Science.gov

Sample records for nanostructural features formed

  1. Some nanostructural features in ceramics.

    PubMed

    Wen, S L

    1987-12-01

    Nanostructural features in some ceramics have been discussed and reviewed. Based on our research results and recent published investigations, many topics, such as grain, grain boundary, interface film, grain boundary engineering, microcrack, microdomain, nanodomain, domain boundary, and phase transformation, etc., have been dealt with; and many materials, such as Si3N4, beta''-Al2O3, MgO, SiC, (Hg, Cd) Te, BNN, ZrO2, PLZT, CdSe, Ca10(PO4)6, (OH)2, etc., have been involved. The results are important to understand the relation between the structure and property of materials and to improve the materials' technology. PMID:3505597

  2. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  3. Ordered biological nanostructures formed from chaperonin polypeptides

    NASA Technical Reports Server (NTRS)

    Trent, Jonathan D. (Inventor); McMillan, R. Andrew (Inventor); Kagawa, Hiromi (Inventor); Paavola, Chad D. (Inventor)

    2010-01-01

    The following application relates to nanotemplates, nanostructures, nanoarrays and nanodevices formed from wild-type and mutated chaperonin polypeptides, methods of producing such compositions, methods of using such compositions and particular chaperonin polypeptides that can be utilized in producing such compositions.

  4. Campus Landscape: Functions, Forms, Features.

    ERIC Educational Resources Information Center

    Dober, Richard P.

    This guide provides information, instruction, and ideas on planning and designing every aspect of the campus landscape, from parking lots to playing fields. Using real-world examples of classic and contemporary campus landscapes, it features coverage of landscape restoration and regeneration; provides an assessment matrix for consistent, effective…

  5. Charge-free method of forming nanostructures on a substrate

    DOEpatents

    Hoffbauer; Mark , Akhadov; Elshan

    2010-07-20

    A charge-free method of forming a nanostructure at low temperatures on a substrate. A substrate that is reactive with one of atomic oxygen and nitrogen is provided. A flux of neutral atoms of least one of oxygen and nitrogen is generated within a laser-sustained-discharge plasma source and a collimated beam of energetic neutral atoms and molecules is directed from the plasma source onto a surface of the substrate to form the nanostructure. The energetic neutral atoms and molecules in the beam have an average kinetic energy in a range from about 1 eV to about 5 eV.

  6. Platinum nanostructures formed by femtosecond laser irradiation in water

    SciTech Connect

    Huo Haibin; Shen Mengyan

    2012-11-15

    Platinum nanostructures with various morphologies, such as spike-like, ripple-like and array-like structures, have been fabricated by 400 nm and 800 nm femtosecond laser irradiation in water. Different structures can be formed on the surfaces as a function of the laser wavelength, the fluence and scan methods. The reflectance measurements of these structures show much larger absorption on the irradiated surfaces than untreated platinum surfaces.

  7. Waste Form Features, Events, and Processes

    SciTech Connect

    R. Schreiner

    2004-10-27

    The purpose of this report is to evaluate and document the inclusion or exclusion of the waste form features, events and processes (FEPs) with respect to modeling used to support the Total System Performance Assessment for License Application (TSPA-LA). A screening decision, either Included or Excluded, is given for each FEP along with the technical bases for screening decisions. This information is required by the Nuclear Regulatory Commission (NRC) in 10 CFR 63.114 (d, e, and f) [DIRS 156605]. The FEPs addressed in this report deal with the issues related to the degradation and potential failure of the waste form and the migration of the waste form colloids. For included FEPs, this analysis summarizes the implementation of the FEP in TSPA-LA, (i.e., how the FEP is included). For excluded FEPs, this analysis provides the technical bases for exclusion from TSPA-LA (i.e., why the FEP is excluded). This revision addresses the TSPA-LA FEP list (DTN: MO0407SEPFEPLA.000 [DIRS 170760]). The primary purpose of this report is to identify and document the analyses and resolution of the features, events, and processes (FEPs) associated with the waste form performance in the repository. Forty FEPs were identified that are associated with the waste form performance. This report has been prepared to document the screening methodology used in the process of FEP inclusion and exclusion. The analyses documented in this report are for the license application (LA) base case design (BSC 2004 [DIRS 168489]). In this design, a drip shield is placed over the waste package and no backfill is placed over the drip shield (BSC 2004 [DIRS 168489]). Each FEP may include one or more specific issues that are collectively described by a FEP name and a FEP description. The FEP description may encompass a single feature, process or event, or a few closely related or coupled processes if the entire FEP can be addressed by a single specific screening argument or TSPA-LA disposition. The FEPs are

  8. [Electromyographic features of 3 forms of myotonia].

    PubMed

    Luk'ianov, M V; Chuchin, M Iu

    1982-01-01

    On the basis of a great body of examination data the electromyographic peculiarities of three forms of myotonia are analyzed. As a result, the authors come to a conclusion that in the third form of myotonia the function of muscular fibres is grossly impaired, this impairment following the pattern of their being put out of activity. This failure appears invariably during the muscle activity and leads, in the end to the clinically observed transient, and in more advanced cases, moderately permanent weakness of the muscles and their hypotrophy. In addition, data on synaptic apparatus involvement were also obtained. The time course of the development of those disorders, as regards the neuromuscular conduction and the distal parts of the muscular fibres is followed. In atrophic myotonia, certain peculiarities of the electrophysiological characteristics of the neuromuscular periphery were noted. In particular, a marked phase of secondary refractoriness was revealed. Thomsen's myotonia was found to differ substantially in the electrophysiological characteristics from the above two forms of the myotonia. Although in a number of cases it is difficult to class a particular case with one or another form of myotonia (this can be explained by an exceedingly great diversity of the biochemical peculiarities inherited by each individual) the differentiation of the above three forms of myotonia is justified from the viewpoint of both exploring the pathogenesis of the disease forms, and choosing the treatment method the most effective in this particular case. Of importance in solving these problems may be diversified electrophysiological examinations of the motor apparatus, and comparisons of their results with those of clinical examinations. PMID:7180301

  9. Nanostructural and biogeochemical features of the crinoid stereom

    NASA Astrophysics Data System (ADS)

    Gorzelak, P.; Stolarski, J.; Mazur, M.; Marrocchi, Y.; Meibom, A.; Chalmin, E.

    2009-04-01

    Representatives of all echinoderm clades (e.g., echinoids, holothuroids, ophiuroids, asteroids, and crinoids) form elaborate calcitic (polymorph of calcium carbonate) skeletons composed of numerous plates. Each plate consists of a three-dimensional meshwork of mineral trabeculae (stereom) that results from precisely orchestrated biomineralization processes. Individual skeletal plates behave as single calcite crystals as shown by X-ray diffraction and polarizing microscopy, however, their physico-chemical properties differ significantly from the properties of geologic or synthetic calcites. For example, echinoderm bio-calcite does not show cleavage planes typical of calcite but reveals conchoidal fracture surfaces that reduce the brittleness of the material. The unique properties of echinoderm bio-calcite result from intimate involvement of organic molecules in the biomineralization process and their incorporation into the crystal structure. Remnants of echinoderm skeleton are among the most frequently found fossils in the Mesozoic and Palaeozoic rocks thus, in order to use them as environmental proxies, it is necessary to understand the degree of biological ("vital effect") and inorganic control over their formation. Here, we show first nanoscale structural and biogeochemical properties of the stereom of extant and fossil crinoids. Using FESEM and AFM imaging techniques we show that the skeleton has nanocomposite structure: individual grains have ca. 100 nm in diameter and occasionally form larger aggregates. Fine scale geobiochemical mappings of crinoid plates (NanoSIMS microprobe) show that Mg is distributed heterogeneously in the stereom with higher concentration in the middle part of the trabecular bars. Although organic components constitute only ca. 0.10-0.26 wt% of modern echinoderm bio-calcite, in situ synchrotron sulphur K-edge x-ray absorption near edge structure (XANES) spectra show that the central parts of stereom bars contain higher levels of SO4 that

  10. Terahertz wave generation from spontaneously formed nanostructures in silver nanoparticle ink.

    PubMed

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Nakajima, Makoto

    2016-05-01

    We demonstrate terahertz pulse generation from silver nanoparticle ink, originally developed for printed electronics, under irradiation by femtosecond laser pulses. Using metal nanoparticle ink, metallic nanostructures can be easily made in a large area without lithographic techniques. Terahertz pulses were emitted from the baked ink, having spontaneously formed nanostructures of ∼100  nm. From the results of the baking temperature dependence and the polarization measurement, the terahertz generation is attributed to the nonlinear polarization induced by the enhanced local fields around these nanostructures. This study paves the way for the future development of terahertz emitters which have resonances in both the near-infrared light and the terahertz wave, by combining micrometer-scale structures drawn by an inkjet printer and nanometer-scale structures formed during the baking process. PMID:27128090

  11. Effects of fibre-form nanostructures on particle emissions from a tungsten surface in plasmas

    NASA Astrophysics Data System (ADS)

    Takamura, S.; Miyamoto, T.; Ohno, N.

    2012-12-01

    The effects of fibre-form nanostructure of a tungsten surface on both electron emission and sputtering in helium/argon plasmas are represented. Generally, a nano-fibre forest, the so-called ‘fuzz’, made of tungsten with helium gas inside is found to have the tendency of suppressing the particle emission substantially. The electron emission comes from the impact of high-energy primary electrons. In addition, a deeply biased tungsten target, which inhibits the influx of even energetic primary electrons, seems to produce an electron emission, and it may be suppressed on the way to nanostructure formation on the surface of the W target. Such an emission process is discussed here. The sputtering yield of the He-damaged tungsten surface with the fibre-form nanostructure depends on the surface morphology while the sputtering itself changes the surface morphology, so that the time evolutions of sputtering yield from the W surface with an originally well-developed nanostructure are found to show a minimum in sputtering yield, which is about a half for the fresh nanostructured tungsten and roughly one-fifth of the yield for the original flat normal tungsten surface. The surface morphology at that time is, for the first time, made clear with field emission scanning electron microscopy observation. The physical mechanism for the appearance of such a minimum in sputtering yield is discussed.

  12. Photoresponsive Toroidal Nanostructure Formed by Self-Assembly of Azobenzene-Functionalized Tris(phenylisoxazolyl)benzene.

    PubMed

    Adachi, Hiroaki; Hirai, Yuko; Ikeda, Toshiaki; Maeda, Makoto; Hori, Ryo; Kutsumizu, Shoichi; Haino, Takeharu

    2016-03-01

    The self-assembly of tris(phenylisoxazolyl)benzene 1b with photochemically addressable azobenzene moieties produced toroidal nanostructures, the formation and dissociation of which were reversibly regulated upon photoirradiation. 1b displayed a mesogenic behavior. In the solution, the stacked assemblies along with their C3 axes were formed. In the mesophase, two molecules of 1b most likely adopted the antiparallel arrangement to stabilize the columnar organization. This assembling behavior most likely triggered the development of the supramolecular toroidal nanostructures. PMID:26910789

  13. Spherical plasmoids formed upon the combustion and explosion of nanostructured hydrated silicon

    NASA Astrophysics Data System (ADS)

    Lazarouk, S. K.; Dolbik, A. V.; Labunov, V. A.; Borisenko, V. E.

    2007-02-01

    The kinetics of the combustion and explosion of nanostructured hydrated porous silicon has been analyzed in a duration range from 100 μs to 1 s. It has been shown that the presence of hydrogen in silicon nanostructures increases the energy yield of oxidation processes leading to the formation of spherical plasmoids with a size of 0.1-0.8 m. Buoyancy in them can be compensated by the weight of the material particles formed inside and this compensation leads to a change in the velocity of plasmoids from 0.5 m/s to zero in the process of their cooling. It is hypothesized that a ball lightning appears due to the combustion and explosion of nanostructured hydrated silicon in spherical plasmoids.

  14. Nanostructured Arrays Formed by Finely Focused Ion Beams

    SciTech Connect

    Budai, J.D.; Datsos, P.G.; Feldman, L.C.; Heinig, K.-H.; Meldrum, A.; Strobel, M.; Thomas, K.A.; Warmack, R.J.; White, C.W.; Zuhr, R.A.

    1998-11-30

    Amorphous, polycrystalline, and single crystal nanometer dimension particles can be formed in a variety of substrates by ion implantation and subsequent annealing. Such composite colloidal materials exhibit unique optical properties that could be useful in optical devices, switches, and waveguides. However colloids formed by blanket implantation are not uniform in size due to the nonuniform density of the implant, resulting in diminution of the size dependent optical properties. The object of the present work is to form more uniform size particles arranged in a 2-dimensional lattice by using a finely focused ion beam to implant identical ion doses only into nanometer size regions located at each point of a rectangular lattice. Initial work is being done with a 30 keV Ga beam implanted into Si. Results of particle formation as a function of implant conditions as analyzed by Rutherford backscattering, x-ray analysis, atomic force microscopy, and both scanning and transmission electron microscopy will be presented and discussed.

  15. Terra firma-forme dermatosis: Case Series and dermoscopic features.

    PubMed

    Abdel-Razek, Moheb M; Fathy, Hanan

    2015-10-01

    Terra firma-forme dermatosis (TFFD) is characterized by dirt-like skin lesions that disappear after rubbing with alcohol. We describe the dermoscopic features of TFFD before and after alcohol swabbing in six patients. All patients showed similar dermoscopic appearance with large polygonal plate-like brown scales arranged together giving a mosaic pattern. These features disappear completely after isopropyl alcohol swabbing of the lesions. In conclusion dermoscopy can assist in the evaluation of terra firma-forme dermatosis and the dermoscopic evaluation of other dirty dermatoses is recommended in the future to compare findings with TFFD. PMID:26632811

  16. Method of making nanostructured glass-ceramic waste forms

    SciTech Connect

    Gao, Huizhen; Wang, Yifeng; Rodriguez, Mark A.; Bencoe, Denise N.

    2014-07-08

    A waste form for and a method of rendering hazardous materials less dangerous is disclosed that includes fixing the hazardous material in nanopores of a nanoporous material, reacting the trapped hazardous material to render it less volatile/soluble, and vitrifying the nanoporous material containing the less volatile/soluble hazardous material.

  17. Zinc oxide hollow microstructures and nanostructures formed under hydrothermal conditions

    SciTech Connect

    Dem'yanets, L. N. Artemov, V. V.; Li, L. E.; Mininzon, Yu. M.; Uvarova, T. G.

    2008-09-15

    Zinc oxide low-dimensional hollow structures in the form of hexagonal plates with holes at the center of the {l_brace}0001{r_brace} facets are synthesized in the course of the low-temperature interaction of ZnO precursors with aqueous solutions of potassium fluoride under hydrothermal conditions. Crystals have the shape of single-walled or multiwalled 'nuts.' The high optical quality of the structures is confirmed by cathodoluminescence data at room temperature. The mechanism of the formation of ZnO 'nanonuts' and products of the interaction of the ZnO precursors with KF is proposed.

  18. Flavonol-carbon nanostructure hybrid systems: a DFT study on the interaction mechanism and UV/Vis features.

    PubMed

    García, Gregorio; Atilhan, Mert; Aparicio, Santiago

    2016-02-14

    Flavonols are a class of natural compounds with potential biological and pharmacological applications. They are also natural pigments responsible for the diversity of colors in plants. Flavonols offer the possibility of tuning their features through chemical functionalization as well as the presence of an aromatic backbone, which could lead to non-covalent interactions with different nanostructures or aromatic molecules. In this work, a protocol based on ONIOM (QM/QM) calculations to investigate the structural features (binding energies, intermolecular interactions) of flavonols interacting with the surface of several carbon nanostructures (such as graphene, fullerene C60 and carbon nanotubes) is developed. The confinement of flavonols inside carbon nanotubes has also been studied. Three flavonols, galangin, quercetin and myricetin, as well as pristine flavone were selected. Special attention has also been paid to the changes in UV/Vis features of flavonols due to the interaction with carbon nanostructures. Our results point out that π-stacking interactions are the driving force for the adsorption onto carbon nanostructures as well as for the confinement inside carbon nanotubes. Likewise, UV/Vis features of flavonols could be fine-tuned through the interaction with suitable carbon nanostructures. PMID:26800281

  19. Cicada Wing Surface Topography: An Investigation into the Bactericidal Properties of Nanostructural Features.

    PubMed

    Kelleher, S M; Habimana, O; Lawler, J; O' Reilly, B; Daniels, S; Casey, E; Cowley, A

    2016-06-22

    Recently, the surface of the wings of the Psaltoda claripennis cicada species has been shown to possess bactericidal properties and it has been suggested that the nanostructure present on the wings was responsible for the bacterial death. We have studied the surface-based nanostructure and bactericidal activity of the wings of three different cicadas (Megapomponia intermedia, Ayuthia spectabile and Cryptotympana aguila) in order to correlate the relationship between the observed surface topographical features and their bactericidal properties. Atomic force microscopy and scanning electron microscopy performed in this study revealed that the tested wing species contained a highly uniform, nanopillar structure on the surface. The bactericidal properties of the cicada wings were investigated by assessing the viability of autofluorescent Pseudomonas fluorescens cells following static adhesion assays and targeted dead/live fluorescence staining through direct microscopic counting methods. These experiments revealed a 20-25% bacterial surface coverage on all tested wing species; however, significant bactericidal properties were observed in the M. intermedia and C. aguila species as revealed by the high dead:live cell ratio on their surfaces. The combined results suggest a strong correlation between the bactericidal properties of the wings and the scale of the nanotopography present on the different wing surfaces. PMID:26551558

  20. Study of the technology of the plasma nanostructuring of silicon to form highly efficient emission structures

    SciTech Connect

    Galperin, V. A.; Kitsyuk, E. P.; Pavlov, A. A.; Shamanaev, A. A.

    2015-12-15

    New methods for silicon nanostructuring and the possibility of raising the aspect ratios of the structures being formed are considered. It is shown that the technology developed relates to self-formation methods and is an efficient tool for improving the quality of field-emission cathodes based on carbon nanotubes (CNTs) by increasing the Si–CNT contact area and raising the efficiency of the heat sink.

  1. Spray-Formed Tooling with Micro-Scale Features

    SciTech Connect

    Kevin McHugh

    2010-06-01

    Molds, dies, and related tooling are used to shape many of the plastic and metal components we use every day at home and work. Traditional mold-making practices are labor and capital equipment intensive, involving multiple machining, benching and heat treatment operations. Spray forming is an alternative method to manufacture molds and dies. The general concept is to atomize and deposit droplets of a tooling alloy onto a pattern to form a thick deposit while imaging the pattern’s shape, surface texture and details. Unlike conventional machining, this approach can be used to fabricate tooling with micro-scale surface features. This paper describes a research effort to spray form molds and dies that are used to image micro-scale surface textures into polymers. The goal of the study is to replicate textures that give rise to superhydrophobic behavior by mimicking the surface structure of highly water repellent biological materials such as the lotus leaf. Spray conditions leading to high transfer fidelity of features into the surface of molded polymers will be described. Improvements in water repellency of these materials was quantified by measuring the static contact angle of water droplets on flat and textured surfaces.

  2. Optofluidic Modulation of Self-Associated Nanostructural Units Forming Planar Bragg Microcavities.

    PubMed

    Oliva-Ramirez, Manuel; Barranco, Angel; Löffler, Markus; Yubero, Francisco; González-Elipe, Agustin R

    2016-01-26

    Bragg microcavities (BMs) formed by the successive stacking of nanocolumnar porous SiO2 and TiO2 layers with slanted, zigzag, chiral, and vertical configurations are prepared by physical vapor deposition at oblique angles while azimuthally varying the substrate orientation during the multilayer growth. The slanted and zigzag BMs act as wavelength-selective optical retarders when they are illuminated with linearly polarized light, while no polarization dependence is observed for the chiral and vertical cavities. This distinct optical behavior is attributed to a self-nanostructuration mechanism involving a fence-bundling association of nanocolumns as observed by focused ion beam scanning electron microscopy in the slanted and zigzag microcavities. The outstanding retarder response of the optically active BMs can be effectively modulated by dynamic infiltration of nano- and mesopores with liquids of different refraction indices acting as a switch of the polarization behavior. The unprecedented polarization and tunable optofluidic properties of these nanostructured photonic systems have been successfully simulated with a simple model that assumes a certain birefringence for the individual stacked layers and accounts for the light interference phenomena developed in the BMs. The possibilities of this type of self-arranged nanostructured and optically active BMs for liquid sensing and monitoring applications are discussed. PMID:26653767

  3. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys

    NASA Astrophysics Data System (ADS)

    Bathula, Sivaiah; Jayasimhadri, M.; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A. K.; Dhar, Ajay

    2015-07-01

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ~25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ~2.04 W m-1 K-1 at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed.Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT ~ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso

  4. The role of nanoscale defect features in enhancing the thermoelectric performance of p-type nanostructured SiGe alloys.

    PubMed

    Bathula, Sivaiah; Jayasimhadri, M; Gahtori, Bhasker; Singh, Niraj Kumar; Tyagi, Kriti; Srivastava, A K; Dhar, Ajay

    2015-08-01

    Despite SiGe being one of the most widely studied thermoelectric materials owing to its application in radioisotope thermoelectric generators (RTG), the thermoelectric figure-of merit (ZT) of p-type SiGe is still quite low, resulting in poor device efficiencies. In the present study, we report a substantial enhancement in ZT∼ 1.2 at 900 °C for p-type nanostructured Si80Ge20 alloys by creating several types of defect features within the Si80Ge20 nanostructured matrix in a spectrum of nano to meso-scale dimensions during its nanostructuring, by employing mechanical alloying followed by spark plasma sintering. This enhancement in ZT, which is ∼25% over the existing state-of-the-art value for a p-type nanostructured Si80Ge20 alloy, is primarily due to its ultralow thermal conductivity of ∼2.04 W m(-1) K(-1) at 900 °C, resulting from the scattering of low-to-high wavelength heat-carrying phonons by different types of defect features in a range of nano to meso-scale dimensions in the Si80Ge20 nanostructured matrix. These include point defects, dislocations, isolated amorphous regions, nano-scale grain boundaries and more importantly, the nano to meso-scale residual porosity distributed throughout the Si80Ge20 matrix. These nanoscale multi-dimensional defect features have been characterized by employing scanning and transmission electron microscopy and correlated with the electrical and thermal transport properties, based on which the enhancement of ZT has been discussed. PMID:26138852

  5. Nanostructure and Composition of Tribo-Boundary Films Formed in Ionic Liquid Lubrication

    SciTech Connect

    Qu, Jun; Chi, Miaofang; Meyer III, Harry M; Blau, Peter Julian; Dai, Sheng; Luo, Huimin

    2011-01-01

    Since the idea of using ionic liquids (ILs) as lubricants was raised in 2001, many studies have been conducted in this area and results have demonstrated superior lubricating performance for a variety of ionic liquids. It is widely believed that tribochemical reactions occur between the metal surface and the IL during the wear process to form a protective tribo-boundary film on the contact area that reduces friction and wear. However, the study of this critical boundary film has been limited to top surface two-dimensional topography examination and chemical analysis in the literature. A more comprehensive characterization is needed to help understand the film formation process and the lubricating mechanism. This study demonstrated a multi-technique three-dimensional approach to characterize the IL-formed boundary films, including top surface morphology examination, cross section nanostructure characterization, and layered chemical analysis. Characterization was carried out on both ferrous and aluminum surfaces lubricated by an ammonium IL. The focused-ion-beam (FIB) technique enabled TEM/EDS examination on the cross section of the boundary film to provide direct measurement of the film thickness, visualization of the nanostructure, and analysis of composition. In addition, composition-depth profiles were generated using XPS aided by ion-sputtering to reveal the composition change at different levels of the boundary film to investigate the film formation process.

  6. Study of micro/nanostructures formed by a nanosecond laser in gaseous environments for stainless steel surface coloring

    NASA Astrophysics Data System (ADS)

    Luo, Fangfang; Ong, Weili; Guan, Yingchun; Li, Fengping; Sun, Shufeng; Lim, G. C.; Hong, Minghui

    2015-02-01

    Micro/nanostructures are fabricated on the stainless steel surfaces by a nanosecond laser in different gaseous environments, including air, O2, N2 and Ar. Our results indicate that the dimensional feature of the micro/nanostructures is greatly affected by laser scanning speed as well as gaseous environment. The chemical composition of the structures can be flexibly adjusted by laser processing parameters. Oxygen-rich environment is found to boost the growth of the nanostructures. The coloring by the laser processing can be achieved on the laser treated stainless steel surfaces. The multicolor effect on the surfaces is found to be attributed to both feature dimension and chemical composition of the structures. The coloring of the metal surfaces has promising applications in surface marking and code identifying.

  7. Ion beam induced dissolution and precipitation of in situ formed Si-nanostructures in a-SiNx:H matrix

    NASA Astrophysics Data System (ADS)

    Singh, Sarab Preet; Ghosh, Santanu; Vijaya Prakash, G.; Khan, Saif A.; Kanjilal, D.; Srivastava, A. K.; Srivastava, Himanshu; Srivastava, P.

    2012-04-01

    We report here the response of in situ formed Si-nanostructures embedded in Si-rich hydrogenated amorphous silicon nitride matrix to 100 MeV Ni8+ ions irradiation under normal incidence at room temperature. Prior to irradiation, Si-nanostructures are amorphous in nature having partial crystallinity. Irradiation with a fluence of 5 × 1012 ions/cm2 leads to dissolution of Si-nanostructures. Nevertheless, irradiation with a relatively higher fluence of 1 × 1014 ions/cm2 enhances the nucleation and leads to the formation of amorphous Si-nanostructures. The results are understood on the basis of intense electronic energy loss induced hydrogen desorption and consequent rearrangement of the amorphous network under thermal spike formalism of ion-material interaction.

  8. Nanostructures formed by displacement of porous silicon with copper: from nanoparticles to porous membranes

    PubMed Central

    2012-01-01

    The application of porous silicon as a template for the fabrication of nanosized copper objects is reported. Three different types of nanostructures were formed by displacement deposition of copper on porous silicon from hydrofluoric acid-based solutions of copper sulphate: (1) copper nanoparticles, (2) quasi-continuous copper films, and (3) free porous copper membranes. Managing the parameters of porous silicon (pore sizes, porosity), deposition time, and wettability of the copper sulphate solution has allowed to achieve such variety of the copper structures. Elemental and structural analyses of the obtained structures are presented. Young modulus measurements of the porous copper membrane have been carried out and its modest activity in surface enhanced Raman spectroscopy is declared. PMID:22916840

  9. Nanostructural Units in Disordered Network-Forming Materials and the Origin of Intermediate Range Order

    NASA Astrophysics Data System (ADS)

    Massobrio, C.

    Disordered network-forming materials are characterized by structural order extending well beyond the first shell of neighbors. For these reasons, reliable atomic-scale modeling is ideally suited to complement experiments in the search of the microscopic origins of this behavior. A key to understand why these systems have specific structural properties is to focus on the nanostructural units by which they are composed. By analyzing the role played by these units, one is able to put forth a valuable rationale accounting for the occurrence of intermediate range order. In this review, we present recent results obtained via first-principles molecular dynamics on a set of disordered network-forming materials, with special emphasis on the prototypical system GeSe2. In a short introduction we begin with explicit examples of differences, at the structure factor and pair correlation level, between networks exhibiting intermediate range order and those purely disordered at any length scale. Concerning our theoretical approach, we rely on density functional theory and first-principles molecular dynamics to follow the time trajectories at finite temperature of these networks and obtain statistical averages to be compared with the experimental quantities. Specific methodological issues pertaining to the simulation of disordered materials are analyzed in detail (size of the computational cell, role of exchange-correlation functional, and production of an amorphous phase). Then, three specific points are addressed by considering both experimental and simulation results: first, the atomic-scale signature of intermediate range order as it manifests itself via the appearance of the first sharp diffraction peak in the total neutron structure factor; second, the correlation existing between fluctuations of concentration on the intermediate distances scale and the shape taken by the partial structure factors; and third, the establishment of the nanostructural units responsible for the

  10. Nanostructure characterisation of flow-formed Cr-Mo-V steel using transmission Kikuchi diffraction technique.

    PubMed

    Birosca, S; Ding, R; Ooi, S; Buckingham, R; Coleman, C; Dicks, K

    2015-06-01

    Nowadays flow-forming has become a desired near net shape manufacturing method as it provides excellent mechanical properties with improved surface finish and significant manufacturing cost reduction. However, the material is subjected to excessive plastic deformation during flow-forming process, generating a very fine and complex microstructure. In addition, the intense dislocation density and residual stress that is generated in the component during processing makes the microstructure characterisation using conventional micro-analytical tools challenging. Thus, the microstructure/property relationship study in such a material is rather difficult. In the present study a flow-formed Cr-Mo-V steel nanostructure and crystallographic texture were characterised by means of Transmission Kikuchi Diffraction (TKD). Here, TKD is shown to be a powerful technique in revealing very fine martensite laths within an austenite matrix. Moreover, fine precipitates in the order of 20-70 nm on the martensite lath boundaries were clearly imaged and characterised. This greatly assisted in understanding the preferable site formation of the carbides in such a complex microstructure. The results showed that the actual TKD spatial resolution was in the range of 5-10 nm using 25 kV for flow-formed Cr-Mo-V steel. PMID:25697460

  11. Superhydrophilic nanostructure

    DOEpatents

    Mao, Samuel S; Zormpa, Vasileia; Chen, Xiaobo

    2015-05-12

    An embodiment of a superhydrophilic nanostructure includes nanoparticles. The nanoparticles are formed into porous clusters. The porous clusters are formed into aggregate clusters. An embodiment of an article of manufacture includes the superhydrophilic nanostructure on a substrate. An embodiment of a method of fabricating a superhydrophilic nanostructure includes applying a solution that includes nanoparticles to a substrate. The substrate is heated to form aggregate clusters of porous clusters of the nanoparticles.

  12. Role of artesian groundwater in forming Martian permafrost features

    NASA Technical Reports Server (NTRS)

    Howard, Alan D.

    1991-01-01

    Various landforms possibly related to formation (growth), movement, or decay of ground ice have been identified on Mars, including fretted terrain (ft) and associated lobate debris aprons (lda), the chaotic terrain, concentric crater fills (ccf), polygonal ground, softened terrain, small domes that are possibly pingos, and curvilinear (fingerprint) features (cuf). Glaciers may also have been present. Some of these may involve ice derived from artesian groundwater. Topical areas of discussion are: Mars groundwater and the location of permafrost features; the ft, lda, ccf, and cuf; role of artesian groundwater in formation of fretted terrain, lobate debris blankets, and concentric crater fills; sources of glacial ice; and pingos and other pseudovolcanic structures.

  13. Feature Article: Fast scanning tunnelling microscopy as a tool to understand changes on metal surfaces: from nanostructures to single atoms

    NASA Astrophysics Data System (ADS)

    Morgenstern, Karina

    2005-03-01

    The Feature Article [1] describes how structural changes in metallic nanostructures can be followed with fast scanning tunneling microscopy (STM). The title page shows the same spot of a Ag(111) surface at room temperature, imaged with STM approximately one hour apart. Intrinsic changes to prepared nano-structures are marked as Brownian motion of vacancy islands (rectangle), coalescence of two vacancy islands (hexagon), and decay of an adatom island (circle).Karina Morgenstern is now professor at the University of Hannover. Her research is placed within the field of nanoscience and is in particular devoted to thermally activated processes of metallic nanostructures, electronically activated reactions of molecules on metallic surfaces, and water-metal interactions.The present issue of physica status solidi (b) also contains the article Apperance of copper d9 defect centres in wide-gap CdSe nanoparticles: A high-fequency EPR study by N. R. J. Poolton et al. as Editor's Choice [2] as well as several papers on electrical and nonlinear optical properties from the European Conference on Organised Films (ECOF 2004) chaired by José Antonio de Saja, Valladolid.

  14. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties.

    PubMed

    Kvashnin, Dmitry G; Krasheninnikov, Arkady V; Shtansky, Dmitry; Sorokin, Pavel B; Golberg, Dmitri

    2016-01-14

    Magnesium (Mg) is one of the lightest industrially used metals. However, wide applications of Mg-based components require a substantial enhancement of their mechanical characteristics. This can be achieved by introducing small particles or fibers into the metal matrix. Using first-principles calculations, we investigate the stability and mechanical properties of a nanocomposite made of magnesium reinforced with boron nitride (BN) nanostructures (BN nanotubes and BN monolayers). We show that boron vacancies at the BN/Mg interface lead to a substantial increase in BN/Mg bonding establishing an efficient route towards the development of BN/Mg composite materials with enhanced mechanical properties. PMID:26662205

  15. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms

    PubMed Central

    Herranen, Anni; Schwarzbach, Armin; Gilbert, Leona

    2015-01-01

    The spirochaete bacterium Borrelia burgdorferi sensu lato is the causative agent of Lyme disease, the most common tick-borne infection in the northern hemisphere. There is a long-standing debate regarding the role of pleomorphic forms in Lyme disease pathogenesis, while very little is known about the characteristics of these morphological variants. Here, we present a comprehensive analysis of B. burgdorferi pleomorphic formation in different culturing conditions at physiological temperature. Interestingly, human serum induced the bacterium to change its morphology to round bodies (RBs). In addition, biofilm-like colonies in suspension were found to be part of B. burgdorferi’s normal in vitro growth. Further studies provided evidence that spherical RBs had an intact and flexible cell envelope, demonstrating that they are not cell wall deficient, or degenerative as previously implied. However, the RBs displayed lower metabolic activity compared with spirochaetes. Furthermore, our results indicated that the different pleomorphic variants were distinguishable by having unique biochemical signatures. Consequently, pleomorphic B. burgdorferi should be taken into consideration as being clinically relevant and influence the development of novel diagnostics and treatment protocols. PMID:25564498

  16. Spin-transfer torque and specific features of magnetic-state switching in vacuum tunnel nanostructures

    SciTech Connect

    Demin, G. D. Popkov, A. F.; Dyuzhev, N. A.

    2015-12-15

    The specific features of spin-transfer torque in vacuum tunnel structures with magnetic electrodes are investigated using the quasi-classical Sommerfeld model of electron conductivity, which takes into account the exchange splitting of the spin energy subbands of free electrons. Using the calculated voltage dependences of the transferred torques for a tunnel structure with cobalt electrodes and noncollinear magnetic moments in the electrodes, diagrams of stable spin states on the current–field parameter plane in the in-plane geometry of the initial magnetization are obtained.

  17. Nanostructures formed by self-assembly of negatively charged polymer and cationic surfactants.

    PubMed

    Nizri, G; Makarsky, A; Magdassi, S; Talmon, Y

    2009-02-17

    The formation of nanoparticles by interaction of an anionic polyelectrolyte, sodium polyacrylate (NaPA), was studied with a series of oppositely charged surfactants with different chain lengths, alkyltrimethylammonium bromide (CnTAB). The binding and formation of nanoparticles was characterized by dynamic light scattering, zeta-potential, and self-diffusion NMR. The inner nanostructure of the particles was observed by direct-imaging cryogenic-temperature transmission electron microscopy (cryo-TEM), indicating aggregates of hexagonal liquid crystal with nanometric size. PMID:19143559

  18. Influence of wet etching time cycles on morphology features of thin porous Anodic Aluminum oxide (AAO) template for nanostructure's synthesis

    NASA Astrophysics Data System (ADS)

    Chahrour, Khaled M.; Ahmed, Naser M.; Hashim, M. R.; Elfadill, Nezar G.; Al-Diabat, Ahmad M.; Bououdina, M.

    2015-12-01

    This study examines the influence of chemical wet etching time cycles on the morphological features of thin porous AAO template. Pore widening via wet-etching treatment at room temperature was found to modify the pore quality of AAO template and reduces the barrier layer on the bottom of AAO pore array in order to facilitate uniform electrodeposition of nanostructures onto AAO template. High quality AAO pore arrays with different mean pore diameters (64, 70, and 87 nm) were prepared under controllable pore-widening time cycles of 10, 30 and 45 min at room temperature, respectively. The AAO templates and the produced Cu nanorods were characterized using FESEM, EDX, XRD and AFM. The results indicate that the morphology of the aligned arrays of Cu nanorods is strongly affected by the duration of etching and the removal of AAO template. This study showed that the optimum etching duration required to maintain the aligned nanorods without any fracture is approximately 5 min. In addition, the regular hemispherical concave Al surface ensuring the self-ordering of AAO pore can be established when striping is employed for 45 min. Thus, it can be inferred that the duration of wet etching treatment (striping) of Al oxide film performed after the first-step anodization plays a vital role in the final arrangement of nanopores.

  19. Luminescent features of novel sol-gel derived lanthanide multi-doped oxyfluoride nano-structured phosphors for white LED

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; da Silva, Andréa F.; Bueno, Luciano A.; Costa, Ernande B.

    2011-03-01

    Rare-earth doped oxyfluoride 75SiO2:25PbF2 nano-structured phosphors for white-light-emitting diodes were synthesized by thermal treatment of precursor sol-gel derived glasses. Room temperature luminescence features of Eu3+, Sm3+, Tb3+, Eu3+/Tb3+ and Sm3+/Tb3+ ions incorporated into low-phonon-energy PbF2 nanocrystals dispersed in the aluminosilicate glass matrix and excited with UV(395 nm) and blue(405 nm) light emitting diodes was investigated. The luminescence spectra exhibited strong emission signals in the red(600, 610, 625, 646 nm), green(548, and 560 nm) and blue(485 nm) wavelength regions. White-light emission was observed in Sm/Tb and Eu/Tb double-doped activated phosphors employing UV-LED excitation at 395 nm. The dependence of the luminescence emission intensities upon annealing temperature, and rare-earth concentration was also examined. The results indicated that there exist optimum annealing temperature and activator ion concentration in order to obtain intense visible emission light with high color rendering index. The study suggest that the nanocomposite phosphor based upon 75SiO2:25PbF2 host herein reported is a promising contender for white-light LED applications.

  20. The alkyl linkers in tandem-homodimers of a β-sheet-forming nonapeptide affect the self-assembled nanostructures.

    PubMed

    Tomizaki, Kin-Ya; Tanaka, Atsushi; Shimada, Hiroki; Nishizawa, Koki; Wada, Tsubasa; Imai, Takahito

    2016-06-01

    There is increasing interest in designing smart biomaterials by employing the self-assembly characteristics of synthetic peptides. The use of amyloid-like fibrils is one approach to nanometer- and micrometer-sized supramolecular structures. However, it is generally difficult to predict and/or analyze peptide conformations in nanostructures generated by the self-assembly of β-sheet-forming peptides such as amyloid-β peptide because each peptide experiences a slightly different environment. Therefore, a methodology for rationally designing peptide-based smart materials is required. In this study, we demonstrate the design and synthesis of tandem-homodimers of a β-sheet-forming peptide where the amino acid sequence is duplicated in series and joined via alkyl linkers of different chain length. The conformations of these tandem-homodimers within the self-assembled nanoarchitectures in aqueous solution were characterized. Our findings demonstrate that the hydrophobicity and/or flexibility of the alkyl linkers significantly affect the peptide conformation (extended or bent) of the self-assembled peptide nanostructures. We believe that the present tandem-homodimerization method represents a new direction for the rational design of peptide-based smart biomaterials. PMID:27117426

  1. Nanostructured ZnO films in forms of rod, plate and flower: Electrodeposition mechanisms and characterization

    NASA Astrophysics Data System (ADS)

    Kıcır, Nur; Tüken, Tunç; Erken, Ozge; Gumus, Cebrail; Ufuktepe, Yuksel

    2016-07-01

    Uniformity and reproducibility of well-defined ZnO nanostructures are particularly important issues for fabrication and applications of these nanomaterials. In present study, we report selective morphology control during electrodeposition, by adjusting the hydroxyl generation rate and Zn(OH)2 deposition. In presence of remarkably high chloride concentration (0.3 M) and -1.0 V deposition potential, slow precipitation conditions were provided in 5 mM Zn(NO3)2 solution. By doing so, we have obtained highly ordered, vertically aligned and uniformly spaced hexagon shaped nanoplates, on ITO surface. We have also investigated the mechanism for shifting the morphology from rod/plate to flower like structure of ZnO, for better understanding the reproducibility. For this reason, the influence of various supporting electrolytes (sodium/ammonium salts of acetate) has been investigated for interpretation of the influence of OH- concentration nearby the surface. From rod to plate and flower nanostructures, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis were realized for characterization, also the optical properties were studied.

  2. Edge-based identification of DP-features on free-form solids.

    PubMed

    Lim, T; Medellin, H; Torres-Sanchez, C; Corney, J R; Ritchie, J M; Davies, J B C

    2005-06-01

    Numerous applications in mechanical CAD/CAM need robust algorithms for the identification of protrusion and depression features (DP-features) on geometric models with free-form (B-Spline) surfaces. This paper reports a partitioning algorithm that first identifies the boundary edges of DP-features and then creates a surface patch to cover the depressions or isolate the protrusions. The novelty of the method lies in the use of tangent continuity between edge segments to identify DP-feature boundaries that cross multiple faces and geometries. PMID:15943418

  3. Nanostructural Features in Silica-polyvinyl Acetate Nanocomposites Characterized by Small-Angle Scattering

    SciTech Connect

    Raghavan, Aravinda N; Thiyagarajan, P.; Zhu, Dr. Ai-Jun; Ash, Dr. Benjamin J.; Shofner, M. L.; Schadler, Linda; Kumar, Sanat K; Sternstein, S. S.

    2007-01-01

    Small-angle scattering (SAS) experiments were carried out on nanocomposites of poly(vinyl acetate) (PVAc) and fumed silica nanoparticles with different surface areas and chemical treatment, in the wave-vector (Q) range: 0.0002-1 A-1 . SAS data on composites with matrices of two different molecular weights indicate that the particle aggregation is independent of the molecular weight of the matrix for a fixed filler concentration and surface treatment. Particle size distributions derived from the SAS data suggest that particle aggregation is reduced when the native surface hydroxyl groups are blocked by various surface treatments, which also reduce the bonding strength to the polymer matrix. The unified exponential/power-law analysis of the SAS data shows three levels of hierarchy in the organization of silica particles. The first level consists of small aggregates of silica particles. At the second level we observe polydispersed aggregates resembling mass-fractal objects that is corroborated by TEM. The polydispersed aggregates further associate to form agglomerates at the third level. The relevance of these findings to the mechanism of nanofiller reinforcement of linear amorphous polymers above Tg is discussed.

  4. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties.

    PubMed

    Liang, Yuan-Chang; Lung, Tsai-Wen

    2016-12-01

    CdS crystallites with rod- and flower-like architectures were synthesized using a facile hydrothermal growth method. The hexagonal crystal structure of CdS dominated the growth mechanisms of the rod- and flower-like crystallites under specific growth conditions, as indicated by structural analyses. The flower-like CdS crystallites had a higher crystal defect density and lower optical band gap value compared with the rod-like CdS crystallites. The substantial differences in microstructures and optical properties between the rod- and flower-like CdS crystallites revealed that the flower-like CdS crystallites exhibited superior photoactivity, and this performance could be further enhanced through appropriate thermal annealing in ambient air. A postannealing procedure conducted in ambient air oxidized the surfaces of the flower-like CdS crystallites and formed a CdO phase. The formation of heterointerfaces between the CdS and CdO phases mainly contributed to the improved photoactivity of the synthesized flower-like CdS crystallites. PMID:27216602

  5. Growth of Hydrothermally Derived CdS-Based Nanostructures with Various Crystal Features and Photoactivated Properties

    NASA Astrophysics Data System (ADS)

    Liang, Yuan-Chang; Lung, Tsai-Wen

    2016-05-01

    CdS crystallites with rod- and flower-like architectures were synthesized using a facile hydrothermal growth method. The hexagonal crystal structure of CdS dominated the growth mechanisms of the rod- and flower-like crystallites under specific growth conditions, as indicated by structural analyses. The flower-like CdS crystallites had a higher crystal defect density and lower optical band gap value compared with the rod-like CdS crystallites. The substantial differences in microstructures and optical properties between the rod- and flower-like CdS crystallites revealed that the flower-like CdS crystallites exhibited superior photoactivity, and this performance could be further enhanced through appropriate thermal annealing in ambient air. A postannealing procedure conducted in ambient air oxidized the surfaces of the flower-like CdS crystallites and formed a CdO phase. The formation of heterointerfaces between the CdS and CdO phases mainly contributed to the improved photoactivity of the synthesized flower-like CdS crystallites.

  6. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Ye; Zhou, Ning; Shi, Junfeng; Pochapsky, Susan Sondej; Pochapsky, Thomas C.; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2015-02-01

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  7. Atomically Traceable Nanostructure Fabrication.

    PubMed

    Ballard, Josh B; Dick, Don D; McDonnell, Stephen J; Bischof, Maia; Fu, Joseph; Owen, James H G; Owen, William R; Alexander, Justin D; Jaeger, David L; Namboodiri, Pradeep; Fuchs, Ehud; Chabal, Yves J; Wallace, Robert M; Reidy, Richard; Silver, Richard M; Randall, John N; Von Ehr, James

    2015-01-01

    Reducing the scale of etched nanostructures below the 10 nm range eventually will require an atomic scale understanding of the entire fabrication process being used in order to maintain exquisite control over both feature size and feature density. Here, we demonstrate a method for tracking atomically resolved and controlled structures from initial template definition through final nanostructure metrology, opening up a pathway for top-down atomic control over nanofabrication. Hydrogen depassivation lithography is the first step of the nanoscale fabrication process followed by selective atomic layer deposition of up to 2.8 nm of titania to make a nanoscale etch mask. Contrast with the background is shown, indicating different mechanisms for growth on the desired patterns and on the H passivated background. The patterns are then transferred into the bulk using reactive ion etching to form 20 nm tall nanostructures with linewidths down to ~6 nm. To illustrate the limitations of this process, arrays of holes and lines are fabricated. The various nanofabrication process steps are performed at disparate locations, so process integration is discussed. Related issues are discussed including using fiducial marks for finding nanostructures on a macroscopic sample and protecting the chemically reactive patterned Si(100)-H surface against degradation due to atmospheric exposure. PMID:26274555

  8. Effect of Polyelectrolyte Stiffness and Solution pH on the Nanostructure of Complexes Formed by Cationic Amphiphiles and Negatively Charged Polyelectrolytes.

    PubMed

    Ram-On, Maor; Cohen, Yachin; Talmon, Yeshayahu

    2016-07-01

    The interaction between amphiphiles and polyelectrolytes has been widely investigated in recent years due to their potential application in industry and medicine, with special focus on gene therapy. The cationic lipid dioleoyl trimethylammonium propane, DOTAP, and the oppositely charged polyelectrolytes, sodium poly(acrylic acid) and sodium poly(styrenesulfonate), form multilamellar complexes in water. Because of the different molecular stiffness of the two polyelectrolytes, they form different nanostructured complexes. Also, because of the different ionization behavior of the two polyelectrolytes, pH differently affects the complexation of the polyelectrolytes with didodecyldimethylammonium bromide (DDAB), another cationic surfactant. We used cryogenic temperature transmission electron microscopy (cryo-TEM) and small-angle X-ray scattering (SAXS) to compare the nanostructures formed. Our results show that although the basic nanostructures of the complexes are always lamellar (multilamellar or unilamellar) the morphology of the complexes is affected by the polyelectrolyte rigidity and the solution pH. PMID:27049758

  9. Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures.

    PubMed

    Sakar, M; Balakumar, S; Saravanan, P; Bharathkumar, S

    2016-01-14

    We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Visible diffuse reflectance spectroscopy analysis respectively. The temperature dependent magnetic studies carried out using a SQUID magnetometer suggested that the origin of the magnetic properties in the pure BFO system could be the emergence of an antiferromagnetic-core/ferromagnetic-shell like structure, in contrast to the modified spin canted structures in the case of the BSFO nanostructures. The observed photocatalytic efficiency was attributed to the enhanced band bending process and recombination resistance in the BSFO nanostructures. For a comparative study, the photocatalytic activities of some selected compositions were also investigated under simulated solar light along with natural solar light. PMID:26667276

  10. Particulates vs. fibers: dimension featured magnetic and visible light driven photocatalytic properties of Sc modified multiferroic bismuth ferrite nanostructures

    NASA Astrophysics Data System (ADS)

    Sakar, M.; Balakumar, S.; Saravanan, P.; Bharathkumar, S.

    2015-12-01

    We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Visible diffuse reflectance spectroscopy analysis respectively. The temperature dependent magnetic studies carried out using a SQUID magnetometer suggested that the origin of the magnetic properties in the pure BFO system could be the emergence of an antiferromagnetic-core/ferromagnetic-shell like structure, in contrast to the modified spin canted structures in the case of the BSFO nanostructures. The observed photocatalytic efficiency was attributed to the enhanced band bending process and recombination resistance in the BSFO nanostructures. For a comparative study, the photocatalytic activities of some selected compositions were also investigated under simulated solar light along with natural solar light.We report the magnetic and visible light driven photocatalytic properties of scandium (Sc) substituted bismuth ferrite (BSFO) particulate and fiber nanostructures. An increasing concentration of Sc was found to reduce the crystallite size, particle size and band gap energy of the BSFO nanostructures, which was evident from X-ray diffraction, field emission scanning electron microscopy and UV-Visible diffuse reflectance spectroscopy analysis respectively. The temperature dependent magnetic studies carried out using a SQUID magnetometer suggested that the origin of the magnetic properties in the pure BFO system could be the emergence of an antiferromagnetic-core/ferromagnetic-shell like structure, in contrast to the modified spin canted structures in the case of the BSFO nanostructures. The observed photocatalytic efficiency was attributed to the enhanced band bending process

  11. Form drag in rivers due to small-scale natural topographic features: 1. Regular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    Small-scale topographic features are commonly found on the boundaries of natural rivers, streams, and floodplains. A simple method for determining the form drag on these features is presented, and the results of this model are compared to laboratory measurements. The roughness elements are modeled as Gaussian-shaped features defined in terms of three parameters: a protrusion height, H; a streamwise length scale, ??; and a spacing between crests, ??. This shape is shown to be a good approximation to a wide variety of natural topographic bank features. The form drag on an individual roughness element embedded in a series of identical elements is determined using the drag coefficient of the individual element and a reference velocity that includes the effects of roughness elements further upstream. In addition to calculating the drag on each element, the model determines the spatially averaged total stress, skin friction stress, and roughness height of the boundary. The effects of bank roughness on patterns of velocity and boundary shear stress are determined by combining the form drag model with a channel flow model. The combined model shows that drag on small-scale topographic features substantially alters the near-bank flow field. These methods can be used to improve predictions of flow resistance in rivers and to form the basis for fully predictive (no empirically adjusted parameters) channel flow models. They also provide a foundation for calculating the near-bank boundary shear stress fields necessary for determining rates of sediment transport and lateral erosion.

  12. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines.

    PubMed

    Medina-Plaza, C; Furini, L N; Constantino, C J L; de Saja, J A; Rodri Guez-Mendez, M L

    2014-12-01

    A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir-Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc2) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by π-A isotherms, BAM, UV-vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc2:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir-Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc2 and SAuNPs inserted in the films and limits of detection in the range of 10(-7)molL(-1) were attained. PMID:25440670

  13. Feature-oriented regional modeling and simulations (FORMS) for the western South Atlantic: Southeastern Brazil region

    NASA Astrophysics Data System (ADS)

    Calado, L.; Gangopadhyay, A.; da Silveira, I. C. A.

    The multi-scale synoptic circulation system in the southeastern Brazil (SEBRA) region is presented using a feature-oriented approach. Prevalent synoptic circulation structures, or "features," are identified from previous observational studies. These features include the southward-flowing Brazil Current (BC), the eddies off Cabo São Tomé (CST - 22°S) and off Cabo Frio (CF - 23°S), and the upwelling region off CF and CST. Their synoptic water-mass ( T- S) structures are characterized and parameterized to develop temperature-salinity ( T- S) feature models. Following [Gangopadhyay, A., Robinson, A.R., Haley, P.J., Leslie, W.J., Lozano, C.J., Bisagni, J., Yu, Z., 2003. Feature-oriented regional modeling and simulation (forms) in the gulf of maine and georges bank. Cont. Shelf Res. 23 (3-4), 317-353] methodology, a synoptic initialization scheme for feature-oriented regional modeling and simulation (FORMS) of the circulation in this region is then developed. First, the temperature and salinity feature-model profiles are placed on a regional circulation template and objectively analyzed with available background climatology in the deep region. These initialization fields are then used for dynamical simulations via the Princeton Ocean Model (POM). A few first applications of this methodology are presented in this paper. These include the BC meandering, the BC-eddy interaction and the meander-eddy-upwelling system (MEUS) simulations. Preliminary validation results include realistic wave-growth and eddy formation and sustained upwelling. Our future plan includes the application of these feature models with satellite, in-situ data and advanced data-assimilation schemes for nowcasting and forecasting the SEBRA region.

  14. Static and Dynamical Properties of Ferroelectrics and Related Materials in Bulk and Nanostructure Forms

    NASA Astrophysics Data System (ADS)

    Gui, Zhigang

    Ferroelectrics (FE) and multiferroics (MFE) have attracted a lot of attentions due to their rich and novel properties. Studies towards FE and MFE are of both fundamental and technological importance. We use a first-principles-based effective Hamiltonian method, conventional ab-initio packages and linear-scale three-dimension fragment method to investigate several important issues about FE and MFE. Tuning the properties of FE and MFE films are essential for miniaturized device applications, which can be realized through epitaxial strain and growth direction. In this dissertation, we use the effective Hamiltonian method to study (i) BaTiO3 films grown along the (110) pseudocubic direction on various substrates, (ii) BaTiO3 films grown on a single substrate along directions varying from [001] to [110] via [111] pseudocubic direction. Optimized physical responses or curie temperatures are found along some special directions or under epitaxial strain of certain range. FE and MFE nanostructures are shown to possess electrical vortices (known as one type topological defect), which have the potential to be used in new memory devices. However, the dynamic mechanism behind them is barely known. We use the effective Hamiltonian method to reveal that there exists a distinct mode which is shown to be responsible for the formation of the electrical vortices and in the THz region. Spin-canted magnetic structures are commonly seen in MFE, which results in the coexistence of two or more magnetic order parameters in the same structure. Understanding the physics behind such coupled magnetic order parameters is of obvious benefit for the sake of control of the magnetic properties of such systems. We employ both the effective Hamiltonian and ab-initio methods to derive and prove there is a universal law that explicitly correlates various magnetic order parameters with the different types of oxygen octahedra rotations. FE or MFE possessing electrical vortices are experimentally shown to

  15. Form drag in rivers due to small-scale natural topographic features: 2. Irregular sequences

    USGS Publications Warehouse

    Kean, J.W.; Smith, J.D.

    2006-01-01

    The size, shape, and spacing of small-scale topographic features found on the boundaries of natural streams, rivers, and floodplains can be quite variable. Consequently, a procedure for determining the form drag on irregular sequences of different-sized topographic features is essential for calculating near-boundary flows and sediment transport. A method for carrying out such calculations is developed in this paper. This method builds on the work of Kean and Smith (2006), which describes the flow field for the simpler case of a regular sequence of identical topographic features. Both approaches model topographic features as two-dimensional elements with Gaussian-shaped cross sections defined in terms of three parameters. Field measurements of bank topography are used to show that (1) the magnitude of these shape parameters can vary greatly between adjacent topographic features and (2) the variability of these shape parameters follows a lognormal distribution. Simulations using an irregular set of topographic roughness elements show that the drag on an individual element is primarily controlled by the size and shape of the feature immediately upstream and that the spatial average of the boundary shear stress over a large set of randomly ordered elements is relatively insensitive to the sequence of the elements. In addition, a method to transform the topography of irregular surfaces into an equivalently rough surface of regularly spaced, identical topographic elements also is given. The methods described in this paper can be used to improve predictions of flow resistance in rivers as well as quantify bank roughness.

  16. Distinctive features of the microbiota associated with different forms of apical periodontitis

    PubMed Central

    Siqueira, José F.; Rôças, Isabela N.

    2009-01-01

    Microorganisms infecting the dental root canal system play an unequivocal role as causative agents of apical periodontitis. Although fungi, archaea, and viruses have been found in association with some forms of apical periodontitis, bacteria are the main microbial etiologic agents of this disease. Bacteria colonizing the root canal are usually organized in communities similar to biofilm structures. Culture and molecular biology technologies have demonstrated that the endodontic bacterial communities vary in species richness and abundance depending on the different types of infection and different forms of apical periodontitis. This review paper highlights the distinctive features of the endodontic microbiota associated with diverse clinical conditions. PMID:21523208

  17. Distinctive features of the microbiota associated with different forms of apical periodontitis.

    PubMed

    Siqueira, José F; Rôças, Isabela N

    2009-01-01

    Microorganisms infecting the dental root canal system play an unequivocal role as causative agents of apical periodontitis. Although fungi, archaea, and viruses have been found in association with some forms of apical periodontitis, bacteria are the main microbial etiologic agents of this disease. Bacteria colonizing the root canal are usually organized in communities similar to biofilm structures. Culture and molecular biology technologies have demonstrated that the endodontic bacterial communities vary in species richness and abundance depending on the different types of infection and different forms of apical periodontitis. This review paper highlights the distinctive features of the endodontic microbiota associated with diverse clinical conditions. PMID:21523208

  18. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-01

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  19. Influence of fourfold anisotropy form on hysteresis loop shape in ferromagnetic nanostructures

    SciTech Connect

    Ehrmann, Andrea; Blachowicz, Tomasz

    2014-08-15

    The dependence of the form of different mathematical depictions of fourfold magnetic anisotropies has been examined, using a simple macro-spin model. Strong differences in longitudinal and transverse hysteresis loops occur due to deviations from the usual phenomenological model, such as using absolute value functions. The proposed possible models can help understanding measurements on sophisticated magnetic nanosystems, like exchange bias layered structures employed in magnetic hard disk heads or magnetic nano-particles, and support the development of solutions with specific magnetization reversal behavior needed in novel magneto-electronic devices.

  20. Periodic nanostructures self-formed on silicon and silicon carbide by femtosecond laser irradiation

    NASA Astrophysics Data System (ADS)

    Gemini, Laura; Hashida, Masaki; Shimizu, Masahiro; Miyasaka, Yasuhiro; Inoue, Shunsuke; Tokita, Shigeki; Limpouch, Jiri; Mocek, Tomas; Sakabe, Shuji

    2014-10-01

    Laser-induced periodic surface structures (LIPSS) were formed on Si and SiC surfaces by irradiations with femtosecond laser pulses in air. Different kinds of self-organized structures appeared on Si and SiC at laser fluences slightly higher than the damage threshold, which was measured by confocal laser scanning microscope. The characteristic spatial periodicity of every observed structure was estimated reading the peak values of the 2D Fourier transform power spectra obtained from SEM images. The evolution of the spatial periodicity was finally studied with respect to both the laser fluence and the number of laser pulses. As already observed for metals, the behavior of the spatial periodicity on laser fluence can be related to the parametric decay of laser light into surface plasma waves. Our results suggest a wide applicability of the parametric decay model on different materials, making the model a useful tool in view of different applications of LIPSS.

  1. FUNCTION FOLLOWS FORM: ACTIVATION OF SHAPE & FUNCTION FEATURES DURING OBJECT IDENTIFICATION

    PubMed Central

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function follows form. We used eye movements to explore whether activating one object’s concept leads to the activation of others that share perceptual (shape) or abstract (function) features. Participants viewed four-picture displays and clicked on the picture corresponding to a heard word. In critical trials, the conceptual representation of one of the objects in the display was similar in shape or function (i.e., its purpose) to the heard word. Importantly, this similarity was not apparent in the visual depictions (e.g., for the target “frisbee,” the shape-related object was a triangular slice of pizza – a shape that a frisbee cannot take); preferential fixations on the related object were therefore attributable to overlap of the conceptual representations on the relevant features. We observed relatedness effects for both shape and function, but shape effects occurred earlier than function effects. We discuss the implications of these findings for current accounts of the representation of semantic memory. PMID:21417543

  2. Intermolecular interactions and solvent diffusion in ordered nanostructures formed by self-assembly of block copolymers

    NASA Astrophysics Data System (ADS)

    Gu, Zhiyong

    Hydrogels formed by Poloxamer poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) block copolymers find various pharmaceutical and biomedical applications. A variety of ordered structures can be exhibited by Poloxamer block copolymers in selective solvents such as water, for example, micellar cubic phase, hexagonal phase, lamellar phase, etc. We are interested in the thermodynamic and transport properties of water in such hydrogels that have an ordered (lyotropic liquid crystalline) structure. We have investigated the time evolution of water loss from Poloxamer gel films under a driving force of known water vapor pressure in the air in contact with the film. The experimental data on the drying process have been fitted to the diffusion equation for water in the film, under a boundary condition that includes the water concentration in the gel at infinite time; the water diffusion coefficient and other parameters have thus been obtained. The water chemical potential and osmotic pressure in the gel have been obtained from osmotic stress measurements. The osmotic pressure (force), together with data on the corresponding lyotropic liquid crystal spacing (distance) that we obtained from Small Angle X-Ray Scattering (SAXS) measurements, have been analyzed to provide information on the prevailing intermolecular (inter-assembly) forces in the gel. The forces in the gel reveal interactions that occur at two levels, that of the PEO coil and that of the PEO segment.

  3. One-step growth of Si{sub 3}N{sub 4} stem-branch featured nanostructures: Morphology control by VS and VLS mode

    SciTech Connect

    Wang Qiushi; Gao Wei; Shan Lianchen; Zhang Jian; Jin Yunxia; Cong Ridong; Cui Qiliang

    2011-09-15

    We report here one-step synthesis of Si{sub 3}N{sub 4} nanodendrites by selectively applying a vapor-solid (VS) and vapor-liquid-solid (VLS) strategy via direct current arc discharge method. The resultant nanodendrites were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy and X-ray powder diffraction. The spine-shaped nanodendrites were generated by a noncatalytic growth following a VS mode. The uniform secondary nanowire branches were epitaxial grown from two side surfaces of the nanowire stems. The pine-shaped nanodendrites were obtained through a catalytic growth in a VLS process. These branch nanowires were unsystematically grown from the nanocone-like stems. The photoluminescence spectra of the nanodendrites show a strong white light emission around 400-750 nm, suggesting their potential applications in light and electron emission devices. - Graphical abstract: Spine-shaped and pine-shaped Si{sub 3}N{sub 4} hierarchical nanostructures were synthesized by VS and VLS mode with plasma-assisted dc arc discharge method. Highlights: > Si{sub 3}N{sub 4} stem-branch featured nanostructures have been prepared. > Spine-shaped nanodendrites were generated by a noncatalytic growth following a VS mode. > Pine-shaped nanodendrites were obtained through a catalytic growth in a VLS process.

  4. Fractal features of soil particle size distribution in newly formed wetlands in the Yellow River Delta

    PubMed Central

    Yu, Junbao; Lv, Xiaofei; Bin, Ma; Wu, Huifeng; Du, Siyao; Zhou, Mo; Yang, Yanming; Han, Guangxuan

    2015-01-01

    The characteristic of particle size distribution (PSD) in the newly formed wetlands in coast has seldom been studied. We applied fractal-scaling theory in assessing soil particle size distribution (PSD) features of newly formed wetlands in the Yellow River Delta (YRD), China. The singular fractal dimensions (D) values ranged from 1.82 to 1.90, the capacity dimension (D0) values ranged from 0.84 to 0.93, and the entropy dimension (D1) values ranged from 0.66 to 0.84. Constrained corresponding analysis revealed that 43.5% of the variance in soil PSD can be explained by environmental factors, including 14.7% by seasonal variation, 8.6% by soil depth, and 8.0% by vegetation type. The fractal dimensions D and D1 were sensitive with fine particles with size ranging less than 126 μm, and D0 was sensitive with coarse particles with size ranging between 126 μm to 2000 μm. Fractal analysis makes full use of soil PSD information, and offers a useful approach to quantify and assess the soil physical attributes in the newly formed wetland. PMID:26014107

  5. Microstructure and Mechanical Properties of Nanostructured and Ultrafine-Grained Titanium and the Zirconium Formed by the Method of Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Eroshenko, A. Yu.; Danilov, V. I.; Tolmachev, A. I.; Uvarkin, P. V.; Abzaev, Yu. A.

    2014-02-01

    Results of investigation of the microstructure, mechanical properties, and thermostability of bioinert titanium VT1-0 and zirconium E110 in nanostructured and ultrafine-grained states formed by combined methods of severe plastic deformation, including abc pressing in a press-mould or without it and multipass rolling in grooved or smooth rolls, are presented. It is demonstrated that the combined severe plastic deformation method allows titanium and zirconium billets in nanostructured and ultrafine-grained states to be obtained that provides substantial improvement of the mechanical properties comparable to the properties of titanium alloys, for example, VT6 and VT16 ones. The yield strength and the microhardness of titanium and zirconium obey the Hall-Petch relationship.

  6. Channels and valleys on Mars: Cold climate features formed as a result of a thickening cryosphere

    USGS Publications Warehouse

    Carr, M.H.

    1996-01-01

    Large flood channels, valley networks, and a variety of features attributed to the action of ground ice indicate that Mars emerged from heavy bombardment around 3.8Gyr ago, with an inventory of water at the surface equivalent to at least a few hundred meters spread over the whole planet, as compared with 3 km for the Earth. The surface water resided primarily in a porous, kilometers thick, megaregolith created by the high impact rates. At the end of heavy bombardment a rapid decline in erosion rates by a factor of 1000 suggests a major change in the global climate. It is proposed that at this time the climate became similar to today's and that this climate has been maintained throughout the rest of Mars' history. The various drainage features represent an adjustment of the distribution of water to the surface relief inherited from the period of heavy bombardment and to a thickening of the cryosphere as the heat flow declined. The valley networks formed mostly at the end of heavy bombardment when erosion rates were high and climatic conditions permitted an active water cycle. They continued to form after heavy bombardment when the cryosphere started to form by a combination of episodic flooding and mass-wasting aided by the presence of liquid water at shallow depths. As the cryosphere thickened with declining heat flow, water could no longer easily access the surface and the rate of valley formation declined. Hydrostatic pressures built below the cryosphere. Eruptions of groundwater became more catastrophic and massive floods resulted, mainly in upper Hesperian time. Flood sources were preferentially located in low-lying, low-latitude areas where the cryosphere was thin, or near volcanoes where a thinner than typical cryosphere is also expected. Floods caused a drawdown in the global water table so that few formed in the second half of Mars' history. The floodwaters pooled in low-lying areas, mostly in the northern plains. Some of the water may still be present as

  7. Characterization and optimization of illumination vector for contouring surface form and feature using DSPI

    NASA Astrophysics Data System (ADS)

    Song, Chaolong; Prasad A. S., Guru; Chan, Kelvin H. K.; Murukeshan, Vadakke Matham

    2016-06-01

    Surface defect or damage is one of the critical factors leading to the failure of engineering materials and structures. The methodologies for the measurement of surface shape and feature or defect have been extensively explored and developed over the past few decades, including both contact and non-contact methods. Speckle pattern interferometry, as a non-contact optical method, has been demonstrated to effectively contour the surface shape through adjusting the illumination vector. However, few studies have been made to investigate the effect of the initial position of the illumination source as well as the source translation direction. In this paper, we report to carry out a study of measuring the surface form and feature using digital speckle pattern interferometry system via a slight translation of illumination source. Through theoretically analyzing the sensitivity factor along with the experimental validation, it is shown that the contouring fringe is more sensitive to the surface height with an off-axis illumination than the paraxial illumination. It is also found that translating the source along axial and lateral direction can be both used for the surface shape re-construction.

  8. Characterization and optimization of illumination vector for contouring surface form and feature using DSPI.

    PubMed

    Song, Chaolong; Prasad A S, Guru; Chan, Kelvin H K; Murukeshan, Vadakke Matham

    2016-06-01

    Surface defect or damage is one of the critical factors leading to the failure of engineering materials and structures. The methodologies for the measurement of surface shape and feature or defect have been extensively explored and developed over the past few decades, including both contact and non-contact methods. Speckle pattern interferometry, as a non-contact optical method, has been demonstrated to effectively contour the surface shape through adjusting the illumination vector. However, few studies have been made to investigate the effect of the initial position of the illumination source as well as the source translation direction. In this paper, we report to carry out a study of measuring the surface form and feature using digital speckle pattern interferometry system via a slight translation of illumination source. Through theoretically analyzing the sensitivity factor along with the experimental validation, it is shown that the contouring fringe is more sensitive to the surface height with an off-axis illumination than the paraxial illumination. It is also found that translating the source along axial and lateral direction can be both used for the surface shape re-construction. PMID:27370435

  9. Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system

    PubMed Central

    2011-01-01

    In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures. PMID:21943330

  10. Features of silicon-containing coatings deposition from ablation plasma formed by a powerful ion beam

    NASA Astrophysics Data System (ADS)

    Sazonov, R.; Kholodnaya, G.; Ponomarev, D.; Remnev, G.; Khailov, I.

    2014-11-01

    This paper presents the research of features of silicon-containing coatings deposition from ablation plasma, which is formed by a powerful ion beam at the influence on a microsized pressed powder of SiO2. Experimental research have been conducted with a laboratory setup based on a TEMP-4M pulsed ion accelerator in a double-pulse forming mode; the first is negative (300-500 ns, 100-150 kV), and the second is positive (150 ns, 250-300 kV). A beam composition: C+ ions (60-70 %) and protons, the ion current density on the target is 25±5 A/cm2. An electron self-magnetically insulated diode has been used to generate the ion beam in the TEMP-4M accelerator. The properties of obtained silicon-containing films have been analyzed with the help of IR spectroscopy. A surface structure has been studied by the method of scanning electron microscopy.

  11. Covalent Self-Assembly and One-Step Photocrosslinking of Tyrosine-Rich Oligopeptides to Form Diverse Nanostructures.

    PubMed

    Min, Kyoung-Ik; Yun, Gyeongwon; Jang, Yoonjung; Kim, Kyung-Rok; Ko, Young Ho; Jang, Hyung-Seok; Lee, Yoon-Sik; Kim, Kimoon; Kim, Dong-Pyo

    2016-06-01

    We present covalently self-assembled peptide hollow nanocapsule and peptide lamella. These biomimetic dityrosine peptide nanostructures are synthesized by one-step photopolymerization of a tyrosine-rich short peptide without the aid of a template. This simple approach offers direct synthesis of fluorescent peptide nanocages and free-standing thin films. The simple crosslinked peptide lamella films provide robust mechanical properties with an elastic modulus of approximately 30 GPa and a hardness of 740 MPa. These nanostructures also allow for the design of peptidosomes. The approach taken here represents a rare example of covalent self-assembly of short peptides into nano-objects, which may be useful as microcompartments and separation membranes. PMID:27062089

  12. Photocurrent detection of chemically tuned hierarchical ZnO nanostructures grown on seed layers formed by atomic layer deposition

    PubMed Central

    2012-01-01

    We demonstrate the morphological control method of ZnO nanostructures by atomic layer deposition (ALD) on an Al2O3/ZnO seed layer surface and the application of a hierarchical ZnO nanostructure for a photodetector. Two layers of ZnO and Al2O3 prepared using ALD with different pH values in solution coexisted on the alloy film surface, leading to deactivation of the surface hydroxyl groups. This surface complex decreased the ZnO nucleation on the seed layer surface, and thereby effectively screened the inherent surface polarity of ZnO. As a result, a 2-D zinc hydroxyl compound nanosheet was produced. With increasing ALD cycles of ZnO in the seed layer, the nanostructure morphology changes from 2-D nanosheet to 1-D nanorod due to the recovery of the natural crystallinity and polarity of ZnO. The thin ALD ZnO seed layer conformally covers the complex nanosheet structure to produce a nanorod, then a 3-D, hierarchical ZnO nanostructure was synthesized using a combined hydrothermal and ALD method. During the deposition of the ALD ZnO seed layer, the zinc hydroxyl compound nanosheets underwent a self-annealing process at 150 °C, resulting in structural transformation to pure ZnO 3-D nanosheets without collapse of the intrinsic morphology. The investigation on band electronic properties of ZnO 2-D nanosheet and 3-D hierarchical structure revealed noticeable variations depending on the richness of Zn-OH in each morphology. The improved visible and ultraviolet photocurrent characteristics of a photodetector with the active region using 3-D hierarchical structure against those of 2-D nanosheet structure were achieved. PMID:22672780

  13. Structural and optical properties of ZnMgO nanostructures formed by Mg in-diffused ZnO nanowires

    SciTech Connect

    Pan, C.-J.; Hsu, H.-C.; Cheng, H.-M.; Wu, C.-Y.; Hsieh, W.-F.

    2007-04-15

    ZnMgO nanostructures with wurtzite phase were prepared by thermal diffusion of Mg into the ZnO nanowires. As ZnO light-emitting devices have been operated by using ZnMgO layers as energy barrier layers to confine the carriers, it is essential to realize the characterization of ZnMgO particularly. In this work, the Mg content in Zn{sub 1} {sub -x} Mg {sub x} O alloy determined by X-ray diffraction (XRD) and photoluminescence (PL) shows a good coincidence. The variation of lattice constant and the blueshift of near-band-edge emission indicate that Zn{sup 2+} ions are successfully substituted by Mg{sup 2+} ions in the ZnO lattice. In Raman-scattering studies, the change of E {sub 2}(high) phonon line shape in ZnO:Mg nanostructures reveals the microscopic substitutional disorder. In addition to the host phonons of ZnO, two additional bands around 383 and 510 cm{sup -1} are presumably attributed to the Mg-related vibrational modes. - Graphical abstract: We reported the synthesis of the ZnMgO nanostructures prepared by a simple vapor transport method. Magnesium-related anomalous modes are observed by Raman spectra for the first time in ZnMgO system.

  14. Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium.

    PubMed

    Hu, Hongjie; Qiao, Yuqin; Meng, Fanhao; Liu, Xuanyong; Ding, Chuanxian

    2013-01-01

    To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating. PMID:22796775

  15. Fast classification of meat spoilage markers using nanostructured ZnO thin films and unsupervised feature learning.

    PubMed

    Längkvist, Martin; Coradeschi, Silvia; Loutfi, Amy; Rayappan, John Bosco Balaguru

    2013-01-01

    This paper investigates a rapid and accurate detection system for spoilage in meat. We use unsupervised feature learning techniques (stacked restricted Boltzmann machines and auto-encoders) that consider only the transient response from undoped zinc oxide, manganese-doped zinc oxide, and fluorine-doped zinc oxide in order to classify three categories: the type of thin film that is used, the type of gas, and the approximate ppm-level of the gas. These models mainly offer the advantage that features are learned from data instead of being hand-designed. We compare our results to a feature-based approach using samples with various ppm level of ethanol and trimethylamine (TMA) that are good markers for meat spoilage. The result is that deep networks give a better and faster classification than the feature-based approach, and we thus conclude that the fine-tuning of our deep models are more efficient for this kind of multi-label classification task. PMID:23353140

  16. Fast Classification of Meat Spoilage Markers Using Nanostructured ZnO Thin Films and Unsupervised Feature Learning

    PubMed Central

    Längkvist, Martin; Coradeschi, Silvia; Loutfi, Amy; Rayappan, John Bosco Balaguru

    2013-01-01

    This paper investigates a rapid and accurate detection system for spoilage in meat. We use unsupervised feature learning techniques (stacked restricted Boltzmann machines and auto-encoders) that consider only the transient response from undoped zinc oxide, manganese-doped zinc oxide, and fluorine-doped zinc oxide in order to classify three categories: the type of thin film that is used, the type of gas, and the approximate ppm-level of the gas. These models mainly offer the advantage that features are learned from data instead of being hand-designed. We compare our results to a feature-based approach using samples with various ppm level of ethanol and trimethylamine (TMA) that are good markers for meat spoilage. The result is that deep networks give a better and faster classification than the feature-based approach, and we thus conclude that the fine-tuning of our deep models are more efficient for this kind of multi-label classification task. PMID:23353140

  17. Function Follows Form: Activation of Shape and Function Features during Object Identification

    ERIC Educational Resources Information Center

    Yee, Eiling; Huffstetler, Stacy; Thompson-Schill, Sharon L.

    2011-01-01

    Most theories of semantic memory characterize knowledge of a given object as comprising a set of semantic features. But how does conceptual activation of these features proceed during object identification? We present the results of a pair of experiments that demonstrate that object recognition is a dynamically unfolding process in which function…

  18. Building a Relationship between Elements of Product Form Features and Vocabulary Assessment Models

    ERIC Educational Resources Information Center

    Lo, Chi-Hung

    2016-01-01

    Based on the characteristic feature parameterization and the superiority evaluation method (SEM) in extension engineering, a product-shape design method was proposed in this study. The first step of this method is to decompose the basic feature components of a product. After that, the morphological chart method is used to segregate the ideas so as…

  19. Methods for the Precise Locating and Forming of Arrays of Curved Features into a Workpiece

    DOEpatents

    Gill, David Dennis; Keeler, Gordon A.; Serkland, Darwin K.; Mukherjee, Sayan D.

    2008-10-14

    Methods for manufacturing high precision arrays of curved features (e.g. lenses) in the surface of a workpiece are described utilizing orthogonal sets of inter-fitting locating grooves to mate a workpiece to a workpiece holder mounted to the spindle face of a rotating machine tool. The matching inter-fitting groove sets in the workpiece and the chuck allow precisely and non-kinematically indexing the workpiece to locations defined in two orthogonal directions perpendicular to the turning axis of the machine tool. At each location on the workpiece a curved feature can then be on-center machined to create arrays of curved features on the workpiece. The averaging effect of the corresponding sets of inter-fitting grooves provide for precise repeatability in determining, the relative locations of the centers of each of the curved features in an array of curved features.

  20. Can two dots form a Gestalt? Measuring emergent features with the capacity coefficient.

    PubMed

    Hawkins, Robert X D; Houpt, Joseph W; Eidels, Ami; Townsend, James T

    2016-09-01

    While there is widespread agreement among vision researchers on the importance of some local aspects of visual stimuli, such as hue and intensity, there is no general consensus on a full set of basic sources of information used in perceptual tasks or how they are processed. Gestalt theories place particular value on emergent features, which are based on the higher-order relationships among elements of a stimulus rather than local properties. Thus, arbitrating between different accounts of features is an important step in arbitrating between local and Gestalt theories of perception in general. In this paper, we present the capacity coefficient from Systems Factorial Technology (SFT) as a quantitative approach for formalizing and rigorously testing predictions made by local and Gestalt theories of features. As a simple, easily controlled domain for testing this approach, we focus on the local feature of location and the emergent features of Orientation and Proximity in a pair of dots. We introduce a redundant-target change detection task to compare our capacity measure on (1) trials where the configuration of the dots changed along with their location against (2) trials where the amount of local location change was exactly the same, but there was no change in the configuration. Our results, in conjunction with our modeling tools, favor the Gestalt account of emergent features. We conclude by suggesting several candidate information-processing models that incorporate emergent features, which follow from our approach. PMID:25986994

  1. Nanostructured photovoltaics

    NASA Astrophysics Data System (ADS)

    Fu, Lan; Tan, H. Hoe; Jagadish, Chennupati

    2013-01-01

    Energy and the environment are two of the most important global issues that we currently face. The development of clean and sustainable energy resources is essential to reduce greenhouse gas emission and meet our ever-increasing demand for energy. Over the last decade photovoltaics, as one of the leading technologies to meet these challenges, has seen a continuous increase in research, development and investment. Meanwhile, nanotechnology, which is considered to be the technology of the future, is gradually revolutionizing our everyday life through adaptation and incorporation into many traditional technologies, particularly energy-related technologies, such as photovoltaics. While the record for the highest efficiency is firmly held by multijunction III-V solar cells, there has never been a shortage of new research effort put into improving the efficiencies of all types of solar cells and making them more cost effective. In particular, there have been extensive and exciting developments in employing nanostructures; features with different low dimensionalities, such as quantum wells, nanowires, nanotubes, nanoparticles and quantum dots, have been incorporated into existing photovoltaic technologies to enhance their performance and/or reduce their cost. Investigations into light trapping using plasmonic nanostructures to effectively increase light absorption in various solar cells are also being rigorously pursued. In addition, nanotechnology provides researchers with great opportunities to explore the new ideas and physics offered by nanostructures to implement advanced solar cell concepts such as hot carrier, multi-exciton and intermediate band solar cells. This special issue of Journal of Physics D: Applied Physics contains selected papers on nanostructured photovoltaics written by researchers in their respective fields of expertise. These papers capture the current excitement, as well as addressing some open questions in the field, covering topics including the

  2. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel.

    PubMed

    Bagherifard, Sara; Hickey, Daniel J; de Luca, Alba C; Malheiro, Vera N; Markaki, Athina E; Guagliano, Mario; Webster, Thomas J

    2015-12-01

    Substrate grain structure and topography play major roles in mediating cell and bacteria activities. Severe plastic deformation techniques, known as efficient metal-forming and grain refining processes, provide the treated material with novel mechanical properties and can be adopted to modify nanoscale surface characteristics, possibly affecting interactions with the biological environment. This in vitro study evaluates the capability of severe shot peening, based on severe plastic deformation, to modulate the interactions of nanocrystallized metallic biomaterials with cells and bacteria. The treated 316L stainless steel surfaces were first investigated in terms of surface topography, grain size, hardness, wettability and residual stresses. The effects of the induced surface modifications were then separately studied in terms of cell morphology, adhesion and proliferation of primary human osteoblasts (bone forming cells) as well as the adhesion of multiple bacteria strains, specifically Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and ampicillin-resistant Escherichia coli. The results indicated a significant enhancement in surface work hardening and compressive residual stresses, maintenance of osteoblast adhesion and proliferation as well as a remarkable decrease in the adhesion and growth of gram-positive bacteria (S. aureus and S. epidermidis) compared to non-treated and conventionally shot peened samples. Impressively, the decrease in bacteria adhesion and growth was achieved without the use of antibiotics, for which bacteria can develop a resistance towards anyway. By slightly grinding the surface of severe shot peened samples to remove differences in nanoscale surface roughness, the effects of varying substrate grain size were separated from those of varying surface roughness. The expression of vinculin focal adhesions from osteoblasts was found to be singularly and inversely related to grain size, whereas the attachment of gram

  3. Form feature and tolerance transfer from a 3D model to a setup planning system

    SciTech Connect

    Zhang, Hong-Chao; Zhou, Feng; Kuo, Tsai-Chi; Huang, S.H.

    1996-12-31

    Currently, most CAD systems, even the feature-based design systems which were developed for the need of CAPP, cannot provide exact information of an object (e.g., dimensions and tolerances). Some feature-based design systems can provide product data directly or indirectly; however, most CAPP systems still does not have interface with those CAD systems. The product data required by these CAPP systems usually has a specific format. In the CAPP system, it is essential for setup planning to ensure the precision of machining processes. Therefore, it is necessary to develop an interface with CAD models that the part data file can be obtained directly from CAD representation. This paper proposes an approach to integrate the setup planning system with a feature-based CAD system. By using an object-oriented approach - Product Data Translator (PDT), the compute-automated extraction of geometry and complete tolerance information is achieved; and the automated generation of tool approach direction was developed.

  4. Magnetic Behavior of Surface Nanostructured 50-nm Nickel Thin Films

    PubMed Central

    2010-01-01

    Thermally evaporated 50-nm nickel thin films coated on borosilicate glass substrates were nanostructured by excimer laser (0.5 J/cm2, single shot), DC electric field (up to 2 kV/cm) and trench-template assisted technique. Nanoparticle arrays (anisotropic growth features) have been observed to form in the direction of electric field for DC electric field treatment case and ruptured thin film (isotropic growth features) growth for excimer laser treatment case. For trench-template assisted technique; nanowires (70–150 nm diameters) have grown along the length of trench template. Coercive field and saturation magnetization are observed to be strongly dependent on nanostructuring techniques. PMID:21076670

  5. Self-seeding in one dimension: a route to uniform fiber-like nanostructures from block copolymers with a crystallizable core-forming block.

    PubMed

    Qian, Jieshu; Lu, Yijie; Chia, Anselina; Zhang, Meng; Rupar, Paul A; Gunari, Nikhil; Walker, Gilbert C; Cambridge, Graeme; He, Feng; Guerin, Gerald; Manners, Ian; Winnik, Mitchell A

    2013-05-28

    One-dimensional micelles formed by the self-assembly of crystalline-coil poly(ferrocenyldimethylsilane) (PFS) block copolymers exhibit self-seeding behavior when solutions of short micelle fragments are heated above a certain temperature and then cooled back to room temperature. In this process, a fraction of the fragments (the least crystalline fragments) dissolves at elevated temperature, but the dissolved polymer crystallizes onto the ends of the remaining seed fragments upon cooling. This process yields longer nanostructures (up to 1 μm) with uniform width (ca. 15 nm) and a narrow length distribution. In this paper, we describe a systematic investigation of factors that affect the self-seeding behavior of PFS block copolymer micelle fragments. For PI(1000)-PFS(50) (the subscripts refer to the number average degree of polymerization) in decane, these factors include the presence of a good solvent (THF) for PFS and the effect of annealing the fragments prior to the self-seeding experiments. THF promoted the dissolution of the micelle fragments, while preannealing improved their stability. We also extended our experiments to other PFS block copolymers with different corona-forming blocks. These included PI(637)-PFS(53) in decane, PFS(60)-PDMS(660) in decane (PDMS = polydimethylsiloxane), and PFS(30)-P2VP(300) in 2-propanol (P2VP = poly(2-vinylpyridine)). The most remarkable result of these experiments is our finding that the corona-forming chain plays an important role in affecting how the PFS chains crystallize in the core of the micelles and, subsequently, the range of temperatures over which the micelle fragments dissolve. Our results also show that self-seeding is a versatile approach to generate uniform PFS fiber-like nanostructures, and in principle, the method should be extendable to a wide variety of crystalline-coil block copolymers. PMID:23586519

  6. Effect of features on the functional form of the scalar power spectrum

    NASA Astrophysics Data System (ADS)

    Brooker, D. J.; Tsamis, N. C.; Woodard, R. P.

    2016-08-01

    We study how the scalar power spectrum of single-scalar inflation depends functionally on models with features which have been proposed to explain anomalies in the data. We exploit a new formalism based on evolving the norm-squared of the scalar mode functions, rather than the mode functions themselves.

  7. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity

    PubMed Central

    Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus

    2014-01-01

    Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838

  8. SPATIALLY RESOLVED POLYCYCLIC AROMATIC HYDROCARBON EMISSION FEATURES IN NEARBY, LOW METALLICITY, STAR-FORMING GALAXIES

    SciTech Connect

    Haynes, Korey; Cannon, John M.; Skillman, Evan D.; Gehrz, Robert; Jackson, Dale C. E-mail: khaynes5@gmu.ed E-mail: gehrz@astro.umn.ed

    2010-11-20

    Low-resolution, mid-infrared Spitzer/IRS spectral maps are presented for three nearby, low-metallicity dwarf galaxies (NGC 55, NGC 3109, and IC 5152) for the purpose of examining the spatial distribution and variation of polycyclic aromatic hydrocarbon (PAH) emission. The sample straddles a metallicity of 12 + log(O/H) {approx} 8, a transition point below which PAH intensity empirically drops and the character of the interstellar medium changes. We derive quantitative radiances of PAH features and atomic lines on both global and spatially resolved scales. The Spitzer spectra, combined with extensive ancillary data from the UV through the mid-infrared, allow us to examine changes in the physical environments and in PAH feature radiances down to a physical scale of {approx}50 pc. We discuss correlations between various PAH emission feature and atomic line radiances. The (6.2 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(11.3 {mu}m), (8.6 {mu}m)/(11.3 {mu}m), (7.7 {mu}m)/(6.2 {mu}m), and (8.6 {mu}m)/(6.2 {mu}m) PAH radiance ratios are found to be independent of position across all three galaxies, although the ratios do vary from galaxy to galaxy. As seen in other galaxies, we find no variation in the grain size distribution as a function of local radiation field strength. Absolute PAH feature intensities as measured by a ratio of PAH/(24 {mu}m) radiances are seen to vary both positionally within a given galaxy and from one galaxy to another when integrated over the full observed extent of each system. We examine direct comparisons of CC mode PAH ratios (7.7 {mu}m)/(6.2 {mu}m) and (8.6 {mu}m)/(6.2 {mu}m) to the mixed (CC/CH) mode PAH ratio (7.7 {mu}m)/(11.3 {mu}m). We find little variation in either mode and no difference in trends between modes. While the local conditions change markedly over the observed regions of these galaxies, the properties of PAH emission show a remarkable degree of uniformity.

  9. Part model of rotational components based on binary tree approach of form feature for CAD/CAPP/CAM

    NASA Astrophysics Data System (ADS)

    Cai, Ligang; Yin, Jun; Ma, Weidong; Li, Peigen; Duan, Zhengcheng

    1995-08-01

    From the application point of view of CIM or CAD/CAPP/CAM, there should be a unified part model through which the different application system can share the part information. Using feature as the basic information unit, form feature and its binary tree as the skeleton, a new practical part model regarding the rotational components is presented in this paper. The data structure of the model is discussed in detail. An application example of the model is shown in this article. The model has been found to be flexible and effective in part creation, representation, automatic process planning, and CAM.

  10. Structural features of normal and complemented forms of the Neurospora isopropylmalate isomerase.

    PubMed Central

    Reichenbecher, V E; Gross, S R

    1978-01-01

    The isopropylmalate isomerase (EC 4.2.1.33) of Neurospora crassa is a globular protein consisting of a single polypeptide chain with a molecular weight of about 90,000. The isomerase cannot easily be freed of a contaminating protease which cleaves the enzyme into two major fragments, one of approximately 56,000 and the other 37,000 daltons. This suggests that the folded polypeptide chain may contain some hinge point or loop exposed on the surface which makes it susceptible to proteolytic attack. Most of the isomerase activity extracted from the wild-type strain is in monomer form. However, a small fraction of the activity in crude extracts is found in multimeric aggregates, and the active isomerase extracted from complementing leu-2 heterokaryons consists entirely of dimers and higher multimers. These observations suggest that, though active as a monomer, a significant fraction of the normal enzyme might be organized in multimeric form within the cell. Images PMID:146703

  11. Investigation of influence of friction stir welding regimes on the features of mass transfer and temperature distribution in forming welds

    NASA Astrophysics Data System (ADS)

    Astafurov, S. V.; Shilko, E. V.; Kolubaev, E. A.; Psakhie, S. G.

    2015-10-01

    Computer simulation by the movable cellular automaton method was performed to study the influence of friction stir welding regimes on the features of intensive mass transfer and temperature distribution in forming welded joints. The calculation results showed that there is a range of optimal values of the ratio of the angular velocity to the welding speed which provides sufficient mass transfer to form a welded joint with a minimum volume content of defects. The use of the optimal FSW regimes allows to obtain joints without significant overheating of the welded materials.

  12. Creation of Principally New Generation of Switching Technique Elements (Reed Switches) with Nanostructured Contact Surfaces

    NASA Astrophysics Data System (ADS)

    Karabanov, S. M.; Zeltser, I. A.; Maizels, R. M.; Moos, E. N.; Arushanov, K. A.

    2011-04-01

    The cycle of activities of the creation of principally new generation of reed switches with nanostructured contact surfaces was implemented. Experimental justification of the opportunity of reed switches creation with modified contact surface was given (instead of precious metals-based galvanic coating). Principally new technological process of modification of magnetically operated contacts contacting surfaces was developed, based on the usage of the ion-plasma methods of nanolayers and nanostructures forming having specified contact features.

  13. Artificial feature-based multiview registration method for three-dimensional free-form object modeling

    NASA Astrophysics Data System (ADS)

    Ren, Tongqun; Zhu, Jigui; Guo, Yinbiao; Luo, Wei

    2010-05-01

    Two integral registration methods based on artificial features are described. In method one, independent global control points are designed to build a global coordinate system. Registration target and camera are also introduced to create intermediary coordinate systems. For each local scanning, one image of the whole measuring scene is shot by registration camera. Then local data can be unified to the global coordinate system by solving transition chains of various coordinate systems from this single image based on the projective geometry principle. In the other method, control points are placed on the object surface evenly and shot by registration camera from different positions and orientations. We solve their coordinates by employing the bundle adjustment method to build a global control network. The range sensor shoots at least three control points during each local scan. Then registration can be completed by mapping these control points into the global control network. In this work, the range sensor is untracked. Error accumulation and propagation are also effectively conquered, since overlapping of neighboring subregions is unessential. Experimental results are presented to show the feasibility of the proposed methods.

  14. Thermodynamic Features of Structural Motifs Formed by β-L-RNA

    PubMed Central

    Szabat, Marta; Gudanis, Dorota; Kotkowiak, Weronika; Gdaniec, Zofia; Kierzek, Ryszard; Pasternak, Anna

    2016-01-01

    This is the first report to provide comprehensive thermodynamic and structural data concerning duplex, hairpin, quadruplex and i-motif structures in β-L-RNA series. Herein we confirm that, within the limits of experimental error, the thermodynamic stability of enantiomeric structural motifs is the same as that of naturally occurring D-RNA counterparts. In addition, formation of D-RNA/L-RNA heterochiral duplexes is also observed; however, their thermodynamic stability is significantly reduced in reference to homochiral D-RNA duplexes. The presence of three locked nucleic acid (LNA) residues within the D-RNA strand diminishes the negative effect of the enantiomeric, complementary L-RNA strand in the formation of heterochiral RNA duplexes. Similar behavior is also observed for heterochiral LNA-2′-O-methyl-D-RNA/L-RNA duplexes. The formation of heterochiral duplexes was confirmed by 1H NMR spectroscopy. The CD curves of homochiral L-RNA structural motifs are always reversed, whereas CD curves of heterochiral duplexes present individual features dependent on the composition of chiral strands. PMID:26908023

  15. Form features provide a cue to the angular velocity of rotating objects

    PubMed Central

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2013-01-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity dependent upon its distance from the center of rotation, while the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different sized objects, as changing the size of an object changes the linear velocity of each location on the object’s surface, while maintaining the object’s angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  16. Form features provide a cue to the angular velocity of rotating objects.

    PubMed

    Blair, Christopher David; Goold, Jessica; Killebrew, Kyle; Caplovitz, Gideon Paul

    2014-02-01

    As an object rotates, each location on the object moves with an instantaneous linear velocity, dependent upon its distance from the center of rotation, whereas the object as a whole rotates with a fixed angular velocity. Does the perceived rotational speed of an object correspond to its angular velocity, linear velocities, or some combination of the two? We had observers perform relative speed judgments of different-sized objects, as changing the size of an object changes the linear velocity of each location on the object's surface, while maintaining the object's angular velocity. We found that the larger a given object is, the faster it is perceived to rotate. However, the observed relationships between size and perceived speed cannot be accounted for simply by size-related changes in linear velocity. Further, the degree to which size influences perceived rotational speed depends on the shape of the object. Specifically, perceived rotational speeds of objects with corners or regions of high-contour curvature were less affected by size. The results suggest distinct contour features, such as corners or regions of high or discontinuous contour curvature, provide cues to the angular velocity of a rotating object. PMID:23750970

  17. Membranous glomerulonephritis: histological and serological features to differentiate cancer-related and non-related forms.

    PubMed

    Murtas, Corrado; Ghiggeri, Gian Marco

    2016-08-01

    Membranous nephropathy is a frequent cause of nephrotic syndrome in adults. In most patients, it appears as a primary renal disease but in about 20 % of cases membranous nephropathy is associated with systemic conditions such as systemic lupus erythematosus, infections or cancer, or with drug exposure. Reliable differentiation between primary and secondary membranous nephropathy has important implications for the patient, because of different therapeutic approaches between the different forms. The recent in vivo definition of glomerular targets of autoimmunity in idiopathic membranous nephropathy represented a real breakthrough and nowadays more than one podocyte antigen is considered in some way implicated in the pathogenesis of human membranous nephropathy. Specific antibodies against all these components have been detected in serum of patients and could become biomarkers of membranous nephropathy and/or of disease activity. In this brief review, we discuss the usefulness of newly described autoantibodies in the differential diagnosis of secondary membranous nephropathy. Histological clues for recognizing the two pathological entities are also analysed with regard to the available scientific evidence on this issue. Our evaluation shows that more research is needed to identify the best approach to reach a correct diagnosis of primary or secondary membranous nephropathy. PMID:26810113

  18. Structure and spectral features of H+(H2O)7: Eigen versus Zundel forms

    NASA Astrophysics Data System (ADS)

    Shin, Ilgyou; Park, Mina; Min, Seung Kyu; Lee, Eun Cheol; Suh, Seung Bum; Kim, Kwang S.

    2006-12-01

    The two dimensional (2D) to three dimensional (3D) transition for the protonated water cluster has been controversial, in particular, for H+(H2O)7. For H+(H2O)7 the 3D structure is predicted to be lower in energy than the 2D structure at most levels of theory without zero-point energy (ZPE) correction. On the other hand, with ZPE correction it is predicted to be either 2D or 3D depending on the calculational levels. Although the ZPE correction favors the 3D structure at the level of coupled cluster theory with singles, doubles, and perturbative triples excitations [CCSD(T)] using the aug-cc-pVDZ basis set, the result based on the anharmonic zero-point vibrational energy correction favors the 2D structure. Therefore, the authors investigated the energies based on the complete basis set limit scheme (which we devised in an unbiased way) at the resolution of the identity approximation Møller-Plesset second order perturbation theory and CCSD(T) levels, and found that the 2D structure has the lowest energy for H+(H2O)7 [though nearly isoenergetic to the 3D structure for D+(D2O)7]. This structure has the Zundel-type configuration, but it shows the quantum probabilistic distribution including some of the Eigen-type configuration. The vibrational spectra of MP2/aug-cc-pVDZ calculations and Car-Parrinello molecular dynamics simulations, taking into account the thermal and dynamic effects, show that the 2D Zundel-type form is in good agreement with experiments.

  19. Growth of multifractal tungsten nanostructure by He bubble induced directional swelling

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Yoshida, Naoaki; Ohno, Noriyasu; Tsuji, Yoshiyuki

    2015-04-01

    Helium (He) plasma irradiation to tungsten (W) leads to morphology changes in nanometer scale by the formation and growth of He bubbles. Initially pinholes and protrusions are formed on the surface followed by the formation of nanostructures. In this study, based on experimental observation, the growth process of the fiberform nanostructures are revisited and the swelling process of the structure is discussed. The novel nanostructures are analyzed from the viewpoint of fractality. It is found that the number of the initially formed pinholes and its sizes have a fractal relation, indicating that the size and number of bubbles formed near the surface have fractality. The fractal dimension is estimated from the brightness variation of a transmission electron microscope (TEM) micrograph and gas adsorption property. Moreover, it is revealed from TEM image analysis that the nanostructure has multifractal feature, probably because of the fractality identified between the number and the size of bubbles near the surface.

  20. Detection of spinel ZnI n2O4 formed as nanostructures in ZnO

    NASA Astrophysics Data System (ADS)

    Sato, W.; Komatsuda, S.; Yamada, Y.; Ohkubo, Y.

    2014-12-01

    A local structure formed by dilute In ions doped in ZnO was investigated by means of a nuclear spectroscopic technique and density functional theory (DFT) calculations. Comparative studies on a presumably isomorphous CdI n2O4 unveiled the local structure: the impurity In ions form in ZnO a spinel ZnI n2O4 , which has been only a hypothetical binary oxide so far. The most stable structure of the spinel was determined by DFT calculations, and the hyperfine interaction parameters obtained for the structure show excellent agreement with the experimental values. The experimental synthesis and detection of the normal spinel ZnI n2O4 are presented.

  1. Solidification of Mg-Zn-Y Alloys at 6 GPa Pressure: Nanostructure, Phases Formed, and Their Stability

    NASA Astrophysics Data System (ADS)

    Zhou, Haitao; Liu, Keming; Zhang, Li; Atrens, Andrej; Yu, Jiuming; Li, Xiaolong

    2016-06-01

    Mg-Zn-Y alloys solidified under high pressure were characterized using XRD, DTA, SEM, and TEM. After solidification at atmospheric pressure, Mg-6Zn-1Y consisted of α-Mg, Mg7Zn3, and Mg3YZn6, while Mg-6Zn-3Y consisted of α-Mg, Mg3Y2Zn3, and Mg3YZn6. After solidification at 6 GPa pressure, both alloys consisted of α-Mg, MgZn, and Mg12YZn. The size and the shape of the second-phase particles formed for atmospheric solidification were significantly different to those formed for solidification at 6 GPa pressure. In Mg-6Zn-1Y, the second-phase size decreased from 300 to 50 nm, and the shape changed from needle like to blocky. In Mg-6Zn-3Y, the size decreased from 100 to 50 nm and the shape changed from short rod like to small and round. After aging at 200 °C for 12 h, the new MgZn phase transformed into the intermediate MgZn2 phase. Increasing the aging time to 24 h caused the intermediate MgZn2 phase to transform into Mg7Zn3 with a size of 50 nm, while the Mg12YZn phase remained unchanged.

  2. Formation of different gold nanostructures by silk nanofibrils.

    PubMed

    Fang, Guangqiang; Yang, Yuhong; Yao, Jinrong; Shao, Zhengzhong; Chen, Xin

    2016-07-01

    Metal nanostructures that have unique size- and shape-dependent electronic, optical and chemical properties gain more and more attention in modern science and technology. In this article, we show the possibility that we are able to obtain different gold nanostructures simply with the help of silk nanofibrils. We demonstrate that only by varying the pH of the reaction solution, we get gold nanoparticles, nano-icosahedrons, nanocubes, and even microplates. Particularly, we develop a practical method for the preparation of gold microplates in acid condition in the presence of silk nanofibrils, which is impossible by using other forms of silk protein. We attribute the role of silk nanofibrils in the formation of gold nanostructure to their reduction ability from several specific amino acid residues, and the suitable structural anisotropic features to sustain the crystal growth after the reduction process. Although the main purpose of this article is to demonstrate that silk nanofibrils are able to mediate the formation of different gold nanostructure, we show the potential applications of these resulting gold nanostructures, such as surface-enhanced Raman scattering (SERS) and photothermal transformation effect, as same as those produced by other methods. In conclusion, we present in this communication a facile and green synthesis route to prepare various gold nanostructures with silk nanofibrils by simply varying pH in the reaction system, which has remarkable advantages in future biomedical applications. PMID:27127067

  3. Direct observation of melting behaviors at the nanoscale under electron beam and heat to form hollow nanostructures

    NASA Astrophysics Data System (ADS)

    Huang, Chun-Wei; Hsin, Cheng-Lun; Wang, Chun-Wen; Chu, Fu-Hsuan; Kao, Chen-Yen; Chen, Jui-Yuan; Huang, Yu-Ting; Lu, Kuo-Chang; Wu, Wen-Wei; Chen, Lih-Juann

    2012-07-01

    We report the melting behaviours of ZnO nanowire by heating ZnO-Al2O3 core-shell heterostructures to form Al2O3 nanotubes in an in situ ultrahigh vacuum transmission electron microscope (UHV-TEM). When the ZnO-Al2O3 core-shell nanowire heterostructures were annealed at 600 °C under electron irradiation, the amorphous Al2O3 shell became single crystalline and then the ZnO core melted. The average vanishing rate of the ZnO core was measured to be 4.2 nm s-1. The thickness of the Al2O3 nanotubes can be precisely controlled by the deposition process. Additionally, the inner geometry of nanotubes can be defined by the initial ZnO core. The result shows a promising method to obtain the biocompatible Al2O3 nanotubes, which may be applied in drug delivery, biochemistry and resistive switching random access memory (ReRAM).We report the melting behaviours of ZnO nanowire by heating ZnO-Al2O3 core-shell heterostructures to form Al2O3 nanotubes in an in situ ultrahigh vacuum transmission electron microscope (UHV-TEM). When the ZnO-Al2O3 core-shell nanowire heterostructures were annealed at 600 °C under electron irradiation, the amorphous Al2O3 shell became single crystalline and then the ZnO core melted. The average vanishing rate of the ZnO core was measured to be 4.2 nm s-1. The thickness of the Al2O3 nanotubes can be precisely controlled by the deposition process. Additionally, the inner geometry of nanotubes can be defined by the initial ZnO core. The result shows a promising method to obtain the biocompatible Al2O3 nanotubes, which may be applied in drug delivery, biochemistry and resistive switching random access memory (ReRAM). Electronic supplementary information (ESI) available: Proof of the electron irradiation effect and three in situ TEM videos as dynamic observation of the ZnO-Al2O3 core-shell nanowire heterostructures forming the Al2O3 nanotube at 600 °C under electron irradiation and the disappearance of the ZnO core. See DOI: 10.1039/c2nr30724c

  4. Proposal for precision wavelength measurement of the Ni-like gadolinium x-ray laser formed during the interaction of a nanostructured target with an ultrashort laser beam

    NASA Astrophysics Data System (ADS)

    Ivanova, E. P.

    2015-10-01

    The wavelengths of the 3d 94d [J = 0]-3d 94p [J = 1] transitions of x-ray lasers in Ni-like sequence ions with nucleus charges Z  ⩽  79 are refined. The results of calculations are within the experimental error. It was found that the wavelengths of 3d3/294d3/2{} [J = 0]-3d3/29 4p 1/2 [J = 1] and 3d3/29 4d 3/2[J = 0]-3d5/29 4p 3/2[J = 1] transitions in Sm34+ and Gd36+, respectively, are in the range of 6.70-6.75 nm. Exactly for this narrow range, multilayer mirrors with high reflectance are developed. The gain of the x-ray laser with λ = 6.748 nm in Gd36+ is calculated under the assumption that plasma is formed during the interaction of a nanostructured (cluster-like) gadolinium target with high-intensity pump laser radiation. The optimum plasma density, temperature, length, and pump parameters are determined to achieve the highest Gd36+ ion fraction and emission quantum yield of ~1013 photons.

  5. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  6. Efficient CH3 NH3 PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition.

    PubMed

    Park, Jong Hoon; Seo, Jangwon; Park, Sangman; Shin, Seong Sik; Kim, Young Chan; Jeon, Nam Joong; Shin, Hee-Won; Ahn, Tae Kyu; Noh, Jun Hong; Yoon, Sung Cheol; Hwang, Cheol Seong; Seok, Sang Il

    2015-07-15

    Highly transparent and nanostructured nickel oxide (NiO) films through pulsed laser deposition are introduced for efficient CH3 NH3 PbI3 perovskite solar cells. The (111)-oriented nanostructured NiO film plays a key role in extracting holes and preventing electron leakage as hole transporting material. The champion device exhibits a power conversion efficiency of 17.3% with a very high fill factor of 0.813. PMID:26038099

  7. Nanostructured metal foams: synthesis and applications

    SciTech Connect

    Luther, Erik P; Tappan, Bryce; Mueller, Alex; Mihaila, Bogdan; Volz, Heather; Cardenas, Andreas; Papin, Pallas; Veauthier, Jackie; Stan, Marius

    2009-01-01

    Fabrication of monolithic metallic nanoporous materials is difficult using conventional methodology. Here they report a relatively simple method of synthesizing monolithic, ultralow density, nanostructured metal foams utilizing self-propagating combustion synthesis of novel metal complexes containing high nitrogen energetic ligands. Nanostructured metal foams are formed in a post flame-front dynamic assembly with densities as low as 0.011 g/cc and surface areas as high as 270 m{sup 2}/g. They have produced metal foams via this method of titanium, iron, cobalt, nickel, zirconium, copper, palladium, silver, hafnium, platinum and gold. Microstructural features vary as a function of composition and process parameters. Applications for the metal foams are discussed including hydrogen absorption in palladium foams. A model for the sorption kinetics of hydrogen in the foams is presented.

  8. Controlled placement and orientation of nanostructures

    DOEpatents

    Zettl, Alex K; Yuzvinsky, Thomas D; Fennimore, Adam M

    2014-04-08

    A method for controlled deposition and orientation of molecular sized nanoelectromechanical systems (NEMS) on substrates is disclosed. The method comprised: forming a thin layer of polymer coating on a substrate; exposing a selected portion of the thin layer of polymer to alter a selected portion of the thin layer of polymer; forming a suspension of nanostructures in a solvent, wherein the solvent suspends the nanostructures and activates the nanostructures in the solvent for deposition; and flowing a suspension of nanostructures across the layer of polymer in a flow direction; thereby: depositing a nanostructure in the suspension of nanostructures only to the selected portion of the thin layer of polymer coating on the substrate to form a deposited nanostructure oriented in the flow direction. By selectively employing portions of the method above, complex NEMS may be built of simpler NEMSs components.

  9. Structural features of bicomponent dust Coulomb balls formed by the superposition of fields of different origin in plasma

    SciTech Connect

    Psakhie, S. G.; Zolnikov, K. P.; Kryzhevich, D. S.; Abdrashitov, A. V.

    2008-05-15

    A binary mixture of dust particles in plasma which are in an external electrostatic harmonic confining field as well as in the field consisting of gravitational, thermophoretic, and electrostatic force is simulated. The interparticle interaction is described by the Yukawa isotropic pair potential. The structural properties of the binary mixture of particles depending on composition are investigated. The segregation features of a system of particles of two species under the conditions of recent experiments on Coulomb ball formation are studied. It is shown that particles form a shell structure in which every shell contains only its own species of particles; in so doing, smaller-sized particles make up outer shells with respect to larger-sized particles. When the size difference between the particles becomes more and more pronounced, they are spatially separated up to the formation of two independent Coulomb balls.

  10. Nanostructures created by interfered femtosecond laser

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chang, Yun-Ching; Yao, Jimmy; Luo, Claire; Yin, Shizhuo; Ruffin, Paul; Brantley, Christina; Edwards, Eugene

    2011-10-01

    The method by applying the interfered femtosecond laser to create nanostructured copper (Cu) surface has been studied. The nanostructure created by direct laser irradiation is also realized for comparison. Results show that more uniform and finer nanostructures with sphere shape and feature size around 100 nm can be induced by the interfered laser illumination comparing with the direct laser illumination. This offers an alternative fabrication approach that the feature size and the shape of the laser induced metallic nanostructures can be highly controlled, which can extremely improve its performance in related application such as the colorized metal, catalyst, SERS substrate, and etc.

  11. Nanostructures for enzyme stabilization

    SciTech Connect

    Kim, Jungbae; Grate, Jay W.; Wang, Ping

    2006-02-02

    The last decade has witnessed notable breakthroughs in nanotechnology with development of various nanostructured materials such as mesoporous materials and nanoparticles. These nanostructures have been used as a host for enzyme immobilization via various approaches, such as enzyme adsorption, covalent attachment, enzyme encapsulation, and sophisticated combinations of methods. This review discusses the stabilization mechanisms behind these diverse approaches; such as confinement, pore size and volume, charge interaction, hydrophobic interaction, and multipoint attachment. In addition, we will introduce recent rigorous approaches to improve the enzyme stability in these nanostructures or develop new nanostructures for the enzyme stabilization. Especially, we will introduce our recent invention of a nanostructure, called single enzyme nanoparticles (SENs). In the form of SENs, each enzyme molecule is surrounded with a nanometer scale network, resulting in stabilization of enzyme activity without any serious limitation for the substrate transfer from solution to the active site. SENs can be further immobilized into mesoporous silica with a large surface area, providing a hierarchical approach for stable, immobilized enzyme systems for various applications, such as bioconversion, bioremediation, and biosensors.

  12. DNA nanostructures interacting with lipid bilayer membranes.

    PubMed

    Langecker, Martin; Arnaut, Vera; List, Jonathan; Simmel, Friedrich C

    2014-06-17

    CONSPECTUS: DNA has been previously shown to be useful as a material for the fabrication of static nanoscale objects, and also for the realization of dynamic molecular devices and machines. In many cases, nucleic acid assemblies directly mimic biological structures, for example, cytoskeletal filaments, enzyme scaffolds, or molecular motors, and many of the applications envisioned for such structures involve the study or imitation of biological processes, and even the interaction with living cells and organisms. An essential feature of biological systems is their elaborate structural organization and compartmentalization, and this most often involves membranous structures that are formed by dynamic assemblies of lipid molecules. Imitation of or interaction with biological systems using the tools of DNA nanotechnology thus ultimately and necessarily also involves interactions with lipid membrane structures, and thus the creation of DNA-lipid hybrid assemblies. Due to their differing chemical nature, however, highly charged nucleic acids and amphiphilic lipids do not seem the best match for the construction of such systems, and in fact they are rarely found in nature. In recent years, however, a large variety of lipid-interacting DNA conjugates were developed, which are now increasingly being applied also for the realization of DNA nanostructures interacting with lipid bilayer membranes. In this Account, we will present the current state of this emerging class of nanosystems. After a brief overview of the basic biophysical and biochemical properties of lipids and lipid bilayer membranes, we will discuss how DNA molecules can interact with lipid membranes through electrostatic interactions or via covalent modification with hydrophobic moieties. We will then show how such DNA-lipid interactions have been utilized for the realization of DNA nanostructures attached to or embedded within lipid bilayer membranes. Under certain conditions, DNA nanostructures remain mobile on

  13. Epidemiological and clinical features of the endomyocardial form of restrictive cardiomyopathy in cats: a review of 41 cases.

    PubMed

    Kimura, Yusuke; Fukushima, Ryuji; Hirakawa, Atsushi; Kobayashi, Masayuki; Machida, Noboru

    2016-06-01

    Examination of our necropsy records for the period 2005 to 2014 yielded 41 cases of the endomyocardial form of restrictive cardiomyopathy among 327 cats with evidence of heart disease, and here, we reviewed their epidemiological and clinical features. The medical data obtained retrospectively included signalment, presenting complaints, findings of physical examination, results of various diagnostic tests, methods of treatment and survival times. Except for one Chinchilla Persian cat, all were domestic short-haired cats. The mean age at death was 7.3 ± 4.5 years (median, 6 years; range, 4 months to 19 years), and males accounted for 61% (25/41) of the total. Dyspnea was the most common clinical sign, being evident in 83% (35/41) of the cats. Hind limb paresis or paralysis due to aortic thromboembolism was evident in 41% (17/41). Arrhythmias of atrial origin were common. Echocardiography commonly revealed left atrial or biatrial enlargement with severe endocardial thickening of the left ventricle. Most of the affected cats had a poor outcome; the disease duration ranged from 1 to 977 days, and the median survival period was 30 days. PMID:26822001

  14. Low cost, small form factor, and integration as the key features for the optical component industry takeoff

    NASA Astrophysics Data System (ADS)

    Schiattone, Francesco; Bonino, Stefano; Gobbi, Luigi; Groppi, Angelamaria; Marazzi, Marco; Musio, Maurizio

    2003-04-01

    In the past the optical component market has been mainly driven by performances. Today, as the number of competitors has drastically increased, the system integrators have a wide range of possible suppliers and solutions giving them the possibility to be more focused on cost and also on footprint reduction. So, if performances are still essential, low cost and Small Form Factor issues are becoming more and more crucial in selecting components. Another evolution in the market is the current request of the optical system companies to simplify the supply chain in order to reduce the assembling and testing steps at system level. This corresponds to a growing demand in providing subassemblies, modules or hybrid integrated components: that means also Integration will be an issue in which all the optical component companies will compete to gain market shares. As we can see looking several examples offered by electronic market, to combine low cost and SFF is a very challenging task but Integration can help in achieving both features. In this work we present how these issues could be approached giving examples of some advanced solutions applied to LiNbO3 modulators. In particular we describe the progress made on automation, new materials and low cost fabrication methods for the parts. We also introduce an approach in integrating optical and electrical functionality on LiNbO3 modulators including RF driver, bias control loop, attenuator and photodiode integrated in a single device.

  15. Epidemiological and clinical features of the endomyocardial form of restrictive cardiomyopathy in cats: a review of 41 cases

    PubMed Central

    KIMURA, Yusuke; FUKUSHIMA, Ryuji; HIRAKAWA, Atsushi; KOBAYASHI, Masayuki; MACHIDA, Noboru

    2016-01-01

    Examination of our necropsy records for the period 2005 to 2014 yielded 41 cases of the endomyocardial form of restrictive cardiomyopathy among 327 cats with evidence of heart disease, and here, we reviewed their epidemiological and clinical features. The medical data obtained retrospectively included signalment, presenting complaints, findings of physical examination, results of various diagnostic tests, methods of treatment and survival times. Except for one Chinchilla Persian cat, all were domestic short-haired cats. The mean age at death was 7.3 ± 4.5 years (median, 6 years; range, 4 months to 19 years), and males accounted for 61% (25/41) of the total. Dyspnea was the most common clinical sign, being evident in 83% (35/41) of the cats. Hind limb paresis or paralysis due to aortic thromboembolism was evident in 41% (17/41). Arrhythmias of atrial origin were common. Echocardiography commonly revealed left atrial or biatrial enlargement with severe endocardial thickening of the left ventricle. Most of the affected cats had a poor outcome; the disease duration ranged from 1 to 977 days, and the median survival period was 30 days. PMID:26822001

  16. Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications

    NASA Astrophysics Data System (ADS)

    Kong, Junhua; Seyed Shahabadi, Seyed Ismail; Lu, Xuehong

    2016-01-01

    Polydopamine (PDA), a mussel adhesive-inspired biomimetic polymer, has attracted tremendous attention owing to its extremely versatile adhesion properties, facile aqueous coating process, capability of self-assembly to form nanostructures, and abundant surface functional groups for secondary modification. PDA is also a fantastic carbon source because it gives nitrogen (N)-doped graphite-like carbon in high yield, and the carbonized PDA (C-PDA) thin coatings have similar properties to those of N-doped multilayered graphene, i.e., they exhibit high electrical conductivity, and good electrochemical and mechanical properties. In comparison with other carbon sources, an outstanding feature of PDA lies in its ease of integration with inorganic nanostructures and capability for easy tailoring the structure and morphology of the resultant composite nanostructures. In this article, different routes for the preparation of C-PDA-based composite nanostructures, such as carbon/metal oxide and carbon/Si hollow, mesoporous, core-shell, yolk-shell nanostructures, are introduced with typical examples. The structures, morphologies and properties of the C-PDA-based composite nanostructures are also reviewed, and their potential applications in various engineering fields, such as energy storage, solar water splitting, flexible electronics, catalysis, sensing and environmental engineering, are highlighted. Finally a future outlook for this fascinating composite-nanostructure enabler is also presented.

  17. Integration of inorganic nanostructures with polydopamine-derived carbon: tunable morphologies and versatile applications.

    PubMed

    Kong, Junhua; Seyed Shahabadi, Seyed Ismail; Lu, Xuehong

    2016-01-28

    Polydopamine (PDA), a mussel adhesive-inspired biomimetic polymer, has attracted tremendous attention owing to its extremely versatile adhesion properties, facile aqueous coating process, capability of self-assembly to form nanostructures, and abundant surface functional groups for secondary modification. PDA is also a fantastic carbon source because it gives nitrogen (N)-doped graphite-like carbon in high yield, and the carbonized PDA (C-PDA) thin coatings have similar properties to those of N-doped multilayered graphene, i.e., they exhibit high electrical conductivity, and good electrochemical and mechanical properties. In comparison with other carbon sources, an outstanding feature of PDA lies in its ease of integration with inorganic nanostructures and capability for easy tailoring the structure and morphology of the resultant composite nanostructures. In this article, different routes for the preparation of C-PDA-based composite nanostructures, such as carbon/metal oxide and carbon/Si hollow, mesoporous, core-shell, yolk-shell nanostructures, are introduced with typical examples. The structures, morphologies and properties of the C-PDA-based composite nanostructures are also reviewed, and their potential applications in various engineering fields, such as energy storage, solar water splitting, flexible electronics, catalysis, sensing and environmental engineering, are highlighted. Finally a future outlook for this fascinating composite-nanostructure enabler is also presented. PMID:26750427

  18. Reclamation system design of nanostructured coatings of touch-panel.

    PubMed

    Pa, P S

    2010-02-01

    A newly design reclamation system using an ultrasonic micro electroetching (UMECE) as a machining process for Indium-tin-oxide(ITO) nanostructured coatings dissolved from a surface of polyethyleneterephthalate (PET) of touch-panel is presented. The design features of the reclamation mechanism and a designed wedge-form tool are of major interest. The low yield of ITO nanostructured coatings is an important factor in optoelectronic semiconductor production. In the current experiment, a small diameter of the anode accompanying with a small distance between the two anodes, reduced the amount of time for effective ultrasonic micro electroetching of ITO since the effect of removal is facilitated by supplying sufficient electrochemical power. The performance of ultrasonics was found to be more effective than pulsed current, requiring no increase in electric power. Additionally, electric power, when combined with a fast feed rate, provides highly effective dissolution. Higher frequency or the greater power of ultrasonics corresponds to a higher dissolution rate for ITO nanostructured coatings. A small anode of the wedge-form tool or a small size of the cathode takes less time for the same amount of ITO removal. Importantly, ultrasonic micro electroetching with the designed wedge-form tool requires only a short period of time to dissolve the ITO's nanostructured coatings easily and cleanly. PMID:20352803

  19. Aqueous Black Colloids of Reticular Nanostructured Gold

    NASA Astrophysics Data System (ADS)

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy.

  20. Aqueous Black Colloids of Reticular Nanostructured Gold

    PubMed Central

    Stanca, S. E.; Fritzsche, W.; Dellith, J.; Froehlich, F.; Undisz, A.; Deckert, V.; Krafft, C.; Popp, J.

    2015-01-01

    Since ancient times, noble gold has continuously contributed to several aspects of life from medicine to electronics. It perpetually reveals its new features. We report the finding of a unique form of gold, reticular nanostructured gold (RNG), as an aqueous black colloid, for which we present a one-step synthesis. The reticules consist of gold crystals that interconnect to form compact strands. RNG exhibits high conductivity and low reflection, and these features, coupled with the high specific surface area of the material, could prove valuable for applications in electronics and catalysis. Due to high absorption throughout the visible and infrared domain, RNG has the potential to be applied in the construction of sensitive solar cells or as a substrate for Raman spectroscopy. PMID:25600497

  1. Chemically enabled nanostructure fabrication

    NASA Astrophysics Data System (ADS)

    Huo, Fengwei

    The first part of the dissertation explored ways of chemically synthesizing new nanoparticles and biologically guided assembly of nanoparticle building blocks. Chapter two focuses on synthesizing three-layer composite magnetic nanoparticles with a gold shell which can be easily functionalized with other biomolecules. The three-layer magnetic nanoparticles, when functionalized with oligonucleotides, exhibit the surface chemistry, optical properties, and cooperative DNA binding properties of gold nanoparticle probes, while maintaining the magnetic properties of the Fe3O4 inner shell. Chapter three describes a new method for synthesizing nanoparticles asymmetrically functionalized with oligonucleotides and the use of these novel building blocks to create satellite structures. This synthetic capability allows one to introduce valency into such structures and then use that valency to direct particle assembly events. The second part of the thesis explored approaches of nanostructure fabrication on substrates. Chapter four focuses on the development of a new scanning probe contact printing method, polymer pen lithography (PPL), which combines the advantages of muCp and DPN to achieve high-throughput, flexible molecular printing. PPL uses a soft elastomeric tip array, rather than tips mounted on individual cantilevers, to deliver inks to a surface in a "direct write" manner. Arrays with as many as ˜11 million pyramid-shaped pens can be brought into contact with substrates and readily leveled optically in order to insure uniform pattern development. Chapter five describes gel pen lithography, which uses a gel to fabricate pen array. Gel pen lithography is a low-cost, high-throughput nanolithography method especially useful for biomaterials patterning and aqueous solution patterning which makes it a supplement to DPN and PPL. Chapter 6 shows a novel form of optical nanolithography, Beam Pen Lithography (BPL), which uses an array of NSOM pens to do nanoscale optical

  2. Self-Assembled Epitaxical Nanostructure Arrays

    NASA Astrophysics Data System (ADS)

    Madhukar, Anupam

    2003-03-01

    The past decade has witnessed major strides in the realization of nanostructures with 3-dimensionally confined electronic states, dubbed quantum dots (QDs). Most notable classes are the solution grown colloidal nanocrystals, also called nanoparticles (NPs) and the strain-driven semiconductor epitaxical islands formed spontaneously beyond a critical deposition amount during growth of a film with a high lattice mismatch with the substrate. The latter, though spatially randomly positioned, by virtue of their epitaxical nature, are readily integrable in a variety of test and device structures. Consequently these have led the way in providing platforms for examining QD physics and QD based devices such as lasers, detectors, amplifiers, and transistors. The colloidal nanocrystals are in desperate need of being epitaxically integrated onto appropriate substrates and thus providing the platform for realizing more flexible and varied classes of quantum nanostructures for even wider range of applications. Epitaxy and spatially-selective self-assembly are thus two key features of wide classes of nanostructures essential for future advanced information sensing, processing, communication and computing technologies within the largely current paradigms of chip and system architectures. In this talk I will focus on some fundamental issues of epitaxical growth and ordering, structural and chemical template engineering approaches, and their implementation for realization of epitaxical QDs in regular 2D and 3D ultra-dense arrays.

  3. Organizational-Pedagogical Conditions to Form the Foreign Competence in Students with the Features of Linguistic Giftedness

    ERIC Educational Resources Information Center

    Panfilova, Valentina Michailovna; Panfilov, Alexey Nikolaevich; Merzon, Elena Efimovna

    2015-01-01

    The study of foreign competence at the present stage of the higher education development becomes more relevant. The article emphasizes the organizational-pedagogical conditions, providing the formation of foreign competence in students with the features of linguistic giftedness. The way to reveal the students, who have the features of linguistic…

  4. T-RECS: STABLE SELECTION OF DYNAMICALLY FORMED GROUPS OF FEATURES WITH APPLICATION TO PREDICTION OF CLINICAL OUTCOMES

    PubMed Central

    Huang, Grace T.; Tsamardinos, Ioannis; Raghu, Vineet; Kaminski, Naftali; Benos, Panayiotis V.

    2014-01-01

    Feature selection is used extensively in biomedical research for biomarker identification and patient classification, both of which are essential steps in developing personalized medicine strategies. However, the structured nature of the biological datasets and high correlation of variables frequently yield multiple equally optimal signatures, thus making traditional feature selection methods unstable. Features selected based on one cohort of patients, may not work as well in another cohort. In addition, biologically important features may be missed due to selection of other co-clustered features We propose a new method, Tree-guided Recursive Cluster Selection (T-ReCS), for efficient selection of grouped features. T-ReCS significantly improves predictive stability while maintains the same level of accuracy. T-ReCS does not require an a priori knowledge of the clusters like group-lasso and also can handle “orphan” features (not belonging to a cluster). T-ReCS can be used with categorical or survival target variables. Tested on simulated and real expression data from breast cancer and lung diseases and survival data, T-ReCS selected stable cluster features without significant loss in classification accuracy. PMID:25592602

  5. Molecular dynamics study of surfactant-like peptide based nanostructures.

    PubMed

    Colherinhas, Guilherme; Fileti, Eudes

    2014-10-23

    Surfactant-like peptide (SLP) based nanostructures are investigated using all-atomistic molecular dynamics (MD) simulations. We report structure properties of nanostructures belonging to the ANK peptide group. In particular, the mathematical models for the two A3K membranes, A6K nanotube, and A9K nanorod were developed. Our MD simulation results are consistent with the experimental data, indicating that A3K membranes are stable in two different configurations: (1) SLPs are tilted relative to the normal membrane plane; (2) SLPs are interdigitated. The former configuration is energetically more stable. The cylindrical nanostructures feature a certain order of the A6K peptides. In turn, the A9K nanorod does not exhibit any long-range ordering. Both nanotube and nanorod structure contain large amounts of water inside. Consequently, these nanostructures behave similar to hydrogels. This property may be important in the context of biotechnology. Binding energy analysis-in terms of Coulomb and van der Waals contributions-unveils an increase as the peptide size increases. The electrostatic interaction constitutes 70-75% of the noncovalent attraction energy between SLPs. The nanotubular structures are notably stable, confirming that A6K peptides preferentially form nanotubes and A9K peptides preferentially form nanorods. PMID:25264942

  6. Planar plasmonic chiral nanostructures.

    PubMed

    Zu, Shuai; Bao, Yanjun; Fang, Zheyu

    2016-02-21

    A strong chiral optical response induced at a plasmonic Fano resonance in a planar Au heptamer nanostructure was experimentally and theoretically demonstrated. The scattering spectra show the characteristic narrow-band feature of Fano resonances for both left and right circular polarized lights, with a chiral response reaching 30% at the Fano resonance. Specifically, we systematically investigate the chiral response of planar heptamers with gradually changing the inter-particle rotation angles and separation distance. The chiral spectral characteristics clearly depend on the strength of Fano resonances and the associated near-field optical distributions. Finite element method simulations together with a multipole expansion method demonstrate that the enhanced chirality is caused by the excitation of magnetic quadrupolar and electric toroidal dipolar modes. Our work provides an effective method for the design of 2D nanostructures with a strong chiral response. PMID:26818746

  7. Sintering and ripening resistant noble metal nanostructures

    DOEpatents

    van Swol, Frank B; Song, Yujiang; Shelnutt, John A; Miller, James E; Challa, Sivakumar R

    2013-09-24

    Durable porous metal nanostructures comprising thin metal nanosheets that are metastable under some conditions that commonly produce rapid reduction in surface area due to sintering and/or Ostwald ripening. The invention further comprises the method for making such durable porous metal nanostructures. Durable, high-surface area nanostructures result from the formation of persistent durable holes or pores in metal nanosheets formed from dendritic nanosheets.

  8. Silica-metal core-shell nanostructures.

    PubMed

    Jankiewicz, B J; Jamiola, D; Choma, J; Jaroniec, M

    2012-01-15

    Silica-metal nanostructures consisting of silica cores and metal nanoshells attract a lot of attention because of their unique properties and potential applications ranging from catalysis and biosensing to optical devices and medicine. The important feature of these nanostructures is the possibility of controlling their properties by the variation of their geometry, shell morphology and shell material. This review is devoted to silica-noble metal core-shell nanostructures; specifically, it outlines the main methods used for the preparation and surface modification of silica particles and presents the major strategies for the formation of metal nanoshells on the modified silica particles. A special emphasis is given to the Stöber method, which is relatively simple, effective and well verified for the synthesis of large and highly uniform silica particles (with diameters from 100 nm to a few microns). Next, the surface chemistry of these particles is discussed with a special focus on the attachment of specific organic groups such as aminopropyl or mercaptopropyl groups, which interact strongly with metal species. Finally, the synthesis, characterization and application of various silica-metal core-shell nanostructures are reviewed, especially in relation to the siliceous cores with gold or silver nanoshells. Nowadays, gold is most often used metal for the formation of nanoshells due to its beneficial properties for many applications. However, other metals such as silver, platinum, palladium, nickel and copper were also used for fabrication of core-shell nanostructures. Silica-metal nanostructures can be prepared using various methods, for instance, (i) growth of metal nanoshells on the siliceous cores with deposited metal nanoparticles, (ii) reduction of metal species accompanied by precipitation of metal nanoparticles on the modified silica cores, and (iii) formation of metal nanoshells under ultrasonic conditions. A special emphasis is given to the seed

  9. Peptide nanostructures in biomedical technology.

    PubMed

    Feyzizarnagh, Hamid; Yoon, Do-Young; Goltz, Mark; Kim, Dong-Shik

    2016-09-01

    Nanostructures of peptides have been investigated for biomedical applications due to their unique mechanical and electrical properties in addition to their excellent biocompatibility. Peptides may form fibrils, spheres and tubes in nanoscale depending on the formation conditions. These peptide nanostructures can be used in electrical, medical, dental, and environmental applications. Applications of these nanostructures include, but are not limited to, electronic devices, biosensing, medical imaging and diagnosis, drug delivery, tissue engineering and stem cell research. This review offers a discussion of basic synthesis methods, properties and application of these nanomaterials. The review concludes with recommendations and future directions for peptide nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:730-743. doi: 10.1002/wnan.1393 For further resources related to this article, please visit the WIREs website. PMID:26846352

  10. Formation of carbonic nanostructures using PECVD and glow-discharge plasma at direct current

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Gavrilov, S. A.; Dubkov, S. V.

    2010-02-01

    In this research the process of formation carbonic nanostructures using low temperatures was studied. Nanostructures were formed using PECVD and glow-discharge plasma. The research was carried out at temperature range between 300°C - 700°C. The influence of Ni catalyst thickness and concentration of carbon-containing component in vapour phase on the structure of carbonic deposit was studied. Consequently we attained productive growth of both the homogeneous vertical nanotubes and graphene flakes array at low temperature (350°C). Electrophysical features of obtained structures were examined.

  11. Formation of carbonic nanostructures using PECVD and glow-discharge plasma at direct current

    NASA Astrophysics Data System (ADS)

    Gromov, D. G.; Gavrilov, S. A.; Dubkov, S. V.

    2009-10-01

    In this research the process of formation carbonic nanostructures using low temperatures was studied. Nanostructures were formed using PECVD and glow-discharge plasma. The research was carried out at temperature range between 300°C - 700°C. The influence of Ni catalyst thickness and concentration of carbon-containing component in vapour phase on the structure of carbonic deposit was studied. Consequently we attained productive growth of both the homogeneous vertical nanotubes and graphene flakes array at low temperature (350°C). Electrophysical features of obtained structures were examined.

  12. Study of the Structure, Composition, and Stability of Yttrium-Ti-Oxygen nm-Scale Features in Nano-Structured Ferritic Alloys

    NASA Astrophysics Data System (ADS)

    Cunningham, Nicholas John

    This work advances the understanding of the Y-Ti-O nanofeatures (NFs) in nanostructured ferritic alloys (NFAs); a class of high temperature, oxide dispersion strengthened iron alloys with applications in both advanced fission and fusion reactors. NFAs exhibit high creep strength up to 800ºC and a remarkable radiation damage tolerance and He management. However, the NFs, which are responsible for these properties, are not fully understood. This work addresses key questions including: a) what is the NF structure and composition and how are they affected by alloy composition and processing; b) what is the NFA long-term thermal stability; c) and what alternative processing paths are available to reduce costs and produce more uniform NF distributions? A detailed study using small angle neutron scattering (SANS), transmission electron microscopy (TEM-group member Y. Wu), and atom probe tomography (APT) evaluated the NF average size (), number density (N), volume fraction (f), composition, and structure in two heats of the commercial NFA MA957. The and N were ≈2.6 nm and ≈5x1023 m-3 , respectively, for both heats, with TEM indicating the NF are Y 2Ti2O7. However, SANS indicates a mixture of NF compositions or atomic densities with a difference between the heats, while APT shows compositions with ≈ 10% Cr and a Y/Ti ratio < 1. However, microscope artifacts such as preferential undercounting of Y and O or trajectory aberrations that prevent resolving Ti segregation to the NF-matrix interface could account for the discrepancy. The microstructure and NFs in MA957 were stable for long times at temperatures up to 900ºC. Notably, Ti in the matrix and some from the NFs migrates to large, Ti-rich phases. Aging at higher temperatures up to 1000ºC for 19.5 kh produced modest coarsening for ≈ 3.8 nm and ≈30% increase in grain size for a corresponding 13% reduction in microhardness. A coarsening model shows no significant NF coarsening will occur at temperatures less than

  13. Nanostructures Enabled by On-Wire Lithography (OWL)

    PubMed Central

    Braunschweig, Adam B.; Schmucker, Abrin L.; Wei, Wei David; Mirkin, Chad A.

    2010-01-01

    Nanostructures fabricated by a novel technique, termed On-Wire-Lithography (OWL), can be combined with organic and biological molecules to create systems with emergent and highly functional properties. OWL is a template-based, electrochemical process for forming gapped cylindrical structures on a solid support, with feature sizes (both gap and segment length) that can be controlled on the sub-100 nm length scale. Structures prepared by this method have provided valuable insight into the plasmonic properties of noble metal nanomaterials and have formed the basis for novel molecular electronic, encoding, and biological detection devices. PMID:20396668

  14. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  15. Antibacterial Au nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-01-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies.We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It

  16. Performance comparison of the Prophecy (forecasting) Algorithm in FFT form for unseen feature and time-series prediction

    NASA Astrophysics Data System (ADS)

    Jaenisch, Holger; Handley, James

    2013-06-01

    We introduce a generalized numerical prediction and forecasting algorithm. We have previously published it for malware byte sequence feature prediction and generalized distribution modeling for disparate test article analysis. We show how non-trivial non-periodic extrapolation of a numerical sequence (forecast and backcast) from the starting data is possible. Our ancestor-progeny prediction can yield new options for evolutionary programming. Our equations enable analytical integrals and derivatives to any order. Interpolation is controllable from smooth continuous to fractal structure estimation. We show how our generalized trigonometric polynomial can be derived using a Fourier transform.

  17. Directed spatial organization of zinc oxide nanostructures

    DOEpatents

    Hsu, Julia; Liu, Jun

    2009-02-17

    A method for controllably forming zinc oxide nanostructures on a surface via an organic template, which is formed using a stamp prepared from pre-defined relief structures, inking the stamp with a solution comprising self-assembled monolayer (SAM) molecules, contacting the stamp to the surface, such as Ag sputtered on Si, and immersing the surface with the patterned SAM molecules with a zinc-containing solution with pH control to form zinc oxide nanostructures on the bare Ag surface.

  18. Novel 60 GHz CPW array antennas with beam-forming features for indoor wireless over fiber networks

    NASA Astrophysics Data System (ADS)

    Petropoulos, Ioannis; Mikroulis, Spiros; Bogris, Adonis; Simos, Hercules; Voudouris, Kostantinos

    2013-01-01

    In this study two types of coplanar waveguide (CPW) array antennas are designed and analyzed for use in a 60GHz Radio over Fiber indoor network. The first one is based on high permittivity Rogers 6010 and Indium Phosphide (InP) substrates incorporating slots as radiating elements. The second one utilizes stacked geometry based on the above substrates. Both arrays present more 1 GHz bandwidth and 10dBi gain. Furthermore they can provide beam-forming operation by properly adjusting the signal's amplitude and phase. A Least Mean Square (LMS) algorithm is generated for this purpose and the radiation pattern is steered accordingly. At last, a photodiode is simulated using equivalent circuit and is adopted with the proposed arrays, and an optical beam forming scenario is discussed.

  19. Nanostructures for protein drug delivery.

    PubMed

    Pachioni-Vasconcelos, Juliana de Almeida; Lopes, André Moreni; Apolinário, Alexsandra Conceição; Valenzuela-Oses, Johanna Karina; Costa, Juliana Souza Ribeiro; Nascimento, Laura de Oliveira; Pessoa, Adalberto; Barbosa, Leandro Ramos Souza; Rangel-Yagui, Carlota de Oliveira

    2016-02-01

    Use of nanoscale devices as carriers for drugs and imaging agents has been extensively investigated and successful examples can already be found in therapy. In parallel, recombinant DNA technology together with molecular biology has opened up numerous possibilities for the large-scale production of many proteins of pharmaceutical interest, reflecting in the exponentially growing number of drugs of biotechnological origin. When we consider protein drugs, however, there are specific criteria to take into account to select adequate nanostructured systems as drug carriers. In this review, we highlight the main features, advantages, drawbacks and recent developments of nanostructures for protein encapsulation, such as nanoemulsions, liposomes, polymersomes, single-protein nanocapsules and hydrogel nanoparticles. We also discuss the importance of nanoparticle stabilization, as well as future opportunities and challenges in nanostructures for protein drug delivery. PMID:26580477

  20. Antibacterial Au nanostructured surfaces.

    PubMed

    Wu, Songmei; Zuber, Flavia; Brugger, Juergen; Maniura-Weber, Katharina; Ren, Qun

    2016-02-01

    We present here a technological platform for engineering Au nanotopographies by templated electrodeposition on antibacterial surfaces. Three different types of nanostructures were fabricated: nanopillars, nanorings and nanonuggets. The nanopillars are the basic structures and are 50 nm in diameter and 100 nm in height. Particular arrangement of the nanopillars in various geometries formed nanorings and nanonuggets. Flat surfaces, rough substrate surfaces, and various nanostructured surfaces were compared for their abilities to attach and kill bacterial cells. Methicillin-resistant Staphylococcus aureus, a Gram-positive bacterial strain responsible for many infections in health care system, was used as the model bacterial strain. It was found that all the Au nanostructures, regardless their shapes, exhibited similar excellent antibacterial properties. A comparison of live cells attached to nanotopographic surfaces showed that the number of live S. aureus cells was <1% of that from flat and rough reference surfaces. Our micro/nanofabrication process is a scalable approach based on cost-efficient self-organization and provides potential for further developing functional surfaces to study the behavior of microbes on nanoscale topographies. PMID:26648134

  1. Key features determining the specificity of aspartic proteinase inhibition by the helix-forming IA3 polypeptide.

    PubMed

    Winterburn, Tim J; Wyatt, David M; Phylip, Lowri H; Bur, Daniel; Harrison, Rebecca J; Berry, Colin; Kay, John

    2007-03-01

    The 68-residue IA(3) polypeptide from Saccharomyces cerevisiae is essentially unstructured. It inhibits its target aspartic proteinase through an unprecedented mechanism whereby residues 2-32 of the polypeptide adopt an amphipathic alpha-helical conformation upon contact with the active site of the enzyme. This potent inhibitor (K(i) < 0.1 nm) appears to be specific for a single target proteinase, saccharopepsin. Mutagenesis of IA(3) from S. cerevisiae and its ortholog from Saccharomyces castellii was coupled with quantitation of the interaction for each mutant polypeptide with saccharopepsin and closely related aspartic proteinases from Pichia pastoris and Aspergillus fumigatus. This identified the charged K18/D22 residues on the otherwise hydrophobic face of the amphipathic helix as key selectivity-determining residues within the inhibitor and implicated certain residues within saccharopepsin as being potentially crucial. Mutation of these amino acids established Ala-213 as the dominant specificity-governing feature in the proteinase. The side chain of Ala-213 in conjunction with valine 26 of the inhibitor marshals Tyr-189 of the enzyme precisely into a position in which its side-chain hydroxyl is interconnected via a series of water-mediated contacts to the key K18/D22 residues of the inhibitor. This extensive hydrogen bond network also connects K18/D22 directly to the catalytic Asp-32 and Tyr-75 residues of the enzyme, thus deadlocking the inhibitor in position. In most other aspartic proteinases, the amino acid at position 213 is a larger hydrophobic residue that prohibits this precise juxtaposition of residues and eliminates these enzymes as targets of IA(3). The exquisite specificity exhibited by this inhibitor in its interaction with its cognate folding partner proteinase can thus be readily explained. PMID:17145748

  2. Using atom optics to build nanostructures

    NASA Astrophysics Data System (ADS)

    McClelland, J. J.

    1998-05-01

    Atom optics involves focusing, diffracting, or reflecting atoms, in analogy with what is done to light in conventional optics. Recently, atom optical techniques have been used to control atoms as they land on a substrate. This has led to a new approach to making nanostructures with feature resolution that is in principle only limited by the De Broglie wavelength of the atoms, or the atomic size itself. Recent demonstrations of nanofabrication with atom optics have used the light forces in the nodes of a near-resonant optical standing wave to make large arrays of nanoscale features with high spatial coherence. Directly deposited nanostructures of sodium,(G. Timp, R. E. Behringer, D. M. Tennant, J. E. Cunningham, M. Prentiss, and K. K. Berggren, Phys. Rev. Lett. 69), 1636 (1992). chromium,(J. J. McClelland, R. E. Scholten, E. C. Palm, and R. J. Celotta, Science 262), 877 (1993). and aluminum(R. W. McGowan, D. M. Giltner, and S. A. Lee, Opt. Lett. 20), 877 (1995). have been made with this geometry. Also, patterns have been formed by exposing resists to metastable rare gas atoms(K. K. Berggren, A. Bard, J. L. Wilbur, J. D. Gillaspy, A. G. Helg, J. J. McClelland, S. L. Rolston, W. D. Phillips. M. Prentiss, and G. M. Whitesides, Science 269), 1255 (1995). or alkali atoms.(M. Kreis, F. Lison, D. Haubrich, D. Meschede, S. Nowak, T. Pfau, and J. Mlynek, Appl. Phys. B 63), 649 (1996). Present research is concentrated on examining new ways to utilize atom optics for nanostructure fabrication, and also exploring the practical limits of the process. Two important practical considerations are growth dynamics on the surface, and atomic source quality, that is, brightness, spatial coherence and velocity distribution. Future work will involve cross-disciplinary research with surface physics, and also implementation of a wider range of atom-optical tools, including atom traps, atom holograms, or possibly even Bose-Einstein condensates. This research holds promise for development of

  3. Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles

    PubMed Central

    Argoubi, Wicem; Saadaoui, Maroua

    2015-01-01

    Summary The demand for on-site nanodevices is constantly increasing. The technology development for the design of such devices is highly regarded. In this work, we report the design of a disposable platform that is structured with cauliflower-shaped gold nanoparticles (cfAuNPs) and we show its applications in immunosensing and enzyme-based detection. The electrochemical reduction of Au(III) allows for the electrodeposition of highly dispersed cauliflower-shaped gold nanoparticles on the surface of screen-printed carbon electrodes (SPCEs). The nanostructures were functionalized using ferrocenylmethyl lipoic acid ester which allowed for the tethering of the ferrocene group to gold, which serves as an electrochemical transducer/mediator. The bioconjugation of the surface with anti-human IgG antibody (α-hIgG) or horseradish peroxidase (HRP) enzyme yields biosensors, which have been applied for the selective electrochemical detection of human IgG (hIgG) or H2O2 as model analytes, respectively. Parameters such as the number of sweeps, amount of charge generated from the oxidation of the electrodeposited gold, time of incubation and concentration of the ferrocene derivatives have been studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Selectivity and specificity tests have been also performed in the presence of potentially interfering substances to either hIgG or H2O2. Results showed that the devised immunosensor is endowed with good selectivity and specificity in the presence of several folds of competitive analytes. The enzyme-based platform showed a good catalytic activity towards H2O2 oxidation which predestined it to potential applications pertaining to enzymatic kinetics studies. The levels of hIgG in human serum and H2O2 in honey were successfully determined and served as assessment tools of the applicability of the platforms for real samples analysis. PMID:26425435

  4. Ceramic nanostructures and methods of fabrication

    DOEpatents

    Ripley, Edward B.; Seals, Roland D.; Morrell, Jonathan S.

    2009-11-24

    Structures and methods for the fabrication of ceramic nanostructures. Structures include metal particles, preferably comprising copper, disposed on a ceramic substrate. The structures are heated, preferably in the presence of microwaves, to a temperature that softens the metal particles and preferably forms a pool of molten ceramic under the softened metal particle. A nano-generator is created wherein ceramic material diffuses through the molten particle and forms ceramic nanostructures on a polar site of the metal particle. The nanostructures may comprise silica, alumina, titania, or compounds or mixtures thereof.

  5. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    PubMed

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-01

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials. PMID:24418962

  6. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOEpatents

    Wong, Stanislaus S.; Mao, Yuanbing

    2016-06-14

    The invention relates to nanomaterial's and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  7. Titanate and titania nanostructures and nanostructure assemblies, and methods of making same

    DOEpatents

    Wong, Stanislaus S; Mao, Yuanbing

    2013-05-14

    The invention relates to nanomaterials and assemblies including, a micrometer-scale spherical aggregate comprising: a plurality of one-dimensional nanostructures comprising titanium and oxygen, wherein the one-dimensional nanostructures radiate from a hollow central core thereby forming a spherical aggregate.

  8. Prediction of Golgi-resident protein types using general form of Chou's pseudo-amino acid compositions: Approaches with minimal redundancy maximal relevance feature selection.

    PubMed

    Jiao, Ya-Sen; Du, Pu-Feng

    2016-08-01

    Recently, several efforts have been made in predicting Golgi-resident proteins. However, it is still a challenging task to identify the type of a Golgi-resident protein. Precise prediction of the type of a Golgi-resident protein plays a key role in understanding its molecular functions in various biological processes. In this paper, we proposed to use a mutual information based feature selection scheme with the general form Chou's pseudo-amino acid compositions to predict the Golgi-resident protein types. The positional specific physicochemical properties were applied in the Chou's pseudo-amino acid compositions. We achieved 91.24% prediction accuracy in a jackknife test with 49 selected features. It has the best performance among all the present predictors. This result indicates that our computational model can be useful in identifying Golgi-resident protein types. PMID:27155042

  9. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    PubMed Central

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  10. Synthesis, morphology, optical and photocatalytic performance of nanostructured β-Ga{sub 2}O{sub 3}

    SciTech Connect

    Girija, K.; Thirumalairajan, S.; Avadhani, G.S.; Mangalaraj, D.; Ponpandian, N.; Viswanathan, C.

    2013-06-01

    Highlights: ► Nanostructures of β-Ga{sub 2}O{sub 3} were prepared using facile reflux condensation process. ► The pH of the reaction mixture shows evident influence on the size and shape of the nanostructures formed. ► The nanostructures exhibited good photocatalytic activity toward Rhodamine B and was found to be superior for higher pH value. - Abstract: Fine powders of β-Ga{sub 2}O{sub 3} nanostructures were prepared via low temperature reflux condensation method by varying the pH value without using any surfactant. The pH value of reaction mixture had great influence on the morphology of final products. High crystalline single phase β-Ga{sub 2}O{sub 3} nanostructures were obtained by thermal treatment at 900 °C which was confirmed by X-ray diffraction and Raman spectroscopy. The morphological analysis revealed rod like nanostructures at lower and higher pH values of 6 and 10, while spindle like structures were obtained at pH = 8. The phase purity and presence of vibrational bands were identified using Fourier transform infrared spectroscopy. The optical absorbance spectrum showed intense absorption features in the UV spectral region. A broad blue emission peak centered at 441 nm due to donor–acceptor gallium–oxygen vacancy pair recombination appeared. The photocatalytic activity toward Rhodamine B under visible light irradiation was higher for nanorods at pH 10.

  11. PREFACE: Self-organized nanostructures

    NASA Astrophysics Data System (ADS)

    Rousset, Sylvie; Ortega, Enrique

    2006-04-01

    In order to fabricate ordered arrays of nanostructures, two different strategies might be considered. The `top-down' approach consists of pushing the limit of lithography techniques down to the nanometre scale. However, beyond 10 nm lithography techniques will inevitably face major intrinsic limitations. An alternative method for elaborating ultimate-size nanostructures is based on the reverse `bottom-up' approach, i.e. building up nanostructures (and eventually assemble them to form functional circuits) from individual atoms or molecules. Scanning probe microscopies, including scanning tunnelling microscopy (STM) invented in 1982, have made it possible to create (and visualize) individual structures atom by atom. However, such individual atomic manipulation is not suitable for industrial applications. Self-assembly or self-organization of nanostructures on solid surfaces is a bottom-up approach that allows one to fabricate and assemble nanostructure arrays in a one-step process. For applications, such as high density magnetic storage, self-assembly appears to be the simplest alternative to lithography for massive, parallel fabrication of nanostructure arrays with regular sizes and spacings. These are also necessary for investigating the physical properties of individual nanostructures by means of averaging techniques, i.e. all those using light or particle beams. The state-of-the-art and the current developments in the field of self-organization and physical properties of assembled nanostructures are reviewed in this issue of Journal of Physics: Condensed Matter. The papers have been selected from among the invited and oral presentations of the recent summer workshop held in Cargese (Corsica, France, 17-23 July 2005). All authors are world-renowned in the field. The workshop has been funded by the Marie Curie Actions: Marie Curie Conferences and Training Courses series named `NanosciencesTech' supported by the VI Framework Programme of the European Community, by

  12. Stacked mechanical nanogenerator comprising piezoelectric semiconducting nanostructures and Schottky conductive contacts

    DOEpatents

    Wang, Zhong L.; Xu, Sheng

    2011-08-23

    An electric power generator includes a first conductive layer, a plurality of semiconducting piezoelectric nanostructures, a second conductive layer and a plurality of conductive nanostructures. The first conductive layer has a first surface from which the semiconducting piezoelectric nanostructures extend. The second conductive layer has a second surface and is parallel to the first conductive layer so that the second surface faces the first surface of the first conductive layer. The conductive nanostructures depend downwardly therefrom. The second conductive layer is spaced apart from the first conductive layer at a distance so that when a force is applied, the semiconducting piezoelectric nanostructures engage the conductive nanostructures so that the piezoelectric nanostructures bend, thereby generating a potential difference across the at semiconducting piezoelectric nanostructures and also thereby forming a Schottky barrier between the semiconducting piezoelectric nanostructures and the conductive nanostructures.

  13. Irradiation-Induced Nanostructures

    SciTech Connect

    Birtcher, R.C.; Ewing, R.C.; Matzke, Hj.; Meldrum, A.; Newcomer, P.P.; Wang, L.M.; Wang, S.X.; Weber, W.J.

    1999-08-09

    This paper summarizes the results of the studies of the irradiation-induced formation of nanostructures, where the injected interstitials from the source of irradiation are not major components of the nanophase. This phenomena has been observed by in situ transmission electron microscopy (TEM) in a number of intermetallic compounds and ceramics during high-energy electron or ion irradiations when the ions completely penetrate through the specimen. Beginning with single crystals, electron or ion irradiation in a certain temperature range may result in nanostructures composed of amorphous domains and nanocrystals with either the original composition and crystal structure or new nanophases formed by decomposition of the target material. The phenomenon has also been observed in natural materials which have suffered irradiation from the decay of constituent radioactive elements and in nuclear reactor fuels which have been irradiated by fission neutrons and other fission products. The mechanisms involved in the process of this nanophase formation are discussed in terms of the evolution of displacement cascades, radiation-induced defect accumulation, radiation-induced segregation and phase decomposition, as well as the competition between irradiation-induced amorphization and recrystallization.

  14. Free form fabricated features on CoCr implants with and without hydroxyapatite coating in vivo: a comparative study of bone contact and bone growth induction.

    PubMed

    Grandfield, Kathryn; Palmquist, Anders; Gonçalves, Stéphane; Taylor, Andy; Taylor, Mark; Emanuelsson, Lena; Thomsen, Peter; Engqvist, Håkan

    2011-04-01

    The current study evaluates the in vivo response to free form fabricated cobalt chromium (CoCr) implants with and without hydroxyapatite (HA) plasma sprayed coatings. The free form fabrication method allowed for integration of complicated pyramidal surface structures on the cylindrical implant. Implants were press fit into the tibial metaphysis of nine New Zealand white rabbits. Animals were sacrificed and implants were removed and embedded. Histological analysis, histomorphometry and electron microscopy studies were performed. Focused ion beam was used to prepare thin sections for high-resolution transmission electron microscopy examination. The fabricated features allowed for effective bone in-growth and firm fixation after 6 weeks. Transmission electron microscopy investigations revealed intimate bone-implant integration at the nanometre scale for the HA coated samples. In addition, histomorphometry revealed a significantly higher bone contact on HA coated implants compared to native CoCr implants. It is concluded that free form fabrication in combination with HA coating improves the early fixation in bone under experimental conditions. PMID:21305340

  15. Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale

    PubMed Central

    2013-01-01

    We report on a method of fabricating variable patterns of periodic, high aspect ratio silicon nanostructures with sub-50-nm resolution on a wafer scale. The approach marries step-and-repeat nanoimprint lithography (NIL) and metal-catalyzed electroless etching (MCEE), enabling near perfectly ordered Si nanostructure arrays of user-defined patterns to be controllably and rapidly generated on a wafer scale. Periodic features possessing circular, hexagonal, and rectangular cross-sections with lateral dimensions down to sub-50 nm, in hexagonal or square array configurations and high array packing densities up to 5.13 × 107 structures/mm2 not achievable by conventional UV photolithography are fabricated using this top-down approach. By suitably tuning the duration of catalytic etching, variable aspect ratio Si nanostructures can be formed. As the etched Si pattern depends largely on the NIL mould which is patterned by electron beam lithography (EBL), the technique can be used to form patterns not possible with self-assembly methods, nanosphere, and interference lithography for replication on a wafer scale. Good chemical resistance of the nanoimprinted mask and adhesion to the Si substrate facilitate good pattern transfer and preserve the smooth top surface morphology of the Si nanostructures as shown in TEM. This approach is suitable for generating Si nanostructures of controlled dimensions and patterns, with high aspect ratio on a wafer level suitable for semiconductor device production. PMID:24289275

  16. Versatile pattern generation of periodic, high aspect ratio Si nanostructure arrays with sub-50-nm resolution on a wafer scale

    NASA Astrophysics Data System (ADS)

    Ho, Jian-Wei; Wee, Qixun; Dumond, Jarrett; Tay, Andrew; Chua, Soo-Jin

    2013-12-01

    We report on a method of fabricating variable patterns of periodic, high aspect ratio silicon nanostructures with sub-50-nm resolution on a wafer scale. The approach marries step-and-repeat nanoimprint lithography (NIL) and metal-catalyzed electroless etching (MCEE), enabling near perfectly ordered Si nanostructure arrays of user-defined patterns to be controllably and rapidly generated on a wafer scale. Periodic features possessing circular, hexagonal, and rectangular cross-sections with lateral dimensions down to sub-50 nm, in hexagonal or square array configurations and high array packing densities up to 5.13 × 107 structures/mm2 not achievable by conventional UV photolithography are fabricated using this top-down approach. By suitably tuning the duration of catalytic etching, variable aspect ratio Si nanostructures can be formed. As the etched Si pattern depends largely on the NIL mould which is patterned by electron beam lithography (EBL), the technique can be used to form patterns not possible with self-assembly methods, nanosphere, and interference lithography for replication on a wafer scale. Good chemical resistance of the nanoimprinted mask and adhesion to the Si substrate facilitate good pattern transfer and preserve the smooth top surface morphology of the Si nanostructures as shown in TEM. This approach is suitable for generating Si nanostructures of controlled dimensions and patterns, with high aspect ratio on a wafer level suitable for semiconductor device production.

  17. Dynamics of Nanostructures at Surfaces

    SciTech Connect

    Schmid, Andreas K.

    2001-02-28

    Currently, much effort is being devoted to the goal of achieving useful nanotechnologies, which depend on the ability to control and manipulate things on a very small scale. One promising approach to the construction of nanostructures is 'self-assembly', which means that under suitable conditions desired nanostructures might form automatically due to physical and chemical forces. Remarkably, the forces controlling such self-assembly mechanisms are only poorly understood, even though highly successful examples of self-assembly are known in nature (e.g., complex biochemical machinery regularly self-assembles in the conditions inside living cells). This talk will highlight basic measurements of fundamental forces governing the dynamics of nanostructures at prototypical metal surfaces. We use advanced surface microscopy techniques to track the motions of very small structures in real time and up to atomic resolution. One classic example of self-organized nanostructures are networks of surface dislocations (linear crystal defects). The direct observation of thermally activated atomic motions of dislocations in a reconstructed gold surface allows us to measure the forces stabilizing the remarkable long-range order of this nanostructure. In another example, the rapid migration of nano-scale tin crystals deposited on a pure copper surface was traced to an atomic repulsion between tin atoms absorbed on the crystal surface and bronze alloy formed in the footprint of the tin crystals. It is intriguing to consider the clusters as simple chemo-mechanical energy transducers, essentially tiny linear motors built of 100,000 Sn atoms. We can support this view by providing estimates of the power and energy-efficiency of these nano-motors.

  18. Study of the chemical chelates and anti-microbial effect of some metal ions in nanostructural form on the efficiency of antibiotic therapy "norfloxacin drug"

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; El-Hawary, W. F.; Mohamed, Mahmoud A.

    2012-04-01

    This paper has reviewed the chemical and biological impact resulting from the interaction between norfloxacin (norH) antibiotic drug and two lanthanide (lanthanum(III) and cerium(III)) metal ions, which prepared in normal and nano-features. La(III) and Ce(III) complexes were synthesized with chemical formulas [La(nor)3]·3H2O and [Ce(nor)3]·2H2O. Lanthanum and cerium(III) ions coordinated toward norH with a hexadentate geometry. The norH acts as deprotonated bidentate ligand through the oxygen atom of carbonyl group and the oxygen atom of carboxylic group. Elemental analysis, FT-IR spectral, electrical conductivity, thermal analysis (TG/DTA), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurements have been used to characterize the mentioned isolated complexes. The Coats-Redfern and Horowitz-Metzger integral methods are used to estimate the kinetic parameters for the major successive steps detectable in the TG curve. The brightness side in this study is to take advantage for the preparation and characterization of single phases of La2O3 and CeO2 nanoparticles using urea as precursors via a solid-state decomposition procedure. The norH ligand in comparison with both cases (normal and nano-particles) of lanthanide complexes were screened against for antibacterial (Escherichia Coli, Staphylococcus Aureus, Bacillus subtilis and Pseudomonas aeruginosa) and antifungal (Aspergillus Flavus and Candida Albicans) activities. The highest antibacterial and antifungal activities data of the nano-particles complexes were observed with more potent than the free norH and normal lanthanide complexes.

  19. Microwave assisted formation of magnetic carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Yerra, Narendranath

    Magnetic epoxy carbon nanostructures from microwave energy assisted- and conventional-pyrolysis processes are compared. Unlike graphitized carbon shell in the conventional heating, different carbon shell morphologies including carbon nanotubes, carbon nanoflakes and amorphous carbon were observed. Crystalline metallic iron and cementite were observed in the magnetic core, different from a single cementite produced in the conventional process. Carbon coated magnetic nanostructures as well as dielectric semiconductors can be produced using this process. Microwave assisted pyrolysis process is also used to form the magnetic core-shell carbon nanostructure from polyaniline (PANI)-magnetite (Fe 3O4) nanocomposites. The amorphous combined with graphitized carbon shell is observed by the transmission electron microscopy (TEM). The crystalline metallic iron, cementite, Fe3O4 and iron oxide (Fe2O 3) are observed in the magnetic core in the Mossbauer spectra measurements. The increased magnetic properties are observed in the formed core-shell carbon nanostructure after microwave annealing compared with PANI-Fe3O 4 nanocomposites. The formed solid carbon nanostructure can protect the material from the acid dissolution and magnetic core favors the recycling of material. This magnetic carbon nanostructure has the potential application in the removal of heavy metals from waste water.

  20. Influence of heat treatment on morphological changes of nano-structured titanium oxide formed by anodic oxidation of titanium in acidic fluoride solution.

    PubMed

    Neupane, Madhav Prasad; Park, Il Song; Lee, Min Ho; Bae, Tae Sung; Watari, Fumio

    2009-01-01

    TiO(2) nanotube array (TN) on titanium plate was fabricated by using an electrochemical method. The crystal structure and surface morphology of TN array was examined by X-ray diffraction (XRD) and Field Emission Scanning Electronic Microscopy (FE-SEM), respectively. The stability of the nanotube structure and crystal phase transition was studied at different temperatures in dry oxygen ambient. The as-deposited films were found to be amorphous. The tubes crystallized in the anatase phase at a temperature of 450 degrees C. Anatase crystallites formed inside the tubes walls was transformed completely to rutile at 500 degrees C in dry environment. With the heating temperature increased the intensity of rutile peak increased with decrease in reflection from titanium. Intense rutile peak was observed at 600 degrees C. The average pore diameter as calculated from FE-SEM images was 50-100 nm. At higher temperature tubular structure completely collapsed leaving dense rutile crystallites. A model was proposed to explain the formation mechanism of TN fabricated on titanium plate in HF/H(2)SO(4) electrolyte. PMID:19458449

  1. Repairable, nanostructured biomimetic hydrogels

    NASA Astrophysics Data System (ADS)

    Firestone, M.; Brombosz, S.; Grubjesic, S.

    2013-03-01

    Proteins facilitate many key cellular processes, including signal recognition and energy transduction. The ability to harness this evolutionarily-optimized functionality could lead to the development of protein-based systems useful for advancing alternative energy storage and conversion. The future of protein-based, however, requires the development of materials that will stabilize, order and control the activity of the proteins. Recently we have developed a synthetic approach for the preparation of a durable biomimetic chemical hydrogel that can be reversibly swollen in water. The matrix has proven ideal for the stable encapsulation of both water- and membrane-soluble proteins. The material is composed of an aqueous dispersion of a diacrylate end-derivatized PEO-PPO-PEO macromer, a saturated phospholipid and a zwitterionic co-surfactant that self-assembles into a nanostructured physical gel at room temperature as determined by X-ray scattering. The addition of a water soluble PEGDA co-monomer and photoinitator does not alter the self-assembled structure and UV irradiation serves to crosslink the acrylate end groups on the macromer with the PEGDA forming a network within the aqueous domains as determined by FT-IR. More recently we have begun to incorporate reversible crosslinks employing Diels-Alder chemistry, allowing for the extraction and replacement of inactive proteins. The ability to replenish the materials with active, non-denatured forms of protein is an important step in advancing these materials for use in nanostructured devices This work was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, USDoE under Contract No. DE-AC02-06CH11357.

  2. Conserved Surface Features Form the Double-stranded RNA Binding Site of Non-structural Protein 1 (NS1) from Influenza A and B Viruses

    SciTech Connect

    Yin,C.; Khan, J.; Swapna, G.; Ertekin, A.; Krug, R.; Tong, L.; Montelione, G.

    2007-01-01

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-{angstrom} x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier 'working models' of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an {approx}45{sup o} angle relative to the axes of helices {alpha}2/{alpha}2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses.

  3. Conserved surface features form the double-stranded RNA binding site of non-structural protein 1 (NS1) from influenza A and B viruses.

    PubMed

    Yin, Cuifeng; Khan, Javed A; Swapna, G V T; Ertekin, Asli; Krug, Robert M; Tong, Liang; Montelione, Gaetano T

    2007-07-13

    Influenza A viruses cause a highly contagious respiratory disease in humans and are responsible for periodic widespread epidemics with high mortality rates. The influenza A virus NS1 protein (NS1A) plays a key role in countering host antiviral defense and in virulence. The 73-residue N-terminal domain of NS1A (NS1A-(1-73)) forms a symmetric homodimer with a unique six-helical chain fold. It binds canonical A-form double-stranded RNA (dsRNA). Mutational inactivation of this dsRNA binding activity of NS1A highly attenuates virus replication. Here, we have characterized the unique structural features of the dsRNA binding surface of NS1A-(1-73) using NMR methods and describe the 2.1-A x-ray crystal structure of the corresponding dsRNA binding domain from human influenza B virus NS1B-(15-93). These results identify conserved dsRNA binding surfaces on both NS1A-(1-73) and NS1B-(15-93) that are very different from those indicated in earlier "working models" of the complex between dsRNA and NS1A-(1-73). The combined NMR and crystallographic data reveal highly conserved surface tracks of basic and hydrophilic residues that interact with dsRNA. These tracks are structurally complementary to the polyphosphate backbone conformation of A-form dsRNA and run at an approximately 45 degrees angle relative to the axes of helices alpha2/alpha2'. At the center of this dsRNA binding epitope, and common to NS1 proteins from influenza A and B viruses, is a deep pocket that includes both hydrophilic and hydrophobic amino acids. This pocket provides a target on the surface of the NS1 protein that is potentially suitable for the development of antiviral drugs targeting both influenza A and B viruses. PMID:17475623

  4. Inorganic nanostructures grown on graphene layers

    NASA Astrophysics Data System (ADS)

    Park, Won Il; Lee, Chul-Ho; Lee, Jung Min; Kim, Nam-Jung; Yi, Gyu-Chul

    2011-09-01

    This article presents a review of current research activities on the hybrid heterostructures of inorganic nanostructures grown directly on graphene layers, which can be categorized primarily as zero-dimensional nanoparticles; one-dimensional nanorods, nanowires, and nanotubes; and two-dimensional nanowalls. For the hybrid structures, the nanostructures exhibit excellent material characteristics including high carrier mobility and radiative recombination rate as well as long-term stability while graphene films show good optical transparency, mechanical flexibility, and electrical conductivity. Accordingly, the versatile and fascinating properties of the nanostructures grown on graphene layers make it possible to fabricate high-performance optoelectronic and electronic devices even in transferable, flexible, or stretchable forms. Here, we review preparation methods and possible device applications of the hybrid structures consisting of various types of inorganic nanostructures grown on graphene layers.

  5. Ultrahard magnetic nanostructures

    SciTech Connect

    Sahota, PK; Liu, Y; Skomski, R; Manchanda, P; Zhang, R; Franchin, M; Fangohr, H; Hadjipanayis, GC; Kashyap, A; Sellmyer, DJ

    2012-04-01

    The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to control on small length scales, as epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52 T. Our numerical and analytical calculations show that the feature size and geometry have a big effect on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional complication is provided by the physical properties of the hard phases. For a given soft phase, the performance of a hard-soft composite is determined by the parameter (M-s - M-h)/K-h. (C) 2012 American Institute of Physics. [doi:10.1063/1.3679453

  6. Ultrahard magnetic nanostructures

    NASA Astrophysics Data System (ADS)

    Sahota, P. K.; Liu, Y.; Skomski, R.; Manchanda, P.; Zhang, R.; Franchin, M.; Fangohr, H.; Hadjipanayis, G. C.; Kashyap, A.; Sellmyer, D. J.

    2012-04-01

    The performance of hard-magnetic nanostructures is investigated by analyzing the size and geometry dependence of thin-film hysteresis loops. Compared to bulk magnets, weight and volume are much less important, but we find that the energy product remains the main figure of merit down to very small features sizes. However, hysteresis loops are much easier to control on small length scales, as epitomized by Fe-Co-Pt thin films with magnetizations of up to 1.78 T and coercivities of up to 2.52 T. Our numerical and analytical calculations show that the feature size and geometry have a big effect on the hysteresis loop. Layered soft regions, especially if they have a free surface, are more harmful to coercivity and energy product than spherical inclusions. In hard-soft nanocomposites, an additional complication is provided by the physical properties of the hard phases. For a given soft phase, the performance of a hard-soft composite is determined by the parameter (Ms - Mh)/Kh.

  7. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  8. Design principles for rapid folding of knotted DNA nanostructures.

    PubMed

    Kočar, Vid; Schreck, John S; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P K; Jerala, Roman

    2016-01-01

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the 'free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins. PMID:26887681

  9. Design principles for rapid folding of knotted DNA nanostructures

    PubMed Central

    Kočar, Vid; Schreck, John S.; Čeru, Slavko; Gradišar, Helena; Bašić, Nino; Pisanski, Tomaž; Doye, Jonathan P. K.; Jerala, Roman

    2016-01-01

    Knots are some of the most remarkable topological features in nature. Self-assembly of knotted polymers without breaking or forming covalent bonds is challenging, as the chain needs to be threaded through previously formed loops in an exactly defined order. Here we describe principles to guide the folding of highly knotted single-chain DNA nanostructures as demonstrated on a nano-sized square pyramid. Folding of knots is encoded by the arrangement of modules of different stability based on derived topological and kinetic rules. Among DNA designs composed of the same modules and encoding the same topology, only the one with the folding pathway designed according to the ‘free-end' rule folds efficiently into the target structure. Besides high folding yield on slow annealing, this design also folds rapidly on temperature quenching and dilution from chemical denaturant. This strategy could be used to design folding of other knotted programmable polymers such as RNA or proteins. PMID:26887681

  10. EDITORIAL: Focus on Nanostructured Soft Matter

    NASA Astrophysics Data System (ADS)

    Reineker, Peter; Schülz, Michael

    2004-01-01

    Nanostructures in general are playing a more and more important role in the physics and chemistry of condensed matter systems including both hard and soft materials. This Focus Issue concentrates particularly on recent developments in Nanostructured Soft Matter Systems. Many interesting questions related to both fundamental and applied research in this field have arisen. Some of them are connected to the chemical reactions that take place during the irreversible formation of soft matter systems. Others refer to the theoretical and experimental investigations of structures and topologies of `nanostructured soft matter', e.g. heterogeneous polymers and polymer networks, or soft matter at low dimensions or in constrained geometries. Additional research has also been devoted to the dynamics of other complex nanostructured systems, such as the structure formation on the basis of polymer systems and polyelectrolytes, and several kinds of phase transitions on nano- and microscales. The contributions collected here present the most up-to-date research results on all of these topics. New Journal of Physics, as an electronic journal, is perfectly suited for the presentation of the complex results that the experimental and theoretical investigations reported here yield. The articles that will follow provide a number of excellent examples of the use of animations, movies and colour features for the added benefit of the reader. Focus on Nanostructured Soft Matter Contents Phase separation kinetics in compressible polymer solutions: computer simulation of the early stages Peter Virnau, Marcus Müller, Luis González MacDowell and Kurt Binder Spectral dynamics in the B800 band of LH2 from Rhodospirillum molischianum: a single-molecule study Clemens Hofmann, Thijs J Aartsma, Hartmut Michel and Jürgen Köhler Adsorption of polyacrylic acid on self-assembled monolayers investigated by single-molecule force spectroscopy Claudia Friedsam, Aránzazu Del Campo Bécares, Ulrich Jonas

  11. INTERSTELLAR ANALOGS FROM DEFECTIVE CARBON NANOSTRUCTURES ACCOUNT FOR INTERSTELLAR EXTINCTION

    SciTech Connect

    Tan, Zhenquan; Abe, Hiroya; Sato, Kazuyoshi; Ohara, Satoshi; Chihara, Hiroki; Koike, Chiyoe; Kaneko, Kenji

    2010-11-15

    Because interstellar dust is closely related to the evolution of matter in the galactic environment and many other astrophysical phenomena, the laboratory synthesis of interstellar dust analogs has received significant attention over the past decade. To simulate the ultraviolet (UV) interstellar extinction feature at 217.5 nm originating from carbonaceous interstellar dust, many reports focused on the UV absorption properties of laboratory-synthesized interstellar dust analogs. However, no general relation has been established between UV interstellar extinction and artificial interstellar dust analogs. Here, we show that defective carbon nanostructures prepared by high-energy collisions exhibit a UV absorption feature at 220 nm which we suggest accounts for the UV interstellar extinction at 217.5 nm. The morphology of some carbon nanostructures is similar to that of nanocarbons discovered in the Allende meteorite. The similarity between the absorption feature of the defective carbon nanostructures and UV interstellar extinction indicates a strong correlation between the defective carbon nanostructures and interstellar dust.

  12. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps.

    PubMed

    Espinosa-Soria, Alba; Griol, Amadeu; Martínez, Alejandro

    2016-05-01

    In this work, we report numerical simulations and experiments of the optical response of a gold nanostrip embedded in a silicon strip waveguide gap at telecom wavelengths. We show that the spectral features observed in transmission and reflection when the metallic nanostructure is inserted in the gap are extremely different than those observed in free-space excitation. First, we find that interference between the guided field and the electric dipolar resonance of the metallic nanostructure results in high-contrast (> 10) spectral features showing an asymmetric Fano spectral profile. Secondly, we reveal a crossing in the transmission and reflection responses close to the nanostructure resonance wavelength as a key feature of our system. This approach, which can be realized using standard semiconductor nanofabrication tools, could lead to a full exploitation of the extreme properties of subwavelength metallic nanostructures in an on-chip configuration, with special relevance in fields such as biosensing or optical switching. PMID:27137572

  13. Plasmonic properties and applications of metallic nanostructures

    NASA Astrophysics Data System (ADS)

    Zhen, Yurong

    Plasmonic properties and the related novel applications are studied on various types of metallic nano-structures in one, two, or three dimensions. For 1D nanostructure, the motion of free electrons in a metal-film with nanoscale thickness is confined in its normal dimension and free in the other two. Describing the free-electron motion at metal-dielectric surfaces, surface plasmon polariton (SPP) is an elementary excitation of such motions and is well known. When further perforated with periodic array of holes, periodicity will introduce degeneracy, incur energy-level splitting, and facilitate the coupling between free-space photon and SPP. We applied this concept to achieve a plasmonic perfect absorber. The experimentally observed reflection dip splitting is qualitatively explained by a perturbation theory based on the above concept. If confined in 2D, the nanostructures become nanowires that intrigue a broad range of research interests. We performed various studies on the resonance and propagation of metal nanowires with different materials, cross-sectional shapes and form factors, in passive or active medium, in support of corresponding experimental works. Finite- Difference Time-Domain (FDTD) simulations show that simulated results agrees well with experiments and makes fundamental mode analysis possible. Confined in 3D, the electron motions in a single metal nanoparticle (NP) leads to localized surface plasmon resonance (LSPR) that enables another novel and important application: plasmon-heating. By exciting the LSPR of a gold particle embedded in liquid, the excited plasmon will decay into heat in the particle and will heat up the surrounding liquid eventually. With sufficient exciting optical intensity, the heat transfer from NP to liquid will undergo an explosive process and make a vapor envelop: nanobubble. We characterized the size, pressure and temperature of the nanobubble by a simple model relying on Mie calculations and continuous medium assumption. A

  14. To the understanding of the formation of the droplet-epitaxial III-V based nanostructures

    SciTech Connect

    Nemcsics, Ákos

    2014-05-15

    In this work, we discuss the evolution of the self-assembling III-V based nanostructures. These nano-structures were prepared by droplet epitaxial technique. The different nanostructures such as quantum dot, quantum ring, double quantum ring, or nanohole form similarly from an initial Ga droplet but under different substrate temperature and various arsenic pressures. Started from few atomic courses, we give here a qualitative description of the key processes for all of the aforementioned nanostructures.

  15. Modeling of feature profile evolution for ion etching

    SciTech Connect

    Li, Kun-Dar

    2013-01-07

    A kinetic model is presented to investigate the profile evolution during ion etching. The effects of ion sputtering, redeposition, and diffusion processes are all taken into consideration in the formation mechanism of surface profile. The dominant factors accounting for the surface smoothening and roughening during ion etching are well explained in this study. Under high ion flux or ion energy, the sputtering effect plays a controlling role in roughening the surface profile with a high etching rate. While decreasing ion flux or ion energy, the surface profile is smoothened by the diffusion mechanism with a long time ion irradiation. For a low temperature, the characteristic length of nanostructures decreases with a sputtered feature profile due to the low mobility. Our simulation results are consistent well with many experimental observations. This theoretical model provides an efficient numerical approach to fully understand the mechanism for the formation of surface profile allowing for designing of appropriate experiments to form specific nanostructures through ion-beam technology.

  16. Ionic liquid nanostructure enables alcohol self assembly.

    PubMed

    Murphy, Thomas; Hayes, Robert; Imberti, Silvia; Warr, Gregory G; Atkin, Rob

    2016-05-14

    Weakly structured solutions are formed from mixtures of one or more amphiphiles and a polar solvent (usually water), and often contain additional organic components. They contain solvophobic aggregates or association structures with incomplete segregation of components, which leads to a poorly defined interfacial region and significant contact between the solvent and aggregated hydrocarbon groups. The length scales, polydispersity, complexity and ill-defined structures in weakly structured solutions makes them difficult to probe experimentally, and obscures understanding of their formation and stability. In this work we probe the nanostructure of homogenous binary mixtures of the ionic liquid (IL) propylammonium nitrate (PAN) and octanol as a function of composition using neutron diffraction and atomistic empirical potential structure refinement (EPSR) fits. These experiments reveal why octanol forms weakly structured aggregates in PAN but not in water, the mechanism by which PAN stabilises the octanol assemblies, and how the aggregate morphologies evolve with octanol concentration. This new understanding provides insight into the general stabilisation mechanisms and structural features of weakly structured mixtures, and reveals new pathways for identifying molecular or ionic liquids that are likely to facilitate aggregation of non-traditional amphiphiles. PMID:27102801

  17. Phosphorylation of S409/410 of TDP-43 is a consistent feature in all sporadic and familial forms of TDP-43 proteinopathies

    PubMed Central

    Neumann, Manuela; Kwong, Linda K.; Lee, Edward B.; Kremmer, Elisabeth; Flatley, Andrew; Xu, Yan; Forman, Mark; Troost, Dirk; Kretzschmar, Hans A.; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2009-01-01

    Accumulation of hyperphosphorylated, ubiquitinated and N-terminally truncated TAR DNA-binding protein (TDP-43) is the pathological hallmark lesion in most familial and sporadic forms of FTLD-U and ALS, which can be subsumed as TDP-43 proteinopathies. In order to get more insight into the role of abnormal phosphorylation in the disease process, the identification of specific phosphorylation sites and the generation of phosphorylation-specific antibodies are mandatory. Here, we developed and characterized novel rat monoclonal antibodies (1D3 and 7A9) raised against phosphorylated S409/410 of TDP-43. These antibodies were used to study the presence of S409/410 phosphorylation by immunohistochemistry and biochemical analysis in a large series of 64 FTLD-U cases with or without motor neuron disease including familial cases with mutations in progranulin (n=5), valosin-containing protein (n=4) and linkage to chromosome 9p (n=4), 18 ALS cases as well as other neurodegenerative diseases with concomitant TDP-43 pathology (n=5). Our data demonstrate, that phosphorylation of S409/410 of TDP-43 is a highly consistent feature in pathologic inclusions in the whole spectrum of sporadic and familial forms of TDP-43 proteinopathies. Physiological nuclear TDP-43 was not detectable with these mAbs by immunohistochemistry and by immunoblot analyses. While the accumulation of phosphorylated C-terminal fragments was a robust finding in the cortical brain regions of FTLD-U and ALS, usually being much more abundant than the phsphorylated full-length TDP-43 band, spinal cord samples revealed a predominance of full-length TDP-43 over C-terminal fragments. This argues for a distinct TDP-43 species composition in inclusions in cortical versus spinal cord cells. Overall, these mAbs are powerful tools for the highly specific detection of disease-associated abnormal TDP-43 species and will be extremely useful for the neuropathological routine diagnostics of TDP-43 proteinopathies and for the

  18. Vibron and phonon hybridization in dielectric nanostructures.

    PubMed

    Preston, Thomas C; Signorell, Ruth

    2011-04-01

    Plasmon hybridization theory has been an invaluable tool in advancing our understanding of the optical properties of metallic nanostructures. Through the prism of molecular orbital theory, it allows one to interpret complex structures as "plasmonic molecules" and easily predict and engineer their electromagnetic response. However, this formalism is limited to conducting particles. Here, we present a hybridization scheme for the external and internal vibrations of dielectric nanostructures that provides a straightforward understanding of the infrared signatures of these particles through analogy to existing hybridization models of both molecular orbitals and plasmons extending the range of applications far beyond metallic nanostructures. This method not only provides a qualitative understanding, but also allows for the quantitative prediction of vibrational spectra of complex nanoobjects from well-known spectra of their primitive building blocks. The examples of nanoshells illustrate how spectral features can be understood in terms of symmetry, number of nodal planes, and scale parameters. PMID:21422288

  19. Nanostructural Characteristics of Vacuum Cold-Sprayed Hydroxyapatite/Graphene-Nanosheet Coatings for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Huang, Jing; Li, Hua

    2014-10-01

    Development of novel biocompatible nanomaterials has provided insights into their potential biomedical applications. Bulk fabrication of the nanomaterials in the form of coatings remains challenging. Here, we report hydroxyapatite (HA)/graphene-nanosheet (GN) composite coatings deposited by vacuum cold spray (VCS). Significant shape changes of HA nanograins during the coating deposition were revealed. The nanostructural features of HA together with curvature alternation of GN gave rise to dense structures. Based on the microstructural characterization, a structure model was proposed to elucidate the nanostructural characteristics of the HA-GN nanocomposites. Results also showed that addition of GN significantly enhanced fracture toughness and elastic modulus of the HA-based coatings, which is presumably accounted for by crack bridging offered by GN in the composites. The VCS HA-GN coatings show potential for biomedical applications for the repair or replacement of hard tissues.

  20. PROPERTIES AND NANOSTRUCTURES OF MATERIALS PROCESSED BY SPD TECHNIQUES

    SciTech Connect

    Liao, Xiaoshan; Huang, J.; Zhu, Y. T.

    2001-01-01

    Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. It demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. This paper reviews the mechanical properties and the defect structures of SPD-processed nanostructured materials. Keywords: strength, ductility, nanostructures, SPD, non-equilibrium grain boundary

  1. Noncovalent interaction of carbon nanostructures.

    PubMed

    Umadevi, Deivasigamani; Panigrahi, Swati; Sastry, Garikapati Narahari

    2014-08-19

    The potential application of carbon nanomaterials in biology and medicine increases the necessity to understand the nature of their interactions with living organisms and the environment. The primary forces of interaction at the nano-bio interface are mostly noncovalent in nature. Quantifying such interactions and identifying various factors that influence such interactions is a question of outstanding fundamental interest in academia and industry. In this Account, we have summarized our recent studies in understanding the noncovalent interactions of carbon nanostructures (CNSs), which were obtained by employing first-principles calculations on various model systems representing carbon nanotubes (CNTs) and graphene. Bestowed with an extended sp(2) carbon network, which is a common feature in all of these nanostructures, they exhibit π-π interactions with aromatic molecules (benzene, naphthalene, nucleobases, amino acids), cation-π type of interactions with metal ions, anion-π interactions with anions, and other XH···π type of interactions with various small molecules (H2O, NH3, CH4, H2, etc.). CNTs are wrapped-up forms of two-dimensional graphene, and hence, it is interesting to compare the binding abilities of these two allotropes that differ in their curvature. The chirality and curvature of CNSs appear to play a major role in determining the structural, energetic, and functional properties. Flat graphene shows stronger noncovalent interactions than the curved nanotubes toward various substrates. Understanding the interactions of CNSs with organic molecules and biomolecules has gained a great deal of research interest because of their potential applications in various fields. Aromatic hydrocarbons show a strong propensity to interact with CNSs via the π-π mode of interaction rather than CH···π interaction. As DNA sequencing appears to be one of the most important potential applications of carbon nanomaterials, the study of CNS

  2. Greater osteoblast and endothelial cell adhesion on nanostructured polyethylene and titanium

    PubMed Central

    Raimondo, Theresa; Puckett, Sabrina; Webster, Thomas J

    2010-01-01

    Mostly due to desirable mechanical properties (such as high durability and low wear), certain synthetic polymers (such as polyethylene) and metals (such as titanium) have found numerous applications in the medical device arena from orthopedics to the vasculature, yet frequently, they do not proactively encourage desirable cell responses. In an effort to improve the efficacy of such traditional materials for various implant applications, this study used electron beam evaporation to create nanostructured surface features that mimic those of natural tissue on polyethylene and titanium. For other materials, it has been shown that the creation of nanorough surfaces increases surface energy leading to greater select protein (such as vitronectin and fibronectin) interactions to increase specific cell adhesion. Here, osteoblast (bone forming cells) and endothelial cell (cells that line the vasculature) adhesion was determined on nanostructured compared to conventional, nano-smooth polyethylene and titanium. Results demonstrated that nanorough surfaces created by electron beam evaporation increased the adhesion of both cells markedly better than conventional smooth surfaces. In summary, this study provided evidence that electron beam evaporation can modify implant surfaces (specifically, polyethylene and titanium) to have nanostructured surface features to improve osteoblast and endothelial cell adhesion. Since the adhesion of anchorage dependent cells (such as osteoblasts and endothelial cells) is a prerequisite for their long-term functions, this study suggests that electron beam evaporation should be further studied for improving materials for various biomedical applications. PMID:20856840

  3. The hydride vapor phase epitaxy of GaN on silicon covered by nanostructures

    NASA Astrophysics Data System (ADS)

    Jahn, U.; Musolino, M.; Lähnemann, J.; Dogan, P.; Fernández Garrido, S.; Wang, J. F.; Xu, K.; Cai, D.; Bian, L. F.; Gong, X. J.; Yang, H.

    2016-06-01

    GaN several tens of μm thick has been deposited on a silicon substrate using a two-step hydride vapor phase epitaxy (HVPE) process. The substrates were covered by AlN layers and GaN nanostructures grown by plasma-assisted molecular-beam epitaxy. During the first low-temperature (low-T) HVPE step, stacking faults (SF) form, which show distinct luminescence lines and stripe-like features in the cathodoluminescence images of the cross-section of the layers. These cathodoluminescence features provide an insight into the growth process. During a second high-temperature (high-T) step, the SFs disappear, and the luminescence of this part of the GaN layer is dominated by the donor-bound exciton. For templates consisting of both a thin AlN buffer and GaN nanostructures, the incorporation of silicon into the GaN grown by HVPE is not observed. Moreover, the growth mode of the (high-T) HVPE step depends on the specific structure of the AlN/GaN template, where in the first case, epitaxy is dominated by the formation of slowly growing facets, while in the second case, epitaxy proceeds directly along the c-axis. For templates without GaN nanostructures, cathodoluminescence spectra excited close to the Si/GaN interface show a broadening toward higher energies, indicating the incorporation of silicon at a high dopant level.

  4. Experimental Study of Water Droplet Vaporization on Nanostructured Surfaces

    NASA Astrophysics Data System (ADS)

    Padilla, Jorge, Jr.

    This dissertation summarizes results of an experimental exploration of heat transfer during vaporization of a water droplet deposited on a nanostructured surface at a temperature approaching and exceeding the Leidenfrost point for the surface and at lower surface temperatures 10-40 degrees C above the saturated temperature of the water droplet at approximately 101 kPa. The results of these experiments were compared to those performed on bare smooth copper and aluminum surfaces in this and other studies. The nanostructured surfaces were composed of a vast array of zinc oxide (ZnO) nanocrystals grown by hydrothermal synthesis on a smooth copper substrate having an average surface roughness of approximately 0.06 micrometer. Various nanostructured surface array geometries were produced on the copper substrate by performing the hydrothermal synthesis for 4, 10 and 24 hours. The individual nanostructures were randomly-oriented and, depending on hydrothermal synthesis time, had a mean diameter of about 500-700 nm, a mean length of 1.7-3.3 micrometers,and porosities of approximately 0.04-0.58. Surface wetting was characterized by macroscopic measurements of contact angle based on the droplet profile and calculations based on measurements of liquid film spread area. Scanning electron microscope imaging was used to document the nanoscale features of the surface before and after the experiments. The nanostructured surfaces grown by hydrothermal synthesis for 4 and 24 hours exhibited contact angles of approximately 10, whereas the surfaces grown for 10 hours were superhydrophilic, exhibiting contact angles typically less than 3 degrees. In single droplet deposition experiments at 101 kPa, a high-speed video camera was used to document the droplet-surface interaction. Distilled and degassed water droplets ranging in size from 2.5-4.0 mm were deposited onto the surface from heights ranging from approximately 0.2-8.1 cm, such that Weber numbers spanned a range of approximately 0

  5. Closed form unsupervised registration of multi-temporal structure from motion-multiview stereo data using non-linearly weighted image features

    NASA Astrophysics Data System (ADS)

    Seers, T. D.; Hodgetts, D.

    2013-12-01

    Seers, T. D. & Hodgetts, D. School of Earth, Atmospheric and Environmental Sciences, University of Manchester, UK. M13 9PL. The detection of topological change at the Earth's surface is of considerable scholarly interest, allowing the quantification of the rates of geomorphic processes whilst providing lucid insights into the underlying mechanisms driving landscape evolution. In this regard, the past decade has witnessed the ever increasing proliferation of studies employing multi-temporal topographic data in within the geosciences, bolstered by continuing technical advancements in the acquisition and processing of prerequisite datasets. Provided by workers within the field of Computer Vision, multiview stereo (MVS) dense surface reconstructions, primed by structure-from-motion (SfM) based camera pose estimation represents one such development. Providing a cost effective, operationally efficient data capture medium, the modest requirement of a consumer grade camera for data collection coupled with the minimal user intervention required during post-processing makes SfM-MVS an attractive alternative to terrestrial laser scanners for collecting multi-temporal topographic datasets. However, in similitude to terrestrial scanner derived data, the co-registration of spatially coincident or partially overlapping scans produced by SfM-MVS presents a major technical challenge, particularly in the case of semi non-rigid scenes produced during topographic change detection studies. Moreover, the arbitrary scaling resulting from SfM ambiguity requires that a scale matrix must be estimated during the transformation, introducing further complexity into its formulation. Here, we present a novel, fully unsupervised algorithm which utilises non-linearly weighted image features for the solving the similarity transform (scale, translation rotation) between partially overlapping scans produced by SfM-MVS image processing. With the only initialization condition being partial intersection

  6. Optics of anisotropic nanostructures

    NASA Astrophysics Data System (ADS)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  7. Spectroscopic ellipsometry study of novel nanostructured transparent conducting oxide structures

    NASA Astrophysics Data System (ADS)

    Khosroabadi, Akram A.; Norwood, R. A.

    2013-02-01

    Spectroscopic ellipsometry has been used to find the optical constants, including refractive index, extinction coefficient, thickness and volume fraction of nanostructured transparent conducting oxides including indium tin oxide (ITO) and indium zinc oxide (IZO). We observed sharp features in the ellipsometry data, with the spectral peaks and positions depending on the nanostructure dimensions and material. A superposition of Lorentzian oscillators and the effective medium approximation has been applied to determine the volume ratio of voids and nanopillars, thereby providing the effective optical constants.

  8. Light management for photovoltaics using high-index nanostructures

    NASA Astrophysics Data System (ADS)

    Brongersma, Mark L.; Cui, Yi; Fan, Shanhui

    2014-05-01

    High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells.

  9. Light management for photovoltaics using high-index nanostructures.

    PubMed

    Brongersma, Mark L; Cui, Yi; Fan, Shanhui

    2014-05-01

    High-performance photovoltaic cells use semiconductors to convert sunlight into clean electrical power, and transparent dielectrics or conductive oxides as antireflection coatings. A common feature of these materials is their high refractive index. Whereas high-index materials in a planar form tend to produce a strong, undesired reflection of sunlight, high-index nanostructures afford new ways to manipulate light at a subwavelength scale. For example, nanoscale wires, particles and voids support strong optical resonances that can enhance and effectively control light absorption and scattering processes. As such, they provide ideal building blocks for novel, broadband antireflection coatings, light-trapping layers and super-absorbing films. This Review discusses some of the recent developments in the design and implementation of such photonic elements in thin-film photovoltaic cells. PMID:24751773

  10. Measuring Strong Nanostructures

    SciTech Connect

    Andy Minor

    2008-10-16

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  11. Bioinspired chemistry: Rewiring nanostructures

    NASA Astrophysics Data System (ADS)

    Ulijn, Rein V.; Caponi, Pier-Francesco

    2010-07-01

    The cell's dynamic skeleton, a tightly regulated network of protein fibres, continues to provide inspiration for the design of synthetic nanostructures. Genetic engineering has now been used to encode non-biological functionality within these structures.

  12. Measuring Strong Nanostructures

    ScienceCinema

    Andy Minor

    2010-01-08

    Andy Minor of Berkeley Lab's National Center for Electron Microscopy explains measuring stress and strain on nanostructures with the In Situ Microscope. More information: http://newscenter.lbl.gov/press-relea...

  13. Borderline personality features as a predictor of forms and functions of aggression during middle childhood: examining the roles of gender and physiological reactivity.

    PubMed

    Banny, Adrienne M; Tseng, Wan-Ling; Murray-Close, Dianna; Pitula, Clio E; Crick, Nicki R

    2014-08-01

    The present longitudinal investigation examined borderline personality features as a predictor of aggression 1 year later. Moderation by physiological reactivity and gender was also explored. One hundred ninety-six children (M = 10.11 years, SD = 0.64) participated in a laboratory stress protocol in which their systolic blood pressure, diastolic blood pressure, and skin conductance reactivity to recounting a relational stressor (e.g., threats to relationships or exclusion) were assessed. Teachers provided reports on subtypes of aggressive behavior (i.e., reactive relational, proactive relational, reactive physical, and proactive physical), and children completed a self-report measure of borderline personality features. Path analyses indicated that borderline personality features predicted increases in reactive relational aggression and proactive relational aggression among girls who evinced heightened physiological reactivity to interpersonal stress. In contrast, borderline personality features predicted decreases in proactive physical aggression in girls. Findings suggest that borderline personality features promote engagement in relationally aggressive behaviors among girls, particularly in the context of emotional dysregulation. PMID:25047299

  14. Interlocked DNA nanostructures controlled by a reversible logic circuit.

    PubMed

    Li, Tao; Lohmann, Finn; Famulok, Michael

    2014-01-01

    DNA nanostructures constitute attractive devices for logic computing and nanomechanics. An emerging interest is to integrate these two fields and devise intelligent DNA nanorobots. Here we report a reversible logic circuit built on the programmable assembly of a double-stranded (ds) DNA [3]pseudocatenane that serves as a rigid scaffold to position two separate branched-out head-motifs, a bimolecular i-motif and a G-quadruplex. The G-quadruplex only forms when preceded by the assembly of the i-motif. The formation of the latter, in turn, requires acidic pH and unhindered mobility of the head-motif containing dsDNA nanorings with respect to the central ring to which they are interlocked, triggered by release oligodeoxynucleotides. We employ these features to convert the structural changes into Boolean operations with fluorescence labelling. The nanostructure behaves as a reversible logic circuit consisting of tandem YES and AND gates. Such reversible logic circuits integrated into functional nanodevices may guide future intelligent DNA nanorobots to manipulate cascade reactions in biological systems. PMID:25229207

  15. Control of tribological properties of diamond-like carbon films with femtosecond-laser-induced nanostructuring

    NASA Astrophysics Data System (ADS)

    Yasumaru, Naoki; Miyazaki, Kenzo; Kiuchi, Junsuke

    2008-02-01

    This paper reports tribological properties of diamond-like carbon (DLC) films nanostructured by femtosecond (fs) laser ablation. The nanostructure was formed in an area of more than 15 mm × 15 mm on the DLC surface, using a precise target-scan system developed for the fs-laser processing. The frictional properties of the DLC film are greatly improved by coating a MoS 2 layer on the nanostructured surface, while the friction coefficient can be increased by surface texturing of the nanostructured zone in a net-like patterning. The results demonstrate that the tribological properties of a DLC surface can be controlled using fs-laser-induced nanostructuring.

  16. Architectures for Nanostructured Batteries

    NASA Astrophysics Data System (ADS)

    Rubloff, Gary

    2013-03-01

    Heterogeneous nanostructures offer profound opportunities for advancement in electrochemical energy storage, particularly with regard to power. However, their design and integration must balance ion transport, electron transport, and stability under charge/discharge cycling, involving fundamental physical, chemical and electrochemical mechanisms at nano length scales and across disparate time scales. In our group and in our DOE Energy Frontier Research Center (www.efrc.umd.edu) we have investigated single nanostructures and regular nanostructure arrays as batteries, electrochemical capacitors, and electrostatic capacitors to understand limiting mechanisms, using a variety of synthesis and characterization strategies. Primary lithiation pathways in heterogeneous nanostructures have been observed to include surface, interface, and both isotropic and anisotropic diffusion, depending on materials. Integrating current collection layers at the nano scale with active ion storage layers enhances power and can improve stability during cycling. For densely packed nanostructures as required for storage applications, we investigate both ``regular'' and ``random'' architectures consistent with transport requirements for spatial connectivity. Such configurations raise further important questions at the meso scale, such as dynamic ion and electron transport in narrow and tortuous channels, and the role of defect structures and their evolution during charge cycling. Supported as part of the Nanostructures for Electrical Energy Storage, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DESC0001160

  17. Spectroscopy of Mars form 2.04 to 2.44 micron during the 1993 opposition: Absolute calibration and atmospheric vs mineralogic origin of narrow absorption features

    NASA Technical Reports Server (NTRS)

    Bell, James F., III; Pollack, James B.; Geballe, Thomas R.; Cruikshank, Dale P.; Freedman, Richard

    1994-01-01

    We present moderate-resolution (lambda/delta lambda = 300 to 370) reflectance spectral of Mars from 2.04 to 2.44 microns that were obtained at United Kingdom Infrared Telescope (UKIRT) during the 1993 opposition. Seven narrow absorption features were detected and found to have a Mars origin. By comparison with solar and Mars atmospheric spectra, five of these features were attributed all or in part to Mars atmospheric CO2 or CO (2.052 +/- 0.003, 2.114 +/- 0.002, 2.150 +/- 0.003, 2.331 +/- 0.001, and 2.357 +/- 0.002 microns). Two of the bands (2.331 +/- 0.001 and 2.357 +/- 0.002 micron) appear to have widths and depths that are consistent with additional, nonatmospheric absorptions, although a solar contribution cannot be entirely ruled out. Two other weak bands centered at 2.278 +/- 0.002 and 2.296 +/- 0.002 microns may be at least partially mineralogic in origin. The data provide no conclusive identification of the mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraries and previous mineralogy responsible for these absorption features. However, examination of terrestrial spectral libraires and previous moderate spectral resolution mineral studies indicates that the most likely origin of these features is either (bi)carbonate or (bi)sulfate anions in framework silicates of (Fe, Mg)-OH bonds in sheet silicates. If the bands are caused by phyllosilicate minerals, then an explanation must be found for the extremely narrow widths of the cation-OH features in the Mars spectra as compared to terrestrial minerals.

  18. Elongated nanostructures for radial junction solar cells.

    PubMed

    Kuang, Yinghuan; Vece, Marcel Di; Rath, Jatindra K; Dijk, Lourens van; Schropp, Ruud E I

    2013-10-01

    In solar cell technology, the current trend is to thin down the active absorber layer. The main advantage of a thinner absorber is primarily the reduced consumption of material and energy during production. For thin film silicon (Si) technology, thinning down the absorber layer is of particular interest since both the device throughput of vacuum deposition systems and the stability of the devices are significantly enhanced. These features lead to lower cost per installed watt peak for solar cells, provided that the (stabilized) efficiency is the same as for thicker devices. However, merely thinning down inevitably leads to a reduced light absorption. Therefore, advanced light trapping schemes are crucial to increase the light path length. The use of elongated nanostructures is a promising method for advanced light trapping. The enhanced optical performance originates from orthogonalization of the light's travel path with respect to the direction of carrier collection due to the radial junction, an improved anti-reflection effect thanks to the three-dimensional geometric configuration and the multiple scattering between individual nanostructures. These advantages potentially allow for high efficiency at a significantly reduced quantity and even at a reduced material quality, of the semiconductor material. In this article, several types of elongated nanostructures with the high potential to improve the device performance are reviewed. First, we briefly introduce the conventional solar cells with emphasis on thin film technology, following the most commonly used fabrication techniques for creating nanostructures with a high aspect ratio. Subsequently, several representative applications of elongated nanostructures, such as Si nanowires in realistic photovoltaic (PV) devices, are reviewed. Finally, the scientific challenges and an outlook for nanostructured PV devices are presented. PMID:24088584

  19. Conductance fluctuations in nanostructures

    NASA Astrophysics Data System (ADS)

    Zhu, Ningjia

    1997-12-01

    In this Ph.D thesis the conductance fluctuations of different physical origins in semi-conductor nanostructures were studied using both diagrammatic analytical methods and large scale numerical techniques. In the "mixed" transport regime where both mesoscopic and ballistic features play a role, for the first time I have analytically calculated the non-universal conductance fluctuations. This mixed regime is reached when impurities are distributed near the walls of a quantum wire, leaving the center region ballistic. I have discovered that the existence of a ballistic region destroys the universal conductance fluctuations. The crossover behavior of the fluctuation amplitude from the usual quasi-1D situation to that of the mixed regime is clearly revealed, and the role of various length scales are identified. My analytical predictions were confirmed by a direct numerical simulation by evaluating the Landauer formula. In another direction, I have made several studies of conductance or resistance oscillations and fluctuations in systems with artificial impurities in the ballistic regime. My calculation gave explanations of all the experimental results concerning the classical focusing peaks of the resistance versus magnetic field, the weak localization peak in a Sinai billiard system, the formation of a chaotic billiard, and predicted certain transport features which were indeed found experimentally. I have further extended the calculation to study the Hall resistance in a four-terminal quantum dot in which there is an antidot array. From my numerical data I analyzed the classical paths of electron motion and its quantum oscillations. The results compare well with recent experimental studies on similar systems. Since these billiard systems could provide quantum chaotic dynamics, I have made a detailed study of the consequence of such dynamics. In particular I have investigated the resonant transmission of electrons in these chaotic systems, and found that the level

  20. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  1. Nanostructures having high performance thermoelectric properties

    DOEpatents

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  2. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  3. Fabrication and Characterization of Magnetic Nanostructures

    NASA Astrophysics Data System (ADS)

    Scott, Kevin

    Magnetic permalloy nanostructures were fabricated onto a silicon wafer using electron beam lithography and a liftoff process. The lithography was performed with a Hitachi SU-70 SEM retrofitted with a Nabity NPGS lithography conversion kit. PMMA of 950kDa molecular weight was used as the photoresist. Features were either nanowires, nanodots, or elliptical or rectangular nanostructures. The nanowires had dimensions of 15microm x 200nm x 40nm, the nanodots had diameters of 145nm and thickness of 12nm, and the ellipses and rectangles had dimensions of 110nm x 50nm x 13nm. Characterization of the nanostructures was performed using the same Hitachi SEM as well as a Digital Instruments DI 3100 Nanoscope IIIa AFM used in magnetic force imaging mode. The SEM was used to measure lateral dimensions of the features and to capture images of features for proper documentation and for external simulation studies. The MFM was used to capture magnetic images of the samples to determine the magnetic state of the nanowires or arrays.

  4. The nanostructure problem

    SciTech Connect

    Billinge, S.

    2010-03-22

    Diffraction techniques are making progress in tackling the difficult problem of solving the structures of nanoparticles and nanoscale materials. The great gift of x-ray crystallography has made us almost complacent in our ability to locate the three-dimensional coordinates of atoms in a crystal with a precision of around 10{sup -4} nm. However, the powerful methods of crystallography break down for structures in which order only extends over a few nanometers. In fact, as we near the one hundred year mark since the birth of crystallography, we face a resilient frontier in condensed matter physics: our inability to routinely and robustly determine the structure of complex nanostructured and amorphous materials. Knowing the structure and arrangement of atoms in a solid is so fundamental to understanding its properties that the topic routinely occupies the early chapters of every solid-state physics textbook. Yet what has become clear with the emergence of nanotechnology is that diffraction data alone may not be enough to uniquely solve the structure of nanomaterials. As part of a growing effort to incorporate the results of other techniques to constrain x-ray refinements - a method called 'complex modeling' which is a simple but elegant approach for combining information from spectroscopy with diffraction data to solve the structure of several amorphous and nanostructured materials. Crystallography just works, so we rarely question how and why this is so, yet understanding the physics of diffraction can be very helpful as we consider the nanostructure problem. The relationship between the electron density distribution in three dimensions (i.e., the crystal structure) and an x-ray diffraction pattern is well established: the measured intensity distribution in reciprocal space is the square of the Fourier transform of the autocorrelation function <{rho}(r){rho}(r+r')> of the electron density distribution {rho}(r). The fact that we get the autocorrelation function

  5. Controllable fabrication of copper phthalocyanine nanostructure crystals

    NASA Astrophysics Data System (ADS)

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-01

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be β-phase, coexist of α-phase and β-phase, and α-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices.

  6. Controllable fabrication of copper phthalocyanine nanostructure crystals.

    PubMed

    Liu, Fangmei; Sun, Jia; Xiao, Si; Huang, Wenglong; Tao, Shaohua; Zhang, Yi; Gao, Yongli; Yang, Junliang

    2015-06-01

    Copper phthalocyanine (CuPc) nanostructure crystals, including nanoflower, nanoribbon, and nanowire, were controllably fabricated by temperature gradient physical vapor deposition (TG-PVD) through controlling the growth parameters. In a controllable growth system with carrier gas N2, nanoflower, nanoribbon, and nanowire crystals were formed in a high-temperature zone, medium-temperature zone, and low-temperature zone, respectively. They were proved to be β-phase, coexist of α-phase and β-phase, and α-phase respectively based on x-ray diffraction results. Furthermore, ultralong CuPc nanowires up to several millimeters could be fabricated by TG-PVD without carrier gas, and they were well-aligned to form large-area CuPc nanowire crystal arrays by the Langmuir-Blodgett method. The nanostructure crystals showed unusual optical absorption spectra from the ultraviolet-visible to near-infrared range, which was explained by the diffraction and scattering caused by the wavelength-sized nanostructures. These CuPc nanostructure crystals show potential applications in organic electronic and optoelectronic devices. PMID:25961155

  7. Self-assembled catalytic DNA nanostructures for synthesis of para-directed polyaniline.

    PubMed

    Wang, Zhen-Gang; Zhan, Pengfei; Ding, Baoquan

    2013-02-26

    Templated synthesis has been considered as an efficient approach to produce polyaniline (PANI) nanostructures. The features of DNA molecules enable a DNA template to be an intriguing template for fabrication of emeraldine PANI. In this work, we assembled HRP-mimicking DNAzyme with different artificial DNA nanostructures, aiming to manipulate the molecular structures and morphologies of PANI nanostructures through the controlled DNA self-assembly. UV-vis absorption spectra were used to investigate the molecular structures of PANI and monitor kinetic growth of PANI. It was found that PANI was well-doped at neutral pH and the redox behaviors of the resultant PANI were dependent on the charge density of the template, which was controlled by the template configurations. CD spectra indicated that the PANI threaded tightly around the helical DNA backbone, resulting in the right handedness of PANI. These reveal the formation of the emeraldine form of PANI that was doped by the DNA. The morphologies of the resultant PANI were studied by AFM and SEM. It was concluded from the imaging and spectroscopic kinetic results that PANI grew preferably from the DNAzyme sites and then expanded over the template to form 1D PANI nanostructures. The strategy of the DNAzyme-DNA template assembly brings several advantages in the synthesis of para-coupling PANI, including the region-selective growth of PANI, facilitating the formation of a para-coupling structure and facile regulation. We believe this study contributes significantly to the fabrication of doped PANI nanopatterns with controlled complexity, and the development of DNA nanotechnology. PMID:23272944

  8. Characterization of low dimensional molybdenum sulfide nanostructures

    SciTech Connect

    Camacho-Bragado, G. Alejandra; Elechiguerra, Jose Luis; Yacaman, Miguel Jose

    2008-03-15

    It is presented a detailed structural characterization of a nanostructured form of molybdenum disulfide. The material consists of a layer of highly textured molybdenum sulfide growing off a molybdenum dioxide core. The structure and chemical composition of the synthesized nanostructured sulfide was compared to two well-known forms of molybdenum disulfide, i.e. a commercial molybdenite sample and a poorly crystalline sulfide. X-ray diffraction, high-resolution electron microscopy and electron diffraction showed that the material reported here presents crystalline nanodomains with a crystal structure corresponding to the 2H polytype of molybdenum disulfide. X-ray photoelectron spectroscopy was used to demonstrate the differences between our sulfide and other materials such as amorphous MoS{sub 3}, oxysulfides and poorly crystalline MoS{sub 2}, corroborating the molybdenite-2H stacking in this form of sulfide. The material under study showed a high proportion of crystalline planes different from the basal plane.

  9. Process for the preparation of metal-containing nanostructured films

    NASA Technical Reports Server (NTRS)

    Lu, Yunfeng (Inventor); Wang, Donghai (Inventor)

    2006-01-01

    Metal-containing nanostructured films are prepared by electrodepositing a metal-containing composition within the pores of a mesoporous silica template to form a metal-containing silica nanocomposite. The nanocomposite is annealed to strengthen the deposited metal-containing composition. The silica is then removed from the nanocomposite, e.g., by dissolving the silica in an etching solution to provide a self-supporting metal-containing nanostructured film. The nanostructured films have a nanowire or nanomesh architecture depending on the pore structure of the mesoporous silica template used to prepare the films.

  10. Geometrically induced surface polaritons in planar nanostructured metallic cavities

    SciTech Connect

    Davids, P. S.; Intravia, F; Dalvit, Diego A.

    2014-01-14

    We examine the modal structure and dispersion of periodically nanostructured planar metallic cavities within the scattering matrix formulation. By nanostructuring a metallic grating in a planar cavity, artificial surface excitations or spoof plasmon modes are induced with dispersion determined by the periodicity and geometric characteristics of the grating. These spoof surface plasmon modes are shown to give rise to new cavity polaritonic modes at short mirror separations that modify the density of modes in nanostructured cavities. The increased modal density of states form cavity polarirons have a large impact on the fluctuation induced electromagnetic forces and enhanced hear transfer at short separations.

  11. Templated Self Assemble of Nano-Structures

    SciTech Connect

    Suo, Zhigang

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  12. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  13. Influence of Nanostructure Geometry on Electronic Properties

    NASA Astrophysics Data System (ADS)

    Tavkhelidze, A.

    2014-06-01

    Recently, new quantum features have been studied in the area of nanostructured layers. It emerges that properties of nanostructures depend not only on their size but also on their geometry. Particularly, a nanograting (NG) on the surface of the thin layer imposes additional boundary conditions on electron wave function and forbids some quantum states. Density of quantum states reduces. Unlike conventional quantum well, state density per volume, is reduced in the case of NG layer. This leads to changes in electronic properties. Electrons, rejected from forbidden quantum states, have to occupy states with higher energy. In the case of semiconductor layers, electrons rejected from the valence band have to occupy empty quantum states in the conduction band. Such increase in conduction band electron concentration can be termed as geometry-induced doping or G-doping. G-doping is equivalent to donor doping from the point of view of the increase in electron concentration. However, there are no ionized impurities. This preserves charge carrier scattering to the intrinsic semiconductor level and increases carrier mobility with respect to the donor-doped layer. As rejected electrons occupy quantum states with the higher energy, the chemical potential of NG layer increases and becomes NG size dependent. We regard a system composed of NG layer and an additional layer on the top of the NG forming periodic series of p-n junctions. In such system, charge depletion region develops inside the top of NG and its effective height reduces, becoming a rather strong function of temperature T. Consequently, T-dependence of chemical potential magnifies and Seebeck coefficient S increases. Calculations show one order of magnitude increase in the thermoelectric figure of merit ZT relative to bulk material. In the case of metal layers, electrons rejected from forbidden quantum states below Fermi energy, occupy quantum states above Fermi energy. Fermi energy moves up on energy scale and work

  14. Nanostructured Biomaterials for Regeneration**

    PubMed Central

    Wei, Guobao; Ma, Peter X.

    2009-01-01

    Biomaterials play a pivotal role in regenerative medicine, which aims to regenerate and replace lost/dysfunctional tissues or organs. Biomaterials (scaffolds) serve as temporary 3D substrates to guide neo tissue formation and organization. It is often beneficial for a scaffolding material to mimic the characteristics of extracellular matrix (ECM) at the nanometer scale and to induce certain natural developmental or/and wound healing processes for tissue regeneration applications. This article reviews the fabrication and modification technologies for nanofibrous, nanocomposite, and nanostructured drug-delivering scaffolds. ECM-mimicking nanostructured biomaterials have been shown to actively regulate cellular responses including attachment, proliferation, differentiation and matrix deposition. Nano-scaled drug delivery systems can be successfully incorporated into a porous 3D scaffold to enhance the tissue regeneration capacity. In conclusion, nano-structured biomateials are a very exciting and rapidly expanding research area, and are providing new enabling technologies for regenerative medicine. PMID:19946357

  15. Synthesis of porphyrin nanostructures

    DOEpatents

    Fan, Hongyou; Bai, Feng

    2014-10-28

    The present disclosure generally relates to self-assembly methods for generating porphyrin nanostructures. For example, in one embodiment a method is provided that includes preparing a porphyrin solution and a surfactant solution. The porphyrin solution is then mixed with the surfactant solution at a concentration sufficient for confinement of the porphyrin molecules by the surfactant molecules. In some embodiments, the concentration of the surfactant is at or above its critical micelle concentration (CMC), which allows the surfactant to template the growth of the nanostructure over time. The size and morphology of the nanostructures may be affected by the type of porphyrin molecules used, the type of surfactant used, the concentration of the porphyrin and surfactant the pH of the mixture of the solutions, and the order of adding the reagents to the mixture, to name a few variables.

  16. Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure.

    PubMed

    Sheng, Qinglin; Liu, Ruixiao; Zhang, Sai; Zheng, Jianbin

    2014-01-15

    We proposed an ultrasensitive electrochemical cocaine biosensor based on the three-dimensional (3D) DNA structure conversion of nanostructure from Triangular Pyramid Frustum (TPFDNA) to Equilateral Triangle (ETDNA). The presence of cocaine triggered the aptamer-composed DNA nanostructure change from "Close" to "Open", leading to obvious faradaic impedance changes. The unique properties with excellent stability and specific rigid structure of the 3D DNA nanostructure made the biosensing functions stable, sensitive, and regenerable. The Faradaic impedance responses were linearly related to cocaine concentration between 1.0 nM and 2.0 μM with a correlation coefficient of 0.993. The limit of detection was calculated to be 0.21 nM following IUPAC recommendations (3Sb/b). It is expected that the distinctive features of DNA nanostructure would make it potentially advantageous for a broad range of biosensing, bionanoelectronics, and therapeutic applications. PMID:23962705

  17. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian

    2014-02-01

    Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.

  18. The Knotted Protein UCH-L1 Exhibits Partially Unfolded Forms under Native Conditions that Share Common Structural Features with Its Kinetic Folding Intermediates.

    PubMed

    Lou, Shih-Chi; Wetzel, Svava; Zhang, Hongyu; Crone, Elizabeth W; Lee, Yun-Tzai; Jackson, Sophie E; Hsu, Shang-Te Danny

    2016-06-01

    The human ubiquitin C-terminal hydrolase, UCH-L1, is an abundant neuronal deubiquitinase that is associated with Parkinson's disease. It contains a complex Gordian knot topology formed by the polypeptide chain alone. Using a combination of fluorescence-based kinetic measurements, we show that UCH-L1 has two distinct kinetic folding intermediates that are transiently populated on parallel pathways between the denatured and native states. NMR hydrogen-deuterium exchange (HDX) experiments indicate the presence of partially unfolded forms (PUFs) of UCH-L1 under native conditions. HDX measurements as a function of urea concentration were used to establish the structure of the PUFs and pulse-labelled HDX NMR was used to show that the PUFs and the folding intermediates are likely the same species. In both cases, a similar stable core encompassing most of the central β-sheet is highly structured and α-helix 3, which is partially formed, packs against it. In contrast to the stable β-sheet core, the peripheral α-helices display significant local fluctuations leading to rapid exchange. The results also suggest that the main difference between the two kinetic intermediates is structure and packing of α-helices 3 and 7 and the degree of structure in β-strand 5. Together, the fluorescence and NMR results establish that UCH-L1 neither folds through a continuum of pathways nor by a single discrete pathway. Its folding is complex, the β-sheet core forms early and is present in both intermediate states, and the rate-limiting step which is likely to involve the threading of the chain to form the 52-knot occurs late on the folding pathway. PMID:27067109

  19. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    NASA Astrophysics Data System (ADS)

    Wójcik, P.; Adamowski, J.; Wołoszyn, M.; Spisak, B. J.

    2015-07-01

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  20. Spin splitting generated in a Y-shaped semiconductor nanostructure with a quantum point contact

    SciTech Connect

    Wójcik, P. Adamowski, J. Wołoszyn, M.; Spisak, B. J.

    2015-07-07

    We have studied the spin splitting of the current in the Y-shaped semiconductor nanostructure with a quantum point contact (QPC) in a perpendicular magnetic field. Our calculations show that the appropriate tuning of the QPC potential and the external magnetic field leads to an almost perfect separation of the spin-polarized currents: electrons with opposite spins flow out through different output branches. The spin splitting results from the joint effect of the QPC, the spin Zeeman splitting, and the electron transport through the edge states formed in the nanowire at the sufficiently high magnetic field. The Y-shaped nanostructure can be used to split the unpolarized current into two spin currents with opposite spins as well as to detect the flow of the spin current. We have found that the separation of the spin currents is only slightly affected by the Rashba spin-orbit coupling. The spin-splitter device is an analogue of the optical device—the birefractive crystal that splits the unpolarized light into two beams with perpendicular polarizations. In the magnetic-field range, in which the current is carried through the edges states, the spin splitting is robust against the spin-independent scattering. This feature opens up a possibility of the application of the Y-shaped nanostructure as a non-ballistic spin-splitter device in spintronics.

  1. The equipment for controlling the structure and functional properties of nanostructured composite films

    NASA Astrophysics Data System (ADS)

    Burov, V. G.; Plotnikova, N. V.; Prokhorenko, E. V.; Smirnov, A. I.

    2016-04-01

    The article is devoted to the creation of an instrumental system allowing evaluating the functional properties and current-voltage characteristics of nanostructured composite films at different temperatures and other environmental parameters. The system is based on an assessment of current-voltage characteristics of a nanostructured film material. The main components of the system are a chamber and a unit for current-voltage characteristics measuring. The stage with the test material and the contact system are provided with a heating element and a cooling system thus allowing warming to 150 °C and fast cooling to negative temperatures by liquid nitrogen circulating. The chamber body leak proofness against the external environment allows forming a composition of the atmosphere at a predetermined humidity level, which is essential for the measurement of current-voltage characteristics of polymer materials. The article describes the design features of the instrumental system and results of its application used for determining the properties of polymer nanostructured composite films.

  2. Wettability of Thin Silicate-Containing Hydroxyapatite Films Formed by RF-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Gorodzha, S. N.; Surmeneva, M. A.; Surmenev, R. A.; Gribennikov, M. V.; Pichugin, V. F.; Sharonova, A. A.; Pustovalova, A. A.; Prymack, O.; Epple, M.; Wittmar, A.; Ulbricht, M.; Gogolinskii, K. V.; Kravchuk, K. S.

    2014-02-01

    Using the methods of electron and atomic force microscopy, X-ray structural analysis and measurements of the wetting angle, the features of morphology, structure, contact angle and free surface energy of silicon-containing calcium-phosphate coatings formed on the substrates made from titanium VT1-0 and stainless steel 12Cr18Ni10Ti are investigated. It is shown that the coating - substrate system possesses bimodal roughness formed by the substrate microrelief and coating nanostructure, whose principal crystalline phase is represented by silicon-substituted hydroxiapatite with the size of the coherent scattering region (CSR) 18-26 nm. It is found out that the formation of a nanostructured coating on the surface of rough substrates makes them hydrophilic. The limiting angle of water wetting for the coatings formed on titanium and steel acquires the values in the following ranges: 90-92 and 101-104°, respectively, and decreases with time.

  3. Plasmonic nanostructures: artificial molecules.

    PubMed

    Wang, Hui; Brandl, Daniel W; Nordlander, Peter; Halas, Naomi J

    2007-01-01

    This Account describes a new paradigm for the relationship between the geometry of metallic nanostructures and their optical properties. While the interaction of light with metallic nanoparticles is determined by their collective electronic or plasmon response, a compelling analogy exists between plasmon resonances of metallic nanoparticles and wave functions of simple atoms and molecules. Based on this insight, an entire family of plasmonic nanostructures, artificial molecules, has been developed whose optical properties can be understood within this picture: nanoparticles (nanoshells, nanoeggs, nanomatryushkas, nanorice), multi-nanoparticle assemblies (dimers, trimers, quadrumers), and a nanoparticle-over-metallic film, an electromagnetic analog of the spinless Anderson model. PMID:17226945

  4. Simulation of Semiconductor Nanostructures

    SciTech Connect

    Williamson, A J; Grossman, J C; Puzder, A; Benedict, L X; Galli, G

    2001-07-19

    The field of research into the optical properties of silicon nanostructures has seen enormous growth over the last decade. The discovery that silicon nanoparticles exhibit visible photoluminescence (PL) has led to new insights into the mechanisms responsible for such phenomena. The importance of understanding and controlling the PL properties of any silicon based material is of paramount interest to the optoelectronics industry where silicon nanoclusters could be embedded into existing silicon based circuitry. In this talk, we present a combination of quantum Monte Carlo and density functional approaches to the calculation of the electronic, structural, and optical properties of silicon nanostructures.

  5. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study.

    PubMed

    Yao, Chang; Hedrick, Matt; Pareek, Gyan; Renzulli, Joseph; Haleblian, George; Webster, Thomas J

    2013-01-01

    Although showing much promise for numerous tissue engineering applications, polyurethane and poly-lactic-co-glycolic acid (PLGA) have suffered from a lack of cytocompatibility, sometimes leading to poor tissue integration. Nanotechnology (or the use of materials with surface features or constituent dimensions less than 100 nm in at least one direction) has started to transform currently implanted materials (such as polyurethane and PLGA) to promote tissue regeneration. This is because nanostructured surface features can be used to change medical device surface energy to alter initial protein adsorption events important for promoting tissue-forming cell functions. Thus, due to their altered surface energetics, the objective of the present in vivo study was to create nanoscale surface features on a new polyurethane and PLGA composite scaffold (by soaking the polyurethane side and PLGA side in HNO₃ and NaOH, respectively) and determine bladder tissue regeneration using a minipig model. The novel nanostructured scaffolds were further functionalized with IKVAV and YIGSR peptides to improve cellular responses. Results provided the first evidence of increased in vivo bladder tissue regeneration when using a composite of nanostructured polyurethane and PLGA compared with control ileal segments. Due to additional surgery, extended potentially problematic healing times, metabolic complications, donor site morbidity, and sometimes limited availability, ileal segment repair of a bladder defect is not optimal and, thus, a synthetic analog is highly desirable. In summary, this study indicates significant promise for the use of nanostructured polyurethane and PLGA composites to increase bladder tissue repair for a wide range of regenerative medicine applications, such as regenerating bladder tissue after removal of cancerous tissue, disease, or other trauma. PMID:24039415

  6. Nanostructured polyurethane-poly-lactic-co-glycolic acid scaffolds increase bladder tissue regeneration: an in vivo study

    PubMed Central

    Yao, Chang; Hedrick, Matt; Pareek, Gyan; Renzulli, Joseph; Haleblian, George; Webster, Thomas J

    2013-01-01

    Although showing much promise for numerous tissue engineering applications, polyurethane and poly-lactic-co-glycolic acid (PLGA) have suffered from a lack of cytocompatibility, sometimes leading to poor tissue integration. Nanotechnology (or the use of materials with surface features or constituent dimensions less than 100 nm in at least one direction) has started to transform currently implanted materials (such as polyurethane and PLGA) to promote tissue regeneration. This is because nanostructured surface features can be used to change medical device surface energy to alter initial protein adsorption events important for promoting tissue-forming cell functions. Thus, due to their altered surface energetics, the objective of the present in vivo study was to create nanoscale surface features on a new polyurethane and PLGA composite scaffold (by soaking the polyurethane side and PLGA side in HNO3 and NaOH, respectively) and determine bladder tissue regeneration using a minipig model. The novel nanostructured scaffolds were further functionalized with IKVAV and YIGSR peptides to improve cellular responses. Results provided the first evidence of increased in vivo bladder tissue regeneration when using a composite of nanostructured polyurethane and PLGA compared with control ileal segments. Due to additional surgery, extended potentially problematic healing times, metabolic complications, donor site morbidity, and sometimes limited availability, ileal segment repair of a bladder defect is not optimal and, thus, a synthetic analog is highly desirable. In summary, this study indicates significant promise for the use of nanostructured polyurethane and PLGA composites to increase bladder tissue repair for a wide range of regenerative medicine applications, such as regenerating bladder tissue after removal of cancerous tissue, disease, or other trauma. PMID:24039415

  7. Soft spherical nanostructures with a dodecagonal quasicrystal-like order.

    PubMed

    Rochal, S B; Konevtsova, O V; Shevchenko, I A; Lorman, V L

    2016-01-28

    We develop a theory which predicts curvature-related structural peculiarities of soft spherical nanostructures with a dodecagonal local arrangement of subunits. Spherical templates coated with a thin film of a soft quasicrystal (QC)-forming material constitute the most promising direction to realize these nanostructures. Disordered and perfect spherical nanostructures are simulated using two approaches. The first of them models a random QC-like spherical nanostructure with extended curvature-induced topological defects similar to scars in colloidal spherical crystals. The second approach is inspired by the physics of viral capsids. It deals with the most regular spherical nanostructures with a local QC-like order derived from three well-known planar dodecagonal tilings. We explain how the additional QC-like degrees of freedom assist the nanostructure stabilization and determine the point defect number and location without extended scar formation. Unusual for nanoassemblies snub cube geometry is shown to be the most energetically favorable global organization of these spherical QC nanostructures. PMID:26592422

  8. Harnessing microtubule dynamic instability for nanostructure assembly.

    SciTech Connect

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    2004-06-01

    Intracellular molecular machines synthesize molecules, tear apart others, transport materials, transform energy into different forms, and carry out a host of other coordinated processes. Many molecular processes have been shown to work outside of cells, and the idea of harnessing these molecular machines to build nanostructures is attractive. Two examples are microtubules and motor proteins, which aid cell movement, help determine cell shape and internal structure, and transport vesicles and organelles within the cell. These molecular machines work in a stochastic, noisy fashion: microtubules switch randomly between growing and shrinking in a process known as dynamic instability; motor protein movement along microtubules is randomly interrupted by the motor proteins falling off. A common strategy in attempting to gain control over these highly dynamic, stochastic processes is to eliminate some processes (e.g., work with stabilized microtubules) in order to focus on others (interaction of microtubules with motor proteins). In this paper, we illustrate a different strategy for building nanostructures, which, rather than attempting to control or eliminate some dynamic processes, uses them to advantage in building nanostructures. Specifically, using stochastic agent-based simulations, we show how the natural dynamic instability of microtubules can be harnessed in building nanostructures, and discuss strategies for ensuring that 'unreliable' stochastic processes yield a robust outcome.

  9. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  10. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  11. Emerging double helical nanostructures

    NASA Astrophysics Data System (ADS)

    Zhao, Meng-Qiang; Zhang, Qiang; Tian, Gui-Li; Wei, Fei

    2014-07-01

    As one of the most important and land-mark structures found in nature, a double helix consists of two congruent single helices with the same axis or a translation along the axis. This double helical structure renders the deoxyribonucleic acid (DNA) the crucial biomolecule in evolution and metabolism. DNA-like double helical nanostructures are probably the most fantastic yet ubiquitous geometry at the nanoscale level, which are expected to exhibit exceptional and even rather different properties due to the unique organization of the two single helices and their synergistic effect. The organization of nanomaterials into double helical structures is an emerging hot topic for nanomaterials science due to their promising exceptional unique properties and applications. This review focuses on the state-of-the-art research progress for the fabrication of double-helical nanostructures based on `bottom-up' and `top-down' strategies. The relevant nanoscale, mesoscale, and macroscopic scale fabrication methods, as well as the properties of the double helical nanostructures are included. Critical perspectives are devoted to the synthesis principles and potential applications in this emerging research area. A multidisciplinary approach from the scope of nanoscience, physics, chemistry, materials, engineering, and other application areas is still required to the well-controlled and large-scale synthesis, mechanism, property, and application exploration of double helical nanostructures.

  12. Synthesis and characterization of hybrid nanostructures

    PubMed Central

    Mokari, Taleb

    2011-01-01

    There has been significant interest in the development of multicomponent nanocrystals formed by the assembly of two or more different materials with control over size, shape, composition, and spatial orientation. In particular, the selective growth of metals on the tips of semiconductor nanorods and wires can act to couple the electrical and optical properties of semiconductors with the unique properties of various metals. Here, we outline our progress on the solution-phase synthesis of metal-semiconductor heterojunctions formed by the growth of Au, Pt, or other binary catalytic metal systems on metal (Cd, Pb, Cu)-chalcogenide nanostructures. We show the ability to grow the metal on various shapes (spherical, rods, hexagonal prisms, and wires). Furthermore, manipulating the composition of the metal nanoparticles is also shown, where PtNi and PtCo alloys are our main focus. The magnetic and electrical properties of the developed hybrid nanostructures are shown. PMID:22110873

  13. Isolation and measurement of the features of arrays of cell aggregates formed by dielectrophoresis using the user-specified Multi Regions Masking (MRM) technique

    NASA Astrophysics Data System (ADS)

    Yusvana, Rama; Headon, Denis; Markx, Gerard H.

    2009-08-01

    The use of dielectrophoresis for the construction of artificial skin tissue with skin cells in follicle-like 3D cell aggregates in well-defined patterns is demonstrated. To analyse the patterns produced and to study their development after their formation a Virtual Instrument (VI) system was developed using the LabVIEW IMAQ Vision Development Module. A series of programming functions (algorithms) was used to isolate the features on the image (in our case; the patterned aggregates) and separate them from all other unwanted regions on the image. The image was subsequently converted into a binary version, covering only the desired microarray regions which could then be analysed by computer for automatic object measurements. The analysis utilized the simple and easy-to-use User-Specified Multi-Regions Masking (MRM) technique, which allows one to concentrate the analysis on the desired regions specified in the mask. This simplified the algorithms for the analysis of images of cell arrays having similar geometrical properties. By having a collection of scripts containing masks of different patterns, it was possible to quickly and efficiently develop sets of custom virtual instruments for the offline or online analysis of images of cell arrays in the database.

  14. Magneto Transport in Three Dimensional Carbon Nanostructures

    NASA Astrophysics Data System (ADS)

    Datta, Timir; Wang, Lei; Jaroszynski, Jan; Yin, Ming; Alameri, Dheyaa

    Electrical properties of self-assembled three dimensional nanostructures are interesting topic. Here we report temperature dependence of magneto transport in such carbon nanostructures with periodic spherical voids. Specimens with different void diameters in the temperature range from 200 mK to 20 K were studied. Above 2 K, magnetoresistance, MR = [R(B) - R(0)] / R(0), crosses over from quadratic to a linear dependence with the increase of magnetic field [Wang et al., APL 2015; DOI:10.1063/1.4926606]. We observe MR to be non-saturating even up to 18 Tesla. Furthermore, MR demonstrates universality because all experimental data can be collapsed on to a single curve, as a universal function of B/T. Below 2 K, magnetoresistance saturates with increasing field. Quantum Hall like steps are also observed in this low temperature regime. Remarkably, MR of our sample displays orientation independence, an attractive feature for technological applications.

  15. Vertically aligned peptide nanostructures using plasma-enhanced chemical vapor deposition.

    PubMed

    Vasudev, Milana C; Koerner, Hilmar; Singh, Kristi M; Partlow, Benjamin P; Kaplan, David L; Gazit, Ehud; Bunning, Timothy J; Naik, Rajesh R

    2014-02-10

    In this study, we utilize plasma-enhanced chemical vapor deposition (PECVD) for the deposition of nanostructures composed of diphenylalanine. PECVD is a solvent-free approach and allows sublimation of the peptide to form dense, uniform arrays of peptide nanostructures on a variety of substrates. The PECVD deposited d-diphenylalanine nanostructures have a range of chemical and physical properties depending on the specific discharge parameters used during the deposition process. PMID:24400716

  16. Solution precursor plasma deposition of nanostructured CdS thin films

    SciTech Connect

    Tummala, Raghavender; Guduru, Ramesh K.; Mohanty, Pravansu S.

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Inexpensive process with capability to produce large scale nanostructured coatings. Black-Right-Pointing-Pointer Technique can be employed to spray the coatings on any kind of substrates including polymers. Black-Right-Pointing-Pointer The CdS coatings developed have good electrical conductivity and optical properties. Black-Right-Pointing-Pointer Coatings possess large amount of particulate boundaries and nanostructured grains. -- Abstract: Cadmium sulfide (CdS) films are used in solar cells, sensors and microelectronics. A variety of techniques, such as vapor based techniques, wet chemical methods and spray pyrolysis are frequently employed to develop adherent CdS films. In the present study, rapid deposition of CdS thin films via plasma spray route using a solution precursor was investigated, for the first time. Solution precursor comprising cadmium chloride, thiourea and distilled water was fed into a DC plasma jet via an axial atomizer to create ultrafine droplets for instantaneous and accelerated thermal decomposition in the plasma plume. The resulting molten/semi-molten ultrafine/nanoparticles of CdS eventually propel toward the substrate to form continuous CdS films. The chemistry of the solution precursor was found to be critical in plasma pyrolysis to control the stoichiometry and composition of the films. X-ray diffraction studies confirmed hexagonal {alpha}-CdS structure. Surface morphology and microstructures were investigated to compare with other synthesis techniques in terms of process mechanism and structural features. Transmission electron microscopy studies revealed nanostructures in the atomized particulates. Optical measurements indicated a decreasing transmittance in the visible light with increasing the film thickness and band gap was calculated to be {approx}2.5 eV. The electrical resistivity of the films (0.243 {+-} 0.188 Multiplication-Sign 10{sup 5} {Omega} cm) was comparable with the literature

  17. Pomological features, nutritional quality, polyphenol content analysis, and antioxidant properties of domesticated and 3 wild ecotype forms of raspberries (Rubus idaeus L.).

    PubMed

    Gülçin, Ilhami; Topal, Fevzi; Çakmakçı, Ramazan; Bilsel, Mine; Gören, Ahmet C; Erdogan, Ummugulsum

    2011-05-01

    The raspberry (Rubus idaeus L.) is an economically important berry crop that contains many phenolic compounds with potential health benefits. In this study, important pomological features, including nutrient content and antioxidant properties, of a domesticated and 3 wild (Yayla, Yavuzlar, and Yedigöl) raspberry fruits were evaluated. Also, the amount of total phenolics and flavonoids in lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were calculated as gallic acid equivalents (GAEs) and quercetin equivalents (QE). The highest phenolic compounds were found in wild Yayla ecotype (26.66 ± 3.26 GAE/mg extract). Whilst, the highest flavonoids were determined in wild Yedigöl ecotype (6.09 ± 1.21 QA/mg extract). The antioxidant activity of lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were investigated as trolox equivalents using different in vitro assays including DPPH(•), ABTS(•+), DMPD(•+), and O(•-)(2) radical scavenging activities, H(2)O(2) scavenging activity, ferric (Fe(3+)) and cupric ions (Cu(2+)) reducing abilities, ferrous ions (Fe(2+)) chelating activity. In addition, quantitative amounts of caffeic acid, ferulic acid, syringic acid, ellagic acid, quercetin, α-tocopherol, pyrogallol, p-hydroxybenzoic acid, vanillin, p-coumaric acid, gallic acid, and ascorbic acid in lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits were detected by high-performance liquid chromatography and tandem mass spectrometry (LC-MS-MS). The results clearly show that p-coumaric acid is the main phenolic acid responsible for the antioxidant and radical scavenging activity of lyophilized aqueous extracts of domesticated and wild ecotypes of raspberry fruits. PMID:22417339

  18. Form classification

    NASA Astrophysics Data System (ADS)

    Reddy, K. V. Umamaheswara; Govindaraju, Venu

    2008-01-01

    The problem of form classification is to assign a single-page form image to one of a set of predefined form types or classes. We classify the form images using low level pixel density information from the binary images of the documents. In this paper, we solve the form classification problem with a classifier based on the k-means algorithm, supported by adaptive boosting. Our classification method is tested on the NIST scanned tax forms data bases (special forms databases 2 and 6) which include machine-typed and handwritten documents. Our method improves the performance over published results on the same databases, while still using a simple set of image features.

  19. ZnS:Cr Nanostructures Building Fractals and Their Properties

    SciTech Connect

    Gogoi, D. P.; Das, U.; Mohanta, D.; Ahmed, G. A.; Choudhury, A.

    2010-10-04

    Cr doped ZnS nanostructures have been fabricated through colloidal solution route by using Polyvinyl alcohol (-C{sub 2}H{sub 4}O){sub n} and Polyvinyl pyrrolidone k30 (C{sub 6}H{sub 9}NO){sub x} as dielectric hosts. Growth of fractal structures have been observed through Transmission Electron Microscopy. Higher magnification TEM study reveals that these fractals actually a organize structure of ZnS:Cr nanostructures. The structural study of these nanostructures in the fractals is done by X-Ray Diffraction, UV-Visible spectroscopy, Photoluminescence spectroscopy AFM and MFM. These investigations allow us to form a comprehensive explanation of fractal as well as nanostructure growth. We have done dimensional study of these fractals and the reason behind the formation of these fractals.

  20. EDITORIAL: Nanostructures + Light = 'New Optics'

    NASA Astrophysics Data System (ADS)

    Zheludev, Nikolay; Shalaev, Vladimir

    2005-02-01

    Suddenly, at the end of the last century, classical optics and classical electrodynamics became fashionable again. Fields that several generations of researchers thought were comprehensively covered by the famous Born and Wolf textbook and were essentially dead as research subjects were generating new excitement. In accordance with Richard Feynman’s famous quotation on nano-science, the optical community suddenly discovered that 'there is plenty of room at the bottom'—mixing light with small, meso- and nano-structures could generate new physics and new mind-blowing applications. This renaissance began when the concept of band structure was imported from electronics into the domain of optics and led to the development of what is now a massive research field dedicated to two- and three-dimensional photonic bandgap structures. The field was soon awash with bright new ideas and discoveries that consolidated the birth of the 'new optics'. A revision of some of the basic equations of electrodynamics led to the suspicion that we had overlooked the possibility that the triad of wave vector, electric field and magnetic field, characterizing propagating waves, do not necessarily form a right-handed set. This brought up the astonishing possibilities of sub-wavelength microscopy and telescopy where resolution is not limited by diffraction. The notion of meta-materials, i.e. artificial materials with properties not available in nature, originated in the microwave community but has been widely adopted in the domain of optical research, thanks to rapidly improving nanofabrication capabilities and the development of sub-wavelength scanning imaging techniques. Photonic meta-materials are expected to open a gateway to unprecedented electromagnetic properties and functionality unattainable from naturally occurring materials. The structural units of meta-materials can be tailored in shape and size; their composition and morphology can be artificially tuned, and inclusions can be

  1. Nature of radio feature formed by re-started jet activity in 3C 84 and its relation with γ-ray emissions

    NASA Astrophysics Data System (ADS)

    Nagai, H.; Chida, H.; Kino, M.; Orienti, M.; D'Ammando, F.; Giovannini, G.; Hiura, K.

    2016-02-01

    Re-started jet activity occurred in the bright nearby radio source 3C 84 in about 2005. The re-started jet is forming a prominent component (namely C3) at the tip of jet. The component has showed an increase in radio flux density for more than 7 years while the radio spectrum remains optically thin. This suggests that the component is the head of a radio lobe including a hotspot where the particle acceleration occurs. Thus, 3C 84 is a unique laboratory to study the physical properties at the very early stage of radio source evolution. Another important aspect is that high energy and very high energy γ-ray emissions are detected from this source. The quest for the site of γ-ray emission is quite important to obtain a better understanding of γ-ray emission mechanisms in radio galaxies. In this paper, we review the observational results from very long baseline interferometry (VLBI) monitoring of 3C 84 reported in series of our previous papers. We argue the nature of re-started jet/radio lobe and its relation with high-energy emission.

  2. Transmission electron microscopy studying of structural features of NiTi B2 phase formed under pulsed electron-beam impact

    SciTech Connect

    Meisner, Ludmila L.; Semin, Viktor O.; Gudimova, Ekaterina Y.; Neiman, Alexey A. Lotkov, Alexander I.; Ostapenko, Marina G.; Koval, Nikolai N.; Teresov, Anton D.

    2015-10-27

    By transmission electron microscopy method the evolution of structural-phase states on a depth of close to equiatomic NiTi modified layer has been studied. Modification performed by pulse impact on its surface low-energy high-current electron beam (beam energy density 10 J/sm{sup 2}, 10 pulses, pulse duration 50mks). It is established that during the treatment in the layer thickness of 8–10 μm, the melting of primary B2 phase and contained therein as Ti2Ni phase particles occurs. The result is change in the concentration ratio of titanium and nickel in the direction of increasing titanium content, which was confirmed by X-ray analysis in the form of increased unit cell parameter B2 phase. Analysis of the electron diffraction pattern showed that the modified layer is characterized as a highly distorted structure on the basis of bcc lattice. Lattice distortions are maximal near the surface and extends to a depth of melt. In subjacent layer there is gradual decline lattice distortions is observed.

  3. Tissue Engineering Special Feature: A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo

    NASA Astrophysics Data System (ADS)

    Ford, Millicent C.; Bertram, James P.; Royce Hynes, Sara; Michaud, Michael; Li, Qi; Young, Michael; Segal, Steven S.; Madri, Joseph A.; Lavik, Erin B.

    2006-02-01

    A microvascular network is critical for the survival and function of most tissues. We have investigated the potential of neural progenitor cells to augment the formation and stabilization of microvascular networks in a previously uncharacterized three-dimensional macroporous hydrogel and the ability of this engineered system to develop a functional microcirculation in vivo. The hydrogel is synthesized by cross-linking polyethylene glycol with polylysine around a salt-leached polylactic-co-glycolic acid scaffold that is degraded in a sodium hydroxide solution. An open macroporous network is formed that supports the efficient formation of tubular structures by brain endothelial cells. After subcutaneous implantation of hydrogel cocultures in mice, blood flow in new microvessels was apparent at 2 weeks with perfused networks established on the surface of implants at 6 weeks. Compared to endothelial cells cultured alone, cocultures of endothelial cells and neural progenitor cells had a significantly greater density of tubular structures positive for platelet endothelial cell adhesion molecule-1 at the 6-week time point. In implant cross sections, the presence of red blood cells in vessel lumens confirmed a functional microcirculation. These findings indicate that neural progenitor cells promote the formation of endothelial cell tubes in coculture and the development of a functional microcirculation in vivo. We demonstrate a previously undescribed strategy for creating stable microvascular networks to support engineered tissues of desired parenchymal cell origin. microvasculature | neural stem cells | polymer | scaffold

  4. Simulation of tunneling sensor MIM-nanostructures

    NASA Astrophysics Data System (ADS)

    Koleshko, Vladimir M.; Gulay, Anatoliy V.; Gulay, Viacheslav A.

    2008-07-01

    The vacuum deposition process of super thin films of rare earth elements (REE) oxides was investigated and simulation of MIM nanostructures on their base was carried out. Super thin films was deposited by reactive magnetron sputtering of metallic targets in the argon and oxygen mixture. At the optimum technological regime (discharge voltage 400-440 V, substrate temperature 573-598 K) the yttrium and holmium oxides films growth rate is correspondingly 3.5 and 2.8 nm/min, their specific resistance is more than 1013 Ohm/cm, the value of permittivity is 10.4-16.8. The sensor MIM nanostructures of Al-(REE)2O3-Al type on the basis of super thin films was obtained. The resistance simulation approach by linear approximation of current-voltage relation was considered. For the yttrium oxide film thickness of 5, 16 nm and MIM-contact area of 1•10-3, 2•10-3 mm2 increasing of the applied voltage from 0.04 to 1.2-1.5 V leads to increasing of current-voltage relation steepness from (1.5-2.5)•10-8 to (19-22)•10-8 A/V, and the resistance of the formed MIM nanostructures is firstly rising and then reducing in 1.9-4.0 times with the voltage increasing. MIM nanostructures was simulated as a negative differential conductivity elements. The current through MIM nanostructures has viewed as periodic impulses with frequency from ~100 GHz to ~10 THz.

  5. Manganese Nanostructures and Magnetism

    NASA Astrophysics Data System (ADS)

    Simov, Kirie Rangelov

    The primary goal of this study is to incorporate adatoms with large magnetic moment, such as Mn, into two technologically significant group IV semiconductor (SC) matrices, e.g. Si and Ge. For the first time in the world, we experimentally demonstrate Mn doping by embedding nanostructured thin layers, i.e. delta-doping. The growth is observed by in-situ scanning tunneling microscopy (STM), which combines topographic and electronic information in a single image. We investigate the initial stages of Mn monolayer growth on a Si(100)(2x1) surface reconstruction, develop methods for classification of nanostructure types for a range of surface defect concentrations (1.0 to 18.2%), and subsequently encapsulate the thin Mn layer in a SC matrix. These experiments are instrumental in generating a surface processing diagram for self-assembly of monoatomic Mn-wires. The role of surface vacancies has also been studied by kinetic Monte Carlo modeling and the experimental observations are compared with the simulation results, leading to the conclusion that Si(100)(2x1) vacancies serve as nucleation centers in the Mn-Si system. Oxide formation, which happens readily in air, is detrimental to ferromagnetism and lessens the magnetic properties of the nanostructures. Therefore, the protective SC cap, composed of either Si or Ge, serves a dual purpose: it is both the embedding matrix for the Mn nanostructured thin film and a protective agent for oxidation. STM observations of partially deposited caps ensure that the nanostructures remain intact during growth. Lastly, the relationship between magnetism and nanostructure types is established by an in-depth study using x-ray magnetic circular dichroism (XMCD). This sensitive method detects signals even at coverages less than one atomic layer of Mn. XMCD is capable of discerning which chemical compounds contribute to the magnetic moment of the system, and provides a ratio between the orbital and spin contributions. Depending on the amount

  6. N-MOSFETs Formed on Solid Phase Epitaxially Grown GeSn Film with Passivation by Oxygen Plasma Featuring High Mobility.

    PubMed

    Fang, Yung-Chin; Chen, Kuen-Yi; Hsieh, Ching-Heng; Su, Chang-Chia; Wu, Yung-Hsien

    2015-12-01

    Solid phase epitaxially grown GeSn was employed as the platform to assess the eligibility of direct O2 plasma treatment on GeSn surface for passivation of GeSn N-MOSFETs. It has been confirmed that O2 plasma treatment forms a GeSnO(x) film on the surface and the GeSnO(x) topped by in situ Al2O3 constitutes the gate stack of GeSn MOS devices. The capability of the surface passivation was evidenced by the low interface trap density (D(it)) of 1.62 × 10(11) cm(-2) eV(-1), which is primarily due to the formation of Ge-O and Sn-O bonds at the surface by high density/reactivity oxygen radicals that effectively suppress dangling bonds and decrease gap states. The good D(it) not only makes tiny frequency dispersion in the characterization of GeSn MOS capacitors, but results in GeSn N-MOSFETs with outstanding peak electron mobility as high as 518 cm(2)/(V s) which outperforms other devices reported in the literature due to reduced undesirable carrier scattering. In addition, the GeSn N-MOSFETs also exhibit promising characteristics in terms of acceptable subthreshold swing of 156 mV/dec and relatively large I(ON)/I(OFF) ratio more than 4 orders. Moreover, the robust reliability in terms small V(t) variation against high field stress attests the feasibility of using the O2 plasma-treated passivation to advanced GeSn technology. PMID:26579560

  7. Highly integrated synthesis of heterogeneous nanostructures on nanowire heater array

    NASA Astrophysics Data System (ADS)

    Jin, Chun Yan; Yun, Jeonghoon; Kim, Jung; Yang, Daejong; Kim, Dong Hwan; Ahn, Jae Hyuk; Lee, Kwang-Cheol; Park, Inkyu

    2014-11-01

    We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method.We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr04216f

  8. Nanostructured sulfur cathodes.

    PubMed

    Yang, Yuan; Zheng, Guangyuan; Cui, Yi

    2013-04-01

    Rechargeable Li/S batteries have attracted significant attention lately due to their high specific energy and low cost. They are promising candidates for applications, including portable electronics, electric vehicles and grid-level energy storage. However, poor cycle life and low power capability are major technical obstacles. Various nanostructured sulfur cathodes have been developed to address these issues, as they provide greater resistance to pulverization, faster reaction kinetics and better trapping of soluble polysulfides. In this review, recent developments on nanostructured sulfur cathodes and mechanisms behind their operation are presented and discussed. Moreover, progress on novel characterization of sulfur cathodes is also summarized, as it has deepened the understanding of sulfur cathodes and will guide further rational design of sulfur electrodes. PMID:23325336

  9. Electromechanical phenomena in semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Lew Yan Voon, L. C.; Willatzen, M.

    2011-02-01

    Electromechanical phenomena in semiconductors are still poorly studied from a fundamental and an applied science perspective, even though significant strides have been made in the last decade or so. Indeed, most current electromechanical devices are based on ferroelectric oxides. Yet, the importance of the effect in certain semiconductors is being increasingly recognized. For instance, the magnitude of the electric field in an AlN/GaN nanostructure can reach 1-10 MV/cm. In fact, the basic functioning of an (0001) AlGaN/GaN high electron mobility transistor is due to the two-dimensional electron gas formed at the material interface by the polarization fields. The goal of this review is to inform the reader of some of the recent developments in the field for nanostructures and to point out still open questions. Examples of recent work that involves the piezoelectric and pyroelectric effects in semiconductors include: the study of the optoelectronic properties of III-nitrides quantum wells and dots, the current controversy regarding the importance of the nonlinear piezoelectric effect, energy harvesting using ZnO nanowires as a piezoelectric nanogenerator, the use of piezoelectric materials in surface acoustic wave devices, and the appropriateness of various models for analyzing electromechanical effects. Piezoelectric materials such as GaN and ZnO are gaining more and more importance for energy-related applications; examples include high-brightness light-emitting diodes for white lighting, high-electron mobility transistors, and nanogenerators. Indeed, it remains to be demonstrated whether these materials could be the ideal multifunctional materials. The solutions to these and other related problems will not only lead to a better understanding of the basic physics of these materials, but will validate new characterization tools, and advance the development of new and better devices. We will restrict ourselves to nanostructures in the current article even though the

  10. Nanostructured Superhydrophobic Coatings

    SciTech Connect

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.