoma cells

  15. Recent developments in the fabrication of ordered nanostructure arrays based on nanosphere lithography.

    PubMed

    Wei, Xueyong

    2010-11-01

    Since it was invented two decades ago, Nanosphere Lithography (NSL) has been widely studied as a low cost and flexible technique to fabricate nanostructures. Based on the registered patents and some selected papers, this review will discuss recent developments of different NSL strategies for the fabrication of ordered nanostructure arrays. The mechanism of self-assembly process and the techniques for preparing the self-assembled nanosphere template are first briefly introduced. The nanosphere templates are used either as shadow masks or as moulds for pattern transfer. Much more work now combines NSL with other lithographic techniques and material growth methods to form novel nanostructures of complex shape or various materials. Hence, this review finally gives a discussion on some future directions in NSL study.

  16. TEOA-mediated formation of hollow core-shell structured CoNi2S4 nanospheres as a high-performance electrode material for supercapacitors

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Li, Meng; Chai, Yao; Luo, Min; Li, Li

    2017-09-01

    In this study, we report for the first time a cost-effective and general approach for the high-yield synthesis of a hierarchical core-shell and hollow structure of ternary CoNi2S4 in a triethanolamine (TEOA)-assisted hydrothermal system. It is found that a continuous increase in TEOA usages facilitates the formation and transformation of hierarchical CoNi2S4 hollow nanospheres, and the formation mechanism of the unique structure is revealed to be assembly-then-inside-out evacuation and Ostwald ripening mechanism during the sulfidation process. More importantly, when used as faradaic electrode for supercapacitors, the hierarchical hollow CoNi2S4 nanospheres display not only exceptional pseudocapacitve performance with high specific capacitance (2035 Fg-1 at 1 Ag-1) and excellent rate capability (1215 Fg-1 at 20 Ag-1), but also superior cycling stability, with only about 8.7% loss over 3000 cycles at 10 Ag-1. This work can provide some guidance for us in the structural and compositional tuning of mixed binary-metal sulfides toward many desired applications.

  17. Electrochemical durability of heat-treated carbon nanospheres as catalyst supports for proton exchange membrane fuel cells.

    PubMed

    Lv, Haifeng; Wu, Peng; Wan, Wei; Mu, Shichun

    2014-09-01

    Carbon nanospheres is wildly used to support noble metal nanocatalysts in proton exchange membrane (PEM) fuel cells, however they show a low resistance to electrochemical corrosion. In this study, the N-doped treatment of carbon nanospheres (Vulcan XC-72) is carried out in ammonia gas. The effect of heating treatment (up to 1000 degrees C) on resistances to electrochemical oxidation of the N-doped carbon nanospheres (HNC) is investigated. The resistance to electrochemical oxidation of carbon supports and stability of the catalysts are investigated with potentiostatic oxidation and accelerated durability test by simulating PEM fuel cell environment. The HNC exhibit a higher resistance to electrochemical oxidation than traditional Vulcan XC-72. The results show that the N-doped carbon nanospheres have a great potential application in PEM fuel cells.

  18. Facile synthesis of Cu/Cu{sub x}O nanoarchitectures with adjustable phase composition for effective NO{sub x} gas sensor at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Lixue; Li, Li; Yang, Ying

    2013-10-15

    Graphical abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing property to low-concentration NO{sub x} gas at room temperature. - Highlights: • The Cu/Cu{sub x}O nanoarchitectures with hollow nanospheres are successfully synthesized. • The method is used for preparing the with Cu/Cu{sub x}O adjustable phase composition. • The C3 sample exhibites excellent gas-sensing propertie to NO{sub x} at room temperation. • The Cu/Cu{sub x}O nanoarchitectures have significant for application of gas sensor. - Abstract: The Cu/Cu{sub x}O nanoarchitectures with 30–70 nm hollow nanospheres are successfully synthesized by a facile wetmore » chemical method. The synthesized products have been studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and thermo gravimetric-differential scanning calorimetry (TG-DSC) analysis. The Cu/Cu{sub x}O sensors based on the nanoarchitectures are used to detect the NO{sub x} at room temperature. The results demonstrate that the obtained Cu/Cu{sub x}O nanoarchitectures reduced by 3 mmol NaBH{sub 4} exhibits excellent gas-sensing properties: low detection limit of 0.97 ppm, relatively high sensitivity, short response time, broad linear range and high selectivity. The reasons for gas-sensing activity enhancement on Cu/Cu{sub x}O nanoarchitectures are discussed. The Cu/Cu{sub x}O nanocrystalline with the hierarchical pores structure and tunable compositions have significant for application of gas sensor.« less

  19. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation

    PubMed Central

    2011-01-01

    Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075

  20. Brillouin Study of the Quantization of Acoustic Modes in Nanospheres

    NASA Astrophysics Data System (ADS)

    Kuok, M. H.; Lim, H. S.; Ng, S. C.; Liu, N. N.; Wang, Z. K.

    2003-06-01

    The vibrational modes in three-dimensional ordered arrays of unembedded SiO2 nanospheres have been studied by Brillouin light scattering. Multiple distinct Brillouin peaks are observed whose frequencies are found to be inversely proportional to the diameter (≈200 340 nm) of the nanospheres, in agreement with Lamb’s theory. This is the first Brillouin observation of acoustic mode quantization in a nanoparticle arising from spatial confinement. The distinct spectral peaks measured afford an unambiguous assignment of seven surface and inner acoustic modes. Interestingly, the relative intensities and polarization dependence of the Brillouin spectrum do not agree with the predictions made for Raman scattering.

  1. Brillouin study of the quantization of acoustic modes in nanospheres.

    PubMed

    Kuok, M H; Lim, H S; Ng, S C; Liu, N N; Wang, Z K

    2003-06-27

    The vibrational modes in three-dimensional ordered arrays of unembedded SiO2 nanospheres have been studied by Brillouin light scattering. Multiple distinct Brillouin peaks are observed whose frequencies are found to be inversely proportional to the diameter (approximately 200-340 nm) of the nanospheres, in agreement with Lamb's theory. This is the first Brillouin observation of acoustic mode quantization in a nanoparticle arising from spatial confinement. The distinct spectral peaks measured afford an unambiguous assignment of seven surface and inner acoustic modes. Interestingly, the relative intensities and polarization dependence of the Brillouin spectrum do not agree with the predictions made for Raman scattering.

  2. Synthesis, characterization, and applications of electroactive polymeric nanostructures for organic coatings

    NASA Astrophysics Data System (ADS)

    Suryawanshi, Abhijit Jagnnath

    Electroactive polymers (EAP) such as polypyrrole (PPy) and polyaniline (PANI) are being explored intensively in the scientific community. Nanostructures of EAPs have low dimensions and high surface area enabling them to be considered for various useful applications. These applications are in several fields including corrosion inhibition, capacitors, artificial muscles, solar cells, polymer light emitting diodes, and energy storage devices. Nanostructures of EAPs have been synthesized in different morphologies such as nanowires, nanorods, nanotubes, nanospheres, and nanocapsules. This variety in morphology is traditionally achieved using soft templates, such as surfactant micelles, or hard templates, such as anodized aluminum oxide (AAO). Templates provide stability and groundwork from which the polymer can grow, but the templates add undesirable expense to the process and can change the properties of the nanoparticles by integrating its own properties. In this study a template free method is introduced to synthesize EAP nanostructures of PPy and PANI utilizing ozone oxidation. The simple techniques involve ozone exposure to the monomer solution to produce aqueous dispersions of EAP nanostructures. The synthesized nanostructures exhibit uniform morphology, low particle size distribution, and stability against agglomeration. Ozone oxidation is further explored for the synthesis of silver-PPy (Ag-PPy) core-shell nanospheres (CSNs). Coatings containing PPy nanospheres were formulated to study the corrosion inhibition efficiency of PPy nanospheres. Investigation of the coatings using electrochemical techniques revealed that the PPy nanospheres may provide corrosion inhibition against filiform corrosion by oxygen scavenging mechanism. Finally, organic corrosion inhibitors were incorporated in PPy to develop efficient corrosion inhibiting systems, by using the synergistic effects from PPy and organic corrosion inhibitors.

  3. Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase.

    PubMed

    Chang, Feng-Peng; Chen, Yi-Ping; Mou, Chung-Yuan

    2014-11-01

    An approach for enzyme therapeutics is elaborated with cell-implanted nanoreactors that are based on multiple enzymes encapsulated in hollow silica nanospheres (HSNs). The synthesis of HSNs is carried out by silica sol-gel templating of water-in-oil microemulsions so that polyethyleneimine (PEI) modified enzymes in aqueous phase are encapsulated inside the HSNs. PEI-grafted superoxide dismutase (PEI-SOD) and catalase (PEI-CAT) encapsulated in HSNs are prepared with quantitative control of the enzyme loadings. Excellent activities of superoxide dismutation by PEI-SOD@HSN are found and transformation of H2 O2 to water by PEI-CAT@HSN. When PEI-SOD and PEI-CAT are co-encapsulated, cascade transformation of superoxide through hydrogen peroxide to water was facile. Substantial fractions of HSNs exhibit endosome escape to cytosol after their delivery to cells. The production of downstream reactive oxygen species (ROS) and COX-2/p-p38 expression show that co-encapsulated SOD/CAT inside the HSNs renders the highest cell protection against the toxicant N,N'-dimethyl-4,4'-bipyridinium dichloride (paraquat). The rapid cell uptake and strong detoxification effect on superoxide radicals by the SOD/CAT-encapsulated hollow mesoporous silica nanoparticles demonstrate the general concept of implanting catalytic nanoreactors in biological cells with designed functions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-01-01

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  5. Effect of the Fabrication Parameters of the Nanosphere Lithography Method on the Properties of the Deposited Au-Ag Nanoparticle Arrays.

    PubMed

    Liu, Jing; Chen, Chaoyang; Yang, Guangsong; Chen, Yushan; Yang, Cheng-Fu

    2017-04-03

    The nanosphere lithography (NSL) method can be developed to deposit the Au-Ag triangle hexagonal nanoparticle arrays for the generation of localized surface plasmon resonance. Previously, we have found that the parameters used to form the NSL masks and the physical methods required to deposit the Au-Ag thin films had large effects on the geometry properties of the nanoparticle arrays. Considering this, the different parameters used to grow the Au-Ag triangle hexagonal nanoparticle arrays were investigated. A single-layer NSL mask was formed by using self-assembly nano-scale polystyrene (PS) nanospheres with an average radius of 265 nm. At first, the concentration of the nano-scale PS nanospheres in the solution was set at 6 wt %. Two coating methods, drop-coating and spin-coating, were used to coat the nano-scale PS nanospheres as a single-layer NSL mask. From the observations of scanning electronic microscopy (SEM), we found that the matrixes of the PS nanosphere masks fabricated by using the drop-coating method were more uniform and exhibited a smaller gap than those fabricated by the spin-coating method. Next, the drop-coating method was used to form the single-layer NSL mask and the concentration of nano-scale PS nanospheres in a solution that was changed from 4 to 10 wt %, for further study. The SEM images showed that when the concentrations of PS nanospheres in the solution were 6 and 8 wt %, the matrixes of the PS nanosphere masks were more uniform than those of 4 and 10 wt %. The effects of the one-side lifting angle of substrates and the vaporization temperature for the solvent of one-layer self-assembly PS nanosphere thin films, were also investigated. Finally, the concentration of the nano-scale PS nanospheres in the solution was set at 8 wt % to form the PS nanosphere masks by the drop-coating method. Three different physical deposition methods, including thermal evaporation, radio-frequency magnetron sputtering, and e-gun deposition, were used to

  6. Design and Synthesis of Spherical Multicomponent Aggregates Composed of Core-Shell, Yolk-Shell, and Hollow Nanospheres and Their Lithium-Ion Storage Performances.

    PubMed

    Park, Gi Dae; Kang, Yun Chan

    2018-03-01

    Micrometer-sized spherical aggregates of Sn and Co components containing core-shell, yolk-shell, hollow nanospheres are synthesized by applying nanoscale Kirkendall diffusion in the large-scale spray drying process. The Sn 2 Co 3 -Co 3 SnC 0.7 -C composite microspheres uniformly dispersed with Sn 2 Co 3 -Co 3 SnC 0.7 mixed nanocrystals are formed by the first-step reduction of spray-dried precursor powders at 900 °C. The second-step oxidation process transforms the Sn 2 Co 3 -Co 3 SnC 0.7 -C composite into the porous microsphere composed of Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres at 300, 400, and 500 °C, respectively. The discharge capacity of the microspheres with Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 core-shell, Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 yolk-shell, and CoSnO 3 -Co 3 O 4 hollow nanospheres for the 200 th cycle at a current density of 1 A g -1 is 1265, 987, and 569 mA h g -1 , respectively. The ultrafine primary nanoparticles with a core-shell structure improve the structural stability of the porous-structured microspheres during repeated lithium insertion and desertion processes. The porous Sn-Sn 2 Co 3 @CoSnO 3 -Co 3 O 4 microspheres with core-shell primary nanoparticles show excellent cycling and rate performances as anode materials for lithium-ion batteries. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Hyaluronic acid coated poly-epsilon-caprolactone nanospheres deliver high concentrations of cyclosporine A into the cornea.

    PubMed

    Yenice, Irem; Mocan, Mehmet C; Palaska, Erhan; Bochot, Amélie; Bilensoy, Erem; Vural, Imran; Irkeç, Murat; Hincal, A Atilla

    2008-09-01

    The objective of this study was to determine cyclosporine A (Cy A) levels in ocular tissues and fluids after topical administration of poly-epsilon-caprolactone (PCL)/benzalkonium chloride (BKC) nanospheres and hyaluronic acid (HA) coated PCL/BKC nanospheres onto healthy rabbit corneas. Nanospheres were prepared by nanoprecipitation and purified by gradient-rate centrifugation. Cy A (0.1%) in either castor oil solution (group 1), PCL/BKC nanosphere formulation (group 2) or HA coated PCL/BKC nanosphere formulation (group 3) was instilled onto rabbit corneas. Tear samples were adsorbed onto Schirmer tear strips. Cy A concentrations of fluid (blood, aqueous humor, tear) and specimen extracts (cornea, conjunctiva, iris/ciliary body) were determined by high performance liquid chromatography-mass spectrometry (LC-MS). The mean corneal Cy A concentration obtained at 0.5, 1, 2, 4, 8 and 24h following instillation of the formulations ranged between 0.12 and 1.2 ng/mg tissue for group 1, 5.9-15.5 ng/mg tissue for group 2 and 11.4-23.0 ng/mg for group 3 (one-way analysis of variance (ANOVA) and pairwise tests (SNK (Student-Newman-Keuls) and Tukey); p<0.05). Conjunctival Cy A levels of group 2 and 3 were not significantly different at any of the time points tested. However, there was a significant difference between Cy A concentration of castor oil formulation and that of PCL/BKC nanosphere formulation at 1 and 8h (p<0.05). The mean iris/ciliary body concentrations obtained with the three formulations were not significantly different at any time point with the exception of group 2 levels being higher than those of groups 1 and 3 at 1h (p<0.05). The lowest ocular tear Cy A concentrations (16-114 ng/ml) were found following the instillation of HA coated PCL/BKC nanoparticles (group 3) during the time period tested. Cy A loaded PCL/BKC and HA coated PCL/BKC nanospheres are able to achieve high levels of Cy A in the cornea that is 10-15-fold higher than that is achieved with Cy A

  8. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  9. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    PubMed

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  10. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    PubMed

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Cisplatin-tethered gold nanospheres for multimodal chemo-radiotherapy of glioblastoma

    NASA Astrophysics Data System (ADS)

    Setua, Sonali; Ouberai, Myriam; Piccirillo, Sara G.; Watts, Colin; Welland, Mark

    2014-08-01

    Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies.Glioblastoma multiforme (GBM) remains the most aggressive and challenging brain tumour to treat. We report the first successful chemo-radiotherapy on patient derived treatment resistant GBM cells using a cisplatin-tethered gold nanosphere. After intracellular uptake, the nanosphere effects DNA damage which initiates caspase-mediated apoptosis in those cells. In the presence of radiation, both gold and platinum of cisplatin, serve as high atomic number radiosensitizers leading to the emission of ionizing photoelectrons and Auger electrons. This resulted in enhanced synergy between cisplatin and radiotherapy mediated cytotoxicity, and photo/Auger electron mediated radiosensitisation leading to complete ablation of the tumour cells in an in vitro model system. This study demonstrates the potential of designed nanoparticles to target aggressive cancers in the patient derived cell lines providing a platform to move towards treatment strategies. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c

  12. Hollow SnO2 nanospheres with oxygen vacancies entrapped by a N-doped graphene network as robust anode materials for lithium-ion batteries.

    PubMed

    Wu, Naiteng; Du, Wuzhou; Gao, Xu; Zhao, Liang; Liu, Guilong; Liu, Xianming; Wu, Hao; He, Yan-Bing

    2018-06-21

    The practical application of tin dioxide (SnO2) in lithium-ion batteries has been greatly hindered by its large volumetric expansion and low conductivity. Thus, a rational design of the size, geometry and the pore structure of SnO2-based nanomaterials is still a dire demand. To this end, herein we report an effective approach for engineering hollow-structured SnO2 nanospheres with adequate surface oxygen vacancies simultaneously wrapped by a nitrogen-doped graphene network (SnO2-x/N-rGO) through an electrostatic adsorption-induced self-assembly together with a thermal reduction process. The close electrostatic attraction achieved a tight and uniform combination of positively charged SnO2 nanospheres with negatively charged graphene oxide (GO), which can alleviate the aggregation and volume expansion of the entrapped SnO2 nanospheres. Subsequent thermal treatment not only ensures a significant reduction of the GO sheets accompanying nitrogen-doping, but also induces the generation of oxygen vacancies on the surface of the SnO2 hollow nanospheres, together building up a long-range and bicontinuous transfer channel for rapid electron and ion transport. Because of these structural merits, the as-built SnO2-x/N-rGO composite used as the anode material exhibits excellent robust cycling stability (∼912 mA h g-1 after 500 cycles at 0.5 A g-1 and 652 mA h g-1 after 200 cycles at 1 A g-1) and superior rate capability (309 mA h g-1 at 10 A g-1). This facile fabrication strategy may pave the way for the construction of high performance SnO2-based anode materials for potential application in advanced lithium-ion batteries.

  13. Periodically Arranged Arrays of Dendritic Pt Nanospheres Using Cage-Type Mesoporous Silica as a Hard Template.

    PubMed

    Kani, Kenya; Malgras, Victor; Jiang, Bo; Hossain, Md Shahriar A; Alshehri, Saad M; Ahamad, Tansir; Salunkhe, Rahul R; Huang, Zhenguo; Yamauchi, Yusuke

    2018-01-04

    Dendritic Pt nanospheres of 20 nm diameter are synthesized by using a highly concentrated surfactant assembly within the large-sized cage-type mesopores of mesoporous silica (LP-FDU-12). After diluting the surfactant solution with ethanol, the lower viscosity leads to an improved penetration inside the mesopores. After Pt deposition followed by template removal, the arrangement of the Pt nanospheres is a replication from that of the mesopores in the original LP-FDU-12 template. Although it is well known that ordered LLCs can form on flat substrates, the confined space inside the mesopores hinders surfactant self-organization. Therefore, the Pt nanospheres possess a dendritic porous structure over the entire area. The distortion observed in some nanospheres is attributed to the close proximity existing between neighboring cage-type mesopores. This new type of nanoporous metal with a hierarchical architecture holds potential to enhance substance diffusivity/accessibility for further improvement of catalytic activity. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Facile synthesis of flexible macroporous polypropylene sponges for separation of oil and water

    PubMed Central

    Wang, Guowei; Uyama, Hiroshi

    2016-01-01

    Oil spill disasters always occur accidentally, accompanied by the release of plenty of crude oil that could spread quickly over a wide area, creating enormous damage to the fragile marine ecological system. Therefore, the facile large-scale synthesis of hydrophobic three-dimensional (3-D) porous sorbents from low cost raw materials is in urgent demand. In this study, we report the facile template-free synthesis of polypropylene (PP) sponge by using a thermally-induced phase separation (TIPS) technique. The obtained sponge showed macroporous structure, excellent mechanical property, high hydrophobicity, and superoleophilicity. Oil could be separated from an oil/water mixture by simple immersing the sponge into the mixture and subsequent squeezing the sponge. All of these features make this sponge the most promising oil sorbent that will replace commercial non-woven PP fabrics. PMID:26880297

  15. Nanosphere Lithography on Fiber: Towards Engineered Lab-On-Fiber SERS Optrodes

    PubMed Central

    Quero, Giuseppe; Zito, Gianluigi; Cusano, Andrea

    2018-01-01

    In this paper we report on the engineering of repeatable surface enhanced Raman scattering (SERS) optical fiber sensor devices (optrodes), as realized through nanosphere lithography. The Lab-on-Fiber SERS optrode consists of polystyrene nanospheres in a close-packed arrays configuration covered by a thin film of gold on the optical fiber tip. The SERS surfaces were fabricated by using a nanosphere lithography approach that is already demonstrated as able to produce highly repeatable patterns on the fiber tip. In order to engineer and optimize the SERS probes, we first evaluated and compared the SERS performances in terms of Enhancement Factor (EF) pertaining to different patterns with different nanosphere diameters and gold thicknesses. To this aim, the EF of SERS surfaces with a pitch of 500, 750 and 1000 nm, and gold films of 20, 30 and 40 nm have been retrieved, adopting the SERS signal of a monolayer of biphenyl-4-thiol (BPT) as a reliable benchmark. The analysis allowed us to identify of the most promising SERS platform: for the samples with nanospheres diameter of 500 nm and gold thickness of 30 nm, we measured values of EF of 4 × 105, which is comparable with state-of-the-art SERS EF achievable with highly performing colloidal gold nanoparticles. The reproducibility of the SERS enhancement was thoroughly evaluated. In particular, the SERS intensity revealed intra-sample (i.e., between different spatial regions of a selected substrate) and inter-sample (i.e., between regions of different substrates) repeatability, with a relative standard deviation lower than 9 and 15%, respectively. Finally, in order to determine the most suitable optical fiber probe, in terms of excitation/collection efficiency and Raman background, we selected several commercially available optical fibers and tested them with a BPT solution used as benchmark. A fiber probe with a pure silica core of 200 µm diameter and high numerical aperture (i.e., 0.5) was found to be the most

  16. Nanoengineering of bioactive glasses: hollow and dense nanospheres

    NASA Astrophysics Data System (ADS)

    Luz, Gisela M.; Mano, João F.

    2013-02-01

    The possibility of engineering bioactive glass (BG) nanoparticles into suitable sizes and shapes represents a significant achievement regarding the development of new osteoconductive biomaterials for therapeutic strategies to replace or regenerate damaged mineralised tissues. Herein we report the structural and chemical evolution of sol-gel derived BG nanoparticles for both the binary (SiO2:CaO (mol%) = 70:30) and ternary (SiO2:CaO:P2O5 (mol%) = 55:40:5) formulations, in order to understand how the particles formation can be directed. Hollow BG nanospheres were obtained through Ostwald ripening. The presence of a non ionic surfactant, poly(ethylene glycol) (PEG), allowed the formation of dense BG nanospheres with controllable diameters depending on the molecular weight of PEG. A deep insight into the genesis of BG nanoparticles formation is essential to design BG based materials with controlled compositions, morphologies and sizes at the nanoscale, in order to improve their performance in orthopaedic applications including bone tissue engineering.

  17. Fractional Brownian motion of an Al nanosphere in liquid Al-Si alloy under electron-beam irradiation

    NASA Astrophysics Data System (ADS)

    Yokota, Takeshi; Howe, J. M.; Jesser, W. A.; Murayama, M.

    2004-05-01

    Fractional forces and Brownian motion are expected to govern the behavior of nanoscale metallic solids in liquids, but such systems have not been studied. We investigated the motion of a crystalline Al nanosphere inside a partially molten Al-Si alloy particle, using an electron beam to both stimulate and observe the motion of the nanosphere. The irregular motion observed was quantified as antipersistant fractional Brownian motion. Analysis of possible phenomena contributing to the motion demonstrates that the incident electrons provide the fractional force that moves the Al nanosphere and that gravity and the oxide shell on the partially molten particle cause the antipersistant behavior.

  18. Interface-mediated fabrication of bowl-like and deflated ballon-like hollow carbon nanospheres.

    PubMed

    Zhang, Haijiao; Li, Xia

    2015-08-15

    In our work, two kinds of hollow carbon nanospheres with controlled morphologies have been successfully prepared from low-cost and nontoxic glucose as the sole carbon precursor under neutral aqueous medium via a simple hydrothermal route. During the process, sodium dodecylbenzene sulfonate (SDBS) and triblock copolymer P123 ((EO)20(PO)70(EO)20) was skillfully selected as the structure-directing agent, respectively. SEM, TEM and AFM results revealed that the two products showed bowl-like and deflated-balloon-like morphology with uniform particle sizes, respectively. Based on the experimental observations, a possible formation mechanism was also discussed, in which the growth of the carbon nanospheres involved an interface-medicated assembly process. The present method was easy, green and mild. Apart from the unique nanostructure, the obtained bowl-like hollow carbon nanospheres exhibited excellent biocompatibility. In particular, it should be mentioned that the open window formed by the bowl-like morphology can facilitate ion transport, thus improving their performances. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. In vitro studies of serum albumin interaction with poly(D,L-lactide) nanospheres loaded by hydrophobic cargo.

    PubMed

    Pietkiewicz, Jadwiga; Wilk, Kazimiera A; Bazylińska, Urszula

    2016-01-05

    The various polymer-based nanocarriers are very attractive for in vitro and in vivo bioapplications. A new type of a promising drug delivery systems for cancer tissues-poly(D,L-lactide) nanospheres stabilized with Cremophor EL and loaded with hydrophobic cyanines (IR-780 or ZnPc) or curcumin (CUR) were fabricated by the nanoprecipitation method. The Cremophor EL/PLA/water nanospheres demonstrated regular shape, low polydispersity (PdI<0.3) and high entrapment efficiency of selected cargo (over 90%). The size of those nanoconstructs below 130 nm are in the desired nanocarriers size range for tumor delivery. Low level of in vitro drug release from loaded nanospheres after long-time storage indicates their good stability. The half-life of nanocarriers in the circulation, and their biodistribution after parenteral administration are associated with the ability of plasma proteins adsorption. For these reasons the affinity of obtained nanospheres for albumin as a major plasma protein was in vitro investigated. The binding of nanocarrier containing cyanine IR-780 with albumin immobilized in the wells of polystyrene plate occurred with lower efficiency than analogs loaded with ZnPc or CUR. Similar relationships were observed after UV-vis spectra analysis of nanospheres in the presence of albumin at various protein concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transparent, flexible, and high-performance supercapacitor based on ultrafine nickel cobaltite nanospheres

    NASA Astrophysics Data System (ADS)

    Liu, Xinyue; Wang, Jianxing; Yang, Guowei

    2017-07-01

    There has been growing interest in transparent and flexible electronic devices such as wrist watch, cell phone, and so on. These devices need the power sources which also have transparent and flexible features. Here, we demonstrate a transparent and flexible energy storage device with outstanding electrochemical performance, high energy density, and super-long life based on ultrafine NiCo2O4 nanospheres which are synthesized by an innovative method concerning laser ablation in liquid and hydrothermal process. The ultrafine NiCo2O4 nanospheres provide high electrochemical activity and the synthesized colloidal solution is suitable for transparent devices. The transparent and flexible device shows a high specific capacitance of 299.7 F/g at the scan rate of 1 mV/s and a long cycling life of 90.4% retention rate after 10,000 cycles at a scan rate of 10 mV/s, which is superior to that of previously reported transparent and flexible energy storage device. In addition, an optical transmittance up to 55% at the wavelength of 550 nm is obtained, and the bending test shows that the bending angle makes no difference to the specific capacitance of the device. In addition, it shows an outstanding energy density of 10.41 Wh/kg. The integrated electrochemical performances of the device are good based on NiCo2O4 nanospheres. These findings make the ultrafine NiCo2O4 nanospheres being promising electrode materials for transparent and flexible energy storage devices.

  1. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN.

    PubMed

    Tafaghodi, Mohsen; Khamesipour, Ali; Jaafari, Mahmoud R

    2011-05-01

    Various adjuvants and delivery systems have been evaluated for increasing the protective immune responses against leishmaniasis and mostly have been shown not to be effective enough. In this study, poly(D,L-lactide-co-glycolide) (PLGA) nanospheres as an antigen delivery system and CpG-ODN as an immunoadjuvant have been used for the first time to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter of ALM + CpG-ODN-loaded nanospheres was 300 ± 128 nm. BALB/c mice were immunized three times in 3-week intervals using ALM plus CpG-ODN-loaded nanospheres [(ALM + CpG-ODN)(PLGA)], ALM encapsulated PLGA nanospheres [(ALM)(PLGA)], (ALM)(PLGA) + CpG, ALM + CpG, ALM alone, or phosphate buffer solution (PBS). The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P<0.05) smaller footpad, was observed in mice immunized with (ALM + CpG-ODN)(PLGA). The (ALM)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG were also showed a significantly (P<0.05) smaller footpad swelling compared to the groups received either PBS or ALM alone. The mice immunized with (ALM + CpG-ODN)(PLGA), (ALM)(PLGA) + CpG, and ALM + CpG showed the highest IgG2a/IgG1 ratio, interferon-γ production, and lowest interleukin-4 production compared to the other groups. It is concluded that when both PLGA nanospheres and CpG-ODN adjuvants were used simultaneously, it induce stronger immune response and enhance protection rate against Leishmania infection.

  2. A theoretical investigation of the influence of gold nanosphere size on the decay and energy transfer rates and efficiencies of quantum emitters.

    PubMed

    Marocico, Cristian A; Zhang, Xia; Bradley, A Louise

    2016-01-14

    We present in this contribution a comprehensive investigation of the effect of the size of gold nanospheres on the decay and energy transfer rates of quantum systems placed close to these nanospheres. These phenomena have been investigated before, theoretically and experimentally, but no comprehensive study of the influence of the nanoparticle size on important dependences of the decay and energy transfer rates, such as the dependence on the donor-acceptor spectral overlap and the relative positions of the donor, acceptor, and nanoparticle, exists. As such, different accounts of the energy transfer mechanism have been presented in the literature. We perform an investigation of the energy transfer mechanisms between emitters and gold nanospheres and between donor-acceptor pairs in the presence of the gold nanospheres using a Green's tensor formalism, experimentally verified in our lab. We find that the energy transfer rate to small nanospheres is greatly enhanced, leading to a strong quenching of the emission of the emitter. When the nanosphere size is increased, it acts as an antenna, increasing the emission of the emitter. We also investigate the emission wavelength and intrinsic quantum yield dependence of the energy transfer to the nanosphere. As evidenced from the literature, the energy transfer process between the quantum system and the nanosphere can have a complicated distance dependence, with a r(-6) regime, characteristic of the Förster energy transfer mechanism, but also exhibiting other distance dependences. In the case of a donor-acceptor pair of quantum systems in the presence of a gold nanosphere, when the donor couples strongly to the nanosphere, acting as an enhanced dipole; the donor-acceptor energy transfer rate then follows a Förster trend, with an increased Förster radius. The coupling of the acceptor to the nanosphere has a different distance dependence. The angular dependence of the energy transfer efficiency between donor and acceptor

  3. Pedestrian and bicycle facilities in California : a technical reference and technology transfer synthesis for Caltrans planners and engineers.

    DOT National Transportation Integrated Search

    2005-07-01

    The primary purpose of Pedestrian and Bicycle Facilities in CaliforniaA : Technical Reference and Technology Transfer Synthesis for Caltrans Planners : and Engineers (Technical Reference) is to provide Caltrans staff : with a synthesis of in...

  4. The Conductivity and pH Values of Dispersions of Nanospheres for Targeted Drug Delivery in the Course of Forced Equilibrium Dialysis.

    PubMed

    Musiał, Witold; Pluta, Janusz; Byrski, Tomasz; Valh, Julija V

    2015-01-01

    In the available literature, the problem of pH and conductivity in FED is evaluated separately, and limited mainly to the final purity of the synthesized polymer. In this study data from conductivity and pH measurements were evaluated in the context of the structure of the macromolecule. The aim of the study was to evaluate the conductivity and pH of dispersions of nanospheres synthesized with the use of N-isopropyl acrylamide (NIPA) as the main monomer, N,N'-methylenebisacrylamide (MBA) as the cross-linker and acrylic acid (AcA) as the anionic comonomer during the purification of dispersions via forced equilibrium dialysis (FED). Six batches of nanospheres were obtained in the process of surfactant free precipitation polymerization (SFPP) under inert nitrogen. The conductivity and pH of the dispersions of nanospheres were measured at the beginning of FED and after finishing that process. The conductivity in the systems being studied decreased significantly in the process of FED. The initial values of conductivity ranged from 736.85±8.13 μS×cm(-1) to 1048.90±67.53 μS×cm(-1) After 10 days, when the systems being assessed gained stability in terms of conductivity level, the values of conductivity were between 4.29±0.01 μS×cm(-1) and 33.56±0.04 μS×cm(-1). The pH values inreased significantly after FED. The resulting pH was between 6.92±0.07 and 8.21±0.07, while the initial values were between 3.42±0.23 μS×cm(-1) and 4.30±0.22 μS×cm(-1). Conductivity and pH measurements performed during purification via FED provide important information on the composition of the resulting nanospheres, including the functional groups embedded in the structure of the polymer in the course of the synthesis, as well as the purity of the structures. The presence of a cross-linker and acidic comonomer in the poly-N-isopropyl acrylamide (polyNIPA) macromolecule may be confirmed by both the pH and the conductivity measurements.

  5. Fabrication of highly ordered 2D metallic arrays with disc-in-hole binary nanostructures via a newly developed nanosphere lithography

    NASA Astrophysics Data System (ADS)

    Yang, Xi; Guo, Wei; Wang, Xixi; Liao, Mingdun; Gao, Pingqi; Ye, Jichun

    2017-11-01

    2D metallic arrays with binary nanostructures derived from a nanosphere lithography (NSL) method have been rarely reported. Here, we demonstrate a novel NSL strategy to fabricate highly ordered 2D gold arrays with disc-in-hole binary (DIHB) nanostructures in large scale by employing a sacrificing layer combined with a three-step lift-off process. The structural parameters of the resultant DIHB arrays, such as periodicity, hole diameter, disc diameter and thicknesses can be facilely controlled by tuning the nanospheres size, etching condition, deposition angle and duration, respectively. Due to the intimate interactions between two subcomponents, the DIHB arrays exhibit both an extraordinary high surface-enhanced Raman scattering enhancement factor up to 5 × 108 and a low sheet resistance down to 1.7 Ω/sq. Moreover, the DIHB array can also be used as a metal catalyzed chemical etching catalytic pattern to create vertically-aligned Si nano-tube arrays for anti-reflectance application. This strategy provides a universal route for synthesizing other diverse binary nanostructures with controlled morphology, and thus expands the applications of the NSL to prepare ordered nanostructures with multi-function.

  6. Influence of two different template removal methods on the micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres

    NASA Astrophysics Data System (ADS)

    Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo

    2016-11-01

    Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.

  7. Synthesis of Brushite Particles in Reverse Microemulsions of the Biosurfactant Surfactin

    PubMed Central

    Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A. Satyanarayana; Atla, Shashi B.; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng

    2011-01-01

    In this study the “green chemistry” use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16–200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8–14 nm in diameter and 80–100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50–200 nm in diameter), oval (~300 nm in diameter) and nanorod (200–400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles. PMID:21747709

  8. Synthesis of brushite particles in reverse microemulsions of the biosurfactant surfactin.

    PubMed

    Maity, Jyoti Prakash; Lin, Tz-Jiun; Cheng, Henry Pai-Heng; Chen, Chien-Yen; Reddy, A Satyanarayana; Atla, Shashi B; Chang, Young-Fo; Chen, Hau-Ren; Chen, Chien-Cheng

    2011-01-01

    In this study the "green chemistry" use of the biosurfactant surfactin for the synthesis of calcium phosphate using the reverse microemulsion technique was demonstrated. Calcium phosphates are bioactive materials that are a major constituent of human teeth and bone tissue. A reverse microemulsion technique with surfactin was used to produce nanocrystalline brushite particles. Structural diversity (analyzed by SEM and TEM) resulted from different water to surfactin ratios (W/S; 250, 500, 1000 and 40,000). The particle sizes were found to be in the 16-200 nm range. Morphological variety was observed in the as-synthesized microemulsions, which consisted of nanospheres (~16 nm in diameter) and needle-like (8-14 nm in diameter and 80-100 nm in length) noncalcinated particles. However, the calcinated products included nanospheres (50-200 nm in diameter), oval (~300 nm in diameter) and nanorod (200-400 nm in length) particles. FTIR and XRD analysis confirmed the formation of brushite nanoparticles in the as-synthesized products, while calcium pyrophosphate was produced after calcination. These results indicate that the reverse microemulsion technique using surfactin is a green process suitable for the synthesis of nanoparticles.

  9. Biosensing via light scattering from plasmonic core-shell nanospheres coated with DNA molecules

    NASA Astrophysics Data System (ADS)

    Xie, Huai-Yi; Chen, Minfeng; Chang, Yia-Chung; Moirangthem, Rakesh Singh

    2017-05-01

    We present both experimental and theoretical studies for investigating DNA molecules attached on metallic nanospheres. We have developed an efficient and accurate numerical method to investigate light scattering from plasmonic nanospheres on a substrate covered by a shell, based on the Green's function approach with suitable spherical harmonic basis. Next, we use this method to study optical scattering from DNA molecules attached to metallic nanoparticles placed on a substrate and compare with experimental results. We obtain fairly good agreement between theoretical predictions and the measured ellipsometric spectra. The metallic nanoparticles were used to detect the binding with DNA molecules in a microfluidic setup via spectroscopic ellipsometry (SE), and a detectable change in ellipsometric spectra was found when DNA molecules are captured on Au nanoparticles. Our theoretical simulation indicates that the coverage of Au nanosphere by a submonolayer of DNA molecules, which is modeled by a thin layer of dielectric material (which may absorb light), can lead to a small but detectable spectroscopic shift in both the Ψ and Δ spectra with more significant change in Δ spectra in agreement with experimental results. Our studies demonstrated the ultrasensitive capability of SE for sensing submonolayer coverage of DNA molecules on Au nanospheres. Hence the spectroscopic ellipsometric measurements coupled with theoretical analysis via an efficient computation method can be an effective tool for detecting DNA molecules attached on Au nanoparticles, thus achieving label-free, non-destructive, and high-sensitivity biosensing with nanoscale resolution.

  10. Fano resonances in heterogeneous dimers of silicon and gold nanospheres

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Yang, Zhong-Jian; He, Jun

    2018-06-01

    We theoretically investigate the optical properties of dimers consisting of a gold nanosphere and a silicon nanosphere. The absorption spectrum of the gold sphere in the dimer can be significantly altered and exhibits a pronounced Fano profile. Analytical Mie theory and numerical simulations show that the Fano profile is induced by constructive and destructive interference between the incident electric field and the electric field of the magnetic dipole mode of the silicon sphere in a narrow wavelength range. The effects of the silicon sphere size, distance between the two spheres, and excitation configuration on the optical responses of the dimers are studied. Our study reveals the coherent feature of the electric fields of magnetic dipole modes in dielectric nanostructures and the strong interactions of the coherent fields with other nanophotonic structures.

  11. Enhanced synergetic effect of Cr(VI) ion removal and anionic dye degradation with superparamagnetic cobalt ferrite meso-macroporous nanospheres

    NASA Astrophysics Data System (ADS)

    Thomas, Bintu; Alexander, L. K.

    2018-02-01

    The overall effectiveness of a photocatalytic water treatment method strongly depends on various physicochemical factors. Superparamagnetic photocatalysts have incomparable advantage of easy separation using external magnetic fields. So, the synthesis of efficient superparamagnetic photocatalysts and the development of a deep understanding of the factors influencing their catalytic performances are important. Co x Zn1- x Fe2O4 ( x = 0, 0.5, 1) ferrite nanospheres were synthesized by the solvothermal route. The reduction of Cr(VI) and degradation of methyl orange (MO) impurities were carried out in single- and binary-component system under visible light irradiation. The adsorption experiments were done by the catalyst in the water solution containing the impurities. The magnetic and optical properties were studied by VSM and UV-Vis analysis. The nature of porosity was investigated using the BET method. 3D nanospheres of diameter about 5-10 nm were fabricated. The binary-contaminant system exhibited synergetic photocatalytic effect (80% improvement in activity rate) against the nanoparticles. The corresponding mechanism is discussed. CoFe2O4 exhibited better adsorption, photocatalytic and magnetic separation efficiency due to its higher surface area (50% higher), narrower band gap (25% lesser), smaller crystallite size, a strong magnetic strength (51.35 emu/g) and meso-macro hierarchical porous structure. The adsorption of Cr(VI) and MO can be approximated to the Langmuir and Freundlich model, respectively.

  12. A facile growth mechanism, structural, optical, dielectric and electrical properties of ZnSe nanosphere via hydrothermal process

    NASA Astrophysics Data System (ADS)

    Javed, Qurat-Ul-Ain; Baqi, Sabah; Abbas, Hussain; Bibi, Maryam

    2017-02-01

    Hydrothermal method was chosen as a convenient method to fabricate zinc selenide (ZnSe) nanoparticle materials. The prepared nanospheres were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM), where its different properties were observed using UV-visible spectroscopy and LCR meter. It was found that the pure ZnSe nanoparticles have a Zinc blende structure with crystallite size 10.91 nm and in a spherical form with average diameter of 35 nm (before sonication) and 18 nm (after sonication) with wide band gap of 4.28 eV. It was observed that there is inverse relation of frequency with dielectric constant and dielectric loss while AC conductivity grows up by increasing frequency. Such nanostructures were determined to be effectively used in optoelectronic devices as UV detector and in those devices where high-dielectric constant materials are required.

  13. Uniform TiO2-SiO2 hollow nanospheres: Synthesis, characterization and enhanced adsorption-photodegradation of azo dyes and phenol

    NASA Astrophysics Data System (ADS)

    Guo, Na; Liang, Yimai; Lan, Shi; Liu, Lu; Ji, Guijuan; Gan, Shucai; Zou, Haifeng; Xu, Xuechun

    2014-06-01

    TiO2-SiO2 hollow nanospheres with remarkable enhanced photocatalytic performance have been fabricated by sol-gel method. The hollow sphere possesses both high phototcatalytic activity and adsorption capability. The as-prepared samples were characterized by XRD, SEM, TEM, FTIR, XPS, BJH and TGA/DSC. The experiment results show that, the photocatalyst calcined at 500 °C with Ti/Si ratio of 5:1 (denoted as 5T/S-500) displayed superiorities in both textural and functional properties with the enhanced degradation efficiency on azo dyes (methylene blue, methyl orange) and phenol. The high adsorption capability of organic poisonous contaminants onto 5T/S-500 in aqueous solution demonstrated that the photocatalyst can remove the contaminants from water effectively even without illumination. The TEM and SEM morphologies demonstrated unique hollow and coarse structure of 5T/S-500. Structural analysis showed that Si was doped into the lattice of TiO2 and SiO2 nanoparticles can work as a surface modifier on TiO2. The surface area of 5T/S-500 is 1105 m2/g, 14.5 times as great as that of the pure hollow TiO2 nanosphere, confirms the effect of SiO2 on the improvement of specific surface area. The high photocatalytic activities and high adsorption ability for organic poisonous contaminants demonstrate that the nanocomposite of TiO2-SiO2 is a promising candidate material for future treatment of contaminated water.

  14. Highly regenerable carbon-Fe3O4 core-satellite nanospheres as oxygen reduction electrocatalyst and magnetic adsorbent

    NASA Astrophysics Data System (ADS)

    Zhou, Wenqiang; Liu, Minmin; Cai, Chao; Zhou, Haijun; Liu, Rui

    2017-02-01

    We present the synthesis and multifunctional utilization of core-satellite carbon-Fe3O4 nanoparticles to serve as the enabling platform for a range of applications including oxygen reduction reaction (ORR) and magnetic adsorbent. Starting from polydopamine (PDA) nanoparticles and Fe(NO3)3, carbon-Fe3O4 core-satellite nanospheres are synthesized through successive steps of impregnation, ammoniation and carbonization. The synergistic combination of Fe3O4 and N-doped carbon endows the nanocomposite with high electrochemical activity in ORR and mainly four electrons transferred in reaction process. Furthermore, carbon-Fe3O4 nanoparticles used as magnetic adsorbent exhibit the efficient removal of Rhodamine B from an aqueous solution. The recovery and reuse of the adsorbent is demonstrated 5 times without any detectible loss in activity.

  15. Cationic gemini surfactant-assisted synthesis of hollow Au nanostructures by stepwise reductions.

    PubMed

    Wang, Wentao; Han, Yuchun; Tian, Maozhang; Fan, Yaxun; Tang, Yongqiang; Gao, Mingyuan; Wang, Yilin

    2013-06-26

    A novel synthetic approach was developed for creating versatile hollow Au nanostructures by stepwise reductions of Au(III) upon the use of cationic gemini surfactant hexamethylene-1,6-bis(dodecyl dimethylammonium bromide) (C12C6C12Br2) as a template agent. It was observed that the Au(I) ions obtained from the reduction of Au(III) by ascorbic acid can assist the gemini surfactant to form vesicles, capsule-like, and tube-like aggregates that subsequently act as soft templates for hollow Au nanostructures upon further reduction of Au(I) to Au(0) by NaBH4. It was demonstrated that the combination of C12C6C12Br2 and Au(I) plays a key role in regulating the structure of the hollow precursors not only because C12C6C12Br2 has a stronger aggregation ability in comparison with its single chain counterpart but also because the electrostatic repulsion between head groups of C12C6C12Br2 is greatly weakened after Au(III) is converted to Au(I), which is in favor of the construction of vesicles, capsule-like, and tube-like aggregates. Compared with solid Au nanospheres, the resultant hollow nanostructures exhibit enhanced electrocatalytic activities in methanol oxidation, following the order of elongated nanocapsule > nanocapsule > nanosphere. Benefiting from balanced interactions between the gemini surfactant and Au(I), this soft-template method may present a facile and versatile approach for the controlled synthesis of Au nanostructures potentially useful for fuel cells and other Au nanodevices.

  16. Hierarchical inorganic-organic multi-shell nanospheres for intervention and treatment of lead-contaminated blood

    NASA Astrophysics Data System (ADS)

    Khairy, Mohamed; El-Safty, Sherif A.; Shenashen, Mohamed. A.; Elshehy, Emad A.

    2013-08-01

    The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled us to create a unique hierarchical multi-shell sensor. We examined the efficiency of the multi-shell sensor in removing lead ions from the blood to ascertain the potential use of the sensor in medical applications. The lead-induced hemolysis of RBCs in the sensing/capture assay was inhibited by the ability of the hierarchical sensor to remove lead ions from blood. The results suggest the higher flux and diffusion of Pb2+ ions into the mesopores of the core/multi-shell sensor than into the RBC membranes. These findings indicate that the sensor could be used in the prevention of health risks associated with elevated blood lead levels such as anemia.The highly toxic properties, bioavailability, and adverse effects of Pb2+ species on the environment and living organisms necessitate periodic monitoring and removal whenever possible of Pb2+ concentrations in the environment. In this study, we designed a novel optical multi-shell nanosphere sensor that enables selective recognition, unrestrained accessibility, continuous monitoring, and efficient removal (on the order of minutes) of Pb2+ ions from water and human blood, i.e., red blood cells (RBCs). The consequent decoration of the mesoporous core/double-shell silica nanospheres through a chemically responsive azo-chromophore with a long hydrophobic tail enabled

  17. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins.

    PubMed

    Tafaghodi, M; Eskandari, M; Kharazizadeh, M; Khamesipour, A; Jaafari, M R

    2010-12-01

    Immune responses against the Leishmania antigens are not sufficient to protect against a leishmania challenge. Therefore these antigens need to be potentiated by various adjuvants and delivery systems. In this study, Poly (d,l-lactide-co-glycolide (PLGA) nanospheres as antigen delivery system and Quillaja saponins (QS) as immunoadjuvant have been used to enhance the immune response against autoclaved Leishmania major (ALM). PLGA nanospheres were prepared by a double-emulsion (W/O/W) technique. Particulate characteristics were studied by scanning electron microscopy and particle size analysis. Mean diameter for nanospheres loaded with ALM+QS was 294 ± 106 nm. BALB/c mice were immunized three times in 3-weeks intervals using ALM plus QS loaded nanospheres [(ALM+QS)PLGA], ALM encapsulated with PLGA nanospheres [(ALM)PLGA], (ALM)PLGA + QS, ALM + QS, ALM alone or PBS. The intensity of infection induced by L. major challenge was assessed by measuring size of footpad swelling. The strongest protection, showed by significantly (P < 0.05) smaller footpad, were observed in mice immunized with (ALM)PLGA. The (ALM+QS)PLGA group showed the least protection and highest swelling, while the (ALM)PLGA+QS, ALM+QS and ALM showed an intermediate protection with no significant difference. The mice immunized with ALM and ALM+QS showed the highest IgG2a/IgG1 ratio (P < 0.01), followed by (ALM)PLGA+QS. The highest IFN-γ and lowest IL-4 production was seen in (ALM)PLGA+QS, ALM+QS groups. The highest parasite burden was observed in (ALM)PLGA+QS and (ALM+QS)PLGA groups. It is concluded that PLGA nanospheres as a vaccine delivery system could increase the protective immune responses, but QS adjuvant has a reverse effect on protective immune responses and the least protective responses were seen in the presence of this adjuvant.

  18. [INVITED] Highly sensitive LSPR based photonic crystal fiber sensor with embodiment of nanospheres in different material domain

    NASA Astrophysics Data System (ADS)

    Paul, D.; Biswas, R.

    2018-05-01

    We report a highly sensitive Localized surface plasmon resonance (LSPR) based photonic crystal fiber (PCF) sensor by embedding an array of gold nanospheres into the first layer of air-holes of PCF. We present a comprehensive analysis on the basis of progressive variation of refractive indices of analytes as well as sizes of the nanospheres. In the proposed sensing scheme, refractive indices of the analytes have been changed from 1 to 1.41(RIU), accompanied by alteration of the sizes of nanospheres ranging 40-70 nm. The entire study has been executed in the context of different material based PCFs (viz. phosphate and crown) and the corresponding results have been analyzed and compared. We observe a declining trend in modal loss in each set of PCFs with increment of RI of the analyte. Lower loss has been observed in case of crown based PCF. The sensor shows highest sensitivity ∼27,000 nm/RIU for crown based PCF for nanosphere of 70 nm with average wavelength interrogation sensitivity ∼5333.53 nm/RIU. In case of phosphate based PCF, highest sensitivity is found to be ∼18,000 nm/RIU with an average interrogation sensitivity ∼4555.56 nm/RIU for 40 nm of Au nanosphere. Moreover, the additional sensing parameters have been observed to highlight the better design of the modelled LSPR based photonic crystal fiber sensor. As such, the resolution (R), limit of detection (LOD) and sensitivity (S) of the proposed sensor in each case (viz. phosphate and crown PCF) have been discussed by using wavelength interrogation technique. The proposed study provides a basis for detailed investigation of LSPR phenomenon for PCF utilizing noble metal nanospheres (AuNPs).

  19. Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers

    NASA Astrophysics Data System (ADS)

    Huang, Xiaohua; Kang, Bin; Qian, Wei; Mackey, Megan A.; Chen, Po C.; Oyelere, Adegboyega K.; El-Sayed, Ivan H.; El-Sayed, Mostafa A.

    2010-09-01

    We conduct a comparative study on the efficiency and cell death pathways of continuous wave (cw) and nanosecond pulsed laser photothermal cancer therapy using gold nanospheres delivered to either the cytoplasm or nucleus of cancer cells. Cytoplasm localization is achieved using arginine-glycine-aspartate peptide modified gold nanospheres, which target integrin receptors on the cell surface and are subsequently internalized by the cells. Nuclear delivery is achieved by conjugating the gold nanospheres with nuclear localization sequence peptides originating from the simian virus. Photothermal experiments show that cell death can be induced with a single pulse of a nanosecond laser more efficiently than with a cw laser. When the cw laser is applied, gold nanospheres localized in the cytoplasm are more effective in inducing cell destruction than gold nanospheres localized at the nucleus. The opposite effect is observed when the nanosecond pulsed laser is used, suggesting that plasmonic field enhancement of the nonlinear absorption processes occurs at high localization of gold nanospheres at the nucleus. Cell death pathways are further investigated via a standard apoptosis kit to show that the cell death mechanisms depend on the type of laser used. While the cw laser induces cell death via apoptosis, the nanosecond pulsed laser leads to cell necrosis. These studies add mechanistic insight to gold nanoparticle-based photothermal therapy of cancer.

  20. Synthesis and magnetic hyperthermia studies on high susceptible Fe1-xMgxFe2O4 superparamagnetic nanospheres

    NASA Astrophysics Data System (ADS)

    Manohar, A.; Krishnamoorthi, C.

    2017-12-01

    Majority studies on magnetic hyperthermia properties were carried out by modifying the saturation mass magnetization (Ms) of the samples. Here efforts were made to enhance the specific heat generation rate (SHGR) of single domain superparamagnetic (SP) material by modifying its magnetic susceptibility. Well crystallined, inverse spinel structured and close to monosize Fe1-xMgxFe2O4 (x = 0, 0.1, 0.2, 0.3, 0.4, & 0.5) compounds with nanosphere geometry (diameter 10 nm) were synthesized by solvothermal reflux method at ≈ 300 °C . In the literature it is reported that magnesium ferrites synthesized at high temperatures yield mixed (normal & inverse) spinel structures. The inverse spinel structure was confirmed by X-ray powder diffraction (XRPD), lattice vibrations and magnetic characteristics of the compounds. The Ms of the compounds decrease with increase of substituent Mg2+ concentration. Under high excitation energy the inter-valance charge transfer whereas under low excitation energy the intra-valance charge transfer process were predominant. The as-synthesized nanospheres were encapsulated by hydrophobic oleic acid and were exchanged by hydrophilic poly(acrylic acid) by chemical exchange process. Estimated magnetic hyperthermia power or SHGR of the x = 0, 0.3 & 0.5 were 11, 11.4 & 22.4 W per gram of respective compounds, respectively, under 63.4 kA m-1 field amplitude and 126 kHz frequency. The SHGR enhances with Mg2+ concentration though its Ms reduces and is attributed to reduced spin-orbital coupling in the compounds with enhanced Mg2+ concentration. This may pave a new way to develop magnetic hyperthermia material by modifying magnetic susceptibility of the compounds against to the reported Ms modification approach. The obtained high SHGR of the biocompatible compounds could be used in magnetic hyperthermia applications in biomedical field.

  1. Cellulase immobilization on magnetic nanoparticles encapsulated in polymer nanospheres.

    PubMed

    Lima, Janaina S; Araújo, Pedro H H; Sayer, Claudia; Souza, Antonio A U; Viegas, Alexandre C; de Oliveira, Débora

    2017-04-01

    Immobilization of cellulases on magnetic nanoparticles, especially magnetite nanoparticles, has been the main approach studied to make this enzyme, economically and industrially, more attractive. However, magnetite nanoparticles tend to agglomerate, are very reactive and easily oxidized in air, which has strong impact on their useful life. Thus, it is very important to provide proper surface coating to avoid the mentioned problems. This study aimed to investigate the immobilization of cellulase on magnetic nanoparticles encapsulated in polymeric nanospheres. The support was characterized in terms of morphology, average diameter, magnetic behavior and thermal decomposition analyses. The polymer nanospheres containing encapsulated magnetic nanoparticles showed superparamagnetic behavior and intensity average diameter about 150 nm. Immobilized cellulase exhibited broader temperature stability than in the free form and great reusability capacity, 69% of the initial enzyme activity was maintained after eight cycles of use. The magnetic support showed potential for cellulase immobilization and allowed fast and easy biocatalyst recovery through a single magnet.

  2. Optical coupling of cold atoms to a levitated nanosphere

    NASA Astrophysics Data System (ADS)

    Montoya, Cris; Witherspoon, Apryl; Fausett, Jacob; Lim, Jason; Kitching, John; Geraci, Andrew

    2017-04-01

    Cooling mechanical oscillators to their quantum ground state enables the study of quantum phenomena at macroscopic levels. In many cases, the temperature required to cool a mechanical mode to the ground state is below what current cryogenic systems can achieve. As an alternative to cooling via cryogenic systems, it has been shown theoretically that optically trapped nanospheres could reach the ground state by sympathetically cooling the spheres via cold atoms. Such cooled spheres can be used in quantum limited sensing and matter-wave interferometry, and could also enable new hybrid quantum systems where mechanical oscillators act as transducers. In our setup, optical fields are used to couple a sample of cold Rubidium atoms to a nanosphere. The sphere is optically levitated in a separate vacuum chamber, while the atoms are trapped in a 1-D optical lattice and cooled using optical molasses. This work is partially supported by NSF, Grant No. PHY-1506431.

  3. Terahertz plasmon and surface-plasmon modes in hollow nanospheres

    PubMed Central

    2012-01-01

    We present a theoretical study of the electronic subband structure and collective electronic excitation associated with plasmon and surface plasmon modes in metal-based hollow nanosphere. The dependence of the electronic subband energy on the sample parameters of the hollow nanosphere is examined. We find that the subband states with different quantum numbers l degenerate roughly when the outer radius of the sphere is r2 ≥ 100 nm. In this case, the energy spectrum of a sphere is mainly determined by quantum number n. Moreover, the plasmon and surface plasmon excitations can be achieved mainly via inter-subband transitions from occupied subbands to unoccupied subbands. We examine the dependence of the plasmon and surface-plasmon frequencies on the shell thickness d and the outer radius r2 of the sphere using the standard random-phase approximation. We find that when a four-state model is employed for calculations, four branches of the plasmon and surface plasmon oscillations with terahertz frequencies can be observed, respectively. PMID:23092121

  4. Single pot synthesized gold nanoparticles using Hippophae rhamnoides leaf and berry extract showed shape-dependent differential nanobiotechnological applications.

    PubMed

    Sharma, Bhavana; Deswal, Renu

    2018-04-04

    A facile one-pot green synthesis of gold nanoparticles (AuNPs) with different geometries was achieved using an underutilized Himalayan bioresource Hippophae rhamnoides. Aqueous leaf (LE) and berry extracts (BE) showed rapid synthesis of monodispersed spherical LEAuNPs (27 ± 3.2 nm) and anisotropic BEAuNPs (55 ± 4.5 nm) within 2 and 15 min, respectively. The Fourier-transform infrared (FTIR) spectroscopy showed involvement of polyphenolics/flavonoids in AuNPs reduction. LE AuNPs (IC 50 49 µg) exhibited higher antioxidant potential than BE AuNPs (IC 50 57 µg). Both BE nanotriangles and LE nanospheres exhibited cytotoxicity against Jurkat cell lines. These nanocatalysts also exhibited effective (80-99%) reductive degradation of structurally different carcinogenic azo dyes. Kinetic studies revealed that BE nanotriangles exhibited higher catalytic efficiency (14-67%) than LE nanospheres suggesting shape-dependent regulation of biological activities. The gas chromatography-mass spectrometry (GC-MS) analysis confirmed conversion of toxic methyl orange dye to non-toxic intermediates. Probable degradation mechanism involving adsorption and catalytic reduction of azo bonds was proposed. The present synthesis protocol provided a facile and energy saving procedure for rapid synthesis of highly stable nanoparticles with significant antioxidant and anticancer potential. This is the first report of H. rhamnoides-mediated green synthesis of multipurpose AuNPs as antioxidant, anticancer and nanocatalytic agents for treatment of dye contaminated waste water and future therapeutic applications.

  5. Porous Se@SiO2 nanospheres treated paraquat-induced acute lung injury by resisting oxidative stress.

    PubMed

    Zhu, Yong; Deng, Guoying; Ji, Anqi; Yao, Jiayi; Meng, Xiaoxiao; Wang, Jinfeng; Wang, Qian; Wang, Qiugen; Wang, Ruilan

    2017-01-01

    Acute paraquat (PQ) poisoning is one of the most common forms of pesticide poisoning. Oxidative stress and inflammation are thought to be important mechanisms in PQ-induced acute lung injury (ALI). Selenium (Se) can scavenge intracellular free radicals directly or indirectly. In this study, we investigated whether porous Se@SiO 2 nanospheres could alleviate oxidative stress and inflammation in PQ-induced ALI. Male Sprague Dawley rats and RLE-6TN cells were used in this study. Rats were categorized into 3 groups: control (n=6), PQ (n=18), and PQ + Se@SiO 2 (n=18). The PQ and PQ + Se@SiO 2 groups were randomly and evenly divided into 3 sub-groups according to different time points (24, 48 and 72 h) after PQ treatment. Porous Se@SiO 2 nanospheres 1 mg/kg (in the PQ + Se@SiO 2 group) were administered via intraperitoneal injection every 24 h. Expression levels of reduced glutathione, malondialdehyde, superoxide dismutase, reactive oxygen species (ROS), nuclear factor-κB (NF-κB), phosphorylated NF-κB (p-NF-κB), tumor necrosis factor-α and interleukin-1β were detected, and a histological analysis of rat lung tissues was performed. The results showed that the levels of ROS, malondialdehyde, NF-κB, p-NF-κB, tumor necrosis factor-α and interleukin-1β were markedly increased after PQ treatment. Glutathione and superoxide dismutase levels were reduced. However, treatment with porous Se@SiO 2 nanospheres markedly alleviated PQ-induced oxidative stress and inflammation. Additionally, the results from histological examinations and wet-to-dry weight ratios of rat lung tissues showed that lung damage was reduced after porous Se@SiO 2 nanosphere treatment. These data indicate that porous Se@SiO 2 nanospheres may reduce NF-κB, p-NF-κB and inflammatory cytokine levels by inhibiting ROS in PQ-induced ALI. This study demonstrates that porous Se@SiO 2 nanospheres may be a therapeutic method for use in the future for PQ poisoning.

  6. Studies on the annealing and antibacterial properties of the silver-embedded aluminum/silica nanospheres

    PubMed Central

    2014-01-01

    Substantial silver-embedded aluminum/silica nanospheres with uniform diameter and morphology were successfully synthesized by sol-gel technique. After various annealing temperatures, the surface mechanisms of each sample were analyzed using scanning electron microscope, transmission electron microscope, and X-ray photoelectron spectroscopy. The chemical durability examinations and antibacterial tests of each sample were also carried out for the confirmation of its practical usage. Based on the result of the above analyses, the silver-embedded aluminum/silica nanospheres are eligible for fabricating antibacterial utensils. PMID:25136275

  7. Fabrication of biodegradable PEG-PLA nanospheres for solubility, stabilization, and delivery of curcumin.

    PubMed

    Liang, Hongying; Friedman, Joel M; Nacharaju, Parimala

    2017-03-01

    Curcumin is an effective and safe anticancer agent, and also known to induce vasodilation, but its hydrophobicity limits its clinical application. In this study, a simple emulsion method was developed to prepare biodegradable poly (ethylene glycol)-poly (lactic acid) (PEG-PLA) nanospheres to encapsulate curcumin to improve its solubility and stability. The nanoparticle size was around 150 nm with a narrow size distribution. Fluorescence microscopy showed that curcumin encapsulated PEG-PLA nanospheres were taken up rapidly by Hela and MDA-MB-231 cancer cells. This novel nanoparticulate carrier may improve the bioavailability of curcumin without affecting its anticancer properties.

  8. Optimized zein nanospheres for improved oral bioavailability of atorvastatin

    PubMed Central

    Hashem, Fahima M; Al-Sawahli, Majid M; Nasr, Mohamed; Ahmed, Osama AA

    2015-01-01

    Background This work focuses on the development of atorvastatin utilizing zein, a natural, safe, and biocompatible polymer, as a nanosized formulation in order to overcome the poor oral bioavailability (12%) of the drug. Methods Twelve experimental runs of atorvastatin–zein nanosphere formula were formulated by a liquid–liquid phase separation method according to custom fractional factorial design to optimize the formulation variables. The factors studied were: weight % of zein to atorvastatin (X1), pH (X2), and stirring time (X3). Levels for each formulation variable were designed. The selected dependent variables were: mean particle size (Y1), zeta potential (Y2), drug loading efficiency (Y3), drug encapsulation efficiency (Y4), and yield (Y5). The optimized formulation was assayed for compatibility using an X-ray diffraction assay. In vitro diffusion of the optimized formulation was carried out. A pharmacokinetic study was also done to compare the plasma profile of the atorvastatin–zein nanosphere formulation versus atorvastatin oral suspension and the commercially available tablet. Results The optimized atorvastatin–zein formulation had a mean particle size of 183 nm, a loading efficiency of 14.86%, and an encapsulation efficiency of 29.71%. The in vitro dissolution assay displayed an initial burst effect, with a cumulative amount of atorvastatin released of 41.76% and 82.3% after 12 and 48 hours, respectively. In Wistar albino rats, the bioavailability of atorvastatin from the optimized atorvastatin–zein formulation was 3-fold greater than that from the atorvastatin suspension and the commercially available tablet. Conclusion The atorvastatin–zein nanosphere formulation improved the oral delivery and pharmacokinetic profile of atorvastatin by enhancing its oral bioavailability. PMID:26150716

  9. Synthesis of SiO2-coated ZnMnFe2O4 nanospheres with improved magnetic properties.

    PubMed

    Wang, Jun; Zhang, Kai; Zhu, Yuejin

    2005-05-01

    A core-shell structured composite, SiO2 coated ZnMnFe2O4 spinel ferrite nanoparticles (average diameter of approximately 80 nm), was prepared by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of ZnMnFe2O4 nanoparticles (average diameter of approximately 10 nm) synthesized by a hydrothermal method. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and field emission scanning electron microscopy (FESEM). The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate that the core-shell samples possess better magnetic properties at room temperature, compared with paramagnetic colloids with a magnetic core by a coprecipitation method. These core-shell nanospherical particles with self-assembly under additional magnetic fields could have potential application in biomedical systems.

  10. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  11. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  12. Development of polymethacrylate nanospheres as targeted delivery systems for catechin within the gastrointestinal tract

    NASA Astrophysics Data System (ADS)

    Pool, Hector; Luna-Barcenas, Gabriel; McClements, David Julian; Mendoza, Sandra

    2017-09-01

    In this study, pH-sensitive nanospheres were fabricated using a polymethacrylate-based copolymer to encapsulate, protect, and release catechin, and thereby overcome its poor water solubility and low oral bioaccessibility. The polymer used was a polymethacrylic acid-co-ethyl acrylate 1:1 copolymer that dissolves above pH 5.5, and so can be used to retain and protect bioactives within the stomach but releases them in the small intestine. Catechin-loaded nanospheres were fabricated using the solvent displacement method. Physicochemical characterization of the nanospheres indicated that they were relatively small ( d = 160 nm) and had a high negative charge ( ζ = - 36 mV), which meant that they had good stability to aggregation under physiological conditions (pH 7.2). Catechin was trapped within the nanospheres at an encapsulation efficiency of about 51% in an amorphous state. A simulated gastrointestinal study showed that catechin was slowly released under gastric conditions (pH 2.5), but rapidly released under small intestine conditions (pH 7.2). The observed improvement in the antioxidant activity and bioaccessibility of catechin after encapsulation was attributed to the fact that it was in an amorphous state and had good water dispersibility. This study provides useful information for the formulation of novel delivery systems to improve the dispersibility, bioaccessibility, and bioactivity of catechin and potentially other active components. These delivery systems could be used to improve the efficacy of bioactive components in foods, supplements, and pharmaceutical products.

  13. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    PubMed Central

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-01-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g−1, respectively, at a current density of 2 A g−1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones. PMID:27033088

  14. Applying Nanoscale Kirkendall Diffusion for Template-Free, Kilogram-Scale Production of SnO2 Hollow Nanospheres via Spray Drying System

    NASA Astrophysics Data System (ADS)

    Cho, Jung Sang; Ju, Hyeon Seok; Kang, Yun Chan

    2016-04-01

    A commercially applicable and simple process for the preparation of aggregation-free metal oxide hollow nanospheres is developed by applying nanoscale Kirkendall diffusion to a large-scale spray drying process. The precursor powders prepared by spray drying are transformed into homogeneous metal oxide hollow nanospheres through a simple post-treatment process. Aggregation-free SnO2 hollow nanospheres are selected as the first target material for lithium ion storage applications. Amorphous carbon microspheres with uniformly dispersed Sn metal nanopowder are prepared in the first step of the post-treatment process under a reducing atmosphere. The post-treatment of the Sn-C composite powder at 500 °C under an air atmosphere produces carbon- and aggregation-free SnO2 hollow nanospheres through nanoscale Kirkendall diffusion. The hollow and filled SnO2 nanopowders exhibit different cycling performances, with their discharge capacities after 300 cycles being 643 and 280 mA h g-1, respectively, at a current density of 2 A g-1. The SnO2 hollow nanospheres with high structural stability exhibit superior cycling and rate performances for lithium ion storage compared to the filled ones.

  15. Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods.

    PubMed

    Qin, Zhenpeng; Wang, Yiru; Randrianalisoa, Jaona; Raeesi, Vahid; Chan, Warren C W; Lipiński, Wojciech; Bischof, John C

    2016-07-21

    Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.

  16. Quantitative Comparison of Photothermal Heat Generation between Gold Nanospheres and Nanorods

    NASA Astrophysics Data System (ADS)

    Qin, Zhenpeng; Wang, Yiru; Randrianalisoa, Jaona; Raeesi, Vahid; Chan, Warren C. W.; Lipiński, Wojciech; Bischof, John C.

    2016-07-01

    Gold nanoparticles (GNPs) are widely used for biomedical applications due to unique optical properties, established synthesis methods, and biological compatibility. Despite important applications of plasmonic heating in thermal therapy, imaging, and diagnostics, the lack of quantification in heat generation leads to difficulties in comparing the heating capability for new plasmonic nanostructures and predicting the therapeutic and diagnostic outcome. This study quantifies GNP heat generation by experimental measurements and theoretical predictions for gold nanospheres (GNS) and nanorods (GNR). Interestingly, the results show a GNP-type dependent agreement between experiment and theory. The measured heat generation of GNS matches well with theory, while the measured heat generation of GNR is only 30% of that predicted theoretically at peak absorption. This then leads to a surprising finding that the polydispersity, the deviation of nanoparticle size and shape from nominal value, significantly influences GNR heat generation (>70% reduction), while having a limited effect for GNS (<10% change). This work demonstrates that polydispersity is an important metric in quantitatively predicting plasmonic heat generation and provides a validated framework to quantitatively compare the heating capabilities between gold and other plasmonic nanostructures.

  17. Scanning metallic nanosphere microscopy for vectorial profiling of optical focal spots.

    PubMed

    Yi, Hui; Long, Jing; Li, Hongquan; He, Xiaolong; Yang, Tian

    2015-04-06

    Recent years have witnessed fast progress in the development of spatially variant states of polarization under high numerical aperture focusing, and intensive exploration of their applications. We report a vectorial, broadband, high contrast and subwavelength resolution method for focal spot profiling. In this experiment, a 100 nm diameter gold nanosphere on a silica aerogel substrate is raster scanned across the focal spots, and the orthogonal polarization components can be obtained simultaneously by measuring the scattering far field in a confocal manner. The metallic-nanosphere-on-aerogel structure ensures negligible distortion to the focal spots, low crosstalk between orthogonal polarization components (1/39 in experiment), and a low level background noise (1/80 of peak intensity in experiment), while high contrast imaging is not limited by the resonance bandwidth.

  18. Ordered DNA-Surfactant Hybrid Nanospheres Triggered by Magnetic Cationic Surfactants for Photon- and Magneto-Manipulated Drug Delivery and Release.

    PubMed

    Xu, Lu; Wang, Yitong; Wei, Guangcheng; Feng, Lei; Dong, Shuli; Hao, Jingcheng

    2015-12-14

    Here we construct for the first time ordered surfactant-DNA hybrid nanospheres of double-strand (ds) DNA and cationic surfactants with magnetic counterion, [FeCl3Br](-). The specificity of the magnetic cationic surfactants that can compact DNA at high concentrations makes it possible for building ordered nanospheres through aggregation, fusion, and coagulation. Cationic surfactants with conventional Br(-) cannot produce spheres under the same condition because they lose the DNA compaction ability. When a light-responsive magnetic cationic surfactant is used to produce nanospheres, a dual-controllable drug-delivery platform can be built simply by the applications of external magnetic force and alternative UV and visible light. These nanospheres obtain high drug absorption efficiency, slow release property, and good biocompatibility. There is potential for effective magnetic-field-based targeted drug delivery, followed by photocontrollable drug release. We deduce that our results might be of great interest for making new functional nucleic-acid-based nanomachines and be envisioned to find applications in nanotechnology and biochemistry.

  19. Nitrogen-doped hollow porous carbon nanospheres coated with MnO2 nanosheets as excellent sulfur hosts for Li-S batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolong; Yang, He; Guo, Junling; Zhao, Shupeng; Gong, Shoutao; Du, Xinyu; Zhang, Fengxiang

    2017-11-01

    In this work, nitrogen-doped hollow porous carbon nanospheres coated with MnO2 nanosheets (NHPC@MnO2) were prepared as a novel sulfur host for the cathode of lithium-sulfur battery. N-doping of carbon and deposition of the inherently polar MnO2 promote chemical binding of the host with sulfur and its reduction products, known as polysulfides. Meanwhile, proper N-doping can improve the electron conductivity of carbon, and the nanosheet structure may help to guarantee facile electron- and lithium-ion transport through MnO2. Attributed to these advantages, the NHPC@MnO2/S cathode with a high sulfur content (70 wt% and 2.6 mg cm-2) exhibited an excellent cycle stability: its capacity retention was 93% within 100 cycles at 0.5 C. It also displayed a good rate capability: discharge capacities being ˜1130 mAh g-1 at 0.2 C, ˜1000 mAh g-1 at 0.5 C, ˜820 mAh g-1 at 1 C, and ˜630 mAh g-1 at 2 C. Our work demonstrates the synergistic effect of MnO2 nanostructure and N-doped carbon nanospheres for enhanced performance of lithium-sulfur battery cathodes.

  20. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    NASA Astrophysics Data System (ADS)

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-08-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10-20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules.

  1. Precise Tuning of Facile One-Pot Gelatin Methacryloyl (GelMA) Synthesis

    PubMed Central

    Shirahama, Hitomi; Lee, Bae Hoon; Tan, Lay Poh; Cho, Nam-Joon

    2016-01-01

    Gelatin-methacryloyl (GelMA) is one of the most commonly used photopolymerizable biomaterials in bio-applications. However, GelMA synthesis remains suboptimal, as its reaction parameters have not been fully investigated. The goal of this study is to establish an optimal route for effective and controllable GelMA synthesis by systematically examining reaction parameters including carbonate-bicarbonate (CB) buffer molarity, initial pH adjustment, MAA concentration, gelatin concentration, reaction temperature, and reaction time. We employed several analytical techniques in order to determine the degree of substitution (DS) and conducted detailed structural analysis of the synthesized polymer. The results enabled us to optimize GelMA synthesis, showing the optimal conditions to balance the deprotonation of amino groups with minimizing MAA hydrolysis, which led to nearly complete substitution. The optimized conditions (low feed ratio of MAA to gelatin (0.1 mL/g), 0.25 M CB buffer at pH 9, and a gelatin concentration of 10–20%) enable a simplified reaction scheme that produces GelMA with high substitution with just one-step addition of MAA in one pot. Looking forward, these optimal conditions not only enable facile one-pot GelMA synthesis but can also guide researchers to explore the efficient, high methacrylation of other biomacromolecules. PMID:27503340

  2. Liquid-phase pulsed laser ablation synthesis of graphitized carbon-encapsulated palladium core-shell nanospheres for catalytic reduction of nitrobenzene to aniline

    NASA Astrophysics Data System (ADS)

    Kim, Yu-jin; Ma, Rory; Reddy, D. Amaranatha; Kim, Tae Kyu

    2015-12-01

    Graphitized carbon-encapsulated palladium (Pd) core-shell nanospheres were produced via pulsed laser ablation of a solid Pd foil target submerged in acetonitrile. The microstructural features and optical properties of these nanospheres were characterized via high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-visible spectroscopy. Microstructural analysis indicated that the core-shell nanostructures consisted of single-crystalline cubic metallic Pd spheres that serve as the core material, over which graphitized carbon was anchored as a heterogeneous shell. The absorbance spectrum of the synthesized nanostructures exhibited a broad (absorption) band at ∼264 nm; this band corresponded to the typical inter-band transition of a metallic system and resulted possibly from the absorbance of the ionic Pd2+. The catalytic properties of the Pd and Pd@C core-shell nanostructures were investigated using the reduction of nitrobenzene to aniline by an excess amount of NaBH4 in an aqueous solution at room temperature, as a model reaction. Owing to the graphitized carbon-layered structure and the high specific surface area, the resulting Pd@C nanostructures exhibited higher conversion efficiencies than their bare Pd counterparts. In fact, the layered structure provided access to the surface of the Pd nanostructures for the hydrogenation reaction, owing to the synergistic effect between graphitized carbon and the nanostructures. Their unique structure and excellent catalytic performance render Pd@C core-shell nanostructures highly promising candidates for catalysis applications.

  3. Microwave hydrothermal transformation of amorphous calcium carbonate nanospheres and application in protein adsorption.

    PubMed

    Qi, Chao; Zhu, Ying-Jie; Chen, Feng

    2014-03-26

    Calcium carbonate and calcium phosphate are the main components of biominerals. Among all of the forms of biominerals, amorphous calcium carbonate (ACC) and amorphous calcium phosphate (ACP) are the most important forms because they play a pivotal role in the process of biomineralization and are the precursors to the crystalline polymorphs. In this work, we first synthesized ACC in vitro using adenosine 5'-triphosphate disodium salt (ATP) as the stabilizer and investigated the transformation of the ACC under microwave hydrothermal conditions, and ACC/ACP composite nanospheres and carbonated hydroxyapatite (CHA) nanospheres were successfully prepared. In this novel strategy, ATP has two main functions: it serves as the stabilizer for ACC and the phosphorus source for ACP and CHA. Most importantly, the morphology and the size of the ACC precursor can be well-preserved after microwave heating, so it provides a new method for the preparation of calcium phosphate nanostructured materials using phosphorus-containing biomolecule-stabilized ACC as the precursor. Furthermore, the as-prepared ACC/ACP composite nanospheres have excellent biocompatibility and high protein adsorption capacity, indicating that they are promising for applications in biomedical fields such as drug delivery and protein adsorption.

  4. Synthesis and characterization of metastable, 20 nm-sized Pna21-LiCoPO4 nanospheres

    NASA Astrophysics Data System (ADS)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.; Nilges, Tom

    2017-04-01

    The majority of research activities on LiCoPO4 are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna21 modification. Herein, we present a comprehensive study on the structure-property relationships of 15-20 nm Pna21-LiCoPO4 nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L2,3-edge X-ray absorption spectroscopic data confirm the local tetrahedral symmetry of Co2+. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO4 at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated.

  5. Study of SiRNA-loaded PS-mPEG/CaP nanospheres on lung cancer

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Qin, Liubin; Sun, Ying; Shen, Ming; Duan, Yourong

    2014-05-01

    An ultrasound-adsorption method was used to prepare Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres. The size and zeta potential were 18.41 ± 4.31 nm ( n = 5) and -23.5 ± 0.6 mV, respectively. The entrapment efficiency of SiRNA was 92.86 %. MTT assay results confirmed that the blank nanospheres demonstrated a negligible cytotoxicity response in H1299 cells. Flow cytometer analysis results demonstrated that PS-mPEG/CaP NSs could carry SiRNA into the cells effectively. RT-PCR experiments and apoptosis assay results approved that, compared with free SiRNA, SiRNA-loaded PS-mPEG/CaP NSs could silence Bcl-2 gene and induce cell apoptosis effectively. In vivo distribution results confirmed PS-mPEG/CaP NSs could carry SiRNA enter the tumor tissue effectively. Taken together, these results suggest that the Bcl-2-SiRNA-loaded PS-mPEG/CaP nanospheres have great potential to be used to cure lung cancer.

  6. Advancing semiconductor–electrocatalyst systems: application of surface transformation films and nanosphere lithography

    DOE PAGES

    Brinkert, Katharina; Richter, Matthias H.; Akay, Ömer; ...

    2018-01-01

    We demonstrate that shadow nanosphere lithography (SNL) is an auspicious tool to systematically create three-dimensional electrocatalyst nanostructures on the semiconductor photoelectrode through controlling their morphology and optical properties.

  7. A facile single-step synthesis of polyvinylpyrrolidone-silver nanocomposites using a conventional spray dryer

    NASA Astrophysics Data System (ADS)

    Kim, Byung-Ho; Hyuck Kim, Yoon; Lee, Young Jin; Lee, Mi Jai; Kim, Jin-Ho; Hwang, Jonghee; Jeon, Dae-Woo

    2018-01-01

    We have developed a facile single-step synthesis of silver nanocomposite using a conventional spray dryer. We investigated the synthetic conditions by controlling the concentrations of the chemical reactants. Further, we confirmed the effect of the molecular weight of polyvinylpyrrolidones, and revealed that the molecular weight significantly affected the properties of the resultant silver nanocomposites. The long-term stability of the silver nanocomposites was tested, and little change was observed, even after storage for three months. Most of all, the simple commercial implementation, in combination with large-scale synthesis, possesses a variety of advantages, compared to conventional complicated and costly dry-process synthesis methods. Thus, our method presents opportunities for further investigation, for both lab-scale studies and large-scale industrial applications.

  8. Micelle-assisted fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres

    NASA Astrophysics Data System (ADS)

    Xiong, Yujie; Xie, Yi; Li, Zhengquan; Li, Xiaoxu; Zhang, Rong

    2003-11-01

    The fabrication of necklace-shaped assembly of inorganic fullerene-like molybdenum disulfide nanospheres via a micelle-assisted route is reported, in which necklace-shaped assembly of amorphous MoS 3 nanospheres is driven by the aggregation transformation of surfactants at low temperatures and then is transformed to the assembly of target fullerene-like MoS 2 by annealing. This nanostructure is a type of oriented assembly of inorganic fullerene-like structures, which is confirmed by the transmission electron microscopy and high-resolution transmission electron microscopy analysis. The optical absorption property is investigated to show their inorganic fullerene-like structure and uniform shape.

  9. Photothermal nanodrugs: potential of TNF-gold nanospheres for cancer theranostics

    PubMed Central

    Shao, Jingwei; Griffin, Robert J.; Galanzha, Ekaterina I.; Kim, Jin-Woo; Koonce, Nathan; Webber, Jessica; Mustafa, Thikra; Biris, Alexandru S.; Nedosekin, Dmitry A.; Zharov, Vladimir P.

    2013-01-01

    Nanotechnology has been extensively explored for drug delivery. Here, we introduce the concept of a nanodrug based on synergy of photothermally-activated physical and biological effects in nanoparticle-drug conjugates. To prove this concept, we utilized tumor necrosis factor-alpha coated gold nanospheres (Au-TNF) heated by laser pulses. To enhance photothermal efficiency in near-infrared window of tissue transparency we explored slightly ellipsoidal nanoparticles, its clustering, and laser-induced nonlinear dynamic phenomena leading to amplification and spectral sharpening of photothermal and photoacoustic resonances red-shifted relatively to linear plasmonic resonances. Using a murine carcinoma model, we demonstrated higher therapy efficacy of Au-TNF conjugates compared to laser and Au-TNF alone or laser with TNF-free gold nanospheres. The photothermal activation of low toxicity Au-TNF conjugates, which are in phase II trials in humans, with a laser approved for medical applications opens new avenues in the development of clinically relevant nanodrugs with synergistic antitumor theranostic action. PMID:23443065

  10. Facile EG/ionic liquid interfacial synthesis of uniform RE(3+) doped NaYF(4) nanocubes.

    PubMed

    Zhang, Chao; Chen, Ji

    2010-01-28

    Uniform multicolor upconversion luminescent RE(3+) doped NaYF(4) nanocubes are fabricated through a facile ethylene glycol (EG)/ionic liquid interfacial synthesis route at 80 degrees C, with the ionic liquids acting as both reagents and templates.

  11. Core-shell-corona polymeric micelles as a versatile template for synthesis of inorganic hollow nanospheres.

    PubMed

    Sasidharan, Manickam; Nakashima, Kenichi

    2014-01-21

    Hollow, inorganic nanoscale capsules have many applications, from the delivery of encapsulated products for cosmetic and medicinal purposes to use as lightweight composite materials. Early methods for producing inorganic hollow nanospheres using hard templates suffered from low product yield and shell weakness upon template removal. In the past decade, researchers have turned to amphiphilic copolymers to synthesize hollow nanostructures and ordered mesoporous materials. Amphiphilic molecules self-assemble into well-defined nanostructures including spherical micelles. Micelles formed from simple, two-component AB diblock and ABA triblock copolymers, however, have been difficult to work with to construct inorganic hollow nanoparticles, because the corona of the micelle, which serves as the template for the shell, becomes unstable as it absorbs inorganic shell precursors, causing aggregates to form. Newly developed, three-component ABC triblock copolymers may solve this problem. They provide nanoassemblies with more diverse morphological and functional features than AB diblock and ABA triblock copolymers. Micelles formed from ABC triblock copolymers in selective solvents that dissolve only one or two of the blocks provide templates for these improved nanoassemblies. By manipulating individual polymer blocks, one can "encode" additional features at the molecular level. For instance, modifying the functional groups or substitution patterns of the blocks allows better morphological and size control. Insights into polymer self-assembly gained over years of work in our group have set the stage to systematically engineer inorganic spherical hollow nanoparticles using ABC triblock copolymers. In this Account, we report our recent progress in producing diverse, inorganic hollow spherical nanospheres from asymmetric triblock copolymeric micelles with core-shell-corona architecture as templates. We discuss three classes of polymeric micelles-with neutral, cationic, and anionic

  12. Membrane-Based Gas Separation Accelerated by Hollow Nanosphere Architectures

    DOE PAGES

    Zhang, Jinshui; Schott, Jennifer Ann; Univ. of Tennessee, Knoxville, TN; ...

    2016-11-15

    We report that the coupling of hollow carbon nanospheres with triblock copolymers is a promising strategy to fabricate mixed-matrix membranes, because the symmetric microporous shells combine with the hollow space to promote gas transport and the unique soft-rigid molecular structure of triblock copolymers can accommodate a high loading of fillers without a significant loss of mechanical strength.

  13. Synthesis and characterization of metastable, 20 nm-sized Pna2{sub 1}-LiCoPO{sub 4} nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ludwig, Jennifer; Nordlund, Dennis; Doeff, Marca M.

    The majority of research activities on LiCoPO{sub 4} are focused on the phospho-olivine (space group Pnma), which is a promising high-voltage cathode material for Li-ion batteries. In contrast, comparably little is known about its metastable Pna2{sub 1} modification. Herein, we present a comprehensive study on the structure–property relationships of 15–20 nm Pna2{sub 1}-LiCoPO{sub 4} nanospheres prepared by a simple microwave-assisted solvothermal process. Unlike previous reports, the results indicate that the compound is non-stoichiometric and shows cation-mixing with Co ions on the Li sites, which provides an explanation for the poor electrochemical performance. Co L{sub 2,3}-edge X-ray absorption spectroscopic data confirmmore » the local tetrahedral symmetry of Co{sup 2+}. Comprehensive studies on the thermal stability using thermogravimetric analysis, differential scanning calorimetry, and in situ powder X-ray diffraction show an exothermic phase transition to olivine Pnma-LiCoPO{sub 4} at 527 °C. The influence of the atmosphere and the particle size on the thermal stability is also investigated. - Graphical abstract: Blue nano-sized Pna2{sub 1}-LiCoPO{sub 4,} featuring tetrahedrally-coordinated Co{sup 2+}, was synthesized in a rapid one-step microwave-assisted solvothermal process. The phase relation between this metastable and the stable polymorph was analyzed and electrochemical properties are discussed. - Highlights: • Preparation of uniform 15–20 nm nanospheres of metastable Pna2{sub 1}-LiCoPO{sub 4} polymorph. • Structure redetermination shows cation-mixing (Co blocking Li sites). • In situ investigation of phase transformation to olivine Pnma-LiCoPO{sub 4} at 527 °C. • Pna2{sub 1}-LiCoPO{sub 4} reemerges as a stable high-temperature phase above 800 °C. • X-ray absorption spectroscopy confirms local tetrahedral symmetry (T{sub d} Co{sup 2+}).« less

  14. Fe induced optical limiting properties of Zn1-xFexS nanospheres

    NASA Astrophysics Data System (ADS)

    Vineeshkumar, T. V.; Raj, D. Rithesh; Prasanth, S.; Unnikrishnan, N. V.; Mahadevan Pillai, V. P.; Sudarasanakumar, C.

    2018-02-01

    Zn1-xFexS (x = 0.00, 0.01, 0.03, 0.05) nanospheres were synthesized by polyethylene glycol assisted hydrothermal method. XRD studies revealed that samples of all concentrations exhibited cubic structure with crystallite grain size 7-9 nm. TEM and SEM show the formation of nanospheres by dense aggregation of smaller particles. Increasing Zn/Fe ratio tune the band gap from 3.4 to 3.2 eV and also quenches the green luminescence. FTIR spectra reveal the presence of capping agent, intensity variation and shifting of LO and TO phonon modes confirm the presence of Fe ions. Nonlinear optical properties were measured using open and closed aperture z-scan techniques, employing frequency doubled 532 nm pumping sources which indicated reverse saturable absorption (RSA) process. The nonlinear optical coefficients are obtained by two photon absorption (2PA). Composition dependent nonlinear optical coefficients ;β;, nonlinear refractive index, third order susceptibility and optical limiting threshold were estimated. The sample shows good nonlinear absorption and enhancement of optical limiting behavior with increasing Fe volume fraction. Contribution of RSA on optical nonlinearity of Zn1-xFexS nanospheres are also investigated using three different input energies. Zn1-xFexS with comparatively small limiting threshold value is a promising candidate for optical power limiting applications.

  15. Facile synthesis of SiO{sub 2} nanoparticles for biomedical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scano, A., E-mail: alescano80@tiscali.it; Pilloni, M., E-mail: alescano80@tiscali.it; Cabras, V., E-mail: alescano80@tiscali.it

    Silica nanoparticles (SiO{sub 2} NPs) for biomedical applications have been prepared by using a facile modified Stöber-synthesis. Potassium borohydride (KBH{sub 4}) has been introduced in the synthesis procedure in order to control NP size. Several samples have been prepared varying tetraethylorthosilicate (TEOS) concentration, and using different process conditions (temperature, reaction time and atmosphere). In order to study the influence of the process conditions on the NP size, morphology and properties, several characterization techniques were used. Size and morphology of the as-prepared SiO{sub 2} NPs have been studied by using Transmission Electron Microscope (TEM) and Dynamic Light Scattering (DLS) techniques. Structuralmore » characterization was carried out by X-ray powder diffraction. To investigate the SiO{sub 2} NP fluorescence emission properties the fluorescence spectroscopy was also used.« less

  16. BSA adsorption onto nanospheres: Influence of surface curvature as probed by electrophoretic light scattering and UV/vis spectroscopy

    NASA Astrophysics Data System (ADS)

    Sánchez-Pérez, Julio A.; Gallardo-Moreno, Amparo M.; González-Martín, M. Luisa; Vadillo-Rodríguez, Virginia

    2015-10-01

    The influence of surface curvature on the adsorption of bovine serum albumin (BSA) was evaluated through the combination of two fairly simple techniques: electrophoretic light scattering and UV/vis spectroscopy. Measurements were carried out for a range of protein concentrations (0-320 μg/ml) at pH 3.5, 4.5 and 7 using hydrophobic polystyrene nanospheres of 38.8, 82 and 220 nm in diameter. The results obtained demonstrate that the charge of the BSA molecules in solution dictates the pH-dependent behavior of the protein-coated nanospheres, indicating in all cases a significant adsorption of BSA molecules. At a fixed pH, however, it is the zeta potential that characterizes the uncoated nanospheres normalized by their surface area that primarily controls protein adsorption. In particular, it is found that the rate at which BSA interact with the different nanospheres increases as their negative zeta potential per unit area (or diameter) increases (decreases) regardless of the pH. Moreover, provided that adsorption occurs away from the isoelectric point of the protein, highly curved surfaces are found to stabilize the native-like conformation of BSA upon adsorption by likely reducing lateral interactions between adsorbed molecules.

  17. Adsorption dynamics of methyl violet onto granulated mesoporous carbon: Facile synthesis and adsorption kinetics.

    PubMed

    Kim, Yohan; Bae, Jiyeol; Park, Hosik; Suh, Jeong-Kwon; You, Young-Woo; Choi, Heechul

    2016-09-15

    A new and facile one-step synthesis method for preparing granulated mesoporous carbon (GMC) with three-dimensional spherical mesoporous symmetry is prepared to remove large molecular weight organic compounds in aqueous phase. GMC is synthesized in a single step using as-synthesized mesoporous carbon particles and organic binders through a simple and economical synthesis approach involving a simultaneous calcination and carbonization process. Characterization results obtained from SEM, XRD, as well as surface and porosity analysis indicate that the synthesized GMC has similar physical properties to those of the powdered mesoporous carbon and maintains the Brunauer-Emmett-Teller (BET) surface area and pore volume because the new synthesis method prevents the collapse of the pores during the granulation process. Batch adsorption experiments revealed GMC showed a substantial adsorption capacity (202.8 mg/g) for the removal of methyl violet as a target large molecular contaminant in aqueous phase. The mechanisms and dynamics modeling of GMC adsorption were also fully examined, which revealed that surface diffusion was rate limiting step on adsorption process of GMC. Adsorption kinetics of GMC enables 3 times faster than that of granular activated carbon in terms of surface diffusion coefficient. This is the first study, to the best of our knowledge, to synthesize GMC as an adsorbent for water purification by using facile granulation method and to investigate the adsorption kinetics and characteristics of GMC. This study introduces a new and simple method for the synthesis of GMC and reveals its adsorption characteristics for large molecular compounds in a water treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. SOLVENT-FREE FACILE SYNTHESIS OF NOVEL α-TOSYLOXY β-KETO SULFONES USING [HYDROXY(TOSYLOXY)IODO]BENZENE

    EPA Science Inventory

    A facile, general and high yielding protocol for the synthesis of novel α-tosyloxy β-keto sulfones is described utilizing relatively non-toxic, [hydroxy(tosyloxy)iodo]benzene, under solvent-free conditions at room temperature.

  19. Facile synthesis of degradable and electrically conductive polysaccharide hydrogels.

    PubMed

    Guo, Baolin; Finne-Wistrand, Anna; Albertsson, Ann-Christine

    2011-07-11

    Degradable and electrically conductive polysaccharide hydrogels (DECPHs) have been synthesized by functionalizing polysaccharide with conductive aniline oligomers. DECPHs based on chitosan (CS), aniline tetramer (AT), and glutaraldehyde were obtained by a facile one-pot reaction by using the amine group of CS and AT under mild conditions, which avoids the multistep reactions and tedious purification involved in the synthesis of degradable conductive hydrogels in our previous work. Interestingly, these one-pot hydrogels possess good film-forming properties, electrical conductivity, and a pH-sensitive swelling behavior. The chemical structure and morphology before and after swelling of the hydrogels were verified by FT-IR, NMR, and SEM. The conductivity of the hydrogels was tuned by adjusting the content of AT. The swelling ratio of the hydrogels was altered by the content of tetraaniline and cross-linker. The hydrogels underwent slow degradation in a buffer solution. The hydrogels obtained by this facile approach provide new possibilities in biomedical applications, for example, biodegradable conductive hydrogels, films, and scaffolds for cardiovascular tissue engineering and controlled drug delivery.

  20. Periodic silver nanocluster arrays over large-area silica nanosphere template as highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Hou, Xu; Wang, Qi; Mao, Guoming; Liu, Hao; Yu, Rongdi; Ren, Xiaomin

    2018-04-01

    Periodic Ag nanocluster arrays for surface enhanced Raman spectroscopy (SERS) were fabricated through magnetron sputtering Ag over a large-area monolayer template which is based on silica (SiO2) nanospheres. High-density nanogaps between the adjacent Ag nanoclusters acted as "hot-spots", making a dominant contribution to the high-performance SERS detection. Moreover, the nanospheres and Ag nanoclusters effectively increased the surface roughness and also enlarged the surface area of as-obtained SERS substrate, which resulted in a further enhancement in Raman signals. As-prepared SERS substrates showed very high sensitivity with the enhancement factor (EF) value of 4.1 × 1012 for Rhodamine 6G (R6G), allowing the corresponding detection limit as low as 10-16 M. Additionally, SERS signal of melamine was still strong even though its concentration was lowered to 10-7 M. Our results show that preparing highly sensitive SERS substrate with periodic Ag nanoclusters over SiO2 nanosphere template is a convenient and promising pathway for chemical and biologic sensing.

  1. Co7Fe3 and Co7Fe3@SiO2 Nanospheres with Tunable Diameters for High-Performance Electromagnetic Wave Absorption.

    PubMed

    Chen, Na; Jiang, Jian-Tang; Xu, Cheng-Yan; Yuan, Yong; Gong, Yuan-Xun; Zhen, Liang

    2017-07-05

    Ferromagnetic metal/alloy nanoparticles have attracted extensive interest for electromagnetic wave-absorbing applications. However, ferromagnetic nanoparticles are prone to oxidization and producing eddy currents, leading to the deterioration of electromagnetic properties. In this work, a simple and scalable liquid-phase reduction method was employed to synthesize uniform Co 7 Fe 3 nanospheres with diameters ranging from 350 to 650 nm for high-performance microwave absorption application. Co 7 Fe 3 @SiO 2 core-shell nanospheres with SiO 2 shell thicknesses of 30 nm were then fabricated via a modified Stöber method. When tested as microwave absorbers, bare Co 7 Fe 3 nanospheres with a diameter of 350 nm have a maximum reflection loss (RL) of 78.4 dB and an effective absorption with RL > 10 dB from 10 to 16.7 GHz at a small thickness of 1.59 mm. Co 7 Fe 3 @SiO 2 nanospheres showed a significantly enhanced microwave absorption capability for an effective absorption bandwidth and a shift toward a lower frequency, which is ascribed to the protection of the SiO 2 shell from direct contact among Co 7 Fe 3 nanospheres, as well as improved crystallinity and decreased defects upon annealing. This work illustrates a simple and effective method to fabricate Co 7 Fe 3 and Co 7 Fe 3 @SiO 2 nanospheres as promising microwave absorbers, and the design concept can also be extended to other ferromagnetic alloy particles.

  2. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    NASA Astrophysics Data System (ADS)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  3. A detailed study of Au-Ni bimetal synthesized by the phase separation mechanism for the cathode of low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Rodrigues de Almeida, Carlos Manuel; Ramasamy, Devaraj; Almeida Loureiro, Francisco José

    2014-12-01

    A facile co-reduction and annealing synthesis route of nanospheric particles of Au-Ni bimetal with adjustable composition was developed. In a typical synthesis, a direct co-reduction of HAuCl4.4H2O and NiCl2 in aqueous solution was performed with the assistance of reductive NaBH4 and an anionic surfactant sodium dodecyl sulfate (SDS) functioned as the structure-directing agent. Ultrasonic mixing was used at the same time to control the size of the particles. The morphology, microstructure and the state of the surface atoms were analyzed in detail. These nanospheres showed enhanced electrocatalytic activity towards oxygen reduction reaction than that of pure Au nanoparticles, demonstrated in the low temperature SOFC as cathode. The maximum power density generated is 810 mW cm-2 at 550 °C. This is a promising route of taking advantages the Phase Separation Mechanism to greatly reduce the use of noble metals in the ORR field without sacrificing the electrocatalytic activity.

  4. Facile One-Pot Synthesis of Tellurium Nanorods as Antioxidant and Anticancer Agents.

    PubMed

    Huang, Wei; Wu, Hualian; Li, Xiaoling; Chen, Tianfeng

    2016-08-19

    Nanorods have been utilized in targeted therapy, controlled release, molecular diagnosis, and molecule imaging owing to their large surface area and optical, magnetic, electronic, and structural properties. However, low stability and complex synthetic methods have substantially limited the application of tellurium nanorods for use as antioxidant and anticancer agents. Herein, a facile one-pot synthesis of functionalized tellurium nanorods (PTNRs) by using a hydrothermal synthetic system with a polysaccharide-protein complex (PTR), which was extracted from Pleurotus tuber-regium, as a capping agent is described. PTNRs remained stable in water and in phosphate-buffered saline and exhibited high hemocompatibility. Interestingly, these nanorods possessed strong antioxidant activity for scavenging 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid radical cation (ABTS(.+) ) and 2,2-diphenyl-1-picrylhydrazylhydrate (DPPH) free radicals and demonstrated novel anticancer activities. However, these nanorods exhibited low cytotoxicity toward normal human cells. In addition, the PTNRs effectively induced a decrease in the mitochondrial membrane potential in a dose-dependent manner, which indicated that mitochondrial dysfunction might play an important role in PTNR-induced apoptosis. Therefore, this study provides a one-pot strategy for the facile synthesis of tellurium nanorods with novel antioxidant and anticancer application potentials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Facile synthesis of high surface area molybdenum nitride and carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Aaron; Serov, Alexey; Artyushkova, Kateryna

    2015-08-15

    The synthesis of high surface area γ-Mo{sub 2}N and α-Mo{sub 2}C is reported (116 and 120 m{sup 2}/g) without the temperature programmed reduction of MoO{sub 3}. γ-Mo{sub 2}N was prepared in an NH{sub 3}-free synthesis using forming gas (7 at% H{sub 2}, N{sub 2}-balance) as the reactive atmosphere. Three precursors were studied ((NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}·4H{sub 2}O, (NH{sub 4}){sub 2} Mg(MoO{sub 4}){sub 2}, and MgMoO{sub 4}) along with the sacrificial support method (SSM) as a means of reducing the particle size of Mo{sub 2}N and Mo{sub 2}C. In situ X-ray diffraction (XRD) studies were carried out to identify reactionmore » intermediates, the temperature at which various intermediates form, and the average domain size of the Mo{sub 2}N products. Materials were synthesized in bulk and further characterized by XRD, HRTEM, XPS, and BET. - Highlights: • Facile synthesis of γ-Mo2N and α-Mo2C with surface area exceeding 100 m{sup 2}/g. • Sacrificial support method was used to achieve these high surface areas. • Materials can serve as catalysts or supports in (electro)chemical processes.« less

  6. Acylated-naproxen as the surface-active template in the preparation of micro- and nanospherical imprinted xerogels by emulsion techniques.

    PubMed

    Ornelas, Mariana; Azenha, Manuel; Araújo, Maria João; Marques, Eduardo F; Dias-Cabral, A C; Pereira, Carlos; Silva, A Fernando

    2016-03-11

    A strategy based on water-in-oil emulsion for the dispersion of a sol-gel mixture into small droplets was employed with the view of the production of naproxen-imprinted micro- and nanospheres. The procedure, aiming at a surface imprinting process, comprised the synthesis of a naproxen-derived surfactant. The imprinting process occurred at the interface of the emulsions or microemulsions, by the migration of the NAP-surfactant head into the sol-gel drops to leave surficial imprints due mainly to ion-pair interaction with a cationic group contained within the growing sol-gel network. The surface-imprinted microspheric particles exhibited a log-normal size distribution with geometric mean diameter of 3.1μm. A mesoporous texture was found from measurements of the specific surface area (206m(2)/g) and pore diameter (Dp 2nm). Evaluation of the microspheres as packed HPLC stationary phases resulted in the determination of the selectivity factor against ibuprofen (α=2.1), demonstrating the successful imprinting. Chromatographic efficiency, evaluated by the number of theoretical plates (222platescm(-3)), emerged as an outstanding feature among the set of all relatable formats produced before, an advantage intrinsic to the location of the imprinted sites on the surface. The material presented a capacity of 3.2μmolg(-1). Additionally, exploratory work conducted on their nanoscale counterparts resulted in the production of nanospheres in the size order of 10nm providing good indications of a successful imprinting process. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE PAGES

    Lendínez, S.; Zarzuela, R.; Tejada, J.; ...

    2015-01-06

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  8. Resonant spin tunneling in randomly oriented nanospheres of Mn 12 acetate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendínez, S.; Zarzuela, R.; Tejada, J.

    We report measurements and theoretical analysis of resonant spin tunneling in randomly oriented nanospheres of a molecular magnet. Amorphous nanospheres of Mn₁₂ acetate have been fabricated and characterized by chemical, infrared, TEM, X-ray, and magnetic methods. Magnetic measurements have revealed sharp tunneling peaks in the field derivative of the magnetization that occur at the typical resonant field values for the Mn₁₂ acetate crystal in the field parallel to the easy axis.Theoretical analysis is provided that explains these observations. We argue that resonant spin tunneling in a molecular magnet can be established in a powder sample, without the need for amore » single crystal and without aligning the easy magnetization axes of the molecules. This is confirmed by re-analyzing the old data on a powdered sample of non-oriented micron-size crystals of Mn₁₂ acetate. In conclusion, our findings can greatly simplify the selection of candidates for quantum spin tunneling among newly synthesized molecular magnets.« less

  9. Enhanced arsenic removal from water by hierarchically porous CeO₂-ZrO₂ nanospheres: role of surface- and structure-dependent properties.

    PubMed

    Xu, Weihong; Wang, Jing; Wang, Lei; Sheng, Guoping; Liu, Jinhuai; Yu, Hanqing; Huang, Xing-Jiu

    2013-09-15

    Arsenic contaminated natural water is commonly used as drinking water source in some districts of Asia. To meet the increasingly strict drinking water standards, exploration of efficient arsenic removal methods is highly desired. In this study, hierarchically porous CeO₂-ZrO₂ nanospheres were synthesized, and their suitability as arsenic sorbents was examined. The CeO₂-ZrO₂ hollow nanospheres showed an adsorption capacity of 27.1 and 9.2 mg g(-1) for As(V) and As(III), respectively, at an equilibrium arsenic concentration of 0.01 mg L(-1) (the standard for drinking water) under neutral conditions, indicating a high arsenic removal performance of the adsorbent at low arsenic concentrations. Such a great arsenic adsorption capacity was attributed to the high surface hydroxyl density and presence of hierarchically porous network in the hollow nanospheres. The analysis of Fourier transformed infrared spectra and X-ray photoelectron spectroscopy demonstrated that the adsorption of arsenic on the CeO₂-ZrO₂ nanospheres was completed through the formation of a surface complex by substituting hydroxyl with arsenic species. In addition, the CeO₂-ZrO₂ nanospheres were able to remove over 97% arsenic in real underground water with initial arsenic concentration of 0.376 mg L(-1) to meet the guideline limit of arsenic in drinking water regulated by the World Health Organization without any pre-treatment and/or pH adjustment. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Induction of Th1 type-oriented humoral response through intranasal immunization of mice with SAG1-Toxoplasma gondii polymeric nanospheres.

    PubMed

    Naeem, Huma; Sana, Madiha; Islam, Saher; Khan, Matiullah; Riaz, Farooq; Zafar, Zunaira; Akbar, Haroon; Shehzad, Wasim; Rashid, Imran

    2018-06-06

    About one-third of the world population is prone to have infection with T. gondii, which can cause toxoplasmosis in the developing fetus and in people whose immune system is compromised through disease or chemotherapy. Surface antigen-1 (SAG1) is the candidate of vaccine against toxoplasmosis. Recent advances in biotechnology and nano-pharmaceuticals have made possible to formulate nanospheres of recombinant protein, which are suitable for sub-unit vaccine delivery. In current study, the local strain was obtained from cat feces as toxoplasma oocysts. Amplified 957 bp of SAG1 was cloned into pGEM-T and further sub-cloned into pET28-SAG1. BL21 bacteria were induced at different concentrations of isopropyl β-d-1-thiogalactopyranoside for the expression of rSAG1 protein. An immunoblot was developed for the confirmation of recombinant protein expression at 35 kDa that was actually recognized by anti-HIS antibodies and sera were collected from infected mice. PLGA encapsulated nanospheres of recombinant SAG1 were characterized through scanning electron microscopy. Experimental mice were intraperitoneally immunized with rSAG1 protein and intra-nasally immunized with nanosphere. The immune response was evaluated by indirect ELISA. In results intra-nasally administered rSAG1 in nanospheres appeared to elicit elevated responses of specific IgA and IgG2a than in control. Nanospheres of rSAG1 are found to be a bio-compatible candidate for the development of vaccine against T. gondii.

  11. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors

    NASA Astrophysics Data System (ADS)

    Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui

    2018-04-01

    In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

  12. Thermo-sensitive polymer nanospheres as a smart plugging agent for shale gas drilling operations.

    PubMed

    Wang, Wei-Ji; Qiu, Zheng-Song; Zhong, Han-Yi; Huang, Wei-An; Dai, Wen-Hao

    2017-01-01

    Emulsifier-free poly(methyl methacrylate-styrene) [P(MMA-St)] nanospheres with an average particle size of 100 nm were synthesized in an isopropyl alcohol-water medium by a solvothermal method. Then, through radical graft copolymerization of thermo-sensitive monomer N -isopropylacrylamide (NIPAm) and hydrophilic monomer acrylic acid (AA) onto the surface of P(MMA-St) nanospheres at 80 °C, a series of thermo-sensitive polymer nanospheres, named SD-SEAL with different lower critical solution temperatures (LCST), were prepared by adjusting the mole ratio of NIPAm to AA. The products were characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, particle size distribution, and specific surface area analysis. The temperature-sensitive behavior was studied by light transmittance tests, while the sealing performance was investigated by pressure transmission tests with Lungmachi Formation shales. The experimental results showed that the synthesized nanoparticles are sensitive to temperature and had apparent LCST values which increased with an increase in hydrophilic monomer AA. When the temperature was higher than its LCST value, SD-SEAL played a dual role of physical plugging and chemical inhibition, slowed down pressure transmission, and reduced shale permeability remarkably. The plugged layer of shale was changed to being hydrophobic, which greatly improved the shale stability.

  13. Facile synthesis of cobalt ferrite nanotubes using bacterial nanocellulose as template.

    PubMed

    Menchaca-Nal, S; Londoño-Calderón, C L; Cerrutti, P; Foresti, M L; Pampillo, L; Bilovol, V; Candal, R; Martínez-García, R

    2016-02-10

    A facile method for the preparation of cobalt ferrite nanotubes by use of bacterial cellulose nanoribbons as a template is described. The proposed method relays on a simple coprecipitation operation, which is a technique extensively used for the synthesis of nanoparticles (either isolated or as aggregates) but not for the synthesis of nanotubes. The precursors employed in the synthesis are chlorides, and the procedure is carried out at low temperature (90 °C). By the method proposed a homogeneous distribution of cobalt ferrite nanotubes with an average diameter of 217 nm in the bacterial nanocellulose (BC) aerogel (3%) was obtained. The obtained nanotubes are formed by 26-102 nm cobalt ferrite clusters of cobalt ferrite nanoparticles with diameters in the 9-13 nm interval. The nanoparticles that form the nanotubes showed to have a certain crystalline disorder, which could be attributed in a greater extent to the small crystallite size, and, in a lesser extent, to microstrains existing in the crystalline lattice. The BC-templated-CoFe2O4 nanotubes exhibited magnetic behavior at room temperature. The magnetic properties showed to be influenced by a fraction of nanoparticles in superparamagnetic state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Facile hydrothermal synthesis of carbon-coated cobalt ferrite spherical nanoparticles as a potential negative electrode for flexible supercapattery.

    PubMed

    Sankar, Kalimuthu Vijaya; Shanmugapriya, Sathyanarayanan; Surendran, Subramani; Jun, Seong Chan; Selvan, Ramakrishnan Kalai

    2018-03-01

    Battery type electrodes would replace the currently available pseudocapacitive electrodes by the cause of high energy density and long discharge time. In this regard, battery type carbon coated CoFe 2 O 4 spherical nanoparticles is prepared by the facile hydrothermal method and tested as the possible negative electrode for supercapattery applications. The phase purity, electronic states of elements, and the presence of carbon is inferred through various sophisticated techniques. The calculated surface area of CoFe 2 O 4 and carbon coated CoFe 2 O 4 are found to be 9 and 26 m 2  g -1 , respectively. The morphological analysis confirms the formation of uniform CoFe 2 O 4 nanospheres (∼25 nm) with a thin layer of carbon coating (∼2 nm). The amorphous carbon coating over CoFe 2 O 4 nanosphere is identified via high-resolution transmission electron microscope. The observed peak and plateau regions in the cyclic voltammogram and galvanostatic charge/discharge curves reveals the battery-type charge storage behaviour of the material. The carbon coated CoFe 2 O 4 delivers the maximum length capacitance of 9.9 F m -1 at 1 mV s -1 with a useful lifespan over 5000 cycles. The electrochemical impedance spectroscopy reveals that the carbon-coated CoFe 2 O 4 delivers the low charge transfer resistance than CoFe 2 O 4 . Further, the fabricated supercapattery provides the energy density of 160 × 10 -8  Wh cm -1 at a power density of 67.2 μW cm -1 . As well as, the device shows 93% of coulombic efficiency and 75% of the specific capacitance retention over 11,000 cycles. Overall, it is believed that the carbon-coated CoFe 2 O 4 can serve as a good candidate for flexible supercapatteries. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Excitonic lasing in solution-processed subwavelength nanosphere assemblies

    DOE PAGES

    Appavoo, Kannatassen; Liu, Xiaoze; Menon, Vinod; ...

    2016-02-03

    Lasing in solution-processed nanomaterials has gained significant interest because of the potential for low-cost integrated photonic devices. Still, a key challenge is to utilize a comprehensive knowledge of the system’s spectral and temporal dynamics to design low-threshold lasing devices. Here, we demonstrate intrinsic lasing (without external cavity) at low-threshold in an ultrathin film of coupled, highly crystalline nanospheres with overall thickness on the order of ~λ/4. The cavity-free geometry consists of ~35 nm zinc oxide nanospheres that collectively localize the in-plane emissive light fields while minimizing scattering losses, resulting in excitonic lasing with fluence thresholds at least an order ofmore » magnitude lower than previous UV-blue random and quantum-dot lasers (<75 μJ/cm 2). Fluence-dependent effects, as quantified by subpicosecond transient spectroscopy, highlight the role of phonon-mediated processes in excitonic lasing. Subpicosecond evolution of distinct lasing modes, together with three-dimensional electromagnetic simulations, indicate a random lasing process, which is in violation of the commonly cited criteria of strong scattering from individual nanostructures and an optically thick sample. Subsequently, an electron–hole plasma mechanism is observed with increased fluence. Furthermore, these results suggest that coupled nanostructures with high crystallinity, fabricated by low-cost solution-processing methods, can function as viable building blocks for high-performance optoelectronics devices.« less

  16. Microemulsion based approach for nanospheres assembly into anisotropic nanostructures of NiMnO3 and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Jha, Menaka; Kumar, Sandeep; Garg, Neha; Ramanujachary, Kandalam V.; Lofland, Samuel E.; Ganguli, Ashok K.

    2018-02-01

    The present study focuses on synthesis of anisotropic nanostructures of nickel manganese oxide (NiMnO3) obtained by thermal decomposition of nanocrystalline nickel manganese oxalate precursor, Ni0.5Mn0.5(C2O4)·2H2O which crystallized as nanorods. The synthesis of the oxalate precursor has been carried out via microemulsion-mediated process with cationic and non-ionic surfactants. The microemulsion led to reverse micelles, and the film flexibility of the micelle in presence of non-ionic surfactant (Tergitol) was reduced by increasing the chain length of the co-surfactant (1-butanol, 1-hexanol and 1-octanol) which led to the increase in reaction rate and hence increase in the aspect ratio of the nickel manganese oxalate by up to four times. However, in the presence of cationic surfactant, highly uniform nickel manganese oxalate nanorods were obtained. Further, the decomposition of the oxalate precursor was optimized to maintain the anisotropy of the rods of ternary metal oxide (NiMnO3). An electron microscopy study showed that the rods were made up of an assembly of ultrafine nanospheres. The NiMnO3 nanostructures were all ferrimagnetic with Curie temperature ranging between 437 and 467 K showing increasing saturation magnetization with increase in aspect ratio of the nanorods.

  17. Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin B 2 : Catalytic Polymerisation of Aniline and Pyrrole

    DOE PAGES

    Nadagouda, Mallikarjuna N.; Varma, Rajender S.

    2008-01-01

    Formore » the first time, we report green chemistry approach using vitamin B 2 in the synthesis of silver (Ag) and palladium (Pd), nanospheres, nanowires, and nanorods at room temperature without using any harmful reducing agents, such as sodium borohydride ( NaBH 4 ) or hydroxylamine hydrochloride and any special capping or dispersing agent. Vitamin B 2 was used as reducing agent as well as capping agent due to its high-water solubility, biodegradability, and low-toxicity compared with other reducing agents. The average particle size of nanoprticle was found to be Ag (average size 6.1 ± 0.1 nm) and Pd (average size 4.1 ± 0.1 nm) nanoparticles in ethylene glycol and Ag (average size 5.9 ± 0.1 nm, and average size 6.1 ± 0.1) nanoparticles in acetic acid and NMP, respectively. The formation of noble multiple shape nanostructures and their self assembly were dependent on the solvent employed for the preparation. When water was used as solvent media, Ag and Pd nanoparticles started to self-assemble into rod-like structures and in isopropanol Ag and Pd nanoparticles yielded wire-like structures with a thickness in the range of 10 to 20 nm and several hundred microns in length. In acetone and acetonitrile medium, the Ag and Pd nanoparticles are self-assembled into a regular pattern making nanorod structures with thicknesses ranging from 100 to 200 nm and lengths of a few microns. The so-synthesized nanostructures were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, and UV spectroscopy. The ensuing Ag and Pd nanoparticles catalyzed the reactions of aniline and pyrrole to generate polyaniline and polypyrrole nanofibers and may find various technological and biological applications. This single-step greener approach is general and can be extended to other noble metals and transition metal oxides.« less

  18. Efficiency improvement of InGaN light emitting diodes with embedded self-assembled SiO2 nanosphere arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Yonghui; Wei, Tongbo; Wang, Junxi; Fan, Chao; Chen, Yu; Hu, Qiang; Li, Jinmin

    2014-05-01

    In this study, the periodic SiO2 nanosphere nanopatterned sapphire substrate (SiO2-NPSS) was made using self-assembled SiO2 nanosphere monolayer template and inductively coupled plasma (ICP) etching. And the self-assembled SiO2 nanosphere monolayer was directly embedded into the GaN/sapphire interface by nanoscale epitaxial lateral overgrowth (NELOG). For comparison, a common nanopatterned sapphire substrate (C-NPSS) was also made through dry etching with the SiO2 nanospheres used as the mask. Compared with LEDs grown on C-NPSS and flat sapphire substrate (FSS), the external quantum efficiency of LEDs with SiO2 nanopheres (SiO2-NPSS) was increased by 30.7% and 81.9% under a driving current 350 mA. The SiO2-NPSS not only improved the crystalline quality of GaN but also enhanced the light extraction efficiency (LEE) of LED. And the SiO2-NPSS LED also showed more light in vertical direction and more uniform light distribution. By finite-difference time-domain (FDTD) simulation, we confirmed that more light could be reflected from the GaN/SiO2 interface than the GaN/sapphire interface because the refractive index of SiO2 was lower than that of sapphire. Therefore, LED grown on the SiO2-NPSS showed superior light extraction efficiency compared to that on C-NPSS.

  19. Facile synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions.

    PubMed

    Ding, San-Yuan; Cui, Xiao-Hui; Feng, Jie; Lu, Gongxuan; Wang, Wei

    2017-10-31

    We reported herein a facile approach for the synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions. Three known (COF-42, COF-43, and COF-LZU1) and one new (Pr-COF-42) COF materials were successfully synthesized using this method. Furthermore, this simple synthetic approach makes the large-scale synthesis of -C[double bond, length as m-dash]N- linked COFs feasible.

  20. Facile synthesis of TiO2/microcrystalline cellulose nanocomposites: photocatalytically active material under visible light irradiation

    EPA Science Inventory

    Doped TiO2 nanocomposites were prepared in situ by a facile and simple synthesis utilizing benign and renewable precursors such as microcrystalline cellulose (MC) and TiCl4 through hydrolysis in alkaline medium without the addition of organic solvents. The as-prepared nanocompos...

  1. Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity.

    PubMed

    Chen, Zhang; Xu, Yi-Jun

    2013-12-26

    Development of various strategies for controllable fabrication of core-shell nanocomposites (CSNs) with highly active photocatalytic performance has been attracting ever-increasing research attention. In particular, control of the ultrathin layer TiO2 shell in constructing CSNs in an aqueous phase is a significant but technologically challenging issue. Here, this paper demonstrates the interface assembly synthesis of CdS nanospheres@TiO2 core-shell photocatalyst via the electrostatic interaction of negatively charged water-stable titania precursor with positively charged CdS nanospheres (CdS NSPs), followed by the formation of the ultrathin-layer TiO2 shell through a facile refluxing process in aqueous phase. The as-formed CdS NSPs@TiO2 core-shell nanohybrid exhibits a high visible-light-driven photoactivity for selective transformation and reduction of heavy metal ions. The ultrathin TiO2 layer coated on CdS NSPs results in excellent light transmission property, enhanced adsorption capacity, and improved transfer of charge carriers and lifespan of photoinduced electron-hole pairs, which would prominently contribute to the significant photoactivity enhancement. It is anticipated that this facile aqueous-phase synthesis strategy could be extended to design a variety of more efficient CSN photocatalysts with controllable morphology toward target applications in diverse photoredox processes.

  2. Manipulating the Temperature of Sulfurization to Synthesize α-NiS Nanosphere Film for Long-Term Preservation of Non-enzymatic Glucose Sensors.

    PubMed

    Lin, Hsien-Sheng; Shi, Jen-Bin; Peng, Cheng-Ming; Zheng, Bo-Chi; Cheng, Fu-Chou; Lee, Ming-Way; Lee, Hsuan-Wei; Wu, Po-Feng; Liu, Yi-Jui

    2018-04-19

    In this study, alpha nickel sulfide (α-NiS) nanosphere films have been successfully synthesized by electroplating the nickel nanosheet film on the indium tin oxide (ITO) glass substrate and sulfuring nickel-coated ITO glass substrate. First, we electrodeposited the nickel nanosheet films on the ITO glass substrates which were cut into a 0.5 × 1 cm 2 size. Second, the nanosheet nickel films were annealed in vacuum-sealed glass ampoules with sulfur sheets at different annealing temperatures (300, 400, and 500 °C) for 4 h in vacuum-sealed glass ampoules. The α-NiS films were investigated by using X-ray diffraction (XRD), variable vacuum scanning electron microscopy (VVSEM), field emission scanning electron microscopy/energy dispersive spectrometer (FE-SEM/EDS), cyclic voltammogram (CV), electrochemical impedance spectroscopy (EIS), ultraviolet/visible/near-infrared (UV/Visible/NIR) spectra, and photoluminescence (PL) spectra. Many nanospheres were observed on the surface of the α-NiS films at the annealing temperature 400 °C for 4 h. We also used the high-resolution transmission electron microscopy (HR-TEM) for the analysis of the α-NiS nanospheres. We demonstrated that our α-NiS nanosphere film had a linear current response to different glucose concentrations. Additionally, our α-NiS nanosphere films were preserved at room temperature for five and a half years and were still useful for detecting glucose at low concentration.

  3. Fabrication and magnetic properties of Ni nanospheres encapsulated in a fullerene-like carbon.

    PubMed

    Pol, S V; Pol, V G; Frydman, A; Churilov, G N; Gedanken, A

    2005-05-19

    A very simple, efficient, and economical synthetic technique, which produces fascinating fullerene-like Ni-C (graphitic) core-shell nanostructures at a relatively low temperature, is reported. The thermal dissociation of Ni acetylacetonate is carried out in a closed vessel cell (Swagelok) that was heated at 700 degrees C for 3 h. The encapsulation of ferromagnetic Ni nanospheres into the onion structured graphitic layers is obtained in a one-stage, single precursor reaction, without a catalyst, that possesses interesting magnetic properties. The magnetoresistance (MR) property of Ni nanospheres encapsulated in a fullerene-like carbon was measured, which shows large negative MR, of the order of 10%. The proposed mechanism for the formation of the Ni-C core-shell system is based on the segregation and the surface flux formed in the Ni and carbon particles during the reaction under autogenic pressure at elevated temperature.

  4. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering

    NASA Astrophysics Data System (ADS)

    Zhu, Wei; Cui, Haitao; Boualam, Benchaa; Masood, Fahed; Flynn, Erin; Rao, Raj D.; Zhang, Zhi-Yong; Zhang, Lijie Grace

    2018-05-01

    Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-β1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-β1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-β1-containing nanospheres is a promising strategy for cartilage regeneration.

  5. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.

    PubMed

    Zhu, Wei; Cui, Haitao; Boualam, Benchaa; Masood, Fahed; Flynn, Erin; Rao, Raj D; Zhang, Zhi-Yong; Zhang, Lijie Grace

    2018-05-04

    Cartilage tissue is prone to degradation and has little capacity for self-healing due to its avascularity. Tissue engineering, which provides artificial scaffolds to repair injured tissues, is a novel and promising strategy for cartilage repair. 3D bioprinting offers even greater potential for repairing degenerative tissue by simultaneously integrating living cells, biomaterials, and biological cues to provide a customized scaffold. With regard to cell selection, mesenchymal stem cells (MSCs) hold great capacity for differentiating into a variety of cell types, including chondrocytes, and could therefore be utilized as a cartilage cell source in 3D bioprinting. In the present study, we utilize a tabletop stereolithography-based 3D bioprinter for a novel cell-laden cartilage tissue construct fabrication. Printable resin is composed of 10% gelatin methacrylate (GelMA) base, various concentrations of polyethylene glycol diacrylate (PEGDA), biocompatible photoinitiator, and transforming growth factor beta 1 (TGF-β1) embedded nanospheres fabricated via a core-shell electrospraying technique. We find that the addition of PEGDA into GelMA hydrogel greatly improves the printing resolution. Compressive testing shows that modulus of the bioprinted scaffolds proportionally increases with the concentrations of PEGDA, while swelling ratio decreases with the increase of PEGDA concentration. Confocal microscopy images illustrate that the cells and nanospheres are evenly distributed throughout the entire bioprinted construct. Cells grown on 5%/10% (PEGDA/GelMA) hydrogel present the highest cell viability and proliferation rate. The TGF-β1 embedded in nanospheres can keep a sustained release up to 21 d and improve chondrogenic differentiation of encapsulated MSCs. The cell-laden bioprinted cartilage constructs with TGF-β1-containing nanospheres is a promising strategy for cartilage regeneration.

  6. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles.

    PubMed

    Benelmekki, Maria; Bohra, Murtaza; Kim, Jeong-Hwan; Diaz, Rosa E; Vernieres, Jerome; Grammatikopoulos, Panagiotis; Sowwan, Mukhles

    2014-04-07

    We report a facile single-step synthesis of ternary hybrid nanoparticles (NPs) composed of multiple dumbbell-like iron-silver (FeAg) cores encapsulated by a silicon (Si) shell using a versatile co-sputter gas-condensation technique. In comparison to previously reported binary magneto-plasmonic NPs, the advantage conferred by a Si shell is to bind the multiple magneto-plasmonic (FeAg) cores together and prevent them from aggregation at the same time. Further, we demonstrate that the size of the NPs and number of cores in each NP can be modulated over a wide range by tuning the experimental parameters.

  7. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    PubMed

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C

    NASA Astrophysics Data System (ADS)

    Han, Y. D.; Zhang, S. M.; Jing, H. Y.; Wei, J.; Bu, F. H.; Zhao, L.; Lv, X. Q.; Xu, L. Y.

    2018-04-01

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  9. The fabrication of highly conductive and flexible Ag pattern through baking Ag nanospheres - nanoplates hybrid ink at a low temperature of 100°C.

    PubMed

    Han, Y D; Zhang, Siming; Jing, H Y; Wei, Jun; Bu, Fanhui; Zhao, Lei; Lv, Xiaoqing; Xu, L Y

    2018-01-24

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens and sintered at a low temperature (100℃). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ·m, which was only 6.5 times of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was owing to the combined action of nanospheres and nanoplates. It was a valued way to prepare Ag nanoink with good performance for printed/written electronics. © 2018 IOP Publishing Ltd.

  10. Maturation of dendritic cells in vitro and immunological enhancement of mice in vivo by pachyman- and/or OVA-encapsulated poly(d,l-lactic acid) nanospheres

    PubMed Central

    Lu, Yu; Huang, Yifan; Luo, Li; Liu, Zhenguang; Bo, Ruonan; Hu, Yuanliang; Liu, Jiaguo; Wang, Deyun

    2018-01-01

    Background Poly lactide (PLA) was proved in the last years to be good for use in sustained drug delivery and as carriers for vaccine antigens. In our previous research, pachyman (PHY)-encapsulated PLA (PHYP) nanospheres were synthesized and their function of controlling drug release was demonstrated. Purpose In order to modify the fast drug-release rate of PHY when inoculated alone, the maturation of bone marrow dendritic cells (BMDCs) in vitro and their immunological enhancement in vivo were explored using PHYP nanospheres. Methods The maturation and antigen uptake of BMDCs were evaluated, both alone and with formulated antigen PHYP nanospheres, ie, ovalbumin (OVA)-loaded PHYP nanospheres, as an antigen delivery system, to investigate antigen-specific humoral and cellular immune responses. Results The results indicated that, when stimulated by PHYP, the BMDCs matured as a result of upregulated expression of co-stimulatory molecules; the mechanism was elucidated by tracing fluorescently labeled antigens in confocal laser scanning microscopy images and observing the uptake of nanospheres by transmission electron microscopy. It was further revealed that mice inoculated with OVA-PHYP had augmented antigen-specific IgG antibodies, increased cytokine secretion by splenocytes, increased splenocyte proliferation, and activation of cluster of differentiation (CD)4+ and CD8+ T cells in vivo. Elevated immune responses were produced by OVA-PHYP, possibly owing to the activation and maturation of dendritic cells (in draining lymph nodes). Conclusion It was corroborated that PHY- and/or OVA-encapsulated PLA nanospheres elicited prominent antigen-presenting effects on BMDCs and heightened humoral and cellular immune responses compared with other formulations. PMID:29416336

  11. Direct synthesis of bimetallic PtCo mesoporous nanospheres as efficient bifunctional electrocatalysts for both oxygen reduction reaction and methanol oxidation reaction

    NASA Astrophysics Data System (ADS)

    Wang, Hongjing; Yu, Hongjie; Li, Yinghao; Yin, Shuli; Xue, Hairong; Li, Xiaonian; Xu, You; Wang, Liang

    2018-04-01

    The engineering of electrocatalysts with high performance for cathodic and/or anodic catalytic reactions is of great urgency for the development of direct methanol fuel cells. Pt-based bimetallic alloys have recently received considerable attention in the field of fuel cells because of their superior catalytic performance towards both fuel molecule electro-oxidation and oxygen reduction. In this work, bimetallic PtCo mesoporous nanospheres (PtCo MNs) with uniform size and morphology have been prepared by a one-step method with a high yield. The as-made PtCo MNs show superior catalytic activities for both oxygen reduction reaction and methanol oxidation reaction relative to Pt MNs and commercial Pt/C catalyst, attributed to their mesoporous structure and bimetallic composition.

  12. Development and statistical optimization of nefopam hydrochloride loaded nanospheres for neuropathic pain using Box-Behnken design.

    PubMed

    Sukhbir, S; Yashpal, S; Sandeep, A

    2016-09-01

    Nefopam hydrochloride (NFH) is a non-opioid centrally acting analgesic drug used to treat chronic condition such as neuropathic pain. In current research, sustained release nefopam hydrochloride loaded nanospheres (NFH-NS) were auspiciously synthesized using binary mixture of eudragit RL 100 and RS 100 with sorbitan monooleate as surfactant by quasi solvent diffusion technique and optimized by 3 5 Box-Behnken designs to evaluate the effects of process and formulation variables. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetric (DSC) and X-ray diffraction (XRD) affirmed absence of drug-polymer incompatibility and confirmed formation of nanospheres. Desirability function scrutinized by design-expert software for optimized formulation was 0.920. Optimized batch of NFH-NS had mean particle size 328.36 nm ± 2.23, % entrapment efficiency (% EE) 84.97 ± 1.23, % process yield 83.60 ± 1.31 and % drug loading (% DL) 21.41 ± 0.89. Dynamic light scattering (DLS), zeta potential analysis and scanning electron microscopy (SEM) validated size, charge and shape of nanospheres, respectively. In-vitro drug release study revealed biphasic release pattern from optimized nanospheres. Korsmeyer Peppas found excellent kinetics model with release exponent less than 0.45. Chronic constricted injury (CCI) model of optimized NFH-NS in Wistar rats produced significant difference in neuropathic pain behavior ( p  < 0.05) as compared to free NFH over 10 h indicating sustained action. Long term and accelerated stability testing of optimized NFH-NS revealed degradation rate constant 1.695 × 10 -4 and shelf-life 621 days at 25 ± 2 °C/60% ± 5% RH.

  13. The fabrication of highly conductive and flexible Ag patterning through baking Ag nanosphere-nanoplate hybrid ink at a low temperature of 100 °C.

    PubMed

    Han, Y D; Zhang, S M; Jing, H Y; Wei, J; Bu, F H; Zhao, L; Lv, X Q; Xu, L Y

    2018-02-12

    With the aim of developing highly conductive ink for flexible electronics on heat-sensitive substrates, Ag nanospheres and nanoplates were mixed to synthesize hybrid inks. Five kinds of hybrid ink and two types of pure ink were written to square shape on Epson photo paper using rollerball pens, and sintered at a low temperature (100 °C). The microstructure, electrical resistivity, surface porosity, hardness and flexibility of silver patterns were systematically investigated and compared. It was observed that the optimal mixing ratio of nanospheres and nanoplates was 1:1, which equipped the directly written pattern with excellent electrical and mechanical properties. The electrical resistivity was 0.103 μΩ · m, only 6.5 times that of bulk silver. The enhancement compared to pure silver nanospheres or nanoplates based ink was due to the combined action of nanospheres and nanoplates. This demonstrates a valuable way to prepare Ag nanoink with good performance for printed/written electronics.

  14. Morphological evolution of prussian yellow Fe[Fe(CN){sub 6}] colloidal nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Jianmin, E-mail: jmgu@ysu.edu.cn; Fu, Shaoyan; Jin, Cuihong

    2016-07-15

    A simple hydrothermal system was developed for controllable morphologies of the Prussian yellow Fe[Fe(CN){sub 6}] nanostructures in the presence of organic additives. Hollow and solid nanospheres of the Prussian yellow materials were successfully synthesized with suitable experimental conditions. It is found that the amounts of organic additives CTAB could result in the formation of the spherical nanocrystals and the hydrolysis of phosphate in the solution could play a role in the final morphology of the products. A possible formation mechanism of the Prussian yellow nanostructures is proposed. - Graphical abstract: A hydrothermal process was developed for controllable fabrication of themore » Prussian yellow hollow and solid nanospheres with the employment of different phosphate. The hydrolysis of phosphate in the solution could play a role in the morphology of the Prussian yellow nanomaterials. The acid phosphate (NaH{sub 2}PO{sub 4}) could result in the formation of the solid nanoparticles. The alkalescent phosphate (Na{sub 2}HPO{sub 4}) could result in the formation of the hollow nanoparticles. Display Omitted.« less

  15. Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene.

    PubMed

    Lotito, Valeria; Zambelli, Tomaso

    2015-06-01

    Plasmonic structures on graphene can tailor its optical properties, which is essential for sensing and optoelectronic applications, e.g. for the enhancement of photoresponsivity of graphene photodetectors. Control over their structural and, hence, spectral properties can be attained by using electron beam lithography, which is not a viable solution for the definition of patterns over large areas. For the fabrication of large-area plasmonic nanostructures, we propose to use self-assembled monolayers of nanospheres as a mask for metal evaporation and etching processes. An optimized approach based on self-assembly at air/water interface with a properly designed apparatus allows the attainment of monolayers of hexagonally closely packed patterns with high long-range order and large area coverage; special strategies are devised in order to protect graphene against damage resulting from surface treatment and further processing steps such as reactive ion etching, which could potentially impair graphene properties. Therefore we demonstrate that nanosphere lithography is a cost-effective solution to create plasmonic patterns on graphene. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Effect of pH and chloroauric acid concentration on the geometry of gold nanoparticles obtained by photochemical synthesis

    NASA Astrophysics Data System (ADS)

    Conde Rodríguez, G. R.; Gauthier, G. H.; Ladeira, L. O.; Sanabria Cala, J. A.; Laverde Cataño, D.

    2017-12-01

    Due to their excellent surface properties, gold nanoparticles have been used in a wide range of applications from optics and catalysis to biology and cancer treatment by thermal therapy. Gold nanoparticles can absorb a large amount of radiation according to their geometry, such as nanospheres and nanorods. The importance of gold nanoparticles geometry is based on the electromagnetic spectrum wavelength where exists a greater absorption of radiation, which belongs to the visible region for nanospheres and ranges between visible and near infrared regions for nanorods, conferring greater biomedical applicability to the latter. When using photochemical synthesis method, which consists of reducing gold atoms to their metallic state with UV radiation, the geometry of gold nanoparticles depends on different variables such as: 1) pH, 2) concentration of chloroauric acid, 3) the surfactant, 4) concentration of silver nitrate, 5) temperature and 6) irradiation time. Therefore, in this study the geometry of the gold nanoparticles obtained by photochemical synthesis was determined as a function of solution pH and chloroauric acid concentration, using Spectrophotometry in the Ultraviolet Visible region (UV-vis) as characterization technique. From the analysis of the UV-vis spectra, it was determined that at an acidic pH the particles have two absorption bands corresponding to nanorods geometry, while at a basic pH only nanospheres are found and at a neutral pH the lower relative intensity of the second band indicates the simultaneous existence of the two geometries. The increase in the concentration of chloroauric acid produces a decrease in the amount of synthesized nanorods, seen as a decrease of the relative intensity of the second absorption band. Therefore, obtaining gold nanoparticles with nanorods geometry favours fields such as biomedicine, because they are capable of absorbing infrared radiation and can be used as photosensitive agents in localized thermal therapy

  17. Water-soluble ferrocene complexes (WFCs) functionalized silica nanospheres for WFC delivery in HepG2 tumor therapy.

    PubMed

    Yan, Saisai; Hu, Fan; Hong, Xia; Shuai, Qi

    2018-09-01

    Silica-encapsulated nanospheres of water-soluble ferrocene complexes WFCs@SiO 2 and WFCs@SiO 2 @glutaraldehyde (GA) were first synthesized by a facile inverse-microemulsion method. The surface functional groups, particle size, and morphologies of nanospheres were characterized by IR spectra, UV-vis absorption spectra, dynamic light scattering (DLS) and SEM images. Single-crystal X-ray diffraction was used to confirm the molecular structure of free ferrocenyl-pyrazol ligand (L) and three WFCs, namely, [Ni(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ] (5a), [Mg(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ]·3H 2 O (5b), and [Ba(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 3 ] (5c). The electrochemical properties of 5a-5c were explored by cyclic voltammetry. The WFCs-loading capacities of 5a-5c in WFCs@SiO 2 were found to be 38.4, 38.2, and 38.1 μg/mg, respectively. Cell studies under two drug delivery modes (free diffusion and endocytosis) were carried out by MTT cell-survival assays and morphological observation of HepG2 cells. It's interesting that the cytotoxicity of WFCs against HepG2 was increased by applying silica nanocarriers. Compared to WFCs@SiO 2 , the modification of GA on the spherical surface provided not only the better water-dispersity but also additional functional groups for further modification of other pharmacophores. The novel nanocarrier system for WFC delivery present a novel concept-of-proof method to protect varieties of affordable metal-based anticancer agents in physiological conditions and provided experimental basis for future studies focusing on drug delivery of other WFCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Study of the hydrostatic pressure dependence of the Raman spectrum of W/WS2 fullerene-like nanosphere with core shell structure

    NASA Astrophysics Data System (ADS)

    Yu, S. D.; Chang, L. X.; Yang, H. B.; Liu, B. B.; Hou, Y. Y.; Wang, L.; Yao, M. G.; Cui, T.; Zou, G. T.

    2007-10-01

    The structural behavior of a W/WS2 fullerene-like nanosphere with a core-shell structure has been studied in the hydrostatic pressure range from atmospheric pressure to 18 GPa by Raman spectroscopy using a methanol-ethanol-water mixture (16:3:1) as the pressure transmitting medium (PTM). We found that it is interesting that the intensity ratio of the LA+TA mode and the A1g mode changes with increasing pressure. We attribute this change to the shape transformation of an inorganic fullerene-like IF-W/WS2 nanosphere under high hydrostatic pressure. By comparing the Raman spectra of an IF-W/WS2 nanosphere released from high pressure with that of the original one, we found that the change in morphology is reversible. This indicates that the spherical shape of the IF-W/WS2 has excellent behavior in resisting compression.

  19. Bio-affinity mediated immobilization of lipase onto magnetic cellulose nanospheres for high yield biodiesel in one time addition of methanol.

    PubMed

    Bandikari, Ramesh; Qian, Jiaxin; Baskaran, Ram; Liu, Ziduo; Wu, Gaobing

    2018-02-01

    To synthesis biodiesel from palm oil in one-time addition of methanol and solvent-free medium using CBD fused with C-terminal of lipase from G. stearothermophilus (GSlip-CBD) was immobilized onto magnetic cellulose nanosphere (MCNS). The immobilized matrix traits were preconceived by FT-IR, TEM and XRD. Perceptible biodiesel yield 98 and 73% was synthesized by GSlip-CBD-MCNS in 4 h and GSlip-MCNS in 6 h under the optimized conditions of oil:methanol ratio (1:3.5), temperature (55 and 50 °C) and enzyme loading (15 U). Intriguingly, the operational stability of GSlip-CBD-MCNS was an easily attainable owing to the magnetic properties and could be reused up to 8th and19th cycles with 94 and 45% of biodiesel yield respectively, compared to GSlip-MCNS. Thus GSlip-CBD-MCNS could be a potential biocatalyst for higher yield of biodiesel and reusability in one step addition of methanol. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A graphitic hollow carbon nitride nanosphere as a novel photochemical internalization agent for targeted and stimuli-responsive cancer therapy

    NASA Astrophysics Data System (ADS)

    Liu, Chaoqun; Chen, Zhaowei; Wang, Zhenzhen; Li, Wei; Ju, Enguo; Yan, Zhengqing; Liu, Zhen; Ren, Jinsong; Qu, Xiaogang

    2016-06-01

    As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal stability, biocompatibility and cancer cell targeting ability. After CD44 receptor-mediated endocytosis, the nanosystem is embedded in endo/lysosomal vesicles and HA could be specially degraded by hyaluronidase (Hyal), inducing open pores. In the following, with visible light illumination, GHCNS could produce ROS that effectively induced lipid peroxidation and caused endo/lysosomal membrane break, accelerating the cytoplasmic release of the drug in the targeted and irradiated cells. As a result, significantly increased therapeutic potency and specificity against cancer cells could be achieved.As a novel technique, photochemical internalization (PCI) has been employed as a new approach to overcome endo/lysosomal restriction, which is one of the main difficulties in both drug and gene delivery. However, the complicated synthesis procedure (usually requiring the self-assembly of polymers, photosensitizers and cargos) and payload specificity greatly limit its further application. In this paper, we employ a highly fluorescent graphitic hollow carbon nitride nanosphere (GHCNS) to simultaneously serve as a PCI photosensitizer, an imaging agent and a drug carrier. The surface modification of GHCNS with multifunctional polysaccharide hyaluronic acid (HA) endows the system with colloidal

  1. Excellent electrochemical performances of cabbage-like polyaniline fabricated by template synthesis

    NASA Astrophysics Data System (ADS)

    Hu, Chenglong; Chen, Shaoyun; Wang, Yuan; Peng, Xianghong; Zhang, Weihong; Chen, Jian

    2016-07-01

    In this article, we explore a novel route to fabricate cabbage-like polyaniline (PANI) by in situ polymerization of aniline using the hydroxylated poly (methyl methacrylate) nanospheres (i.e. PMMAsbnd OHsbnd NS) as a template. A maximum specific capacitance of 584 F/g (the current density is 0.1 A/g) is achieved at 10 mV s-1 as well as a high stability of over 3000 cycles (the decrease in the SC is ∼9.1%), which suggests the potential application of the cabbage-like polyaniline in supercapacitors. The predominant electrochemical performances of the cabbage-like polyaniline can be attributed to their large surface area and larger-scale π-π conjugated system present in the quinoid structure of the PANI molecular chain, which can drastically facilitate electron diffusion and improve the utilization of the electroactive PANI during the charge/discharge processes. Accordingly, the facility of charge transfer can decrease resistance along with the PANI molecular chain to improve the electrochemical stability and achieve high-capacitance response characteristics. The present study introduces a new synthesis method for the development of various morphology of other conducting polymer, which may find potential applications in a variety of high-performance electrochemical devices.

  2. Solvothermal synthesis and surface chemistry to control the size and morphology of nanoquartz

    DOE PAGES

    Sochalski-Kolbus, Lindsay M.; Wang, Hsiu-Wen; Rondinone, Adam Justin; ...

    2015-09-29

    In this paper, we report a solvothermal synthesis method that allows the crystallization of quartz to occur at a relatively low temperature of 300°C in the form of isolated nanosized euhedral crystals. Transmission electron microscopy (TEM) and small area electron diffraction (SAED) were used to confirm the phases present and their particle sizes, morphologies, and crystallinity of the products. In conclusion, the results show that it is possible to control the size and morphology of the nanoquartz from rough nanospheres to nanorods using fluoride, which templates the nanocrystals and moderates growth.

  3. Facile fabrication of dual emissive nanospheres via the self-assembling of CdSe@CdS and zinc phthalocyanine and their application for silver ion detection

    NASA Astrophysics Data System (ADS)

    Liu, Shuning; Liu, Chenchen; Luan, Xinying; Yao, Rui; Feng, Yakai

    2017-09-01

    The far-red/near infrared photoluminescence of zinc phthalocyanines would be strongly quenched once they are aggregated, which will obviously hinder their wide applications in environmental, energy related and biomedical fields. Herein, the ultra-small sized semiconductor quantum dots with core-shell structures (CdSe@CdS) have been firstly synthesized and then assembled with a dendritic zinc phthalocyanine (ZnPc) in the H2O/DMF mixed solvent to obtain monodispersed nanospheres. Finally, it was found that the resultant ethanolic colloids can be employed as a sensitive and specific fluorescent nanoprobe for silver ions discrimination with a limit of detection (LOD) approaching to 10-8 mol/L.

  4. Silver nanoparticles with gelatin nanoshells: photochemical facile green synthesis and their antimicrobial activity

    NASA Astrophysics Data System (ADS)

    Pourjavadi, Ali; Soleyman, Rouhollah

    2011-10-01

    In the current study, a facile green synthesis of silver-gelatin core-shell nanostructures (spherical, spherical/cubic hybrid, and cubic, DLS diameter: 4.1-6.9 nm) is reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent cause mild reduction of silver ions into the silver nanoparticles (Ag-NPs). Gelatin protein, as an effective capping/shaping agent, was used in the reaction to self-assemble silver nanostructures. The formation of silver nanostructures and their self-assembly pattern was confirmed by SEM, AFM, and TEM techniques. Further investigations were carried out using zeta-potential, UV-Vis, FTIR, GPC, and TGA/DTG/DTA data. The prepared Ag-NPs showed proper and acceptable antimicrobial activity against three classes of microorganisms ( Escherichia coli Gram-negative bacteria, Staphylococcus aureus Gram-positive bacteria, and Candida albicans fungus). The antibacterial and antifungal Ag-NPs exhibit good stability in solution and can be considered as promising candidates for a wide range of biomedical applications.

  5. Modelling realistic TiO2 nanospheres: A benchmark study of SCC-DFTB against hybrid DFT

    NASA Astrophysics Data System (ADS)

    Selli, Daniele; Fazio, Gianluca; Di Valentin, Cristiana

    2017-10-01

    TiO2 nanoparticles (NPs) are nowadays considered fundamental building blocks for many technological applications. Morphology is found to play a key role with spherical NPs presenting higher binding properties and chemical activity. From the experimental point of view, the characterization of these nano-objects is extremely complex, opening a large room for computational investigations. In this work, TiO2 spherical NPs of different sizes (from 300 to 4000 atoms) have been studied with a two-scale computational approach. Global optimization to obtain stable and equilibrated nanospheres was performed with a self-consistent charge density functional tight-binding (SCC-DFTB) simulated annealing process, causing a considerable atomic rearrangement within the nanospheres. Those SCC-DFTB relaxed structures have been then optimized at the DFT(B3LYP) level of theory. We present a systematic and comparative SCC-DFTB vs DFT(B3LYP) study of the structural properties, with particular emphasis on the surface-to-bulk sites ratio, coordination distribution of surface sites, and surface energy. From the electronic point of view, we compare HOMO-LUMO and Kohn-Sham gaps, total and projected density of states. Overall, the comparisons between DFTB and hybrid density functional theory show that DFTB provides a rather accurate geometrical and electronic description of these nanospheres of realistic size (up to a diameter of 4.4 nm) at an extremely reduced computational cost. This opens for new challenges in simulations of very large systems and more extended molecular dynamics.

  6. Mn(ii) mediated degradation of artemisinin based on Fe3O4@MnSiO3-FA nanospheres for cancer therapy in vivo

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Zhang, Weijie; Zhang, Min; Guo, Zhen; Wang, Haibao; He, Mengni; Xu, Pengping; Zhou, Jiajia; Liu, Zhenbang; Chen, Qianwang

    2015-07-01

    improving the survival of chemotherapy patients, providing a novel method for clinical tumor therapy. Electronic supplementary information (ESI) available: Iron mediated degradation mechanism for artemisinin, mechanism of alkylation of iron(ii)-heme or iron(ii)/heme dimethylester by artemisinin, mechanism of alkylation of the heme model MnIITPP by artemisinin, schematic illustration of the synthesis of ART-loaded Fe3O4@MnSiO3-FA nanospheres, further characterization such as XRD and EDX patterns, N2 adsorption and desorption isotherm and BJH pore distribution, FT-IR spectra, UV-vis spectra, DLS and parallel test results of flow cytometric detection are given in Fig. S1-S13, Fe2+ or Mn2+ release from Fe3O4@MnSiO3 nanospheres in PBS at different pHs is given in Table S1. See DOI: 10.1039/c5nr02402a

  7. Facile fabrication of rice husk based silicon dioxide nanospheres loaded with silver nanoparticles as a rice antibacterial agent

    PubMed Central

    Cui, Jianghu; Liang, You; Yang, Desong; Liu, Yingliang

    2016-01-01

    Bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major disease of rice, leading to reduction in production by 10–50%. In order to control this disease, various chemical bactericides have been used. Wide and prolonged application of chemical bactericides resulted in the resistant strain of Xoo that was isolated from rice. To address this problem, we were searching for an environmentally friendly alternative to the commonly used chemical bactericides. In this work, we demonstrate that silicon dioxide nanospheres loaded with silver nanoparticles (SiO2-Ag) can be prepared by using rice husk as base material precursor. The results of the antibacterial tests showed that SiO2-Ag composites displayed antibacterial activity against Xoo. At cellular level, the cell wall/membrane was damaged and intercellular contents were leaked out by slow-releasing of silver ions from SiO2-Ag composites. At molecular level, this composite induced reactive oxygen species production and inhibited DNA replication. Based on the results above, we proposed the potential antibacterial mechanism of SiO2-Ag composites. Moreover, the cytotoxicity assay indicated that the composites showed mild toxicity with rice cells. Thus, this work provided a new strategy to develop biocide derived from residual biomass. PMID:26888152

  8. Synthesis of hybrid interfacial silica-based nanospheres composite as a support for ultra-small palladium nanoparticle and application of PdNPs/HSN in Mizoroki-Heck reaction

    NASA Astrophysics Data System (ADS)

    Rostamnia, Sadegh; Kholdi, Saba

    2017-12-01

    The silica based hollow nanosphere (silica-HNS) containing polymer of polyaniline was synthesized and chosen as a promising support for PdNPs. Then it was applied as a green catalyst in the reaction of Heck coupling with high yield. TEM and SEM-EDX/mapping images were used to study the structure and morphology. FT-IR spectroscopy, Thermal gravimetry analysis (TGA), and BET were used to characterize and investigate the catalyst. Also, the amounts of Pd loading were characterized by ICP-AES technique. Catalyst recyclability showed 5 successful runs for the reaction.

  9. Size-controlled synthesis of NiFe2O4 nanospheres via a PEG assisted hydrothermal route and their catalytic properties in oxidation of alcohols by periodic acid

    NASA Astrophysics Data System (ADS)

    Paul, Bappi; Purkayastha, Debraj Dhar; Dhar, Siddhartha Sankar

    2016-05-01

    A novel and facile approach for synthesis of spinel nickel ferrites (NiFe2O4) nanoparticles (NPs) employing homogeneous chemical precipitation followed by hydrothermal heating is reported. The synthesis involves use of tributylamine (TBA) as a hydroxylating agent in synthesis of nickel ferrites. Polyethylene glycol (PEG) 4000 was used as surfactant. As-synthesized NiFe2O4 NPs were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), N2 adsorption-desorption isotherm (BET) and vibrating sample magnetometry (VSM). The XRD pattern revealed formation of cubic face-centered NiFe2O4 and TEM image showed spherical particles of sizes 2-10 nm. These NiFe2O4 NPs were used as magnetically recoverable catalyst in oxidation of cyclic alcohols to their corresponding aldehydes by periodic acid. This eco-friendly procedure affords products in very high yield and selectivity. The reusability of the catalyst is proved to be noteworthy as the material exhibits no significant changes in its catalytic activity even after five cycles of reuse.

  10. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    NASA Astrophysics Data System (ADS)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  11. Facile room-temperature solution-phase synthesis of a spherical covalent organic framework for high-resolution chromatographic separation.

    PubMed

    Yang, Cheng-Xiong; Liu, Chang; Cao, Yi-Meng; Yan, Xiu-Ping

    2015-08-07

    A simple and facile room-temperature solution-phase synthesis was developed to fabricate a spherical covalent organic framework with large surface area, good solvent stability and high thermostability for high-resolution chromatographic separation of diverse important industrial analytes including alkanes, cyclohexane and benzene, α-pinene and β-pinene, and alcohols with high column efficiency and good precision.

  12. Constructing a MoS₂ QDs/CdS Core/Shell Flowerlike Nanosphere Hierarchical Heterostructure for the Enhanced Stability and Photocatalytic Activity.

    PubMed

    Liang, Shijing; Zhou, Zhouming; Wu, Xiuqin; Zhu, Shuying; Bi, Jinhong; Zhou, Limin; Liu, Minghua; Wu, Ling

    2016-02-15

    MoS₂ quantum dots (QDs)/CdS core/shell nanospheres with a hierarchical heterostructure have been prepared by a simple microwave hydrothermal method. The as-prepared samples are characterized by XRD, TEM, SEM, UV-VIS diffuse reflectance spectra (DRS) and N₂-sorption in detail. The photocatalytic activities of the samples are evaluated by water splitting into hydrogen. Results show that the as-prepared MoS₂ QDs/CdS core/shell nanospheres with a diameter of about 300 nm are composed of the shell of CdS nanorods and the core of MoS₂ QDs. For the photocatalytic reaction, the samples exhibit a high stability of the photocatalytic activity and a much higher hydrogen evolution rate than the pure CdS, the composite prepared by a physical mixture, and the Pt-loaded CdS sample. In addition, the stability of CdS has also been greatly enhanced. The effect of the reaction time on the formations of nanospheres, the photoelectric properties and the photocatalytic activities of the samples has been investigated. Finally, a possible photocatalytic reaction process has also been proposed.

  13. Enhanced luminous transmittance of thermochromic VO2 thin film patterned by SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Zhou, Liwei; Liang, Jiran; Hu, Ming; Li, Peng; Song, Xiaolong; Zhao, Yirui; Qiang, Xiaoyong

    2017-05-01

    In this study, an ordered SiO2 nanosphere array coated with vanadium dioxide (VO2) has been fabricated to enhance transmittance with the potential application as an energy-efficient coating in the field of smart windows. SiO2 arrays were formed using the methods of self-assembly, and VO2 thin films were prepared by rapid thermal annealing (RTA) of sputtered vanadium films. VO2@SiO2 arrays were characterized by scanning electron microscopy, X-ray diffraction, a four-point probe, and UV-vis-NIR spectrophotometry. Compared with the planar films, the films deposited on 300 nm diameter SiO2 nanospheres can offer approximately 18% enhancement of luminous transmission (Tlum) because the diameter is smaller than the given wavelength and the protuberance of the surface array behaves as a gradation of refractive index producing antireflection. The solar regulation efficiency was not much deteriorated.

  14. Retrieving plasmonic near-field information: A quantum-mechanical model for streaking photoelectron spectroscopy of gold nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2016-11-01

    Streaked photoemission from nanostructures is characterized by size- and material-dependent nanometer-scale variations of the induced nanoplasmonic response to the electronic field of the streaking pulse and thus holds promise of allowing photoelectron imaging with both subfemtosecond temporal and nanometer spatial resolution. In order to scrutinize the driven collective electronic dynamics in 10-200-nm-diameter gold nanospheres, we calculated the plasmonic field induced by streaking pulses in the infrared and visible spectral range and developed a quantum-mechanical model for streaked photoemission by extreme ultraviolet pulses. Our simulated photoelectron spectra reveal a significant amplitude enhancement and phase shift of the photoelectron streaking trace relative to calculations that exclude the induced plasmonic field. Both are most pronounced for streaking pulses tuned to the plasmon frequency and retrace the plasmonic electromagnetic field enhancement and phase shift near the nanosphere surface.

  15. Preparation and Characterization of an Amphipathic Magnetic Nanosphere

    PubMed Central

    Ji, Yongsheng; Lv, Ruihong; Xu, Zhigang; Zhao, Chuande; Zhang, Haixia

    2014-01-01

    The amphipathic magnetic nanospheres were synthesized using C8 and polyethylene glycol as ligands. Their morphology, structure, and composition were characterized by transmission electron microscope, Fourier transform infrared, and elementary analysis. The prepared materials presented uniform sphere with size distribution about 200 nm. The magnetic characteristics of magnetic nanomaterials were measured by vibrating sample magnetometer. The target products had a saturation magnetization value of 50 emu g−1 and superparamagnetism. The adsorption capability was also studied by static tests, and the material was applied to enrich benzenesulfonamide from calf serum. The results exhibited that the C8-PEG phase owned better adsorption capability, biocompatible property, and dispersivity in aqueous samples. PMID:24729917

  16. Precision force sensing with optically-levitated nanospheres

    NASA Astrophysics Data System (ADS)

    Geraci, Andrew

    2017-04-01

    In high vacuum, optically-trapped dielectric nanospheres achieve excellent decoupling from their environment and experience minimal friction, making them ideal for precision force sensing. We have shown that 300 nm silica spheres can be used for calibrated zeptonewton force measurements in a standing-wave optical trap. In this optical potential, the known spacing of the standing wave anti-nodes can serve as an independent calibration tool for the displacement spectrum of the trapped particle. I will describe our progress towards using these sensors for tests of the Newtonian gravitational inverse square law at micron length scales. Optically levitated dielectric objects also show promise for a variety of other precision sensing applications, including searches for gravitational waves and other experiments in quantum optomechanics. National Science Foundation PHY-1205994, PHY-1506431, PHY-1509176.

  17. Cavity cooling a single charged levitated nanosphere.

    PubMed

    Millen, J; Fonseca, P Z G; Mavrogordatos, T; Monteiro, T S; Barker, P F

    2015-03-27

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  18. Cavity Cooling a Single Charged Levitated Nanosphere

    NASA Astrophysics Data System (ADS)

    Millen, J.; Fonseca, P. Z. G.; Mavrogordatos, T.; Monteiro, T. S.; Barker, P. F.

    2015-03-01

    Optomechanical cavity cooling of levitated objects offers the possibility for laboratory investigation of the macroscopic quantum behavior of systems that are largely decoupled from their environment. However, experimental progress has been hindered by particle loss mechanisms, which have prevented levitation and cavity cooling in a vacuum. We overcome this problem with a new type of hybrid electro-optical trap formed from a Paul trap within a single-mode optical cavity. We demonstrate a factor of 100 cavity cooling of 400 nm diameter silica spheres trapped in vacuum. This paves the way for ground-state cooling in a smaller, higher finesse cavity, as we show that a novel feature of the hybrid trap is that the optomechanical cooling becomes actively driven by the Paul trap, even for singly charged nanospheres.

  19. Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination.

    PubMed

    Poletti Papi, Maurício A; Caetano, Fabio R; Bergamini, Márcio F; Marcolino-Junior, Luiz H

    2017-06-01

    The present work describes the synthesis of a new conductive nanocomposite based on polypyrrole (PPy) and silver nanoparticles (PPy-AgNP) based on a facile reverse microemulsion method and its application as a non-enzymatic electrochemical sensor for glucose detection. Focusing on the best sensor performance, all experimental parameters used in the synthesis of nanocomposite were optimized based on its electrochemical response for glucose. Characterization of the optimized material by FT-IR, cyclic voltammetry, and DRX measurements and TEM images showed good monodispersion of semispherical Ag nanoparticles capped by PPy structure, with size average of 12±5nm. Under the best analytical conditions, the proposed sensor exhibited glucose response in linear dynamic range of 25 to 2500μmolL -1 , with limit of detection of 3.6μmolL -1 . Recovery studies with human saliva samples varying from 99 to 105% revealed the accuracy and feasibility of a non-enzymatic electrochemical sensor for glucose determination by easy construction and low-cost. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Fullerene-Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Liu, Junli; Yang, Yong; Ni, Bing; Li, Haoyi; Wang, Xun

    2017-02-01

    Fullerene-like nickel oxysulfide hollow nanospheres with ≈50 nm are constructed by in situ growth on the surface of nickel foam by taking advantage of solvothermal reaction. The as-prepared composite exhibits exhilaratingly high HER and OER performance in 1 m KOH, which opens up a very promising aspect for non-noble metal chalcogenides as bifunctional electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    PubMed

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  2. Bidirectional Photoswitching via Alternating NIR and UV Irradiation on a Core-Shell UCNP-SCO Nanosphere.

    PubMed

    Luo, Yang-Hui; Wang, Jing-Wen; Wang, Wen; He, Xiao-Tong; Hong, Dan-Li; Chen, Chen; Xu, Tao; Shao, Qiyue; Sun, Bai-Wang

    2018-05-16

    Bidirectional photoswitching of molecular materials under ambient condition is of significant importance. Herein, we present for the first time that a core-shell UCNP-SCO nanosphere (UCNP = upconversion nanophosphor, SCO = spin crossover), which was composed of a UCNP core (NaYF 4 : 20 mol % Yb 3+ , 1 mol % Er 3+ ) and an SCO iron(II) shell ([Fe(H 2 Bpz) 2 (bipy-COOH)], H 2 Bpz = dihydrobis(1-pyrazolyl)borate, bipy-COOH = 4,4'-dicarboxy-2,2'-bipyridine), can be reversibly photoswitched between the high-spin and low-spin states at room temperature in the solid state, via alternating irradiation with near-infrared (λ = 980 nm) and ultraviolet (λ = 310 nm) light. What's more, this reversible spin-state switching was accompanied by a variation of fluorescent spectrum and dielectric constants. The strategy here, that is, integrating the SCO iron(II) complex into a UCNP-SCO nanosphere for molecular photoswitching, may open a new area in the development of photocontrolled molecular devices.

  3. Nitrogen-Doped Hollow Carbon Nanospheres for High-Performance Li-Ion Batteries.

    PubMed

    Yang, Yufen; Jin, Song; Zhang, Zhen; Du, Zhenzhen; Liu, Huarong; Yang, Jia; Xu, Hangxun; Ji, Hengxing

    2017-04-26

    N-doped carbon materials is of particular attraction for anodes of lithium-ion batteries (LIBs) because of their high surface areas, superior electrical conductivity, and excellent mechanical strength, which can store energy by adsorption/desorption of Li + at the interfaces between the electrolyte and electrode. By directly carbonization of zeolitic imidazolate framework-8 nanospheres synthesized by an emulsion-based interfacial reaction, we obtained N-doped hollow carbon nanospheres with tunable shell thickness (20 nm to solid sphere) and different N dopant concentrations (3.9 to 21.7 at %). The optimized anode material possessed a shell thickness of 20 nm and contained 16.6 at % N dopants that were predominately pyridinic and pyrrolic. The anode delivered a specific capacity of 2053 mA h g -1 at 100 mA g -1 and 879 mA h g -1 at 5 A g -1 for 1000 cycles, implying a superior cycling stability. The improved electrochemical performance can be ascribed to (1) the Li + adsorption dominated energy storage mechanism prevents the volume change of the electrode materials, (2) the hollow nanostructure assembled by the nanometer-sized primary particles prevents the agglomeration of the nanoparticles and favors for Li + diffusion, (3) the optimized N dopant concentration and configuration facilitate the adsorption of Li + ; and (4) the graphitic carbon nanostructure ensures a good electrical conductivity.

  4. Synergistic increase of oxygen reduction favourable Fe-N coordination structures in a ternary hybrid of carbon nanospheres/carbon nanotubes/graphene sheets.

    PubMed

    Zhang, Shiming; Liu, Bin; Chen, Shengli

    2013-11-14

    A Fe/N co-doped ternary nanocarbon hybrid, with uniform bamboo-like carbon nanotubes (CNTs) in situ grown on/between the single/few-layer graphene sheets interspaced by carbon nanosphere aggregates, was prepared through a one-pot heat treatment of a precursor mixture containing graphene oxide, Vulcan XC-72 carbon nanospheres, nitrogen rich melamine and small amounts of Fe ions. Physical characterization including electron microscopic images, N2 adsorption-desorption isotherms, pore size distribution, XPS, XRD, Mössbauer spectra, and EDX revealed that the 0-D/1-D/2-D ternary hybrid architecture not only offered an optimized morphology for high dispersion of each nanocarbon moiety, while the carbon nanosphere interspaced graphene sheets have provided a platform for efficient reaction between Fe ions and melamine molecules, resulting in uniform nucleation and growth of CNTs and formation of high density Fe-N coordination assemblies that have been believed to be the active centers for the oxygen reduction reaction (ORR) in carbon-based nonprecious metal electrocatalysts. In the absence of graphene oxides or carbon nanospheres, a similar heat treatment was found to result in large amounts of elemental Fe and Fe carbides and entangled CNTs with wide diameter distributions. As a result, the ternary Fe/N-doped nanocarbon hybrid exhibits ORR activity much higher than the Fe-N doped single or binary nanocarbon materials prepared under similar heat treatment conditions, and approaching that of the state-of-the-art carbon-supported platinum catalyst (Pt/C) in acidic media, as well as superior stability and methanol tolerance to Pt/C.

  5. Mesoporous transition metal oxides quasi-nanospheres with enhanced electrochemical properties for supercapacitor applications.

    PubMed

    Wang, Lu; Duan, Guorong; Zhu, Junwu; Chen, Shen-Ming; Liu, Xiao-Heng; Palanisamy, Selvakumar

    2016-12-01

    In this report, we obtain mesoporous transition metal oxides quasi-nanospheres (includes MnO2, NiO, and Co3O4) by utilizing mesoporous silica nanospheres as a template for high-performance supercapacitor electrodes. All samples have a large specific surface area of approximately 254-325m(2)g(-1) and a relatively narrow pore size distribution in the region of 7nm. Utilization of a nanosized template resulted in a product with a relative uniform morphology and a small particle diameter in the region of 50-100nm. As supercapacitor electrodes, MnO2, NiO, and Co3O4 exhibit an outstanding capacity as high as 838-1185Fg(-1) at 0.5Ag(-1) and a superior long-term stability with minimal loss of 3-7% after 6000 cycles at 1Ag(-1). Their excellent electrochemical performances are attributed to favorable morphologies with a large surface area and a uniform architecture with abundant pores. The associated enhancement of electrolyte ion circulation within the electrode facilitates a significant increase in availability of Faradic reaction electroactive sites. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Immunoadjuvant potential of cross-linked dextran microspheres mixed with chitosan nanospheres encapsulated with tetanus toxoid.

    PubMed

    Pirouzmand, Haniyeh; Khameneh, Bahman; Tafaghodi, Mohsen

    2017-12-01

    Nasal mucosa is a desirable route for mucosal vaccine delivery. Mucosal co-administration of chitosan nanoparticles with absorption enhancers such as cross-linked dextran microspheres (CDM, Sephadex ® ) is a promising antigen delivery system. In the current study, the chitosan nanospheres loaded with tetanus toxoid (CHT:TT NPs) was prepared and characterized. The immune responses against tetanus toxoid after nasal administration of CHT:TT NPs alone or mixed with CDM were also determined. Chitosan nanospheres were prepared by ionic gelation method. Particle size, releasing profile and antigen stability were evaluated by dynamic light scattering, diffusion chamber and SDS-PAGE methods, respectively. Rabbits were nasally immunized with different formulations loaded with 40 Lf TT. After three times immunizations with 2 weeks intervals, sera IgG titres and nasal lavage sIgA titres were determined. Mean size of CHT NPs and CHT:TT NPs were 205 ± 42 nm and 432 ± 85 nm, respectively. The release profile showed that 42.4 ± 10.5% of TT was released after 30 min and reached to a steady state after 1.5 h. Stability of encapsulated TT in nanospheres was confirmed by SDS-PAGE. The antibody titres showed that CHT:TT NPs-induced antibody titres were higher than TT solution. CHT NPs mixed with CDM induced the systemic IgG and nasal lavage sIgA titres higher than intranasal administration of TT solution (p < 0.001). As the results indicated, these CHT:TT NPs when co-administered with CDM were able to induce more immune responses and have the potential to be used in mucosal immunization.

  7. Chitosan-rectorite nanospheres embedded aminated polyacrylonitrile nanofibers via shoulder-to-shoulder electrospinning and electrospraying for enhanced heavy metal removal

    NASA Astrophysics Data System (ADS)

    Huang, Mengtian; Tu, Hu; Chen, Jiajia; Liu, Rong; Liang, Zhaoyi; Jiang, Linbin; Shi, Xiaowen; Du, Yumin; Deng, Hongbing

    2018-04-01

    Chitosan (CS) has a high amine group content, while polyacrylonitrile (PAN) contains cyano-groups that can be easily converted to amine groups. Herein, a novel adsorbent consisting of PAN-CS mats was successfully prepared via the shoulder-to-shoulder electrospinning and electrospraying techniques, which could eliminate the obstacle of selecting a co-solvent system for dissolving PAN and CS together. The morphology of the resultant adsorbent with adherent nanofibers-nanospheres was observed due to the immobilization of the CS electrosprayed nanospheres into PAN electrospun nanofibrous mats. Furthermore, CS nanospheres and PAN nanofibers were alternately arranged which could enlarge the space between the nanofibers, facilitating the diffusion of heavy metals in solution. Afterwards, rectorite (REC) was introduced into the mats to achieve the predesigned intercalated structure formed between the CS chains and the interlayer of REC even acquired the desirable enhanced adsorption ability towards heavy metals. Based on this improvement, chemical modification was performed on the surface of PAN nanofibers to form aminated PAN (APAN) with more amine groups for reinforcing the adsorption performance. The adsorption experiments results showed that APAN-CS/REC mats exhibited at least a 2.0 times increase in the adsorption capacity of Pb2+ compared to the original PAN-CS composite mats.

  8. Glucomannan-mediated facile synthesis of gold nanoparticles for catalytic reduction of 4-nitrophenol

    PubMed Central

    2014-01-01

    A facile one-pot approach for synthesis of gold nanoparticles with narrow size distribution and good stability was presented by reducing chloroauric acid with a polysaccharide, konjac glucomannan (KGM) in alkaline solution, which is green and economically viable. Here, KGM served both as reducing agent and stabilizer. The effects of KGM on the formation and stabilization of as-synthesized gold nanoparticles were studied systematically by a combination of UV-visible (UV-vis) absorption spectroscopy, transmission electron microscopy, X-ray diffraction, dynamic light scattering, and Fourier transform infrared spectroscopy. Furthermore, the gold nanoparticles exhibited a notable catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol. PMID:25177220

  9. Photothermal optical coherence tomography of epidermal growth factor receptor in live cells using immunotargeted gold nanospheres

    NASA Astrophysics Data System (ADS)

    Skala, Melissa C.; Crow, Matthew J.; Wax, Adam; Izatt, Joseph A.

    2009-02-01

    Molecular imaging is a powerful tool for investigating disease processes and potential therapies in both in vivo and in vitro systems. However, high resolution molecular imaging has been limited to relatively shallow penetration depths that can be accessed with microscopy. Optical coherence tomography (OCT) is an optical analogue to ultrasound with relatively good penetration depth (1-2 mm) and resolution (~1-10 μm). We have developed and characterized photothermal OCT as a molecular contrast mechanism that allows for high resolution molecular imaging at deeper penetration depths than microscopy. Our photothermal system consists of an amplitude-modulated heating beam that spatially overlaps with the focused spot of the sample arm of a spectral-domain OCT microscope. Validation experiments in tissue-like phantoms containing gold nanospheres that absorb at 532 nm revealed a sensitivity of 14 parts per million nanospheres (weight/weight) in a tissue-like environment. The nanospheres were then conjugated to anti-EGFR, and molecular targeting was confirmed in cells that over-express EGFR (MDA-MB-468) and cells that express low levels of EGFR (MDA-MB-435). Molecular imaging in three-dimensional tissue constructs was confirmed with a significantly lower photothermal signal (p<0.0001) from the constructs composed of cells that express low levels of EGFR compared to the over-expressing cell constructs (300% signal increase). This technique could potentially augment confocal and multiphoton microscopy as a method for deep-tissue, depth-resolved molecular imaging with relatively high resolution and target sensitivity, without photobleaching or cytotoxicity.

  10. A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study.

    PubMed

    El-Wekil, Mohamed M; Mahmoud, Ashraf M; Alkahtani, Saad A; Marzouk, Adel A; Ali, Ramadan

    2018-06-30

    Novel and sensitive electrochemical sensor was fabricated for the assay of anti-HCV ledipasvir (LEDV) in different matrices. The designed sensor was based on 3D spinel ferromagnetic NiFe 2 O 4 nanospheres and reduced graphene oxide (RGO) supported by morpholinium acid sulphate (MHS), as an ionic liquid (RGO/NSNiFe 2 O 4 /MHS). This sensor design was assigned to synergistically tailor the unique properties of nanostructured ferrites, RGO, and ionic liquid to maximize the sensor response. Electrode modification prevented aggregation of NiFe 2 O 4, increasing electroactive surface area and allowed remarkable electro-catalytic oxidation of LEDV with an enhanced oxidation response. Differential pulse voltammetry was used for detection LEDV in complex matrices whereas; cyclic voltammetry and other techniques were employed to characterize the developed sensor properties. All experimental factors regarding sensor fabrication and chemical sensing properties were carefully studied and optimized. Under the optimum conditions, the designated sensor displayed a wide linear range (0.4-350 ng mL -1 ) with LOD of 0.133 ng mL -1 . Additionally, the proposed sensor demonstrated good selectivity, stability and reproducibility, enabling the quantitative detection of LEDV in Harvoni ® tablets, human plasma and in a pharmacokinetic study. Our findings suggest that the developed sensor is a potential prototype material for fabrication of high-performance electrochemical sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Facile and High-Yielding Synthesis of TAM Biradicals and Monofunctional TAM Radicals.

    PubMed

    Trukhin, Dmitry V; Rogozhnikova, Olga Yu; Troitskaya, Tatiana I; Vasiliev, Vladimir G; Bowman, Michael K; Tormyshev, Victor M

    2016-04-01

    Facile and high-yielding procedures for synthesis of monocarboxylic acid derivatives of triarylmethyl radicals (TAMs) were developed. Reaction of methyl thioglycolate with tris(2,3,5,6-tetrathiaaryl)methyl cation smoothly afforded the monosubstituted TAM derivative, which was hydrolyzed to a monocarboxylic acid, with the TAM moiety attached to thioglycolic acid via the sulfur atom. Alternatively, the diamagnetic tricarboxylic acid precursor of Finland trityl was transformed to a trimethyl ester and partially hydrolyzed under controlled conditions. The diester product was isolated and the remaining fractions were converted back to the trimethyl ester for production of more diester. The first representatives of TAM biradicals with different TAM cores and interspin distances were obtained by reaction of these new TAM monocaboxylic acids with N,N'-dimethylethylenediamine.

  12. Bi-Component Nanostructured Arrays of Co Dots Embedded in Ni80Fe20 Antidot Matrix: Synthesis by Self-Assembling of Polystyrene Nanospheres and Magnetic Properties.

    PubMed

    Coïsson, Marco; Celegato, Federica; Barrera, Gabriele; Conta, Gianluca; Magni, Alessandro; Tiberto, Paola

    2017-08-23

    A bi-component nanostructured system composed by a Co dot array embedded in a Ni 80 Fe 20 antidot matrix has been prepared by means of the self-assembling polystyrene nanospheres lithography technique. Reference samples constituted by the sole Co dots or Ni 80 Fe 20 antidots have also been prepared, in order to compare their properties with those of the bi-component material. The coupling between the two ferromagnetic elements has been studied by means of magnetic and magneto-transport measurements. The Ni 80 Fe 20 matrix turned out to affect the vortex nucleation field of the Co dots, which in turn modifies the magneto-resistance behaviour of the system and its spinwave properties.

  13. SU-E-T-645: Dose Enhancement to Cell Nucleus Due to Hard Collisions of Protons with Electrons in Gold Nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, J; Krishnan, S

    2014-06-15

    Purpose: The purpose of this study was to investigate the theoretical dose enhancement to a cell nucleus due to increased fluence of secondary electrons when gold nanospheres are present in the cytoplasm during proton therapy. Methods: We modeled the irradiation of prostate cancer cells using protons of variable energies when 10,000 gold nanoparticles, each with radius of 10 nm, were randomly distributed in the cytoplasm. Using simple analytical equations, we calculated the increased mean dose to the cell nucleus due to secondary electrons produced by hard collisions of 0.1, 1, 10, and 100 MeV protons with orbital electrons in gold.more » We only counted electrons with kinetic energy higher than 1 keV. In addition to calculating the increase in the mean dose to the cell nucleus, we also calculated the increase in local dose in the “shadow,” i.e., the umbra, of individual gold nanospheres due to forward scattered electrons. Results: For proton energies of 0.1, 1, 10, and 100 MeV, we calculated increases to the mean nuclear dose of 0.15, 0.09, 0.05, and 0.04%, respectively. When we considered local dose increases in the shadows of individual gold spheres, we calculated local dose increases of 5.5, 3.2, 1.9, and 1.3%, respectively. Conclusion: We found negligible, less than 0.2%, increases in the mean dose to the cell nucleus due to electrons produced by hard collisions of protons with electrons in gold nanospheres. However, we observed increases up to 5.5% in the local dose in the shadow of gold nanospheres. Considering the shadow radius of 10 nm, these local dose enhancements may have implications for slightly increased probability of clustered DNA damage when gold nanoparticles are close to the nuclear membrane.« less

  14. Antibiotics mediated facile one-pot synthesis of gold nanoclusters as fluorescent sensor for ferric ions.

    PubMed

    Yu, Mengqun; Zhu, Zheguo; Wang, Hong; Li, Linyao; Fu, Fei; Song, Yang; Song, Erqun

    2017-05-15

    In this paper, the cheap, easily obtained small antibiotic molecule of vancomycin was employed as reducer/stabilizer for facile one-pot synthesis of water exhibited a bluish fluorescence emission at 410nm within a short synthesis time about 50min. Based on the strong fluorescence quenching due to electron transfer mechanism by the introduction of ferric ions(Fe 3+ ), the Van-AuNCs were interestingly designed for sensitive and selective detecting Fe 3+ with a limit of 1.4μmol L -1 in the linear range of 2-100μmol L -1 within 20min. The Van-AuNCs based method was successfully applied to determine Fe 3+ in tap water, lake water, river water and sea water samples with the quantitative spike recoveries from 97.50-111.14% with low relative standard deviations ranging from 0.49-1.87%, indicating the potential application of this Van-AuNCs based fluorescent sensor for environmental sample analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. A divergent [5+2] cascade approach to bicyclo[3.2.1]octanes: facile synthesis of ent-kaurene and cedrene-type skeletons.

    PubMed

    He, Chi; Bai, Zengbing; Hu, Jialei; Wang, Bingnan; Xie, Hujun; Yu, Lei; Ding, Hanfeng

    2017-07-25

    A solvent-dependent oxidative dearomatization-induced divergent [5+2] cascade approach to bicyclo[3.2.1]octanes was described. This novel protocol enables a facile synthesis of a series of diversely functionalized ent-kaurene and cedrene-type skeletons in good yields and excellent diastereoselectivities.

  16. Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies

    PubMed Central

    Gajowy, Joanna; Bolikal, Durgadas; Kohn, Joachim; El Fray, Miroslawa

    2014-01-01

    In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA) and tyrosine derived diphenols containing alkyl ester pendent chains, designated as “R” (DTR). Specific pendent chains were ethyl (E) and hexyl (H). These poly(aliphatic/aromatic-ester-amide)s were further reacted with poly(ethylene glycol) (PEG) and poly(ethylene glycol methyl ether) of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic) triblock copolymers. We used Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC) measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS) spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196–239 nm and critical micelle concentration (CMC) of 0.125–0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices. PMID:25347356

  17. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self-Catalyzed Strategy toward Facile Synthesis.

    PubMed

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Liu, Zhihong; Cui, Guanglei; Feng, Jiwen

    2017-11-01

    It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self-catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte (C-PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether-based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li + and considerable ionic conductivity of 8.9 × 10 -5 S cm -1 at ambient temperature. Moreover, the LiFePO 4 /C-PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self-catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes.

  18. Hollow carbon nanospheres using an asymmetric triblock copolymer structure directing agent.

    PubMed

    Li, Yunqi; Tan, Haibo; Salunkhe, Rahul R; Tang, Jing; Shrestha, Lok Kumar; Bastakoti, Bishnu Prasad; Rong, Hongpan; Takei, Toshiaki; Henzie, Joel; Yamauchi, Yusuke; Ariga, Katsuhiko

    2016-12-20

    We introduce a simple method to prepare hollow carbon nanospheres (HCNs) by using triblock copolymer poly(styrene-b-2-vinylpyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) micelles as a new class of soft-templates. Simply by changing the solvent we can prepare ultra-small sized micelles of the triblock copolymer PS-b-P2VP-b-PEO soft template to obtain HCNs with ultra-small diameters (43 nm) and hollow cores (19 nm). Furthermore, we use these HCNs to make electric double-layer capacitors (EDLCs) that exhibit superior performance.

  19. Synthesis and Plasmonic Understanding of Core/Satellite and Core Shell Nanostructures

    NASA Astrophysics Data System (ADS)

    Ruan, Qifeng

    Localized surface plasmon resonance, which stems from the collective oscillations of conduction-band electrons, endows Au nanocrystals with unique optical properties. Au nanocrystals possess extremely large scattering/absorption cross-sections and enhanced local electromagnetic field, both of which are synthetically tunable. Moreover, when Au nanocrystals are closely placed or hybridized with semiconductors, the coupling and interaction between the individual components bring about more fascinating phenomena and promising applications, including plasmon-enhanced spectroscopies, solar energy harvesting, and cancer therapy. The continuous development in the field of plasmonics calls for further advancements in the preparation of high-quality plasmonic nanocrystals, the facile construction of hybrid plasmonic nanostructures with desired functionalities, as well as deeper understanding and efficient utilization of the interaction between plasmonic nanocrystals and semiconductor components. In this thesis, I developed a seed-mediated growth method for producing size-controlled Au nanospheres with high monodispersity and assembled Au nanospheres of different sizes into core/satellite nanostructures for enhancing Raman signals. For investigating the interactions between Au nanocrystals and semiconductors, I first prepared (Au core) (TiO2 shell) nanostructures, and then studied their synthetically controlled plasmonic properties and light-harvesting applications. Au nanocrystals with spherical shapes are desirable in plasmon-coupled systems owing to their high geometrical symmetry, which facilitates the analysis of electrodynamic responses in a classical electromagnetic framework and the investigation of quantum tunneling and nonlocal effects. I prepared remarkably uniform Au nanospheres with diameters ranging from 20 nm to 220 nm using a simple seed-mediated growth method associated with mild oxidation. Core/satellite nanostructures were assembled out of differently sized

  20. Facile Synthesis of Flowerlike LiFe5O8 Microspheres for Electrochemical Supercapacitors.

    PubMed

    Lin, Ying; Dong, Jingjing; Dai, Jingjing; Wang, Jingping; Yang, Haibo; Zong, Hanwen

    2017-12-18

    Facile synthesis of porous and hollow spinel materials is very urgent due to their extensive applications in the field of energy storage. In present work, flowerlike porous LiFe 5 O 8 microspheres etched for 15, 30, and 45 min (named as p-LFO-15, p-LFO-30, and p-LFO-45, respectively) are successfully synthesized through a facile chemical etching method based on bulk LiFe 5 O 8 (LFO) particles as precursors, and they are applied as electrode materials for high-performance electrochemical capacitors. In particular, the specific surface area of p-LFO-45 reaches 46.13 m 2 g -1 , which is 112 times greater than that of the unetched counterpart. Therefore, the p-LFO-45 electrode can achieve a higher capacitance of 278 F g -1 at a scan rate of 5 mV s -1 than the unetched counterpart. Furthermore, the p-LFO-45 electrode presents a good cycling stability with 78.3% of capacitive retention after 2000 cycles, which is much higher than that of the unetched LFO particles (66%). Therefore, the flowerlike porous LFO microspheres are very promising candidate materials for supercapacitor applications.

  1. Facile synthesis of antimony-doped tin oxide nanoparticles by a polymer-pyrolysis method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yuan-Qing, E-mail: yqli@mail.ipc.ac.cn; Wang, Jian-Lei; Fu, Shao-Yun, E-mail: syfu@mail.ipc.ac.cn

    2010-06-15

    In this article, antimony-doped tin oxide (ATO) nanoparticles was synthesized by a facile polymer-pyrolysis method. The pyrolysis behaviors of the polymer precursors prepared via in situ polymerization of metal salts and acrylic acid were analyzed by simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC). The structural and morphological characteristics of the products were studied by powder X-ray diffraction (XRD) and transmission electron microscope (TEM). The results reveal that the ATO nanoparticles calcined at 600 {sup o}C show good crystallinity with the cassiterite structure and cubic-spherical like morphology. The average particle size of ATO decreases from 200 to 15 nm as themore » Sb doping content increases from 5 mol% to 15 mol%. Electrical resistivity measurement shows that the resistivity for the 10-13 mol% Sb-doped SnO{sub 2} nanoparticles is reduced by more than three orders compared with the pure SnO{sub 2} nanoparticles. In addition, due to its versatility this polymer-pyrolysis method can be extended to facile synthesis of other doped n-type semiconductor, such as In, Ga, Al doped ZnO, Sn doped In{sub 2}O{sub 3}.« less

  2. High Performance Solid Polymer Electrolytes for Rechargeable Batteries: A Self‐Catalyzed Strategy toward Facile Synthesis

    PubMed Central

    Cui, Yanyan; Liang, Xinmiao; Chai, Jingchao; Cui, Zili; Wang, Qinglei; He, Weisheng; Liu, Xiaochen; Feng, Jiwen

    2017-01-01

    Abstract It is urgent to seek high performance solid polymer electrolytes (SPEs) via a facile chemistry and simple process. The lithium salts are composed of complex anions that are stabilized by a Lewis acid agent. This Lewis acid can initiate the ring opening polymerization. Herein, a self‐catalyzed strategy toward facile synthesis of crosslinked poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte (C‐PEGDE) is presented. It is manifested that the poly(ethylene glycol) diglycidyl ether‐based solid polymer electrolyte possesses a superior electrochemical stability window up to 4.5 V versus Li/Li+ and considerable ionic conductivity of 8.9 × 10−5 S cm−1 at ambient temperature. Moreover, the LiFePO4/C‐PEGDE/Li batteries deliver stable charge/discharge profiles and considerable rate capability. It is demonstrated that this self‐catalyzed strategy can be a very effective approach for high performance solid polymer electrolytes. PMID:29201612

  3. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  4. Hanging colloidal drop: A new photonic crystal synthesis route

    NASA Astrophysics Data System (ADS)

    Sandu, Ion; Dumitru, Marius; Fleaca, Claudiu Teodor; Dumitrache, Florian

    2018-05-01

    High-quality photonic crystals (hundreds of micrometres in thickness) were grown by the free evaporation of a colloidal drop consisting of silica and polystyrene nanospheres with dimensions of 300 nm, 500 nm, and 1000 nm. The essence of experimental findings is that the drop has to hang on a pillar. This leads to the inhibition of the droplet spreading, the minimisation of the convective force, and the zeroing of the static frictional force between nanospheres and the liquid/air interface, where the first layer is formed. The theoretical essence is the continuous adjustment of nanospheres positions during the growth of photonic crystal, a key condition of the self-assembling phenomenon.

  5. Facile synthesis of water-soluble and biocompatible fluorescent nitrogen-doped carbon dots for cell imaging.

    PubMed

    Wang, Weiping; Lu, Ya-Chun; Huang, Hong; Feng, Jiu-Ju; Chen, Jian-Rong; Wang, Ai-Jun

    2014-04-07

    A simple, facile and green hydrothermal method was developed in the synthesis of water-soluble nitrogen-doped carbon dots (N-CDs) from streptomycin. The as-prepared N-CDs displayed bright blue fluorescence under the irradiation of UV light, together with a high quantum yield of 7.6% and good biocompatibility as demonstrated by the cell viability assay. Thus, the N-CDs can be used as fluorescent probes for cell imaging, which have potential applications in bioimaging and related fields. This strategy opens a new way for the preparation of fluorescent carbon nanomaterials using small molecules as carbon sources.

  6. Pt NPs and DNAzyme functionalized polymer nanospheres as triple signal amplification strategy for highly sensitive electrochemical immunosensor of tumour marker.

    PubMed

    Chang, Honghong; Zhang, Haochun; Lv, Jia; Zhang, Bing; Wei, Wenlong; Guo, Jingang

    2016-12-15

    Highly sensitive determination of tumour markers is the key for early diagnosis of cancer. Herein, triple signal amplification strategy resulting from polymer nanospheres, Pt NPs, and DNAzyme was proposed in the developed electrochemical immunosensor. First, electroactive polymer nanospheres were synthesized by infinite coordination polymerization of ferrocenedicarboxylic acid, which could generate strong electrochemical signals due to plentiful ferrocene molecules. Further, the polymer nanospheres were functionalized by Pt NPs and DNAzyme (hemin/G-quadruplex) with the ability of catalyzing H2O2, which contributes to enhance the electrochemical signals. The prepared conjugations were characterized by transmission electron microscope (TEM) and energy dispersive X-ray spectroscopy (EDX). And the process of preparation was monitored by zeta potential. Based on the sandwich-type immunoassay, the electrochemical immunosensor was constructed employing the conjugations as signal tags. Under optimal conditions, the DPV peak increased with the increasing of alpha fetal protein (AFP) concentration, and the linear range was from 0.1pgmL(-1) to 100ngmL(-1) with low detection limit of 0.086pgmL(-1). Meanwhile, the designed immunosensor exhibited excellent selectivity and anti-interference property, good reproducibility and stability. More importantly, there were no significant differences in analyzing real clinical samples between designed immunosensor and commercial ELISA. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Amorphous silicon-carbon nanospheres synthesized by chemical vapor deposition using cheap methyltrichlorosilane as improved anode materials for Li-ion batteries.

    PubMed

    Zhang, Zailei; Zhang, Meiju; Wang, Yanhong; Tan, Qiangqiang; Lv, Xiao; Zhong, Ziyi; Li, Hong; Su, Fabing

    2013-06-21

    We report the preparation and characterization of amorphous silicon-carbon (Si-C) nanospheres as anode materials in Li-ion batteries. These nanospheres were synthesized by a chemical vapor deposition at 900 °C using methyltrichlorosilane (CH3SiCl3) as both the Si and C precursor, which is a cheap byproduct in the organosilane industry. The samples were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption, thermal gravimetric analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was found that the synthesized Si-C nanospheres composed of amorphous C (about 60 wt%) and Si (about 40 wt%) had a diameter of 400-600 nm and a surface area of 43.8 m(2) g(-1). Their charge capacities were 483.6, 331.7, 298.6, 180.6, and 344.2 mA h g(-1) at 50, 200, 500, 1000, and 50 mA g(-1) after 50 cycles, higher than that of the commercial graphite anode. The Si-C amorphous structure could absorb a large volume change of Si during Li insertion and extraction reactions and hinder the cracking or crumbling of the electrode, thus resulting in the improved reversible capacity and cycling stability. The work opens a new way to fabricate low cost Si-C anode materials for Li-ion batteries.

  8. Self-Supported Mesostructured Pt-Based Bimetallic Nanospheres Containing an Intermetallic Phase as Ultrastable Oxygen Reduction Electrocatalysts.

    PubMed

    Kim, Ho Young; Cho, Seonghun; Sa, Young Jin; Hwang, Sun-Mi; Park, Gu-Gon; Shin, Tae Joo; Jeong, Hu Young; Yim, Sung-Dae; Joo, Sang Hoon

    2016-10-01

    Developing highly active and stable cathode catalysts is of pivotal importance for proton exchange membrane fuel cells (PEMFCs). While carbon-supported nanostructured Pt-based catalysts have so far been the most active cathode catalysts, their durability and single-cell performance are yet to be improved. Herein, self-supported mesostructured Pt-based bimetallic (Meso-PtM; M = Ni, Fe, Co, Cu) nanospheres containing an intermetallic phase are reported, which can combine the beneficial effects of transition metals (M), an intermetallic phase, a 3D interconnected framework, and a mesoporous structure. Meso-PtM nanospheres show enhanced oxygen reduction reaction (ORR) activity, compared to Pt black and Pt/C catalysts. Notably, Meso-PtNi containing an intermetallic phase exhibits ultrahigh stability, showing enhanced ORR activity even after 50 000 potential cycles, whereas Pt black and Pt/C undergo dramatic degradation. Importantly, Meso-PtNi with an intermetallic phase also demonstrated superior activity and durability when used in a PEMFC single-cell, with record-high initial mass and specific activities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chitosan-rectorite nanospheres immobilized on polystyrene fibrous mats via alternate electrospinning/electrospraying techniques for copper ions adsorption

    NASA Astrophysics Data System (ADS)

    Tu, Hu; Huang, Mengtian; Yi, Yang; Li, Zhenshun; Zhan, Yingfei; Chen, Jiajia; Wu, Yang; Shi, Xiaowen; Deng, Hongbing; Du, Yumin

    2017-12-01

    Chitosan (CS), as a kind of well characterized biopolymer, has been used for heavy metal adsorption due to its low cost and high efficacy. However, when used directly, chitosan particles had small surface area and weak mechanical strength which is unfavorable to metal adsorption and reused. Besides, it cannot be easily recycled that may cause a secondary pollution. In this paper, CS and layered silicate rectorite (REC) were fully mixed and the mixtures were subsequently electrosprayed nano-sized spheres, which were immobilized on the surface of electrospun polystyrene (PS) mats for metal adsorption. The morphology analysis taken from SEM confirmed that CS-REC nanospheres were loaded on the surface of PS fibrous mats. Small Angle X-ray diffraction patterns showed that the interlayer distance of REC in composite mats was enlarged by the intercalation of CS chains; such structure meant bigger surface area which was helpful for metal adsorption. The data of contact angle implied that PS mats coated with CS-REC nanospheres exhibited better hydrophilicity than PS mats, which was conductive to adsorption rate. Besides, the copper ions adsorption of composite mats was tested at different conditions including the adsorption time, the initial pH and the initial concentration of copper ion. The results demonstrated that PS mats coated with CS-REC nanospheres had the adsorption capacity up to 134 mg/g. In addition, the addition of REC containing Ca2+ could also improve the metal adsorption because of cation exchange. The desorption assay indicated that PS mats immobilized with CS and CS-REC still kept high adsorption ability which retained 74% and 78% after three adsorption-desorption cycles.

  10. Highly Tunable Hollow Gold Nanospheres: Gaining Size Control and Uniform Galvanic Exchange of Sacrificial Cobalt Boride Scaffolds.

    PubMed

    Lindley, Sarah A; Cooper, Jason K; Rojas-Andrade, Mauricio D; Fung, Victoria; Leahy, Conor J; Chen, Shaowei; Zhang, Jin Z

    2018-04-18

    In principle, the diameter and surface plasmon resonance (SPR) frequency of hollow metal nanostructures can be independently adjusted, allowing the formation of targeted photoactivated structures of specific size and optical functionality. Although tunable SPRs have been reported for various systems, the shift in SPR is usually concomitant with a change in particle size. As such, more advanced tunability, including constant diameter with varying SPR or constant SPR with varying diameter, has not been properly achieved experimentally. Herein, we demonstrate this advanced tunability with hollow gold nanospheres (HGNs). HGNs were synthesized through galvanic exchange using cobalt-based nanoparticles (NPs) as sacrificial scaffolds. Co 2 B NP scaffolds were prepared by sodium borohydride nucleation of aqueous cobalt chloride and characterized using UV-vis, dynamic light scattering, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. Careful control over the size of the Co 2 B scaffold and its galvanic conversion is essential to realize fine control of the resultant HGN diameter and shell thickness. In pursuit of size control, we introduce B(OH) 4 - (the final product of NaBH 4 hydrolysis) as a growth agent to obtain hydrodynamic diameters ranging from ∼17-85 nm with relative standard deviation <3%. The highly monodisperse Co 2 B NPs were then used as scaffolds for the formation of HGNs. In controlling HGN shell thickness and uniformity, environmental oxygen was shown to affect both the structural and optical properties of the resultant gold shells. With careful control of these key factors, we demonstrate an HGN synthesis that enables independent variation of diameter and shell thickness, and thereby SPR, with unprecedented uniformity. The new synthesis method creates a truly tunable plasmonic nanostructure platform highly desirable for a wide range of applications, including sensing, catalysis, and photothermal therapy.

  11. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    NASA Astrophysics Data System (ADS)

    Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo

    2011-07-01

    The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  12. Formulation of polylactide-co-glycolic acid nanospheres for encapsulation and sustained release of poly(ethylene imine)-poly(ethylene glycol) copolymers complexed to oligonucleotides

    PubMed Central

    Sirsi, Shashank R; Schray, Rebecca C; Wheatley, Margaret A; Lutz, Gordon J

    2009-01-01

    Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD. PMID:19351396

  13. GEM-loaded magnetic albumin nanospheres modified with cetuximab for simultaneous targeting, magnetic resonance imaging, and double-targeted thermochemotherapy of pancreatic cancer cells.

    PubMed

    Wang, Ling; An, Yanli; Yuan, Chenyan; Zhang, Hao; Liang, Chen; Ding, Fengan; Gao, Qi; Zhang, Dongsheng

    2015-01-01

    Targeted delivery is a promising strategy to improve the diagnostic imaging and therapeutic effect of cancers. In this paper, novel cetuximab (C225)-conjugated, gemcitabine (GEM)-containing magnetic albumin nanospheres (C225-GEM/MANs) were fabricated and applied as a theranostic nanocarrier to conduct simultaneous targeting, magnetic resonance imaging (MRI), and double-targeted thermochemotherapy against pancreatic cancer cells. Fe3O4 nanoparticles (NPs) and GEM co-loaded albumin nanospheres (GEM/MANs) were prepared, and then C225 was further conjugated to synthesize C225-GEM/MANs. Their morphology, mean particle size, GEM encapsulation ratio, specific cell-binding ability, and thermal dynamic profiles were characterized. The effects of discriminating different EGFR-expressing pancreatic cancer cells (AsPC-1 and MIA PaCa-2) and monitoring cellular targeting effects were assessed by targeted MRI. Lastly, the antitumor efficiency of double/C225/magnetic-targeted and nontargeted thermochemotherapy was compared with chemotherapy alone using 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and flow cytometry (FCM) assay. When treated with targeted nanospheres, AsPC-1 cells showed a significantly less intense MRI T2 signal than MIA PaCa-2 cells, while both cells had similar signal strength when incubated with nontargeted nanospheres. T2 signal intensity was significantly lower when magnetic and C225 targeting were combined, rather than used alone. The inhibitory and apoptotic rates of each thermochemotherapy group were significantly higher than those of the chemotherapy-alone groups. Additionally, both MTT and FCM analysis verified that double-targeted thermochemotherapy had the highest targeted killing efficiency among all groups. The C225-GEM/MANs can distinguish various EGFR-expressing live pancreatic cancer cells, monitor diverse cellular targeting effects using targeted MRI imaging, and efficiently mediate double-targeted thermochemotherapy

  14. Influence of cationic lipid concentration on properties of lipid-polymer hybrid nanospheres for gene delivery.

    PubMed

    Bose, Rajendran J C; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(D,L-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid-polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52-60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine-PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased.

  15. Influence of cationic lipid concentration on properties of lipid–polymer hybrid nanospheres for gene delivery

    PubMed Central

    Bose, Rajendran JC; Arai, Yoshie; Ahn, Jong Chan; Park, Hansoo; Lee, Soo-Hong

    2015-01-01

    Nanoparticles have been widely used for nonviral gene delivery. Recently, cationic hybrid nanoparticles consisting of two different materials were suggested as a promising delivery vehicle. In this study, nanospheres with a poly(d,l-lactic-co-glycolic acid) (PLGA) core and cationic lipid shell were prepared, and the effect of cationic lipid concentrations on the properties of lipid polymer hybrid nanocarriers investigated. Lipid–polymer hybrid nanospheres (LPHNSs) were fabricated by the emulsion-solvent evaporation method using different concentrations of cationic lipids and characterized for size, surface charge, stability, plasmid DNA-binding capacity, cytotoxicity, and transfection efficiency. All LPHNSs had narrow size distribution with positive surface charges (ζ-potential 52–60 mV), and showed excellent plasmid DNA-binding capacity. In vitro cytotoxicity measurements with HEK293T, HeLa, HaCaT, and HepG2 cells also showed that LPHNSs exhibited less cytotoxicity than conventional transfection agents, such as Lipofectamine and polyethyleneimine–PLGA. As cationic lipid concentrations increased, the particle size of LPHNSs decreased while their ζ-potential increased. In addition, the in vitro transfection efficiency of LPHNSs increased as lipid concentration increased. PMID:26379434

  16. A novel method to obtain chitosan/DNA nanospheres and a study of their release properties

    NASA Astrophysics Data System (ADS)

    Masotti, Andrea; Bordi, Federico; Ortaggi, Giancarlo; Marino, Federica; Palocci, Cleofe

    2008-02-01

    Polysaccharides and other cationic polymers have recently been used in pharmaceutical research and industry for their properties to control the release of antibiotics, DNA, proteins, peptide drugs or vaccines, and they have also been extensively studied as non-viral DNA carriers for gene delivery and therapy. Among them, chitosan is the most used since it can promote long-term release of incorporated drugs. This work is focused on the preparation of chitosan and chitosan/DNA nanospheres by using a novel and simple osmosis-based method, recently patented. The morphology of chitosan/DNA particles is spherical (as observed by scanning electron microscopy, SEM) and the nanospheres' average diameter is 38 ± 4 nm (obtained by dynamic light scattering, DLS). With this method, DNA is incorporated with high yield (up to 30%) and the release process is gradual and prolonged in time. The novelty of the reported method resides in the general applicability to various synthetic or natural biopolymers. Solvent, temperature and membrane cut-off are the physicochemical parameters that one is able to use to control the overall osmotic process, leading to several nanostructured systems with different size and shape that may be used in several biotechnological applications.

  17. Nanospheres with a smectic hydrophobic core and an amorphous PEG hydrophilic shell: structural changes and implications for drug delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, N. Sanjeeva; Zhang, Zheng; Borsadia, Siddharth

    The structural changes in nanospheres with a crystalline core and an amorphous diffuse shell were investigated by small-angle neutron scattering (SANS), small-, medium-, and wide-angle X-ray scattering (SAXS, MAXS and WAXS), and differential scanning calorimetry (DSC).

  18. Smart multifunctional core-shell nanospheres with drug and gene co-loaded for enhancing the therapeutic effect in a rat intracranial tumor model

    NASA Astrophysics Data System (ADS)

    Wang, Hanjie; Su, Wenya; Wang, Sheng; Wang, Xiaomin; Liao, Zhenyu; Kang, Chunsheng; Han, Lei; Chang, Jin; Wang, Guangxiu; Pu, Peiyu

    2012-09-01

    Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic nanocrystals; and polymeric lipid shells anchored with functional molecules such as PEG chains, TAT peptides and RGD peptides that can help the vectors to condense the gene, prolong the circulation time, cross the blood brain barrier and target delivery to the cancer tissue. The results showed that the magnetic PLGA/MPLs nanosphere has a nanosized core-shell structure, can achieve sustained drug release and has good DNA binding abilities. Importantly, compared with the control group and other groups with single functionality, it can co-deliver the drug and gene into the same cell in vitro and show the strongest inhibiting effect on the growth of the in situ malignant glioblastoma in vivo. All of these results indicated that the different functional components of magnetic PLGA/MPLs, can form an organic whole and none of them can be dispensed with. The magnetic PLGA/MPLs nanosphere may be another option for treatment of glioblastoma.Glioblastoma with high mortality has been one of the most serious cancers threatening human health. Because of the present treatment limitations, there is an urgent need to construct a multifunctional vesicle for enhancing the treatment of in situ malignant glioblastoma. In our study, drug and gene co-loaded magnetic PLGA/multifunctional polymeric liposome (magnetic PLGA/MPLs) core-shell nanospheres were constructed. They were mainly self-assembled from two parts: hydrophobic PLGA cores that can load drugs and magnetic

  19. Facile one-pot synthesis and characterization of nickel supported on hierarchically porous carbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kotbagi, Trupti V.; Hakat, Yasemin; Bakker, Martin G., E-mail: Bakker@ua.edu

    2016-01-15

    Highlights: • Novel, inexpensive, one-pot, synthesis method for Ni on hierarchically porous carbon. • Disappearance of surfactant mesopores seen with incorporation of nickel. • Distribution of Ni nanoparticles on the hierarchically porous carbon support was studied by SEM. • Nickel nanoparticles were dispersed on macropore walls and not within carbon. - Abstract: Described is a novel, facile route for the synthesis of nickel supported on hierarchically porous carbon (Ni/HPC) using a one-pot co-gelation sol–gel method. Ni/HPC with varying nickel loadings (0.5, 1, 2.5 and 5 wt% Ni) were synthesized and the materials characterized by nitrogen physisorption, X-ray diffraction (XRD), scanningmore » electron microscopy (SEM), and Fourier transform infrared (FTIR) and Raman spectroscopies. The results show a three-dimensional network of disordered carbon with fine nickel nanoparticles of sizes ranging from 8 nm to 13 nm at 0.5 wt% Ni loading which gradually increased with increase in the Ni loading. The carbon structure was retained at the macropore level, but not at the mesoscale where the ordered mesopores were lost on nickel addition. The nickel nanoparticles were observed to grow on the surface of the ligaments. This may make them particularly suitable for low pressure Ni-catalyzed organic transformations e.g., hydrogenations, C–C coupling, C-heteroatom coupling, etc.« less

  20. NETL - Fuel Reforming Facilities

    ScienceCinema

    None

    2018-01-26

    Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yu, E-mail: shenyuqing0322@gmail.com; Key Laboratory of Industrial Ecology and Environmental Engineering and State Key Laboratory of Fine Chemical, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024; Wu, Yanbo

    Graphical abstract: - Highlights: • Spinel CuFe{sub 2}O{sub 4} nanospheres were successfully synthesized via a facile method. • CuFe{sub 2}O{sub 4} nanospheres showed high photocatalytic activity toward benzene. • Ethyl acetate, carboxylic acid and aldehyde were the intermediate products. - Abstract: Spinel copper ferrite nanospheres with diameters of about 116 nm were synthesized in high yield via a facile solvothermal route. The prepared nanospheres had cubic spinel structure and exhibited good size uniformity and regularity. The band-gap energy of CuFe{sub 2}O{sub 4} nanospheres was calculated to be about 1.69 eV, indicating their potential visible-light-induced photocatalytic activity. The dramatically enhanced photocatalyticmore » activity of the CuFe{sub 2}O{sub 4} nanospheres was evaluated via the photocatalytic conversion of benzene under Xe lamp irradiation. By using the in situ FTIR technique, ethyl acetate, carboxylic acid and aldehyde could be regarded as the intermediate products, and CO{sub 2} was produced as the final product during the reaction process. This study provided new insight into the design and preparation of functional nanomaterials with sphere structure in high yield, and the as-grown architectures demonstrated an excellent ability to remove organic pollutants in the atmosphere.« less

  2. A fiber-optic sensor for neurotransmitters with ultralow concentration: near-infrared plasmonic electromagnetic field enhancement using raspberry-like meso-SiO2 nanospheres.

    PubMed

    Huang, Yunyun; Ding, Mingfei; Guo, Tuan; Hu, Dejiao; Cao, Yaoyu; Jin, Long; Guan, Bai-Ou

    2017-10-12

    The feasibility of a localized surface plasmon resonance (LSPR) enhanced sensor based on raspberry-like nanosphere functionalized silica microfibers has been proposed and experimentally demonstrated. The extinction of single Ag (or Au) nanoparticles usually occurs at visible wavelengths. Nevertheless, a LSPR enhancement at near infrared wavelengths has been achieved by constructing raspberry-like meso-SiO 2 nanospheres with noble metal nanoparticle cluster coating. The nanosphere coating captures γ-amino-butyric acid (GABA) targets through size selectivity and enhances the sensitivity by the LSPR effect. The gathering of GABA on the sensor surface translates the concentration signal to the information of refractive index (RI). Silica microfiber perceives the RI change and translates it to optical signal. The LSPR effect enhances the optical sensitivity by enhancing the evanescent field on the microfiber surface. This combination presents the lowest limit of detection (LOD) of 10 -15 M (three orders lower than that without LSPR enhancement). It could fully afford the detection of ultra-low GABA concentration fluctuation (which is important for determining a variety of neurological and psychiatric disorders). The inherent advantages of the proposed sensors, including their ultra-sensitivity, low cost, light weight, small size and remote operation ability, provide the potential to fully incorporate them into various biomedical applications.

  3. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Man, B. Y.; Yang, C.; Jiang, S. Z.; Liu, M.; Chen, C. S.; Xu, S. C.; Sun, Z. C.; Gao, X. G.; Chen, X. J.

    2013-10-01

    Direct deposition of graphene on a dielectric substrate is demonstrated using a chemical vapor deposition system with a two-temperature reactor. The two-temperature reactor is utilized to offer sufficient, well-proportioned floating Cu atoms and to provide a temperature gradient for facile synthesis of graphene on dielectric surfaces. The evaporated Cu atoms catalyze the reaction in the presented method. C atoms and Cu atoms respectively act as the nuclei for forming graphene film in the low-temperature zone and the zones close to the high-temperature zones. A uniform and high-quality graphene film is formed in an atmosphere of sufficient and well-proportioned floating Cu atoms. Raman spectroscopy, scanning electron microscopy and atomic force microscopy confirm the presence of uniform and high-quality graphene.

  4. Facile synthesis of cyclopentenone B1- and L1-type Phytoprostanes

    NASA Astrophysics Data System (ADS)

    Guy, Alexandre; Flanagan, Seamus; Durand, Thierry; Oger, Camille; Galano, Jean-Marie

    2015-07-01

    Phytoprostanes (PhytoPs) represent non-enzymatic metabolites of α-linolenic acid (ALA), the essential omega-3 polyunsaturated fatty acid (PUFA) derived from plants. PhytoPs are present in the plant kingdom and represent endogenous mediators capable of protecting cells from oxidative stress damages in plants. Recently, it was found that such metabolites are present in cooking oil in high quantities, and also that B1-PhytoPs protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. We report a novel and facile synthesis of natural 2,3-substituted cyclopentenone PhytoPs, 16-B1-PhytoP and 9-L1-PhytoP. Our strategy is based on reductive alkylation at the 2-position of 1,3-cyclopentanedione using a recent protocol developed by Ramachary et al., and on a cross-coupling metathesis to access conjugate dienone system. In conclusion, this strategy permitted access to B1- and L1-PhytoPs in a relative short sequence process, and afford the possibility to easily develop analogs of PhytoPs.

  5. Facile synthesis of PdAgTe nanowires with superior electrocatalytic activity

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-12-01

    In this work, ultrathin Te nanowires (NWs) with high-aspect-ratio are prepared by a simple hydrothermal method. By using Te NWs as the sacrificial template, we demonstrate a facile and efficient method for the synthesis of PdAgTe NWs with high-quality through the partly galvanic replacement between Te NWs and the corresponding noble metal salts precursors in an aqueous solution. The compositions of PdAgTe NWs can be tuned by simply altering the concentration of the precursors. After cyclic voltammetry treatment, multi-component PdAgTe NW with a highly active and stable surface can be obtained. The structure and composition of the as-prepared nanomaterials are analyzed by transmission electron microscope, X-ray diffraction, energy dispersive X-ray spectroscopy, inductively coupled plasma-mass spectroscopy and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized PdAgTe NWs present superior catalytic activity toward ethanol electrooxidation in alkaline solution than the commercial Pd/C catalyst, which making them can be used as effective catalysts for the direct ethanol fuel cells.

  6. Facile synthesis of cyclopentenone B1- and L1-type phytoprostanes

    PubMed Central

    Guy, Alexandre; Flanagan, Séamus; Durand, Thierry; Oger, Camille; Galano, Jean-Marie

    2015-01-01

    Phytoprostanes (PhytoPs) represent non-enzymatic metabolites of α-linolenic acid (ALA), the essential omega-3 polyunsaturated fatty acid (PUFA) derived from plants. PhytoPs are present in the plant kingdom and represent endogenous mediators capable of protecting cells from oxidative stress damages in plants. Recently, it was found that such metabolites are present in cooking oil in high quantities, and also that B1-PhytoPs protect immature neurons from oxidant injury and promote differentiation of oligodendrocyte progenitors through PPAR-γ activation. We report a novel and facile synthesis of natural 2,3-substituted cyclopentenone PhytoPs, 16-B1-PhytoP, and 9-L1-PhytoP. Our strategy is based on reductive alkylation at the 2-position of 1,3-cyclopentanedione using a recent protocol developed by Ramachary et al. and on a cross-coupling metathesis to access conjugate dienone system. In conclusion, this strategy permitted access to B1- and L1-PhytoPs in a relative short sequence process, and afford the possibility to easily develop analogs of PhytoPs. PMID:26217659

  7. Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing

    2013-04-01

    With the development of nanotechnology, special attention has been given to the nanomaterial application in tumor treatment. Here, a modified desolvation-cross-linking method was successfully applied to fabricate gemcitabine-loaded albumin nanospheres (GEM-ANPs), with 110 and 406 nm of mean diameter, respectively. The aim of this study was to assess the drug distribution, side effects, and antitumor activity of GEM-ANPs in vivo. The metabolic viability and flow cytometry analysis revealed that both GEM-ANPs, especially 406-nm GEM-ANPs, could effectively inhibit the metabolism and proliferation and promote the apoptosis of human pancreatic carcinoma (PANC-1) in vitro. Intravenous injection of 406-nm GEM-ANPs exhibited a significant increase of gemcitabine in the pancreas, liver, and spleen of Sprague-Dawley rats ( p < 0.05). Moreover, no signs of toxic side effects analyzed by blood parameter changes were observed after 3 weeks of administration although a high dose (200 mg/kg) of GEM-ANPs were used. Additionally, in PANC-1-induced tumor mice, intravenous injection of 406-nm GEM-ANPs also could effectively reduce the tumor volume by comparison with free gemcitabine. With these findings, albumin nanosphere-loading approach might be efficacious to improve the antitumor activity of gemcitabine, and the efficacy is associated with the size of GEM-ANPs.

  8. Facile synthesis of nanostructured transition metal oxides as electrodes for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Opra, Denis P.; Gnedenkov, Sergey V.; Sokolov, Alexander A.; Minaev, Alexander N.; Kuryavyi, Valery G.; Sinebryukhov, Sergey L.

    2017-09-01

    At all times, energy storage is one of the greatest scientific challenge. Recently, Li-ion batteries are under special attention due to high working voltage, long cycle life, low self-discharge, reliability, no-memory effect. However, commercial LIBs usage in medium- and large-scale energy storage are limited by the capacity of lithiated metal oxide cathode and unsafety of graphite anode at high-rate charge. In this way, new electrode materials with higher electrochemical performance should be designed to satisfy a requirement in both energy and power. As it known, nanostructured transition metal oxides are promising electrode materials because of their elevated specific capacity and high potential vs. Li/Li+. In this work, the perspective of an original facile technique of pulsed high-voltage plasma discharge in synthesis of nanostructured transition metal oxides as electrodes for lithium-ion batteries has been demonstrated.

  9. Cavity opto-mechanics using an optically levitated nanosphere

    PubMed Central

    Chang, D. E.; Regal, C. A.; Papp, S. B.; Wilson, D. J.; Ye, J.; Painter, O.; Kimble, H. J.; Zoller, P.

    2010-01-01

    Recently, remarkable advances have been made in coupling a number of high-Q modes of nano-mechanical systems to high-finesse optical cavities, with the goal of reaching regimes in which quantum behavior can be observed and leveraged toward new applications. To reach this regime, the coupling between these systems and their thermal environments must be minimized. Here we propose a novel approach to this problem, in which optically levitating a nano-mechanical system can greatly reduce its thermal contact, while simultaneously eliminating dissipation arising from clamping. Through the long coherence times allowed, this approach potentially opens the door to ground-state cooling and coherent manipulation of a single mesoscopic mechanical system or entanglement generation between spatially separate systems, even in room-temperature environments. As an example, we show that these goals should be achievable when the mechanical mode consists of the center-of-mass motion of a levitated nanosphere. PMID:20080573

  10. Electrochemical Sensing toward Trace As(III) Based on Mesoporous MnFe₂O₄/Au Hybrid Nanospheres Modified Glass Carbon Electrode.

    PubMed

    Zhou, Shaofeng; Han, Xiaojuan; Fan, Honglei; Liu, Yaqing

    2016-06-22

    Au nanoparticles decorated mesoporous MnFe₂O₄ nanocrystal clusters (MnFe₂O₄/Au hybrid nanospheres) were used for the electrochemical sensing of As(III) by square wave anodic stripping voltammetry (SWASV). Modified on a cheap glass carbon electrode, these MnFe₂O₄/Au hybrid nanospheres show favorable sensitivity (0.315 μA/ppb) and limit of detection (LOD) (3.37 ppb) toward As(III) under the optimized conditions in 0.1 M NaAc-HAc (pH 5.0) by depositing for 150 s at the deposition potential of -0.9 V. No obvious interference from Cd(II) and Hg(II) was recognized during the detection of As(III). Additionally, the developed electrode displayed good reproducibility, stability, and repeatability, and offered potential practical applicability for electrochemical detection of As(III) in real water samples. The present work provides a potential method for the design of new and cheap sensors in the application of electrochemical determination toward trace As(III) and other toxic metal ions.

  11. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells.

    PubMed

    Hu, Yan; Chua, Daniel H C

    2016-06-15

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt(-1) as compared to standard carbon black of 7.4 W.mgPt(-1) under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support.

  12. Synthesizing 2D MoS2 Nanofins on carbon nanospheres as catalyst support for Proton Exchange Membrane Fuel Cells

    PubMed Central

    Hu, Yan; Chua, Daniel H. C.

    2016-01-01

    Highly dense 2D MoS2 fin-like nanostructures on carbon nanospheres were fabricated and formed the main catalyst support structure in the oxygen reduction reaction (ORR) for polymer electrolyte membrane (PEM) fuel cells. These nanofins were observed growing perpendicular to the carbon nanosphere surface in random orientations and high resolution transmission electron microscope confirmed 2D layers. The PEM fuel cell test showed enhanced electrochemical activity with good stability, generating over 8.5 W.mgPt−1 as compared to standard carbon black of 7.4 W.mgPt−1 under normal operating conditions. Electrochemical Impedance Spectroscopy confirmed that the performance improvement is highly due to the excellent water management of the MoS2 lamellar network, which facilitates water retention at low current density and flood prevention at high current density. Reliability test further demonstrated that these nanofins are highly stable in the electrochemical reaction and is an excellent ORR catalyst support. PMID:27302135

  13. Window-assisted nanosphere lithography for vacuum micro-nano-electronics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Nannan; Institute of Electronic Engineering, Chinese Academy of Engineering Physics, Mianyang, 621900; Pang, Shucai

    2015-04-15

    Development of vacuum micro-nano-electronics is quite important for combining the advantages of vacuum tubes and solid-state devices but limited by the prevailing fabricating techniques which are expensive, time consuming and low-throughput. In this work, window-assisted nanosphere lithography (NSL) technique was proposed and enabled the low-cost and high-efficiency fabrication of nanostructures for vacuum micro-nano-electronic devices, thus allowing potential applications in many areas. As a demonstration, we fabricated high-density field emitter arrays which can be used as cold cathodes in vacuum micro-nano-electronic devices by using the window-assisted NSL technique. The details of the fabricating process have been investigated. This work provided amore » new and feasible idea for fabricating nanostructure arrays for vacuum micro-nano-electronic devices, which would spawn the development of vacuum micro-nano-electronics.« less

  14. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200.

    PubMed

    Jiang, Shenghua; Ho, Cuong Tu; Lee, Ji-Hoon; Duong, Hieu Van; Han, Seunghee; Hur, Hor-Gil

    2012-05-01

    Shewanella putrefaciens 200, resistant to high concentration of Hg(II), was selected for co-removal of mercury and selenium from aqueous medium. Biogenic Hg(0) reduced from Hg(II) by S. putrefaciens 200 was captured into extracellular amorphous selenium nanospheres, resulting in the formation of stable HgSe nanoparticles. This bacterial reduction could be a new strategy for mercury removal from aquatic environments without secondary pollution of mercury methylation or Hg(0) volatilization. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Controlled synthesis of silver nanostructures stabilized by fluorescent polyarylene ether nitrile

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Shou, Hongguo; Wang, Pan; Zhou, Xuefei; Liu, Xiaobo

    2016-07-01

    In this work, the intrinsically fluorescent polyarylene ether nitrile (PEN) was explored to realize the controlled synthesis of fluorescent silver nanostructures with different morphology for the first time. Specifically, it was found that silver nitrate (AgNO3) can be effectively reduced to silver nanoparticles using PEN as both reducing and surface capping agents in N, N-dimethylformamide (DMF). More interestingly, the morphology of obtained fluorescent silver nanostructures can be tuned from nanospheres to nanorods by simple variation of reaction time at 130 °C using a relative PEN:AgNO3 molar concentration ratio of 1:8. Meanwhile, the obtained Ag nanostructures exhibited both localized surface plasmon resonance (LSPR) band and fluorescent emission around 420 nm, which would find potential applications in biochemical sensing and optical devices fields.

  16. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation

    PubMed Central

    Yu, Shuyan; Liu, Jincheng; Zhu, Wenyu; Hu, Zhong-Ting; Lim, Teik-Thye; Yan, Xiaoli

    2015-01-01

    Carboxylic acid functionalized graphene oxide-copper (II) sulfide nanoparticle composite (GO-COOH-CuS) was prepared from carboxylated graphene oxide and copper precursor in dimethyl sulfoxide (DMSO) by a facile synthesis process at room temperature. The high-effective combination, the interaction between GO-COOH sheets and CuS nanoparticles, and the enhanced visible light absorption were confirmed by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra (DRS) and Photoluminescence (PL) spectra. The as-synthesized GO-COOH-CuS nanocomposite exhibited excellent photocatalytic degradation performance of phenol and rhodamine B, high antibacterial activity toward E. coli and B. subtilis, and good recovery and reusability. The influence of CuS content, the synergistic reaction between CuS and GO-COOH, and the charge-transfer mechanism were systematically investigated. The facile and low-energy synthesis process combined with the excellent degradation and antibacterial performance signify that the GO-COOH-CuS has a great potential for water treatment application. PMID:26553709

  17. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst

    PubMed Central

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-01-01

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm2), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology. PMID:27340940

  18. Facile Synthesis of Worm-like Micelles by Visible Light Mediated Dispersion Polymerization Using Photoredox Catalyst.

    PubMed

    Yeow, Jonathan; Xu, Jiangtao; Boyer, Cyrille

    2016-06-08

    Presented herein is a protocol for the facile synthesis of worm-like micelles by visible light mediated dispersion polymerization. This approach begins with the synthesis of a hydrophilic poly(oligo(ethylene glycol) methyl ether methacrylate) (POEGMA) homopolymer using reversible addition-fragmentation chain-transfer (RAFT) polymerization. Under mild visible light irradiation (λ = 460 nm, 0.7 mW/cm(2)), this macro-chain transfer agent (macro-CTA) in the presence of a ruthenium based photoredox catalyst, Ru(bpy)3Cl2 can be chain extended with a second monomer to form a well-defined block copolymer in a process known as Photoinduced Electron Transfer RAFT (PET-RAFT). When PET-RAFT is used to chain extend POEGMA with benzyl methacrylate (BzMA) in ethanol (EtOH), polymeric nanoparticles with different morphologies are formed in situ according to a polymerization-induced self-assembly (PISA) mechanism. Self-assembly into nanoparticles presenting POEGMA chains at the corona and poly(benzyl methacrylate) (PBzMA) chains in the core occurs in situ due to the growing insolubility of the PBzMA block in ethanol. Interestingly, the formation of highly pure worm-like micelles can be readily monitored by observing the onset of a highly viscous gel in situ due to nanoparticle entanglements occurring during the polymerization. This process thereby allows for a more reproducible synthesis of worm-like micelles simply by monitoring the solution viscosity during the course of the polymerization. In addition, the light stimulus can be intermittently applied in an ON/OFF manner demonstrating temporal control over the nanoparticle morphology.

  19. Template-free synthesis of cube-like Ag/AgCl nanostructures via a direct-precipitation protocol: highly efficient sunlight-driven plasmonic photocatalysts.

    PubMed

    Zhu, Mingshan; Chen, Penglei; Ma, Wanhong; Lei, Bin; Liu, Minghua

    2012-11-01

    In this paper, we report that cube-like Ag/AgCl nanostructures could be facilely fabricated in a one-pot manner through a direct-precipitation protocol under ambient conditions, wherein no additional issues such as external energy (e.g., high temperature or high pressure), surfactants, or reducing agents are required. In terms of using sodium chloride (NaCl) as chlorine source and silver acetate (CH₃COOAg) as silver source, it is disclosed that simply by adding an aqueous solution of NaCl into an aqueous solution of CH₃COOAg, Ag/AgCl nanostructures with a cube-like geometry, could be successfully formulated. We show that thus-formulated cube-like Ag/AgCl nanospecies could be used as high-performance yet durable visible-light-driven or sunlight-driven plasmonic photocatalysts for the photodegradation of methyl orange (MO) and 4-chlorophenol (4-CP) pollutants. Compared with the commercially available P25-TiO₂, and the Ag/AgCl nanospheres previously fabricated via a surfactant-assisted method, our current cube-like Ag/AgCl nanostructures could exhibit much higher photocatalytic performance. Our template free protocol might open up new and varied opportunities for an easy synthesis of cube-like Ag/AgCl-based high-performance sunlight-driven plasmonic photocatalysts for organic pollutant elimination.

  20. Controllable Synthesis of Functional Hollow Carbon Nanostructures with Dopamine As Precursor for Supercapacitors.

    PubMed

    Liu, Chao; Wang, Jing; Li, Jiansheng; Luo, Rui; Shen, Jinyou; Sun, Xiuyun; Han, Weiqing; Wang, Lianjun

    2015-08-26

    N-doped hollow carbon spheres (N-HCSs) are promising candidates as electrode material for supercapacitor application. In this work, we report a facile one-step synthesis of discrete and highly dispersible N-HCSs with dopamine (DA) as a carbon precursor and TEOS as a structure-assistant agent in a mixture containing water, ethanol, and ammonia. The architectures of resultant N-HCSs, including yolk-shell hollow carbon spheres (YS-HCSs), single-shell hollow carbon spheres (SS-HCSs), and double-shells hollow carbon spheres (DS-HCSs), can be efficiently controlled through the adjustment of the amount of ammonia. To explain the relation and formation mechanism of these hollow carbon structures, the samples during the different synthetic steps, including polymer/silica spheres, carbon/silica spheres and silica spheres by combustion in air, were characterized by TEM. Electrochemical measurements performed on YS-HCSs, SS-HCSs, and DS-HCSs showed high capacitance with 215, 280, and 381 F g(-1), respectively. Moreover, all the nitrogen-doped hollow carbon nanospheres showed a good cycling stability 97.0% capacitive retention after 3000 cycles. Notably, the highest capacitance of DS-HCSs up to 381 F g(-1) is higher than the capacitance reported so far for many carbon-based materials, which may be attributed to the high surface area, hollow structure, nitrogen functionalization, and double-shell architecture. These kinds of N-doped hollow-structured carbon spheres may show promising prospects as advanced energy storage materials and catalyst supports.

  1. Synergistic enhancement of nitrogen and sulfur co-doped graphene with carbon nanospheres insertion for electrocatalytic oxygen reduction reaction

    DOE PAGES

    Wu, Min; Xin, Huolin L.; Wang, Jie; ...

    2015-03-13

    A nitrogen and sulfur co-doped graphene/carbon black (NSGCB) nanocomposite for the oxygen reduction reaction (ORR) was synthesized through a one-pot annealing of a precursor mixture containing graphene oxide, thiourea, and acidized carbon black (CB). The NSGCB showed excellent performance for the ORR with the onset and half-way potentials at 0.96 V and 0.81 V (vs. RHE), respectively. It is significantly improved over that of the catalysts derived from only graphene (0.90 V and 0.76 V) or carbon nanosphere (0.82 V and 0.74 V). The enhanced catalytic activity on the NSGCB electrode could be attributed to the synergistic effect of N/Smore » co-doping and the enlarged interlayer space resulted from the insertion of carbon nanosphere into the graphene sheets. The four-electron selectivity and the limiting current density of the NSGCB nanocomposite are comparable to that of the commercially Pt/C catalyst. Furthermore, the NSGCB nanocomposite was superior to Pt/C in terms of long-term durability and tolerance to methanol poisoning.« less

  2. Synthesis and characterization of porous metal oxides and desulfurization studies of sulfur containing compounds

    NASA Astrophysics Data System (ADS)

    Garces Trujillo, Hector Fabian

    This thesis contains two parts: 1) synthesis and characterization of porous metal oxides that include zinc oxide and a porous mixed-valent manganese oxide with an amorphous structure (AMO) 2) the desulfurization studies for the removal of sulfur compounds. Zinc oxide with different nano-scale morphologies may result in various porosities with different adsorption capabilities. A tunable shape microwave synthesis of ZnO nano-spheres in a co-solvent mixture is presented. The ZnO nano-sphere material is investigated as a desulfurizing sorbent in a fixed bed reactor in the temperature range 200 to 400 °C and compared with ZnO nanorods and platelet-like morphologies. Fresh and sulfided materials were characterized by X-ray diffraction (XRD), BET specific surface area, pore volume, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (SEM/EDX), Raman spectroscopy, and thermogravimetric analysis (TGA). The tunable shape microwave synthesis of ZnO presents a high sulfur sorption capacity at temperatures as low as 200 °C which accounts for a three and four fold enhancement over the other preparations presented in this work, and reached 76 % of the theoretical sulfur capacity (TSC) at 300 °C. Another ZnO material with a bimodal micro- and mesopore size distribution investigated as a desulfurizing sorbent presents a sorption capacity that reaches 87% of the theoretical value for desulfurization at 400 °C at breakthrough time. A deactivation model that considers the activity of the solid reactant was used to fit the experimental data. Good agreement between the experimental breakthrough curves and the model predictions are obtained. Manganese oxides are a type of metal oxide materials commonly used in catalytic applications. Little is known about the adsorption capabilities for the removal of sulfur compounds. One of these manganese oxides; amorphous manganese oxide (AMO) is highly promising material for low temperature sorption processes. Amorphous

  3. Phthalocyanine-Conjugated Upconversion NaYF4 :Yb3+ /Er3+ @SiO2 Nanospheres for NIR-Triggered Photodynamic Therapy in a Tumor Mouse Model.

    PubMed

    Kostiv, Uliana; Patsula, Vitalii; Noculak, Agnieszka; Podhorodecki, Artur; Větvička, David; Poučková, Pavla; Sedláková, Zdenka; Horák, Daniel

    2017-12-19

    Photodynamic therapy (PDT) has garnered immense attention as a minimally invasive clinical treatment modality for malignant cancers. However, its low penetration depth and photodamage of living tissues by UV and visible light, which activate a photosensitizer, limit the application of PDT. In this study, monodisperse NaYF 4 :Yb 3+ /Er 3+ nanospheres 20 nm in diameter, that serve as near-infrared (NIR)-to-visible light converters and activators of a photosensitizer, were synthesized by high-temperature co-precipitation of lanthanide chlorides in a high-boiling organic solvent (octadec-1-ene). The nanoparticles were coated with a thin shell (≈3 nm) of homogenous silica via the hydrolysis and condensation of tetramethyl orthosilicate. The NaYF 4 :Yb 3+ /Er 3+ @SiO 2 particles were further functionalized by methacrylate-terminated groups via 3-(trimethoxysilyl)propyl methacrylate. To introduce a large number of reactive amino groups on the particle surface, methacrylate-terminated NaYF 4 :Yb 3+ /Er 3+ @SiO 2 nanospheres were modified with a branched polyethyleneimine (PEI) via Michael addition. Aluminum carboxyphthalocyanine (Al Pc-COOH) was then conjugated to NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI nanospheres via carbodiimide chemistry. The resulting NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc particles were finally modified with succinimidyl ester of poly(ethylene glycol) (PEG) in order to alleviate their future uptake by the reticuloendothelial system. Upon 980 nm irradiation, the intensive red emission of NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanoparticles completely vanished, indicating efficient energy transfer from the nanoparticles to Al Pc-COOH, which generates singlet oxygen ( 1 O 2 ). Last but not least, NaYF 4 :Yb 3+ /Er 3+ @SiO 2 -PEI-Pc-PEG nanospheres were intratumorally administered into mammary carcinoma MDA-MB-231 growing subcutaneously in athymic nude mice. Extensive necrosis developed at the tumor site of all mice 24-48 h after irradiation by laser at

  4. Uncovering the design rules for peptide synthesis of metal nanoparticles.

    PubMed

    Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C

    2010-04-28

    Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures.

  5. Facile and sustainable synthesis of shaped iron oxide nanoparticles: effect of iron precursor salts on the shapes of iron oxides.

    PubMed

    Sayed, Farheen N; Polshettiwar, Vivek

    2015-05-05

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner.

  6. Facile and Sustainable Synthesis of Shaped Iron Oxide Nanoparticles: Effect of Iron Precursor Salts on the Shapes of Iron Oxides

    PubMed Central

    Sayed, Farheen N.; Polshettiwar, Vivek

    2015-01-01

    A facile and sustainable protocol for synthesis of six different shaped iron oxides is developed. Notably, all the six shapes of iron oxides can be synthesised using exactly same synthetic protocol, by simply changing the precursor iron salts. Several of the synthesised shapes are not reported before. This novel protocol is relatively easy to implement and could contribute to overcome the challenge of obtaining various shaped iron oxides in economical and sustainable manner. PMID:25939969

  7. Detonation Synthesis of Alpha-Variant Silicon Carbide

    NASA Astrophysics Data System (ADS)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  8. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs.

  9. Direct electrochemistry of glucose oxidase on novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers composite film.

    PubMed

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-05-06

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12-1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor.

  10. Direct Electrochemistry of Glucose Oxidase on Novel Free-Standing Nitrogen-Doped Carbon Nanospheres@Carbon Nanofibers Composite Film

    PubMed Central

    Zhang, Xueping; Liu, Dong; Li, Libo; You, Tianyan

    2015-01-01

    We have proposed a novel free-standing nitrogen-doped carbon nanospheres@carbon nanofibers (NCNSs@CNFs) composite film with high processability for the investigation of the direct electron transfer (DET) of glucose oxidase (GOx) and the DET-based glucose biosensing. The composites were simply prepared by controlled thermal treatment of electrospun polypyrrole nanospheres doped polyacrylonitrile nanofibers (PPyNSs@PAN NFs). Without any pretreatment, the as-prepared material can directly serve as a platform for GOx immobilization. The cyclic voltammetry of immobilized GOx showed a pair of well-defined redox peaks in O2-free solution, indicating the DET of GOx. With the addition of glucose, the anodic peak current increased, while the cathodic peak current decreased, which demonstrated the DET-based bioelectrocatalysis. The detection of glucose based on the DET of GOx was achieved, which displayed high sensitivity, stability and selectivity, with a low detection limit of 2 μM and wide linear range of 12–1000 μM. These results demonstrate that the as-obtained NCNSs@CNFs can serve as an ideal platform for the construction of the third-generation glucose biosensor. PMID:25943704

  11. H2O2 rejuvenation-mediated synthesis of stable mixed-morphology Ag3PO4 photocatalysts.

    PubMed

    Agbe, Henry; Raza, Nadeem; Dodoo-Arhin, David; Chauhan, Aditya; Kumar, Ramachandran Vasant

    2018-04-01

    Ag 3 PO 4 photocatalyst has attracted interest of the scientific community in recent times due to its reported high efficiency for water oxidation and dye degradation. However, Ag 3 PO 4 photo-corrodes if electron accepter such as AgNO 3 is not used as scavenger. Synthesis of efficient Ag 3 PO 4 followed by a simple protocol for regeneration of the photocatalyst is therefore a prerequisite for practical application. Herein, we present a facile method for the synthesis of a highly efficient Ag 3 PO 4 , whose photocatalytic efficiency was demonstrated using 3 different organic dyes: Methylene Blue (MB), Methyl orange (MO) and Rhodamine B (RhB) organic dyes for degradation tests. Approximately, 19 % of Ag 3 PO 4 is converted to Ag 0 after 4.30 hours of continuous UV-Vis irradiation in presence of MB organic dye. We have shown that the Ag/Ag 3 PO 4 composite can be rejuvenated by a simple chemical oxidation step after several cycles of photocatalysis tests. At an optimal pH of 6.5, a mixture of cubic, rhombic dodecahedron, nanosphere and nanocrystals morphologies of the photocatalyst was formed. H 2 O 2 served as the chemical oxidant to re-insert the surface metallic Ag into the Ag 3 PO 4 photocatalyst but also as the agent that can control morphology of the regenerated as-prepared photocatalyst without the need for any other morphology controlling Agent (MCA). Surprisingly, the as- regenerated Ag 3 PO 4 was found to have higher photocatalytic reactivity than the freshly made material and superior at least 17 times in comparison with the conventional Degussa TiO 2 , and some of TiO 2 composites tested in this work.

  12. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    NASA Astrophysics Data System (ADS)

    Borglin, Johan; Guldbrand, Stina; Evenbratt, Hanne; Kirejev, Vladimir; Grönbeck, Henrik; Ericson, Marica B.

    2015-12-01

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enable studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.

  13. Insights on proximity effect and multiphoton induced luminescence from gold nanospheres in far field optical microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borglin, Johan; Department of Physics, University of Gothenburg, Kemivägen 10, 412 96 Gothenburg; Guldbrand, Stina

    Gold nanoparticles can be visualized in far-field multiphoton laser-scanning microscopy (MPM) based on the phenomena of multiphoton induced luminescence (MIL). This is of interest for biomedical applications, e.g., for cancer diagnostics, as MPM allows for working in the near-infrared (NIR) optical window of tissue. It is well known that the aggregation of particles causes a redshift of the plasmon resonance, but its implications for MIL applying far-field MPM should be further exploited. Here, we explore MIL from 10 nm gold nanospheres that are chemically deposited on glass substrates in controlled coverage gradients using MPM operating in NIR range. The substrates enablemore » studies of MIL as a function of inter-particle distance and clustering. It was shown that MIL was only detected from areas on the substrates where the particle spacing was less than one particle diameter, or where the particles have aggregated. The results are interpreted in the context that the underlying physical phenomenon of MIL is a sequential two-photon absorption process, where the first event is driven by the plasmon resonance. It is evident that gold nanospheres in this size range have to be closely spaced or clustered to exhibit detectable MIL using far-field MPM operating in the NIR region.« less

  14. Adsorption and photocatalytic degradation of pharmaceuticals by BiOClxIy nanospheres in aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoning; Bi, Wenlong; Zhai, Pingping; Wang, Xiaobing; Li, Hongjing; Mailhot, Gilles; Dong, Wenbo

    2016-01-01

    BiOClxIy nanospheres have been synthesised via precipitation method in ethylene glycol (EG)-water (H2O) mixed solvent at 80 °C and ambient pressure. Results of BiOClxIy characterisation showed that these composite materials well combined BiOCl with BiOI crystals, which displayed flower-like hierarchical nanospheres consisted of numerous nanosheets and possessed smaller particle size, higher surface area than those in previous papers. The great surface area resulted in its high adsorption abilities of hydroxyphenylacetic acid (p-HPA) in the dark, the adsorption process could be suitably described by a pseudo-second-order kinetics model and the adsorption isotherms could be well fitted with Freundlich and Langmuir equations. The photocatalytic degradation of p-HPA and acetaminophen (ACTP) were investigated under simulated solar and visible irradiation using BiOClxIy catalyst for the first time. The combination of BiOCl and BiOI to a certain extent has largely improved the remove efficiency, and BiOCl0.75I0.25 was the optimal catalyst with almost 100% removal of p-HPA and 80% removal of ACTP under solar light for 3 h. Experimental results demonstrated that the photocatalytic degradation of p-HPA and ACTP followed pseudo-first-order kinetics and O2rad - and dissolved oxygen play predominant roles in photocatalytic process efficiency. This research will supply an environment-friendly photocatalyst for pharmaceutical wastewater treatment under sunlight.

  15. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices

    NASA Astrophysics Data System (ADS)

    Liao, P. H.; Peng, K. P.; Lin, H. C.; George, T.; Li, P. W.

    2018-05-01

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO2/SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5–95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5–4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si1‑x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si1‑x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core ‘building block’ required for the fabrication of Ge-based MOS devices.

  16. Single-fabrication-step Ge nanosphere/SiO2/SiGe heterostructures: a key enabler for realizing Ge MOS devices.

    PubMed

    Liao, P H; Peng, K P; Lin, H C; George, T; Li, P W

    2018-05-18

    We report channel and strain engineering of self-organized, gate-stacking heterostructures comprising Ge-nanosphere gate/SiO 2 /SiGe-channels. An exquisitely-controlled dynamic balance between the concentrations of oxygen, Si, and Ge interstitials was effectively exploited to simultaneously create these heterostructures in a single oxidation step. Process-controlled tunability of the channel length (5-95 nm diameters for the Ge-nanospheres), gate oxide thickness (2.5-4.8 nm), as well as crystal orientation, chemical composition and strain engineering of the SiGe-channel was achieved. Single-crystalline (100) Si 1-x Ge x shells with Ge content as high as x = 0.85 and with a compressive strain of 3%, as well as (110) Si 1-x Ge x shells with Ge content of x = 0.35 and corresponding compressive strain of 1.5% were achieved. For each crystal orientation, our high Ge-content, highly-stressed SiGe shells feature a high degree of crystallinity and thus, provide a core 'building block' required for the fabrication of Ge-based MOS devices.

  17. Facile and template-free method toward chemical synthesis of polyaniline film/nanotube structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Pei; Zhu, Yisi; Torres, Jorge

    A facile and template-free method is reported to synthesize a new thin film structure: polyaniline (PANI) film/nanotubes (F/N) structure. The PANI F/N is a 100-nm thick PANI film embedded with PANI nanotubes. This well-controlled method requires no surfactant or organic acid as well as relatively low concentration of reagents. Synthesis condition studies reveal that aniline oligomers with certain structures are responsible for guiding the growth of the nanotubes. Electrical characterization also indicates that the PANI F/N possesses similar field-effect transistor characteristics to bare PANI film. With its 20% increased surface-area-to-volume (S/V) ratio contributed by surface embedded nanotubes and the excellentmore » p-type semiconducting characteristic, PANI F/N shows clear superiority compared with bare PANI film. Such advantages guarantee the PANI F/N a promising future toward the development of ultra-high sensitivity and low-cost biosensors.« less

  18. Silk Nanospheres and Microspheres from Silk/PVA Blend Films for Drug Delivery

    PubMed Central

    Wang, Xiaoqin; Yucel, Tuna; Lu, Qiang; Hu, Xiao; Kaplan, David L.

    2009-01-01

    Silk fibroin protein-based micro- and nanospheres provide new options for drug delivery due to their biocompatibility, biodegradability and their tunable drug loading and release properties. In the present study, we report a new aqueous-based preparation method for silk spheres with controllable sphere size and shape. The preparation was based on phase separation between silk fibroin and polyvinyl alcohol (PVA) at a weight ratio of 1/1 and 1/4. Water-insoluble silk spheres were easily obtained from the blend in a three step process: (1) air-drying the blend solution into a film, (2) film dissolution in water and (3) removal of residual PVA by subsequent centrifugation. In both cases, the spheres had approximately 30% beta-sheet content and less than 5% residual PVA. Spindle-shaped silk particles, as opposed to the spherical particles formed above, were obtained by stretching the blend films before dissolving in water. Compared to the 1/1 ratio sample, the silk spheres prepared from the 1/4 ratio sample showed a more homogeneous size distribution ranging from 300 nm up to 20 μm. Further studies showed that sphere size and polydispersity could be controlled either by changing the concentration of silk and PVA or by applying ultrasonication on the blend solution. Drug loading was achieved by mixing model drugs in the original silk solution. The distribution and loading efficiency of the drug molecules in silk spheres depended on their hydrophobicity and charge, resulting in different drug release profiles. The entire fabrication procedure could be completed within one day. The only chemical used in the preparation except water was PVA, an FDA-approved ingredient in drug formulations. Silk micro- and nanospheres reported have potential as drug delivery carriers in a variety of biomedical applications. PMID:19945157

  19. Monodisperse Metal-Organic Framework Nanospheres with Encapsulated Core-Shell Nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the Highly Selective Conversion of CO2 to CO.

    PubMed

    Zhao, Xi; Xu, Haitao; Wang, XiaoXiao; Zheng, Zhizhong; Xu, Zhenliang; Ge, Jianping

    2018-05-02

    A new microporous metal-organic framework (MOF) with formula {Co 2 (oba) 4 (3-bpdh) 2 }4H 2 O [oba = 4,4'-oxybis(benzoic acid); 3-bpdh = N, N'-bis-(1-pyridine-3-yl-ethylidene)-hydrazine] was assembled, and its morphology was found to undergo a microrod-to-nanosphere transformation with temperature variation. Core-shell Au@Pd functional nanoparticles (NPs) were successfully encapsulated in the center of the monodisperse nanospheres, and Pt NPs were well-dispersed and fully immobilized on the surface of Au@Pd@1Co to build the Pt/Au@Pd@1Co composites, which exhibited NPs catalytic activity for the reverse water gas shift reaction. The core-shell Au@Pd NPs in MOF significantly enchanced the CO selectivity of the catalyst, and the Pt NP loading on the surface of the nanosphere afforded a desirable CO 2 conversion.

  20. Probing spontaneous wave-function collapse with entangled levitating nanospheres

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Zhang, Tiancai; Li, Jie

    2017-01-01

    Wave-function collapse models are considered to be the modified theories of standard quantum mechanics at the macroscopic level. By introducing nonlinear stochastic terms in the Schrödinger equation, these models (different from standard quantum mechanics) predict that it is fundamentally impossible to prepare macroscopic systems in macroscopic superpositions. The validity of these models can only be examined by experiments, and hence efficient protocols for these kinds of experiments are greatly needed. Here we provide a protocol that is able to probe the postulated collapse effect by means of the entanglement of the center-of-mass motion of two nanospheres optically trapped in a Fabry-Pérot cavity. We show that the collapse noise results in a large reduction of the steady-state entanglement, and the entanglement, with and without the collapse effect, shows distinguishable scalings with certain system parameters, which can be used to determine unambiguously the effect of these models.

  1. How Ag Nanospheres Are Transformed into AgAu Nanocages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, normore » by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.« less

  2. Method of determining dispersion dependence of refractive index of nanospheres building opals

    NASA Astrophysics Data System (ADS)

    Kępińska, Mirosława; Starczewska, Anna; Duka, Piotr

    2017-11-01

    The method of determining dispersion dependence of refractive index of nanospheres building opals is presented. In this method basing on angular dependences of the spectral positions of Bragg diffraction minima on transmission spectra for opal series of known spheres diameter, the spectrum of effective refractive index for opals and then refractive index for material building opal's spheres is determined. The described procedure is used for determination of neff(λ) for opals and nsph(λ) for material which spheres building investigated opals are made of. The obtained results are compared with literature data of nSiO2(λ) considered in the analysis and interpretation of extremes related to the light diffraction at (hkl) SiO2 opal planes.

  3. Self-assembled Multilayers of Silica Nanospheres for Defect Reduction in Non- and Semipolar Gallium Nitride Epitaxial Layers

    PubMed Central

    2015-01-01

    Non- and semipolar GaN have great potential to improve the efficiency of light emitting devices due to much reduced internal electric fields. However, heteroepitaxial GaN growth in these crystal orientations suffers from very high dislocation and stacking faults densities. Here, we report a facile method to obtain low defect density non- and semipolar heteroepitaxial GaN via selective area epitaxy using self-assembled multilayers of silica nanospheres (MSN). Nonpolar (11–20) and semipolar (11–22) GaN layers with high crystal quality have been achieved by epitaxial integration of the MSN and a simple one-step overgrowth process, by which both dislocation and basal plane stacking fault densities can be significantly reduced. The underlying defect reduction mechanisms include epitaxial growth through the MSN covered template, island nucleation via nanogaps in the MSN, and lateral overgrowth and coalescence above the MSN. InGaN/GaN multiple quantum wells structures grown on a nonpolar GaN/MSN template show more than 30-fold increase in the luminescence intensity compared to a control sample without the MSN. This self-assembled MSN technique provides a new platform for epitaxial growth of nitride semiconductors and offers unique opportunities for improving the material quality of GaN grown on other orientations and foreign substrates or heteroepitaxial growth of other lattice-mismatched materials. PMID:27065755

  4. Lunar Transportation Facilities and Operations Study, option 2

    NASA Technical Reports Server (NTRS)

    1992-01-01

    During the Option 2 period of the Lunar Transportation Facilities and Operations Study (LTFOS), a joint McDonnell Douglas Space Systems Company Kennedy Space Center (MDSSC-KSC) and National Aeronautics and Space Administration Kennedy Space Center (NASA-KSC) Study team conducted a comparison of the functional testing of the RL-10 and Space Shuttle Main Engine, a quick-look impact assessment of the Synthesis Group Report, and a detailed assessment of the Synthesis Group Report. The results of these KSC LTFOS team efforts are included. The most recent study task effort was a detailed assessment of the Synthesis Group Report. The assessment was conducted to determine the impact on planetary launch and landing facilities and operations. The result of that effort is a report entitled 'Analysis of the Synthesis Group Report, its Architectures and their Impacts on PSS Launch and Landing Operations' and is contained in Appendix A. The report is structured in a briefing format with facing pages as opposed to a narrative style. A quick-look assessment of the Synthesis Group Report was conducted to determine the impact of implementing the recommendations of the Synthesis Group on KSC launch facilities and operations. The data was documented in a presentation format as requested by Kennedy Space Center Technology and Advanced Projects Office and is included in Appendix B. Appendix C is a white paper on the comparison of the functional testing of the RL-10 and Space Shuttle Main Engine. The comparison was undertaken to provide insight regarding common test requirements that would be applicable to Lunar and Mars Excursion Vehicles (LEV and MEV).

  5. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  6. Respectful care during childbirth in health facilities globally: a qualitative evidence synthesis.

    PubMed

    Shakibazadeh, E; Namadian, M; Bohren, M A; Vogel, J P; Rashidian, A; Nogueira Pileggi, V; Madeira, S; Leathersich, S; Tunçalp, Ӧ; Oladapo, O T; Souza, J P; Gülmezoglu, A M

    2017-11-08

    What constitutes respectful maternity care (RMC) operationally in research and programme implementation is often variable. To develop a conceptualisation of RMC. Key databases, including PubMed, CINAHL, EMBASE, Global Health Library, grey literature, and reference lists of relevant studies. Primary qualitative studies focusing on care occurring during labour, childbirth, and/or immediately postpartum in health facilities, without any restrictions on locations or publication date. A combined inductive and deductive approach was used to synthesise the data; the GRADE CERQual approach was used to assess the level of confidence in review findings. Sixty-seven studies from 32 countries met our inclusion criteria. Twelve domains of RMC were synthesised: being free from harm and mistreatment; maintaining privacy and confidentiality; preserving women's dignity; prospective provision of information and seeking of informed consent; ensuring continuous access to family and community support; enhancing quality of physical environment and resources; providing equitable maternity care; engaging with effective communication; respecting women's choices that strengthen their capabilities to give birth; availability of competent and motivated human resources; provision of efficient and effective care; and continuity of care. Globally, women's perspectives of what constitutes RMC are quite consistent. This review presents an evidence-based typology of RMC in health facilities globally, and demonstrates that the concept is broader than a reduction of disrespectful care or mistreatment of women during childbirth. Innovative approaches should be developed and tested to integrate RMC as a routine component of quality maternal and newborn care programmes. Understanding respectful maternity care - synthesis of evidence from 67 qualitative studies. © 2017 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  7. Tailored Synthesis of 162-Residue S-Monoglycosylated GM2-Activator Protein (GM2AP) Analogues that Allows Facile Access to a Protein Library.

    PubMed

    Nakamura, Takahiro; Sato, Kohei; Naruse, Naoto; Kitakaze, Keisuke; Inokuma, Tsubasa; Hirokawa, Takatsugu; Shigenaga, Akira; Itoh, Kohji; Otaka, Akira

    2016-10-17

    A synthetic protocol for the preparation of 162-residue S-monoglycosylated GM2-activator protein (GM2AP) analogues bearing various amino acid substitutions for Thr69 has been developed. The facile incorporation of the replacements into the protein was achieved by means of a one-pot/N-to-C-directed sequential ligation strategy using readily accessible middle N-sulfanylethylanilide (SEAlide) peptides each consisting of seven amino acid residues. A kinetically controlled ligation protocol was successfully applied to the assembly of three peptide segments covering the GM2AP. The native chemical ligation (NCL) reactivities of the SEAlide peptides can be tuned by the presence or absence of phosphate salts. Furthermore, NCL of the alkyl thioester fragment [GM2AP (1-31)] with the N-terminal cysteinyl prolyl thioester [GM2AP (32-67)] proceeded smoothly to yield the 67-residue prolyl thioester, with the prolyl thioester moiety remaining intact. This newly developed strategy enabled the facile synthesis of GM2AP analogues. Thus, we refer to this synthetic protocol as "tailored synthesis" for the construction of a GM2AP library. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Embelin lipid nanospheres for enhanced treatment of ulcerative colitis - Preparation, characterization and in vivo evaluation.

    PubMed

    Badamaranahalli, Shivaram Shivakumar; Kopparam, Manjunath; Bhagawati, Siddalingappa Tippanna; Durg, Sharanbasappa

    2015-08-30

    Aim of the present study is to develop embelin lipid nanospheres (LNE) for better treatment of ulcerative colitis. Embelin LNs were developed using soya bean oil/virgin coconut oil as liquid lipid carrier and soya/egg lecithin as stabilizer by hot homogenization followed by ultrasonication technique. The particle size of LNEs ranged from 196.1±3.57 to 269.2±1.05nm with narrow polydispersity index values whereas zeta potential was from -36.6 to -62.0mV. Embelin was successfully incorporated into lipid nanospheres with entrapment efficiency about 99%. There was no interaction between embelin and selected liquid lipids which was confirmed by FTIR studies. In vitro drug release studies performed using Franz diffusion cell and results showed sustained release of embelin. Embelin LNs were stabilized with egg and soya lecithin, embelin release from these LNs followed Higuchi model and first order model, respectively, however mechanism of drug release in both LNs was non-Fickian. In vivo studies were carried out using acetic acid induced ulcerative colitis rat model and results revealed that treatment with embelin LNs significantly reduced clinical activity and macroscopic scores compared to embelin conventional suspension. Treatment with embelin LNs decreased MPO, LDH and LPO levels, increased reduced GSH levels which indicated better treatment of ulcerative colitis was achieved. This was also confirmed by improved histopathological conditions. Thus embelin LNs could be favourably used for treatment of ulcerative colitis. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Optical band gap in a cholesteric elastomer doped by metallic nanospheres

    NASA Astrophysics Data System (ADS)

    Hernández, Julio C.; Reyes, J. Adrián

    2017-12-01

    We analyzed the optical band gaps for axially propagating electromagnetic waves throughout a metallic doped cholesteric elastomer. The composed medium is made of metallic nanospheres (silver) randomly dispersed in a cholesteric elastomer liquid crystal whose dielectric properties can be represented by a resonant effective uniaxial tensor. We found that the band gap properties of the periodic system greatly depend on the volume fraction of nanoparticles in the cholesteric elastomer. In particular, we observed a displacement of the reflection band for quite small fraction volumes whereas for larger values of this fraction there appears a secondary band in the higher frequency region. We also have calculated the transmittance and reflectance spectra for our system. These calculations verify the mentioned band structure and provide additional information about the polarization features of the radiation.

  10. Enhanced cellulose degradation using cellulase-nanosphere complexes.

    PubMed

    Blanchette, Craig; Lacayo, Catherine I; Fischer, Nicholas O; Hwang, Mona; Thelen, Michael P

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production.

  11. Enhanced Cellulose Degradation Using Cellulase-Nanosphere Complexes

    PubMed Central

    Blanchette, Craig; Lacayo, Catherine I.; Fischer, Nicholas O.; Hwang, Mona; Thelen, Michael P.

    2012-01-01

    Enzyme catalyzed conversion of plant biomass to sugars is an inherently inefficient process, and one of the major factors limiting economical biofuel production. This is due to the physical barrier presented by polymers in plant cell walls, including semi-crystalline cellulose, to soluble enzyme accessibility. In contrast to the enzymes currently used in industry, bacterial cellulosomes organize cellulases and other proteins in a scaffold structure, and are highly efficient in degrading cellulose. To mimic this clustered assembly of enzymes, we conjugated cellulase obtained from Trichoderma viride to polystyrene nanospheres (cellulase:NS) and tested the hydrolytic activity of this complex on cellulose substrates from purified and natural sources. Cellulase:NS and free cellulase were equally active on soluble carboxymethyl cellulose (CMC); however, the complexed enzyme displayed a higher affinity in its action on microcrystalline cellulose. Similarly, we found that the cellulase:NS complex was more efficient in degrading natural cellulose structures in the thickened walls of cultured wood cells. These results suggest that nanoparticle-bound enzymes can improve catalytic efficiency on physically intractable substrates. We discuss the potential for further enhancement of cellulose degradation by physically clustering combinations of different glycosyl hydrolase enzymes, and applications for using cellulase:NS complexes in biofuel production. PMID:22870287

  12. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity

    NASA Astrophysics Data System (ADS)

    Jadhav, Harsharaj S.; Kalubarme, Ramchandra S.; Park, Choong-Nyeon; Kim, Jaekook; Park, Chan-Jin

    2014-08-01

    To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation.To fulfill the high power and high energy density demands for Li-ion batteries (LIBs) new anode materials need to be explored to replace conventional graphite. Herein, we report the urea assisted facile co-precipitation synthesis of spinel NiCo2O4 and its application as an anode material for LIBs. The synthesized NiCo2O4 exhibited an urchin-like microstructure and polycrystalline and mesoporous nature. In addition, the mesoporous NiCo2O4 electrode exhibited an initial discharge capacity of 1095 mA h g-1 and maintained a reversible capacity of 1000 mA h g-1 for 400 cycles at 0.5 C-rate. The reversible capacity of NiCo2O4 could still be maintained at 718 mA h g-1, even at 10 C. The mesoporous NiCo2O4 exhibits great potential as an anode material for LIBs with the advantages of unique performance and facile preparation. Electronic supplementary information (ESI) available: Experimental details and additional experimental results. See DOI: 10.1039/c4nr02183e

  13. Shape-selective synthesis of non-micellar cobalt oxide (CoO) nanomaterials by microwave irradiations

    NASA Astrophysics Data System (ADS)

    Kundu, Subrata; Jayachandran, M.

    2013-04-01

    Shape-selective formation of CoO nanoparticles has been developed using a simple one-step in situ non-micellar microwave (MW) heating method. CoO NPs were synthesized by mixing aqueous CoCl2·6H2O solution with poly (vinyl) alcohol (PVA) in the presence of sodium hydroxide (NaOH). The reaction mixture was irradiated using MW for a total time of 2 min. This process exclusively generated different shapes like nanosphere, nanosheet, and nanodendrite structures just by tuning the Co(II) ion to PVA molar ratios and controlling other reaction parameters. The proposed synthesis method is efficient, straightforward, reproducible, and robust. Other than in catalysis, these cobalt oxide nanomaterials can be used for making pigments, battery materials, for developing solid state sensors, and also as an anisotropy source for magnetic recording.

  14. Facile synthesis and electrochemical performance of the nanoscaled FePy anode

    NASA Astrophysics Data System (ADS)

    Wang, Guixin; Zhang, Ruibo; Jiang, Tianchan; Chernova, Natasha A.; Dong, Zhixin; Whittingham, M. Stanley

    2014-12-01

    Fe-P alloys with high phosphorous content have been targeted as promising anode materials because of their high theoretical capacity. However, the synthesis and cycling performance remain great challenges. Hereby FePy (3 ≤ y ≤ 4) nanoparticles are facilely synthesized through a dry mechanochemical method by reacting iron and red phosphorus powders in an inert atmosphere. The morphology and crystal structure of this material are characterized by SEM and XRD, respectively, while the electrochemical performance is evaluated by a number of different techniques. The 1st and 2nd discharge capacity of FePy reaches 1984 mAh g-1 and 1486 mAh g-1, respectively, and after 10 cycles at 0.03 mA cm-2 (20 mA g-1, 0.03C), the capacity remains 1089 mAh g-1 with a coulombic efficiency of 97%, much higher than the reported results to date. The cyclability of this material becomes fairly better at a higher current density, but the specific capacity is lower compared to that of the smaller current density. By adding fluoroethylene carbonate (FEC) to the electrolyte, the cycling performance of this material was improved. The EIS analysis has also been performed in order to better understand the capacity fade mechanism of FePy.

  15. Retrieving plasmonic field information from metallic nanospheres using attosecond photoelectron streaking spectroscopy

    NASA Astrophysics Data System (ADS)

    Li, Jianxiong; Saydanzad, Erfan; Thumm, Uwe

    2017-04-01

    Streaked photoemission by attosecond extreme ultraviolet (XUV) pulses into an infrared (IR) or visible streaking pulse, holds promise for imaging with sub-fs time resolution the dielectric plasmonic response of metallic nanoparticles to the IR or visible streaking pulse. We calculated the plasmonic field induced by streaking pulses for 10 to 200 nm diameter Au, Ag, and Cu nanospheres and obtained streaked photoelectron spectra by employing our quantum-mechanical model. Our simulated spectra show significant oscillation-amplitude enhancements and phase shifts for all three metals (relative to spectra that are calculated without including the induced plasmonic field) and allow the reconstruction of the plasmonic field enhancements and phase shifts for each material. Supported by the US NSD-EPSCoR program, NSF, and DoE.

  16. Porous NiCo2O4 nanosheets/reduced graphene oxide composite: facile synthesis and excellent capacitive performance for supercapacitors.

    PubMed

    Ma, Lianbo; Shen, Xiaoping; Ji, Zhenyuan; Cai, Xiaoqing; Zhu, Guoxing; Chen, Kangmin

    2015-02-15

    A composite with porous NiCo2O4 nanosheets attached on reduced graphene oxide (RGO) sheets is synthesized through a facile solution-based method combined with a simple thermal annealing process. The capacitive performances of the as-prepared NiCo2O4/RGO (NCG) composites as electrode materials are investigated. It is found that the NCG composites exhibit a high specific capacitance up to 1186.3 F g(-1) at the current density of 0.5 A g(-1), and superior cycling stability with about 97% of the initial capacitance after 100 cycles. The greatly enhanced capacitive performance of the NCG electrode can be attributed to the existence of RGO support, which serves as both conductive channels and active interface. The approach used in the synthesis provides a facile route for preparing graphene-binary metal oxide electrode materials. The remarkable capacitive performance of NCG composites will undoubtedly make them be attractive for high performance energy storage applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    NASA Astrophysics Data System (ADS)

    Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang

    2015-12-01

    Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  18. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu, Yaqin

    2009-07-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3O 4) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C dbnd O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3O 4 hybrids was discussed.

  19. Electrophoretic deposition of dexamethasone-loaded gelatin nanospheres/chitosan coating and its dual function in anti-inflammation and osteogenesis.

    PubMed

    Qi, Hongfei; Chen, Qiang; Ren, Hailong; Wu, Xianglong; Liu, Xianhu; Lu, Tingli

    2018-05-18

    Surface modification of metallic implants with bioactive and biodegradable coatings could be a promising approach for bone regeneration. The objective of this study was to prepare chitosan/gelatin nanospheres (GNs) composite coating for the delivery of dexamethasone (DEX). GNs with narrow size distribution and negative surface charge were firstly prepared by a two-step desolvation method. Homogeneous and stable gelatin nanospheres/chitosan (GNs/CTS) composite coatings were formed by electrophoretic deposition (EPD). Drug loading, encapsulation efficiency and in vitro release of DEX were estimated using high performance liquid chromatography (HPLC). The anti-inflammatory effect of DEX-loaded coatings on macrophage RAW 264.7 cells was assessed by the secretion of tumour necrosis factor (TNF) and inducible nitric oxide synthase (iNOS). Osteogenic differentiation of MC3T3-E1 osteoblasts on DEX-loaded coatings was investigated by osteogenic gene expression and mineralization. The DEX in GNs/CTS composite coating showed a two-stage release pattern could not only suppress inflammation during the burst release period, but also promote osteogenic differentiation in the sustained release period. This study might offer a feasible method for modifying the surface of metallic implants in bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens.

    PubMed

    Fellowes, J W; Pattrick, R A D; Green, D I; Dent, A; Lloyd, J R; Pearce, C I

    2011-05-30

    Mercuric chloride solutions have historically been used as pesticides to prevent bacterial, fungal and insect degradation of herbarium specimens. The University of Manchester museum herbarium contains over a million specimens from numerous collections, many preserved using HgCl(2) and its transformation to Hg(v)(0) represents a health risk to herbarium staff. Elevated mercury concentrations in work areas (∼ 1.7 μg m(-3)) are below advised safe levels (<25 μg m(-3)) but up to 90 μg m(-3) mercury vapour was measured in specimen boxes, representing a risk when accessing the samples. Mercury vapour release correlated strongly with temperature. Mercury salts were observed on botanical specimens at concentrations up to 2.85 wt% (bulk); XPS, SEM-EDS and XANES suggest the presence of residual HgCl(2) as well as cubic HgS and HgO. Bacterially derived, amorphous nanospheres of elemental selenium effectively sequestered the mercury vapour in the specimen boxes (up to 19 wt%), and analysis demonstrated that the Hg(v)(0) was oxidised by the selenium to form stable HgSe on the surface of the nanospheres. Biogenic Se(0) can be used to reduce Hg(v)(0) in long term, slow release environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. High-Throughput Nanofabrication of Infra-red and Chiral Metamaterials using Nanospherical-Lens Lithography

    PubMed Central

    Chang, Yun-Chorng; Lu, Sih-Chen; Chung, Hsin-Chan; Wang, Shih-Ming; Tsai, Tzung-Da; Guo, Tzung-Fang

    2013-01-01

    Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications. PMID:24284941

  2. Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres.

    PubMed

    Zamora, Héctor; Plaza, Jorge; Cañizares, Pablo; Lobato, Justo; Rodrigo, Manuel A

    2016-05-23

    This work evaluates the use of carbon nanospheres (CNS) in microporous layers (MPL) of high temperature proton exchange membrane fuel cell (HT-PEMFC) electrodes and compares the characteristics and performance with those obtained using conventional MPL based on carbon black. XRD, hydrophobicity, Brunauer-Emmett-Teller theory, and gas permeability of MPL prepared with CNS were the parameters evaluated. In addition, a short life test in a fuel cell was carried out to evaluate performance under accelerated stress conditions. The results demonstrate that CNS is a promising alternative to traditional carbonaceous materials because of its high electrochemical stability and good electrical conductivity, suitable to be used in this technology. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life.

    PubMed

    Yao, Yan; McDowell, Matthew T; Ryu, Ill; Wu, Hui; Liu, Nian; Hu, Liangbing; Nix, William D; Cui, Yi

    2011-07-13

    Silicon is a promising candidate for the anode material in lithium-ion batteries due to its high theoretical specific capacity. However, volume changes during cycling cause pulverization and capacity fade, and improving cycle life is a major research challenge. Here, we report a novel interconnected Si hollow nanosphere electrode that is capable of accommodating large volume changes without pulverization during cycling. We achieved the high initial discharge capacity of 2725 mAh g(-1) with less than 8% capacity degradation every hundred cycles for 700 total cycles. Si hollow sphere electrodes also show a Coulombic efficiency of 99.5% in later cycles. Superior rate capability is demonstrated and attributed to fast lithium diffusion in the interconnected Si hollow structure.

  4. Nanosphere-based one-step strategy for efficient and nondestructive detection of circulating tumor cells.

    PubMed

    Wu, Ling-Ling; Wen, Cong-Ying; Hu, Jiao; Tang, Man; Qi, Chu-Bo; Li, Na; Liu, Cui; Chen, Lan; Pang, Dai-Wen; Zhang, Zhi-Ling

    2017-08-15

    Detecting viable circulating tumor cells (CTCs) without disruption to their functions for in vitro culture and functional study could unravel the biology of metastasis and promote the development of personalized anti-tumor therapies. However, existing CTC detection approaches commonly include CTC isolation and subsequent destructive identification, which damages CTC viability and functions and generates substantial CTC loss. To address the challenge of efficiently detecting viable CTCs for functional study, we develop a nanosphere-based cell-friendly one-step strategy. Immunonanospheres with prominent magnetic/fluorescence properties and extraordinary stability in complex matrices enable simultaneous efficient magnetic capture and specific fluorescence labeling of tumor cells directly in whole blood. The collected cells with fluorescent tags can be reliably identified, free of the tedious and destructive manipulations from conventional CTC identification. Hence, as few as 5 tumor cells in ca. 1mL of whole blood can be efficiently detected via only 20min incubation, and this strategy also shows good reproducibility with the relative standard deviation (RSD) of 8.7%. Moreover, due to the time-saving and gentle processing and the minimum disruption of immunonanospheres to cells, 93.8±0.1% of detected tumor cells retain cell viability and proliferation ability with negligible changes of cell functions, capacitating functional study on cell migration, invasion and glucose uptake. Additionally, this strategy exhibits successful CTC detection in 10/10 peripheral blood samples of cancer patients. Therefore, this nanosphere-based cell-friendly one-step strategy enables viable CTC detection and further functional analyses, which will help to unravel tumor metastasis and guide treatment selection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Facile Synthesis of Monodisperse Gold Nanocrystals Using Virola oleifera

    NASA Astrophysics Data System (ADS)

    Milaneze, Bárbara A.; Oliveira, Jairo P.; Augusto, Ingrid; Keijok, Wanderson J.; Côrrea, Andressa S.; Ferreira, Débora M.; Nunes, Otalíbio C.; Gonçalves, Rita de Cássia R.; Kitagawa, Rodrigo R.; Celante, Vinícius G.; da Silva, André Romero; Pereira, Ana Claudia H.; Endringer, Denise C.; Schuenck, Ricardo P.; Guimarães, Marco C. C.

    2016-10-01

    The development of new routes and strategies for nanotechnology applications that only employ green synthesis has inspired investigators to devise natural systems. Among these systems, the synthesis of gold nanoparticles using plant extracts has been actively developed as an alternative, efficient, cost-effective, and environmentally safe method for producing nanoparticles, and this approach is also suitable for large-scale synthesis. This study reports reproducible and completely natural gold nanocrystals that were synthesized using Virola oleifera extract. V. oleifera resin is rich in epicatechin, ferulic acid, gallic acid, and flavonoids (i.e., quercetin and eriodictyol). These gold nanoparticles play three roles. First, these nanoparticles exhibit remarkable stability based on their zeta potential. Second, these nanoparticles are functionalized with flavonoids, and third, an efficient, economical, and environmentally friendly mechanism can be employed to produce green nanoparticles with organic compounds on the surface. Our model is capable of reducing the resin of V. oleifera, which creates stability and opens a new avenue for biological applications. This method does not require painstaking conditions or hazardous agents and is a rapid, efficient, and green approach for the fabrication of monodisperse gold nanoparticles.

  6. Silver nanospheres are cytotoxic and genotoxic to fish cells

    PubMed Central

    Wise, John Pierce; Goodale, Britton C.; Wise, Sandra S.; Craig, Gary A.; Pongan, Adam F.; Walter, Ronald B.; Thompson, W. Douglas; Ng, Ah-Kau; Aboueissa, AbouEl-Makarim; Mitani, Hiroshi; Spalding, Mark J.; Mason, Michael D.

    2015-01-01

    Nanoparticles are being widely investigated for a range of applications due to their unique physical properties. For example, silver nanoparticles are used in commercial products for their antibacterial and antifungal properties. Some of these products are likely to result in silver nanoparticles reaching the aquatic environment. As such, nanoparticles pose a health concern for humans and aquatic species. We used a medaka (Oryzias latipes) cell line to investigate the cytotoxicity and genotoxicity of 30 nm diameter silver nanospheres. Treatments of 0.05, 0.3, 0.5, 3 and 5 μg/cm2 induced 80, 45.7, 24.3, 1 and 0.1% survival, respectively, in a colony forming assay. Silver nanoparticles also induced chromosomal aberrations and aneuploidy. Treatments of 0, 0.05, 0.1 and 0.3 μg/cm2 induced damage in 8, 10.8, 16 and 15.8% of metaphases and 10.8, 15.6, 24 and 24 total aberrations in 100 metaphases, respectively. These data show that silver nanoparticles are cytotoxic and genotoxic to fish cells. PMID:20060603

  7. One-Step Synthesis of Cagelike Hollow Silica Spheres with Large Through-Holes for Macromolecule Delivery.

    PubMed

    Wang, Shengnan; Chen, Min; Wu, Limin

    2016-12-07

    A facile, one-step method to prepare cagelike hollow silica nanospheres with large through-holes (HSNLs) using a lysozyme-assisted O/W miniemulsion technique is presented. The tetraethoxysilane (TEOS)-xylene mixture forms oil droplets which are stabilized by the cationic surfactant cetyltrimethylammonium bromide (CTAB), cosurfactant hexadecane (HD), and protein lysozyme. HSNLs (with diameter of 300-460 nm) with large through-holes (10-30 nm) were obtained directly after ultrasonic treatment and aging. Lysozyme can not only stabilize the oil/water interface, assist the hydrolysis of TEOS, and interact with silica particles to assemble into silica-lysozyme clusters but also contribute to the formation of through-holes due to its hydrophilicity variation at different pH conditions. A possible new mechanism called the interface desorption method is proposed to explain the formation of the through-holes. To confirm the effectiveness of large through-holes in delivering large molecules, bovine serum albumin (BSA, 21 × 4 × 14 nm 3 ) was chosen as a model guest molecule; HSNLs showed much higher loading capacity compared with common hollow mesoporous silica nanospheres (HMSNs). The release of BSA can be well controlled by wrapping HSNLs with a heat-sensitive phase change material (1-tetradecanol). Cell toxicity was also conducted with a Cell Counting Kit-8 (CCK-8) assay to roughly evaluate the feasibility of HSNLs in biomedical applications.

  8. Etching-dependent fluorescence quenching of Ag-dielectric-Au three-layered nanoshells: The effect of inner Ag nanosphere

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Xu, Zai-jie; Weng, Guo-jun; Zhao, Jing; Li, Jian-jun; Zhao, Jun-wu

    2018-07-01

    In this report, Ag-dielectric-Au three-layered nanoshells with controlled inner core size were synthesized. The fluorescence emission of the rhodamine 6G (R6G) could be quenched by the three-layered nanoshells distinctly. What's more, the fluorescence quenching efficiency could be further improved by tuning the etching of inner Ag nanosphere. The maximum fluorescence quenching efficiency is obtained when the separate layer just appears between the inner Ag core and the outer Au shell. Whereas the fluorescence quenching efficiency is weakened when no gaps take place around the inner Ag core or the separate layer is too thick and greater than 13 nm. The fluorescence quenching properties of the Ag-dielectric-Au three-layered nanoshells with different initial sizes of the Ag nanoparticles are also studied. The maximum fluorescence quenching efficiency is obtained when the three-layered nanoshells are synthesized based on the Ag nanoparticles with 60 nm, which is better than others two sizes (42 and 79 nm). Thus we believe that the size of initial Ag nanospheres also greatly affects the optimized fluorescence quenching efficiency. These results about fluorescence quenching properties of Ag-dielectric-Au three-layered nanoshells present a potential for design and fabrication of fluorescence nanosensors based on tuning the geometry of the inner core and the separate layer.

  9. Hierarchical porous nitrogen-rich carbon nanospheres with high and durable capabilities for lithium and sodium storage.

    PubMed

    Ma, Lianbo; Chen, Renpeng; Hu, Yi; Zhu, Guoyin; Chen, Tao; Lu, Hongling; Liang, Jia; Tie, Zuoxiu; Jin, Zhong; Liu, Jie

    2016-10-20

    To improve the energy storage performance of carbon-based materials, considerable attention has been paid to the design and fabrication of novel carbon architectures with structural and chemical modifications. Herein, we report that hierarchical porous nitrogen-rich carbon (HPNC) nanospheres originating from acidic etching of metal carbide/carbon hybrid nanoarchitectures can be employed as high-performance anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The structural advantages of HPNC nanospheres are that the exceptionally-high content of nitrogen (17.4 wt%) can provide abundant electroactive sites and enlarge the interlayer distance (∼3.5 Å) to improve the capacity, and the large amount of micropores and mesopores can serve as reservoirs for storing lithium/sodium ions. In LIBs, HPNC based anodes deliver a high reversible capacity of 1187 mA h g -1 after 100 cycles at 100 mA g -1 , a great rate performance of 470 mA h g -1 at 5000 mA g -1 , and outstanding cycling stabilities with a capacity of 788 mA h g -1 after 500 cycles at 1000 mA g -1 . In SIBs, HPNC based anodes exhibit a remarkable reversible capacity of 357 mA h g -1 at 100 mA g -1 and high long-term stability with a capacity of 136 mA h g -1 after 500 cycles at 1000 mA g -1 .

  10. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.

    PubMed

    Favi, Pelagie Marlene; Valencia, Mariana Morales; Elliott, Paul Robert; Restrepo, Alejandro; Gao, Ming; Huang, Hanchen; Pavon, Juan Jose; Webster, Thomas Jay

    2015-12-01

    Metallic nanoparticles (such as gold and silver) have been intensely studied for wound healing applications due to their ability to be easily functionalized, possess antibacterial properties, and their strong potential for targeted drug release. In this study, rod-shaped silver nanorods (AgNRs) and gold nanorods (AuNRs) were fabricated by electron beam physical vapor deposition (EBPVD), and their cytotoxicity toward human skin fibroblasts were assessed and compared to sphere-shaped silver nanospheres (AgNSs) and gold nanospheres (AuNSs). Results showed that the 39.94 nm AgNSs showed the greatest toxicity with fibroblast cells followed by the 61.06 nm AuNSs, ∼556 nm × 47 nm (11.8:1 aspect ratio) AgNRs, and the ∼534 nm × 65 nm (8.2:1 aspect ratio) AuNRs demonstrated the least amount of toxicity. The calculated IC50 (50% inhibitory concentration) value for the AgNRs exposed to fibroblasts was greater after 4 days of exposure (387.3 μg mL(-1)) compared to the AgNSs and AuNSs (4.3 and 23.4 μg mL(-1), respectively), indicating that these spherical metallic nanoparticles displayed a greater toxicity to fibroblast cells. The IC50 value could not be measured for the AuNRs due to an incomplete dose response curve. The reduced cell toxicity with the presently developed rod-shaped nanoparticles suggests that they may be promising materials for use in numerous biomedical applications. © 2015 Wiley Periodicals, Inc.

  11. Healthy food procurement and nutrition standards in public facilities: evidence synthesis and consensus policy recommendations

    PubMed Central

    Kim D., Raine; Kayla, Atkey; Dana Lee, Dana Lee; Alexa R., Ferdinands; Dominique, Beaulieu; Susan, Buhler; Norm, Campbell; Brian, Cook; Mary, L’Abbé; Ashley, Lederer; David, Mowat; Joshna, Maharaj; Candace, Nykiforuk; Jacob, Shelley; Jacqueline, Street

    2018-01-01

    Abstract Introduction: Unhealthy foods are widely available in public settings across Canada, contributing to diet-related chronic diseases, such as obesity. This is a concern given that public facilities often provide a significant amount of food for consumption by vulnerable groups, including children and seniors. Healthy food procurement policies, which support procuring, distributing, selling, and/or serving healthier foods, have recently emerged as a promising strategy to counter this public health issue by increasing access to healthier foods. Although numerous Canadian health and scientific organizations have recommended such policies, they have not yet been broadly implemented in Canada. Methods: To inform further policy action on healthy food procurement in a Canadian context, we: (1) conducted an evidence synthesis to assess the impact of healthy food procurement policies on health outcomes and sales, intake, and availability of healthier food, and (2) hosted a consensus conference in September 2014. The consensus conference invited experts with public health/nutrition policy research expertise, as well as health services and food services practitioner experience, to review evidence, share experiences, and develop a consensus statement/recommendations on healthy food procurement in Canada. Results: Findings from the evidence synthesis and consensus recommendations for healthy food procurement in Canada are described. Specifically, we outline recommendations for governments, publicly funded institutions, decision-makers and professionals, citizens, and researchers. Conclusion: Implementation of healthy food procurement policies can increase Canadians’ access to healthier foods as part of a broader vision for food policy in Canada. PMID:29323862

  12. Facile synthesis of functional polyperoxides by radical alternating copolymerization of 1,3-dienes with oxygen.

    PubMed

    Sato, Eriko; Matsumoto, Akikazu

    2009-01-01

    We have developed a facile synthesis of degradable polyperoxides by the radical alternating copolymerization of 1,3-diene monomers with molecular oxygen at an atmospheric pressure. In this review, the synthesis, the degradation behavior, and the applications of functional polyperoxides are summarized. The alkyl sorbates as the conjugated 1,3-dienes gave a regiospecific alternating copolymer by exclusive 5,4-addition during polymerization and the resulting polyperoxides decomposed by the homolysis of a peroxy linkage followed by successive beta-scissions. The preference of 5,4-addition was well rationalized by theoretical calculations. The degradation of the polyperoxides occurred with various stimuli, such as heating, UV irradiation, a redox reaction with amines, and an enzyme reaction. The various functional polyperoxides were synthesized by following two methods, one is the direct copolymerization of functional 1,3-dienes, and the other is the functionalization of the precursor polyperoxides. Water soluble polyperoxides were also prepared, and the LCST behavior and the application to a drug carrier in the drug delivery system were investigated. In order to design various types of degradable polymers and gels we developed a method for the introduction of dienyl groups into the precursor polymers. The resulting dienyl-functionalized polymers were used for the degradable gels. The degradable branched copolymers showed a microphase-separated structure, which changed owing to the degradation of the polyperoxide segments. Copyright 2009 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  13. Facile and one-pot synthesis of uniform PtRu nanoparticles on polydopamine-modified multiwalled carbon nanotubes for direct methanol fuel cell application.

    PubMed

    Chen, Fengxia; Ren, Junkai; He, Qian; Liu, Jun; Song, Rui

    2017-07-01

    A facile, environment-friendly and one-pot synthesis method for the preparation of high performance PtRu electrocatalysts on the multiwalled carbon nanotubes (MWCNTs) is reported. Herein, bimetallic PtRu electrocatalysts are deposited onto polydopamine (Pdop) - functionalized MWCNTs by mildly stirring at room temperature. Without the use of expensive chemicals or corrosive acids, this noncovalent functionalization of MWCNTs by Pdop is simple, facile and eco-friendly, and thus preserving the integrity and electronic structure of MWCNTs. Due to the well improved dispersion and the decreased size of alloy nanoparticles, the PtRu electrocatalysts on Pdop-functionalized MWCNTs show much better dispersion, higher electrochemically active surface area, and higher electrocatalytic activity for the electrooxidation of methanol in direct methanol fuel cells, compared with the conventional acid-treated MWCNTs. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Facile high-yield synthesis of polyaniline nanosticks with intrinsic stability and electrical conductivity.

    PubMed

    Li, Xin-Gui; Li, Ang; Huang, Mei-Rong

    2008-01-01

    Chemical oxidative polymerization at 15 degrees C was used for the simple and productive synthesis of polyaniline (PAN) nanosticks. The effect of polymerization media on the yield, size, stability, and electrical conductivity of the PAN nanosticks was studied by changing the concentration and nature of the acid medium and oxidant and by introducing organic solvent. Molecular and supramolecular structure, size, and size distribution of the PAN nanosticks were characterized by UV/Vis and IR spectroscopy, X-ray diffraction, laser particle-size analysis, and transmission electron microscopy. Introduction of organic solvent is advantageous for enhancing the yield of PAN nanosticks but disadvantageous for formation of PAN nanosticks with small size and high conductivity. The concentration and nature of the acid medium have a major influence on the polymerization yield and conductivity of the nanosized PAN. The average diameter and length of PAN nanosticks produced with 2 M HNO(3) and 0.5 M H(2)SO(4) as acid media are about 40 and 300 nm, respectively. The PAN nanosticks obtained in an optimal medium (i.e., 2 M HNO(3)) exhibit the highest conductivity of 2.23 S cm(-1) and the highest yield of 80.7 %. A mechanism of formation of nanosticks instead of nanoparticles is proposed. Nanocomposite films of the PAN nanosticks with poly(vinyl alcohol) show a low percolation threshold of 0.2 wt %, at which the film retains almost the same transparency and strength as pure poly(vinyl alcohol) but 262 000 times the conductivity of pure poly(vinyl alcohol) film. The present synthesis of PAN nanosticks requires no external stabilizer and provides a facile and direct route for fabrication of PAN nanosticks with high yield, controllable size, intrinsic self-stability, strong redispersibility, high purity, and optimizable conductivity.

  15. Facile synthesis of reduced graphene oxide-gold nanohybrid for potential use in industrial waste-water treatment

    NASA Astrophysics Data System (ADS)

    Kar, Prasenjit; Sardar, Samim; Liu, Bo; Sreemany, Monjoy; Lemmens, Peter; Ghosh, Srabanti; Pal, Samir Kumar

    2016-01-01

    Here, we report a facile approach, by the photochemical reduction technique, for in situ synthesis of Au-reduced graphene oxide (Au-RGO) nanohybrids, which demonstrate excellent adsorption capacities and recyclability for a broad range of dyes. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) data confirm the successful synthesis of Au-RGO nanohybrids. The effect of several experimental parameters (temperature and pH) variation can effectively control the dye adsorption capability. Furthermore, kinetic adsorption data reveal that the adsorption process follows a pseudo second-order model. The negative value of Gibbs free energy (ΔG0) confirms spontaneity while the positive enthalpy (ΔH0) indicates the endothermic nature of the adsorption process. Picosecond resolved fluorescence technique unravels the excited state dynamical processes of dye molecules adsorbed on the Au-RGO surface. Time resolved fluorescence quenching of Rh123 after adsorption on Au-RGO nanohybrids indicates efficient energy transfer from Rh123 to Au nanoparticles. A prototype device has been fabricated using Au-RGO nanohybrids on a syringe filter (pore size: 0.220 μm) and the experimental data indicate efficient removal of dyes from waste water with high recyclability. The application of this nanohybrid may lead to the development of an efficient reusable adsorbent in portable water purification.

  16. Synthesis of ZnO Photocatalysts Using Various Surfactants

    NASA Astrophysics Data System (ADS)

    Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin

    2017-12-01

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.

  17. Facile synthesis of ultrafine cobalt oxide nanoparticles for high-performance supercapacitors.

    PubMed

    Liu, Fangyan; Su, Hai; Jin, Long; Zhang, Haitao; Chu, Xiang; Yang, Weiqing

    2017-11-01

    The ultrafine Co 3 O 4 nanoparticles are successfully prepared by a novel solvothermal-precipitation approach which exploits the supernatant liquid of Co 3 O 4 nanoflake micropheres synthesized by solvothermal method before. Interestingly, the water is only employed to obtain the ultrafine nanoparticles in supernatant liquid which was usually thrown away before. The microstructure measurement results of the as-grown samples present the homogeneous disperse ultrafine Co 3 O 4 nanoparticles with the size of around 5-10nm. The corresponding synthesis mechanism of the ultrafine Co 3 O 4 nanoparticles is proposed. More importantly, these ultrafine Co 3 O 4 nanoparticles obtained at 250°C show the highest specific capacitance of 523.0Fg -1 at 0.5Ag -1 , 2.6 times that of Co 3 O 4 nanoflake micropheres due to the quantum size effect. Meanwhile, the sample annealed under 350°C possesses the best cycling stability with capacitance retention of 104.9% after 1500 cycles. These results unambiguously demonstrate that this work not only provides a novel, facile, and eco-friendly approach to prepare high-performance Co 3 O 4 nanoparticles electrode materials for supercapacitors but also develops a widely used method for the preparation of other materials on a large scale. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Discriminating the effects of collapse models from environmental diffusion with levitated nanospheres

    NASA Astrophysics Data System (ADS)

    Li, Jie; Zippilli, Stefano; Zhang, Jing; Vitali, David

    2016-05-01

    Collapse models postulate the existence of intrinsic noise which modifies quantum mechanics and is responsible for the emergence of macroscopic classicality. Assessing the validity of these models is extremely challenging because it is nontrivial to discriminate unambiguously their presence in experiments where other hardly controllable sources of noise compete to the overall decoherence. Here we provide a simple procedure that is able to probe the hypothetical presence of the collapse noise with a levitated nanosphere in a Fabry-Pérot cavity. We show that the stationary state of the system is particularly sensitive, under specific experimental conditions, to the interplay between the trapping frequency, the cavity size, and the momentum diffusion induced by the collapse models, allowing one to detect them even in the presence of standard environmental noises.

  19. Quantum cooling and squeezing of a levitating nanosphere via time-continuous measurements

    NASA Astrophysics Data System (ADS)

    Genoni, Marco G.; Zhang, Jinglei; Millen, James; Barker, Peter F.; Serafini, Alessio

    2015-07-01

    With the purpose of controlling the steady state of a dielectric nanosphere levitated within an optical cavity, we study its conditional dynamics under simultaneous sideband cooling and additional time-continuous measurement of either the output cavity mode or the nanosphere’s position. We find that the average phonon number, purity and quantum squeezing of the steady-states can all be made more non-classical through the addition of time-continuous measurement. We predict that the continuous monitoring of the system, together with Markovian feedback, allows one to stabilize the dynamics for any value of the laser frequency driving the cavity. By considering state of the art values of the experimental parameters, we prove that one can in principle obtain a non-classical (squeezed) steady-state with an average phonon number {n}{ph}≈ 0.5.

  20. Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Cho, Hyung-Joon; Hwang, Poong-Gok; Jung, Dongwoon

    2011-12-01

    TiO2 hollow nanospheres were prepared using silicon oxide as a template. N-doped titanium oxide hollow spheres, TiO2-xNx were synthesized by reacting TiO2 hollow spheres with thiourea at 500 °C. XRD and XPS data showed that oxygen was successfully substituted by nitrogen through the nitrogen-doping reaction, and finally N-doped TiO2 hollow spheres were formed. The N-doped TiO2 hollow spheres showed new absorption shoulder in visible light region so that they were expected to exhibit photocatalytic activity in the visible light. The photocatalytic activity of N-doped TiO2 hollow spheres under visible light was similar to that of normal spherical TiO2-xNx in spite of the structural difference.

  1. A facile molten-salt route to graphene synthesis.

    PubMed

    Liu, Xiaofeng; Giordano, Cristina; Antonietti, Markus

    2014-01-15

    Efficient synthetic routes are continuously pursued for graphene in order to implement its applications in different areas. However, direct conversion of simple monomers to graphene through polymerization in a scalable manner remains a major challenge for chemists. Herein, a molten-salt (MS) route for the synthesis of carbon nanostructures and graphene by controlled carbonization of glucose in molten metal chloride is reported. In this process, carbohydrate undergoes polymerization in the presence of strongly interacting ionic species, which leads to nanoporous carbon with amorphous nature and adjustable pore size. At a low precursor concentration, the process converts the sugar molecules (glucose) to rather pure few-layer graphenes. The MS-derived graphenes are strongly hydrophobic and exhibit remarkable selectivity and capacity for absorption of organics. The methodology described may open up a new avenue towards the synthesis and manipulation of carbon materials in liquid media. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. DOE Coal Gasification Multi-Test Facility: fossil fuel processing technical/professional services

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hefferan, J.K.; Lee, G.Y.; Boesch, L.P.

    1979-07-13

    A conceptual design, including process descriptions, heat and material balances, process flow diagrams, utility requirements, schedule, capital and operating cost estimate, and alternative design considerations, is presented for the DOE Coal Gasification Multi-Test Facility (GMTF). The GMTF, an engineering scale facility, is to provide a complete plant into which different types of gasifiers and conversion/synthesis equipment can be readily integrated for testing in an operational environment at relatively low cost. The design allows for operation of several gasifiers simultaneously at a total coal throughput of 2500 tons/day; individual gasifiers operate at up to 1200 tons/day and 600 psig using airmore » or oxygen. Ten different test gasifiers can be in place at the facility, but only three can be operated at one time. The GMTF can produce a spectrum of saleable products, including low Btu, synthesis and pipeline gases, hydrogen (for fuel cells or hydrogasification), methanol, gasoline, diesel and fuel oils, organic chemicals, and electrical power (potentially). In 1979 dollars, the base facility requires a $288 million capital investment for common-use units, $193 million for four gasification units and four synthesis units, and $305 million for six years of operation. Critical reviews of detailed vendor designs are appended for a methanol synthesis unit, three entrained flow gasifiers, a fluidized bed gasifier, and a hydrogasifier/slag-bath gasifier.« less

  3. Sulfur-doped porous reduced graphene oxide hollow nanosphere frameworks as metal-free electrocatalysts for oxygen reduction reaction and as supercapacitor electrode materials.

    PubMed

    Chen, Xi'an; Chen, Xiaohua; Xu, Xin; Yang, Zhi; Liu, Zheng; Zhang, Lijie; Xu, Xiangju; Chen, Ying; Huang, Shaoming

    2014-11-21

    Chemical doping with foreign atoms is an effective approach to significantly enhance the electrochemical performance of the carbon materials. Herein, sulfur-doped three-dimensional (3D) porous reduced graphene oxide (RGO) hollow nanosphere frameworks (S-PGHS) are fabricated by directly annealing graphene oxide (GO)-encapsulated amino-modified SiO2 nanoparticles with dibenzyl disulfide (DBDS), followed by hydrofluoric acid etching. The XPS and Raman spectra confirmed that sulfur atoms were successfully introduced into the PGHS framework via covalent bonds. The as-prepared S-PGHS has been demonstrated to be an efficient metal-free electrocatalyst for oxygen reduction reaction (ORR) with the activity comparable to that of commercial Pt/C (40%) and much better methanol tolerance and durability, and to be a supercapacitor electrode material with a high specific capacitance of 343 F g(-1), good rate capability and excellent cycling stability in aqueous electrolytes. The impressive performance for ORR and supercapacitors is believed to be due to the synergistic effect caused by sulfur-doping enhancing the electrochemical activity and 3D porous hollow nanosphere framework structures facilitating ion diffusion and electronic transfer.

  4. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance.

    PubMed

    Ding, Hao; Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping

    2018-01-01

    A 'sandwich'-structured TiO 2 NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO 2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy 'antennas' to trap the local-field light near the TiO 2 NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO 2 NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO 2 NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices.

  5. Preparation of Fe2O3-Clorprenaline/Tetraphenylborate Nanospheres and Their Application as Ion Selective Electrode for Determination of Clorprenaline in Pork

    NASA Astrophysics Data System (ADS)

    Shao, Xintian; Zhang, Jing; Li, Donghui; Yue, Jingli; Chen, Zhenhua

    2016-04-01

    A novel modified ion selective electrode based on Fe2O3-clorprenaline/tetraphenylborate nanospheres (Fe2O3-CLPT NSs) as electroactive materials for the determination of clorprenaline hydrochloride (CLP) is described. The α-Fe2O3 nanoparticles (NPs) were prepared by hydrothermal synthesis, then self-assembled on CLP/tetraphenylborate (TPB) to form Fe2O3-CLPT NSs, which were used as a potentiometric electrode for analyte determination innovatively. The Fe2O3-CLPT NSs modified electrode exhibited a wider concentration range from 1.0 × 10-7 to 1.0 × 10-1 mol/L and a lower detection limit of 3.7 × 10-8 mol/L compared with unmodified electrodes. The selectivity of the modified electrode was evaluated by fixed interference method. The good performance of the modified electrode such as wide pH range (2.4-6.7), fast response time (15 s), and adequate lifetime (14 weeks) indicate the utility of the modified electrode for evaluation of CLP content in various real samples. Finally, the modified electrode was successfully employed to detect CLP in pork samples with satisfactory results. These results demonstrated the Fe2O3-CLPT NSs modified electrode to be a functional and convenient method to the field of potentiometry determination of CLP in real samples.

  6. Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets.

    PubMed

    Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe

    2011-03-22

    Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.

  7. Facile and High-Throughput Synthesis of Functional Microparticles with Quick Response Codes.

    PubMed

    Ramirez, Lisa Marie S; He, Muhan; Mailloux, Shay; George, Justin; Wang, Jun

    2016-06-01

    Encoded microparticles are high demand in multiplexed assays and labeling. However, the current methods for the synthesis and coding of microparticles either lack robustness and reliability, or possess limited coding capacity. Here, a massive coding of dissociated elements (MiCODE) technology based on innovation of a chemically reactive off-stoichimetry thiol-allyl photocurable polymer and standard lithography to produce a large number of quick response (QR) code microparticles is introduced. The coding process is performed by photobleaching the QR code patterns on microparticles when fluorophores are incorporated into the prepolymer formulation. The fabricated encoded microparticles can be released from a substrate without changing their features. Excess thiol functionality on the microparticle surface allows for grafting of amine groups and further DNA probes. A multiplexed assay is demonstrated using the DNA-grafted QR code microparticles. The MiCODE technology is further characterized by showing the incorporation of BODIPY-maleimide (BDP-M) and Nile Red fluorophores for coding and the use of microcontact printing for immobilizing DNA probes on microparticle surfaces. This versatile technology leverages mature lithography facilities for fabrication and thus is amenable to scale-up in the future, with potential applications in bioassays and in labeling consumer products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission

    NASA Astrophysics Data System (ADS)

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications.Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO2 and In2O3 are used as examples. We also show that linear chains of short ZnO nanorods embedded in

  9. A facile method for high yield synthesis of carbon nano onions for designing binder-free flexible supercapacitor

    NASA Astrophysics Data System (ADS)

    Mohapatra, Debananda; Badrayyana, Subramanya; Parida, Smrutiranjan

    2017-05-01

    Carbon nano onion (CNO) is a promising material for diverse application areas such as energy devices, catalysis, lubrication, biology and gas storage, etc. However, its implementation is fraught with the production of high-quality powders in bulk quantity. Herein, we report a facile scalable and one-step "wick-and-oil" flame synthesis of pure and water dispersible CNO nanopowder. Other forms of carbon did not contaminate the as-prepared CNO; hence, a post processing purification procedure was not necessary. Brunauer Emmett Teller (BET) specific surface area of as-prepared CNO was 218 m2/g, which is higher as compared to other reported flame synthesis methods. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by "dipping and drying" process providing outstanding strechability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102.16 F/g, energy density 14.18 Wh/kg and power density 2448 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge -discharge cycles. Simple preparation of high-purity CNOs and excellent electrochemical behavior of functionalized CNOs make them a promising electrode material for supercapacitor applications. Furthermore, this unique method not only affords binder free - freestanding electrode, but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium ion batteries.

  10. Core-shell Si/C nanospheres embedded in bubble sheet-like carbon film with enhanced performance as lithium ion battery anodes.

    PubMed

    Li, Wenyue; Tang, Yongbing; Kang, Wenpei; Zhang, Zhenyu; Yang, Xia; Zhu, Yu; Zhang, Wenjun; Lee, Chun-Sing

    2015-03-18

    Due to its high theoretical capacity and low lithium insertion voltage plateau, silicon has been considered one of the most promising anodes for high energy and high power density lithium ion batteries (LIBs). However, its rapid capacity degradation, mainly caused by huge volume changes during lithium insertion/extraction processes, remains a significant challenge to its practical application. Engineering Si anodes with abundant free spaces and stabilizing them by incorporating carbon materials has been found to be effective to address the above problems. Using sodium chloride (NaCl) as a template, bubble sheet-like carbon film supported core-shell Si/C composites are prepared for the first time by a facile magnesium thermal reduction/glucose carbonization process. The capacity retention achieves up to 93.6% (about 1018 mAh g(-1)) after 200 cycles at 1 A g(-1). The good performance is attributed to synergistic effects of the conductive carbon film and the hollow structure of the core-shell nanospheres, which provide an ideal conductive matrix and buffer spaces for respectively electron transfer and Si expansion during lithiation process. This unique structure decreases the charge transfer resistance and suppresses the cracking/pulverization of Si, leading to the enhanced cycling performance of bubble sheet-like composite. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Size-dependent magnetic properties of cubic-phase MnSe nanospheres emitting blue-violet fluorescence

    NASA Astrophysics Data System (ADS)

    Das, Kishan; AhmedMir, Irshad; Ranjan, Rahul; Bohidar, H. B.

    2018-05-01

    We report a facile controlled synthesis of non-iron based cubic phase MnSe magnetic nanocrystals with well-defined spherical shape of different size (7–16 nm, TEM data) by hot injection method without need for special conditions. It was found that the size and its polydispersity could be easily controlled by controlling the reaction temperature. The highly crystalline (confirmed by XRD) synthesized nanoparticles showed blue-violet fluorescence emission and were antiferromagnet in nature. The observed size dependent weak ferromagnetism, resulting hysteresis loop in antiferromagnet was attributed to the surface spins. Strengthening of antiferromagnetism with increasing size could be the reason for shifting of the freezing temperature towards higher side.

  12. Cellular Internalization of Therapeutic Oligonucleotides by Peptide Amphiphile Nanofibers and Nanospheres.

    PubMed

    Mumcuoglu, Didem; Sardan Ekiz, Melis; Gunay, Gokhan; Tekinay, Turgay; Tekinay, Ayse B; Guler, Mustafa O

    2016-05-11

    Oligonucleotides are promising drug candidates due to the exceptionally high specificity they exhibit toward their target DNA and RNA sequences. However, their poor pharmacokinetic and pharmacodynamic properties, in conjunction with problems associated with their internalization by cells, necessitates their delivery through specialized carrier systems for efficient therapy. Here, we investigate the effects of carrier morphology on the cellular internalization mechanisms of oligonucleotides by using self-assembled fibrous or spherical peptide nanostructures. Size and geometry were both found to be important parameters for the oligonucleotide internalization process; direct penetration was determined to be the major mechanism for the internalization of nanosphere carriers, whereas nanofibers were internalized by clathrin- and dynamin-dependent endocytosis pathways. We further showed that glucose conjugation to carrier nanosystems improved cellular internalization in cancer cells due to the enhanced glucose metabolism associated with oncogenesis, and the internalization of the glucose-conjugated peptide/oligonucleotide complexes was found to be dependent on glucose transporters present on the surface of the cell membrane.

  13. Enhanced light-harvesting by plasmonic hollow gold nanospheres for photovoltaic performance

    PubMed Central

    Lv, Jindian; Wu, Huaping; Chai, Guozhong; Liu, Aiping

    2018-01-01

    A ‘sandwich'-structured TiO2NR/HGN/CdS photoanode was successfully fabricated by the electrophoretic deposition of hollow gold nanospheres (HGNs) on the surface of TiO2 nanorods (NRs). The HGNs presented a wide surface plasmon resonance character in the visible region from 540 to 630 nm, and further acted as the scatter elements and light energy ‘antennas' to trap the local-field light near the TiO2NR/CdS layer, resulting in the increase of the light harvesting. An outstanding enhancement in the photochemical behaviour of TiO2NR/HGN/CdS photoanodes was attained by the contribution of HGNs in increasing the light absorption and the number of electron-hole pairs of photosensitive semiconductors. The optimized photochemical performance of TiO2NR/HGN/CdS photoanodes by using plasmonic HGNs demonstrated their potential application in energy conversion devices. PMID:29410838

  14. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution

    PubMed Central

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M. C.; Lei, Qin; Hua, Ruinian; Liu, Yi

    2018-01-01

    Few-layer black phosphorus (BP) nanosheets were first reported as a 2D material for the application of field-effect transistors in 2014 and have stimulated intense activity among physicists, chemists, and material and biomedical scientists, driving research into novel synthetic techniques to produce BP nanosheets. At present, exfoliation is the main route toward few-layer BP nanosheets via employing bulk BP as raw material. However, this is a complicated and time-consuming process, which is difficult for the large-scale synthesis of BP nanosheets. Moreover, BP degrades rapidly when exfoliated to nanoscale dimensions, resulting in the rapid loss of semiconducting properties. Here, we report the direct wet-chemical synthesis of few-layer BP nanosheets in gram-scale quantities in a bottom-up approach based on common laboratory reagents at low temperature, showing excellent stability due to partial oxidation of surface. Solvent and temperature are two critical factors, controlling not only the formation of BP nanosheets but also the thickness. The as-prepared BP nanosheets can extract hydrogen from pure water (pH = 6.8), exhibiting more than 24-fold higher activity than the well-known C3N4 nanosheets. Our results reporting the ability to prepare few-layer BP nanosheets with a facile, scalable, low-cost approach take us a step closer to real-world applications of phosphorene including next-generation metal-free photocatalysts for photosynthesis. PMID:29563225

  15. Facile Synthesis of BiOI Nanoparticles at Room Temperature and Evaluation of their Photoactivity Under Sunlight Irradiation.

    PubMed

    Mahmoodi, Vahid; Ahmadpour, Ali; Rohani Bastami, Tahereh; Hamed Mousavian, Mohammad Taghi

    2018-01-01

    In this study, highly photoactive BiOI nanoparticles (NPs) under sunlight irradiation were synthesized by a facile precipitation method using polyvinylpyrrolidone (PVP) at room temperature. The as-prepared catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transition electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) and UV-vis diffuse reflectance spectra (UV-vis DRS). The results of XRD showed that PVP did not have any significant effect on tetragonal crystalline structure of BiOI. Also, using different amounts of PVP in the synthesis led to different morphologies and sizes of BiOI particles. It was found that using 0.2 g of PVP in the synthesis method changed morphology from 1-μm platelets to NPs with size under 10 nm. In addition, the photocatalytic performance of prepared photocatalysts was evaluated in the photodegradation of reactive blue 19 (RB19) dye under sunlight irradiation. The BiOI synthesized using 0.2 g PVP (BiOI0.2) showed higher degradation efficiency compared to BiOI prepared without any additive. Excellent visible light photocatalytic properties of nano-scaled BiOI0.2 samples compared to BiOI platelets could be attributed to higher surface-to-volume ratio and narrow band-gap energy of as-prepared BiOI0.2 NPs. © 2017 The American Society of Photobiology.

  16. Synthesis and Magnetic Properties of Nearly Monodisperse CoFe2O4Nanoparticles Through a Simple Hydrothermal Condition

    PubMed Central

    2010-01-01

    Nearly monodisperse cobalt ferrite (CoFe2O4) nanoparticles without any size-selection process have been prepared through an alluring method in an oleylamine/ethanol/water system. Well-defined nanospheres with an average size of 5.5 nm have been synthesized using metal chloride as the law materials and oleic amine as the capping agent, through a general liquid–solid-solution (LSS) process. Magnetic measurement indicates that the particles exhibit a very high coercivity at 10 K and perform superparamagnetism at room temperature which is further illuminated by ZFC/FC curves. These superparamagnetic cobalt ferrite nanomaterials are considered to have potential application in the fields of biomedicine. The synthesis method is possible to be a general approach for the preparation of other pure binary and ternary compounds. PMID:20672131

  17. Facile synthesis of fluorescence carbon dots from sweet potato for Fe3+ sensing and cell imaging.

    PubMed

    Shen, Jie; Shang, Shaoming; Chen, Xiuying; Wang, Dan; Cai, Yan

    2017-07-01

    In this study, a facile synthesis of fluorescence carbon dots (CDs) from sweet potato was performed through hydrothermal treatment. The obtained CDs with quantum yield of 8.64% have good dispersibility due to the soluble functional groups on their surfaces. The characterization of CDs was carried out and their possible formation mechanism was also discussed. In addition, the cytotoxicity results showed that the CDs exhibit non toxicity within 100μg/mL. At this concentration, the CDs were applied in cell imaging, indicating that they are promising fluorescent probes for biological imaging. In addition, the fluorescence of CDs was quenched by Fe 3+ with a linear concentration of 1 to 100μM, associated with the limit of detection of 0.32μM. Subsequently, the CDs were successfully applied for Fe 3+ probing in living cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-08-01

    We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.

  19. Fast and Facile Synthesis of 4-Nitrophenyl 2-Azidoethylcarbamate Derivatives from N-Fmoc-Protected α-Amino Acids as Activated Building Blocks for Urea Moiety-Containing Compound Library.

    PubMed

    Chen, Ying-Ying; Chang, Li-Te; Chen, Hung-Wei; Yang, Chia-Ying; Hsin, Ling-Wei

    2017-03-13

    A fast and facile synthesis of a series of 4-nitrophenyl 2-azidoethylcarbamate derivatives as activated urea building blocks was developed. The N-Fmoc-protected 2-aminoethyl mesylates derived from various commercially available N-Fmoc-protected α-amino acids, including those having functionalized side chains with acid-labile protective groups, were directly transformed into 4-nitrophenyl 2-azidoethylcarbamate derivatives in 1 h via a one-pot two-step reaction. These urea building blocks were utilized for the preparation of a series of urea moiety-containing mitoxantrone-amino acid conjugates in 75-92% yields and parallel solution-phase synthesis of a urea compound library consisted of 30 members in 38-70% total yields.

  20. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  1. Nanoscale semiconductor-insulator-metal core/shell heterostructures: facile synthesis and light emission.

    PubMed

    Li, Gong Ping; Chen, Rui; Guo, Dong Lai; Wong, Lai Mun; Wang, Shi Jie; Sun, Han Dong; Wu, Tom

    2011-08-01

    Controllably constructing hierarchical nanostructures with distinct components and designed architectures is an important theme of research in nanoscience, entailing novel but reliable approaches of bottom-up synthesis. Here, we report a facile method to reproducibly create semiconductor-insulator-metal core/shell nanostructures, which involves first coating uniform MgO shells onto metal oxide nanostructures in solution and then decorating them with Au nanoparticles. The semiconductor nanowire core can be almost any material and, herein, ZnO, SnO(2) and In(2)O(3) are used as examples. We also show that linear chains of short ZnO nanorods embedded in MgO nanotubes and porous MgO nanotubes can be obtained by taking advantage of the reduced thermal stability of the ZnO core. Furthermore, after MgO shell-coating and the appropriate annealing treatment, the intensity of the ZnO near-band-edge UV emission becomes much stronger, showing a 25-fold enhancement. The intensity ratio of the UV/visible emission can be increased further by decorating the surface of the ZnO/MgO nanowires with high-density plasmonic Au nanoparticles. These heterostructured semiconductor-insulator-metal nanowires with tailored morphologies and enhanced functionalities have great potential for use as nanoscale building blocks in photonic and electronic applications. This journal is © The Royal Society of Chemistry 2011

  2. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.

    PubMed

    Süßmann, F; Seiffert, L; Zherebtsov, S; Mondes, V; Stierle, J; Arbeiter, M; Plenge, J; Rupp, P; Peltz, C; Kessel, A; Trushin, S A; Ahn, B; Kim, D; Graf, C; Rühl, E; Kling, M F; Fennel, T

    2015-08-12

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.

  3. A facile synthesis of lanost-8-en-3 beta-ol-24-one (24-ketolanosterol). An inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase.

    PubMed

    Parish, E J; Honda, H; Chitrakorn, S; Taylor, F R

    1988-10-01

    A facile chemical synthesis of lanost-8-en-3 beta-ol-24-one (24-ketolanosterol) is described. This compound was found to be a potent inhibitor of 3-hydroxy-3-methylglutaryl (HMG) CoA reductase activity in cultured mouse L cells. The synthetic scheme developed in this study utilizes commercial lanosterol as a starting material and involves selective hydroboration of the C-24 double bond followed by oxidation of the carbon-boron bond at C-24 by pyridinium chlorochromate (PCC).

  4. Photo-Fenton Degradation of Organic Dyes Based on a Fe₃O₄ Nanospheres/Biomass Composite Loaded Column.

    PubMed

    Zheng, Kai; Zhang, Jubo; Wang, Yan; Gao, Longxue; Di, Mingyu; Yuan, Fang; Bao, Wenhui; Yang, Tao; Liang, Daxin

    2018-06-01

    In order to deal with pollution of organic dyes, magnetic Fe3O4 nanospheres (NPs) with an average diameter of 202 ± 0.5 nm were synthesized by a solvothermal method at 200 °C, and they can efficiently degrade organic dyes (methylene blue (MB), rhodamine B (RhB) and xylenol orange (XO)) aqueous solutions (20 mg/L) within 1 min. Based on this Fenton reagent, Fe3O4 NPs/biomass composite degradation column was made using sawdust as substrate, and it can efficiently degrade organic dyes continually. More importantly, the composite can be regenerated just by an ultrasonic treatment, and its degradation performance almost remains the same.

  5. Facile synthesis and characterization of erythrocyte-like Y-doped PbWO{sub 4} mesocrystals and their photocatalytic activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiong, Ying; Wang, Bing; Hu, Wenyuan

    2015-07-15

    Novel erythrocyte-like Y-doped PbWO{sub 4} mesocrystals with average diameter and thickness of 1.5 and 0.7 μm are fabricated via a facile co-precipitation route at room temperature in the ethylene glycol (EG)-water mixed solvent. Time-dependent samples centrifuged at different times are carefully characterized by powder X-ray diffraction (pXRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM) and Raman spectrum. The possible formation mechanism for the novel erythrocyte-like mesocrystals is proposed on the basis of these observations. The photocatalytic activity of the Y-doped PbWO{sub 4} mesocrystals is further investigated in terms of the degradation of the acid orange II undermore » UV irradiation. This simple and environment-friendly strategy presented here offers promising route for the synthesis of other inorganic materials with unique morphologies and interesting properties. - Graphical abstract: Display Omitted - Highlights: • Novel erythrocyte-like Y-doped PbWO{sub 4} mesocrystals are firstly synthesized via a facile co-precipitation route. • The mesocrystals are assembled by small nanoparticles a common crystallographic fashion. • The erythrocyte-like mesocrystals exhibit well photocatalytic activity. • A recrystallization-growth-oriented attachment formation mechanism is proposed.« less

  6. Fabrication of ZnO photonic crystals by nanosphere lithography using inductively coupled-plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the ZnO/GaN heterojunction light emitting diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shr-Jia; Chang, Chun-Ming; Kao, Jiann-Shiun

    2010-07-15

    This article reports fabrication of n-ZnO photonic crystal/p-GaN light emitting diode (LED) by nanosphere lithography to further booster the light efficiency. In this article, the fabrication of ZnO photonic crystals is carried out by nanosphere lithography using inductively coupled plasma reactive ion etching with CH{sub 4}/H{sub 2}/Ar plasma on the n-ZnO/p-GaN heterojunction LEDs. The CH{sub 4}/H{sub 2}/Ar mixed gas gives high etching rate of n-ZnO film, which yields a better surface morphology and results less plasma-induced damages of the n-ZnO film. Optimal ZnO lattice parameters of 200 nm and air fill factor from 0.35 to 0.65 were obtained from fittingmore » the spectrum of n-ZnO/p-GaN LED using a MATLAB code. In this article, we will show our recent result that a ZnO photonic crystal cylinder has been fabricated using polystyrene nanosphere mask with lattice parameter of 200 nm and radius of hole around 70 nm. Surface morphology of ZnO photonic crystal was examined by scanning electron microscope.« less

  7. Preparation of Palladium(II) Ion-Imprinted Polymeric Nanospheres and Its Removal of Palladium(II) from Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Tao, Hu-Chun; Gu, Yi-Han; Liu, Wei; Huang, Shuai-Bin; Cheng, Ling; Zhang, Li-Juan; Zhu, Li-Li; Wang, Yong

    2017-11-01

    Three kinds of functional monomers, 4-vinylpridine(4-VP), 2-(allylthio)nicotinic acid(ANA), and 2-Acetamidoacrylic acid(AAA), were used to synthetize palladium(II) ion-imprinted polymeric nanospheres (Pd(II) IIPs) via precipitation-polymerization method in order to study the effects of different functional monomers on the adsorption properties of ion-imprinted materials. The results of UV spectra in order to study the interaction between template ion PdCl4 2- and functional monomers showed that there were great differences in structure after the template reacted with three functional monomers, 4-VP and ANA caused a large structural change, while AAA basically did not change. Further results on the adsorption performance of Pd(II) IIPs on Pd(II) confirmed 4-VP was the most promising candidate for the synthesis of Pd(II) IIPs with an adsorption capacity of 5.042 mg/g as compared with ANA and AAA. The influence of operating parameters on Pd(II) IIP's performance on Pd(II) adsorption was investigated. There was an increase in the adsorption capacity of Pd(II) IIPs at higher pH, temperature, and initial concentration of Pd(II). The results of multi-metal competitive adsorption experiments showed that Pd(II) IIPs had selectivity for Pd(II). An adsorption equilibrium could be reached at 180 min. Kinetic analysis showed that the adsorption test data fitted best to the pseudo-second order kinetic model, and the theoretical equilibrium adsorption capacity was about 5.085 mg/g. The adsorption isotherms of Pd(II) by Pd(II) IIPs agreed well with the Freundlich equation, suggesting a favorable adsorption reaction under optimal conditions. These results showed that Pd(II) IIPs have potential application in the removal of Pd(II) from aqueous solutions and may provide some information for the selection of functional monomers in the preparation of Pd(II) IIPs.

  8. Facile dimethyl amino group triggered cyclic sulfonamides synthesis and evaluation as alkaline phosphatase inhibitors.

    PubMed

    Bhatti, Huma Aslam; Khatoon, Memoona; Al-Rashida, Mariya; Bano, Huma; Iqbal, Nafees; Zaib-Un-Nisa; Yousuf, Sammer; Khan, Khalid Mohammed; Hameed, Abdul; Iqbal, Jamshed

    2017-04-01

    Owing to the biological importance of cyclic sulfonamides (sultams), herein we report a new, facile and cost-effective method for the synthesis of sultams that makes use of a reaction between dansyl amide and easily accessible benzaldehydes under mildly acidic conditions. All compounds were obtained in good yields (69-96%). Consequently a series of cyclic sulfonamides (7a-7n) was synthesized and characterized using FTIR, MS and NMR spectroscopy, crystal structure of compound 7b has also been determined. All compounds were evaluated for their potential to inhibit alkaline phosphatase (bTNAP and bIAP). All compounds were found to be excellent inhibitors of bTNAP with IC 50 values in lower micro-molar range (0.11-6.63μM). Most of the compounds were selective inhibitors of bTNAP over bIAP. Only six compounds were found to be active against bIAP (IC 50 values in the range 0.38-3.48μM). Molecular docking studies were carried out to identify and rationalize the structural elements necessary for efficient AP inhibition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Nano-patterned SU-8 surface using nanosphere-lithography for enhanced neuronal cell growth

    NASA Astrophysics Data System (ADS)

    Kim, Eunhee; Yoo, Seung-Jun; Kim, Eunjung; Kwon, Tae-Hwan; Zhang, Li; Moon, Cheil; Choi, Hongsoo

    2016-04-01

    Mimicking the nanoscale surface texture of the extracellular matrix can affect the regulation of cellular behavior, including adhesion, differentiation, and neurite outgrowth. In this study, SU-8-based polymer surfaces with well-ordered nanowell arrays were fabricated using nanosphere lithography with polystyrene nanoparticles. We show that the SU-8 surface with nanowells resulted in similar neuronal development of rat pheochromocytoma (PC12) cells compared with an unpatterned poly-L-lysine (PLL)-coated SU-8 surface. Additionally, even after soaking the substrate in cell culture medium for two weeks, cells on the nanowell SU-8 surface showed long-term neurite outgrowth compared to cells on the PLL-coated SU-8 surface. The topographical surface modification of the nanowell array demonstrates potential as a replacement for cell adhesive material coatings such as PLL, for applications requiring long-term use of polymer-based implantable devices.

  10. Facile bottom-up synthesis of partially oxidized black phosphorus nanosheets as metal-free photocatalyst for hydrogen evolution.

    PubMed

    Tian, Bin; Tian, Bining; Smith, Bethany; Scott, M C; Lei, Qin; Hua, Ruinian; Tian, Yue; Liu, Yi

    2018-04-24

    Few-layer black phosphorus (BP) nanosheets were first reported as a 2D material for the application of field-effect transistors in 2014 and have stimulated intense activity among physicists, chemists, and material and biomedical scientists, driving research into novel synthetic techniques to produce BP nanosheets. At present, exfoliation is the main route toward few-layer BP nanosheets via employing bulk BP as raw material. However, this is a complicated and time-consuming process, which is difficult for the large-scale synthesis of BP nanosheets. Moreover, BP degrades rapidly when exfoliated to nanoscale dimensions, resulting in the rapid loss of semiconducting properties. Here, we report the direct wet-chemical synthesis of few-layer BP nanosheets in gram-scale quantities in a bottom-up approach based on common laboratory reagents at low temperature, showing excellent stability due to partial oxidation of surface. Solvent and temperature are two critical factors, controlling not only the formation of BP nanosheets but also the thickness. The as-prepared BP nanosheets can extract hydrogen from pure water (pH = 6.8), exhibiting more than 24-fold higher activity than the well-known C 3 N 4 nanosheets. Our results reporting the ability to prepare few-layer BP nanosheets with a facile, scalable, low-cost approach take us a step closer to real-world applications of phosphorene including next-generation metal-free photocatalysts for photosynthesis. Copyright © 2018 the Author(s). Published by PNAS.

  11. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  12. Enhancing Mo:BiVO 4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon-Induced Energy Transfer [Rational Nanopositioning for BiVO 4 Solar Water Splitting by Plasmon-induced Energy Transfer

    DOE PAGES

    Kim, Jung Kyu; Shi, Xinjian; Jeong, Myung Jin; ...

    2017-10-04

    Here, plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon–induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum–doped bismuth vanadium oxide (Mo:BiVO 4), regarded as one of the bestmore » metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO 4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO 4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time–correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO 4 at 1.23 V versus RHE by ≈2.2–fold (2.83 mA cm –2).« less

  13. Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Azzam, Ahmed M.; Shenashen, Mohamed A.; Selim, Mahmoud M.; Yamaguchi, Hitoshi; El-Sewify, Islam M.; Kawada, Satoshi; Alhamid, Abdulaziz A.; El-Safty, Sherif A.

    2017-10-01

    Mesoporous nanospherical necklaces (NSN) of inorganic α-Fe core-organic shell and ethylenediaminetetraacetic acid (EDTA) were fabricated. The necklaces were 1 μm in length and 50 nm in thickness, with massive nanospherical particles connecting and overlapping in a neat micro-/nano-necklace archery cage for capturing/trapping of As(V) and Cr(VI) species from water sources. The α-Fe core and the dressing shell of EDTA provided numerous active sites for adsorption, which led to 100% adsorption uptake of these toxic ions. The adsorption isotherms revealed that NSN adsorbent with mesoporous caves and organic-decorated surfaces was promising and effective for the spontaneous and endothermic removal of both ions from contaminated water. The NSN structure exhibited long-term stability. The adsorption efficiency and uptake of the deleterious arsenic and chromium species were achieved after multi-particulate processing of reuse cycles. The pH-dependent removal of As(V) and Cr(VI) species is an emerging topic in selective adsorption assays among competitive ions. Furthermore, the ion-selective conditions at pH 5 for As(V) and pH 7 for Cr(VI) significantly affected the adsorption capacity and affinity of 306.7 and 406.5 mg g-1 into NSN cages, respectively. The obtained results could be used as a basis to provide effective and low-cost products for the purification of wastewater resources from toxic metals.

  14. Fe-N co-doped SiO2@TiO2 yolk-shell hollow nanospheres with enhanced visible light photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Wan, Hengcheng; Yao, Weitang; Zhu, Wenkun; Tang, Yi; Ge, Huilin; Shi, Xiaozhong; Duan, Tao

    2018-06-01

    SiO2@TiO2 yolk@shell hollow nanospheres (STNSs) is considered as an outstanding photocatalyst due to its tunable structure and composition. Based on this point, we present an unprecedentedly excellent photocatalytic property of STNSs toward tannic acid via a Fe-N co-doped strategy. Their morphologies, compositions, structure and properties are characterized. The Fe-N co-doped STNSs formed good hollow yolk@shell structure. The results show that the energy gap of the composites can be downgraded to 2.82 eV (pure TiO2 = 3.2 eV). Photocatalytic degradation of tannic acid (TA, 30 mg L-1) under visible light (380 nm < λ < 780 nm) irradiation is used to evaluate the photocatalytic activity of the composites. Compared with pure TiO2 nanospheres, non-doped STNSs and N-doped STNSs, the Fe-N co-doped STNSs exhibits the highest activity, which can degrade 99.5% TA into CO2 and H2O in 80 min. The probable degradation mechanism of the composites is simultaneously proposed, the band gap of STNSs becomes narrow by co-doping Fe-N, so that the TiO2 shell can stimulate electrons under visible light exposure, generate the ions of radOH and radO2- with a strong oxidizing property. Therefore this approach works is much desired for radioactive organic wastewater photocatalytic degradation.

  15. Disrespectful intrapartum care during facility-based delivery in sub-Saharan Africa: A qualitative systematic review and thematic synthesis of women's perceptions and experiences.

    PubMed

    Bradley, Susan; McCourt, Christine; Rayment, Juliet; Parmar, Divya

    2016-11-01

    The psycho-social elements of labour and delivery are central to any woman's birth experience, but international efforts to reduce maternal mortality in low-income contexts have neglected these aspects and focused on technological birth. In many contexts, maternity care is seen as dehumanised and disrespectful, which can have a negative impact on utilisation of services. We undertook a systematic review and meta-synthesis of the growing literature on women's experiences of facility-based delivery in sub-Saharan Africa to examine the drivers of disrespectful intrapartum care. Using PRISMA guidelines, databases were searched from 1990 to 06 May 2015, and 25 original studies were included for thematic synthesis. Analytical themes, that were theoretically informed and cognisant of the cultural and social context in which the dynamics of disrespectful care occur, enabled a fresh interpretation of the factors driving midwives' behaviour. A conceptual framework was developed to show how macro-, meso- and micro-level drivers of disrespectful care interact. The synthesis revealed a prevailing model of maternity care that is institution-centred, rather than woman-centred. Women's experiences illuminate midwives' efforts to maintain power and control by situating birth as a medical event and to secure status by focusing on the technical elements of care, including controlling bodies and knowledge. Midwives and women are caught between medical and social models of birth. Global policies encouraging facility-based delivery are forcing women to swap the psycho-emotional care they would receive from traditional midwives for the technical care that professional midwives are currently offering. Any action to change the current performance and dynamic of birth relies on the participation of midwives, but their voices are largely missing from the discourse. Future research should explore their perceptions of the value and practice of interpersonal aspects of maternity care and the

  16. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    DOE PAGES

    SuBmann, F.; Seiffert, L.; Zherebtsov, S.; ...

    2015-08-12

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less

  17. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SuBmann, F.; Seiffert, L.; Zherebtsov, S.

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant inmore » the acceleration process. In conclusion, our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena.« less

  18. Highly ductile UV-shielding polymer composites with boron nitride nanospheres as fillers.

    PubMed

    Fu, Yuqiao; Huang, Yan; Meng, Wenjun; Wang, Zifeng; Bando, Yoshio; Golberg, Dmitri; Tang, Chengchun; Zhi, Chunyi

    2015-03-20

    Polymer composites with enhanced mechanical, thermal or optical performance usually suffer from poor ductility induced by confined mobility of polymer chains. Herein, highly ductile UV-shielding polymer composites are successfully fabricated. Boron nitride (BN) materials, with a wide band gap of around ∼6.0 eV, are used as fillers to achieve the remarkably improved UV-shielding performance of a polymer matrix. In addition, it is found that spherical morphology BN as a filler can keep the excellent ductility of the composites. For a comparison, it is demonstrated that traditional fillers, including conventional BN powders can achieve the similar UV-shielding performance but dramatically decrease the composite ductility. The mechanism behind this phenomenon is believed to be lubricant effects of BN nanospheres for sliding of polymer chains, which is in consistent with the thermal analyses. This study provides a new design to fabricate UV-shielding composite films with well-preserved ductility.

  19. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres

    PubMed Central

    Süßmann, F.; Seiffert, L.; Zherebtsov, S.; Mondes, V.; Stierle, J.; Arbeiter, M.; Plenge, J.; Rupp, P.; Peltz, C.; Kessel, A.; Trushin, S. A.; Ahn, B.; Kim, D.; Graf, C.; Rühl, E.; Kling, M. F.; Fennel, T.

    2015-01-01

    Near-fields of non-resonantly laser-excited nanostructures enable strong localization of ultrashort light fields and have opened novel routes to fundamentally modify and control electronic strong-field processes. Harnessing spatiotemporally tunable near-fields for the steering of sub-cycle electron dynamics may enable ultrafast optoelectronic devices and unprecedented control in the generation of attosecond electron and photon pulses. Here we utilize unsupported sub-wavelength dielectric nanospheres to generate near-fields with adjustable structure and study the resulting strong-field dynamics via photoelectron imaging. We demonstrate field propagation-induced tunability of the emission direction of fast recollision electrons up to a regime, where nonlinear charge interaction effects become dominant in the acceleration process. Our analysis supports that the timing of the recollision process remains controllable with attosecond resolution by the carrier-envelope phase, indicating the possibility to expand near-field-mediated control far into the realm of high-field phenomena. PMID:26264422

  20. Photocatalytic performance of titania nanospheres deposited on graphene in coumarin oxidation reaction

    NASA Astrophysics Data System (ADS)

    Wojtoniszak, M.; Zielinska, B.; Kalenczuk, R. J.; Mijowska, E.

    2012-03-01

    In this paper, we present a study on enhanced photocatalytic performance of TiO2 nanospheres deposited on graphene (n-TiO2-G) in a process of coumarin oxidation. The enhancement of the photoactivity has been observed in respect to commercial TiO2 P25. The presented material was prepared in two steps: (i) hydrolysis of titanium (IV) butoxide (TBT) in ethanol solution with simultaneous deposition on graphene oxide (GO) and (ii) calcination of TiO2-GO to form anatase-TiO2 and reduce GO to graphene. The nanomaterial was characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), thermogravimetric analysis (TGA), Fourier-Transformed Infrared spectroscopy and Raman spectroscopy. In the presented photocatalytic process the fluorescence was used to detect •OH formed on a photo-illuminated n-TiO2-G surface using coumarin which readily reacted with •OH to produce highly fluorescent 7-hydroxycoumarin.

  1. Wavelength tunable InGaN/GaN nano-ring LEDs via nano-sphere lithography

    PubMed Central

    Wang, Sheng-Wen; Hong, Kuo-Bin; Tsai, Yu-Lin; Teng, Chu-Hsiang; Tzou, An-Jye; Chu, You-Chen; Lee, Po-Tsung; Ku, Pei-Cheng; Lin, Chien-Chung; Kuo, Hao-Chung

    2017-01-01

    In this research, nano-ring light-emitting diodes (NRLEDs) with different wall width (120 nm, 80 nm and 40 nm) were fabricated by specialized nano-sphere lithography technology. Through the thinned wall, the effective bandgaps of nano-ring LEDs can be precisely tuned by reducing the strain inside the active region. Photoluminescence (PL) and time-resolved PL measurements indicated the lattice-mismatch induced strain inside the active region was relaxed when the wall width is reduced. Through the simulation, we can understand the strain distribution of active region inside NRLEDs. The simulation results not only revealed the exact distribution of strain but also predicted the trend of wavelength-shifted behavior of NRLEDs. Finally, the NRLEDs devices with four-color emission on the same wafer were demonstrated. PMID:28256529

  2. Facile preparation of multifunctional carbon nanotube/magnetite/polyaniline nanocomposite offering a strong option for efficient solid-phase microextraction coupled with GC-MS for the analysis of phenolic compounds.

    PubMed

    Tafazoli, Zahra; Azar, Parviz Aberoomand; Tehrani, Mohammad Saber; Husain, Syed Waqif

    2018-04-20

    The aim of this study the synthesis of a highly efficient organic-inorganic nanocomposite. In this research, the carbon nanotube/magnetite/polyaniline nanocomposite was successfully prepared through a facile route. Monodisperse magnetite nanospheres were prepared through the coprecipitation route, and polyaniline nanolayer as a modified shell with a high surface area was synthesized by an in situ growth route and characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction and energy dispersive X-ray spectroscopy. The prepared nanocomposite was immobilized on a stainless-steel wire for the fabrication of the solid-phase microextraction fiber. The combination of headspace solid-phase microextraction using carbon nanotube/magnetite/polyaniline nanocomposite fiber with gas chromatography and mass spectrometry can achieve a low limit of detection and can be applied to determine phenolic compounds in water samples. The effects of the extraction and desorption parameters including extraction temperature and time, ionic strength, stirring rate, pH, and desorption temperature and time have been studied. Under the optimum conditions, the dynamic linear range was 0.01-500 ng mL -1 and the limits of detection of phenol, 4-chlorophenol, 2,6-dichlorophenol, and 2,4,6-trichlorophenol were the lowest (0.008 ng mL -1 ) for three times. The coefficient of determination of all calibration curves was more than 0.990. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. General Synthesis of Transition-Metal Oxide Hollow Nanospheres/Nitrogen-Doped Graphene Hybrids by Metal-Ammine Complex Chemistry for High-Performance Lithium-Ion Batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2018-02-09

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. The synthesis of glutamic acid in the absence of enzymes: Implications for biogenesis

    NASA Technical Reports Server (NTRS)

    Morowitz, Harold; Peterson, Eta; Chang, Sherwood

    1995-01-01

    This paper reports on the non-enzymatic aqueous phase synthesis of amino acids from keto acids, ammonia and reducing agents. The facile synthesis of key metabolic intermediates, particularly in the glycolytic pathway, the citric acid cycle, and the first step of amino acid synthesis, lead to new ways of looking at the problem of biogenesis.

  5. Visible near-infrared light scattering of single silver split-ring structure made by nanosphere lithography.

    PubMed

    Okamoto, Toshihiro; Fukuta, Tetsuya; Sato, Shuji; Haraguchi, Masanobu; Fukui, Masuo

    2011-04-11

    We succeeded in making a silver split-ring (SR) structure of approximately 130 nm in diameter on a glass substrate using a nanosphere lithography technique. The light scattering spectrum in visible near-infrared region of a single, isolated SR was measured using a microscope spectroscopy optical system. The electromagnetic field enhancement spectrum and distribution of the SR structure were simulated by the finite-difference time-domain method, and the excitation modes were clarified. The long wavelength peak in the light scattering spectra corresponded to a fundamental LC resonance mode excited by an incident electric field. It was shown that a single SR structure fabricated as abovementioned can operate as a resonator and generate a magnetic dipole. © 2011 Optical Society of America

  6. Long Distance Enhancement of Nonlinear Optical Properties Using Low Concentration of Plasmonic Nanostructures in Dye Doped Monolithic SolGel Materials (Postprint)

    DTIC Science & Technology

    2016-05-31

    www.MaterialsViews.com Synthesis of the Gold Nanoparticles : The Au nanospheres were prepared according to previously reported procedure using the...Au Nanoparticles Using Specifi c Silicone : The synthesis of the functional silicone was previously reported as well as the surface modifi cation of...types of gold nanoparticles (AuNPs) are prepared and polished to high optical quality. Their photophysical properties are investigated. The glass

  7. Facile synthesis, pharmacokinetic and systemic clearance evaluation, and positron emission tomography cancer imaging of 64Cu-Au alloy nanoclusters

    NASA Astrophysics Data System (ADS)

    Zhao, Yongfeng; Sultan, Deborah; Detering, Lisa; Luehmann, Hannah; Liu, Yongjian

    2014-10-01

    Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal biodistribution and significant renal and hepatobiliary excretion. PET imaging showed low non-specific tumor uptake, indicating its potential for active targeting of clinically relevant biomarkers in tumor and metastatic organs.Gold nanoparticles have been widely used for oncological applications including diagnosis and therapy. However, the non-specific mononuclear phagocyte system accumulation and potential long-term toxicity have significantly limited clinical translation. One strategy to overcome these shortcomings is to reduce the size of gold nanoparticles to allow renal clearance. Herein, we report the preparation of 64Cu alloyed gold nanoclusters (64CuAuNCs) for in vivo evaluation of pharmacokinetics, systemic clearance, and positron emission tomography (PET) imaging in a mouse prostate cancer model. The facile synthesis in acqueous solution allowed precisely controlled 64Cu incorporation for high radiolabeling specific activity and stability for sensitive and accurate detection. Through surface pegylation with 350 Da polyethylene glycol (PEG), the 64CuAuNCs-PEG350 afforded optimal

  8. One-step hydrothermal synthesis of carboxyl-functionalized upconversion phosphors for bioapplications.

    PubMed

    Yang, Jianping; Shen, Dengke; Li, Xiaomin; Li, Wei; Fang, Yin; Wei, Yong; Yao, Chi; Tu, Bo; Zhang, Fan; Zhao, Dongyuan

    2012-10-22

    In this paper, we report a facile one-step hydrothermal method to synthesize phase-, size-, and shape-controlled carboxyl-functionalized rare-earth fluorescence upconversion phosphors by using a small-molecule binary acid, such as malonic acid, oxalic acid, succinic acid, or tartaric acid as capping agent. The crystals, from nano- to microstructures with diverse shapes that include nanospheres, microrods, hexagonal prisms, microtubes, microdisks, polygonal columns, and hexagonal tablets, can be obtained with different reaction times, reaction temperatures, molar ratios of capping agent to sodium hydroxide, and by varying the binary acids. Fourier transform infrared, thermogravimetric analysis, and upconversion luminescence spectra measurements indicate that the synthesized NaYF(4):Yb/Er products with hydrophilic carboxyl-functionalized surface offer efficient upconversion luminescent performance. Furthermore, the antibody/secondary antibody conjugation can be realized by the carboxyl-functionalized surfaces of the upconversion phosphors, thus indicating the potential bioapplications of these kinds of materials. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Surfactant-Free Shape Control of Gold Nanoparticles Enabled by Unified Theoretical Framework of Nanocrystal Synthesis.

    PubMed

    Wall, Matthew A; Harmsen, Stefan; Pal, Soumik; Zhang, Lihua; Arianna, Gianluca; Lombardi, John R; Drain, Charles Michael; Kircher, Moritz F

    2017-06-01

    Gold nanoparticles have unique properties that are highly dependent on their shape and size. Synthetic methods that enable precise control over nanoparticle morphology currently require shape-directing agents such as surfactants or polymers that force growth in a particular direction by adsorbing to specific crystal facets. These auxiliary reagents passivate the nanoparticles' surface, and thus decrease their performance in applications like catalysis and surface-enhanced Raman scattering. Here, a surfactant- and polymer-free approach to achieving high-performance gold nanoparticles is reported. A theoretical framework to elucidate the growth mechanism of nanoparticles in surfactant-free media is developed and it is applied to identify strategies for shape-controlled syntheses. Using the results of the analyses, a simple, green-chemistry synthesis of the four most commonly used morphologies: nanostars, nanospheres, nanorods, and nanoplates is designed. The nanoparticles synthesized by this method outperform analogous particles with surfactant and polymer coatings in both catalysis and surface-enhanced Raman scattering. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Monodisperse MnO2@NiCo2O4 core/shell nanospheres with highly opened structures as electrode materials for good-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhou, You; Ma, Li; Gan, Mengyu; Ye, Menghan; Li, Xiurong; Zhai, Yanfang; Yan, Fabing; Cao, Feifei

    2018-06-01

    The monodisperse MnO2@NiCo2O4 core/shell nanospheres for good-performance supercapacitors are designed and synthesized by a two-step solution-based method and a simple post annealing process. In the composite, both MnO2 (the "core") and NiCo2O4 (the "shell") are formed by the accumulation of nanoflakes. Thus, nearly all the core/shell nanoflakes are highly opened and accessible to electrolyte, making them give full play to the Faradaic reaction. Our results demonstrate that the composite electrode exhibits desirable pseudocapacitive behaviors with higher specific capacitance (1127.27 F g-1 at a current density of 1 A g-1), better rate capability (81.0% from 1 to 16 A g-1) and superior cycling stability (actually 126.8% capacitance retention after 1000 cycles and only 3.7% loss after 10,000 cycles at 10 A g-1) in 3 M KOH aqueous solution. Moreover, it offers the excellent specific energy density of 26.6 Wh kg-1 at specific power density of 800 W kg-1. The present MnO2@NiCo2O4 core/shell nanospheres with remarkable electrochemical properties are considered as potential electrode materials for the next generation supercapacitors.

  11. Copper oxide loaded PLGA nanospheres: towards a multifunctional nanoscale platform for ultrasound-based imaging and therapy

    NASA Astrophysics Data System (ADS)

    Perlman, Or; Weitz, Iris S.; Sivan, Sarit S.; Abu-Khalla, Hiba; Benguigui, Madeleine; Shaked, Yuval; Azhari, Haim

    2018-05-01

    Copper oxide nanoparticles (CuO-NPs) are increasingly becoming the subject of investigation exploring their potential use for diagnostic and therapeutic purposes. Recent work has demonstrated their anticancer potential, as well as contrast agent capabilities for magnetic resonance imaging (MRI) and through-transmission ultrasound. However, no capability of CuO-NPs has been demonstrated using conventional ultrasound systems, which, unlike the former, are widely deployed in the clinic. Furthermore, in spite of their potential as multifunctional nano-based materials for diagnosis and therapy, CuO-NPs have been delayed from further clinical application due to their inherent toxicity. Herein, we present the synthesis of a novel nanoscale system, composed of CuO-loaded PLGA nanospheres (CuO-PLGA-NS), and demonstrate its imaging detectability and augmented heating effect by therapeutic ultrasound. The CuO-PLGA-NS were prepared by a double emulsion (W/O/W) method with subsequent solvent evaporation. They were characterized as sphere-shaped, with size approximately 200 nm. Preliminary results showed that the viability of PANC-1, human pancreatic adenocarcinoma cells was not affected after 72 h exposure to CuO-PLGA-NS, implying that PLGA masks the toxic effects of CuO-NPs. A systematic ultrasound imaging evaluation of CuO-PLGA-NS, using a conventional system, was performed in vitro and ex vivo using poultry heart and liver, and also in vivo using mice, all yielding a significant contrast enhancement. In contrast to CuO-PLGA-NS, neither bare CuO-NPs nor blank PLGA-NS possess these unique advantageous ultrasonic properties. Furthermore, CuO-PLGA-NS accelerated ultrasound-induced temperature elevation by more than 4 °C within 2 min. The heating efficiency (cumulative equivalent minutes at 43 °C) was increased approximately six-fold, demonstrating the potential for improved ultrasound ablation. In conclusion, CuO-PLGA-NS constitute a versatile platform, potentially useful for

  12. Soft-Templating Synthesis of N-Doped Mesoporous Carbon Nanospheres for Enhanced Oxygen Reduction Reaction.

    PubMed

    Bayatsarmadi, Bita; Zheng, Yao; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-07-01

    The development of ordered mesoporous carbon materials with controllable structures and improved physicochemical properties by doping heteroatoms such as nitrogen into the carbon framework has attracted a lot of attention, especially in relation to energy storage and conversion. Herein, a series of nitrogen-doped mesoporous carbon spheres (NMCs) was synthesized via a facile dual soft-templating procedure by tuning the nitrogen content and carbonization temperature. Various physical and (electro)chemical properties of the NMCs have been comprehensively investigated to pave the way for a feasible design of nitrogen-containing porous carbon materials. The optimized sample showed a favorable electrocatalytic activity as evidenced by a high kinetic current and positive onset potential for oxygen reduction reaction (ORR) due to its large surface area, high pore volume, good conductivity, and high nitrogen content, which make it a highly efficient ORR metal-free catalyst in alkaline solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols.

    PubMed

    Liu, Qiang; Xu, Guoqiang; Wang, Zhendong; Liu, Xiaoran; Wang, Xicheng; Dong, Linlin; Mu, Xindong; Liu, Huizhou

    2017-12-08

    C-H methylation is an attractive chemical transformation for C-C bonds construction in organic chemistry, yet efficient methylation of readily available (bio)alcohols in water using methanol as sustainable C1 feedstock is limited. Herein, iridium nanocatalysts encapsulated in yolk-shell-structured mesoporous carbon nanospheres (Ir@YSMCNs) were synthesized for this transformation. Monodispersed Ir clusters (ca. 1.0 nm) were encapsulated in situ and spatially isolated within YSMCNs by a silica-assisted sol-gel emulsion strategy. A selection of (bio)alcohols (19 examples) was selectively methylated in aqueous phase with good-to-high yields over the developed Ir@YSMCNs. The improved catalytic efficiencies in terms of activity and selectivity together with the good stability and recyclability were contributable to the ultrasmall Ir clusters with oxidation chemical state as a consequence of the confinement effect of YSMCNs with interconnected nanostructures. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Tumor site-specific silencing of NF-κB p65 by targeted hollow gold nanospheres-mediated photothermal transfection

    PubMed Central

    Lu, Wei; Zhang, Guodong; Zhang, Rui; Flores, Leo G; Huang, Qian; Gelovani, Juri G; Li, Chun

    2010-01-01

    Nuclear factor-κB (NF-κB) transcription factor is a critical regulator of the expression of genes involved in tumor formation and progression. Successful RNA interference (RNAi) therapeutics targeting NF-κB is challenged by siRNA delivery systems, which can render targeted in vivo delivery, efficient endo-lysosomal escape and dynamic control over activation of RNAi. Here, we report near-infrared light-inducible NF-κB down-regulation through folate receptor-targeted hollow gold nanospheres carrying siRNA recognizing NF-κB p65 subunit. Using micro-positron emission tomography/computed tomography imaging, the targeted nanoconstructs exhibited significantly higher tumor uptake in nude mice-bearing HeLa cervical cancer xenografts than non-targeted nanoparticles following intravenous administration. Mediated by hollow gold nanospheres, controllable cytoplasmic delivery of siRNA was obtained upon near-infrared light irradiation through photothermal effect. Efficient down-regulation of NF-κB p65 was achieved only in tumors irradiated with near-infrared light, but not in non-irradiated tumors grown in the same mice. Liver, spleen, kidney, and lung were not affected by the treatments, in spite of significant uptake of the siRNA nanoparticles in these organs. We term this mode of action “photothermal transfection”. Combined treatments with p65 siRNA photothermal transfection and irinotecan caused substantially enhanced tumor apoptosis and significant tumor growth delay compared with other treatment regimens. Therefore, photothermal transfection of NF-κB p65 siRNA could effectively sensitize the tumor to chemotherapeutic agents. Because NIR light can penetrate skin and be delivered with high spatiotemporal control, therapeutic RNAi may benefit from this novel transfection strategy while avoiding unwanted side effect. PMID:20388791

  15. Large-pore mesoporous silica nanospheres as vehicles for delivering TRAF3-shRNA plasmids to Kupffer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Junyong, E-mail: zhangmachine@hotmail.com; Guo, Shipeng, E-mail: guoshipeng2008@126.com; Zhang, Wenfeng, E-mail: Sadengren8881@163.com

    The currently available techniques for transferring exogenous genes into macrophages, especially the targeted import of exogenous genes into Kupffer cells (KCs) in vivo, are inefficient and achieve only low targeting. Novel Large-Pore Mesoporous Silica Nanospheres (LPMSNs) may be a promising gene transfection agent for KCs because of their superior biodegradation and hypotoxic characteristics, as well as their ability to retain the biological function of KCs and the high loading-rate of exogenous plasmid. LPMSNs were able to completely adsorb shRNA-TRAF3 (tumor necrosis factor receptor-associated factor-3) plasmid at a mass ratio as low as 30:1, and exhibited a low cytotoxicity for KCs. LPMSNsmore » were detected in KC cytoplasm in vitro, and transmission electron microscopy (TEM) revealed that they were present only in KCs in liver tissue in vivo. The max KC transfection efficiency with LPMSNs was 34.8± 0.07%, as evaluated using flow cytometry, and the protein and mRNA levels of TRAF3 were significantly inhibited (P < 0.05) by shRNA-TRAF3 plasmid transfection after 24 h in vitro and 48 h in vivo. In conclusion, KC targeted transfection was achieved successfully by LPMSNs carrying shRNA-TRAF3 plasmids in vitro and vivo. The protein and mRNA levels of TRAF3 were suppressed significantly. These results suggest that LPMSNs are a promising vehicle for delivering exogenous genes into KCs in vitro and vivo. - Highlights: • We constructed Large-Pore Mesoporous Silica Nanospheres (LPMSNs). • LPMSNs adsorbed high quantity of plasmid. • Low cytotoxicity of LPMSNs to Kupffer cells. • LPMSNs delivered plasmid into Kupffer cells.« less

  16. Decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on g-C3N4 to construct Z-scheme system for improving photocatalytic performance

    NASA Astrophysics Data System (ADS)

    Wu, Haijun; Li, Chunmei; Che, Huinan; Hu, Hao; Hu, Wei; Liu, Chunbo; Ai, Junzhe; Dong, Hongjun

    2018-05-01

    The Co3O4/g-C3N4 Z-scheme system is constructed by decoration of mesoporous Co3O4 nanospheres assembled by monocrystal nanodots on the surface of g-C3N4, which dramatically improves the photocatalytic activity for degrading tetracycline hydrochloride (TC) compared with single g-C3N4. The microstructure investigations evidence the mesoporous structure and enlarged specific surface area of Co3O4/g-C3N4 Z-scheme system, which implies the increase of surface active sites and adsorption ability for reactant molecules. Moreover, by virtue of analyzing physical and photoelectrochemical properties, it evidences that the decoration effect of mesoporous Co3O4 nanospheres on the surface of g-C3N4 obviously improves the transfer and separation efficiency of charge carriers between two phase interfaces and broadens light harvest range. These important factors are beneficial to enhancing photocatalytic activity of Co3O4/g-C3N4 Z-scheme system. In addition, the photocatalityc reaction mechanism is also revealed in depth.

  17. Self-assembly of an amphiphilic macromolecule under spherical confinement: An efficient route to generate hollow nanospheres

    NASA Astrophysics Data System (ADS)

    Glagoleva, A. A.; Vasilevskaya, V. V.; Yoshikawa, K.; Khokhlov, A. R.

    2013-12-01

    In general, bio-macromolecules are composed of hydrophilic and hydrophobic moieties and are confined within small cavities, such as cell membranes and intracellular organelles. Here, we studied the self-organization of macromolecules having groups with different affinities to solvents under spherical nano-scale confinement by means of computer modeling. It is shown that depending on the interaction parameters of monomer units composed of side- and main-chain monomer groups along a single linear macromolecule and on cavity size, such amphiphilic polymers undergo the conformational transitions between hollow nanospheres, rod-like and folded cylindrical structures, and a necklace conformation with and without a particular ordering of beads. The diagram of the conformations in the variables the incompatibility parameter of monomer units and the cavity radius is constructed.

  18. Conception, realization and qualification of a radioactive clean room lab facility dedicated to the synthesis of radiolabeled API for human ADME studies.

    PubMed

    Loewe, Claudia; Atzrodt, Jens; Reschke, Kai; Schofield, Joe

    2016-12-01

    The human absorption, distribution, metabolism and elimination study administering radiolabeled drugs to human volunteers is an important clinical study in the development program of new drug candidates. The manufacture of radiolabeled Active Pharmaceutical Ingredients is covered by national drug laws and may come within the scope of regulatory GMP requirements. Additionally, authorities may request an appropriate environmental zoning to minimize the risk of microbiological contaminations particularly during the synthesis of radiolabeled Active Pharmaceutical Ingredients intended for parenteral application. Thus, a radioactive clean room lab facility in line with both GMP and radiation safety regulations was installed and the environmental zoning validated by appropriate testing of technical parameters and microbial and particle monitoring. The considerations detailed in this paper cover only GMP aspects related to the synthesis of radioactive drug substance. The subsequent, final formulation step in the overall process for manufacturing of radioactive drug product for any kind of administration is not within the scope of this paper. Under these qualified and controlled environmental conditions, we are now in a position to provide radiolabeled drug substances for all kinds of drug administration including both po and iv. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Microwave assisted facile hydrothermal synthesis and characterization of zinc oxide flower grown on graphene oxide sheets for enhanced photodegradation of dyes

    NASA Astrophysics Data System (ADS)

    Kashinath, L.; Namratha, K.; Byrappa, K.

    2015-12-01

    Microwave assisted hydrothermal process of synthesis of ZnO-GO nanocomposite by using ZnCl2 and NaOH as precursors is being reported first time. In this investigation, a novel route to study on synthesis, interaction, kinetics and mechanism of hybrid zinc oxide-graphene oxide (ZnO-GO) nanocomposite using microwave assisted facile hydrothermal method has been reported. The results shows that the ZnO-GO nanocomposite exhibits an enhancement and acts as stable photo-response degradation performance of Brilliant Yellow under the UV light radiation better than pure GO and ZnO nanoparticles. The microwave exposure played a vital role in the synthesis process, it facilitates with well define crystalline structure, porosity and fine morphology of ZnO/GO nanocomposite. Different molar concentrations of ZnO precursors doped to GO sheets were been synthesized, characterized and their photodegradation performances were investigated. The optical studies by UV-vis and Photo Luminescence shows an increase in band gap of nanocomposite, which added an advantage in photodegradation performance. The in situ flower like ZnO nano particles are were densely decorated and anchored on the surfaces of graphene oxide sheets which aids in the enhancement of the surface area, adsorption, mass transfer of dyes and evolution of oxygen species. The nanocomposite having high surface area and micro/mesoporous in nature. This structure and morphology supports significantly in increasing photo catalytic performance legitimate to the efficient photosensitized electron injection and repressed electron recombination due to electron transfer process with GO as electron collector and transporter dependent on the proportion of GO in ZnO/GO composite.

  20. High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach

    PubMed Central

    Cao, Derang; Li, Hao; Pan, Lining; Li, Jianan; Wang, Xicheng; Jing, Panpan; Cheng, Xiaohong; Wang, Wenjie; Wang, Jianbo; Liu, Qingfang

    2016-01-01

    We have demonstrated the synthesis of γ-Fe2O3 nano-particles through a facile and novel calcination process in the air. There is no pH regulation, gas atmosphere, additive, centrifugation or other complicated procedures during the preparing process. A detailed formation process of the nano-particles is proposed, and DMF as a polar solvent may slower the reaction process of calcination. The structures, morphologies, and magnetic properties of γ-Fe2O3 nano-particles were investigated systematically, and the pure γ-Fe2O3 nano-particles obtained at 200 °C display uniform morphology good magnetic property. The saturation magnetization of obtained pure γ-Fe2O3 is about 74 emu/g, which is comparable with bulk material (76 emu/g) and larger than other results. In addition, the photocatalytic activity for degradation of methylene blue is also studied, which shows proper photocatalytic activity. PMID:27581732