Science.gov

Sample records for nanostructured composite materials

  1. Nanostructured composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2012-07-31

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  2. Composite materials formed with anchored nanostructures

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2015-03-10

    A method of forming nano-structure composite materials that have a binder material and a nanostructure fiber material is described. A precursor material may be formed using a mixture of at least one metal powder and anchored nanostructure materials. The metal powder mixture may be (a) Ni powder and (b) NiAl powder. The anchored nanostructure materials may comprise (i) NiAl powder as a support material and (ii) carbon nanotubes attached to nanoparticles adjacent to a surface of the support material. The process of forming nano-structure composite materials typically involves sintering the mixture under vacuum in a die. When Ni and NiAl are used in the metal powder mixture Ni.sub.3Al may form as the binder material after sintering. The mixture is sintered until it consolidates to form the nano-structure composite material.

  3. Mechanical Spectroscopy of Nanostructured Composite Materials

    NASA Astrophysics Data System (ADS)

    Mari, Daniele; Schaller, Robert; Mazaheri, Mehdi

    2011-07-01

    The thermo-mechanical behavior of different nano-structured composite materials, which were processed within the SAPHIR European Integrated Project, has been characterized by mechanical spectroscopy. The obtained results show clearly that creep resistance of fine grain ceramics such as zirconia can be improved by carbon nano-tube (CNT) reinforcements. On the other hand the elastic modulus and the damping capacity of aluminum matrix composites were increased by SiC nano-particle additions. It has also been observed that CNT additions are responsible for a better thermal stability of polymer such as ABS (Acrylonitrile-Butadiene-Styrene) used in automotive industry.

  4. Composite, nanostructured, super-hydrophobic material

    SciTech Connect

    D'Urso, Brian R.; Simpson, John T.

    2007-08-21

    A hydrophobic disordered composite material having a protrusive surface feature includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a protrusive surface feature, the protrusive feature being hydrophobic.

  5. Hydrogen Storage Properties of Magnesium Base Nanostructured Composite Materials

    SciTech Connect

    AU, M

    2004-04-30

    In this work, nanostructured composite materials have been synthesized using the mechanical alloying process. The new materials produced have been investigated by X-ray diffraction (XRD), transition electron microscope (TEM), scanning electron microscope (SEM) and electron energy dispersion spectrum (EDS) for their phase compositions, crystal structure, grain size, particle morphology and the distribution of catalyst element. Hydrogen storage capacities and the hydriding-dehydriding kinetics of the new materials have been measured at different temperatures using a Sieverts apparatus. It is observed that mechanical alloying accelerates the hydrogenation kinetics of the magnesium based materials at low temperature, but a high temperature must be provided to release the absorbed hydrogen from the hydrided magnesium based materials. It is believed that the dehydriding temperature is largely controlled by the thermodynamic configuration of magnesium hydride. Doping Mg-Ni nano/amorphous composite materials with lanthanum reduces the hydriding and dehydriding temperature. Although the stability of MgH2 can not be easily reduced by ball milling alone, the results suggest the thermodynamic properties of Mg-Ni nano/amorphous composite materials can be alternated by additives such as La or other effective elements. Further investigation toward understanding the mechanism of additives will be rewarded.

  6. Inclusion of nanostructured materials in composite and double base propellants

    NASA Astrophysics Data System (ADS)

    Reese, David A.

    Two methods for including nanostructured reactive materials in composite and double base propellant systems were investigated. Initially, a multiscale computational model for determining the dispersion state of nanoparticles in various polymer bases was developed using molecular and dissipative particle dynamics. Systems of nanosize aluminum, boron, and copper (II) oxide were prepared in hydroxyl-terminated polybutadiene and examined using a variety of techniques to parameterize the model. The results of modeling and experiments showed that increasing nanoparticle concentrations tend to increase agglomerate size and quantity. In parallel, nanoscale reactive intermetallic-forming compounds were investigated as additives to increase propellant performance and burning rate. The nanoscale reactive material raised the burning rate temperature prefactor while simultaneously radically altering the agglomerate structure, providing tantalizing evidence for potential future performance gains.

  7. Nanostructured materials

    SciTech Connect

    Siegel, R.W.

    1994-11-01

    Interest in the physics of condensed matter at size scales larger than that of atoms and smaller than that of bulk solids has grown rapidly over the past two decades owing to the increasing realization that the properties of these mesoscopic atomic ensembles are different than those of conventional solids. As a consequence, interest in artificially assembling materials from nanometer sized building blocks, whether layers or clusters of atoms, arose from discoveries that by controlling the sizes in the range of 1-100 nm and the assembly of such costituents one could begin to alter and prescribe the properties of the assembled nanostructures. Nature had already learned the value of nanostructuring, since many examples of naturally formed nanostructures can be found in biological systems from sea shells to the human body. Nanostructured materials are modulated over nanometer length scales in from zero to three dimensions. They can be assembled with modulation dimensionalities of zero (atom clusters or filaments), one (multilayers), two (ultrafine-grained overlayers or coatings or buried layers), and three (nanophase materials), or also with intermediate dimensionalities. Thus, nanocomposite materials containing multiple phases can range from the most conventional case in which a nanoscale phase is embedded in a phase of conventional sizes to the case in which all the constituent phases are of nanoscale dimensions. All nanostructured materials share three features: atomic domains (grains, layers or phases) spatially confined to less than 100 nm in at least one dimension, significant atom fractions associated with interfacial environments, and interactions between their constituent domains.

  8. Nanostructured composite materials for electromagnetic interference shielding applications

    NASA Astrophysics Data System (ADS)

    Micheli, Davide; Apollo, Carmelo; Pastore, Roberto; Bueno Morles, Ramon; Laurenzi, Susanna; Marchetti, Mario

    2011-11-01

    Microwave shielding and absorbing structures are proposed using composite materials consisting in epoxy-resin and carbon nanopowders fillers up to 10% weight concentration. Characterization in terms of dielectric parameters is performed and discussed and such data are used to optimize the modeling of multilayer electromagnetic absorber by means of in-house built Winning particle optimization algorithm. Experimental validation of mathematical simulations is then performed.

  9. Permittivity of dielectric composite materials comprising graphene nanoribbons. The effect of nanostructure.

    PubMed

    Dimiev, Ayrat; Zakhidov, Dante; Genorio, Bostjan; Oladimeji, Korede; Crowgey, Benjamin; Kempel, Leo; Rothwell, Edward J; Tour, James M

    2013-08-14

    New lightweight, flexible dielectric composite materials were fabricated by the incorporation of several new carbon nanostructures into a dielectric host matrix. Both the permittivity and loss tangent values of the resulting composites were widely altered by varying the type and content of the conductive filler. The dielectric constant was tuned from moderate to very high values, while the corresponding loss tangent changed from ultralow to extremely high. The data exemplify that nanoscale changes in the structure of the conductive filler result in dramatic changes in the dielectric properties of composites. A microcapacitor model most explains the behavior of the dielectric composites. PMID:23855373

  10. Nano-particulate dispersion and reinforcement of nanostructured composite materials

    NASA Astrophysics Data System (ADS)

    Yong, Virginia Hiu-Hung

    2005-12-01

    This research investigated the feasibility of reinforcing polymer composites using 30 nm SiC nanoparticles in a vinyl ester resin. The SiC nanoparticles were examined using transmission electron microscopy and thermogravimetric analysis. Gamma-methacryloxy propyl trimethoxy silane (MPS) was chosen as the coupling agent. Both mixing procedures with (1) the nanoparticles pretreated with a dilute MPS solution in an acid 5% (v/v) water-ethanol mixture and (2) the MPS sonicated as an integral blend with the filled vinyl ester, were attempted. Fourier transform infrared spectroscopy was used to study the silanol condensation between MPS and the SiC nanoparticles. The results show that ultrasonic mixing did not fully disperse the particles. Hence the composite strength did not improve although the modulus increased. The use of MPS improved the dispersion quality and hence the composite strength. The rheological behavior of SiC nanoparticle-filled vinyl ester resin systems was evaluated in terms of the Bingham, power law, Herschel-Bulkley, and Casson models. Even when the particle loading was less then 4% by weight, the viscosity of the nanoparticle suspension was found to increase much more than that of a microparticle suspension. This phenomenon may be the result of association between nanoparticles and polymer molecules, effectively making the nanoparticles larger. The resulting reduction in the mobility of polymer molecules also led to delayed curing. The maximum particle loading corresponding to infinite viscosity was determined as 0.1 volume fraction using the (1 - eta r-1/2) - ? dependence. The experimental optimum fractional weight per cent of the dispersants (wt. % dispersant/wt. % SiC) was found to be around 40% for 30 nm SiC nanoparticles, which is in close agreement with the theoretically calculated monolayer coverage dosage of 67%.

  11. Temperature, atomic oxygen and outgassing effects on dielectric parameters and electrical properties of nanostructured composite carbon-based materials

    NASA Astrophysics Data System (ADS)

    Micheli, Davide; Apollo, Carmelo; Pastore, Roberto; Bueno Morles, Ramon; Coluzzi, Plinio; Marchetti, Mario

    2012-07-01

    This work deals with the dielectric properties of carbon-based nanostructured polymeric composite materials. A commercial epoxy matrix is currently filled with multi-walled carbon nanotubes in different percentages, and final composite material characterized in terms of microwave behavior by means of the waveguide method. By following the guidelines of previous studies, the attention is focused on the changes induced by hard environmental conditions (high temperature in ultra-high vacuum system) on the above mentioned properties. The results obtained in this preliminary research have outlined the intriguing properties of carbon nanostructures, establishing themselves as very promising materials for the future aerospace composite technology.

  12. The process of nanostructuring of metal (iron) matrix in composite materials for directional control of the mechanical properties.

    PubMed

    Zemtsova, Elena; Yurchuk, Denis; Smirnov, Vladimir

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1-50 nm. This material can be represented as the material type "frame in the frame" that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  13. The Process of Nanostructuring of Metal (Iron) Matrix in Composite Materials for Directional Control of the Mechanical Properties

    PubMed Central

    Zemtsova, Elena

    2014-01-01

    We justified theoretical and experimental bases of synthesis of new class of highly nanostructured composite nanomaterials based on metal matrix with titanium carbide nanowires as dispersed phase. A new combined method for obtaining of metal iron-based composite materials comprising the powder metallurgy processes and the surface design of the dispersed phase is considered. The following stages of material synthesis are investigated: (1) preparation of porous metal matrix; (2) surface structuring of the porous metal matrix by TiC nanowires; (3) pressing and sintering to give solid metal composite nanostructured materials based on iron with TiC nanostructures with size 1–50 nm. This material can be represented as the material type “frame in the frame” that represents iron metal frame reinforcing the frame of different chemical compositions based on TiC. Study of material functional properties showed that the mechanical properties of composite materials based on iron with TiC dispersed phase despite the presence of residual porosity are comparable to the properties of the best grades of steel containing expensive dopants and obtained by molding. This will solve the problem of developing a new generation of nanostructured metal (iron-based) materials with improved mechanical properties for the different areas of technology. PMID:24695459

  14. Synthesis and characterization of bismuth telluride based nanostructured thermoelectric composite materials

    NASA Astrophysics Data System (ADS)

    Keshavarz Khorasgani, Mohsen

    Thermoelectric (TE) materials and devices are attractive in solid-state energy conversion applications such as waste heat recovery, air-conditioning, and refrigeration. Since the 1950's lots of unremitting efforts have been made to enhance the efficiency of energy conversion in TE materials (i. e. improving the figure of merit (ZT)), however, most of commercial bulk TE materials still suffer from low efficiency with ZTs around unity. To enhance the performance of bismuth telluride based TE alloys, we have developed composite TE materials, based on the idea that introducing more engineered interfaces in the bulk TE materials may lead to thermal conductivity reduction due to increased phonon scattering by these interfaces. In this approach it is expected that the electronic transport properties of the material are not effectively affected. Consequently, ZT enhancement can be achieved. In this dissertation we will discuss synthesis and characterization of two types of bismuth telluride based bulk composite TE materials. The first type is engineered to contain the presence of coherent interfaces between phases in the material resulting from different mixtures of totally miscible compounds with similar composition. The second type includes the nanocomposites with embedded foreign nano-particles in which the matrix and the particles are delimited by incoherent interfaces. The synthesis procedure, micro- and nano-structures as well as thermoelectric properties of these composites will be presented. In our study on the composites with coherent interfaces, we produced a series of different composites of p-type bismuth antimony telluride alloys and studied their microstructure and thermoelectric properties. Each composite consists of two phases that were obtained in powder form by mechanical alloying. Mixed powders in various proportions of the two different phases were consolidated by hot extrusion to obtain each bulk composite. The minimum grain size of bulk composites as revealed by scanning electron microscopy shows a 50% reduction compared to the conventional (Bi0.2Sb0.8)2Te 3 . XRD analysis indicates a systematic decrease of crystallite size in the composite materials. Scattering mechanisms of charge carriers were evaluated by Hall effect measurements. There is no evidence of carriers scattering linked to the composite nature in these materials. The composites show no significant degradation of the power factor and high peak ZT values ranging from 0.86 to 1.04. It was found, contrary to expectations that the thermal conductivity of the composites slightly increases compared to the conventional alloy. This behavior has been attributed to two factors: (1) the grains of the composites are not sufficiently small to increase phonon scattering, and (2) the lattice thermal conductivity of single phase (Bi 0.2Sb0.8)2Te3 alloy has the smaller value in comparison with the lattice thermal conductivity of each of the components of the composites. Importantly, we have already demonstrated the feasibility of this approach to conserve the electronic transport properties while more interfaces are introduced in the material. We believe that continued investigation following this approach can guide us to achieve an enhanced figure of merit. We have also studied bulk nanocomposites of p-type (Bi0.2Sb0.8)2Te3 and n-type (Bi0.95Sb0.05)2(Te 0.95Se0.05)3 with embedded MoS2 nano-inclusions, which were obtained by mechanical alloying and hot extrusion. This series of TE nanocomposites contain incoherent interfaces between nano-particles and the matrix. We have found that addition of molybdenum disulfide (MoS 2) nano-particles to the matrix improves the extrusion process and limits the grain growth in bismuth telluride based alloys. Transmission electron microscopy revealed that grain boundaries of the matrix are decorated by nano-inclusions, leading to a significant reduction of average grain size and crystallite size compared to those of the conventional single phase alloy. Scanning electron microscope images show that the average grain size of p-type (Bi0.2Sb 0.8)2Te3 composites containing 0.2, 0.4 and 0.8 wt% MoS2 nano-particles, under otherwise identical extrusion conditions, is reduced by a factor around four. Scherer's formula applied to x-ray diffraction data indicates that after the hot extrusion process, the average crystallite size in composites increases only by 10% (˜ 18 nm) compared to about 400% growth (˜ 80 nm) observed in the single phase bismuth telluride based alloy. Smaller crystallites, as expected, lead to a reduction of the thermal conductivity in these nanocomposites (˜1.4 W/m˙K at 450 K for 0.4 wt.% MoS2) when compared to the conventional alloy (˜1.8 W/m˙K). The structural changes in the nanocomposites characterized by mechanical spectroscopy in the temperature range 293-540 K show an increase of the internal friction accompanied by a systematic reduction of its activation energy with increase in MoS2 content, which is an indication of higher density of crystal defects in the nanocomposites that largely contribute to the internal friction background. Investigation of TE properties shows a reduction of the room temperature figure of merit (ZT values) from 0.9 to 0.7 due to a lower power factor. However, once above 370 K, the figure of merit of alloys containing MoS2 nano-particles surpasses that of single phase (Bi0.2Sb0.8)2Te3, due to a more pronounced reduction in the thermal conductivity at temperatures above the cross point of the ZT values. Remarkably, we have demonstrated that adding nano-particles of MoS 2 to bismuth telluride based alloys is an approach to significantly reduce the grain size of the matrix resulting in an important thermal conductivity decrease. The enhanced ZT values above 370 K in nanocomposites show the preeminent achievement of this approach, although further study is required to obtain optimum transport properties, and boost up the ZT more effectively.

  15. Nanostructured materials for hydrogen storage

    DOEpatents

    Williamson, Andrew J.; Reboredo, Fernando A.

    2007-12-04

    A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

  16. Nanostructured, electroactive and bioapplicable materials

    NASA Astrophysics Data System (ADS)

    Cheng, Shan

    Novel nanostructured porous sol-gel materials, nanocomposites, electroactive and bioapplicable materials have been successfully developed for a wide range of perceivable applications. Several versatile nonsurfactant templated sol-gel pathways have been developed to prepare nanostructured porous materials and composites with different morphologies (e.g., monoliths, nanospheres, nanoparticles, and thin films), structures, compositions and properties. The synthetic conditions were systematically studied and optimized. The template effects on pore structure as well as synthetic process, especially template removal steps, have been investigated. The composition and pore structures were thoroughly studied with various spectroscopic and microscopic methods such as IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials usually exhibit high surface area, large pore volume and narrowly distributed pore diameter. The porosity can be fine tuned simply by adjusting the template concentration. The convenient synthesis as well as the distinctive structure and physical-chemical properties render these sol-gel materials great suitability for a wide range of potential applications, such as chemical and biological sensors, catalysts, drug delivery and functional coatings. Biocompatible and electroactive nanocomposites have been prepared through a biological agent (i.e., collagen) templated chemical polymerization of aniline monomers. The resultant polyaniline-collagen complexes exhibit well controlled doping-dedoping electroactivity and much enhanced solubility. Demonstrated with cell growth studies, the polyaniline-collagen complexes show improved biocompatibility in comparison to polyaniline. The new materials can be used to fabricate scaffolds, with which the effect of electrical stimuli on cell growth and differentiation can be evaluated with the hope of ultimately using electrical signal to stimulate controllable cell and tissue regeneration. Aniline derivative substituted quinoline ligand compounds and their complexes have been prepared and investigated as potential electroluminescent materials.

  17. Nanostructured Materials for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

    2003-01-01

    The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

  18. Composite electrode materials based on conducting polymers loaded with metal nanostructures

    NASA Astrophysics Data System (ADS)

    Kondratiev, V. V.; Malev, V. V.; Eliseeva, S. N.

    2016-01-01

    The electrochemical and chemical methods for synthesizing conducting polymer-metal nanocomposite materials are considered as well as the main factors affecting the structure and electrochemical properties of these composites. The experimental data on the catalytic activity of conducting polymer–metal electrodes are analyzed in respect to several electrochemical reactions. The approaches to theoretical description of electrochemical processes on heterogeneous conducting polymer–metal electrodes are discussed and examples of experimental testing of applicability of the proposed the theoretical models are shown. The bibliography includes 335 references.

  19. Hierarchically nanostructured materials for sustainable environmental applications

    PubMed Central

    Ren, Zheng; Guo, Yanbing; Liu, Cai-Hong; Gao, Pu-Xian

    2013-01-01

    This review presents a comprehensive overview of the hierarchical nanostructured materials with either geometry or composition complexity in environmental applications. The hierarchical nanostructures offer advantages of high surface area, synergistic interactions, and multiple functionalities toward water remediation, biosensing, environmental gas sensing and monitoring as well as catalytic gas treatment. Recent advances in synthetic strategies for various hierarchical morphologies such as hollow spheres and urchin-shaped architectures have been reviewed. In addition to the chemical synthesis, the physical mechanisms associated with the materials design and device fabrication have been discussed for each specific application. The development and application of hierarchical complex perovskite oxide nanostructures have also been introduced in photocatalytic water remediation, gas sensing, and catalytic converter. Hierarchical nanostructures will open up many possibilities for materials design and device fabrication in environmental chemistry and technology. PMID:24790946

  20. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity

    SciTech Connect

    Kuehn, U.; Mattern, N.; Gebert, A.; Kusy, M.; Bostroem, M.; Siegel, U.; Schultz, L.

    2005-09-01

    Multicomponent composite materials with the compositions Zr{sub 66}Nb{sub 13}Cu{sub 8}Ni{sub 6.8}Al{sub 6.2} and Ti{sub 66}Nb{sub 13}Cu{sub 8}Ni{sub 6.8}Al{sub 6.2} were produced by copper mold casting, and their microstructure and their room-temperature mechanical properties were investigated. The specific alloys were developed to circumvent the limited ductility of Zr- and Ti-based bulk metallic glasses by the formation of a heterogeneous microstructure consisting of a nanocrystalline matrix and ductile dendritic bcc precipitates. Comparing the microstructure of both alloys, two significant differences were observed. The volume fraction of the dendritic bcc phase is higher for the Ti-based alloy and the formed interdendritic matrix phase(s) have a different structure. The two alloys show an excellent combination of strength and plastic strain. Especially the Ti-based alloy exhibits exceptional mechanical properties, such as high fracture stress of more than 2000 MPa and a plastic elongation to failure of almost 30%.

  1. Nanostructured conductive polymeric materials

    NASA Astrophysics Data System (ADS)

    Al-Saleh, Mohammed H.

    Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.

  2. Nanostructured polyaniline rice husk composite as adsorption materials synthesized by different methods

    NASA Astrophysics Data System (ADS)

    Tot Pham, Thi; Thanh Thuy Mai, Thi; Quy Bui, Minh; Mai, Thi Xuan; Yen Tran, Hai; Binh Phan, Thi

    2014-03-01

    Composites based on polyaniline (PANi) and rice husk (RH) were prepared by two methods: the first one was chemical method by combining RH contained in acid medium and aniline using ammonium persulfate as an oxidation agent and the second one was that of soaking RH into PANi solution. The presence of PANi combined with RH to form nanocomposite was clearly demonstrated by infrared (IR) spectra as well as by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images. Lead(II) and cadmium(II) ion concentrations in solution before and after adsorption process on those composites were analysed by atomic adsorption spectroscopy. Of the above preparation methods, the soaking one provided a composite onto which the maximum adsorption capacity was higher for lead(II) ion (200 mg g-1), but lower for cadmium(II) ion (106.383 mg g-1) in comparison with the chemical one. However, their adsorption process occurring on both composites also fitted well into the Langmuir isotherm model.

  3. Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells

    SciTech Connect

    Orilall, M. Christopher; Wiesner, Ulrich

    2011-01-01

    The development of energy conversion and storage devices is at the forefront of research geared towards a sustainable future. However, there are numerous issues that prevent the widespread use of these technologies including cost, performance and durability. These limitations can be directly related to the materials used. In particular, the design and fabrication of nanostructured hybrid materials is expected to provide breakthroughs for the advancement of these technologies. This tutorial review will highlight block copolymers as an emerging and powerful yet affordable tool to structure-direct such nanomaterials with precise control over structural dimensions, composition and spatial arrangement of materials in composites. After providing an introduction to materials design and current limitations, the review will highlight some of the most recent examples of block copolymer structure-directed nanomaterials for photovoltaics, batteries and fuel cells. In each case insights are provided into the various underlying fundamental chemical, thermodynamic and kinetic formation principles enabling general and relatively inexpensive wet-polymer chemistry methodologies for the efficient creation of multiscale functional materials. Examples include nanostructured ceramics, ceramiccarbon composites, ceramiccarbonmetal composites and metals with morphologies ranging from hexagonally arranged cylinders to three-dimensional bi-continuous cubic networks. The review ends with an outlook towards the synthesis of multicomponent and hierarchical multifunctional hybrid materials with different nano-architectures from self-assembly of higher order blocked macromolecules which may ultimately pave the way for the further development of energy conversion and storage devices.

  4. Nanostructured composite material graphite/TiO2 and its antibacterial activity under visible light irradiation.

    PubMed

    D?dkov, Kate?ina; Lang, Jaroslav; Mat?jov, Kate?ina; Peikertov, Pavlna; Holeinsk, Jan; Vodrek, Vlastimil; Kukutschov, Jana

    2015-08-01

    The paper addresses laboratory preparation, characterization and in vitro evaluation of antibacterial activity of graphite/TiO2 nanocomposites. Composites graphite/TiO2 with various ratio of TiO2 nanoparticles (30wt.%, and 50wt.%) to graphite were prepared using a thermal hydrolysis of titanylsulfate in the presence of graphite particles, and subsequently dried at 80C. X-ray powder diffraction, transmission electron microscopy and Raman microspectroscopy served as phase-analytical methods distinguishing anatase and rutile phases in the prepared composites. Scanning and transmission electron microscopy techniques were used for characterization of morphology of the prepared samples. A developed modification of the standard microdilution test was used for in vitro evaluation of daylight induced antibacterial activity, using four common human pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis and Pseudomonas aeruginosa). Antibacterial activity of the graphite/TiO2 nanocomposites could be based mainly on photocatalytic reaction with subsequent potential interaction of reactive oxygen species with bacterial cells. During the antibacterial activity experiments, the graphite/TiO2 nanocomposites exhibited antibacterial activity, where differences in the onset of activity and activity against bacterial strains were observed. The highest antibacterial activity evaluated as minimum inhibitory concentration was observed against P. aeruginosa after 180min of irradiation. PMID:26114221

  5. Laser nanostructuring of materials surfaces

    SciTech Connect

    Zavestovskaya, I N

    2010-12-29

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces. (photonics and nanotechnology)

  6. Multiphasic nanostructured composites for photonics

    NASA Astrophysics Data System (ADS)

    Ruland, Gary Edgar

    Photonics is emerging as a multidisciplinary field which has drawn the attention of engineers and scientists around the world. Photonics is analogous to electronics in that light, instead of electrons, is used to store, transmit, acquire, and process information. The advantage of light instead of electrons is an increase of bandwidth and speed. One class of materials that is promising consists of organic and polymeric systems since they possess large optical nonlinearities, ease of processibility, low cost, and relatively low dielectric constants in contrast to inorganic crystal systems. One of the most heavily studied organic systems are those that contain ? electron conjugated systems. However, there are several disadvantages to organic systems, namely a lack of photostability and optical quality when compared to the inorganic systems. Inorganic glasses are attractive since they exhibit high optical quality and photostability; unfortunately, the optical response of inorganic glasses are too low to be useful. This dissertation addresses these issues by incorporating organic chromophores into sol-gel processed silica glass. By expanding on previous sol-gel optics work, the concept and results on multiphasic nanostructured composites, a new class of optical materials, is investigated. This differs from previous works in that it takes advantage of the different phases of sol-gel glass:polymer composites by phase separating optically functional materials into different phases. This allows for control of the excitation dynamics such as quenching of emission. The advantage of this approach is that it allows for the fabrication of broadband devices such as tunable lasers and optical limiters. Another aspect explored in this dissertation deals with organically doped sol-gel derived fibers for lasing. This work represents the first known report of lasing from a silica fiber doped with an organic chromophore. In addition, the structure-property relationship is examined for a new lasing dye that exhibits strong two-photon absorption and a relatively high lasing efficiency even with a low fluorescence quantum yield. Finally, two- photon upconversion lasing is discussed in a new lasing dye that exhibits one of the shortest wavelength reported to date for a two-photon upconversion dye laser. Future research directions in topics covered by this dissertation are also provided.

  7. Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations

    NASA Technical Reports Server (NTRS)

    Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

    2009-01-01

    Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

  8. Energy Storage in Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun

    2009-03-01

    Renewably produced energy by solar and wind technologies should be stored properly for practical use because of their intermittent generation of electricity. The energy can be stored in materials in forms of chemical, electrical, or thermal energies. The current energy-storage materials technologies, however, suffer from their inevitable low energy densities, compared to liquid fuels such as gasoline and ethanol, and thus end up to high cost due to material limitation. In order to overcome the fundamental limit, many scientists and researchers have studied nanostructured materials with more surface areas, tunable storage mechanisms, and better kinetic processes. Because electronic and mechanical properties of nanostructured materials are simply not a miniature of their bulk counterparts, a careful material design is required based on microscopic understanding of the energy storing process. In this talk, I will discuss our recent theoretical efforts and development to understand energy storage mechanisms in nanostructured materials for hydrogen, battery, and electrochemical capacitor applications. We have pioneered dihydrogen adsorption in nanostructured materials with the Kubas coordination [1-3] and lately developed efficient van der Waals potentials within the density functional theory approach [4]. Also very recently we have unraveled reversible lithium intercalation mechanisms in MoO3 nanoparticles for Li-ion battery electrodes [5], and been developing a microscopic theory of electrochemical and capacitive energy storage. [4pt] [1] Y. Zhao et al., Phys. Rev. Lett. 94, 155504 (2005) [0pt] [2] Y.-H. Kim et al., Phys. Rev. Lett. 96, 016102 (2006) [0pt] [3] Y. Y. Sun, Y.-H. Kim, and S. B. Zhang, J. Am. Chem. Soc. 129, 12606 (2007) [0pt] [4] Y. Y. Sun, Y.-H. Kim, K. Lee, and S. B. Zhang, J. Chem. Phys. 129, 154102 (2008) [0pt] [5] S.-H. Lee et al., Adv. Mater. 20, 3627 (2008)

  9. Nanostructured materials for water desalination.

    PubMed

    Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

    2011-07-22

    Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. PMID:21680966

  10. Nanoprobes, nanostructured materials and solid state materials

    NASA Astrophysics Data System (ADS)

    Yin, Houping

    2005-07-01

    Novel templates have been developed to prepare nanostructured porous materials through nonsurfactant templated pathway. And new applications of these materials, such as drug delivery and molecular imprinting, have been explored. The relationship between template content and pore structure has been investigated. The composition and pore structures were studied in detail using IR, TGA, SEM, TEM, BET and XRD. The obtained mesoporous materials have tunable diameters in the range of 2--12 nm. Due to the many advantages of this nonsurfactant templated pathway, such as environment friendly and biocompatibility, controlled release of antibiotics in the nanoporous materials were studied. The in vitro release properties were found to depend on the silica structures which were well tuned by varying the template content. A controlled long-term release pattern of vancomycin was achieved when the template content was 30 wt% or lower. Nanoscale electrochemical probes with dimensions as small as 50 nm in diameter and 1--2 mum in length were fabricated using electron beam deposition on the apex of conventional micron size electrodes. The electroactive region was limited to the extreme tip of the nanoprobe by coating with an insulating polymer and re-opening of the coating at the extreme tip. The novel nanoelectrodes thus prepared were employed to probe neurons in mouse brain slice and the results suggest that the nanoprobes were capable of recording neuronal excitatory postsynaptic potential signals. Interesting solid state chemistry was found in oxygenated iron phthalocyanine. Their Mossbauer spectra show the formation of four oxygenated species apart from the unoxygenated parent compound. The oxygen-bridged compounds formed in the solid matrix bear no resemblance to the one formed by solution chemistry. Tentative assignment of species has been made with the help of Mossbauer and IR spectroscopy. An effort to modify aniline trimer for potential nanoelectronics applications and to investigate the formation of "nano-pancake" shape aggregation was also reported.

  11. Method of fabrication of anchored nanostructure materials

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-11-26

    Methods for fabricating anchored nanostructure materials are described. The methods include heating a nano-catalyst under a protective atmosphere to a temperature ranging from about 450.degree. C. to about 1500.degree. C. and contacting the heated nano-catalysts with an organic vapor to affix carbon nanostructures to the nano-catalysts and form the anchored nanostructure material.

  12. Composite material

    DOEpatents

    Hutchens, Stacy A.; Woodward, Jonathan; Evans, Barbara R.; O'Neill, Hugh M.

    2012-02-07

    A composite biocompatible hydrogel material includes a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa. A calcium comprising salt is disposed in at least some of the pores. The porous polymer matrix can comprise cellulose, including bacterial cellulose. The composite can be used as a bone graft material. A method of tissue repair within the body of animals includes the steps of providing a composite biocompatible hydrogel material including a porous polymer matrix, the polymer matrix including a plurality of pores and providing a Young's modulus of at least 10 GPa, and inserting the hydrogel material into cartilage or bone tissue of an animal, wherein the hydrogel material supports cell colonization in vitro for autologous cell seeding.

  13. Nanostructured cathode materials for rechargeable lithium batteries

    NASA Astrophysics Data System (ADS)

    Myung, Seung-Taek; Amine, Khalil; Sun, Yang-Kook

    2015-06-01

    The prospect of drastic climate change and the ceaseless fluctuation of fossil fuel prices provide motivation to reduce the use of fossil fuels and to find new energy conversion and storage systems that are able to limit carbon dioxide generation. Among known systems, lithium-ion batteries are recognized as the most appropriate energy storage system because of their high energy density and thus space saving in applications. Introduction of nanotechnology to electrode material is beneficial to improve the resulting electrode performances such as capacity, its retention, and rate capability. The nanostructure is highly available not only when used alone but also is more highlighted when harmonized in forms of core-shell structure and composites with carbon nanotubes, graphene or reduced graphene oxides. This review covers syntheses and electrochemical properties of nanoscale, nanosized, and nanostructured cathode materials for rechargeable lithium batteries.

  14. Preparation and characterization of nanostructured MWCNT-TiO{sub 2} composite materials for photocatalytic water treatment applications

    SciTech Connect

    Wang Wendong; Serp, Philippe; Kalck, Philippe; Silva, Claudia Gomes

    2008-04-01

    Nanoscale composite materials containing multi-walled carbon nanotubes (MWCNT) and titania were prepared by using a modified sol-gel method. The composites were comprehensively characterized by thermogravimetric analysis, nitrogen adsorption-desorption isotherm, powder X-ray diffraction, scanning electron microscopy with energy dispersive X-ray analysis, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-vis absorption spectroscopy. The analysis revealed the presence of titania crystallites of about 7.5 nm aggregated together with MWCNT in particles of 15-20 nm of diameter. The photoactivity of the prepared materials, under UV or visible irradiation, was tested using the conversion of phenol from model aqueous solutions as probe reaction. A synergy effect on the photocatalytic activities observed for the composite catalysts was discussed in terms of a strong interphase interaction between carbon and TiO{sub 2} phases by comparing the different roles of MWCNT in the composite materials.

  15. Anchored nanostructure materials and method of fabrication

    DOEpatents

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2012-11-27

    Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

  16. Nanostructured materials in electroanalysis of pharmaceuticals.

    PubMed

    Rahi, A; Karimian, K; Heli, H

    2016-03-15

    Basic strategies and recent developments for the enhancement of the sensory performance of nanostructures in the electroanalysis of pharmaceuticals are reviewed. A discussion of the properties of nanostructures and their application as modified electrodes for drug assays is presented. The electrocatalytic effect of nanostructured materials and their application in determining low levels of drugs in pharmaceutical forms and biofluids are discussed. PMID:26751130

  17. Quantitative Characterization of Nanostructured Materials

    SciTech Connect

    Dr. Frank Bridges, University of California-Santa Cruz

    2010-08-05

    The two-and-a-half day symposium on the "Quantitative Characterization of Nanostructured Materials" will be the first comprehensive meeting on this topic held under the auspices of a major U.S. professional society. Spring MRS Meetings provide a natural venue for this symposium as they attract a broad audience of researchers that represents a cross-section of the state-of-the-art regarding synthesis, structure-property relations, and applications of nanostructured materials. Close interactions among the experts in local structure measurements and materials researchers will help both to identify measurement needs pertinent to “real-world” materials problems and to familiarize the materials research community with the state-of-the-art local structure measurement techniques. We have chosen invited speakers that reflect the multidisciplinary and international nature of this topic and the need to continually nurture productive interfaces among university, government and industrial laboratories. The intent of the symposium is to provide an interdisciplinary forum for discussion and exchange of ideas on the recent progress in quantitative characterization of structural order in nanomaterials using different experimental techniques and theory. The symposium is expected to facilitate discussions on optimal approaches for determining atomic structure at the nanoscale using combined inputs from multiple measurement techniques.

  18. Carbothermal reduction of SiO2 promoted with tungsten and morphology of WC-W2C-?-SiC nanostructured composite material

    NASA Astrophysics Data System (ADS)

    Rogowski, Jacek; Kubiak, Andrzej; Andrzejczuk, Mariusz

    2015-12-01

    This paper presents the results of a study on the influence of tungsten as a structure promoter in the carbothermal reduction of silica. The morphology and surface structure of the obtained materials were analyzed using XRD, SEM-EDS, TEM and FTIR techniques. Surface area and porosity were evaluated on the basis of low temperature adsorption of nitrogen. The WC-W2C-?-SiC nanostructured composite material formed from the carbothermal reduction of SiO2 promoted with tungsten had a larger surface area (25.8 m2 g-1) in comparison to that measured for a ?-SiC sample obtained by the simple carbothermal reduction of silica. Based on the results of this research, tungsten promoted carbothermal reduction of silica appears as a relatively simple procedure for obtaining valuable materials with a sufficiently high surface area to be used in catalysis.

  19. Copper-micrometer-sized diamond nanostructured composites

    NASA Astrophysics Data System (ADS)

    Nunes, D.; Livramento, V.; Shohoji, N.; Fernandes, H.; Silva, C.; Correia, J. B.; Carvalho, P. A.

    2011-12-01

    Reinforcement of a copper matrix with diamond enables tailoring the properties demanded for thermal management applications at high temperature, such as the ones required for heat sink materials in low activated nuclear fusion reactors. For an optimum compromise between thermal conductivity and mechanical properties, a novel approach based on multiscale diamond dispersions is proposed: a Cu-nanodiamond composite produced by milling is used as a nanostructured matrix for further dispersion of micrometer-sized diamond (μDiamond). A series of Cu-nanodiamond mixtures have been milled to establish a suitable nanodiamond fraction. A refined matrix with homogeneously dispersed nanoparticles was obtained with 4 at.% μDiamond for posterior mixture with microdiamond and subsequent consolidation. Preliminary consolidation by hot extrusion of a mixture of pure copper and μDiamond has been carried out to define optimal processing parameters. The materials produced were characterized by x-ray diffraction, scanning and transmission electron microscopy and microhardness measurements.

  20. Processes for fabricating composite reinforced material

    DOEpatents

    Seals, Roland D.; Ripley, Edward B.; Ludtka, Gerard M.

    2015-11-24

    A family of materials wherein nanostructures and/or nanotubes are incorporated into a multi-component material arrangement, such as a metallic or ceramic alloy or composite/aggregate, producing a new material or metallic/ceramic alloy. The new material has significantly increased strength, up to several thousands of times normal and perhaps substantially more, as well as significantly decreased weight. The new materials may be manufactured into a component where the nanostructure or nanostructure reinforcement is incorporated into the bulk and/or matrix material, or as a coating where the nanostructure or nanostructure reinforcement is incorporated into the coating or surface of a "normal" substrate material. The nanostructures are incorporated into the material structure either randomly or aligned, within grains, or along or across grain boundaries.

  1. Notable hydriding properties of a nanostructured composite material of the Mg{sub 2}Ni-H system synthesized by reactive mechanical grinding

    SciTech Connect

    Orimo, S.; Fujii, H.; Ikeda, K.

    1997-01-01

    The intermetallic compound Mg{sub 2}Ni was mechanically ground under a hydrogen atmosphere to synthesize a nanostructured composite material that is composed of nanocrystalline intra-grain and disordered inter-grain regions. Both the thermal and magnetic analyses confirmed that a volume fraction of the latter region increases twenty times as much as that in the initial compound, nearly 30%, by grinding for only 60 min. As a result of this structural modification, notable hydriding properties emerged; the dissolved hydrogen content reaches up to 1.6 wt% (Mg{sub 2}NiH{sub 1.8}) without changing the crystal structure (Mg{sub 2}Ni type) of the nanocrystalline intragrain region, and the cooperative dehydriding reaction between both the regions occurs even at 413 K. The hydriding properties are most likely reversible in the temperature ranges below 473 K, above which the disordered inter-grain region transforms into a crystalline phase.

  2. Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems

    NASA Technical Reports Server (NTRS)

    Gates, Thomas S.; Hinkley, Jeffrey A.

    2003-01-01

    The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

  3. Nanostructured PbO2-PANi composite materials for electrocatalytic oxidation of methanol in acidic sulfuric medium

    NASA Astrophysics Data System (ADS)

    Thanh Thuy Mai, Thi; Binh Phan, Thi; Tot Pham, Thi; Hieu Vu, Huu

    2014-06-01

    Hybrid materials based on PbO2 and PANi were prepared by cyclic voltammetry combined with chemical method. Firstly, PbO2 and PbO2-PANi were deposited on stainless steel by cyclic voltammetry (CV) at a scan rate of 100 mV s-1. Next, they were immersed in acidic aniline solution (0.1 M) to form new fresh PbO2-PANi composites. The properties of materials were characterized by x-ray diffraction, IR- spectroscopy, scanning electron microscopy and transmission electron microscopy. The electrocatalytic oxidation for methanol of all PbO2-PANi layers was investigated in acidic medium by potentiodynamic measure at a scan rate of 100 mV s-1 in the range of 1.4 V to 2.2 V versus Ag/AgCl/saturated KCl electrode. The obtained results indicated that the composites prepared by above combined method could significantly enhance the electrocatalysis for oxidation of methanol.

  4. Nanostructured multifunctional electromagnetic materials from the guest-host inorganic-organic hybrid ternary system of a polyaniline-clay-polyhydroxy iron composite: preparation and properties.

    PubMed

    Reena, Viswan L; Pavithran, Chorappan; Verma, Vivek; Sudha, Janardhanan D

    2010-03-01

    A nanostructured electromagnetic polyaniline-polyhydroxy iron-clay composite (PPIC) was prepared by oxidative radical emulsion polymerization of aniline in the presence of polyhydroxy iron cation (PIC) intercalated clays. Morphological observation through SEM, TEM, and AFM suggested the formation of self-assembled nanospheres of PIC with self-assembled PANI engulfed over PIC, and the presence of iron in PPIC was confirmed by the EDS analysis. XRD studies revealed that PPIC are comprised of exfoliated clay layers with PIC in the distorted spinel structure. Magnetic property measurements showed that saturation magnetization increased from 7.3 x 10(-3) to 2.5 emu/g upon varying the amount of PHIC content from 0 to 10%. Electrical conductivity measurements with the same composition were observed to be in the range of 3.0 x 10(-2) to 1.1 S/cm. Thermal stability studies using TGA in combination with DTG suggested that PPICs were thermally stable up to 350 degrees C. The interaction among clay layers, PIC, and PANI chains in PPIC were manifested from the studies made by FTIR and DSC analysis. The prospects for the direct application of this material are developing low-cost chemical sensors and also processable electromagnetic interference shielding materials for high technological applications. PMID:20136090

  5. Reproducibility of the Synthesis and Processing of Nanostructured Material Properties

    SciTech Connect

    Rawers, J.C.; Krabbe, R.A.

    1998-03-01

    The reproducibility or variance in the properties of nanostructured milled iron and iron alloy powders and nanostructured compacts was determined and characterized. To date, all too often the characterization of nanostructured materials has been limited to examination of one or two samples, from which it is impossible to determine the reproducibility of the reported values. In this study, multiple attritor millings were made and the variability of the macroscopic and nanostructure characteristics was determined (e.g., particle size, grain size, etc.). From a single milled powder composition, multiple hotpress compacts were made. Statistical analyses were made of the reproducibility of resulting consolidated macroscopic and nanostructured properties, such as density, hardness, grain size, and tensile/compression strength. Mechanical processing of iron powder and mechanical alloying of iron powder with aluminum, carbon, and nitrogen showed that attrition milling reliably reproduced 0.5-kg lots of nanostructured powder. Hotpressing the milled powder also produced reproducibility nanostructured compacts. There was little or no correlation found between the milled powder properties and the compacted powder properties. Several correlations that are generally valid for large grain materials were found not to hold for nanograin compacts (e.g., between density and hardness).

  6. Nanostructured Materials for Renewable Energy

    SciTech Connect

    2009-11-01

    This factsheet describes a research project whose overall objective is to advance the fundamental understanding of novel photoelectronic organic device structures integrated with inorganic nanostructures, while also expanding the general field of nanomaterials for renewable energy devices and systems.

  7. Nanostructured Diclofenac Sodium Releasing Material

    NASA Astrophysics Data System (ADS)

    Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppl, J.; Ashammakhi, N.

    2008-02-01

    Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(?-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

  8. Silk fibroin nanostructured materials for biomedical applications

    NASA Astrophysics Data System (ADS)

    Mitropoulos, Alexander N.

    Nanostructured biopolymers have proven to be promising to develop novel biomedical applications where forming structures at the nanoscale normally occurs by self-assembly. However, synthesizing these structures can also occur by inducing materials to transition into other forms by adding chemical cross-linkers, changing pH, or changing ionic composition. Understanding the generation of nanostructures in fluid environments, such as liquid organic solvents or supercritical fluids, has not been thoroughly examined, particularly those that are based on protein-based block-copolymers. Here, we examine the transformation of reconstituted silk fibroin, which has emerged as a promising biopolymer due to its biocompatibility, biodegradability, and ease of functionalization, into submicron spheres and gel networks which offer applications in tissue engineering and advanced sensors. Two types of gel networks, hydrogels and aerogels, have small pores and large surface areas that are defined by their structure. We design and analyze silk nanoparticle formation using a microfluidic device while offering an application for drug delivery. Additionally, we provide a model and characterize hydrogel formation from micelles to nanoparticles, while investigating cellular response to the hydrogel in an in vitro cell culture model. Lastly, we provide a second model of nanofiber formation during near-critical and supercritical drying and characterize the silk fibroin properties at different drying pressures which, when acting as a stabilizing matrix, shows to improve the activity of entrapped enzymes dried at different pressures. This work has created new nanostructured silk fibroin forms to benefit biomedical applications that could be applied to other fibrous proteins.

  9. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  10. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

  11. Chemistry and Processing of Nanostructured Materials

    SciTech Connect

    Fox, G A; Baumann, T F; Hope-Weeks, L J; Vance, A L

    2002-01-18

    Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation of these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.

  12. Three-Dimensional Composite Nanostructures for Lean NOx Emission Control

    SciTech Connect

    Gao, Pu-Xian

    2013-07-31

    This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

  13. Dye-sensitized composite semiconductor nanostructures

    NASA Astrophysics Data System (ADS)

    Tennakone, K.; Bandaranayake, P. K. M.; Jayaweera, P. V. V.; Konno, A.; Kumara, G. R. R. A.

    2002-04-01

    Understanding of the charge transport and recombination mechanisms of dye-sensitized solar cells based on semiconductor nanostructures is essential for the improvement of their performance. A great deal of information on these systems have been obtained from studies on a single material (mostly TiO 2 and to a lesser extent ZnO and SnO 2). We have conducted extensive measurements on composite dye-sensitized nanosturctures and found that the composite systems possess unusual properties. Dye-sensitized photoelectrochemical cells made from nanocrystalline films of some materials (e.g., SnO 2) yield comparatively small open-circuit voltages and energy and quantum conversion efficiencies, despite excellent dye-semiconductor interaction. However, on deposition of ultra-thin shells of insulators or high band gap semiconductors on the crystallites, a dramatic increase in the above parameters is observed. Outer shells were found to have insignificant or in most cases a negative effect on TiO 2 films. We explain the above findings on the basis of vast differences in the leakage rates of trapped electrons in different materials which is sensitive to the effective electron mass. Electrons injected to the conduction band in dye-sensitization enter into shallow traps from which they get thermally reemitted to the conduction band. The building up of the electron quasi-fermi level and transport depends on this process. The spread of the hydrogenic wave function of a trapped electron increases inverse exponentially with the effective mass so that the electron leakage and their recombination with acceptors outside become severe when the crystallite size is comparable to the Bohr radius of the trapped electron. Such recombinations are effectively suppressed by deposition of thin films on the crystallites. Excited dye molecules anchored to the outer shell injects electrons to the conduction band via tunneling.

  14. Synthesis and processing of nanostructured materials

    SciTech Connect

    Siegel, R.W.

    1992-12-01

    Significant and growing interest is being exhibited in the novel and enhanced properties of nanostructured materials. These materials, with their constituent phase or grain structures modulated on a length scale less than 100 nm, are artificially synthesized by a wide variety of physical, chemical, and mechanical methods. In this NATO Advanced Study Institute, where mechanical behavior is emphasized, nanostructured materials with modulation dimensionalities from one (multilayers) to three (nanophase materials) are mainly considered. No attempt is made in this review to cover in detail all of the diverse methods available for the synthesis of nanostructured materials. Rather, the basic principles involved in their synthesis are discussed in terms of the special properties sought using examples of particular synthesis and processing methodologies. Some examples of the property changes that can result from one of these methods, cluster assembly of nanophase materials, are presented.

  15. Mechanisms of direct laser nanostructuring of materials

    NASA Astrophysics Data System (ADS)

    Khomich, V. Yu; Shmakov, V. A.

    2015-05-01

    In the given paper, recent results on the development of physical mechanisms and theoretical models of direct laser surface nanostructuring are reviewed. Attention is paid to nanosecond lasers, as they are cheaper and simpler in use than pico- and femtosecond lasers, which is important for the development of further applications. The formation of so-called 'nonresonant' structures, whose period is not directly related to the laser radiation wavelength, is considered. Nanostructuring mechanisms for a number of surface modification processes with and without melting are studied. Corresponding experimental illustrations of nanostructures are given for various materials - polymers, metals, ceramics, and diamond films.

  16. Shockwave Consolidation of Nanostructured Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-01-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonating. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nano-structured bismuth telluride alloy powders by using the shockwave technique. Using these consolidated materials, several types of thermoelectric power generating devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  17. Shockwave consolidation of nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

    2014-09-01

    Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nanostructured bismuth telluride alloy powders by using shockwave technique. Using these consolidated materials, several types of thermoelectric power generator devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

  18. Composite Materials

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The deformation and failure behavior of graphite/epoxy tubes under biaxial (axial tension and torsion) loading is being investigated. The aim of this research is to increase basic understanding of and provide design information for the biaxial response of graphite/epoxy composites.

  19. Embedded Binary Eutectic Alloy Nanostructures as Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Chrzan, D. C.; Shin, S. J.; Guzman, J.; Yuan, C. W.; Liao, C. Y.; Boswell-Koller, C. N.; Stone, P. R.; Dubon, O. D.; Minor, A. M.; Watanabe, M.; Beeman, J. W.; Yu, K. M.; Ager, J. W., III; Haller, E. E.

    2010-03-01

    Phase change materials are essential components of both optical data storage and emerging static random access memory technologies. We suggest a new approach to development of phase change memory materials: embedded binary eutectic-alloy nanostructures. The approach exploits the unique properties binary eutectic-alloys that emerge when they are embedded within nanoscale voids. The equilibrium, as-grown, morphology of GeSn nanostructures within SiO2 is a phase separated, bi-crystalline, bi-lobed state. The rapid cooling following pulsed laser melting stabilizes an amorphous, homogeneously mixed state. Subsequent annealing recrystallizes the bi-lobed state. Further, the composition of the alloy can be used to tune the recrystallization temperature over the range of temperatures between 150C and 500C. Thus these nanostructures display the requisite crystalline-amorphous-crystalline transition, and enable tuning of the relevant transformation temperatures.

  20. Cucurbituril-based supramolecular engineered nanostructured materials.

    PubMed

    Grbz, Sinem; Idris, Muazzam; Tuncel, Dns

    2015-01-14

    Cucurbituril (CB) is a unique macrocycle with a rigid symmetrical structure, which is composed of two identical hydrophilic portals decorated with partially negatively charged carbonyl groups and a hydrophobic cavity. A number of different nanostructured materials, including nanoparticles, nanocomposites, vesicles and rods, have been prepared by taking advantage of the varying cavity size of the CB homologues, their ability to accommodate more than one guest in their cavities, their rigid symmetrical structures, as well as the water solubility of CB7. These nanostructures could find a wide range of potential applications in the areas of self-healing materials, nanomedicine, plasmonics, and nanocatalysis. Here, we review the recent progresses in the synthesis, properties and application of CB-based supramolecular engineered nanostructures, which are either constructed through CB-assisted self-assembly or from post-functionalized-CB homologues. PMID:25408267

  1. Nanostructure material for supercapacitor application

    SciTech Connect

    Huang, Y.; Chu, C.T.; Wei, Q.; Zheng, H.

    2000-07-01

    Transition metal nitrides and carbonitride materials were fabricated via sol-gel technology. The transition metal amides were synthesized by two methods: chemical route and electrolysis. The transition metal amides were then further polymerized, sintering to high temperature in an inert or reduced atmosphere. Transition metal nitrides and carbonitrides powders with surface area up to 160 m{sup 2}/g were obtained. The resultant electrode material showed high specific capacitance as crystalline ruthenium oxide.

  2. Metal-polymer composites comprising nanostructures and applications thereof

    DOEpatents

    Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

    2012-04-03

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  3. Metal-polymer composites comprising nanostructures and applications thereof

    DOEpatents

    Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

    2011-08-02

    Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

  4. Damping mechanisms in nanostructured materials

    NASA Astrophysics Data System (ADS)

    Lavernia, Enrique J.

    1994-07-01

    The objectives of the present ONR program may be described as follows: (1) Determination of the mechanisms controlling the synthesis of nanocrystalline Fe78B13Si9 from both elemental Fe, B, Si powders and Metglass 2605TCA (Fe78B13Si9) during the process of high energy ball milling; (2) Compaction of the milled powders by hot pressing and HIP; (3) Determination of mechanisms governing the thermal stability of the milled powders using differential scanning calorimetry; and (4) The study of the effects of high volume fraction of grain boundaries or interfaces on the damping behavior of the nanocrystalline bulk material.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R. G.; Wiberley, S. E.

    1985-01-01

    Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

  6. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08

    Americas dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Countrys electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  7. Nanostructured carbonaceous materials from molecular precursors.

    PubMed

    Hoheisel, Tobias N; Schrettl, Stephen; Szilluweit, Ruth; Frauenrath, Holger

    2010-09-01

    Nanostructured carbonaceous materials, that is, carbon materials with a feature size on the nanometer scale and, in some cases, functionalized surfaces, already play an important role in a wide range of emerging fields, such as the search for novel energy sources, efficient energy storage, sustainable chemical technology, as well as organic electronic materials. Furthermore, such materials might offer solutions to the challenges associated with the on-going depletion of nonrenewable energy resources or climate change, and they may promote further breakthroughs in the field of microelectronics. However, novel methods for their preparation will be required that afford functional carbon materials with controlled surface chemistry, mesoscopic morphology, and microstructure. A highly promising approach for the synthesis of such materials is based on the use of well-defined molecular precursors. PMID:20661971

  8. Solution Phase Routes to Functional Nanostructured Materials for Energy Applications

    NASA Astrophysics Data System (ADS)

    Rauda, Iris Ester

    Solution-phase processing presents an attractive avenue for building unique architectures from a wide variety of materials that exhibit functional properties, making them ideal candidates for various energy applications. The most basic building block or precursor in solution-based syntheses is a soluble species that can either self-assemble, or coassemble with a structure directing agent or template, to create a unique architecture. Soluble inorganic-based building blocks ranging from atomic-scale charged molecular complexes to nanometer-scale preformed nanocrystals are utilized to construct functional inorganic materials. These nanostructured materials are excellent candidates for integrating into electronic and energy-storage devices, including photovoltaics and pseudocapacitors. The goal of this work is to create inorganic nanostructured materials from solution-based methods. This work is divided into two parts: the first involves the synthesis of inorganic semiconductor-based nanostructured materials; the second focuses on developing porous metal oxide-based pseudocapacitors. The first part describes three distinct synthetic approaches to nanostructured semiconductors: the synthesis of complex metal chalcogenide semiconductors produced from highly soluble hydrazinium-based precursors using a porous template; low-temperature melt processing of an organic-inorganic hybrid semiconductor into porous templates to produce vertically-aligned arrays with a concentric multilayered structure; and solution-phase assembly of semiconductor nanocrystals of CdSe into nanoporous architectures via polymer templating. These nanostructured semiconductors are electrically interconnected through intimate contact between the molecular or nanoscale precursors achieved during solution-phase synthesis, making them suitable for a range of applications. In the second part, porous metal-oxide based materials are constructed by the assembly of nanosized building blocks into 3D porous architectures via polymer templating. Two main approaches are described: first, a general route for templating both redox-active oxides (Mn3O4, MnFe2O4) and conducting indium tin oxide (ITO) nanocrystals is described; second, nanocrystal-based porous architectures of a ITO are coated with redox-active V2O5 via atomic layer deposition to produce nanoporous composites. The porous architectures exhibit high surface areas, providing ample redox active sites, and an interconnected open porosity, facilitating solvent/ion diffusion to those sites. In the ITO-V2O 5 composites, the electron-transfer reactions are facilitated by the increased conductivity leading to high pseudocapacitive contributions to charge storage that are accompanied by fast charging/discharging rates.

  9. Arc Plasma Synthesis of Nanostructured Materials: Techniques and Innovations

    SciTech Connect

    Das, A. K.; Bhoraskar, S. V.; Kakati, M.; Karmakar, Soumen

    2008-10-23

    Arc plasma aided synthesis of nanostructured materials has the potential of producing complex nano phase structures in bulk quantities. Successful implementation of this potential capability to industrial scale nano generation needs establishment of a plasma parameter control regime in terms of plasma gas, flow pattern, pressure, local temperature and the plasma fields to obtain the desired nano phase structures. However, there is a need to design innovative in situ experiments for generation of an extensive database and subsequently to correlate plasma parameters to the size, shape and phase of the generated nanostructures. The present paper reviews the various approaches utilized in the field of arc plasma nanosynthesis in general and in the authors' laboratories in particular. Simple plasma diagnostics and monitoring schemes have been used in conjunction with nano materials characterization tools to explore the possibility of controlling the size, shape, yield and phase composition of the arc generated nanostructures through plasma control. Case studies related to synthesis of AlN, Al2O3, TiO2, ZrO2, ZnO), magnetic (e.g. {gamma}-Fe2O3, Fe3O4) and single elemental materials (e.g. carbon nanotubes) are presented.

  10. Preparation and reactivity of gasless nanostructured energetic materials.

    PubMed

    Manukyan, Khachatur V; Shuck, Christopher E; Rogachev, Alexander S; Mukasyan, Alexander S

    2015-01-01

    High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energeticcomposites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065

  11. Controlled thermal sintering of a metal-metal oxide-carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries.

    PubMed

    Kim, Hwan Jin; Zhang, Kan; Choi, Jae-Man; Song, Min Sang; Park, Jong Hyeok

    2014-03-11

    We report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode. PMID:24463739

  12. Composite material dosimeters

    DOEpatents

    Miller, Steven D. (Richland, WA)

    1996-01-01

    The present invention is a composite material containing a mix of dosimeter material powder and a polymer powder wherein the polymer is transparent to the photon emission of the dosimeter material powder. By mixing dosimeter material powder with polymer powder, less dosimeter material is needed compared to a monolithic dosimeter material chip. Interrogation is done with excitation by visible light.

  13. Nanostructured Materials Development for Space Power

    NASA Technical Reports Server (NTRS)

    Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.

    2003-01-01

    There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.

  14. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Transverse properties of fiber constituents in composites, fatigue in composite materials, matrix dominated properties of high performance composites, numerical investigation of moisture effects, numerical investigation of the micromechanics of composite fracture, advanced analysis methods, compact lug design, and the RP-1 and RP-2 sailplanes projects are discussed.

  15. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  16. Benzoxazine resin/carbon nanotube nanostructured composite's degradation kinetic.

    PubMed

    Untem, Flvia O; Botelho, Edson C; Rezende, Mirabel C; Costa, Michelle Leali

    2014-07-01

    In the last decades a new class of thermoset phenolic resin is emerging as a substitute of the traditional epoxy and phenolic resins in the aircraft industry. This new class is called polybenzoxazines and its associates the epoxy resin's mechanical properties and phenolic resin's thermal and flame retardant properties, resulting in a resin with superior properties when analyzed with the others singly. The introduction of carbon nanotubes in low concentration into polymeric matrices can produce nanostructured materials with good properties. Thus, in this study, nanostructured composites of benzoxazine resin were processed with different concentration of carbon nanotubes (0.1%, 0.5% and 1.0% w/w). In order to evaluate the thermostability of the benzoxazine resin and its nanostructured composites, it was performed a degradation kinetic study using the thermogravimetric technique. For that, the analysis have been done with the temperature ranging from 25 degrees C to 1000 degrees C at nitrogen atmosphere (100 mL x min(-1)) and in different heating rates (2, 4, 6, 8, 10 and 20 degrees C x min(-1)), in order to obtain the kinetic parameters (activation energy, E(a), and pre-exponential factor, A), based on Ozawa-Wall-Flynn model. The results showed excellent agreement between the thermogravimetric curves obtained and the Ozawa-Wall-Flynn method. The degradation kinetic study showed that the introduction of carbon nanotubes in the benzoxazine matrix does not change the thermostability of the resin, so that it does not have a significant influence in the shelf life of the material. PMID:24757993

  17. Tough Composite Materials

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (Compiler); Johnson, N. J. (Compiler); Teichman, L. A. (Compiler)

    1984-01-01

    Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

  18. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

  19. Nano-composite materials

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Pitts, J. Roland

    2010-05-25

    Nano-composite materials are disclosed. An exemplary method of producing a nano-composite material may comprise co-sputtering a transition metal and a refractory metal in a reactive atmosphere. The method may also comprise co-depositing a transition metal and a refractory metal composite structure on a substrate. The method may further comprise thermally annealing the deposited transition metal and refractory metal composite structure in a reactive atmosphere.

  20. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries.

    PubMed

    Zhu, Xianjun; Zhu, Yanwu; Murali, Shanthi; Stoller, Meryl D; Ruoff, Rodney S

    2011-04-26

    Reduced graphene oxide/Fe(2)O(3) composite was prepared using a facile two-step synthesis by homogeneous precipitation and subsequent reduction of the G-O with hydrazine under microwave irradiation to yield reduced graphene oxide (RG-O) platelets decorated with Fe(2)O(3) nanoparticles. As an anode material for Li-ion batteries, the RG-O/Fe(2)O(3) composite exhibited discharge and charge capacities of 1693 and 1227 mAh/g, respectively, normalized to the mass of Fe(2)O(3) in the composite (and ?1355 and 982 mAh/g, respectively, based on the total mass of the composite), with good cycling performance and rate capability. Characterization shows that the Fe(2)O(3) nanoparticles are uniformly distributed on the surface of the RG-O platelets in the composite. The total specific capacity of RG-O/Fe(2)O(3) is higher than the sum of pure RG-O and nanoparticle Fe(2)O(3), indicating a positive synergistic effect of RG-O and Fe(2)O(3) on the improvement of electrochemical performance. The synthesis approach presents a promising route for a large-scale production of RG-O platelet/metal oxide nanoparticle composites as electrode materials for Li-ion batteries. PMID:21443243

  1. Nanostructured materials for applications in heterogeneous catalysis.

    PubMed

    Zaera, Francisco

    2013-04-01

    In this review, a brief survey is offered on the main nanotechnology synthetic approaches available to heterogeneous catalysis, and a few examples are provided of their usefulness for such applications. We start by discussing the use of colloidal, reverse micelle, and dendrimer chemistry in the production of active metal and metal oxide nanoparticles with well-defined sizes, shapes, and compositions, as a way to control the surface atomic ensembles available for selective catalysis. Next we introduce the use of sol-gel and atomic layer deposition chemistry for the production and modification of high-surface-area supports and active phases. Reference is then made to the more complex active sites that can be created or carved on such supports by using organic structure-directing agents. We follow with an examination of the ability to achieve multiple functionality in catalysis via the design of dumbbells, core@shell, and other complex nanostructures. Finally, we consider the mixed molecular-nanostructure approach that can be used to develop more demanding catalytic sites, by derivatizing the surface of solids or tethering or immobilizing homogeneous catalysts or other chemical functionalities. We conclude with a personal and critical perspective on the importance of fully exploiting the synergies between nanotechnology and surface science to optimize the search for new catalysts and catalytic processes. PMID:23072831

  2. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1979-01-01

    A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

  3. Fabrication and characterization of carbon and boron carbide nanostructured materials

    NASA Astrophysics Data System (ADS)

    Reynaud, Sara

    Carbon is present in nature in a variety of allotropes and chemical compounds. Due to reduced dimensionality, nanostructured carbon materials, i.e. single walled carbon nanotubes (SWNTs), are characterized by unique physical and chemical properties. There is a potential for SWNTs use as biological probes and assists for tunable tissue growth in biomedical applications. However, the presumed cytotoxicity of SWNTs requires investigation of the risks of their incorporation into living systems. Boron is not found in nature in elementary form. Boron based materials are chemically complex and exist in various polymorphic forms, i.e. boron carbide (BC). Because BC is a lightweight material with exceptional mechanical and elastic properties, it is the ideal candidate for armor and ballistic applications. However, practical use of BC as armor material is limited because of its anomalous glass-like behaviour at high velocity impacts, which has been linked to stress-induced structural instability in one of BC polymorphs, B12(CCC). Theoretical calculations suggest that formation of B12(CCC) in BC could be suppressed by silicon doping. In the first part of this thesis, biocompatibility of SWNTs is investigated. It is shown that under normal cell implantation conditions, the electrical conductivity of the SWNTs decreases due to an increase in structural disorder. This research suggests that SWNTs can be functionalized by protein and biological cells reducing the risk of cytotoxicity. In the second part of this thesis, boron carbide nanostructured materials are synthesized and investigated. Radio frequency sputtering deposition technique is employed for fabrication of BC (Si free) and BC:Si thin films. Variation of plasma conditions and temperature are found to affect chemical composition, adhesion to the substrate and morphology of the films. It is shown that BC films are predominantly amorphous and a small addition of Si largely improves their mechanical properties. In addition, nanostructured BC compounds are fabricated by arc discharge technique using graphite or boron carbide electrodes submerged in liquid nitrogen, de-ionised water, or argon gas. Microscopic and spectroscopic investigation of the synthesized material confirms formation of various BC and carbon nanostructures. Specifically, arc discharge initiated in inert environment by applying low current leads to the formation of nanostructured BC without contaminants.

  4. Nanostructure and composition of bivalve shells

    NASA Astrophysics Data System (ADS)

    Jacob, D. E.; Soldati, A. L.; Wirth, R.; Huth, J.; Wehrmeister, U.; Hofmeister, W.

    2009-04-01

    Shells and pearls of unionid mussels (Hyriopsis cumingii, Margaritifera margaritifera, Diplodon chilensis patagonicus) were studied by high resolution microbeam methods and -computer tomography to gather insight into the nanostructure and chemical composition of nacre and prism layers. Natural and cultured pearls are formed by many mollusc species and their generation is very similar to that of shells resulting in identical prismatic and nacreous structures of shells and pearls. Basic difference is, however that pearl culturing methods induce biomineralisation of CaCO3 around a crystalline bead which results in a reverse structural organisation compared to bivalve shells. Bivalve shell growth starts from a thick organic matrix (the periostracum; Eyster and Morse, 1984) which is followed towards the inside by two variously thick layers consisting of prismatic CaCO3 aggregations and layers of CaCO3 platelets, respectively. Platelets and prisms are individually covered by a chitinous organic matrix which lends structural support and is thought to exert control over the mineralization process. The minerals within the organic sheaths are highly-aligned poly-twinned crystals with a slightly distorted lattice due to inclusions of organic molecules (Pokroy et al., 2006). Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM) and Raman Microscopy analyses of the shells and pearls show that both structures, prisms and platelets, consist of nanometre-sized organic membrane-coated granules of CaCO3 (Jacob et al., 2008). In the vicinity of the periostracum, the granules consist of amorphous calcium carbonate (ACC), but the crystallinity increases with increasing distance from the periostracum. The transition from disordered (amorphous) to crystalline CaCO3 is gradual within a few micrometers and coincides with a decrease in porosity. Concentrations of sulphur and phosphorus are higher in ACC than in aragonite indicating a higher organic content of ACC. Bivalve larval shells were shown to consist entirely of ACC before this phase crystallizes to form aragonite (Weiss, et al., 2002). The occurrence of ACC in pearls and adult shells close to the periostracum reported here and by Jacob et al. (2008) is taken as evidence that bivalve shell formation starts from ACC secreted in organic vesicles. Lately, a number of studies reported similar granular nanostructures for many different mollusc species which implies that shell growth by secretion of ACC vesicles could be a widespread phenomenon in biology. Vaterite could be identified in freshwater cultured pearls as well as in shells of Hyriopsis cumingii and Diplodon chilensis patagonicus. Aragonite and vaterite were found to coexist and are crosscut by growth lines, implying simultaneous formation. In pearls, it was found that vaterite, like aragonite, forms from ACC (Jacob et al., 2008) and is therefore not the precursor phase of aragonite in this system. Eyster L.S. and Morse M. P. (1984). Early shell formation during molluscan embryogenesis, with new studies on the Surf clam, Spisula solidissima. Am. Zoologist 24: 871-882. Jacob, D.E., A.L. Soldati, R. Wirth, J. Huth, U. Wehrmeister und W. Hofmeister (2008). Nanostructure, chemical composition and mechanisms of bivalve shell growth. Geochim. Cosmochim. Acta, 72, 22, 5401-5415. Pokroy B., Fitch A. N., Lee P. L., Quintana J. P., Caspi E. N., and Zolotoyabko E. (2006) Anisotropic lattice distortions in the mollusk-made aragonite: A widespread phenomenon. J. Structural Biology 153, 145-150. Weiss I. M., Tuross N., Addadi L., and Weiner S. (2002) Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zoology 293, 478-491.

  5. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1984-01-01

    Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.

  6. Supramolecular materials: Self-organized nanostructures

    SciTech Connect

    Stupp, S.I.; LeBonheur, V.; Walker, K.

    1997-04-18

    Miniaturized triblock copolymers have been found to self-assemble into nanostructures that are highly regular in size and shape. Mushroom-shaped supramolecular structures of about 200 kilodaltons form by crystallization of the chemically identical blocks and self-organize into films containing 100 or more layers stacked in a polar arrangement. The polar supramolecular material exhibits spontaneous second-harmonic generation from infrared to green photons and has an adhesive tape-like character with nonadhesive-hydrophobic and hydrophilic-sticky opposite surfaces. The films also have reasonable shear strength and adhere tenaciously to glass surfaces on one side only. The regular and finite size of the supramolecular units is believed to be mediated by repulsive forces among some of the segments in the triblock molecules. A large diversity of multifunctional materials could be formed from regular supramolecular units weighing hundreds of kilodaltons. 21 refs., 10 figs.

  7. Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS

    SciTech Connect

    Charles M. Falco

    2012-09-13

    This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

  8. Characterization of nanostructured materials using SEM and HREM techniques.

    PubMed

    Perez, R; Gomez, J

    1998-01-01

    A microstructural characterization based on analytical scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HREM) was carried out on nanostructured M50-type steel and also on nanometer-sized gold particles. Both nanostructured materials were prepared with different chemical methods recently reported in the literature. The obtained nanostructured steel powders were subsequently consolidated into bulk samples. The SEM studies of the M50 compound probes show the presence of pores of different sizes. The composition of the specimens indicates small differences with the M50-type steel alloy, with strong variations of the vanadium amount in the cavities of the compound. The HREM images show the presence of small precipitates in the range of a few nanometers in size. The structural characteristics of the grain boundaries between the nanometric crystallites were also explored. The geometrical relationships between adjacent alpha-Fe grains were obtained for some particular boundary arrangements. The nanometric gold particles show diameters which vary from 4 to 11 nm. Some of these particles display twin boundary arrangements. The nature of these twin arrangements was also explored. Theoretical simulations based on the multislice theory of the electron diffraction dynamical theory were carried out mainly to explore the nature of the twin boundaries obtained in the gold particles. Comparisons between the simulated images and the experimental results are presented. PMID:9443153

  9. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Wiberley, S. E.

    1978-01-01

    The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

  10. Nanostructured photovoltaic materials using block polymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah Elizabeth

    Despite its potential as an abundant, sustainable alternative to non-renewable energy sources, solar energy currently is underutilized. Photovoltaics, which convert energy from sunlight into electricity, commonly are made from inorganic semiconductor materials that require expensive manufacturing and processing techniques. Alternatively, organic materials can be used to produce flexible and lightweight organic photovoltaic (OPV) devices, which can be prepared using solution-based processing techniques. However, OPV devices are limited by low efficiencies and short lifetimes compared to their inorganic counterparts. In OPV systems, charge carriers are generated in the active layer via the separation of excitons (electron-hole pairs) at interfaces between donor and acceptor materials. Because excitons have a limited diffusion length (˜10 nm), they may recombine before reaching a donor-acceptor interface if domain sizes are large. This exciton recombination can limit device efficiency; thus, the design parameters for improved active layer morphologies include large interfacial areas, small size scales, and continuous conducting pathways. Currently, most OPV devices are prepared by blending donor and acceptor materials in bulk heterojunction (BHJ) devices, often resulting in non-ideal, process-dependent morphologies. Alternatively, the self-assembly of block polymers (BP)s offers a reproducible means to generate nanostructured active layers. The work presented in this dissertation examines the synthetic approaches to preparing BPs containing different electroactive materials: non-conjugated, amorphous poly(vinyl-m-triphenylamine) [PVmTPA] and conjugated poly(3-alkythiophene) [P3AT] p-type materials as well as fullerene-based n-type materials. The synthesis and self-assembly of a model poly(methyl methacrylate)- b-PVmTPA system is presented. This work was extended to synthesize PVmTPA BPs with complementary poly(methyl methacrylate- co-hydroxyethyl methacrylate) [P(MMA-co-HEMA)] blocks onto which fullerenes were grafted using post-polymerization coupling reactions. P3AT BP synthetic techniques also were explored but largely were limited by P3AT purity and end-functionalization. Nevertheless, reversible addition-fragmentation chain-transfer (RAFT) polymerization offered a viable method to incorporate all three of the examined electroactive materials into BPs. The approaches presented in this dissertation provide the tools to design, synthesize, and characterize new BPs for OPVs that can reproducibly self-assemble into well-defined nanostructures.

  11. Metallic glass nanostructures of tunable shape and composition

    PubMed Central

    Liu, Yanhui; Liu, Jingbei; Sohn, Sungwoo; Li, Yanglin; Cha, Judy J.; Schroers, Jan

    2015-01-01

    Metals of hybrid nano-/microstructures are of broad technological and fundamental interests. Manipulation of shape and composition on the nanoscale, however, is challenging, especially for multicomponent alloys such as metallic glasses. Although top–down approaches have demonstrated nanomoulding, they are limited to very few alloy systems. Here we report a facile method to synthesize metallic glass nanoarchitectures that can be applied to a broad range of glass-forming alloys. This strategy, using multitarget carousel oblique angle deposition, offers the opportunity to achieve control over size, shape and composition of complex alloys at the nanoscale. As a consequence, nanostructures of programmable three-dimensional shapes and tunable compositions are realized on wafer scale for metallic glasses including the marginal glass formers. Realizing nanostructures in a wide compositional range allows chemistry optimization for technological usage of metallic glass nanostructures, and also enables the fundamental study on size, composition and fabrication dependences of metallic glass properties. PMID:25901951

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, R.; Wiberley, S. E.

    1986-01-01

    Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

  13. Electrically conductive composite material

    DOEpatents

    Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

    1989-01-01

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

  14. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1988-06-20

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  15. Composite Structural Materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1984-01-01

    The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

  16. Electrically conductive composite material

    DOEpatents

    Clough, R.L.; Sylwester, A.P.

    1989-05-23

    An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

  17. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2002-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  18. Composite Material Switches

    NASA Technical Reports Server (NTRS)

    Javadi, Hamid (Inventor)

    2001-01-01

    A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

  19. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    The promise of filamentary composite materials, whose development may be considered as entering its second generation, continues to generate intense interest and applications activity. Fiber reinforced composite materials offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been achieved since the initial developments in the mid 1960's. Rather limited applications to primary aircraft structure have been made, however, mainly in a material-substitution mode on military aircraft, except for a few experiments currently underway on large passenger airplanes in commercial operation. To fulfill the promise of composite materials completely requires a strong technology base. NASA and AFOSR recognize the present state of the art to be such that to fully exploit composites in sophisticated aerospace structures, the technology base must be improved. This, in turn, calls for expanding fundamental knowledge and the means by which it can be successfully applied in design and manufacture.

  20. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1982-01-01

    Research in the basic composition, characteristics, and processng science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to problems. Detailed descriptions of the progress achieved in the various component parts of his program are presented.

  1. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1987-01-01

    The development and application of composite materials to aerospace vehicle structures which began in the mid 1960's has now progressed to the point where what can be considered entire airframes are being designed and built using composites. Issues related to the fabrication of non-resin matrix composites and the micro, mezzo and macromechanics of thermoplastic and metal matrix composites are emphasized. Several research efforts are presented. They are entitled: (1) The effects of chemical vapor deposition and thermal treatments on the properties of pitch-based carbon fiber; (2) Inelastic deformation of metal matrix laminates; (3) Analysis of fatigue damage in fibrous MMC laminates; (4) Delamination fracture toughness in thermoplastic matrix composites; (5) Numerical investigation of the microhardness of composite fracture; and (6) General beam theory for composite structures.

  2. Design of nanostructured materials from block copolymer self-assembly

    NASA Astrophysics Data System (ADS)

    Leolukman, Melvina

    We present two classes of nanostructured materials by combining the self assembly of block copolymer (BCP) with suitable small molecule chemistry, which are applicable to organic electro-optics (EO) and as etch-resistant masks for nanofabrication. The underlying principles of designing the specific interactions between BCP host and guest molecules, driving the self-assembly in bulk and thin film, and dictating domain orientation are concepts common to both of these areas. Nanostructured EO materials were created by selectively encapsulating EO chromophores by hydrogen-bonding to the pyridine groups of a linear-diblock copolymer (linear-diBCP) namely polystyrene-block-poly(4-vinyl pyridine) [PS-b-P4VP], or a linear-dendritic-BCP. With the linear-diBCP host, we discovered that poled order in confined domains depends on domain shape, chromophore concentration within the domain, and thermal history. The linear-dendritic-BCP is an excellent host as it efficiently disperses the chromophores into small domains (5-10nm), and keeps the chromophores apart within the domains due to the dendritic architecture. These morphological effects translated into excellent film processability, increased chromophore loading, and two-fold enhancements in the EO coefficient (r 33) when compared to a corresponding homopolymer system. A new class of organic-inorganic nanostructured materials based on polyhedral oligomeric silsesquioxane (POSS) was synthesized as a passive template for pattern transfer. We developed a living anionic polymerization route for methacrylate-functionalized POSS and synthesized two kinds of BCPs, namely PS-b-PMAPOSS and PMMA-b-PMAPOSS. The anionic route allows high degree of polymerization, narrow polydispersity, and tunable POSS block length. These lead to well defined spherical, cylindrical, and lamellar morphologies, as well as formation of hierarchical structures upon thermal annealing. Both POSS-containing BCPs were assembled in thin film and converted to hard masks by single step selective oxygen plasma etching. The control over domain orientation, the high etch-selectivity between the blocks, and the ability to access small domain sizes (< 10nm) make POSS-containing BCPs a unique material platform to create etch-resistant masks. We developed a synthetically straightforward approach to designing organic-inorganic nanostructures by exploiting non-covalent interactions between PS-b-P4VP BCP host and epoxy-functionalized POSS. These composites resulted in dot arrays, which were converted to silica templates for potential applications in biosensing and heterogenous catalysis.

  3. Growth of Carbon Nanostructure Materials Using Laser Vaporization

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehozeky, S.

    2000-01-01

    Since the potential applications of carbon nanotubes (CNT) was discovered in many fields, such as non-structure electronics, lightweight composite structure, and drug delivery, CNT has been grown by many techniques in which high yield single wall CNT has been produced by physical processes including arc vaporization and laser vaporization. In this presentation, the growth mechanism of the carbon nanostructure materials by laser vaporization is to be discussed. Carbon nanoparticles and nanotubes have been synthesized using pulsed laser vaporization on Si substrates in various temperatures and pressures. Two kinds of targets were used to grow the nanostructure materials. One was a pure graphite target and the other one contained Ni and Co catalysts. The growth temperatures were 600-1000 C and the pressures varied from several torr to 500 torr. Carbon nanoparticles were observed when a graphite target was used, although catalysts were deposited on substrates before growing carbon films. When the target contains catalysts, carbon nanotubes (CNT) are obtained. The CNT were characterized by scanning electron microscopy, x-ray diffraction, optical absorption and transmission, and Raman spectroscopy. The temperature-and pressure-dependencies of carbon nanotubes' growth rate and size were investigated.

  4. Nanostructured materials for rechargeable batteries: synthesis, fundamental understanding and limitations

    SciTech Connect

    Zhan, Hui; Xiao, Jie; Nie, Zimin; Li, Xiaolin; Wang, Chong M.; Zhang, Jiguang; Liu, Jun

    2013-05-30

    Nanostructured materials have emerged as very attrcative electrode materials for energy storage due to their small sizes and structure/morphology related properties. The purpose of this article to discuss the opportunities and challenges of nanostructured materials for advanced energy storage devices. Nanostructured silicon (Si) anodes together with other cathode and anode materials are used as examples to illustrate the different methods available for synthesis and the range of materials that can be produced to improve the storage capacity and stability. Recent progresses in using well-defined nanostructures to gain new fundamental understanding of the complex electrochemical reactions and charge-discharge processes are also discussed. Finally, the paper addresses some key problems that are yet to be solved and the need to optimize the microstructures and control the high level architectures beyond nanoscale.

  5. High volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

    2009-10-13

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  6. Nano-structured polymer composites and process for preparing same

    SciTech Connect

    Hillmyer, Marc; Chen, Liang

    2013-04-16

    A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

  7. Modified Composite Materials Workshop

    NASA Technical Reports Server (NTRS)

    Dicus, D. L. (Compiler)

    1978-01-01

    The reduction or elimination of the hazard which results from accidental release of graphite fibers from composite materials was studied at a workshop. At the workshop, groups were organized to consider six topics: epoxy modifications, epoxy replacement, fiber modifications, fiber coatings and new fibers, hybrids, and fiber release testing. Because of the time required to develop a new material and acquire a design data base, most of the workers concluded that a modified composite material would require about four to five years of development and testing before it could be applied to aircraft structures. The hybrid working group considered that some hybrid composites which reduce the risk of accidental fiber release might be put into service over the near term. The fiber release testing working group recommended a coordinated effort to define a suitable laboratory test.

  8. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1983-01-01

    Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

  9. Energy transport and conversion in nanostructured materials

    NASA Astrophysics Data System (ADS)

    Wang, Robert Yue-Sheng

    The phononic and electronic density of states in quantum structures leads to transport characteristics that are distinctly different than those of bulk materials. For instance, much like a blackbody radiation spectrum, the phononic spectrum of bulk materials is broadband and continuous. In contrast, the phononic spectrum of a self-assembled monolayer (SAM) is a discrete spectrum of narrow bands. Experiments demonstrate that thermal transport through solid-SAM-solid junction is markedly different than thermal transport in a solid-solid junction. In particular, the thermal conductance of a solid-SAM-solid junction (10 1 MW/m2K) is much lower than the typical solid-solid junction (102 MW/m2K). In effect the discrete spectrum of the SAM creates a phonon filtering that reduces the overall heat transfer through it. This is analogous to how a blue filter can reduce the overall light intensity through it. Next, charge transport in thin films made of colloidal PbSe nanocrystals is discussed. These PbSe nanocrystals exhibit strong three-dimensional quantum confinement which results in an electronic structure similar to that of an atom. This electronic structure can be exploited to create a substantial Seebeck coefficient enhancement of several hundred muV/K relative to bulk PbSe. In addition, the carrier concentration of the nanocrystal thin films can be tuned by adjusting nanocrystal size and/or adjusting the nanocrystal chemical environment. For the last topic, an inexpensive and scalable technique to solution-process metal chalcogenides is presented. This technique uses hydrazine to create soluble precursors of solid metal chalcogenides. For example, a liquid-phase precursor for Bi2S3 can be made by mixing together solid-phase Bi2S3 with sulfur and hydrazine. This liquid precursor can then be spin-coated, printed, and/or stamped and then converted back into Bi2S3 by heating. Not only does this technique have promise for solution-processing of bulk materials, but with continued work, it has promise for solution-processing of nanostructured materials. For example, nanoparticles embedded in a matrix of Bi2S3 could be made by suspending nanoparticles in the liquid Bi2S3 precursor and then heating the mixture.

  10. Development of Nanostructured Materials with Improved Radiation Tolerance for Advanced Nuclear Systems

    SciTech Connect

    Zinghang Zhang; K. Ted Hartwig

    2009-08-12

    This project will explore the fundamental mechanisms through which interfaces in nanolayered structures and grain boundaries of bulk nanomaterials are able to attract and rapidly eliminate point defects and unwanted foreign species. Candidate materials that will be studied include both nanostructured multilayer composites synthesized by magnetron sputtering and structural bulk nanomaterials produced by severed plastic deformation, equal channel angular extrusion.

  11. Understanding and tuning nanostructured materials for chemical energy conversion

    NASA Astrophysics Data System (ADS)

    Jian, Guoqiang

    The conversion of energy that employs chemical reaction is termed chemical energy conversion. In my dissertation, I have focused on chemical energy conversion systems involving energetic materials and lithium ion batteries, where performance is strongly dependent on the properties of materials and their architecture. The objective of this study is to enhance our understanding and tuning of nanostructured materials that might find application toward energetic materials and electrode materials in lithium ion batteries. Rapid heating diagnostics tools, i.e. temperature-jump techniques, have been used to study the ignition of aluminum nanoparticles, nanothermite reaction mechanism and metal oxides nanoparticles decomposition under rapid heating conditions (105-106 K/s). Time-resolved mass spectra results support the hypothesis that Al containing species diffuse outwards through the oxide shell. Low effective activation energies were found for metal oxides nanoparticles decomposition at high heating rates, implying the mass transfer control at high heating rates. The role of oxygen release from oxidizer in nanothermite reactions have been examined for several different systems, including some using microsized oxidizer (i.e., nano-Al/micro-I 2O5). In particular, for periodate based nanothermites, direct evidence from high heating rate SEM and mass spectrometry results support that direct gas phase oxygen release from oxidizer decomposition is critical in its ignition and combustion. Efforts have also been made to synthesize nanostructured materials for nanoenergetic materials and lithium ion batteries applications. Hollow CuO spheres were synthesized by aerosol spray pyrolysis, employing a gas blowing mechanism for the formation of hollow structure during aerosol synthesis. The materials synthesized as oxidizers in nanothermite demonstrated superior performance, and of particular note, periodate salts based nanothermite demonstrated the best gas generating performance for nanothermite materials. Energetic composite nanofibrous mats (NC/Al-CuO, NC/Al-Fe2O3, and NC/Al-Bi2O3) were also prepared by an electrospinning method and evaluated for their combustion performance. Aerosol spray pyrolysis was employed to produce carbon coated CuO hollow spheres, Mn3O4 hollow spheres, and Fe2O 3 mesoporous spheres. These hollow/mesoporous spheres demonstrated superior electrochemical performance when used as anode materials in lithium ion batteries. The effects of the amorphous and crystal structures on the electrochemical performance and the structure evolution during electrochemical tests were also investigated.

  12. Hollow Nanostructured Anode Materials for Li-Ion Batteries

    PubMed Central

    2010-01-01

    Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

  13. Review on the application of nanostructure materials in solar cells

    NASA Astrophysics Data System (ADS)

    Afshar, Elham N.; Xosrovashvili, Georgi; Rouhi, Rasoul; Gorji, Nima E.

    2015-07-01

    In recent years, nanostructure materials have opened a promising route to future of the renewable sources, especially in the solar cells. This paper considers the advantages of nanostructure materials in improving the performance and stability of the solar cell structures. These structures have been employed for various performance/energy conversion enhancement strategies. Here, we have investigated four types of nanostructures applied in solar cells, where all of them are named as quantum solar cells. We have also discussed recent development of quantum dot nanoparticles and carbon nanotubes enabling quantum solar cells to be competitive with the conventional solar cells. Furthermore, the advantages, disadvantages and industrializing challenges of nanostructured solar cells have been investigated.

  14. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely microwave-assisted hydrothermal reduction/carbonization (MAHRC), is developed to prepare coaxial Ag/amorphous-carbon (a-C) nanocables. The as-grown Ag/C nanocables can self-assemble in an end-to-end fashion. (2) A novel Se/C nanocomposite with core-shell structures is prepared. The new material consists of a trigonal-Se (t-Se) core and an amorphous-C (a-C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. (3) A Fe 3O4/C nanocomposite is synthesized by a green wet-chemical approach. The product possesses porous microstructures and exhibits superparamagnetic behavior. The third major goal of this research is develop facile solution-based methods for preparing carbonaceous nano test tubes, thin films of metal iodides, and spherical selenium spheres: (1) Carbonaceous nano test tubes are fabricated by a facile "decoring" route using a core-sheath Te carbon nanocomposite as the precursor. The as-formed carbonaceous material looks like a "test tube" with an average diameter of about 120 nm and lengths up to 5 mum. (2) Tetrahedral-shaped CuI crystals were formed on a variety of copper substrates (e.g. grids, flat/porous foils, and macro-/nano- wires) via an interfacial reaction between a copper substrate and iodine in water at room temperature. This preparation approach can also be used to grow PbI2 and AgI nano- and micro-crystals with different morphologies on corresponding substrates. (3) Colloidal trigonal selenium (t-Se) microspheres are synthesized through a mild hydrothermal reduction reaction, using glucose as a reducing regent and water as an environmentally friendly solvent. Importantly, the resulting t-Se microspheres inherit functional groups from the starting materials and possess hydrophilic and biocompatible surfaces.

  15. Aerogel/polymer composite materials

    NASA Technical Reports Server (NTRS)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2010-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  16. Nanoporous and Nanostructured Materials for Energy Storage and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Vu, Anh D.

    The major objective of this work is to design nanostructured and nanoporous materials targeting the special needs of the energy storage and sensing fields. Nanostructured and nanoporous materials are increasingly finding applications in many fields, including electrical energy storage and explosive sensing. The advancement of energy storage devices is important to the development of three fields that have strong effects on human society: renewable energy, transportation, and portable devices. More sensitive explosive sensors will help to prevent terrorism activities and boost national security. Hierarchically porous LiFePO4 (LFP)/C composites were prepared using a surfactant and colloidal crystals as dual templates. The surfactant serves as the template for mesopores and polymeric colloidal spheres serve as the template for macropores. The confinement of the surfactant-LFP-carbon precursor in the colloidal templates is crucial to suppress the fast crystallization of LFP and helps to maintain the ordered structure. The obtained composites with high surface areas and ordered porous structure showed excellent rate performance when used as cathode materials for LIBs, which will allow them to be used as a power source for EVs and HEVs. The synthesis of LiFePO 4 in three dimensionally confined spaces within the colloidal template resulted in the formation of spherical particles. Densely packed LiFePO 4 spheres in a carbon matrix were obtained by spin-casting the LFP-carbon precursor on a quartz substrate and then pyrolyzing it. The product showed high capacity and could be charged /discharged with very little capacity fading over many cycles. Three-dimensionally ordered mesoporous carbons were prepared from nano-sized silica sphere colloidal crystal templates. These materials with very high surface areas and ordered porous structure showed high capacitance and excellent rate capability when used as electrodes for supercapacitors. Mesoporous silica thin films of different morphologies, including disordered (wormlike), 2D-hexagonal, 3D-hexagonal, and cubic structure, were prepared. The films were then doped or bridged with fluorescence compounds and used as sensors for nitroaromatic compounds. The sensor performance depended on both the film structure and the mode of fluorophore attachment. The best films showed high quenching rates and were stable during long time storage. The films can potentially be incorporated in portable sensing devices.

  17. Erosion of composite materials

    NASA Technical Reports Server (NTRS)

    Springer, G. S.

    1980-01-01

    A model for describing the response of uncoated and coated fiber reinforced composites subjected to repeated impingements of liquid (rain) droplets is presented. The model is based on the concept that fatigue is the dominant factor in the erosion process. Algebraic expressions are provided which give the incubation period, the rate of mass loss past the incubation period, and the total mass loss of the material during rain impact. The influence of material properties on erosion damage and the protection offered by different coatings are discussed and the use of the model in the design in the design of structures and components is illustrated.

  18. Preparation of nanostructured materials having improved ductility

    DOEpatents

    Zhao, Yonghao; Zhu, Yuntian T.

    2010-04-20

    A method for preparing a nanostructured aluminum alloy involves heating an aluminum alloy workpiece at temperature sufficient to produce a single phase coarse grained aluminum alloy, then refining the grain size of the workpiece at a temperature at or below room temperature, and then aging the workpiece to precipitate second phase particles in the nanosized grains of the workpiece that increase the ductility without decreasing the strength of the workpiece.

  19. Using the Hybrid Nanoscope for Non-destructive Control of Nanostructural Materials

    NASA Astrophysics Data System (ADS)

    Gelever, V.; Usachev, E.; Manushkin, A.

    2016-01-01

    In Moscow State University of Information Technology, Radio Engineering and Electronics there was developed a hybrid nanoscope (HN), which is intended for the study and control of nanostructure materials using a variety of microscopes and spectroscopy. When operating as X-ray microscope, it allows to obtain information on micron and nanometer level about internal structure of different composites and hybrid materials without their destruction.

  20. Composite material radomes

    NASA Astrophysics Data System (ADS)

    Carbone, R.; Simon, J.-Y.

    1987-06-01

    The fabrication of radomes from composite materials, for naval and aeronautical applications including the Mirage II, F1, and Mirage 2000, is discussed. The diverse radioelectric and mechanical requirements of radomes are best met in the average-temperature regime by reinforced plastics, and in the elevated supersonic regime by ceramic materials. The structural criteria of radomes concerning aerodynamic, inertial, and vibrational loading, and the environmental criteria concerning temperature, sand and rain erosion, and lightning effects, are reviewed. Materials considered for radome fabrication include modified polyesters, epoxies, and thermostable resins, using glass, silica, and aramide tissues or threads as the reinforcements. The advantages and disadvantages of the various fabrication methods, and the fabrication of monolithic radomes by winding and by using preformed weaves, are also discussed.

  1. PHOTONICS AND NANOTECHNOLOGY Laser nanostructuring of materials surfaces

    NASA Astrophysics Data System (ADS)

    Zavestovskaya, I. N.

    2010-12-01

    This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces.

  2. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 ?m), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 ?m), middle IR (3-5 ?m), far IR (8-14 ?m), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06?m and 10.6?m laser, 3-5?m and 8-14?m IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were contrasted in detail with graphite powder smoke agent. The results showed that HNSM smoke possesses better obscuration capability compared with the smoke performance of conventional materials (such as HC, RP, oil, carbon black, and graphite powder). Therefore, they are new smoke obscurant materials which can effectively interfere with broadband electromagnetic radiation, including 1.06 ?m and 10.6 ?m laser, 3-5 ?m and 8-14 ?m IR waveband.

  3. Novel organic-inorganic hybrid and nano-structured materials

    NASA Astrophysics Data System (ADS)

    Jin, Danliang

    Organic polymers, i.e. polymethacrylates and polystyrene, and inorganic silica were successfully integrated covalently into one body, i.e. hybrid materials, at molecular level in a continuum ranging from pure polymer to pure silica via the sol-gel process. The synthetic conditions have been systematically studied and optimized. A fast and convenient method for the synthesis of polymethacrylate-silica hybrids with significantly low volume-shrinkages has been developed to address the intrinsic problems of the sol-gel process, i.e. large volume shrinkage and long drying times. The relationship of properties of the hybrids with the structures and organic-inorganic compositions have been established. The density, hardness and thermal stability increase with the silica content. Atomic force microscopy study of the morphology shows that the transparent hybrid materials, in which the polymer chains have a strong and intimate interaction with the silica matrix, have significantly different surface features from a translucent control sample. The compressive behavior of the hybrid materials is completely different from that of traditional composites. Toughness of the hybrid materials can be maximized and the strength can be dramatically increased by varying the silica content. Possible mechanisms for the formation of hybrid materials are proposed. Potential applications of the hybrid materials as dental fillers and cation exchangers were investigated. Amorphous silica was functionalized by doping with optically active compounds such as scD-glucose, diphenyl tartaric acid and maltose. The resultant nano-structured materials show excellent optical transparency to visible light. Optical rotation of the materials in the solid state was demonstrated quantitatively to be the same as that in solution. The specific rotation can be calculated directly according to Biot's equation. A non-surfactant templating approach has been developed for the preparation of mesoporous silica by removing the organic compounds (i.e. template) through solvent extraction. The mesoporous nature of the materials is evidenced by the large BET surface area and pore volumes, the controllable pore sizes of ~2 to 6 nm and their narrow distributions, the powder X-ray diffraction patterns, and transmission electron microscopy images. The pore size can be tuned simply by adjusting the template concentration. This non-surfactant structure-directing pathway possesses many advantages over the known surfactant approaches.

  4. Advanced composite materials and processes

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.

    1991-01-01

    Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

  5. Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.

    SciTech Connect

    Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

    2009-09-01

    Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

  6. Conducting nanotubes or nanostructures based composites, method of making them and applications

    NASA Technical Reports Server (NTRS)

    Gupta, Mool C. (Inventor); Yang, Yonglai (Inventor); Dudley, Kenneth L. (Inventor); Lawrence, Roland W. (Inventor)

    2013-01-01

    An electromagnetic interference (EMI) shielding material includes a matrix of a dielectric or partially conducting polymer, such as foamed polystyrene, with carbon nanotubes or other nanostructures dispersed therein in sufficient concentration to make the material electrically conducting. The composite is formed by dispersing the nanotube material in a solvent in which the dielectric or partially conducting polymer is soluble and mixing the resulting suspension with the dielectric or partially conducting polymer. A foaming agent can be added to produce a lightweight foamed material. An organometallic compound can be added to enhance the conductivity further by decomposition into a metal phase.

  7. Universal method for creating optically active nanostructures on layered materials.

    PubMed

    Kidd, Timothy E; O'Shea, Aaron; Beck, Benjamin; He, Rui; Delaney, Conor; Shand, Paul M; Strauss, Laura H; Stollenwerk, Andrew; Hurley, Noah; Spurgeon, Kyle; Gu, Genda

    2014-05-27

    The ability to form patterned surface nanostructures has revolutionized the miniaturization of electronics and led to the discovery of emergent behaviors unseen in macroscopic systems. However, the creation of such nanostructures typically requires multiple processing steps, a high level of technical expertise, and highly sophisticated equipment. In this work, we have discovered a simple method to create nanostructures with control size and positioning in a single processing step using a standard scanning electron microscope. The technique can be applied to a wide range of systems and was successful in every layered material tested. Patterned nanostructures were formed on graphite, topological insulators, novel superconductors, and layered transition metal dichalcogenides. The nanostructures were formed via the incorporation of carbon nanoparticles into the samples in a novel form of intercalation. It appears that the electron beam interacts with residual organic molecules available on the sample surface, making it possible for them to intercalate between the layers in their crystal structure and break down into carbon. These carbon nanoparticles have strong broad-wavelength interactions in the visible light range, making these nanostructures easily detectable in an optical microscope and of interest for a range of nanoscale electro-optical devices. PMID:24793140

  8. Nanostructure materials for biosensing and bioimaging applications

    NASA Astrophysics Data System (ADS)

    Law, Wing Cheung

    In the first part of the thesis our work on a surface plasmon resonance (SPR) biosensor will be presented. It will begin with understanding the working principle of SPR sensing technology and the basic concept of SPR biosensing. In SPR technology, there are different coupling schemes to excite surface plasmons such as prism coupler, grating coupler and waveguide coupler. Our setup will be based on the attenuated total reflection (ATR) prism coupling configuration. A gold sensing film is attached to one face of the prism. The samples are flowing over the gold surface and the light source is directed to the prism side. The reflected beam containing SPR information is collected and analyzed. SPR biosensors have become powerful tools in biological and chemical sensing application because of their capability of real-time monitoring and label-free sensing. Quantitative measurements such as the binding kinetics and the binding affinity between two biomolecules can be readily calculated from the SPR sensorgram. In our design, SPR phase will be monitored using photoelastic modulation (PEM) technique. The PEM is used to produce a modulation signal so that the phase quantity can be extracted by measuring the relative amplitudes of the harmonic signals. Since this system contains no moving component and only single beam and single detector are used, precise component alignment, which may be troublesome in making the setup compact and robust, can be eliminated. In order to demonstrate the operation of the proposed approach, two experiments were performed. The first one was to measure the refractive index change caused by varying the concentration of glycerin-water mixtures. The second one was to monitor the binding reactions between biotin and streptavidin--BSA complex at the sensor surface. Recently, the use of metallic nanoparticle on SPR platform has received great attention due to the capability of sensitivity enhancement. Although the mechanism of the enhancement is still not fully understand, three possible factors are concluded after systematic researches: (i) an increase of the absolute mass in each binding event, (ii) an increase in the bulk refractive index of the analyte, and (iii) coupling between the localized surface plasmon resonance (LSPR) of metallic nanoparticles and surface plasmon resonance (SPR) of the sensing film. Indeed, the role of plasmonic coupling in sensitivity enhancement is still an open question. In order to obtain a better understanding of this phenomenon, at the end of part I, extended studies were performed to investigate how the LSPR properties of metallic nanoparticle labels correlate with the enhancement factor. For this purpose, gold nanorods (Au-NRs) were chosen as the amplification labels because of the easy tunability of LSPR peak of Au-NR. After reading the "Result and Discussion" section, the readers will have better understanding of "plasmonic coupling" between the sensing film and the metallic labels with suitable operating laser source. In the second part of the thesis, the bioimaging part, the application of nanostructure materials in live cancer cell imaging and small animal imaging were demonstrated. There are different types of imaging technique available in laboratories and clinics: optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), thermography and ultrasound imaging. Although such imaging techniques have been well developed and used over a decade, improving the sensitivity, enhancing the contrast, decreasing the acquisition time and reducing the toxicity of the contrast agent are highly desirable. For optical imaging, the scientists discovered that the use of near infrared fluorescence materials can assist the surgeon to locate the tumor, the nerve and the lymph node more accurately. For CT scan, the use of Au-NR as the contrast agent can improve the sensitivity. Iron oxide nanoparticle or gadolinium ion containing nanoparticle can greatly enhance the contrast of MRI. On the one hand, concrete effort has been concentrated on exploring the feasibilities of nanomaterials. However, on the contrary, the researchers also revealed the cytotoxicity of nanoparticles and the potential hazard for long term circulation in vivo. They argued that the long-term contact of the nanoparticles with biological fluids can result partial desorption of the hydrophilic moieties, thus exposing the bare surface to the biological system, with high chances of releasing toxic ions to the surrounding. This dissertation will focus on two nanomaterials, Au-NR and QD, using as nanoprobes for live pancreatic cancer cells imaging and small animal imaging. Different surface modification strategies and the biocompatibility will be discussed. The toxicities of the nanomaterials will also be evaluated by appropriate bio-assay. (Abstract shortened by UMI.)

  9. Scaling laws for van der Waals interactions in nanostructured materials

    PubMed Central

    Gobre, Vivekanand V.; Tkatchenko, Alexandre

    2013-01-01

    Van der Waals interactions have a fundamental role in biology, physics and chemistry, in particular in the self-assembly and the ensuing function of nanostructured materials. Here we utilize an efficient microscopic method to demonstrate that van der Waals interactions in nanomaterials act at distances greater than typically assumed, and can be characterized by different scaling laws depending on the dimensionality and size of the system. Specifically, we study the behaviour of van der Waals interactions in single-layer and multilayer graphene, fullerenes of varying size, single-wall carbon nanotubes and graphene nanoribbons. As a function of nanostructure size, the van der Waals coefficients follow unusual trends for all of the considered systems, and deviate significantly from the conventionally employed pairwise-additive picture. We propose that the peculiar van der Waals interactions in nanostructured materials could be exploited to control their self-assembly. PMID:23955481

  10. Nanostructured thermoelectric materials and optical method for thermal conductivity measurement

    NASA Astrophysics Data System (ADS)

    Zamanipour, Zahra

    A good thermoelectric material has large electrical conductivity, large Seebeck coefficient, and small thermal conductivity. Among the different techniques to achieve small thermal conductivity is the nanostructuring method. In a nanostructured material the thermal conductivity decreases due to the increased interfacial scattering of phonons. In most thermoelectric materials, due to the larger mean free path of phonons compared with electrons, the effect of interfaces on phonon scatterings is more than on carrier scattering. Therefore, reduction of the thermal conductivity becomes possible with almost no or small change in the electrical conductivity via nanostructuring. The materials that have shown large power factor but have small efficiency due to their large thermal conductivity are good candidates for nanostructuring. For high temperature applications, several transition metal silicides have shown high power factor while they have large thermal conductivity. While silicides have been investigated in crystalline and polycrystalline form in the past, their nanostructuring had not been pursued extensively at the time that this research started. In this PhD dissertation, we have developed several nanostructured materials based on transition metal silicides. In the path to develop high temperature thermoelectric materials, synthesis, structural characterizations, thermoelectric properties measurements, and analysis of the nanostructured bulk Si1-xGex, Higher Manganese Silicide (HMS), Si0.8Ge0.2 structures with CrSi2 nanocrystallite inclusions, and nanocomposites of SiGe-FeSi2 were completed. The synthesis process parameters including powder processing and sintering parameters were derived for each material system. Model calculations for electron and phonon transport were performed in detail to explain the measured data and direct the experiments. Boron precipitation effect on thermoelectric properties of Si0.8Ge0.2 was also studied by analyzing the experimental data and through theoretical calculations. At the device level, in order to find the optimum metal contact for HMS, an extensive study was performed to find the best electrical contact for HMS thermoelectric devices. Along with thermoelectric material development, a novel ultrafast optical characterization method for thermal properties measurement and ultrafast carrier dynamics study was also developed. The designed optical system is a new pump-probe arrangement to perform both thermal properties measurement and ultrafast carrier dynamics study in one set up. The existing radial heat flow analysis for thermal properties measurement was extended to three-dimensional heat flow, which is applicable for distinguishing the xyz thermal conductivity of the anisotropic material.

  11. Potential applications of nanostructured materials in nuclear waste management.

    SciTech Connect

    Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi; Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

    2003-09-01

    This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

  12. Plasmon and compositional mapping of plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Ringe, Emilie; Collins, Sean M.; DeSantis, Christopher J.; Skrabalak, Sara E.; Midgley, Paul A.

    2014-11-01

    Recently, co-reduction of Au and Pd has allowed the synthesis of complex Au core/AuPd shell nanoparticles with elongated tips and cubic-like symmetry. Optical studies have shown strong plasmonic behavior and high refractive index sensitivities. In this paper, we describe the composition and the near-field plasmonic behavior of those complex structures. Monochromated STEM-EELS, Cathodoluminescence, and EDS mapping reveals the different resonant modes in these particles, and shows that Pd, a poor plasmonic metal, does not prevent strong resonances and could actually be extremely helpful for plasmon-enhanced catalysis.

  13. Nanostructured Materials Developed for Solar Cells

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Castro, Stephanie L.; Raffaelle, Ryne P.; Fahey, Stephen D.; Gennett, Thomas; Tin, Padetha

    2004-01-01

    There has been considerable investigation recently regarding the potential for the use of nanomaterials and nanostructures to increase the efficiency of photovoltaic devices. Efforts at the NASA Glenn Research Center have involved the development and use of quantum dots and carbon nanotubes to enhance inorganic and organic cell efficiencies. Theoretical results have shown that a photovoltaic device with a single intermediate band of states resulting from the introduction of quantum dots offers a potential efficiency of 63.2 percent. A recent publication extended the intermediate band theory to two intermediate bands and calculated a limiting efficiency of 71.7 percent. The enhanced efficiency results from converting photons of energy less than the band gap of the cell by an intermediate band. The intermediate band provides a mechanism for low-energy photons to excite carriers across the energy gap by a two-step process.

  14. Universal method for creating optically active nanostructures on layered materials

    NASA Astrophysics Data System (ADS)

    Kidd, Tim; He, Rui; Stollenwerk, Andrew; Oshea, Aaron; Beck, Ben; Spurgeon, Kyle; Gu, Genda

    2014-03-01

    We report a new method for the creating of nanostructures using a scanning electron microscope. Residual organic molecules on the surface of layered materials can be excited by electron beam radiation to burrow into the open spaces between the layers of these materials, and then are broken down further to form photoluminescent carbon nanoclusters. Surface characterization by atomic force microscopy shows the surface is nearly undamaged at the molecular level by this process, and a lack of nanostructure formation in non-layered materials confirms that the structures are created by sub-surface incorporation. The presence of carbon nanoclusters was determined by Raman Spectroscopy and photoluminescence in the visible light range. The nanostructures are react strongly to visible light, making them readily apparent using an optical microscope even for features measuring only a few nanometers tall. This technique can be used on apparently any layered material, with successful results on dichalcogenides, topological insulators, graphite, and high temperature copper oxide superconductors. This technique can create patterned nanostructures with vertical resolution at the nanometer scale and lateral resolution of tens of nanometers depending on beam spot size. This work is funded by University of Northern Iowa, NSF #DMR-1206530, and DOE #DE-AC02-98CH10886.

  15. Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications

    NASA Astrophysics Data System (ADS)

    Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

    2011-02-01

    Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

  16. Probing Compositional Variation within Hybrid Nanostructures

    SciTech Connect

    Yuhas, Benjamin D.; Habas, Susan E.; Fakra, Sirine C.; Mokari, Taleb

    2010-06-22

    We present a detailed analysis of the structural and magnetic properties of solution-grown PtCo-CdS hybrid structures in comparison to similar free-standing PtCo alloy nanoparticles. X-ray absorption spectroscopy is utilized as a sensitive probe for identifying subtle differences in the structure of the hybrid materials. We found that the growth of bimetallic tips on a CdS nanorod substrate leads to a more complex nanoparticle structure composed of a PtCo alloy core and thin CoO shell. The core-shell architecture is an unexpected consequence of the different nanoparticle growth mechanism on the nanorod tip, as compared to free growth in solution. Magnetic measurements indicate that the PtCo-CdS hybrid structures are superparamagnetic despite the presence of a CoO shell. The use of X-ray spectroscopic techniques to detect minute differences in atomic structure and bonding in complex nanosystems makes it possible to better understand and predict catalytic or magnetic properties for nanoscale bimetallic hybrid materials.

  17. Nanostructured Block Copolymer Solutions and Composites: Mechanical and Structural Properties

    NASA Astrophysics Data System (ADS)

    Walker, Lynn

    2015-03-01

    Self-assembled block copolymer templates are used to control the nanoscale structure of materials that would not otherwise order in solution. In this work, we have developed a technique to use close-packed cubic and cylindrical mesophases of a thermoreversible block copolymer (PEO-PPO-PEO) to impart spatial order on dispersed nanoparticles. The thermoreversible nature of the template allows for the dispersion of particles synthesized outside the template. This feature extends the applicability of this templating method to many particle-polymer systems, including proteins, and also permits a systematic evaluation of the impact of design parameters on the structure and mechanical properties of the nanocomposites. The criteria for forming co-crystals have been characterized using small-angle scatting and the mechanical properties of these soft crystals determined. Numerous crystal structures have been reported for the block copolymer system and we have taken advantage of several to generate soft co-crystals. The result of this templating is spatially ordered nanoparticle arrays embedded within the block copolymer nanostructure. These soft materials can be shear aligned into crystals with long range order and this shear alignment is discussed. Finally, the dynamics of nanoparticles within the nanostructured material are characterized with fluorescence recovery after photobleaching (FRAP). The applications and general behavior of these nanostructured hydrogels are outlined.

  18. Hybrid materials of ZnO nanostructures with reduced graphene oxide and gold nanoparticles: enhanced photodegradation rates in relation to their composition and morphology.

    PubMed

    Bramhaiah, K; Singh, Vidya N; John, Neena S

    2016-01-21

    Binary and ternary hybrid systems of ZnO possessing nanoparticle and nanorod morphologies on reduced graphene oxide (rGO) and rGO with Au nanoparticles are explored as photocatalysts and a comparative study of their photodegradation performance is presented. Various preparation methods such as solution phase and hydrothermal routes have been employed to produce rGO-ZnO hybrids and rGO-Au-ZnO hybrids to impart different morphologies and defect states in ZnO. All the hybrids exhibit faster photodegradation kinetics and the rGO-Au-ZnO system exhibits the highest rate, five times faster than bare ZnO, followed by the binary systems, rGO-ZnO nanoparticles and nanorods. Various factors such as structure, morphology, charge transfer and adsorption are considered to explain the observed kinetics. Excited state electron transfer from ZnO to both rGO and Au levels facilitates faster dye degradation for rGO-Au-ZnO and is reflected as highly quenched band edge and defect state photoluminescence. Intimate physical interfaces formed between rGO, Au and ZnO in the hybrid material during in situ reactions favour charge transfer across the components. The charge transfer contribution even dominates the adsorption factor and the rGO-Au-ZnO system with a slightly lower adsorption capacity than the rGO-ZnO system exhibits a higher degradation rate. A power law dependence of the photodegradation rate on light intensity is also expressed. PMID:26659334

  19. Current status of nanostructured tungsten-based materials development

    NASA Astrophysics Data System (ADS)

    Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Okano, H.; Watanabe, H.; Yoshida, N.; Torikai, Y.; Hatano, Y.; Takida, T.; Kato, M.; Ikegaya, A.; Ueda, Y.; Hatakeyama, M.; Shikama, T.

    2014-04-01

    Nanostructured tungsten (W)-based materials offer many advantages for use as plasma facing materials and components exposed to heavy thermal loads combined with irradiation with high-energy neutron and low-energy ion. This paper first presents the recent progress in nanostructured toughened, fine grained, recrystallized W materials. Thermal desorption spectrometry apparatus equipped with an ion gun has been installed in the radiation controlled area in our Center at Tohoku University to systematically investigate the effects of displacement damage due to high-energy neutron irradiation on hydrogen isotope retention in connection with the nano- or micro-structures in W-based materials. In this paper, the effects of high-energy heavy ion irradiation on deuterium retention in W with different microstructures are described as a preliminary work with the prospective view of neutron irradiation effects.

  20. Hydrogen Storage in Nanostructured Carbon Materials at Room Temperature

    NASA Astrophysics Data System (ADS)

    Chen, Xiaohong; Dettlaff-Weglikowska, Urszula; Haluska, Miro; Hirscher, Michael; Becher, Marion; Roth, Siegmar

    2002-10-01

    Room temperature hydrogen sorption capacities of nanostructured carbon materials including single-walled carbon nanotubes (SWNTs), multi-walled carbon nanotubes (MWNTs), carbon nanohorns (CNH), activated carbon, carbon black and graphite are determined by the volumetric method. All carbon materials investigated, including the samples with high specific surface area as purified SWNTs prepared by the HiPco process and activated carbon, show a hydrogen storage capacity of less than 1 wt % at room temperature and pressures below 100 bar.

  1. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  2. Nanostructured material formulated acrylic bone cements with enhanced drug release.

    PubMed

    Shen, Shou-Cang; Ng, Wai Kiong; Dong, Yuan-Cai; Ng, Junwei; Tan, Reginald Beng Hee

    2016-01-01

    To improve antibiotic properties, poly(methyl methacrylate) (PMMA)-based bone cements are formulated with antibiotic and nanostructured materials, such as hydroxyapatite (HAP) nanorods, carbon nanotubes (CNT) and mesoporous silica nanoparticles (MSN) as drug carriers. For nonporous HAP nanorods, the release of gentamicin (GTMC) is not obviously improved when the content of HAP is below 10%; while the high content of HAP shows detrimental to mechanical properties although the release of GTMC can be substantially increased. As a comparison, low content of hollow nanostructured CNT and MSN can enhance drug delivery efficiency. The presence of 5.3% of CNT in formulation can facilitate the release of more than 75% of GTMC in 80 days, however, its mechanical strength is seriously impaired. Among nanostructured drug carriers, antibiotic/MSN formulation can effectively improve drug delivery and exhibit well preserved mechanical properties. The hollow nanostructured materials are believed to build up nano-networks for antibiotic to diffuse from the bone cement matrix to surface and achieve sustained drug release. Based on MSN drug carrier in formulated bone cement, a binary delivery system is also investigated to release GTMC together with other antibiotics. PMID:26478307

  3. Heat transport by phonons in crystalline materials and nanostructures

    NASA Astrophysics Data System (ADS)

    Koh, Yee Kan

    This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ? f ? 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ? ? ? 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.

  4. Nanostructured Assemblies of Thermoelectric Composite Materials

    SciTech Connect

    Peter K. Dorhout; Ellen R. Fisher

    2008-02-26

    At the end of the funding period (March 2003) for our program in ferroelectric oxide nanomaterials, we had 3 publications in print, one more had been submitted and two more were in preparation in peer-reviewed journals and invited symposia lectures had been given since starting the project in the Fall of 1999. We hired two postdoctoral fellows, Dr. Ki-Seog Chang and Dr. Wenzhong Wang. We have also trained two graduate students, Ms. Keri Williams and Ms. Bernadette Hernandez, and one undergraduate student (Mr. Michael Scancella).

  5. Nanostructured mesoporous materials for lithium-ion battery applications

    NASA Astrophysics Data System (ADS)

    Balaya, P.; Saravanan, K.; Hariharan, S.; Ramar, V.; Lee, H. S.; Kuezma, M.; Devaraj, S.; Nagaraju, D. H.; Ananthanarayanan, K.; Mason, C. W.

    2011-06-01

    The Energy crisis happens to be one of the greatest challenges we are facing today. In this view, much effort has been made in developing new, cost effective, environmentally friendly energy conversion and storage devices. The performance of such devices is fundamentally related to material properties. Hence, innovative materials engineering is important in solving the energy crisis problem. One such innovation in materials engineering is porous materials for energy storage. Porous electrode materials for lithium-ion batteries (LIBs) offer a high degree of electrolyte-electrode wettability, thus enhancing the electrochemical activity within the material. Among the porous materials, mesoporous materials draw special attention, owing to shorter diffusion lengths for Li+ and electronic movement. Nanostructured mesoporous materials also offer better packing density compared to their nanostructured counterparts such as nanopowders, nanowires, nanotubes etc., thus opening a window for developing electrode materials with high volumetric energy densities. This would directly translate into a scenario of building batteries which are much lighter than today's commercial LIBs. In this article, the authors present a simple, soft template approach for preparing both cathode and anode materials with high packing density for LIBs. The impact of porosity on the electrochemical storage performance is highlighted.

  6. Composite material and method for production of improved composite material

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1996-01-01

    A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

  7. Characterization of gas tunnel type plasma sprayed hydroxyapatite-nanostructure titania composite coatings

    NASA Astrophysics Data System (ADS)

    Yugeswaran, S.; Kobayashi, A.; Ucisik, A. Hikmet; Subramanian, B.

    2015-08-01

    Hydroxyapatite (HA) can be coated onto metal implants as a ceramic biocompatible coating to bridge the growth between implants and human tissue. Meanwhile many efforts have been made to improve the mechanical properties of the HA coatings without affecting its bioactivity. In the present study, nanostructure titania (TiO2) was mixed with HA powder and HA-nanostructure TiO2 composite coatings were produced by gas tunnel type plasma spraying torch under optimized spraying conditions. For this purpose, composition of 10 wt% TiO2 + 90 wt% HA, 20 wt% TiO2 + 80 wt% HA and 30 wt% TiO2 + 70 wt% HA were selected as the feedstock materials. The phase, microstructure and mechanical properties of the coatings were characterized. The obtained results validated that the increase in weight percentage of nanostructure TiO2 in HA coating significantly increased the microhardness, adhesive strength and wear resistance of the coatings. Analysis of the in vitro bioactivity and cytocompatibility of the coatings were done using conventional simulated body fluid (c-SBF) solution and cultured green fluorescent protein (GFP) labeled marrow stromal cells (MSCs) respectively. The bioactivity results revealed that the composite coating has bio-active surface with good cytocompatibility.

  8. Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.

    SciTech Connect

    Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

    2007-09-01

    Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

  9. Advances in biomimetic and nanostructured biohybrid materials.

    PubMed

    Ruiz-Hitzky, Eduardo; Darder, Margarita; Aranda, Pilar; Ariga, Katsuhiko

    2010-01-19

    The rapid increase of interest in the field of biohybrid and biomimetic materials that exhibit improved structural and functional properties is attracting more and more researchers from life science, materials science, and nanoscience. Concomitant results offer valuable opportunities for applications that involve disciplines dealing with engineering, biotechnology, medicine and pharmacy, agriculture, nanotechnology, and others. In the current contribution we collect recent illustrative examples of assemblies between materials of biological origin and inorganic solids of different characteristics (texture, structure, and particle size). We introduce here a general overview on strategies for the preparation and conformation of biohybrids, the synergistic effects that determine the final properties of these materials, and their diverse applications, which cover areas as different as tissue engineering, drug delivery systems, biosensing devices, biocatalysis, green nanocomposites, etc. PMID:20217713

  10. Applications of ultrasound to the synthesis of nanostructured materials.

    PubMed

    Bang, Jin Ho; Suslick, Kenneth S

    2010-03-12

    Recent advances in nanostructured materials have been led by the development of new synthetic methods that provide control over size, morphology, and nano/microstructure. The utilization of high intensity ultrasound offers a facile, versatile synthetic tool for nanostructured materials that are often unavailable by conventional methods. The primary physical phenomena associated with ultrasound that are relevant to materials synthesis are cavitation and nebulization. Acoustic cavitation (the formation, growth, and implosive collapse of bubbles in a liquid) creates extreme conditions inside the collapsing bubble and serves as the origin of most sonochemical phenomena in liquids or liquid-solid slurries. Nebulization (the creation of mist from ultrasound passing through a liquid and impinging on a liquid-gas interface) is the basis for ultrasonic spray pyrolysis (USP) with subsequent reactions occurring in the heated droplets of the mist. In both cases, we have examples of phase-separated attoliter microreactors: for sonochemistry, it is a hot gas inside bubbles isolated from one another in a liquid, while for USP it is hot droplets isolated from one another in a gas. Cavitation-induced sonochemistry provides a unique interaction between energy and matter, with hot spots inside the bubbles of approximately 5000 K, pressures of approximately 1000 bar, heating and cooling rates of >10(10) K s(-1); these extraordinary conditions permit access to a range of chemical reaction space normally not accessible, which allows for the synthesis of a wide variety of unusual nanostructured materials. Complementary to cavitational chemistry, the microdroplet reactors created by USP facilitate the formation of a wide range of nanocomposites. In this review, we summarize the fundamental principles of both synthetic methods and recent development in the applications of ultrasound in nanostructured materials synthesis. PMID:20401929

  11. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

  12. Composite structural materials

    NASA Technical Reports Server (NTRS)

    Loewy, Robert G.; Wiberley, Stephen E.

    1988-01-01

    A decade long program to develop critical advanced composite technology in the areas of physical properties, structural concept and analysis, manufacturing, reliability, and life predictions is reviewed. Specific goals are discussed. The status of the chemical vapor deposition effects on carbon fiber properties; inelastic deformation of metal matrix laminates; fatigue damage in fibrous MMC laminates; delamination fracture toughness in thermoplastic matrix composites; and numerical analysis of composite micromechanical behavior are presented.

  13. Equivalent-Continuum Modeling of Nano-Structured Materials

    NASA Technical Reports Server (NTRS)

    Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

    2001-01-01

    A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

  14. 2D Hybrid Nanostructured Dirac Materials for Broadband Transparent Electrodes.

    PubMed

    Guo, Yunfan; Lin, Li; Zhao, Shuli; Deng, Bing; Chen, Hongliang; Ma, Bangjun; Wu, Jinxiong; Yin, Jianbo; Liu, Zhongfan; Peng, Hailin

    2015-08-01

    Broadband transparent electrodes based on 2D hybrid nanostructured Dirac materials between Bi2 Se3 and graphene are synthesized using a chemical vapor deposition (CVD) method. Bi2 Se3 nanoplates are preferentially grown along graphene grain boundaries as "smart" conductive patches to bridge the graphene boundary. These hybrid films increase by one- to threefold in conductivity while remaining highly transparent over broadband wavelength. They also display outstanding chemical stability and mechanical flexibility. PMID:26079564

  15. Composite materials: A compilation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

  16. Manufacturing of nanostructured Al/WCp metal- matrix composites by accumulative press bonding

    NASA Astrophysics Data System (ADS)

    Amirkhanlou, Sajjad; Ketabchi, Mostafa; Parvin, Nader; Khorsand, Shohreh; Carreo, Fernando

    2014-08-01

    The accumulative press bonding (APB) process used as a novel technique in this study provides an effective alternative method for manufacturing Al/10 vol.% WCp metal matrix composites (MMCs). The results revealed that by increasing the number of APB cycles (a) the uniformity of WC particles in aluminum matrix improved, (b) the porosity of the composite eliminated, (c) the particle free zones decreased. The X-ray diffraction results also showed that nanostructured Al/WCp composite with the average crystallite size of 58.4 nm was successfully achieved by employing 14 cycles of APB technique. The tensile strength of the composites enhanced by increasing the number of APB cycles, and reached to a maximum value of 216 MPa at the end of 14th cycle, which is 2.45 and 1.2 times higher than obtained values for annealed (raw material, 88 MPa) and 14 cycles APB-ed monolithic aluminum (180 MPa), respectively

  17. When 1+1>2: Nanostructured composites for hard tissue engineering applications.

    PubMed

    Uskokovi?, Vuk

    2015-12-01

    Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them. PMID:26354283

  18. Hierarchical assembly of multifunctional oxide-based composite nanostructures for energy and environmental applications.

    PubMed

    Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

    2012-01-01

    Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO(3)-type perovskites, A(2)BO(4) spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)(6)) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches- such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction-arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing. PMID:22837702

  19. Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications

    PubMed Central

    Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

    2012-01-01

    Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)6) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches— such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing. PMID:22837702

  20. Nanostructured Mo-based electrode materials for electrochemical energy storage.

    PubMed

    Hu, Xianluo; Zhang, Wei; Liu, Xiaoxiao; Mei, Yueni; Huang, Yunhui

    2015-04-21

    The development of advanced energy storage devices is at the forefront of research geared towards a sustainable future. Nanostructured materials are advantageous in offering huge surface to volume ratios, favorable transport features, and attractive physicochemical properties. They have been extensively explored in various fields of energy storage and conversion. This review is focused largely on the recent progress in nanostructured Mo-based electrode materials including molybdenum oxides (MoO(x), 2 ? x ? 3), dichalconides (MoX2, X = S, Se), and oxysalts for rechargeable lithium/sodium-ion batteries, Mg batteries, and supercapacitors. Mo-based compounds including MoO2, MoO3, MoO(3-y) (0 < y < 1), MMo(x)O(y) (M = Fe, Co, Ni, Ca, Mn, Zn, Mg, or Cd; x = 1, y = 4; x = 3, y = 8), MoS2, MoSe2, (MoO2)2P2O7, LiMoO2, Li2MoO3, etc. possess multiple valence states and exhibit rich chemistry. They are very attractive candidates for efficient electrochemical energy storage systems because of their unique physicochemical properties, such as conductivity, mechanical and thermal stability, and cyclability. In this review, we aim to provide a systematic summary of the synthesis, modification, and electrochemical performance of nanostructured Mo-based compounds, as well as their energy storage applications in lithium/sodium-ion batteries, Mg batteries, and pseudocapacitors. The relationship between nanoarchitectures and electrochemical performances as well as the related charge-storage mechanism is discussed. Moreover, remarks on the challenges and perspectives of Mo-containing compounds for further development in electrochemical energy storage applications are proposed. This review sheds light on the sustainable development of advanced rechargeable batteries and supercapacitors with nanostructured Mo-based electrode materials. PMID:25688809

  1. Ceramic materials and nanostructures for chemical sensing

    NASA Astrophysics Data System (ADS)

    Azad, Abdul-Majeed; Akbar, Sheikh A.

    2005-11-01

    High selectivity, enhanced sensitivity, short response time and long shelf-life are some of the key features sought in the solid-state ceramic-based chemical sensors. Since the sensing mechanism and catalytic activity are predominantly surface-dominated, benign surface features in terms of higher aspect ratio, large surface area and, open and connected porosity, are required to realize a successful material. In order to incorporate these morphological features, a technique based on rigorous thermodynamic consideration of the metal/metal oxide coexistence, is described. By modulating the oxygen partial pressure across the equilibrium M/MO proximity line, formation and growth of new oxide surface on an atomic/ submolecular level under conditions of "oxygen deprivation", with exotic morphological features has been achieved in a number of metal oxides that are potential sensor materials. This paper describes the methodology and discusses the results obtained in the case of two model systems, viz., tungsten oxide (WO3) and titanium oxide (TiO2).

  2. Nanostructured materials for applications in drug delivery and tissue engineering*

    PubMed Central

    GOLDBERG, MICHAEL; LANGER, ROBERT; JIA, XINQIAO

    2010-01-01

    Research in the areas of drug delivery and tissue engineering has witnessed tremendous progress in recent years due to their unlimited potential to improve human health. Meanwhile, the development of nanotechnology provides opportunities to characterize, manipulate and organize matter systematically at the nanometer scale. Biomaterials with nano-scale organizations have been used as controlled release reservoirs for drug delivery and artificial matrices for tissue engineering. Drug-delivery systems can be synthesized with controlled composition, shape, size and morphology. Their surface properties can be manipulated to increase solubility, immunocompatibility and cellular uptake. The limitations of current drug delivery systems include suboptimal bioavailability, limited effective targeting and potential cytotoxicity. Promising and versatile nano-scale drug-delivery systems include nanoparticles, nanocapsules, nanotubes, nanogels and dendrimers. They can be used to deliver both small-molecule drugs and various classes of biomacromolecules, such as peptides, proteins, plasmid DNA and synthetic oligodeoxynucleotides. Whereas traditional tissue-engineering scaffolds were based on hydrolytically degradable macroporous materials, current approaches emphasize the control over cell behaviors and tissue formation by nano-scale topography that closely mimics the natural extracellular matrix (ECM). The understanding that the natural ECM is a multifunctional nanocomposite motivated researchers to develop nanofibrous scaffolds through electrospinning or self-assembly. Nanocomposites containing nanocrystals have been shown to elicit active bone growth. Drug delivery and tissue engineering are closely related fields. In fact, tissue engineering can be viewed as a special case of drug delivery where the goal is to accomplish controlled delivery of mammalian cells. Controlled release of therapeutic factors in turn will enhance the efficacy of tissue engineering. From a materials point of view, both the drug-delivery vehicles and tissue-engineering scaffolds need to be biocompatible and biodegradable. The biological functions of encapsulated drugs and cells can be dramatically enhanced by designing biomaterials with controlled organizations at the nanometer scale. This review summarizes the most recent development in utilizing nanostructured materials for applications in drug delivery and tissue engineering. PMID:17471764

  3. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case, when polymer is in a dry state or in poor solvent its chains collapse and expose the particulate layer. The goal was to design responsive surface system possessing low adhesiveness in air and in aqueous environments. Two factors provide low adhesion: surface roughness induced by the particles monolayer and fast adapting of low surface/interfacial energy upon changing environmental properties. Surface roughness reduces the total area of the contacting asperities, while selective switching of the surface composition provides a low interfacial energy. In air the hydrophilic polymer chains collapse and uncover hydrophobic particles, while in water the polymer segregates on top of the particles thus lowering surface water interfacial energy. Silica particles coated with mixed polymer brushes have been used for modification of surface wettability. In particular, aqueous dispersions of the modified silica produced superhydrophobic surface coatings. Hydrophobicity of the casted layers was achieved by modification of the particle surface with either polystyrene (PS) or polydimethylsiloxane (PDMS). Stable aqueous dispersions of these particles were obtained by co-grafting of the hydrophilic polymers. Selective segregation of the polymer chains upon changing environment from water to air rendered desired surface properties of colloids in dispersion and in dry state. To achieve superhydrophobic effect, roughness of the casted layers was increased by controlled aggregation of the original nano-sized particles. By depositing their flocks onto substrate surface we created uniformly distributed micro-sized asperities. Being composed of the nanosized particles, large asperities created multiscale surface roughness with a structure similar to the surface of lotus leaves.

  4. Nanostructured Materials for Room-Temperature Gas Sensors.

    PubMed

    Zhang, Jun; Liu, Xianghong; Neri, Giovanni; Pinna, Nicola

    2016-02-01

    Sensor technology has an important effect on many aspects in our society, and has gained much progress, propelled by the development of nanoscience and nanotechnology. Current research efforts are directed toward developing high-performance gas sensors with low operating temperature at low fabrication costs. A gas sensor working at room temperature is very appealing as it provides very low power consumption and does not require a heater for high-temperature operation, and hence simplifies the fabrication of sensor devices and reduces the operating cost. Nanostructured materials are at the core of the development of any room-temperature sensing platform. The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here. Particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations. Finally, some future research perspectives and new challenges that the field of room-temperature sensors will have to address are also discussed. PMID:26662346

  5. A new approach to the fabrication of ``smart`` near-surface nanostructure composites

    SciTech Connect

    Gea, L.; Honda, S.; Boatner, L.A.; Haynes, T.E.; Sales, B.C.; Modine, F.A.; Meldrum, A.; Budai, J.D.; Beckers, L.

    1998-01-01

    A new method for the formation of smart near-surface nanoscale composites has been developed. In this approach, small precipitates of active phases are embedded in the near-surface region of the material that is to be modified by a combination of ion implantation and thermal processing. The dispersion, concentration, and microstructure of the nanocrystals formed in the substrate material can be tailored through a careful choice of processing parameters - making this approach well suited to high value added, high technology applications. The applicability of this approach to forming smart surfaces on otherwise inactive materials was established in the case of VO{sup 2} precipitates which were embedded in Al{sub 2}O{sub 3} single crystals to create a medium suitable for optical applications--including optical data storage. Most recently, this concept has been extended to the fabrication of magnetic field sensitive nanostructured surfaces by forming magnetostrictive precipitates of materials such as Ni or RFe{sub 2} (with R = Tm, Tb, Sm) that are embedded in various single crystal oxide hosts. These nanostructured, active surface composites have been characterized using XRD, RBS, TEM, and magneto-optical techniques.

  6. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  7. High-strength, thermally-stable nanostructured materials

    NASA Astrophysics Data System (ADS)

    Shankar, Ravi

    The properties of two technologically important precipitation-treatable alloys - Al 6061 and Inconel 718, that are deformed to large plastic strains at room temperature by machining, are presented. The strong effect of prior density of precipitates on the consequent microstructure refinement during chip formation was determined by deforming Al 6061 of different tempers to varying levels of strain, by varying the tool rake angle. Chips cut from peak-aged 6061, consisting of a fine dispersion of precipitates, produced the finest microstructure and are composed of sub-100 nm grains. On the other hand, coarser precipitate distributions in over-aged 6061 and an absence of precipitates in solution-treated 6061 resulted in much coarser microstructures. Thermal stability of such nanostructured chips with different levels of strain and precipitate distributions is analyzed by studying evolution of Vickers micro-hardness and microstructure after different heat treatments. Chips produced from the peak-aged temper and over-aged temper soften following heat treatment while those from the solution-treated state first, gain strength before softening. The results are rationalized based on prior studies of the characteristics and kinetics of precipitation and coarsening in Al-Mg-Si systems. It is then demonstrated that precipitate-stabilized nanostructured materials synthesized from a prototypical alloy system - Inconel 718, are extremely stable even after prolonged heat treatment for 240 hours at temperatures as high as one-half of the melting point. This extraordinary thermal stability is traced to the retention of a fine dispersion of precipitates in a nanostructured matrix even after extended heat treatment. It is anticipated that general design principles garnered from understanding of the causal phenomena determining strengthening and thermal stability, can lead to the development of alloy systems for the manufacture of high-strength, thermally-stable nanostructured materials.

  8. Composite structural materials. [aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1980-01-01

    The use of filamentary composite materials in the design and construction of primary aircraft structures is considered with emphasis on efforts to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, and reliability and life prediction. The redesign of a main spar/rib region on the Boeing 727 elevator near its actuator attachment point is discussed. A composite fabrication and test facility is described as well as the use of minicomputers for computer aided design. Other topics covered include (1) advanced structural analysis methids for composites; (2) ultrasonic nondestructive testing of composite structures; (3) optimum combination of hardeners in the cure of epoxy; (4) fatigue in composite materials; (5) resin matrix characterization and properties; (6) postbuckling analysis of curved laminate composite panels; and (7) acoustic emission testing of composite tensile specimens.

  9. Nanostructured BN-Mg composites: features of interface bonding and mechanical properties.

    PubMed

    Kvashnin, Dmitry G; Krasheninnikov, Arkady V; Shtansky, Dmitry; Sorokin, Pavel B; Golberg, Dmitri

    2015-12-23

    Magnesium (Mg) is one of the lightest industrially used metals. However, wide applications of Mg-based components require a substantial enhancement of their mechanical characteristics. This can be achieved by introducing small particles or fibers into the metal matrix. Using first-principles calculations, we investigate the stability and mechanical properties of a nanocomposite made of magnesium reinforced with boron nitride (BN) nanostructures (BN nanotubes and BN monolayers). We show that boron vacancies at the BN/Mg interface lead to a substantial increase in BN/Mg bonding establishing an efficient route towards the development of BN/Mg composite materials with enhanced mechanical properties. PMID:26662205

  10. Nanostructured metal-nanocarbon composites: Production and studying of structural and mechanical properties

    NASA Astrophysics Data System (ADS)

    Prokhorov, V. M.; Blank, V. D.; Bagramov, R. H.; Perfilov, S. A.; Pivovarov, G. I.

    2013-12-01

    In the past two decades, the design methods of nanostructured composites with hierarchical structure consisting of metal-matrix composed nanoparticles and various binding between them - so-called metal-matrix nanocomposites (MNCs) - have intensively develop. At manufacturing MNCs, numerous combinations of matrixes and additives are used. Fabrication methods are an important part of the design process for MNCs, as well. It is anticipated that bulk materials with nanocarbon constituents could have high mechanical properties due to peculiarities of the nanostructure and special properties of its nano-building blocks, such as nanodiamond, fullerenes and nanotubes. In this work we report the design and properties of bulk MNCs containing nanocarbon in metal nanocrystals, and nanocarbon also serves as a binding medium filling interfaces. These works were conducted within 20072012 in TISNCM. We manufactured MNCs by mechanical alloying (high energy ball milling) of the parent materials, such as metals (Fe, Steels, Al, Al-alloys, Cu, W) and refractory carbides (WC, ZrC, TaC, TiC), with nanocarbon followed by high-pressure/high-temperature (HP/HT) treatment. Nanocarbon (C60, soot, graphite and nanodiamond) was used as an additive. New nanostructured and modified by nanocarbon bulk samples has been sintered from appropriate nanoclusters.

  11. Structure and properties of composites based chitosan and carbon nanostructures: atomistic and coarse-grained simulation

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Kolesnikova, A. S.; Grishina, O. A.; Slepchenkov, M. M.

    2015-03-01

    At the present time actual task of the modern materials is the creation of biodegradable biocompatible composite materials possessing high strength properties for medical purposes. One of the most promising biomaterials from a position of creation on their basis super strong nanofibres is chitosan. The aim of this work is a theoretical study of the structural features and physico-mechanical properties of biocomposite materials based on chitosan and carbon nanostructures. As matrix nanocomposite we considered various carbon nano-objects, namely carbon nanotubes and graphene. Using the developed original software complex KVAZAR we built atomistic and coarse-grained models of the biocomposite material. To identify regularities of influence of the configuration of the carbon matrix on the mechanical and electronic properties of biocomposite we carried out a series of numerical experiments using a classical algorithm of molecular dynamics and semi-empirical methods. The obtained results allow us to suggest that the generated biocomposite based on chitosan and carbon nanostructures has high stability and strength characteristics. Such materials can be used in biomedicine as a base material for creating of artificial limbs.

  12. Design and characterization of a conductive nanostructured polypyrrole-polycaprolactone coated magnesium/PLGA composite for tissue engineering scaffolds.

    PubMed

    Liu, Haixia; Wang, Ran; Chu, Henry K; Sun, Dong

    2015-09-01

    A novel biodegradable and conductive composite consisting of magnesium (Mg), polypyrrole-block-ploycaprolactone (PPy-PCL), and poly(lactic-co-glycolic acid) (PLGA) is synthesized in a core-shell-skeleton manner for tissue engineering applications. Mg particles in the composite are first coated with a conductive nanostructured PPy-PCL layer for corrosion resistance via the UV-induced photopolymerization method. PLGA matrix is then added to tailor the biodegradability of the resultant composite. Composites with different composition ratios are examined through experiments, and their material properties are characterized. The in vitro experiments on culture of 293FT-GFP cells show that the composites are suitable for cell growth and culture. Biodegradability of the composite is also evaluated. By adding PLGA matrix to the composite, the degrading time of the composite can last for more than eight weeks, hence providing a longer period for tissue formation as compared to Mg composites or alloys. The findings of this research will offer a new opportunity to utilize a conductive, nanostructured-coated Mg/PLGA composite as the scaffold material for implants and tissue regeneration. PMID:25690806

  13. Piezoelectric composite materials

    NASA Technical Reports Server (NTRS)

    Kiraly, L. J. (inventor)

    1983-01-01

    A laminated structural devices has the ability to change shape, position and resonant frequency without using discrete motive components. The laminate may be a combination of layers of a piezoelectrically active, nonconductive matrix material. A power source selectively places various levels of charge in electrically conductive filaments imbedded in the respective layers to produce various configurations in a predetermined manner. The layers may be electrically conductive having imbedded piezoelectrically active filaments. A combination of layers of electrically conductive material may be laminated to layers of piezoelectrically active material.

  14. Vanadium-based nanostructure materials for secondary lithium battery applications

    NASA Astrophysics Data System (ADS)

    Tan, Hui Teng; Rui, Xianhong; Sun, Wenping; Yan, Qingyu; Lim, Tuti Mariana

    2015-08-01

    Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to ``create'' newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization.

  15. Nanostructured diamond-TiC composites with high fracture toughness

    NASA Astrophysics Data System (ADS)

    Wang, Haikuo; He, Duanwei; Xu, Chao; Tang, Mingjun; Li, Yu; Dong, Haini; Meng, Chuanmin; Wang, Zhigang; Zhu, Wenjun

    2013-01-01

    We report the preparation of nanostructured diamond-TiC composites with high fracture toughness and high hardness starting from a ball-milled mixture of nano-sized Ti3SiC2 and submicron-sized diamond by simultaneously tuning the pressure-temperature conditions. The phase segregation of Ti3SiC2 at pressure of 5.5 GPa were investigated by X-ray diffraction and high resolution transmission electron microscopy, we found that the Ti3SiC2 could decompose into nanosized TiC and amorphous Ti-Si at 600-700 C. The subsequent reaction between diamond and Ti-Si led to an amorphous Ti-Si-C matrix in which diamond and TiC crystals are embedded. With a loading force of 98 N, the measured fracture toughness KIC and Vicker's hardness HV of the synthesized composites reach up to 14 MPa m1/2 and 45.5 GPa, respectively. Our results demonstrate that the nanocrystalline/amorphous bonding matrix could largely enhance the toughness of the brittle composites.

  16. Improving the Capacity of Sodium Ion Battery Using a Virus-Templated Nanostructured Composite Cathode

    SciTech Connect

    Moradi, M; Li, Z; Qi, JF; Xing, WT; Xiang, K; Chiang, YM; Belcher, AM

    2015-05-01

    In this work we investigated an energy-efficient biotemplated route to synthesize nanostructured FePO4 for sodium-based batteries. Self-assembled M13 viruses and single wall carbon nanotubes (SWCNTs) have been used as a template to grow amorphous FePO4 nanoparticles at room temperature (the active composite is denoted as Bio-FePO4-CNT) to enhance the electronic conductivity of the active material. Preliminary tests demonstrate a discharge capacity as high as 166 mAh/g at C/10 rate, corresponding to composition Na0.9FePO4, which along with higher C-rate tests show this material to have the highest capacity and power performance reported for amorphous FePO4 electrodes to date.

  17. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher ultimate strains than nacre and pure GO paper (also synthesized by filtration). Specifically, it exhibits ˜30 times higher fracture energy than filtrated graphene paper and nacre, ˜100 times tougher than filtrated GO paper. Besides reinforced nanocomposites, we further explored the self-assembly of spherical colloids and the templating nanofabrication of moth-eye-inspired broadband antireflection coatings. Binary crystalline structures can be easily accomplished by spin-coating double-layer nonclose-packed colloidal crystals as templates, followed by colloidal templating. The polymer matrix between self-assembled colloidal crystal has been used as a sacrificial template to define the resulting periodic binary nanostructures, including intercalated arrays of silica spheres and polymer posts, gold nanohole arrays with binary sizes, and dimple-nipple antireflection coatings. The binary-structured antireflection coatings exhibit better antireflective properties than unitary coatings. Natural optical structures and nanocomposites teach us a great deal on how to create high performance artificial materials. The bottom-up technologies developed in this thesis are scalable and compatible with standard industrial processes, promising for manufacturing high-performance materials for the benefits of human beings.

  18. Composite structural materials. [aircraft applications

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

    1981-01-01

    The development of composite materials for aircraft applications is addressed with specific consideration of physical properties, structural concepts and analysis, manufacturing, reliability, and life prediction. The design and flight testing of composite ultralight gliders is documented. Advances in computer aided design and methods for nondestructive testing are also discussed.

  19. Nondestructive Characterization of Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1993-01-01

    Increasingly, composite materials are applied to fracture-critical structures of aircraft and spacecraft...Ultrasonics offer the most capable inspection technology and recently developed techniques appear to improve this technology significantly... Recent progress in ultrasonic NDE of composites will be reviewed.

  20. Synthesis and processing of nanostructured BN and BN/Ti composites

    NASA Astrophysics Data System (ADS)

    Horvath, Robert Steven

    Superhard materials, such as cubic-BN, are widely used in machine tools, grinding wheels, and abrasives. Low density combined with high hardness makes c-BN and its composites attractive candidate materials for personnel and vehicular armor. However, improvements in toughness, and ballistic-impact performance, are needed to meet anticipated performance requirements. To achieve such improvements, we have targeted for development nanostructured c-BN, and its composites with Ti. Current research utilizes an experimental high pressure/high temperature (HPHT) method to produce these materials on a laboratory scale. Results from this work should transfer well into the industrial arena, utilizing high-tonnage presses used in the production of synthetic diamond and c-BN. Progress has been made in: (1) HPHT synthesis of cBN powder using Mg as catalyst; (2) HPHT consolidation of cBN powder to produce nanostructured cBN; (3) reactive-HPHT consolidation of mixed cBN/Ti powder to produce nanostructured Ti- or TiB2/TiN-bonded cBN; and (4) reactive-HPHT consolidation of mixed hBN/Ti powder to produce nanostructured Ti-bonded TiB2/TiN or TiB2/TiN. Even so, much remains to be done to lay a firm scientific foundation to enable the reproducible fabrication of large-area panels for armor applications. To this end, Rutgers has formed a partnership with a major producer of hard and superhard materials. The ability to produce hard and superhard nanostructured composites by reacting cBN or hBN with Ti under high pressure also enables multi-layered structures to be developed. Such structures may be designed to satisfy impedance-mismatch requirements for high performance armor, and possibly provide a multi-hit capability. A demonstration has been made of reactive-HPHT processing of multi-layered composites, consisting of alternating layers of superhard Ti-bonded cBN and tough Ti. It is noteworthy that the pressure requirements for processing Ti-bonded cBN, Ti-bonded TiB2/TiN, and their corresponding multi-layered structures are in the 0.1-1.0 GPa range, well within the capabilities of today's hot-pressing technologies; thus scaling this new reactive-HPHT processing technology seems assured. Future research will focus on establishing mechanisms and kinetics of the various phase transformations observed during reactive-HPHT processing, with the objective of being able to optimize processing parameters to generate nanostructured cBN-based and TiB2/TiN-based composites that display superior mechanical properties, particularly under high-strain-rate conditions.

  1. Carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  2. Nanostructure multilayer materials for capacitor energy storage for EH vehicles

    SciTech Connect

    Barbee, T.W. Jr.; Johnson, C.W.

    1995-02-01

    Acceleration and regenerative breaking for electric and hybrid vehicles require high power capacitors to complement energy sources. Large, flat nanostructure multilayer capacitors (NMCS) can provide load balancing capacitance in EHVs of the future. Additional uses include snubber capacitors for power electronics such as motor drives, energy discharge capacitors for lasers, and numerous industrial and military electronics applications [1]. In the present work, we demonstrate the effectiveness of LLNL`s multilayer materials technology by fabricating NMC test films with high energy and power density.

  3. Laser ablation-based methods for nanostructuring of materials

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.

    2009-05-01

    An overview of laser-ablation-based methods for nanofabrication developed by our research group is presented. All methods imply laser-related ablation of material from a solid target and the production of nanoclusters, which are then either deposited on a substrate to form a nanostructured thin film or released to a liquid to form a colloidal nanoparticle solution. Particular attention is given on the absence or presence of the plasmarelated absorption of laser radiation, which provides different nano fabrication regimes. The methods lead to the production of nanomaterials, which are of importance for photonics and biosensing applications.

  4. Controlled way to prepare quasi-1D nanostructures with complex chemical composition in porous anodic alumina.

    PubMed

    Lukatskaya, Maria R; Trusov, Lev A; Eliseev, Andrey A; Lukashin, Alexey V; Jansen, Martin; Kazin, Pavel E; Napolskii, Kirill S

    2011-02-28

    Herein we propose a novel approach to the preparation of quasi-1D nanostructures with various chemical compositions based on infiltration of colloidal solution into the asymmetric anodic alumina membrane. The proposed technique was successfully applied for the preparation of ordered arrays of the magnetically hard anisotropic hexaferrite nanostructures. PMID:21165480

  5. Nanostructured Materials Utilized in Biopolymer-based Plastics for Food Packaging Applications.

    PubMed

    Ghanbarzadeh, Babak; Oleyaei, Seyed Amir; Almasi, Hadi

    2015-01-01

    Most materials currently used for food packaging are nondegradable, generating environmental problems. Several biopolymers have been exploited to develop materials for ecofriendly food packaging. However, the use of biopolymers has been limited because of their usually poor mechanical and barrier properties, which may be improved by adding reinforcing compounds (fillers), forming composites. Most reinforced materials present poor matrix-filler interactions, which tend to improve with decreasing filler dimensions. The use of fillers with at least one nanoscale dimension (nanoparticles) produces nanocomposites. Nanoparticles have proportionally larger surface area than their microscale counterparts, which favors the filler-matrix interactions and the performance of the resulting material. Besides nanoreinforcements, nanoparticles can have other functions when added to a polymer, such as antimicrobial activity, etc. in this review paper, the structure and properties of main kinds of nanostructured materials which have been studied to use as nanofiller in biopolymer matrices are overviewed, as well as their effects and applications. PMID:24798951

  6. Multilayer Electroactive Polymer Composite Material

    NASA Technical Reports Server (NTRS)

    Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)

    2011-01-01

    An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.

  7. Novel Nanostructures Enabled by On-Wire Lithography: New Materials and Architectures

    NASA Astrophysics Data System (ADS)

    Mangelson, Bryan Farrin

    Advances in nanotechnology enable researches to study and utilize new materials properties and are in large part driven by development and improvement of methods for synthesizing nanostructures. This dissertation discuses the advancement of one such method, On-Wire Lithography (OWL), a template directed electrochemical nanostructure synthesis technique. Chapter 2 is a demonstration of what was the first extension of OWL to an inorganic semiconductor material, namely anatase TiO2. The combination of this material with plasmonically active Au disk dimers results in the formation of composite plasmonic-semiconducting nanowires. This is accomplished via the sol-gel electrochemical deposition of Ti precursors on the Au dimers, followed by the selective chemical etching of Ni, and annealing of the Ti gel to form the anatase phase of TiO2. Chapter 3 extends the OWL toolbox to include Pd metal as a material. It is also shown that by taking advantage of the ability of OWL to form small gaps within the nanowire structure, a Pd based hydrogen gas sensor can be achieved. Chapter 4 shows the power of OWL for controlling the geometric architecture of nanowire-based structures. By introducing multiple nanowire dimers within the same structure, a single nanostructure exhibiting multiple plasmon resonances can be made. The spectral response of these structures is tailorable allowing one to create broadband absorbing structures. It is also demonstrated that by precise placement of the nanowire dimers with respect to each other a near field coupling effect can be observed which increases the total extinction of the structure by 12%. In Chapter 5 a composite plasmonic-semiconductor material composed of OWL fabricated nanowire dimers within sheets of Anatase TiO2 is fabricated. Despite the harsh conditions necessary to synthesize crystalline TiO2 sheets, the gapped nanostructures remain intact. Additionally, the optical properties of these structures can be tailored to produce structures with various gap sizes exhibiting different electric field intensities at the metal semiconductor interface. Finally, we show that this composite amplifies the electric field of incident light on it by a factor of 103, which is more that 750 times greater than other types of materials typically used for these systems.

  8. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    PubMed Central

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  9. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves

    NASA Astrophysics Data System (ADS)

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-02-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5–20 nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures.

  10. Facile One-pot Transformation of Iron Oxides from Fe2O3 Nanoparticles to Nanostructured Fe3O4@C Core-Shell Composites via Combustion Waves.

    PubMed

    Shin, Jungho; Lee, Kang Yeol; Yeo, Taehan; Choi, Wonjoon

    2016-01-01

    The development of a low-cost, fast, and large-scale process for the synthesis and manipulation of nanostructured metal oxides is essential for incorporating materials with diverse practical applications. Herein, we present a facile one-pot synthesis method using combustion waves that simultaneously achieves fast reduction and direct formation of carbon coating layers on metal oxide nanostructures. Hybrid composites of Fe2O3 nanoparticles and nitrocellulose on the cm scale were fabricated by a wet impregnation process. We demonstrated that self-propagating combustion waves along interfacial boundaries between the surface of the metal oxide and the chemical fuels enabled the release of oxygen from Fe2O3. This accelerated reaction directly transformed Fe2O3 into Fe3O4 nanostructures. The distinctive color change from reddish-brown Fe2O3 to dark-gray Fe3O4 confirmed the transition of oxidation states and the change in the fundamental properties of the material. Furthermore, it simultaneously formed carbon layers of 5-20?nm thickness coating the surfaces of the resulting Fe3O4 nanoparticles, which may aid in maintaining the nanostructures and improving the conductivity of the composites. This newly developed use of combustion waves in hybridized nanostructures may permit the precise manipulation of the chemical compositions of other metal oxide nanostructures, as well as the formation of organic/inorganic hybrid nanostructures. PMID:26902260

  11. Micro- and Nanostructured Materials for Active Devices and Molecular Electronics

    SciTech Connect

    Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

    2003-10-01

    Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

  12. Tunable nanostructured composite with built-in metallic wire-grid electrode

    SciTech Connect

    Micheli, Davide Pastore, Roberto; Marchetti, Mario; Gradoni, Gabriele

    2013-11-15

    In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ?20 dB, and a blueshift of ?600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

  13. Nanophase and Composite Optical Materials

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

  14. Composite material impregnation unit

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.; Marchello, J. M.; Johnston, N. J.

    1993-01-01

    This memorandum presents an introduction to the NASA multi-purpose prepregging unit which is now installed and fully operational at the Langley Research Center in the Polymeric Materials Branch. A description of the various impregnation methods that are available to the prepregger are presented. Machine operating details and protocol are provided for its various modes of operation. These include, where appropriate, the related equations for predicting the desired prepreg specifications. Also, as the prepregger is modular in its construction, each individual section is described and discussed. Safety concerns are an important factor and a chapter has been included that highlights the major safety features. Initial experiences and observations for fiber impregnation are described. These first observations have given great insight into the areas of future work that need to be addressed. Future memorandums will focus on these individual processes and their related problems.

  15. A study on thermoelectric properties of nanostructured bulk materials

    NASA Astrophysics Data System (ADS)

    Poudel, Bed

    Solid-state cooling and power generation based on thermoelectric effects are attractive for a wide range of applications in power generation, waste heat recovery, air-conditioning, and refrigeration. There have been persistent efforts on improving figure of merit (ZT) since 1950's, but the ZTs of dominant commercial bulk materials have been remained at 1. To improve ZT to a higher value, we have been pursuing an approach based on random nanostructures, based on the idea that the thermal conductivity reduction that is responsible for ZT enhancement in superlattices can be realized in such nanostructures. In this dissertation I will discuss synthesis and characterization of various nanopowders prepared by chemical as well as high-energy ball milling methods. The solid dense samples from nanopowders were prepared by direct current induced hot press (DC hot press) technique. The thermoelectric properties of the hot pressed samples have been studied in detail. In our study, ZT values of 1.4 and 1.2 have been achieved in bulk p- and n-type bismuth telluride alloys respectively. More importantly, in the range of 20--250C, ZT is above 0.8 with a peak ZT of 1.4 at 100C in p-type sample, which makes it not only very useful for cooling but also very efficient for power generation with hot side close to 250C, an efficiency not attainable before due to a reduction in ZT to below 0.25 at that temperature. Power generation efficiency and cooling performance using our hot-pressed samples show better performance than the commercially available samples of these materials. These bulk materials were made by DC hot press technique using nanopowders prepared by high energy ball milling. Microstructure studies and theoretical analysis indicated that the improvement mainly comes from a lower phonon contribution to thermal conductivity due to increased boundaries and defect states. Lead telluride, lead selenide and their alloys using a similar approach have also been studied. In p- and n-type alloys of PbSnTe and AgPbSbTe, ZTs higher than the state-of-the-art PbTe alloys are obtained. The discovery points a new direction to achieve higher ZT in other thermoelectric bulk materials, which we believe will change the thermoelectric energy conversion technology landscape. With the data we obtained, it is clear that a nanoparticle based thermoelectric materials hold significant promise. We already have demonstrated enhanced ZT values in various nanostructured materials and demonstrated the feasibility of the approach. We believe that continued investigation in this area should let us achieve superlattice-like figures of merit, based on these results.

  16. Nanomanufacturing : nano-structured materials made layer-by-layer.

    SciTech Connect

    Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto; Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

    2011-10-01

    Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

  17. Composite materials for space applications

    NASA Technical Reports Server (NTRS)

    Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.

    1990-01-01

    The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.

  18. Thermal Characterization of Nanostructures and Advanced Engineered Materials

    NASA Astrophysics Data System (ADS)

    Goyal, Vivek Kumar

    Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

  19. Fiber composite materials technology development

    SciTech Connect

    Chiao, T.T.

    1980-10-23

    The FY1980 technical accomplishments from the Lawrence Livermore National laboratory (LLNL) for the Fiber Composite Materials Technology Development Task fo the MEST project are summarized. The task is divided into three areas: Engineering data base for flywheel design (Washington University will report this part separately), new materials evaluation, and time-dependent behavior of Kevlar composite strands. An epoxy matrix was formulated which can be used in composites for 120/sup 0/C service with good processing and mechanical properties. Preliminary results on the time-dependent properties of the Kevlar 49/epoxy strands indicate: Fatigue loading, as compared to sustained loading, drastically reduces the lifetime of a Kevlar composie; the more the number of on-off load cycles, the less the lifetime; and dynamic fatigue of the Kevlar composite can not be predicted by current damage theories such as Miner's Rule.

  20. Vanadium-based nanostructure materials for secondary lithium battery applications.

    PubMed

    Tan, Hui Teng; Rui, Xianhong; Sun, Wenping; Yan, Qingyu; Lim, Tuti Mariana

    2015-09-21

    Vanadium-based materials, such as V2O5, LiV3O8, VO2(B) and Li3V2(PO4)3 are compounds that share the characteristic of intercalation chemistry. Their layered or open frameworks allow facile ion movement through the interspaces, making them promising cathodes for LIB applications. To bypass bottlenecks occurring in the electrochemical performances of vanadium-based cathodes that derive from their intrinsic low electrical conductivity and ion diffusion coefficients, nano-engineering strategies have been implemented to "create" newly emerging properties that are unattainable at the bulk solid level. Integrating this concept into vanadium-based cathodes represents a promising way to circumvent the aforementioned problems as nanostructuring offers potential improvements in electrochemical performances by providing shorter mass transport distances, higher electrode/electrolyte contact interfaces, and better accommodation of strain upon lithium uptake/release. The significance of nanoscopic architectures has been exemplified in the literature, showing that the idea of developing vanadium-based nanostructures is an exciting prospect to be explored. In this review, we will be casting light on the recent advances in the synthesis of nanostructured vanadium-based cathodes. Furthermore, efficient strategies such as hybridization with foreign matrices and elemental doping are introduced as a possible way to boost their electrochemical performances (e.g., rate capability, cycling stability) to a higher level. Finally, some suggestions relating to the perspectives for the future developments of vanadium-based cathodes are made to provide insight into their commercialization. PMID:26270235

  1. Nanostructuring superconductors by ion beams: A path towards materials engineering

    SciTech Connect

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  2. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1996-01-23

    A high performance capacitor is described which is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200--300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The ``notepad`` capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  3. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.; O`Brien, D.W.

    1995-05-09

    A high performance capacitor is fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a ``notepad`` configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The notepad capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density. 5 figs.

  4. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1996-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  5. High performance capacitors using nano-structure multilayer materials fabrication

    DOEpatents

    Barbee, Jr., Troy W.; Johnson, Gary W.; O'Brien, Dennis W.

    1995-01-01

    A high performance capacitor fabricated from nano-structure multilayer materials, such as by controlled, reactive sputtering, and having very high energy-density, high specific energy and high voltage breakdown. The multilayer capacitors, for example, may be fabricated in a "notepad" configuration composed of 200-300 alternating layers of conductive and dielectric materials so as to have a thickness of 1 mm, width of 200 mm, and length of 300 mm, with terminals at each end of the layers suitable for brazing, thereby guaranteeing low contact resistance and high durability. The "notepad" capacitors may be stacked in single or multiple rows (series-parallel banks) to increase the voltage and energy density.

  6. Nanostructured photovoltaic materials using conjugated block copolymer assemblies

    NASA Astrophysics Data System (ADS)

    Mastroianni, Sarah E.; Epps, Thomas H., III

    2011-03-01

    Block copolymers containing a conjugated block offer attractive possibilities for creating nanostructured organic photovoltaic (OPV) devices. Current OPV materials suffer from efficiency losses primarily due to a size-scale discrepancy between exciton diffusion length and domain sizes; excitons that do not reach the interface between electron and hole-conducting materials recombine, preventing charge carrier separation. The inherent nature of block-copolymers to self-assemble into well-defined nanoscale structures with domain spacings on the order of exciton diffusion length offers a potential solution for reducing exciton recombination. In this work, allyl-terminated poly(3-hexyl thiophene) or poly(3-decyl thiophene) acting as electron donors are incorporated into the block copolymer chain via a coupling reaction with poly(styrene) or poly(isoprene- b -styrene) derivatives synthesized by anionic polymerization. The resulting block copolymer morphologies are characterized by small angle X-ray scattering and transmission electron microscopy.

  7. Cellular Composites with Ambient and Autoclaved Type of Hardening with Application of Nanostructured Binder

    NASA Astrophysics Data System (ADS)

    Nelyubova, V.; Pavlenko, N.; Netsvet, D.

    2015-11-01

    The research presents the dimensional and structural characteristics of nonhydrational hardening binders - nanostructured binders. Rational areas of their use in composites for construction purposes are given. The paper presents the results of the development of natural hardening foam concrete and aerated autoclaved concrete for thermal insulating and construction and thermal insulating purposes. Thus nanostructured binder (NB) in the composites was used as a primary binder and a high reactive modifier.

  8. Dense, finely, grained composite materials

    DOEpatents

    Dunmead, Stephen D. (Davis, CA); Holt, Joseph B. (San Jose, CA); Kingman, Donald D. (Danville, CA); Munir, Zuhair A. (Davis, CA)

    1990-01-01

    Dense, finely grained composite materials comprising one or more ceramic phase or phase and one or more metallic and/or intermetallic phase or phases are produced by combustion synthesis. Spherical ceramic grains are homogeneously dispersed within the matrix. Methods are provided, which include the step of applying mechanical pressure during or immediately after ignition, by which the microstructures in the resulting composites can be controllably selected.

  9. Materials for Hydrogen Storage: From Complex Hydrides to Functionalized Nanostructures

    NASA Astrophysics Data System (ADS)

    Das, G. P.

    2011-07-01

    The world wide effort for a transition to renewable and clean (i.e. carbon-free) form of energy has resulted in an upsurge of interest in harnessing and utilizing Hydrogen. Apart from being the most abundant element in the universe, hydrogen offers many advantages over other fuels: it is non-toxic, clean to use, and packs more energy per mass than any other fuel. Hydrogen energy production, storage and distribution constitute a multi-disciplinary area of research. Coming to the material issues for solid state storage of hydrogen, the most desirable criteria are high storage capacity, satisfactory kinetics, and optimal thermodynamics. Complex hydrides involving light metals, such as Alanates, Imides, Borates, Amidoboranes etc. show impressive gravimetric efficiencies, although the hydrogen desorption temperatures turn out to be rather high. Apart from complex hydrides, there are other kinds of novel materials that have been investigated, e.g. carbon based materials activated with nano-catalysts, clathrate hydrates, metal-organic complexes, and more recently nanostructured cages viz. fullerenes and nanotubes decorated with simple or transition metals that serve to attract hydrogen in molecular form. In this talk, after giving a broad overview on hydrogen economy, I shall focus on first-principles design of materials for hydrogen storage, from complex hydrides to various kinds of functinalized nanostructures, and discuss the recent results obtained in our laboratory [1-6]. Some outstanding issues and challenges, like how to circumvent the problem of metal clustering on surface, or how to bring down the hydrogen desorption temperature etc. will be discussed.

  10. Material nonlinear analysis of composites

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.

    1991-05-01

    A three dimensional analysis model was developed for the material nonlinear analysis of continuous fiber reinforced composite plates. The respective yield criterion and flow rule or each constituent, namely fiber or matrix, can be used in the model instead of those for the globally smeared anisotropic material. The respective stresses occurring on each constitutent can also be obtained directly from the present model. The model was degenerated into a plate bending analysis model and a two dimensional analysis model. A finite element formulation was derived from the analysis model. Application of the present analysis model along with the finite element formulation to the material nonlinear analyses of composites provided good solutions. Some examples of composite plate bending were solved using the present formulation.

  11. Fundamental study and practical applications of composite colloidal nanostructures

    NASA Astrophysics Data System (ADS)

    Goebl, James Andrew

    In recent years, nanomaterials, defined as materials with a size of < 100 nm in at least one axis, have attracted widespread interest due to their promise in many applications. Due to their small sizes, nanoparticles exhibit unique properties not found in their bulk counterparts, such as superparamagnetism in magnetic nanoparticles, as well as quantized plasma oscillations leading to well-defined extinction peaks in metal nanoparticles. Although many fabrication techniques exist to produce these unique materials, colloidal nanomaterials are of particular importance due to their low cost and ready scalability, and their easy suspension in solutions. Current research focuses on improving syntheses and developing new types of materials with novel properties, as well as studying the underlying mechanisms behind their growth in solution. One area of investigation involves producing composite nanomaterials, which contain two or more different nanoscale components. By making a composite material, it is possible to produce a material which possesses the properties of all of its components, or even a material with entirely new properties. Composite materials can also be produced as intermediates, often with one material acting as a sacrificial template which is later removed, to produce a material with a morphology unattainable with conventional synthesis. In this work, a variety of uses have been explored for colloidal nanoscale composites. First, the mechanism for the seeded growth of 2D silver nanoplates was studied through a marker experiment. Prior to growth, a thin layer of gold was deposited on the plate edges, which defined the original boundary of the nanoplate seed, allowing easy observation of the direction of growth and making it possible to explain previously observed shape transitions during this process. In later work, gold microplates were conjugated to amine-terminated magnetic nanoparticles to create a material which was both anisotropic, magnetic, and highly reflective. This composite was studied as a micron-size actuated mirror system, which was found to have a fast magnetic response and good optical contrast between the "on" and "off" states. Finally, a gold-titania core-shell composite was developed, which proved resistant to high-temperature sintering and was able to photocatalytically produce hydrogen from ethanol.

  12. Lightweight, Thermally Conductive Composite Material

    NASA Technical Reports Server (NTRS)

    Sharp, G. Richard; Loftin, Timothy A.

    1990-01-01

    Aluminum reinforced with carbon fibers superior to copper in some respects. Lightweight composite material has high thermal conductivity. Consists of aluminum matrix containing graphite fibers, all oriented in same direction. Available as sheets, tubes, and bars. Thermal conductivity of composite along fibers rises above that of pure copper over substantial range of temperatures. Graphite/aluminum composite useful in variety of heat-transfer applications in which reduction of weight critical. Used to conduct heat in high-density, high-speed integrated-circuit packages for computers and in base plates for electronic equipment. Also used to carry heat away from leading edges of wings in high-speed airplanes.

  13. Synthesis and mechanical properties of two phase nanostructured aluminum based composites

    NASA Astrophysics Data System (ADS)

    Rajulapati, Koteswararao Venkata

    Nanostructured materials (<100 nm) exhibit novel and superior mechanical properties in comparison to their coarse grained counterparts. However the associated deformation mechanisms are poorly understood. Synthesizing bulk nanocrystalline materials to measure the meaningful/reasonable mechanical properties is still a grand challenge. Although there exist several experimental/theoretical studies on mechanical behavior of single phase materials, studies on the effect of a second phase (soft/hard) on the mechanical behavior of nanocrystalline materials are very limited. Therefore, the thrust of the current work is to synthesize bulk nanostructured two phase materials and to establish the influence of a second phase (soft/hard) on the mechanical properties of two phase materials benchmarked against the corresponding single phase material and to identify the governing mechanics of plasticity at the nano scale. Nanocrystalline aluminum was synthesized using ball milling at room temperature. The resultant powder material was consolidated to the bulk form using warm compaction and argon atmosphere and consolidation using high pressure torsion. The samples after high pressure torsion exhibited high end mechanical properties. The hardness of the nanostructured aluminum (of grain size 32 nm) was as high as 1200 MPa which is 6 times harder than its coarse grained counterpart. Nanocrystalline Al-W composites with varying compositions were synthesized. With the increased addition of W, the hardness of these nanocomposites was increased. This hardness trend followed the behavior predicted by the rule of mixtures based on the volume fractions of Al and W. With the addition of 4 atomic % of W, the strength of the nanocrystalline aluminum was elevated by 70%. Nanocrystalline Al-Pb composites were synthesized by two routes. In the first route, the room temperature ball milled samples were compacted at 573 K in an argon atmosphere. In the second route, the alloys were consolidated in situ during ball milling using a combination of milling at cryogenic temperature and milling at room temperature. Irrespective of the processing sequence employed in the current study, the minute additions of Pb to the nanocrystalline aluminum decreased its strength drastically beyond the projections made by the rule of mixtures. The Pb segregated to the grain boundaries of nanocrystalline aluminum appeared to be making the difference. In situ consolidated nanocrystalline Al-0.7%Pb composite was subjected to high pressure torsion at room temperature. Interestingly, the additional straining caused by the high pressure torsion further weakened the material by 25%. The mean grain size of the nanocrystalline aluminum was the same before and after the HPT. The mechanism for this abnormal behavior is yet to be known. The creep properties of nanostructured aluminum, synthesized using the sequential combination of ball milling at room temperature and high pressure torsion, were evaluated using the impression creep testing. The measured stress exponent values do not correspond to the Coble creep mechanism. However the activation energy measured was that of grain boundary diffusion in aluminum.

  14. Material properties of PDLC composites

    NASA Astrophysics Data System (ADS)

    Klosowicz, Stanislaw J.

    1996-04-01

    Liquid crystal composites, i.e., two phase polymer-liquid crystal systems, are very interesting from a scientific and application point of view. Amongst them the best known is PDLC (polymer dispersed liquid crystal) structure. In this material liquid crystal (LC) droplets, diameter of 0.1 - 10 micrometer are embedded in a polymer matrix. PDLC composites are used for construction of new information displays, image projectors and optical devices. In the presented work essential material requirements for PDLC are given from an application point of view. They concern mainly well-known electro-optical effect of electrically induced transmittance. The examples of experimental results are also presented.

  15. A nanostructured composite based on polyaniline and gold nanoparticles: synthesis and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Venditti, Iole; Fratoddi, Ilaria; Vittoria Russo, Maria; Bearzotti, Andrea

    2013-04-01

    Nanostructured composite materials based on polyaniline (PANI) and gold nanoparticles have been prepared by means of an osmosis based method. Several morphologies have been obtained for the pristine nanoPANI and for nanoPANI-Au composite, ranging from amorphous to sponge-like and spherical shapes. On the basis of this morphological investigation, different materials with high surface area have been selected and tested as chemical interactive materials for room temperature gas and vapor sensing. The resistive sensor devices have been exposed to different vapor organic compounds (VOCs) of interest in the fields of environmental monitoring and biomedical applications, such as toluene, acetic acid, ethanol, methanol, acetonitrile, water, ammonia and nitrogen dioxide. The effect of doping with H2SO4 has been studied for both nanoPANI and nanoPANI-Au samples. In particular, nanoPANI-Au showed sensitivity to ammonia (up to 10 ppm) higher than that to other VOCs or interfering analytes. The facile preparation method and the improved properties achieved for the polyaniline-gold composite materials are significant in the nanomaterials field and have promise for applications in ammonia vapor monitoring.

  16. Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications

    PubMed Central

    Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

    2013-01-01

    The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

  17. Impact response of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivasan, K.

    1991-01-01

    Composite materials composed of carbon fibers and resin matrices offer great promise in reducing the weight of aerospace structures. However they remain extremely vulnerable to out of plane impact loads, which lead to severe losses in strength and stiffness. The results of an experimental program, undertaken to investigate the low velocity impact damage tolerance of composite materials is presented. The objectives were to identify key neat resin/composite properties that lead to enhancement of composite impact damage tolerance and to find a small scale test that predicts compression after impact properties of panels. Five materials were selected for evaluation. These systems represented different classes of material behavior such as brittle epoxy, modified epoxies, and amorphous and semicrystalling thermoplastics. The influence of fiber properties on the impact performance was also studied in one material, i.e., in polyether ether ketone (PEEK). Several 24 and 48 ply quasi-isotropic and 24 ply orthotropic laminates were examined using an instrumented drop weight impactor. Correlations with post impact compression behavior were made.

  18. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    TOXLINE Toxicology Bibliographic Information

    Tulinski M; Jurczyk M

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts).

  19. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.

    PubMed

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    In this work Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite are presented and characterized by means of X-ray diffraction and optical profiling. The samples were synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). In our work we wanted to introduce into stainless steel hydroxyapatite ceramics that have been intensively studied for bone repair and replacement applications. Such applications were chosen because of their high biocompatibility and ability to bond to bone. Since nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels, it is possible that composite made of this steel and HA could improve properties, as well. Mechanical alloying and nitriding are very effective technologies to improve the corrosion resistance of stainless steel. Similar process in case of nanocomposites of stainless steel with hydroxyapatite helps achieve even better mechanical properties and corrosion resistance. Hence nanocrystalline nickel-free stainless steels and nickel-free stainless steel/hydroxyapatite nanocomposites could be promising bionanomaterials for use as a hard tissue replacement implants, e.g., orthopedic implants. In such application, the surface roughness and more specifically the surface topography influences the proliferation of cells (e.g., osteoblasts). PMID:23421285

  20. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1985-01-01

    Research related to growth of an imbedded through-width delamination (ITWD) in a compression loaded composite structural element is presented. Composites with widely different interlaminar fracture resistance were examined, viz., graphite/epoxy (CYCOM 982) and graphite/PEEK (APC-2). The initial part of the program consisted of characterizing the material in tension, compression and shear mainly to obtain consistent material properties for analysis, but also as a check of the processing method developed for the thermoplastic APC-2 material. The characterization of the delamination growth in the ITWD specimen, which for the unidirectional case is essentially a mixed Mode 1 and 2 geometry, requires verified mixed-mode growth criteria for the two materials involved. For this purpose the main emphasis during this part of the investigation was on Mode 1 and 2 fracture specimens, namely the Double Cantilever Beam (DCB) and End Notched Flexure (ENF) specimens.

  1. One dimensional nanostructure/nanoparticle composites as photoanodes for dye-sensitized solar cells.

    PubMed

    Poudel, Prashant; Qiao, Qiquan

    2012-04-28

    Dye-sensitized solar cells (DSCs) show potential as a low cost alternative to silicon solar cells. Power conversion efficiencies exceeding 12% have been achieved for DSCs. Typical DSCs are based on TiO(2) nanoparticle photoanodes, which have numerous grain boundaries, surface defects and trap states as electrons transport from one particle to the other. Such defects and trap states increase back charge transfer (charge recombination) from the photoanode to electrolyte. One dimensional (1D) nanostructures such as nanofibers, nanorods, nanowires, and nanotubes can offer direct and fast electron transport to the electron collecting electrode. However, these 1D nanostructures have a major disadvantage of having insufficient surface area and inefficient dye attachment. To solve this challenge, mixtures of TiO(2) nanoparticles and 1D nanostructures (e.g. nanofibers, nanorods, nanowires, and nanotubes) are used to take advantage of the large surface area of nanoparticles and efficient charge transport of 1D nanostructures. In this article, we review the recent developments in using mixtures of 1D nanostructures and nanoparticles as photoanodes for efficient DSCs. Various randomly oriented and vertically aligned 1D nanostructures and their composites with nanoparticles are discussed. Future increase of efficiency in DSCs using 1D nanostructure/nanoparticle composites will rely on the optimization of diameters of 1D nanostructures, control of ratios of 1D nanostructures and nanoparticles, increase of crystallinity, and reduction of surface defects on the 1D nanostructures. This work will provide guidance for designing and growing appropriate 1D nanostructures, and combining them with nanoparticles at an optimal ratio for efficient DSCs. PMID:22447033

  2. Joining of polymer composite materials

    SciTech Connect

    Magness, F.H.

    1990-11-01

    Under ideal conditions load bearing structures would be designed without joints, thus eliminating a source of added weight, complexity and weakness. In reality the need for accessibility, repair, and inspectability, added to the size limitations imposed by the manufacturing process and transportation/assembly requirements mean that some minimum number of joints will be required in most structures. The designer generally has two methods for joining fiber composite materials, adhesive bonding and mechanical fastening. As the use of thermoplastic materials increases, a third joining technique -- welding -- will become more common. It is the purpose of this document to provide a review of the available sources pertinent to the design of joints in fiber composites. The primary emphasis is given to adhesive bonding and mechanical fastening with information coming from documentary sources as old as 1961 and as recent as 1989. A third, shorter section on composite welding is included in order to provide a relatively comprehensive treatment of the subject.

  3. Durability of aircraft composite materials

    NASA Technical Reports Server (NTRS)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  4. Predicting Properties Of Composite Materials

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.

    1994-01-01

    Micromechanical Combined Stress Analysis (MICSTRAN) computer code provides materials engineers with easy-to-use personal-computer-based software tool to calculate overall properties of composite, given properties of fibers and matrix. Computes overall thermoelastic parameters and stresses by micromechanical analysis. Written in FORTRAN 77.

  5. Welds in thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Taylor, N. S.

    Welding methods are reviewed that can be effectively used for joining of thermoplastic composites and continuous-fiber thermoplastics. Attention is given to the use of ultrasonic, vibration, hot-plate, resistance, and induction welding techniques. The welding techniques are shown to provide complementary weld qualities for the range of thermoplastic materials that are of interest to industrial and technological applications.

  6. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  7. Composite containing coated fibrous material

    SciTech Connect

    Singh, R.N.; Gaddipati, A.R.

    1989-12-26

    This patent describes a process for producing a composite containing at least about 10% by volume of boron nitride coated fibrous material and having a porosity of less than about 20% by volume. It comprises: forming a slurry of infiltration-promoting material and organic binding material in a liquid medium; depositing a coating of boron nitride on fibrous material leaving no significant portion thereof exposed; depositing a silicon-wettable coating on the boron nitride-coated fibrous material leaving no significant portion of the boron nitride exposed; providing the resulting coated fibrous material substantially as a layer; casting the slurry onto the coated fibrous material in an amount sufficient to form a tape therewith; evaporating the liquid medium forming a tape; firing the tape to remove the organic binding material producing a porous body; providing an infiltrant comprised of boron and silicon containing elemental boron in solution in silicon in an amount of at least about 0.1% by weight of elemental silicon; contacting the porous body with infiltrant associated infiltrating means whereby the infiltrant is infiltrated into the porous body; heating the resulting assembly in a partial vacuum to a temperature at which the infiltrant is molten and infiltrating the molten infiltrant into the porous body to produce an infiltrated product; and cooling the product producing the composite.

  8. Mechanical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Thornton, H. Richard; Cornwell, L. R.

    1993-01-01

    A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).

  9. Hot carrier solar cell absorbers: materials, mechanisms and nanostructures

    NASA Astrophysics Data System (ADS)

    Conibeer, Gavin; Shrestha, Santosh; Huang, Shujuan; Patterson, Robert; Xia, Hongze; Feng, Yu; Zhang, Pengfei; Gupta, Neeti; Tayebjee, Murad; Smyth, Suntrana; Liao, Yuanxun; Zhang, Zhilong; Chung, Simon; Lin, Shu; Wang, Pei; Dai, Xi

    2014-10-01

    The hot carrier cell aims to extract the electrical energy from photo-generated carriers before they thermalize to the band edges. Hence it can potentially achieve a high current and a high voltage and hence very high efficiencies up to 65% under 1 sun and 86% under maximum concentration. To slow the rate of carrier thermalisation is very challenging, but modification of the phonon energies and the use of nanostructures are both promising ways to achieve some of the required slowing of carrier cooling. A number of materials and structures are being investigated with these properties and test structures are being fabricated. Initial measurements indicate slowed carrier cooling in III-Vs with large phonon band gaps and in multiple quantum wells. It is expected that soon proof of concept of hot carrier devices will pave the way for their development to fully functioning high efficiency solar cells.

  10. Nano-structured electron transporting materials for perovskite solar cells.

    PubMed

    Liu, Hefei; Huang, Ziru; Wei, Shiyuan; Zheng, Lingling; Xiao, Lixin; Gong, Qihuang

    2016-03-17

    Organic-inorganic hybrid perovskite solar cells have been developing rapidly in the past several years, and their power conversion efficiency has reached over 20%, nearing that of polycrystalline silicon solar cells. Because the diffusion length of the hole in perovskites is longer than that of the electron, the performance of the device can be improved by using an electron transporting layer, e.g., TiO2, ZnO and TiO2/Al2O3. Nano-structured electron transporting materials facilitate not only electron collection but also morphology control of the perovskites. The properties, morphology and preparation methods of perovskites are reviewed in the present article. A comprehensive understanding of the relationship between the structure and property will benefit the precise control of the electron transporting process and thus further improve the performance of perovskite solar cells. PMID:26457406

  11. Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)

    SciTech Connect

    Meilin Liu, James Gole

    2006-12-14

    The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

  12. Energy absorption of composite materials

    NASA Technical Reports Server (NTRS)

    Farley, G. L.

    1983-01-01

    Results of a study on the energy absorption characteristics of selected composite material systems are presented and the results compared with aluminum. Composite compression tube specimens were fabricated with both tape and woven fabric prepreg using graphite/epoxy (Gr/E), Kevlar (TM)/epoxy (K/E) and glass/epoxy (Gl/E). Chamfering and notching one end of the composite tube specimen reduced the peak load at initial failure without altering the sustained crushing load, and prevented catastrophic failure. Static compression and vertical impact tests were performed on 128 tubes. The results varied significantly as a function of material type and ply orientation. In general, the Gr/E tubes absorbed more energy than the Gl/E or K/E tubes for the same ply orientation. The 0/ + or - 15 Gr/E tubes absorbed more energy than the aluminum tubes. Gr/E and Gl/E tubes failed in a brittle mode and had negligible post crushing integrity, whereas the K/E tubes failed in an accordian buckling mode similar to the aluminum tubes. The energy absorption and post crushing integrity of hybrid composite tubes were not significantly better than that of the single material tubes.

  13. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries.

    PubMed

    Wu, Hao Bin; Chen, Jun Song; Hng, Huey Hoon; Lou, Xiong Wen David

    2012-04-21

    The search for new electrode materials for lithium-ion batteries (LIBs) has been an important way to satisfy the ever-growing demands for better performance with higher energy/power densities, improved safety and longer cycle life. Nanostructured metal oxides exhibit good electrochemical properties, and they are regarded as promising anode materials for high-performance LIBs. In this feature article, we will focus on three different categories of metal oxides with distinct lithium storage mechanisms: tin dioxide (SnO(2)), which utilizes alloying/dealloying processes to reversibly store/release lithium ions during charge/discharge; titanium dioxide (TiO(2)), where lithium ions are inserted/deinserted into/out of the TiO(2) crystal framework; and transition metal oxides including iron oxide and cobalt oxide, which react with lithium ions via an unusual conversion reaction. For all three systems, we will emphasize that creating nanomaterials with unique structures could effectively improve the lithium storage properties of these metal oxides. We will also highlight that the lithium storage capability can be further enhanced through designing advanced nanocomposite materials containing metal oxides and other carbonaceous supports. By providing such a rather systematic survey, we aim to stress the importance of proper nanostructuring and advanced compositing that would result in improved physicochemical properties of metal oxides, thus making them promising negative electrodes for next-generation LIBs. PMID:22460594

  14. Composite WO3/TiO2 nanostructures for high electrochromic activity.

    SciTech Connect

    Reyes, Karla Rosa; Stephens, Zachary Dan.; Robinson, David B.

    2013-05-01

    A composite material consisting of TiO2 nanotubes (NTs) with WO3 electrodeposited homogeneously on its surface has been fabricated, detached from its substrate, and attached to a fluorine-doped tin oxide film on glass for application to electrochromic (EC) reactions. A paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length on the current density and the EC contrast of the material were studied. The EC redox reaction seen in this material is diffusion- limited, having relatively fast reaction rates at the electrode surface. The composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast and longer memory time compared with the pure WO3 and TiO2.

  15. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  16. Metal-ceramic/ceramic nanostructured layered composites for solid oxide fuel cells by spark plasma sintering.

    PubMed

    Bezdorozhev, Oleksii; Borodianska, Hanna; Sakka, Yoshio; Vasylkiv, Oleg

    2014-06-01

    In this work, bi-layered Fe-Ni-Co-YSZ/YSZ nanostructured composites for solid oxide fuel cells were obtained using the spark plasma sintering (SPS) technique. The microstructures of the anode and electrolyte were controlled by optimization of SPS consolidation parameters. The resulting bilayers have a full dense YSZ electrolyte and porous Fe-Ni-Co/YSZ anode as well as crack-free and well-bonded anode/electrolyte interface. On the other hand, SPS under non-optimized processing parameters cannot yield the desired results. The high resistance to thermal stresses of the fabricated half-cells was achieved with Fe-Ni-Co/YSZ anode. The developed anode showed higher thermal compatibility with YSZ electrolyte than usual Ni/YSZ cermet. Thus, with the successful combination of SPS parameters and anode material, we have obtained bi-layers for SOFCs with required microstructure and thermal compatibility. PMID:24738374

  17. Composition, nanostructure, and optical properties of silver and silver-copper lusters

    SciTech Connect

    Pradell, Trinitat; Pavlov, Radostin S.; Carolina Gutierrez, Patricia; Climent-Font, Aurelio; Molera, Judit

    2012-09-01

    Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.

  18. Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.

    2013-06-01

    In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 ?m, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

  19. Nanostructure of tetrafunctional epoxy resins and composites: Correlation to moisture absorption properties

    NASA Astrophysics Data System (ADS)

    Bolan, Brett Andrew

    The effect that changes in network topology, while maintaining a constant network polarity (i.e. thermodynamic driving force was kept constant), had upon the moisture absorption properties of an aerospace grade tetrafunctional epoxy (TGMDA) cured with multifunctional amines were investigated. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) to characterize the nanoscale structure of these epoxies, it was found that as the "static" hole volume (a measurement of packing defects at 0K) increased so did the equilibrium uptake. PALS studies of one of these resins cured to varying extents, found that this static amount increased with degree of cure indicating that the network becomes more open as a direct consequence of crosslinking. Polar groups, which are the attractive force for diffusion, are in the vicinity of these crosslinks, therefore it is believed that the increase in static hole volume results in exposing more polar groups for absorption. The diffusion coefficient, which is representative of the kinetic aspect of diffusion, was also investigated. It was discovered that the amount of nanohole volume in the polymer; whether the total, the static, or dynamic (i.e. thermally activated) does not correlate to the diffusion coefficient in anyway. Furthermore, at an isotherm the diffusion coefficients for all these materials were relatively constant. From this it is hypothesized that it is the similar sub-Tsb{g} motions of these resins which is the rate limiting step in diffusion. This was bolstered by the fact that the activation energy for diffusion and for the sub-Tsb{g} motions for these epoxies are of the same order of magnitude. The nanostructure of fiber reinforced epoxy composites (i.e. a boron/epoxy and a graphite/epoxy) were probed with the bulk PALS technique as well. It was observed that for the graphite/epoxy composite and its flash (i.e. no fibers present) cured under identical conditions, that the nanoholes in the composite were larger than those present in the flash at temperatures below the epoxy's Tsb{g}. Curiously the boron/epoxy composite and its flash showed an opposite trend. Several potential explanations were examined. The only viable explanation for the observed nanostructural differences between the flash and the resin in these composites utilizes a micromechanics approach involving the CTE mismatch between the fibers and the matrix material. In this approach it is proposed that the fibers in the composite act as a constraint, preventing the nanohole from freely contracting (upon cooling through Tsb{g}) in the axial direction, while Poisson's ratio forces the holes to contract more in the transverse direction than the unrestrained hole in the flash. Therefore the resultant nanoholes in the composite maybe elongated in the fiber direction and shortened in the transverse direction when below the curing temperature. When the PALS technique probed these elongated holes it averaged their dimensions (but weighted the shortest dimension more heavily), thereby yielding the observed results. Despite slightly smaller static holes in the boron/epoxy composite than its flash, no difference in equilibrium uptake was noticed. The diffusion coefficient for the epoxy resin in this composite was found to be an order of magnitude higher than its flash. Nanostructure is not believed to be the cause of this but rather the glass fiber scrim cloth utilized in the processing of the prepreg.

  20. New Composite Thermoelectric Materials for Macro-size Applications

    ScienceCinema

    Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  1. New Composite Thermoelectric Materials for Macro-size Applications

    SciTech Connect

    Dresselhaus, Mildred

    2008-09-03

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  2. Tetrazoles: Unique Capping Ligands and Precursors for Nanostructured Materials.

    PubMed

    Voitekhovich, Sergei V; Lesnyak, Vladimir; Gaponik, Nikolai; Eychmüller, Alexander

    2015-11-01

    Capping agents play an important role in the colloidal synthesis of nanomaterials because they control the nucleation and growth of particles, as well as their chemical and colloidal stability. During recent years tetrazole derivatives have proven to be advanced capping ligands for the stabilization of semiconductor and metal nanoparticles. Tetrazole-capped nanoparticles can be prepared by solution-phase or solventless single precursor approaches using metal derivatives of tetrazoles. The solventless thermolysis of metal tetrazolates can produce both individual semiconductor nanocrystals and nanostructured metal monolithic foams displaying low densities and high surface areas. Alternatively, highly porous nanoparticle 3D assemblies are achieved through the controllable aggregation of tetrazole-capped particles in solutions. This approach allows for the preparation of non-ordered hybrid structures consisting of different building blocks, such as mixed semiconductor and metal nanoparticle-based (aero)gels with tunable compositions. Another unique property of tetrazoles is their complete thermal decomposition, forming only gaseous products, which is employed in the fabrication of organic-free semiconductor films from tetrazole-capped nanoparticles. After deposition and subsequent thermal treatment these films exhibit significantly improved electrical transport. The synthetic availability and advances in the functionalization of tetrazoles necessitate further design and study of tetrazole-capped nanoparticles for various applications. PMID:26395565

  3. Precursor Derived Nanostructured Si-C-X Materials for Nuclear Applications. Final Report, October 2010 - September 2014

    SciTech Connect

    Bordia, Rajendra; Tomar, Vikas; Henager, Chuck

    2015-04-08

    Polymer derived ceramic route is an attractive approach to make structural materials with unique nanostructures that have very desirable high temperature properties. Processing techniques to make a variety of needed shapes and forms (e.g. coatings, matrices for fiber reinforced composites, porous ceramics) have been developed. With appropriate high temperature processing, the precursors can be converted to nano-crystalline materials. In this collaborative project, we investigated the processing, stability and properties of nanostructured Si-C materials, derived from polymeric precursors, and their performance under conditions appropriate for nuclear energy applications. All the milestones of the project were accomplished. Some of the results are being currently analyzed and additional papers being prepared in which support from NEUP will be acknowledged. So far, eight peer-reviewed papers have been published and one invention disclosure made. In this report, we summarize the major findings of this project.

  4. Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sk, Md Moniruzzaman; Yue, Chee Yoon; Ghosh, Kalyan; Jena, Rajeeb Kumar

    2016-03-01

    Recently, porous nanostructured transition metal oxides with excellent electrochemical performance have become a new class of energy storage materials for supercapacitors. The ever-growing global demand of electrically powered devices makes it imperative to develop renewable, efficient and reliable electrochemical energy storage devices. This review article focuses on the Ni based transition metal oxides and their composite electrode materials including carbons, metals and transition metal oxides for supercapacitor applications, providing an overview on the charge mechanisms, methodologies and nanostructures discovered in recent years, and latest research findings. The NiO and their composites possess higher reversible capacity, good structural stability, and have been studied for usage as novel electrode materials for supercapacitors. Their fine-tuned physical and chemical properties make them ideal candidates for supercapacitor applications as they possess higher accessible electroactive sites, which will provide both high power density and also high energy density. Moreover, synergistic effects can be derived from the constituent materials of the NiO based composite electrodes. The potential problems like device fabrication, measurement techniques, and future prospects of utilizing these materials as supercapacitor electrodes highlighting the fundamental understanding of the relationship between electrochemical and structural performances are also discussed.

  5. Nanostructured materials with biomimetic recognition abilities for chemical sensing

    NASA Astrophysics Data System (ADS)

    Bajwa, Sadia Zafar; Mustafa, Ghulam; Samardzic, Renata; Wangchareansak, Thipvaree; Lieberzeit, Peter A.

    2012-06-01

    Binding features found in biological systems can be implemented into man-made materials to design nanostructured artificial receptor matrices which are suitable, e.g., for chemical sensing applications. A range of different non-covalent interactions can be utilized based on the chemical properties of the respective analyte. One example is the formation of coordinative bonds between a polymerizable ligand (e.g., N-vinyl-2-pyrrolidone) and a metal ion (e.g., Cu(II)). Optimized molecularly imprinted sensor layers lead to selectivity factors of at least 2 compared to other bivalent ions. In the same way, H-bonds can be utilized for such sensing purposes, as shown in the case of Escherichia coli. The respective molecularly imprinted polymer leads to the selectivity factor of more than 5 between the W and B strains, respectively. Furthermore, nanoparticles with optimized Pearson hardness allow for designing sensors to detect organic thiols in air. The `harder' MoS2 yields only about 40% of the signals towards octane thiol as compared to the `softer' Cu2S. However, both materials strongly prefer molecules with -SH functionality over others, such as hydrocarbon chains. Finally, selectivity studies with wheat germ agglutinin (WGA) reveal that artificial receptors yield selectivities between WGA and bovine serum albumin that are only about a factor of 2 which is smaller than natural ligands.

  6. Composite WO3/TiO2 nanostructures for high electrochromic activity

    DOE PAGESBeta

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; Robinson, David B.

    2015-01-06

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performancemore » were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials« less

  7. Improved Silica Aerogel Composite Materials

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

    2008-01-01

    A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

  8. Survey of materials for nanoskiving and influence of the cutting process on the nanostructures produced.

    PubMed

    Lipomi, Darren J; Martinez, Ramses V; Rioux, Robert M; Cademartiri, Ludovico; Reus, William F; Whitesides, George M

    2010-09-01

    This paper examines the factors that influence the quality of nanostructures fabricated by sectioning thin films with an ultramicrotome ("nanoskiving"). It surveys different materials (metals, ceramics, semiconductors, and conjugated polymers), deposition techniques (evaporation, sputter deposition, electroless deposition, chemical-vapor deposition, solution-phase synthesis, and spin-coating), and geometries (nanowires or two-dimensional arrays of rings and crescents). It then correlates the extent of fragmentation of the nanostructures with the composition of the thin films, the methods used to deposit them, and the parameters used for sectioning. There are four major conclusions. (i) Films of soft and compliant metals (those that have bulk values of hardness less than or equal to those of palladium, or ?500 MPa) tend to remain intact upon sectioning, whereas hard and stiff metals (those that have values of hardness greater than or equal to those of platinum, or ?500 MPa) tend to fragment. (ii) All conjugated polymers tested form intact nanostructures. (iii) The extent of fragmentation is lowest when the direction of cutting is perpendicular to the exposed edge of the embedded film. (iv) The speed of cutting-from 0.1 to 8 mm/s-has no effect on the frequency of defects. Defects generated during sectioning include scoring from defects in the knife, delamination of the film from the matrix, and compression of the matrix. The materials tested were: aluminum, titanium, nickel, copper, palladium, silver, platinum, gold, lead, bismuth, germanium, silicon dioxide (SiO2), alumina (Al2O3), tin-doped indium oxide (ITO), lead sulfide nanocrystals, the semiconducting polymers poly(2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV), poly(3-hexylthiophene) (P3HT), and poly(benzimidazobenzophenanthroline ladder) (BBL), and the conductive polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS). PMID:20815347

  9. Methods for high volume production of nanostructured materials

    DOEpatents

    Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

    2011-03-22

    A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

  10. Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles

    NASA Technical Reports Server (NTRS)

    Saether, E.; Pipes, R. B.; Frankland, S. J. V.

    2002-01-01

    Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

  11. Physical properties investigation of nanostructured materials and their applications

    NASA Astrophysics Data System (ADS)

    Zhang, Yi

    Nanostructured materials provide the essential foundation of nanotechnology, some special properties of these materials resulted in many novel applications in various areas of applied science and engineering. Nanoparticles and carbon nanotubes (CNTs) are the nanomaterials that have been found most valuable. First, I will address physical properties of nanoparticles. Optical, chemical and other physical properties of gold/silver nanoparticles have been investigated by optical trapping method. Based on the local electrical field enhanced phenomenon, the surface enhanced Raman scattering (SERS) of the gold/silver nanoparticles aggregates was studied. We have developed also various kinds of optical fiber biosensors based on SERS. Various properties of carbon nanotubes (CNT) have also been studied and characterized. In particular, we have developed a photothermal and scanning thermal probe method to study the thermal conductivity of CNT arrays and individual CNTs. The mechanical properties of the CNT array has been characterized based on experimental obtained the stress-strain relationship. The mechanical compliance of the CNT array was found to have a significant effect on the thermal performance of CNT arrays employed as thermal interface materials (TIMs). In addition, we also developed a method to characterize the bonding strength of the CNT array to its substrate. The adhesion of the CNTs to their substrate was found essential for their application as TIMs. The structural properties of the CNTs were characterized by using a spectroscopy method. The purification of CNT was discussed by using Raman spectroscopy as an applied characterization tool. Raman spectroscopy was also used to study the CNT synthesis conditions.

  12. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures

    PubMed Central

    Zhang, Kun; Zhang, Yue; Wang, Shiren

    2013-01-01

    Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). Graphene helps to improve electrical conductivity while fullerene enhances the Seebeck coefficient and hinders thermal conductivity, resulting in the synergistic effect on enhancing thermoelectric properties. With the integration of nanohybrids, the electrical conductivity increased from ~10000 to ~70000 S/m, the thermal conductivity changed from 0.2 to 2 W·K−1m−1 while the Seebeck coefficient was enhanced by around 4-fold. As a result, nanohybrids-based polymer composites demonstrated the figure of merit (ZT) as high as 6.7 × 10−2, indicating an enhancement of more than one order of magnitude in comparison to single-phase filler-based polymer composites with ZT at the level of 10−3. PMID:24336319

  13. [DNA complexes, formed on aqueous phase surfaces: new planar polymeric and composite nanostructures].

    PubMed

    Antipina, M N; Gaĭnutdinov, R V; Rakhnianskaia, A A; Sergeev-Cherenkov, A N; Tolstikhina, A L; Iurova, T V; Kislov, V V; Khomutov, G B

    2003-01-01

    The formation of DNA complexes with Langmuir monolayers of the cationic lipid octadecylamine (ODA) and the new amphiphilic polycation poly-4-vinylpyridine with 16% of cetylpyridinium groups (PVP-16) on the surface of an aqueous solution of native DNA of low ionic strength was studied. Topographic images of Langmuir-Blodgett films of DNA/ODA and DNA/PVP-16 complexes applied to micaceous substrates were investigated by the method of atomic force microscopy. It was found that films of the amphiphilic polycation have an ordered planar polycrystalline structure. The morphology of planar DNA complexes with the amphiphilic cation substantially depended on the incubation time and the phase state of the monolayer on the surface of the aqueous DNA solution. Complex structures and individual DNA molecules were observed on the surface of the amphiphilic monolayer. Along with quasi-linear individual bound DNA molecules, characteristic extended net-like structures and quasi-circular toroidal condensed conformations of planar DNA complexes were detected. Mono- and multilayer films of DNA/PVP-16 complexes were used as templates and nanoreactors for the synthesis of inorganic nanostructures via the binding of metal cations from the solution and subsequent generation of the inorganic phase. As a result, ultrathin polymeric composite films with integrated DNA building blocks and quasi-linear arrays of inorganic semiconductor (CdS) and iron oxide nanoparticles and nanowires were obtained. The nanostructures obtained were characterized by scanning probe microscopy and transmission electron microscopy techniques. The methods developed are promising for investigating the mechanisms of structural organization and transformation in DNA and polyelectrolyte complexes at the gas-liquid interface and for the design of new extremely thin highly ordered planar polymeric and composite materials, films, and coatings with controlled ultrastructure for applications in nanoelectronics and nanobiotechnology. PMID:14714516

  14. Composite materials based on carbon nanotubes for aerospace applications

    NASA Astrophysics Data System (ADS)

    Bellucci, S.; Balasubramanian, C.; Mancia, F.; Marchetti, M.; Regi, M.; Tombolini, F.

    2005-04-01

    Electrical and mechanical properties of composite materials based on Carbon Nanotubes are considered for aerospace applications. Nanostructured materials gained great importance in the past decade, owing to their wide ranging potential applications in many areas, e.g. mechanical, structural, sensor, biomedical, electronics. Of particular interest are carbon nanotubes, which can be used as a main constituent of composite materials with exceptional mechanical and electrical properties, very suitable for aerospace applications, also due to their light weight, mechanical strength and flexibility. We present results obtained recently in our laboratories concerning the electrical and mechanical properties (including resilience measurement, stress analysis, conductivity) of carbon nanotubes we synthesized by arc discharge and other techniques, embedded in a polymer matrix.

  15. Nanostructured carbon materials based electrothermal air pump actuators

    NASA Astrophysics Data System (ADS)

    Liu, Qing; Liu, Luqi; Kuang, Jun; Dai, Zhaohe; Han, Jinhua; Zhang, Zhong

    2014-05-01

    Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa).Actuator materials can directly convert different types of energy into mechanical energy. In this work, we designed and fabricated electrothermal air pump-type actuators by utilization of various nanostructured carbon materials, including single wall carbon nanotubes (SWCNTs), reduced graphene oxide (r-GO), and graphene oxide (GO)/SWCNT hybrid films as heating elements to transfer electrical stimulus into thermal energy, and finally convert it into mechanical energy. Both the actuation displacement and working temperature of the actuator films show the monotonically increasing trend with increasing driving voltage within the actuation process. Compared with common polymer nanocomposites based electrothermal actuators, our actuators exhibited better actuation performances with a low driving voltage (<10 V), large generated stress (tens of MPa), high gravimetric density (tens of J kg-1), and short response time (few hundreds of milliseconds). Besides that, the pump actuators exhibited excellent stability under cyclic actuation tests. Among these actuators, a relatively larger actuation strain was obtained for the r-GO film actuator due to the intrinsic gas-impermeability nature of graphene platelets. In addition, the high modulus of the r-GO and GO/SWCNT films also guaranteed the large generated stress and high work density. Specifically, the generated stress and gravimetric work density of the GO/SWCNT hybrid film actuator could reach up to more than 50 MPa and 30 J kg-1, respectively, under a driving voltage of 10 V. The resulting stress value is at least two orders of magnitude higher than that of natural muscles (~0.4 MPa). Electronic supplementary information (ESI) available: A movie showing the weight-lifting actuation process of the GO/SWCNT actuator. See DOI: 10.1039/c4nr00536h

  16. Composite materials for fusion applications

    SciTech Connect

    Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

    1991-10-01

    Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

  17. Nanostructured Graphene-Titanium Dioxide Composites Synthesized by a Single-Step Aerosol Process for Photoreduction of Carbon Dioxide

    PubMed Central

    Wang, Wei-Ning; Jiang, Yi; Fortner, John D.; Biswas, Pratim

    2014-01-01

    Abstract Photocatalytic reduction of carbon dioxide (CO2) to hydrocarbons by using nanostructured materials activated by solar energy is a promising approach to recycling CO2 as a fuel feedstock. CO2 photoreduction, however, suffers from low efficiency mainly due to the inherent drawback of fast electron-hole recombination in photocatalysts. This work reports the synthesis of nanostructured composites of titania (TiO2) nanoparticles (NPs) encapsulated by reduced graphene oxide (rGO) nanosheets via an aerosol approach. The role of synthesis temperature and TiO2/GO ratio in CO2 photoreduction was investigated. As-prepared nanocomposites demonstrated enhanced CO2 conversion performance as compared with that of pristine TiO2 NPs due to the strong electron trapping capability of the rGO nanosheets. PMID:25053879

  18. Covalent functionalization of metal oxide and carbon nanostructures with polyoctasilsesquioxane (POSS) and their incorporation in polymer composites

    SciTech Connect

    Gomathi, A.; Gopalakrishnan, K.; Rao, C.N.R.

    2010-12-15

    Polyoctasilsesquioxane (POSS) has been employed to covalently functionalize nanostructures of TiO{sub 2}, ZnO and Fe{sub 2}O{sub 3} as well as carbon nanotubes, nanodiamond and graphene to enable their dispersion in polar solvents. Covalent functionalization of these nanostructures with POSS has been established by electron microscopy, EDAX analysis and infrared spectroscopy. On heating the POSS-functionalized nanostructures, silica-coated nanostructures are obtained. POSS-functionalized nanoparticles of TiO{sub 2}, Fe{sub 2}O{sub 3} and graphite were utilized to prepare polymer-nanostructure composites based on PVA and nylon-6,6.

  19. Synthesis and applications of bioinspired inorganic nanostructured materials

    NASA Astrophysics Data System (ADS)

    Bassett, David C.

    2011-12-01

    Although the study of biominerals may be traced back many centuries, it is only recently that biological principles have been applied to synthetic systems in processes termed "biomimetic" and "bioinspired" to yield materials syntheses that are otherwise not possible and may also reduce the expenditure of energy and/or eliminate toxic byproducts. Many investigators have taken inspiration from interesting and unusual minerals formed by organisms, in a process termed biomineralisation, to tailor the nanostructure of inorganic materials not necessarily found biogenically. However, the fields of nanoparticle synthesis and biomineralisation remain largely separate, and this thesis is an attempt to apply new studies on biomineralisation to nanomaterials science. Principally among the proteins that influence biomineralisation is a group comprised largely of negatively charged aspartic acid residues present in serum. This study is an investigation determining the ability of these serum proteins and other anolagous biomolecules to stabilise biologically relevant amorphous minerals and influence the formation of a variety of materials at the nanoscale. Three different materials were chosen to demonstrate this effect; gold was templated into nanosized single crystals by the action of bioorganic molecules, and the utility of these nanoparticles as a biosensor was explored. The influence of bioorganic molecules on the phase selection and crystal size restriction of titanium dioxide, an important semiconductor with many applications, was explored. The use of bioorganically derived nanoparticles of titanium dioxide was then demonstrated as a highly efficient photocatalyst. Finally, calcium carbonate, a prevalent biomineral was shown to form highly ordered structures over a variety of length scales and different crystalline polymorphs under the influence of a templating protein. In addition, an alternative route to producing calcium phosphate nanoparticle dispersions by mechanical filtration was explored and use as a transfection vector was optimised in two cell lines. Several significant achievements are presented: (i) the assessment of the relative ability of serum, serum derived proteins and their analogues to stabilize the amorphous state, (ii) the formation of single crystalline gold templated by an antibody, (iii) the formation of highly photocatalytically active nanoparticulate anatase by a phosphorylated cyclic esther, (iv) the formation of conical structures at the air liquid interface by the templating ability of a protein and (v) the optimisation of calcium phosphate nanoparticle mediated transfection in two cell lines by mechanical filtration.

  20. Synthesis of branched metal nanostructures with controlled architecture and composition

    NASA Astrophysics Data System (ADS)

    Ortiz, Nancy

    On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental principles of coordination chemistry and nanoparticle formation, with a stronger foundation for the predictive synthesis of future nanomaterials with controllable structural features.

  1. Nanostructured materials for ocular delivery: nanodesign for enhanced bioadhesion, transepithelial permeability and sustained delivery.

    PubMed

    Kim, Jean; Schlesinger, Erica B; Desai, Tejal A

    2015-12-01

    Effective drug delivery to the eye is an ongoing challenge due to poor patient compliance coupled with numerous physiological barriers. Eye drops for the front of the eye and ocular injections for the back of the eye are the most prevalent delivery methods, both of which require relatively frequent administration and are burdensome to the patient. Novel drug delivery techniques stand to drastically improve safety, efficacy and patient compliance for ocular therapeutics. Remarkable advances in nanofabrication technologies make the application of nanostructured materials to ocular drug delivery possible. This article focuses on the use of nanostructured materials with nanoporosity or nanotopography for ocular delivery. Specifically, we discuss nanotopography for enhanced bioadhesion and permeation and nanoporous materials for controlled release drug delivery. As examples, application of polymeric nanostructures for greater transepithelial permeability, nanostructured microparticles for enhanced preocular retention time and nanoporous membranes for tuning drug release profile are covered. PMID:26652282

  2. Morphology and composition controlled synthesis of flower-like silver nanostructures

    PubMed Central

    2014-01-01

    Flower-like silver nanostructures with controlled morphology and composition were prepared through wet-chemical synthesis. The reaction rate is simply manipulated by the amount of catalyzing agent ammonia added which is the key point to determine the ratio of hexagonal close-packed (HCP) to face-centered cubic (FCC) phase in silver nanostructures. The existence of formic acid that is the oxidation product of aldehyde group is demonstrated to play a crucial role in achieving the metastable HCP crystal structures by replacing ionic surfactants with polyvinylpyrrolidone (PVP). Utilizing flower-like silver nanostructures as surface-enhanced Raman scattering (SERS) substrates, Raman signal of Rhodamine 6G, or 4-aminothiophenol with concentration as low as 10?7M was detected. Moreover, it is demonstrated that phase composition has no direct relation to the SERS enhancing factor which is mainly determined by the amount of hot spots. PMID:24994957

  3. Metal-polymer composite with nanostructured filler particles and amplified physical properties

    NASA Astrophysics Data System (ADS)

    Bloor, D.; Graham, A.; Williams, E. J.; Laughlin, P. J.; Lussey, D.

    2006-03-01

    The limits of conductivity of a novel elastomeric matrix-nanostructured nickel powder composite are reported. The conductivity falls by a factor of ⩾2×1014 for compression and by a similar amount in extension. Uncompressed and highly compressed composite displays ohmic behavior but between these limits the current-voltage characteristics are highly nonlinear. The matrix intimately coats the filler so that even above the expected percolation threshold the composite has a very low conductivity. The conductivity of the composite is increased under all mechanical deformations. These and other unusual properties are amplified versions of smaller effects seen in composites containing less highly structured fillers.

  4. Space processing of composite materials

    NASA Technical Reports Server (NTRS)

    Steurer, W. H.; Kaye, S.

    1975-01-01

    Materials and processes for the testing of aluminum-base fiber and particle composites, and of metal foams under extended-time low-g conditions were investigated. A wetting and dispersion technique was developed, based on the theory that under the absence of a gas phase all solids are wetted by liquids. The process is characterized by a high vacuum environment and a high temperature cycle. Successful wetting and dispersion experiments were carried out with sapphire fibers, whiskers and particles, and with fibers of silicon carbide, pyrolytic graphite and tungsten. The developed process and facilities permit the preparation of a precomposite which serves as sample material for flight experiments. Low-g processing consists then merely in the uniform redistribution of the reinforcements during a melting cycle. For the preparation of metal foams, gas generation by means of a thermally decomposing compound was found most adaptable to flight experiments. For flight experiments, the use of compacted mixture of the component materials limits low-g processing to a simple melt cycle.

  5. Synthesis of nanostructured materials for biosensor and fuel cell applications

    NASA Astrophysics Data System (ADS)

    Gil, Maria Paula

    Nanotechnology has attracted the attention of many different fields due to the new and exiting possibilities it entails. However, the future of nanotechnology depends on (i) the successful understanding and discovery of material properties at the nanoscale, (ii) efficient manufacture of nanoscale materials, and (iii) most importantly, incorporation of nanomaterials into real world applications and devices. The purpose of this research is to synthesize macroscale materials for applications such as fuel cell membranes or biosensors by assembly or modification at the nanoscale. This research is concentrated in two main projects. The first project focuses on the direct synthesis of a PEEK fuel cell membrane from sulfonated monomers with nanoscale features. S-PEEK membranes were evaluated for possible fuel cell applications by determining the degree of sulfonation, water swelling, proton conductivity, methanol diffusivity and thermal stability. As synthesized S-PEEK membranes exhibit conductivities (25C) from 0.02--0.07 S/cm, water swelling from 13--54%, ion-exchange capacities (IEC) from 0.7--1.5 mmol/g and methanol diffusion coefficients from 3 x 10-7 --5 x 10-8 cm2/s at 25C. These diffusion coefficients are much lower than that of NafionRTM (2 x 10-6 cm2/s), making S-PEEK membranes a good alternative to reduce problems associated with high methanol crossover in direct methanol fuel cells. The second project consists of synthesizing (2D) or (3D) nanowire thin film Pt electrodes for applications as glucose sensors. Although platinum nanowires have shown to have unique properties, it is still challenging to fabricate nanowire devices such as sensors. This research reports the fabrication of platinum nanowires into continuous thin film electrodes and the application as biosensors. The electrodes were synthesized by the following steps: (1) construction of a nanostructured mesoporous thin film template by self-assembly of surfactant and silicate species, (2) electrodeposition of platinum within the pores of the silica template, (3) removal of the silica template, and (4) immobilization of the enzyme on the platinum electrodes. SEM, TEM, chronoamperometry and cyclic voltammetry were used to characterize the electrodes. The sensor sensitivity was determined amperometrically. The sensors show improved sensitivities and stabilities, providing a promising approach to integrate nanowires into useful devices.

  6. Nanostructured metal-polyaniline composites and applications thereof

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  7. Design, fabrication, and testing of nanostructured carbons and composites

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyong

    Many applications, such as catalysis, sensing, separation and energy storage and conversion, will benefit from the miniaturization of materials to nanometer length scales. This dissertation details my study of nanocomposites based on three-dimensionally ordered macroporous (3DOM) carbons and zirconia, and three-dimensionally ordered macroporous/mesoporous (3DOM/m) carbons. The macropores of these materials were produced using colloidal crystal templates while the mesopores were generated using surfactant templates. These solids are composed of close-packed and three-dimensionally interconnected spherical macropores surrounded by nanoscale solid or mesoporous wall skeletons. This unique architecture offers large surface areas, pore volumes, and good access into the bulk via a macroporous network. 3DOM carbons have been demonstrated as promising electrode materials for lithium ion batteries and sensors, but their electrochemical performance still needs to be improved. As a model system for the modification of the electrode, 3DOM C/TiO2 was synthesized by fabricating a conformal coating of TiO2 nanoparticles on the macropore walls of 3DOM C. My research further extended the micro-structural design of monolithic carbon from 3DOM to 3DOM/m. 3DOM/m C monoliths with high surface areas, controllable mesopore sizes, and mesopore ordering, were synthesized by three methods. One of the methods is simpler and more environment benign than previously reported methods. The mesopores in 3DOM/m C-based electrode provide room to accommodate secondary phases, such as graphitic carbon, SnO2 and Si which can improve the conductivity or lithium capacity of the electrode. Owing to this advantage, 3DOM/m C/C and 3DOM/m C/SnO2 exhibited significantly improved rate performance, lithium capacity and cycleability, compared with 3DOM C. To meet the demands of nano-sized functional materials in applications such as nano-device fabrication and drug delivery, mesoporous carbon nanoparticles with cubic, spherical and tetrapod shapes were also synthesized. In addition, new methods were developed to assemble nanocomposites of bifunctional catalyst components. These materials were designed for the potential direct conversion of synthesis gas to clean liquid fuels. Coatings of zeolite and cobalt nanoparticles were fabricated on 3DOM promoted zirconia. The 3DOM zirconia-based nanocomposites were characterized by a wide variety of techniques to illustrate their morphologies, internal structures, chemical compositions, porosity, and crystallographic phases.

  8. FEM analysis of spur gears forging from nano-structured materials

    NASA Astrophysics Data System (ADS)

    Salcedo, D.; Luis-Prez, C. J.; Luri, R.; Len, J.

    2012-04-01

    The ECAE process is a novel technology which allows us to obtain materials with sub-micrometric and/or nanometric grain size as a result of accumulating very high levels of plastic deformation in the presence of a high hydrostatic pressure. This avoids the fracture of the material and allows us to obtain very high values of plastic deformation (? >>1). Therefore, these nano-structured materials can be used as starting materials for other manufacturing processes such as: extrusion, rolling and forging, among others; with the advantage of providing nanostructure and hence, improved mechanical properties. In this present work, the forging by finite element method (FEM) of materials that have been previously processed by ECAE is analyzed. MSC. MarcTM software will be employed with the aim of analyzing the possibility of manufacturing mechanical components (spur gears) from materials nano-structured by ECAE.

  9. Tuning the composition and nanostructure of Pt/Ir films via anodized aluminum oxide templated atomic layer deposition.

    SciTech Connect

    Comstock, D. J.; Christensen, S. T.; Elam, J. W.; Pellin, M. J.; Hersam, M. C.; Northwestern Univ.

    2010-09-23

    Nanostructured metal films have been widely studied for their roles in sensing, catalysis, and energy storage. In this work, the synthesis of compositionally controlled and nanostructured Pt/Ir films by atomic layer deposition (ALD) into porous anodized aluminum oxide templates is demonstrated. Templated ALD provides advantages over alternative synthesis techniques, including improved film uniformity and conformality as well as atomic-scale control over morphology and composition. Nanostructured Pt ALD films are demonstrated with morphological control provided by the Pt precursor exposure time and the number of ALD cycles. With these approaches, Pt films with enhanced surface areas, as characterized by roughness factors as large as 310, are reproducibly synthesized. Additionally, nanostructured Ptlr alloy films of controlled composition and morphology are demonstrated by templated ALD, with compositions varying systematically from pure Pt to pure Ir. Lastly, the application of nanostructured Pt films to electrochemical sensing applications is demonstrated by the non-enzymatic sensing of glucose.

  10. Aerosol route to functional nanostructured inorganic and hybrid porous materials.

    PubMed

    Boissiere, Cedric; Grosso, David; Chaumonnot, Alexandra; Nicole, Lionel; Sanchez, Clement

    2011-02-01

    The major advances in the field of the designed construction of hierarchically structured porous inorganic or hybrid materials wherein multiscale texturation is obtained via the combination of aerosol or spray processing with sol-gel chemistry, self-assembly and multiple templating are the topic of this review. The available materials span a very large set of structures and chemical compositions (silicates, aluminates, transition metal oxides, nanocomposites including metallic or chalcogenides nanoparticles, hybrid organic-inorganic, biohybrids). The resulting materials are manifested as powders or smart coatings via aerosol-directed writing combine the intrinsic physical and chemical properties of the inorganic or hybrid matrices with defined multiscale porous networks having a tunable pore size and connectivity, high surface area and accessibility. Indeed the combination of soft chemical routes and spray processing provides "a wind of change" in the field of "advanced materials". These strategies give birth to a promising family of innovative materials with many actual and future potential applications in various domains such as catalysis, sensing, photonic and microelectronic devices, nano-ionics and energy, functional coatings, biomaterials, multifunctional therapeutic carriers, and microfluidics, among others. PMID:20963791

  11. Nanostructured carbon-metal oxide composite electrodes for supercapacitors: a review.

    PubMed

    Zhi, Mingjia; Xiang, Chengcheng; Li, Jiangtian; Li, Ming; Wu, Nianqiang

    2013-01-01

    This paper presents a review of the research progress in the carbon-metal oxide composites for supercapacitor electrodes. In the past decade, various carbon-metal oxide composite electrodes have been developed by integrating metal oxides into different carbon nanostructures including zero-dimensional carbon nanoparticles, one-dimensional nanostructures (carbon nanotubes and carbon nanofibers), two-dimensional nanosheets (graphene and reduced graphene oxides) as well as three-dimensional porous carbon nano-architectures. This paper has described the constituent, the structure and the properties of the carbon-metal oxide composites. An emphasis is placed on the synergistic effects of the composite on the performance of supercapacitors in terms of specific capacitance, energy density, power density, rate capability and cyclic stability. This paper has also discussed the physico-chemical processes such as charge transport, ion diffusion and redox reactions involved in supercapacitors. PMID:23151936

  12. Delamination growth in composite materials

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.; Rothschilds, R.; Trethewey, B.; Smiley, A.

    1986-01-01

    The Double Cantilever Beam (DCB) and the End Notched Flexure (ENF) specimens are employed to characterize MODE I and MODE II interlaminar fracture resistance of graphite/epoxy (CYCOM 982) and graphite/PEEK (APC2) composites. Sizing of test specimen geometries to achieve crack growth in the linear elastic regime is presented. Data reduction schemes based upon beam theory are derived for the ENF specimen and include the effects of shear deformation and friction between crack surfaces on compliance, C, and strain energy release rate, G sub II. Finite element (FE) analyses of the ENF geometry including the contact problem with friction are presented to assess the accuracy of beam theory expressions for C and G sub II. Virtual crack closure techniques verify that the ENF specimen is a pure Mode II test. Beam theory expressions are shown to be conservative by 20 to 40 percent for typical unidirectional test specimen geometries. A FE parametric study investigating the influence of delamination length and depth, span, thickness and material properties on G sub II is presented. Mode I and II interlaminar fracture test results are presented. Important experimental parameters are isolated, such as precracking techniques, rate effects, and nonlinear load-deflection response. It is found that subcritical crack growth and inelastic materials behavior, responsible for the observed nonlinearities, are highly rate-dependent phenomena with high rates generally leading to linear elastic response.

  13. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  14. Interface-dependent nucleation in nanostructured layered composites

    NASA Astrophysics Data System (ADS)

    Beyerlein, Irene J.; Wang, Jian; Zhang, Ruifeng

    2013-09-01

    Nanocomposite properties are to a large extent governed by interface-associated mechanisms. Via atomic-scale modeling of bi-phase interfaces, we reveal a strong correlation between interface structure and the nucleation of dislocations. We show that the number and types of dislocations that are emitted depend sensitively on a few key structural features of the interface. Based on these insights, a model is developed that connects nucleation propensity with interface structure. This finding implies that tuning interface structure is a conceivable approach for strengthening nanocomposites, one that is distinct from the common strategy of shrinking nanostructure dimensions.

  15. High Frequency Induction Heated Synthesis and Consolidation of Nanostructured TaSi2-WSi2 Composite.

    PubMed

    Shon, In-Jin; Kang, Hyun-Su

    2015-07-01

    A dense nanostructured TaSi2-WSi2 composite was simultaneously synthesized and sintered by the high frequency induction heating method within 2 minutes from mechanically activated powder of Ta, W and Si. A highly-dense TaSi2-WSi2 composite was produced under simultaneous application of a 80 MPa pressure and the induced current. The mechanical properties and microstructure were investigated. PMID:26373162

  16. One dimensional semiconductor nanostructures: An effective active-material for terahertz detection

    SciTech Connect

    Vitiello, Miriam S. Viti, Leonardo; Ercolani, Daniele; Sorba, Lucia; Coquillat, Dominique; Knap, Wojciech

    2015-02-01

    One-dimensional (1D) nanostructure devices are at the frontline of studies on future electronics, although issues like massive parallelization, doping control, surface effects, and compatibility with silicon industrial requirements are still open challenges. The recent progresses in atomic to nanometer scale control of materials morphology, size, and composition including the growth of axial, radial, and branched nanowire (NW)-based heterostructures make the NW an ideal building block for implementing rectifying diodes or detectors that could be well operated into the Terahertz (THz), thanks to their typical achievable attofarad-order capacitance. Here, we report on our recent progresses in the development of 1D InAs or InAs/InSb NW-based field effect transistors exploiting novel morphologies and/or material combinations effective for addressing the goal of a semiconductor plasma-wave THz detector array technology. Through a critical review of material-related parameters (NW doping concentration, geometry, and/or material choice) and antenna-related issues, here we underline the crucial aspects that can affect detection performance across the THz frequency region.

  17. Polyolefin composites containing a phase change material

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  18. Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials.

    PubMed

    Feng, Shien-Ping; Chang, Ya-Huei; Yang, Jian; Poudel, Bed; Yu, Bo; Ren, Zhifeng; Chen, Gang

    2013-05-14

    A cost-effective and reliable Ni-Au contact on nanostructured Bi2Te3-based alloys for a solar thermoelectric generator (STEG) is reported. The use of MPS SAMs creates a strong covalent binding and more nucleation sites with even distribution for electroplating contact electrodes on nanostructured thermoelectric materials. A reliable high-performance flat-panel STEG can be obtained by using this new method. PMID:23531997

  19. Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites

    SciTech Connect

    Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing

    2008-10-06

    Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

  20. Silicon-embedded copper nanostructure network for high energy storage

    DOEpatents

    Yu, Tianyue

    2016-03-15

    Provided herein are nanostructure networks having high energy storage, electrochemically active electrode materials including nanostructure networks having high energy storage, as well as electrodes and batteries including the nanostructure networks having high energy storage. According to various implementations, the nanostructure networks have high energy density as well as long cycle life. In some implementations, the nanostructure networks include a conductive network embedded with electrochemically active material. In some implementations, silicon is used as the electrochemically active material. The conductive network may be a metal network such as a copper nanostructure network. Methods of manufacturing the nanostructure networks and electrodes are provided. In some implementations, metal nanostructures can be synthesized in a solution that contains silicon powder to make a composite network structure that contains both. The metal nanostructure growth can nucleate in solution and on silicon nanostructure surfaces.

  1. Composite material and method of making

    SciTech Connect

    Fryxell, Glen E.; Samuels, William D.; Simmons, Kevin L.

    2004-04-20

    The composite material and methods of making the present invention rely upon a fully dense monolayer of molecules attached to an oxygenated surface at one end, and an organic terminal group at the other end, which is in turn bonded to a polymer. Thus, the composite material is a second material chemically bonded to a polymer with fully dense monolayer there between.

  2. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  3. Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites

    PubMed Central

    Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming

    2014-01-01

    Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

  4. Method for machining holes in composite materials

    NASA Technical Reports Server (NTRS)

    Daniels, Julia G. (Inventor); Ledbetter, Frank E., III (Inventor); Clemons, Johnny M. (Inventor); Penn, Benjamin G. (Inventor); White, William T. (Inventor)

    1987-01-01

    A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

  5. Distribution patterns of different carbon nanostructures in silicon nitride composites.

    PubMed

    Tapasztó, Orsolya; Markó, Márton; Balázsi, Csaba

    2012-11-01

    The dispersion properties of single- and multi-walled carbon nanotubes as well as mechanically exfoliated few layer graphene flakes within the silicon nitride ceramic matrix have been investigated. Small angle neutron scattering experiments have been employed to gain information on the dispersion of the nano-scale carbon fillers throughout the entire volume of the samples. The neutron scattering data combined with scanning electron microscopy revealed strikingly different distribution patterns for different types of carbon nanostructures. The scattering intensities for single wall carbon nanotubes (SWCNTs) reveal a decay exponent characteristic to surface fractals, which indicate that the predominant part of nanotubes can be found in loose networks wrapping the grains of the polycrystalline matrix. By contrast, multi wall carbon nanotubes (MWCNTs) were found to be present mainly in the form of bulk aggregate structures, while few-layer graphene (FLG) flakes have been individually dispersed within the host matrix, under the very same preparation and processing conditions. PMID:23421284

  6. Quantum Simulations of Materials and Nanostructures (Q-SIMAN). Final Report

    SciTech Connect

    Galli, Giulia; Bai, Zhaojun; Ceperley, David; Cai, Wei; Gygi, Francois; Marzari, Nicola; Pickett, Warren; Spaldin, Nicola; Fattebert, Jean-Luc; Schwegler, Eric

    2015-09-16

    The focus of this SciDAC SAP (Scientific Application) is the development and use of quantum simulations techniques to understand materials and nanostructures at the microscopic level, predict their physical and chemical properties, and eventually design integrated materials with targeted properties. (Here the word ‘materials’ is used in a broad sense and it encompasses different thermodynamic states of matter, including solid, liquids and nanostructures.) Therefore our overarching goal is to enable scientific discoveries in the field of condensed matter and advanced materials through high performance computing.

  7. Morphology and microstructure of composite materials

    NASA Technical Reports Server (NTRS)

    Tiwari, S. N.; Srinivansan, K.

    1991-01-01

    Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

  8. Composite structural materials. [fiber reinforced composites for aircraft structures

    NASA Technical Reports Server (NTRS)

    Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

    1981-01-01

    Physical properties of fiber reinforced composites; structural concepts and analysis; manufacturing; reliability; and life prediction are subjects of research conducted to determine the long term integrity of composite aircraft structures under conditions pertinent to service use. Progress is reported in (1) characterizing homogeneity in composite materials; (2) developing methods for analyzing composite materials; (3) studying fatigue in composite materials; (4) determining the temperature and moisture effects on the mechanical properties of laminates; (5) numerically analyzing moisture effects; (6) numerically analyzing the micromechanics of composite fracture; (7) constructing the 727 elevator attachment rib; (8) developing the L-1011 engine drag strut (CAPCOMP 2 program); (9) analyzing mechanical joints in composites; (10) developing computer software; and (11) processing science and technology, with emphasis on the sailplane project.

  9. PROPERTIES AND NANOSTRUCTURES OF NANO-MATERIALS PROCESSED BY SEVERE PLASTIC DEFORMATION (SPD)

    SciTech Connect

    Y. T. ZHU

    2001-03-01

    Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. The combination of ultrafine grain size and high-density dislocations appears to enable deformation by new mechanisms not active in coarse-grained metals and alloys. These results demonstrate the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. Nanostructured metals and alloys processed by SPD techniques have unique nanostructures not observed in nano-materials synthesized by other techniques such as the consolidation of nanopowders. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. Future studies are needed to investigate the deformation mechanisms that relate the unique nanostructures with the superior mechanical properties exhibited by SPD-processed metals and alloys.

  10. Process for producing dispersed particulate composite materials

    DOEpatents

    Henager, Jr., Charles H. (Richland, WA); Hirth, John P. (Viola, ID)

    1995-01-01

    This invention is directed to a process for forming noninterwoven dispersed particulate composite products. In one case a composite multi-layer film product comprises a substantially noninterwoven multi-layer film having a plurality of discrete layers. This noninterwoven film comprises at least one discrete layer of a first material and at least one discrete layer of a second material. In another case the first and second materials are blended together with each other. In either case, the first material comprises a metalloid and the second material a metal compound. At least one component of a first material in one discrete layer undergoes a solid state displacement reaction with at least one component of a second material thereby producing the requisite noninterwoven composite film product. Preferably, the first material comprises silicon, the second material comprises Mo.sub.2 C, the third material comprises SiC and the fourth material comprises MoSi.sub.2.

  11. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  12. Dispersive transport of charge carriers in disordered nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sibatov, R. T.; Uchaikin, V. V.

    2015-07-01

    Dispersive transport of charge carriers in disordered nanostructured semiconductors is described in terms of integral diffusion equations nonlocal in time. Transient photocurrent kinetics is analyzed for different situations. Relation to the fractional differential approach is demonstrated. Using this relation provides specifications in interpretation of the time-of-flight data. Joint influence of morphology and energy distribution of localized states is described in frames of the trap-limited advection-diffusion on a comb structure modeling a percolation cluster.

  13. Microstructure and mechanical properties of 7075 aluminum alloy nanostructured composites processed by mechanical milling and indirect hot extrusion

    SciTech Connect

    Flores-Campos, R.; Estrada-Guel, I.; Miki-Yoshida, M.; Martinez-Sanchez, R.; Herrera-Ramirez, J.M.

    2012-01-15

    Nanostructured composites of 7075 aluminum alloy and carbon coated silver nanoparticles were produced by mechanical milling and indirect hot extrusion. The milling products were obtained in a high energy SPEX ball mill, and then were compacted by uniaxial load and pressure-less sintered under argon atmosphere. Finally, the sintered product was hot extruded. Carbon coated silver nanoparticles were well distributed in the matrix of the extruded material. Tensile tests were carried out to corroborate the hypothesis that second phase particles, well dispersed in the matrix, improve the strength of the material. High resolution transmission electron microscopy was employed to locate and make sure that the silver nanoparticles were homogeneously and finely dispersed. Highlights: Black-Right-Pointing-Pointer 7075 Al nanostructured composites can be produced by mechanical milling. Black-Right-Pointing-Pointer Carbon coated silver nanoparticles are well dispersed into aluminum matrix. Black-Right-Pointing-Pointer Ductile Ag-C NP's improve the mechanical properties of the 7075 Al-alloy. Black-Right-Pointing-Pointer Ag-C NP's content has an important effect in the particle and crystallite size. Black-Right-Pointing-Pointer Ag-C NP's keep their morphology after milling and conformation processes.

  14. Transformational, Large Area Fabrication of Nanostructured Materials Using Plasma Arc Lamps

    SciTech Connect

    2009-03-01

    This factsheet describes a study that will address critical additional steps over large areas of as-synthesized nanostructured materials, such as annealing, phase transformation, or activation of dopants, dramatically reducing the processing costs of the solid-state lighting and photovoltaic materials.

  15. Switching of the natural nanostructure in Bi2Te3 materials by ion irradiation.

    PubMed

    Aabdin, Zainul; Peranio, Nicola; Eibl, Oliver

    2012-09-01

    In Bi(2)Te(3) materials the natural nanostructure (nns) with a wavelength of 10 nm can be reproducibly switched ON and OFF by Ar(+) ion irradiation at 1.5 and 1 keV. Controlled formation of the nns in Bi(2)Te(3) materials has potential for reducing its thermal conductivity and could increase the thermoelectric figure of merit. PMID:22718358

  16. Simulation of electromagnetic radiation passing through liquid-containing nanostructured materials

    NASA Astrophysics Data System (ADS)

    Kolbun, Natallia V.; Borbotko, Timophey V.; Kazeka, Alexandr A.; Proudnik, Alexander M.; Lynkou, Leanid M.

    2008-07-01

    A process of electromagnetic radiation traveling through liquid-containing nanostructured heterogeneous materials was simulated. Mobile phone antenna pattern is calculated and its change when applying protective shield made of said materials is studied. Transmission/reflection characteristics of antenna are calculated.

  17. Method of making nanopatterns and nanostructures and nanopatterned functional oxide materials

    DOEpatents

    Dravid, Vinayak P; Donthu, Suresh K; Pan, Zixiao

    2014-02-11

    Method for nanopatterning of inorganic materials, such as ceramic (e.g. metal oxide) materials, and organic materials, such as polymer materials, on a variety of substrates to form nanopatterns and/or nanostructures with control of dimensions and location, all without the need for etching the materials and without the need for re-alignment between multiple patterning steps in forming nanostructures, such as heterostructures comprising multiple materials. The method involves patterning a resist-coated substrate using electron beam lithography, removing a portion of the resist to provide a patterned resist-coated substrate, and spin coating the patterned resist-coated substrate with a liquid precursor, such as a sol precursor, of the inorganic or organic material. The remaining resist is removed and the spin coated substrate is heated at an elevated temperature to crystallize the deposited precursor material.

  18. Effects of antibacterial nanostructured composite films on vascular stents: hemodynamic behaviors, microstructural characteristics, and biomechanical properties.

    PubMed

    Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

    2015-01-01

    The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. PMID:24648307

  19. Tough composite materials: Recent developments

    NASA Technical Reports Server (NTRS)

    Vosteen, L. F. (editor); Johnston, N. J. (editor); Teichman, L. A. (editor); Blankenship, C. P. (editor)

    1985-01-01

    The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.

  20. Integration of mechanical alloying and equal channel angular extrusion for production of nanostructured materials

    NASA Astrophysics Data System (ADS)

    Kaculi, Xhemal

    The main objective of this study is to develop the technology to produce nanostructured materials with superior mechanical and chemical behavior. The focus of this research is mainly on two issues: (1) Use of mechanical alloying (MA) to produce nanostructured titanium silicide (Ti5Si 3) in powder form. (2) Use of equal channel angular extrusion (ECAE) for consolidation of mechanically alloyed powder in bulk form by preserving the fine scale structure. Nanostructured materials are a special group of materials with grain size less than 100 nanometers (nm), with a high percentage of atoms located at their grain boundaries. Due to the special structural arrangement of atoms, nanostructured materials are capable of developing much higher strength and stronger resistance to chemical attack, as compared to materials with conventional structure (grain size ranging from micrometers to millimeters). Because of their extraordinary mechanical and chemical properties, nanostructured materials have attracted a lot of attention in industry today. However, progress made to date in the production of these materials is limited to laboratory quantities and thin layers for surface coatings. In order that engineered nanostructured materials exhibit such superior properties, the essential requirement is that these materials should be in the bulk-processed condition and in larger quantities, suitable for industrial applications. This research achieves this by integrating the mechanical alloying process for production of nanostructured powders, and equal channel angular extrusion process to consolidate these powders and preserve their fine structure in bulk form. MA is a high-energy ball milling process used to produce nanocrystalline and amorphous materials in powder form. The design of experiments statistical method (23 factorial design) is applied to optimize this process to produce nanostructured titanium silicide (Ti5Si3) in powder form. ECAE is a process that produces intense and uniform plastic deformation caused by simple shear of the material. This process has proven to be an effective method for forming nanocrystalline materials in bulk form. A 4 x 2factorial design was used to optimize the ECAE process. Finite element analysis and other modeling studies are presented to support the experimental work performed. X-ray diffraction (XRD) was used to determine the grain size of the material in powder form and the final product. Vickers method is used to measure the microhardness. The main interest was on the production of nanostructured titanium silicide, a material with many applications in aerospace, transportation, oil industry etc. The titanium silicide material in powder form with grain size of 1 mum (micrometer) was subjected to a mechanical alloying process, which resulted in a nanostructured powder with a grain size of less than nm. To avoid the high temperature involvement used in traditional powder consolidation methods, which in turn causes the coarsening of grains, the nanostructured powder was consolidated using the ECAE process. The final product possessed a Vickers microhardness as high as 1500, and a grain size of less than 10 nm.

  1. Clues for biomimetics from natural composite materials

    PubMed Central

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2013-01-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  2. Clues for biomimetics from natural composite materials.

    PubMed

    Lapidot, Shaul; Meirovitch, Sigal; Sharon, Sigal; Heyman, Arnon; Kaplan, David L; Shoseyov, Oded

    2012-09-01

    Bio-inspired material systems are derived from different living organisms such as plants, arthropods, mammals and marine organisms. These biomaterial systems from nature are always present in the form of composites, with molecular-scale interactions optimized to direct functional features. With interest in replacing synthetic materials with natural materials due to biocompatibility, sustainability and green chemistry issues, it is important to understand the molecular structure and chemistry of the raw component materials to also learn from their natural engineering, interfaces and interactions leading to durable and highly functional material architectures. This review will focus on applications of biomaterials in single material forms, as well as biomimetic composites inspired by natural organizational features. Examples of different natural composite systems will be described, followed by implementation of the principles underlying their composite organization into artificial bio-inspired systems for materials with new functional features for future medicine. PMID:22994958

  3. Composite materials and method of making

    DOEpatents

    Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

    2011-05-17

    A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

  4. Ultrasonic Inspection Of Composite-Material Paraboloid

    NASA Technical Reports Server (NTRS)

    Chern, E. James

    1994-01-01

    Ultrasonic imaging system scanning three-dimensional curved surfaces developed. In original application, system used to determine integrity of composite-material paraboloidal reflector and its supporting structure. System also used to inspect composite-material structures with curved surfaces other than paraboloids, provided surfaces describable by mathematical functions. Position and orientation of transducer adjusted continuously to maintain normal incidence.

  5. Nanostructured multilayered thin film barriers for Mg{sub 2}Si thermoelectric materials

    SciTech Connect

    Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S.

    2012-06-26

    The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg{sub 2}Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg{sub 2}Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

  6. Wear behavior of light-cured resin composites with bimodal silica nanostructures as fillers.

    PubMed

    Wang, Ruili; Bao, Shuang; Liu, Fengwei; Jiang, Xiaoze; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2013-12-01

    To enhance wear behavior of resin composites, bimodal silica nanostructures including silica nanoparticles and silica nanoclusters were prepared and proposed as fillers. The silica nanoclusters, a combination of individually dispersed silica nanoparticles and their agglomerations, with size distribution of 0.07-2.70 ?m, were fabricated by the coupling reaction between amino and epoxy functionalized silica nanoparticles, which were obtained by the surface modification of silica nanoparticles (~70 nm) using 3-aminopropyl triethoxysilane (APTES) and 3-glycidoxypropyl trimethoxysilane (GPS) as coupling agents, respectively. Silica nanoparticles and nanoclusters were then silanized with 3-methacryloxypropyl trimethoxysilane (?-MPS) to prepare composites by mixing with bisphenol A glycerolate dimethacrylate (Bis-GMA) and tri (ethylene glycol) dimethacrylate (TEGDMA). Experimental composites with various filler compositions were prepared and their wear behaviors were assessed in this work. The results suggested that composites with increasing addition of silica nanoparticles in co-fillers possessed lower wear volume and smoother worn surface. Particularly, the composite 53:17 with the optimum weight ratio of silica nanoparticles and silica nanoclusters presented the excellent wear behavior with respect to that of the commercial Esthet-X, although the smallest wear volume was achieved by Z350 XT. The introduction of bimodal silica nanostructures as fillers might provide a new sight for the design of resin composites with significantly improved wear resistance. PMID:24094185

  7. Nanostructured materials detect epidermal growth factor receptor, neuron specific enolase and carcinoembryonic antigen

    NASA Astrophysics Data System (ADS)

    Stefan-van Staden, Raluca-Ioana; Comnea-Stancu, Ionela Raluca; Surdu-Bob, Carmen Cristina; Badulescu, Marius

    2015-09-01

    New nanostructured materials based on thin films of Cu and Ni deposited on textile material (veil), as well as gold nanostructured microspheres were used for the design of new stochastic sensors. The stochastic sensors were able to detect simultaneously a panel of biomarkers comprising epidermal growth factor receptor, neuron specific enolase, and carcinoembryonic antigen from whole blood samples with high reliabilities - recovery tests higher than 97.00%, with a RSD (%) lower than 0.1%. The stochastic sensors had shown high sensitivities and low determination levels for the detection of the proposed panel of biomarkers making early detection of lung cancer possible by fast screening of whole blood.

  8. Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Shih, Han C.

    2002-10-01

    Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron field emission characteristics of the 1-D carbon-related nanostructures were measured by the conventional diode method at an ambient pressure of 1.3X10-3 Pa (10-5 Torr). The films (1X1-cm^2) were separated from the anode by ITO (indium tin oxide) coated glass, where a glass fiber spacer was maintained at 150 μm from the cathode. The current density and electric field characteristics were measured using a Keithley 237 electrometer. A range of onset electron emission field from 3.5 to 1.5 V/μm and an emission current density up to 1 mA/cm^2 at 3V/μm have been achieved in this study, apparently superior to other carbon-based electron field emitters[3]. The results were reproducible over a period of weeks and the nanotubes did not degrade physically when exposing to a humid air of RH 90using the Fowler-Nordheim model, I=aV^2 exp (-bΦ_e^3/2/V) , where a and b are constants. The turn-on voltage was estimated as the voltage deviating from ln(I/V^2)-1/V curve. The effective work function (Φ_e=Φ/β) of the arrayed carbon nanotubes was calculated from the slope of the Fowler-Nordheim plot, where the value of β, the field enhancement factor, was found to be 1517. This value increased to 3357 when nitrogen was doped, but decreased to 974 when boron was doped. The incorporation of nitrogen or boron into the carbon network apparently changes the original nanostructure and the chemical bonding. The structural and compositional modification by the incorporation of nitrogen, boron, or hydrogen into the 1-D carbon-related nanostructured materials were analyzed by FTIR , XPS , Raman spectroscopy , and FE-SEM . Various forms in connection with 1-D nanostructured materials applicable to the NEMS , e.g. , nanowelding of nanotubes[4], tubes on tube , open-end nanotubes and coils of nanofiber and nanotubes have been produced in this research depending on the plasma chemistry, catalytic effect and the design of template. [1]. S. Iijima, Nature 354, 56 (1991). [2]. S. L. Sung, S. H. Tsai, C. H. Tseng, X. W. Liu, and H. C. Shih, Appl. Phys. Lett. 74, 197 (1999). [3]. S. H. Tsai, C. W. Chao, C. L. Lee, and H. C. Shih, Appl. Phys. Lett. 74, 3462 (1999). [4]. S. H. Tsai, C. T. Shiu, W. J. Jong, and H. C. Shih, Carbon 38, 1879 (2000).

  9. Composite Dielectric Materials for Electrical Switching

    SciTech Connect

    Modine, F.A.

    1999-04-25

    Composites that consist of a dielectric host containing a particulate conductor as a second phase are of interest for electrical switching applications. Such composites are "smart" materials that can function as either voltage or current limiters, and the difference in fimction depends largely upon whether the dielectric is filled to below or above the percolation threshold. It also is possible to combine current and voltage limiting in a single composite to make a "super-smart" material.

  10. Flame-retardant composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1991-01-01

    The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

  11. Effect of Interface Structure on Mechanical Properties of Advanced Composite Materials

    PubMed Central

    Gan, Yong X.

    2009-01-01

    This paper deals with the effect of interface structures on the mechanical properties of fiber reinforced composite materials. First, the background of research, development and applications on hybrid composite materials is introduced. Second, metal/polymer composite bonded structures are discussed. Then, the rationale is given for nanostructuring the interface in composite materials and structures by introducing nanoscale features such as nanopores and nanofibers. The effects of modifying matrices and nano-architecturing interfaces on the mechanical properties of nanocomposite materials are examined. A nonlinear damage model for characterizing the deformation behavior of polymeric nanocomposites is presented and the application of this model to carbon nanotube-reinforced and reactive graphite nanotube-reinforced epoxy composite materials is shown. PMID:20054466

  12. Aerosol Route Synthesis and Applications of Doped Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Sahu, Manoranjan

    Nanotechnology presents an attractive opportunity to address various challenges in air and water purification, energy, and other environment issues. Thus, the development of new nanoscale materials in low-cost scalable synthesis processes is important. Furthermore, the ability to independently manipulate the material properties as well as characterize the material at different steps along the synthesis route will aide in product optimization. In addition, to ensure safe and sustainable development of nanotechnology applications, potential impacts need to be evaluated. In this study, nanomaterial synthesis in a single-step gas phase reactor to continuously produce doped metal oxides was demonstrated. Copper-doped TiO2 nanomaterial properties (composition, size, and crystal phase) were independently controlled based on nanoparticle formation and growth mechanisms dictated by process control parameters. Copper dopant found to significantly affect TiO2 properties such as particle size, crystal phase, stability in the suspension, and absorption spectrum (shift from UV to visible light absorption). The in-situ charge distribution characterization of the synthesized nanomaterials was carried out by integrating a tandem differential mobility analyzer (TDMA) set up with the flame reactor synthesis system. Both singly- and doubly- charged nanoparticles were measured, with the charged fractions dependent on particle mobility and dopant concentration. A theoretical calculation was conducted to evaluate the relative importance of the two charging mechanisms, diffusion and thermo-ionization, in the flame. Nanoparticle exposure characterization was conducted during synthesis as a function of operating condition, product recovery and handling technique, and during maintenance of the reactors. Strategies were then indentified to minimize the exposure risk. The nanoparticle exposure potential varied depending on the operating conditions such as precursor feed rate, working conditions of the fume hood, ventilation system, and distance from the reactors. Nanoparticle exposure varied during product recovery and handling depending on the quantity of nanomaterial handled. Most nanomaterial applications require nanomaterials to be in solution. Thus, the role of nanomaterial physio-chemical properties (size, crystal phase, dopant types and concentrations) on dispersion properties was investigated based on hydrodynamic size and surface charge. Dopant type and concentration were found to significantly affect iso-electric point (IEP)-shifting the IEP to a high or lower pH value compared to pristine TiO2 based on the oxidation state of the dopant. The microbial inactivation effectiveness of as-synthesized nanomaterials was investigated under different light irradiation conditions. Microbial inactivation was found to strongly depend on the light irradiation condition as well as on material properties such chemical composition, crystal phase, and particle size. The potential interaction mechanisms of copper-doped TiO2 nanomaterial with microbes were also explored. The studies conducted as part of this dissertation addressed issues in nanomaterial synthesis, characterization and their potential environmental applications.

  13. Wear and fatigue behavior of nano-structured dental resin composites.

    PubMed

    Turssi, Cecilia P; Ferracane, Jack L; Ferracane, Lucas L

    2006-07-01

    Theoretically, nano-structured dental resin composites are purported to have increased wear and fatigue resistance compared with microfill composites and may favor the achievement of restoratives with better long-term performance. This study sought to assess the behavior of nano-structured composites resulting from either abrasion and fatigue loading. Ten specimens (12 x 5 x 2.5 mm) were prepared from each of five composites: Ceram-X mono, Filtek Supreme, Grandio, Premise, and Heliomolar (serving as the microfill control). A surface profile was recorded using a three-dimensional profiling system, and the specimens were subjected to 10(5) cycles of three-body abrasion in the new OHSU oral wear simulator. A second profile was generated and the before and after profiles were fit and analyzed. The volume loss and maximum depth of the wear facet on each specimen were calculated. Another 30 specimens (25 x 2 x 2 mm) were tested for flexural fatigue limit (FFL) in four-point bending via the staircase method. The test was carried out until 10(4) cycles were completed or until fracturing the specimen. One-way ANOVA and Tukey's test demonstrated greater volumetric loss for Grandio and Ceram-X than that observed for the remaining composites. Kruskal-Wallis and the least significant difference test ascertained that Heliomolar, Grandio, and Supreme showed significantly higher FFL than Ceram-X and Premise. In terms of wear and fatigue resistance, nano-structured composites may perform either similarly or comparatively worse than a microfilled composite. PMID:16447169

  14. Raman scattering in Si/SiGe nanostructures: Revealing chemical composition, strain, intermixing, and heat dissipation

    SciTech Connect

    Mala, S. A.; Tsybeskov, L.; Lockwood, D. J.; Wu, X.; Baribeau, J.-M.

    2014-07-07

    We present a quantitative analysis of Raman scattering in various Si/Si{sub 1-x}Ge{sub x} multilayered nanostructures with well-defined Ge composition (x) and layer thicknesses. Using Raman and transmission electron microscopy data, we discuss and model Si/SiGe intermixing and strain. By analyzing Stokes and anti-Stokes Raman signals, we calculate temperature and discuss heat dissipation in the samples under intense laser illumination.

  15. Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Phillips, Richard S.

    Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450C, provided good Pt particle dispersion and particle size controllability. Third, physical vapor deposition (PVD), which was also performed at room temperature, was used as a low temperature vapor-phase deposition technique for comparison with PEALD Pt coated materials. The temperature of the Pt deposition technique is an important parameter to consider due to the potential adverse effects of the strong metal support interaction (SMSI) which may take place at temperatures above 200C. Platinum coated nanostructures were analyzed electrochemically using cyclic voltammetry (CV), rotating disk electrode (RDE) and accelerated stress tests (ASTs). CV and RDE results generally show that platinum activity values are initially not as high as those typically observed for platinum on carbon; however, AST results indicate that TiO x-based materials are much more stable long-term and hence their level of activity is likely to overtake traditional platinum on carbon materials in a PEMFC system.

  16. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2014-09-10

    Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise ZnO nanostructures, will help in formulating specific strategies for obtaining enhanced energy generation from thermopower waves. PMID:25133980

  17. New textile composite materials development, production, application

    NASA Technical Reports Server (NTRS)

    Mikhailov, Petr Y.

    1993-01-01

    New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

  18. Polymer Matrix Composite Material Oxygen Compatibility

    NASA Technical Reports Server (NTRS)

    Owens, Tom

    2001-01-01

    Carbon fiber/polymer matrix composite materials look promising as a material to construct liquid oxygen (LOX) tanks. Based on mechanical impact tests the risk will be greater than aluminum, however, the risk can probably be managed to an acceptable level. Proper tank design and operation can minimize risk. A risk assessment (hazard analysis) will be used to determine the overall acceptability for using polymer matrix composite materials.

  19. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    NASA Astrophysics Data System (ADS)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8). The solid samples were characterized by inductively coupled plasma-optical emission (ICP-OES) spectrometry, scanning electron microscopy (SEM), simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and X-ray powder diffraction (XRD). The solid had a plate-like morphology. The preliminary electrochemical results showed that MgxMnO2˙yH2O had a very good cycliability and the capacity retention in 20 discharge-charge cycles. When the sample was dried at 100°C after collection, the discharge capacity would increase from 80 mAh/g to 155 mAh/g in the first discharge process in cycling test. Silver vanadium phosphorous oxide (SVPO, Ag2VO2PO 4) was prepared in various reaction temperatures. It was the first time that Ag2VO2PO4 was synthesized successfully at room temperature. The solid was characterized by Brunauer-Emmitt-Teller surface area (BET), inductively coupled plasma-optical emission (ICP-OES) spectroscopy, differential scanning calorimetry (DSC), magnetic susceptibility measurement, scanning electron microscope (SEM) and x-ray powder diffraction (XRD). Ag2VO2PO4 crystallite sizes showed a strong linear correlation with reaction temperature. The BET surface area was decreased as the crystallite size increased linearly. In addition, the acicular morphology started to develop at 50°C. The impact of silver deposition loading on the silver-polypyrrole composite electrode was studied using cyclic voltammetry. The minimum Ag loading of 0.08 mg/cm2 was determined to maximize the oxygen reduction activity for the Ag/Ppy composite catalyst. In addition, the Ag/Ppy coated carbon electrode showed higher oxygen reduction activities in both air and oxygen compared to the uncoated carbon electrode.

  20. Material properties and laser cutting of composites

    NASA Astrophysics Data System (ADS)

    Chen, Chia-Chieh; Cheng, Wing

    Laser (Light Amplification by Stimulated Emission of Radiation) has been used successfully for many material cutting, drilling, metal welding and heat treating applications. However, laser cutting of polymer composites were attempted with varying degrees of success. Because composites are heterogeneous, the energy applied by laser could result in severe resin degradation before fibers were cut. In this study, cutting of glass, Kevlar, and graphite composites were evaluated based on their material properties and laser cutting parameters. A transient heat transfer analysis was used to determine the relative heat affected zones of these composites. Kevlar composites can be cut very well while graphite composites are difficult to cut. Though the cutting process is much more complicated in reality, the analysis provides a semi-quantitative perspective on the characteristics and limitations of laser cutting of different composites.

  1. Crustacean-derived biomimetic components and nanostructured composites.

    PubMed

    Grunenfelder, Lessa Kay; Herrera, Steven; Kisailus, David

    2014-08-27

    Over millions of years, the crustacean exoskeleton has evolved into a rigid, tough, and complex cuticle that is used for structural support, mobility, protection of vital organs, and defense against predation. The crustacean cuticle is characterized by a hierarchically arranged chitin fiber scaffold, mineralized predominately by calcium carbonate and/or calcium phosphate. The structural organization of the mineral and organic within the cuticle occurs over multiple length scales, resulting in a strong and tough biological composite. Here, the ultrastructural details observed in three species of crustacean are reviewed: the American lobster (Homarus americanus), the edible crab (Cancer pagurus), and the peacock mantis shrimp (Odontodactylus scyllarus). The Review concludes with a discussion of recent advances in the development of biomimetics with controlled organic scaffolding, mineralization, and the construction of nanoscale composites, inspired by the organization and formation of the crustacean cuticle. PMID:24833136

  2. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors.

    PubMed

    Chen, Siyuan Feng; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  3. Nanostructured Tungsten Oxide Composite for High-Performance Gas Sensors

    PubMed Central

    Feng-Chen, Siyuan; Aldalbahi, Ali; Feng, Peter Xianping

    2015-01-01

    We report the results of composite tungsten oxide nanowires-based gas sensors. The morphologic surface, crystallographic structures, and chemical compositions of the obtained nanowires have been investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman scattering, respectively. The experimental measurements reveal that each wire consists of crystalline nanoparticles with an average diameter of less than 250 nm. By using the synthesized nanowires, highly sensitive prototypic gas sensors have been designed and fabricated. The dependence of the sensitivity of tungsten oxide nanowires to the methane and hydrogen gases as a function of time has been obtained. Various sensing parameters such as sensitivity, response time, stability, and repeatability were investigated in order to reveal the sensing ability. PMID:26512670

  4. Ceramic composites: Enabling aerospace materials

    NASA Technical Reports Server (NTRS)

    Levine, S. R.

    1992-01-01

    Ceramics and ceramic matrix composites (CMC) have the potential for significant impact on the performance of aerospace propulsion and power systems. In this paper, the potential benefits are discussed in broad qualitative terms and are illustrated by some specific application case studies. The key issues in need of resolution for the potential of ceramics to be realized are discussed.

  5. Graphene-based Composite Materials

    NASA Astrophysics Data System (ADS)

    Rafiee, Mohammad Ali

    We investigated the mechanical properties, such as fracture toughness (KIc), fracture energy (GIc), ultimate tensile strength (UTS), Youngs modulus (E), and fatigue crack propagation rate (FCPR) of epoxy-matrix composites with different weight fractions of carbon-based fillers, including graphene platelets (GPL), graphene nanoribbons (GNR), single-walled carbon nanotubes (SWNT), multi-walled carbon nanotubes (MWNT), and fullerenes (C60). Only 0.125 wt.% GPL was found to increase the KIc of the pure epoxy by 65% and the GIc by 115%. To get similar improvement, CNT and nanoparticle epoxy composites required one to two orders of magnitude greater weight fraction of nanofillers. Moreover, 0.125% wt.% GPL also decreased the fatigue crack propagation rate in the epoxy by 30-fold. The E value of 0.1 wt.% GPL/epoxy nanocomposite was 31% larger than the pure epoxy while there was only an increase of 3% for the SWNT composites. The UTS of the pristine epoxy was improved by 40% with GPLs in comparison with 14% enhancement for the MWNTs. The KIc of the GPL nanocomposite enhanced by 53% over the pristine epoxy compared to a 20% increase for the MWNT-reinforced composites. The results of the FCPR tests for the GPL nanocomposites showed a different trend. While the CNT nanocomposites were not effective enough to suppress the crack growth at high values of the stress intensity factor (DeltaK), the reverse behavior is observed for the GPL nanocomposites. The advantage of the GPLs over CNTs in terms of mechanical properties enhancement is due to their enormous specific surface area, enhanced adhesion at filler/epoxy interface (because of the wrinkled surfaces of GPLs), as well as the planar structure of the GPLs. We also show that unzipping of MWNTs into graphene nanoribbons (GNRs) enhances the load transfer effectiveness in epoxy nanocomposites. For instance, at 0.3 wt.% of fillers, the Young's modulus (E) of the epoxy nanocomposite with GNRs increased by 30% compared to their MWNTs counterpart. The ultimate tensile strength (UTS) for 0.3 wt.% GNR composites showed 22% enhancement compared to the MWNT composites at the same loading fraction of fillers (at 0.3 wt.%). Our results show that unzipping effect can be used to transform carbon nanotubes into graphene nanoribbons, which are far more effective than the baseline nanotube as a nanofiller in nanocomposites. The mechanical properties of fullerence (C60) epoxy nanocomposites at different loading fractions (wt.%) of fullerene fillers in the pristine epoxy was also studied. Fullerene (C60) fillers demonstrated good potential to improve the mechanical properties of epoxy composites. However the required C60 loading fractions were 1% which are still an order of magnitude higher than that for graphene platelets (0.1%). This again illustrates the superiority of graphene as a structural reinforcement additive for epoxy polymers at low nanofiller loadings. While the main focus of this work has been on epoxy polymers, initial results with ceramic matrix and metal (aluminum) matrix composites were also generated. These results demonstrate that GPL are highly effective in enahncing the fracture properties of silicon nitride ceramics. The fracture toughness of the baseline silicon nitride matrix increased by 235% (from 2.8 to 6.6 MPa.m1/2) at 1.5% GPL volume fraction. However the results were disappointing for aluminim matrix composites. Compared to the pure aluminum, the graphene-aluminum composites showed decreased strength and hardness. This is explained in the context of enhanced aluminum carbide formation with the graphene filler. These results indicate that Graphene Platelets (GPL) show strong potential as a nanofiller for epoxy nanocomposites and can provide a performance comparable to other forms of nanofillers at a significantly lower nanofiller loading fraction.

  6. Novel applications exploiting the thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  7. Combinatorial synthesis of inorganic or composite materials

    DOEpatents

    Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

    2010-08-03

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Sol-gel synthesis and characterization of nanostructured TiO2/gamma-Al2O3 composite membranes.

    PubMed

    Kwon, Hyuk Taek; Kim, Jinsoo

    2011-08-01

    Nanostructured TiO2/gamma-Al2O3 composite membranes with various compositions were prepared by sol-gel method. The structural and textural properties of the composite membranes could be modified by the mixing ratio of boehmite sol and titania sol, and calcination temperature. The existence of alumina in the composite membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of textural properties. Defect-free composite membranes were confirmed by gas permeation test. PMID:22103175

  9. Materials research at Stanford University. [composite materials, crystal structure, acoustics

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

  10. The interaction of bacteria with engineered nanostructured polymeric materials: a review.

    PubMed

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  11. The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review

    PubMed Central

    Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

    2014-01-01

    Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

  12. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Engel, Carl D.; Watkins, Casey N.

    2006-01-01

    Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

  13. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity.

    SciTech Connect

    Girard, S. N.; He, J.; Li, C.; Moses, S.; Wang, G.; Uher, C.; Dravid, V. P.; Kanatzidis, M. G.

    2010-07-26

    We show experimentally the direct reduction in lattice thermal conductivity as a result of in situ nanostructure generation within a thermoelectric material. Solid solution alloys of the high-performance thermoelectric PbTe-PbS 8% can be synthesized through rapid cooling and subsequent high-temperature activation that induces a spontaneous nucleation and growth of PbS nanocrystals. The emergence of coherent PbS nanostructures reduces the lattice thermal conductivity from {approx}1 to {approx}0.4 W/mK between 400 and 500 K.

  14. Self-assembly of nanostructured materials through irreversible covalent bond formation.

    PubMed

    Baek, Kangkyun; Hwang, Ilha; Roy, Indranil; Shetty, Dinesh; Kim, Kimoon

    2015-08-18

    Over the past decades, numerous efforts have been devoted to synthesizing nanostructured materials with specific morphology because their size and shape play an important role in determining their functions. Self-assembly using weak and reversible interactions or bonds has provided synthetic routes toward various nanostructures because it allows a "self-checking" and "self-error-correcting" process under thermodynamic control. By contrast, the use of irreversible covalent bonds, despite the potential to generate more robust structures, has been disfavored in the synthesis of well-defined nanomaterials largely due to the lack of such self-error-correcting mechanisms. To date, the use of irreversible bonds is largely limited to covalent fixation of preorganized building blocks on a template, which, though capable of producing shape-persistent and robust nanostructured materials, often requires a laborious and time-consuming multistep processes. Constructing well-defined nanostructures by self-assembly using irreversible covalent bonds without help of templates or preorganization of components remains a challenge. This Account describes our recent discoveries and progress in self-assembly of nanostructured materials through strong, practically irreversible covalent bond formation and their applications in various areas including drug delivery, anticancer therapy, and heterogeneous catalysis. The key to the success of this approach is the use of rationally designed building blocks possessing multiple in-plane reactive groups at the periphery. These blocks can then successfully grow into flat oligomeric patches through irreversible covalent bond formation without the aid of preorganization or templates. Further growth of the patches with or without curvature generation drives the system to the formation of polymer nanocapsules, two-dimensional (2D) polymer films, and toroidal nanotubular microrings. Remarkably, the final morphology can be specified by a few simple parameters: the reaction medium, bending rigidity of the system, and orientation of the reactive groups. Theoretical studies support the spontaneous formation of such nanostructured materials in terms of energetics and successfully predict or explain their size distributions. Although the lack of self-error-correcting mechanisms results in defect sites in these nanostructures, the high efficiency and relative simplicity of our novel approach demonstrates the potential power of using irreversible covalent bonds to generate a diverse range of shape-persistent and robust nanostructures that is likely to enrich the repertoire of self-assembled nanomaterials. PMID:25884270

  15. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity.

    PubMed

    Girard, Steven N; He, Jiaqing; Li, Changpeng; Moses, Steven; Wang, Guoyu; Uher, Ctirad; Dravid, Vinayak P; Kanatzidis, Mercouri G

    2010-08-11

    We show experimentally the direct reduction in lattice thermal conductivity as a result of in situ nanostructure generation within a thermoelectric material. Solid solution alloys of the high-performance thermoelectric PbTe-PbS 8% can be synthesized through rapid cooling and subsequent high-temperature activation that induces a spontaneous nucleation and growth of PbS nanocrystals. The emergence of coherent PbS nanostructures reduces the lattice thermal conductivity from approximately 1 to approximately 0.4 W/mK between 400 and 500 K. PMID:20698594

  16. Thermal evaporation furnace with improved configuration for growing nanostructured inorganic materials

    NASA Astrophysics Data System (ADS)

    Joanni, E.; Savu, R.; Valadares, L.; Cilense, M.; Zaghete, M. A.

    2011-06-01

    A tubular furnace specifically designed for growing nanostructured materials is presented in this work. The configuration allows an accurate control of evaporation temperature, substrate temperature, total pressure, oxygen partial pressure, volumetric flow and source-substrate distance, with the possibility of performing both downstream and upstream depositions. In order to illustrate the versatility of the equipment, the furnace was used for growing semiconducting oxide nanostructures under different deposition conditions. Highly crystalline indium oxide nanowires with different morphologies were synthesized by evaporating mixtures of indium oxide and graphite powders with different mass ratios at temperatures between 900 C and 1050 C. The nanostructured layers were deposited onto oxidized silicon substrates with patterned gold catalyst in the temperature range from 600 C to 900 C. Gas sensors based on these nanowires exhibited enhanced sensitivity towards oxygen, with good response and recovery times.

  17. NANOSTRUCTURED CERAMICS AND COMPOSITES FOR REFRACTORY APPLICATIONS IN COAL GASIFICATION

    SciTech Connect

    Paul Brown

    2005-01-31

    A class of ceramics, capable of exhibiting low coefficients of thermal expansion and catalytic properties was investigated. Investigations were directed towards nanoengineering of NZP ceramics and NZP-based composites by chemical means by controlling their compositions and processing variables. NaZr{sub 2}(PO{sub 4}){sub 3} (NZP) was synthesized by combining water-soluble precursors leading to the precipitation of a gel that was dried, calcined, pressed into pellets, then fired at 850 C. Without chemical additives, the resulting ceramic comprised pores ranging in size from approximately 25 to 50 nm and a surface area of about 30m{sup 2}/g. Hydroxyapatite, which has a needle-like morphology, was mechanically mixed with the calcined gel to template NZP crystallization. What resulted was a coarsening of the pore structure and a decrease in surface area. When copper nitrate was added to the solution during synthesis, the resulting ceramic underwent shrinkage upon firing as well as an increase in strength. HAp and copper additions combined resulted in 40% volume shrinkage and a doubling of the tensile strength to 16MPa. A very different type of porosity was achieved when silica was partly substituted for phosphorous in the NZP structure. Na{sub 3}Zr{sub 2}(Si{sub 2}P)O{sub 12} (NASCION) was synthesized in the same manner as NZP, but the fired ceramic possessed a reticulated pore structure comprising large cavities ranging in size from 5 to 50 {micro}m. The NASCION ceramic either shrank or expanded upon firing depending on when the silica was added during synthesis. When the silica precursor (amorphous, precipitated silica) was added before the calcining step, the pressed pellets expanded during firing, whereas they shrank when the silica was added after the gel was calcined. The observed dilation increased with increasing calcining temperature and particle size, up to 26%. The contraction of the ceramic when fired increased with increasing calcining temperature and a greater surface area of the gel. Direct addition of Silica fiber was only modestly beneficial. Fiber addition combined with controlled densification resulted in the greatest improvement in strength. Ion exchange properties of NASICON were established for Cs, Pb, and Cd. It was found that the extent of ion exchange depended on ion size and that Cd could be fully exchanged into NASICON. Catalytic activity of Cu and Ag substituted compositions were determined and it was found that Ag substitution reduced the temperature at which carbon black could be oxidized. However, Ag substitution results in the formation of zircon. Ion conductivity of NASCION was determined and it was found to compare well with other ionic conductors.

  18. Advanced composite materials for precision segmented reflectors

    NASA Technical Reports Server (NTRS)

    Stein, Bland A.; Bowles, David E.

    1988-01-01

    The objective in the NASA Precision Segmented Reflector (PSR) project is to develop new composite material concepts for highly stable and durable reflectors with precision surfaces. The project focuses on alternate material concepts such as the development of new low coefficient of thermal expansion resins as matrices for graphite fiber reinforced composites, quartz fiber reinforced epoxies, and graphite reinforced glass. Low residual stress fabrication methods will be developed. When coupon specimens of these new material concepts have demonstrated the required surface accuracies and resistance to thermal distortion and microcracking, reflector panels will be fabricated and tested in simulated space environments. An important part of the program is the analytical modeling of environmental stability of these new composite materials concepts through constitutive equation development, modeling of microdamage in the composite matrix, and prediction of long term stability (including viscoelasticity). These analyses include both closed form and finite element solutions at the micro and macro levels.

  19. Composite materials inspection. [ultrasonic vibration holographic NDT

    NASA Technical Reports Server (NTRS)

    Erf, R. K.

    1974-01-01

    Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

  20. Mechanics of composite materials: Unified micromechanical approach

    SciTech Connect

    Aboundi, J.

    1991-12-31

    Although many books have been written on the mechanics of composite materials, only a vew few have been devoted almost exclusively to the micromechanics aspects. The present monograph is devoted primarily to the micromechanics of fiber and particle reinforced composites with some additional treatment of laminates as well. Thus, this book would probably be more suitable as a reference book than a textbook.

  1. Dental applications of nanostructured bioactive glass and its composites

    PubMed Central

    Polini, Alessandro; Bai, Hao; Tomsia, Antoni P.

    2013-01-01

    To improve treatments for bone or dental trauma, and for diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here we review how the properties of these materials have been enhanced by the advent of nanotechnology; and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug-delivery systems. PMID:23606653

  2. NASA Thermographic Inspection of Advanced Composite Materials

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott

    2004-01-01

    As the use of advanced composite materials continues to increase in the aerospace community, the need for a quantitative, rapid, in situ inspection technology has become a critical concern throughout the industry. In many applications it is necessary to monitor changes in these materials over an extended period of time to determine the effects of various load conditions. Additionally, the detection and characterization of defects such as delaminations, is of great concern. This paper will present the application of infrared thermography to characterize various composite materials and show the advantages of different heat source types. Finally, various analysis methodologies used for quantitative material property characterization will be discussed.

  3. Composite Material Application to Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Judd, D. C.

    1982-01-01

    The substitution of reinforced plastic composite (RPC) materials for metal was studied. The major objectives were to: (1) determine the extent to which composite materials can be beneficially used in liquid rocket engines; (2) identify additional technology requirements; and (3) determine those areas which have the greatest potential for return. Weight savings, fabrication costs, performance, life, and maintainability factors were considered. Two baseline designs, representative of Earth to orbit and orbit to orbit engine systems, were selected. Weight savings are found to be possible for selected components with the substitution of materials for metal. Various technology needs are identified before RPC material can be used in rocket engine applications.

  4. Method of making a composite refractory material

    DOEpatents

    Morrow, M.S.; Holcombe, C.E.

    1995-09-26

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000 C to form a composite refractory material.

  5. Laser welding of discontinuously reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Shiganov, I. N.

    1999-01-01

    The features of metal composite materials fusion welding are examined and the main defects arising at argon-arc, electron-beam and laser welding of alloys Al-Be-Mg, Fe-Cu-Pb and Al-Pb are revealed. The defects formation mechanisms are indicated and technological welding methods of metal composite materials are developed. These methods allow to prevent defects formation and obtain the welds with required mechanical properties and quality.

  6. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

    2002-01-01

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  7. Method to fabricate layered material compositions

    DOEpatents

    Fleming, James G.; Lin, Shawn-Yu

    2004-11-02

    A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

  8. Acoustic emission monitoring of polymer composite materials

    NASA Technical Reports Server (NTRS)

    Bardenheier, R.

    1981-01-01

    The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

  9. Composite materials with improved phyllosilicate dispersion

    DOEpatents

    Chaiko, David J.

    2004-09-14

    The present invention provides phyllosilicates edge modified with anionic surfactants, composite materials made from the edge modified phyllosilicates, and methods for making the same. In various embodiments the phyllosilicates are also surface-modified with hydrophilic lipophilic balance (HLB) modifying agents, polymeric hydrotropes, and antioxidants. The invention also provides blends of edge modified phyllosilicates and semicrystalline waxes. The composite materials are made by dispersing the edge modified phyllosilicates with polymers, particularly polyolefins and elastomers.

  10. Composite, ordered material having sharp surface features

    SciTech Connect

    D'Urso, Brian R.; Simpson, John T.

    2006-12-19

    A composite material having sharp surface features includes a recessive phase and a protrusive phase, the recessive phase having a higher susceptibility to a preselected etchant than the protrusive phase, the composite material having an etched surface wherein the protrusive phase protrudes from the surface to form a sharp surface feature. The sharp surface features can be coated to make the surface super-hydrophobic.

  11. Method of making a composite refractory material

    DOEpatents

    Morrow, Marvin S. (Kingston, TN); Holcombe, Cressie E. (Knoxville, TN)

    1995-01-01

    A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

  12. A review of nanostructured lithium ion battery materials via low temperature synthesis.

    PubMed

    Chen, Jiajun

    2013-01-01

    Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed. PMID:22747718

  13. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials

    NASA Astrophysics Data System (ADS)

    Marconnet, Amy M.; Panzer, Matthew A.; Goodson, Kenneth E.

    2013-07-01

    The extremely high thermal conductivities of carbon nanotubes have motivated a wealth of research. Progress includes innovative conduction metrology based on microfabricated platforms and scanning thermal probes as well as simulations exploring phonon dispersion and scattering using both transport theory and molecular dynamics. This article highlights these advancements as part of a detailed review of heat conduction research on both individual carbon nanotubes and nanostructured films consisting of arrays of nanotubes or disordered nanotube mats. Nanotube length, diameter, and chirality strongly influence the thermal conductivities of individual nanotubes and the transition from primarily diffusive to ballistic heat transport with decreasing temperature. A key experimental challenge, for both individual nanotubes and aligned films, is the separation of intrinsic and contact resistances. Molecular dynamics simulations have studied the impacts of specific types of imperfections on the nanotube conductance and its variation with length and chirality. While the properties of aligned films fall short of predictions based on individual nanotube data, improvements in surface engagement and postfabrication nanotube quality are promising for a variety of applications including mechanically compliant thermal contacts.

  14. Thermoelectric study of INSB secondary phase based nano composite materials

    NASA Astrophysics Data System (ADS)

    Zhu, Song

    In the past several decades there has been an intensive study in the field of thermoelectric study that is basically materials driven. As the simplest technology applicable in direct heat-electricity energy conversion, thermoelectricity utilizes the Seebeck effect to generate electricity from heat or conversely achieve the solid-state cooling via the Peltier effect. With many technical merits, thermoelectric devices can be used as spot-size generators or distributed refrigerators, however, their applications are restricted by the energy conversion efficiency, which is mainly determined by the figure of merit ZT of the thermoelectric materials that these devices are made of. A higher ZT (ZT=alpha2*sigma/kappa) entails a larger Seebeck coefficient (alpha), a higher electrical conductivity (sigma) and a lower thermal conductivity (kappa). However, it is challenging to simultaneously optimize these three material parameters because they are adversely correlated. To this end, a promising approach to answer this challenge is nano-compositing or microstructuring at multiple length scales. The numerous grain boundaries in nano-composite allow for significant reduction of lattice thermal conductivity via strong phonon scattering and as well an enhanced Seebeck coefficient via, carrier energy filtering effect. As the same grain boundaries also scatter carriers, a coherent interface between grains is needed to minimize the degradation of carrier mobilities. To this end,in-situ, instead of ex-situ, formation of nano-composite is preferred. It is noteworthy that electrical conductivity can be further enhanced by the injection of high-mobility carriers introduced by the secondary nano-phase. In view of the prevalent use of Antimony (Sb) in thermoelectric materials, Indium Antimonide (InSb) naturally becomes one of the most promising nano-inclusions since it possesses one of the largest carrier mobilities (˜7.8 m 2/V-s) in any semiconductors, while at the same time possesses a reasonably narrow band gap (˜0.17 eV at 300 K). In this dissertation, I experimentally investigate whether InSb could be a "good" nano-secondary phase in two thermoelectric bulk matrix materials, FeSb2 and half-Heusler compounds. In these in situ formed nano-composites, three mechanisms are utilized to decouple the otherwise adversely correlated Seebeck coefficient (alpha), electrical conductivity (sigma), and thermal conductivity (kappa). First, low energy carriers will be filtered out via the carrier energy filtering effect, enhancing the Seebeck coefficient without degrading the power factor (PF= alpha 2sigma). Second, high mobility carriers from the InSb nano-inclusions will be injected to the system to increase the electrical conductivity. Last, the numerous grain boundaries present in nano-composites allow for strong phonon scattering so as to reduce the thermal conductivity. After the initial in situ synthesis of nano-composites with the optimized composition, further nano-structuring processes are applied in the samples of FeSb2 with 0.5% atomic ratio of InSb. The results indicate that not all nano-structures are thermoelectrically favorable, multi-scale microstructures with the length scale comparable with the phonon mean free path are needed to effectively scatter phonons over a wide range of wavelength. In summary, the successful combination of the carrier energy filtering effect, high mobility carrier injection effect, and strong phonon scattering effect in the in situ synthesized FeSb2-InSb and half-Heusler-InSb nano-composites leads to a significantly enhanced ZT. This approach of in situ formation of nano-composites based on InSb secondary nano-phase may also be applied to other thermoelectric materials.

  15. Efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures

    NASA Astrophysics Data System (ADS)

    Wang, Yanyan; Ye, Xiaojun; Zhu, Jian; Zhang, Zhen; Yang, Junkun; Wu, Xuemei; Qiu, Bocang; Zhang, Ruiying

    2015-05-01

    We report on the experimental demonstration of the efficiency improvement of flexible a-SiGe:H solar cells decorated by SiNx composite nanostructures. The structures, which are composed of SiNx nanodome structures and a thin SiNx film that is underneath the nanodome structures, were implemented via sequential processes using inductance-coupled plasma chemical vapor deposition (ICP-CVD), nanosphere lithography (NSL), and reactive ion etching (RIE). Compared with the a-SiGe:H solar cells without the SiNx composite nanostructures, solar cells with SiNx composite nanostructures exhibit that the surface reflectivity reduces down to less than 5% over the spectrum range of 200-700 nm, and the open circuit voltage (Voc) and fill factor (FF) increase up to 0.76 V from 0.70 V and 52.4% from 38.4% respectively, although the short circuit current density (Jsc) reduces down to 11.6 mA/cm2 from 14.7 mA/cm2. The improvement for Voc and FF indicates that a-SiGe:H solar cells were well passivated by using such SiNx composite structures, which results in the overall enhancement of the conversion efficiency from 4.38% to 5.13% finally. If the absorption of the dielectric composite nanostructures decreases, the higher conversion efficiency should be promisingly achieved in these Si-based thin film solar cells decorated by dielectric composite nanostructures.

  16. Three-dimensional graphene/LiFePO{sub 4} nanostructures as cathode materials for flexible lithium-ion batteries

    SciTech Connect

    Ding, Y.H.; Ren, H.M.; Huang, Y.Y.; Chang, F.H.; Zhang, P.

    2013-10-15

    Graphical abstract: Graphene/LiFePO{sub 4} composites as a high-performance cathode material for flexible lithium-ion batteries have been prepared by using a co-precipitation method to synthesize graphene/LiFePO4 powders as precursors and then followed by a solvent evaporation process. - Highlights: Flexible LiFePO{sub 4}/graphene films were prepared first time by a solvent evaporation process. The flexible electrode exhibited a high discharge capacity without conductive additives. Graphene network offers the electrode adequate strength to withstand repeated flexing. - Abstract: Three-dimensional graphene/LiFePO{sub 4} nanostructures for flexible lithium-ion batteries were successfully prepared by solvent evaporation method. Structural characteristics of flexible electrodes were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Electrochemical performance of graphene/LiFePO{sub 4} was examined by a variety of electrochemical testing techniques. The graphene/LiFePO{sub 4} nanostructures showed high electrochemical properties and significant flexibility. The composites with low graphene content exhibited a high capacity of 163.7 mAh g{sup ?1} at 0.1 C and 114 mAh g{sup ?1} at 5 C without further incorporation of conductive agents.

  17. Copper and Zinc Oxide Composite Nanostructures for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Wu, Fei

    Solar energy is a clean and sustainable energy source to counter global environmental issues of rising atmospheric CO2 levels and depletion of natural resources. To extract useful work from solar energy, silicon-based photovoltaic devices are extensively used. The technological maturity and the high quality of silicon (Si) make it a material of choice. However limitations in Si exist, ranging from its indirect band gap to low light absorption coefficient and energy and capital intensive crystal growth schemes. Therefore, alternate materials that are earth-abundant, benign and simpler to process are needed for developing new platforms for solar energy harvesting applications. In this study, we explore oxides of copper (CuO and Cu2O) in a nanowire morphology as alternate energy harvesting materials. CuO has a bandgap of 1.2 eV whereas Cu2O has a bandgap of 2.1 eV making them ideally suited for absorbing solar radiation. First, we develop a method to synthesize vertical, single crystalline CuO and Cu2O nanowires of ~50 microm length and aspect ratios of ~200. CuO nanowire arrays are synthesized by thermal oxidation of Cu foils. Cu2O nanowire arrays are synthesized by thermal reduction of CuO nanowires. Next, surface engineering of these nanowires is achieved using atomic layer deposition (ALD) of ZnO. By depositing 1.4 nm of ZnO, a highly defective surface is produced on the CuO nanowires. These defects are capable of trapping charge as is evident through persistent photoconductivity measurements of ZnO coated CuO nanowires. The same nanowires serve as efficient photocatalysts reducing CO2 to CO with a yield of 1.98 mmol/g-cat/hr. Finally, to develop a robust platform for flexible solar cells, a protocol to transfer vertical CuO nanowires inside flexible polydimethylsiloxane (PDMS) is demonstrated. Embedded CuO nanowires-ZnO pn junctions show a VOC of 0.4 V and a JSC of 10.4 microA/cm2 under white light illumination of 5.7 mW/cm2. Thus, this research provides broad guidance to develop copper oxide nanowires as efficient platforms for a variety of solar energy harvesting applications.

  18. Review on recent progress of nanostructured anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio

    2014-07-01

    This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

  19. Offgassing test methodology for composite materials

    NASA Technical Reports Server (NTRS)

    Scheer, Dale A.

    1994-01-01

    A significant increase in the use of composite materials has occurred during the past 20 years. Associated with this increased use is the potential for employees to be exposed to offgassing components from composite systems. Various components in composite systems, particularly residual solvents, offgas under various conditions. The potential for offgassing to occur increases as a composite material is heated either during cure or during lay-up operations. Various techniques can be employed to evaluate the offgassing characteristics of a composite system. A joint effort between AIA and SACMA resulted in the drafting of a proposed test method for evaluating the offgassing potential of composite materials. The purpose of testing composite materials for offgassing is to provide the industrial hygienist with information which can be used to assess the safety of the workplace. This paper outlines the proposed test method and presents round robin testing data associated with the test method. Also in this presentation is a discussion of classes of compounds which require specialized sampling techniques.

  20. Method of producing catalytic materials for fabricating nanostructures

    SciTech Connect

    Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

    2013-02-19

    Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

  1. Ultrasonic stress wave characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.

    1986-01-01

    The work reported covers three simultaneous projects. The first project was concerned with: (1) establishing the sensitivity of the acousto-ultrasonic method for evaluating subtle forms of damage development in cyclically loaded composite materials, (2) establishing the ability of the acousto-ultrasonic method for detecting initial material imperfections that lead to localized damage growth and final specimen failure, and (3) characteristics of the NBS/Proctor sensor/receiver for acousto-ultrasonic evaluation of laminated composite materials. The second project was concerned with examining the nature of the wave propagation that occurs during acoustic-ultrasonic evaluation of composite laminates and demonstrating the role of Lamb or plate wave modes and their utilization for characterizing composite laminates. The third project was concerned with the replacement of contact-type receiving piezotransducers with noncontacting laser-optical sensors for acousto-ultrasonic signal acquisition.

  2. 3-D textile reinforcements in composite materials

    SciTech Connect

    Miravete, A.

    1999-11-01

    Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

  3. Oxygen Compatibility Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Graf, Neil A.; Hudgins, Richard J.; McBain, Michael

    2000-01-01

    The development of polymer composite liquid oxygen LO2 tanks is a critical step in creating the next generation of launch vehicles. Future launch vehicles need to minimize the gross liftoff weight (GLOW), which is possible due to the 25%-40% reduction in weight that composite materials could provide over current aluminum technology. Although a composite LO2 tank makes these weight savings feasible, composite materials have not historically been viewed as "LO2 compatible." To be considered LO2 compatible, materials must be selected that will resist any type of detrimental, combustible reaction when exposed to usage environments. This is traditionally evaluated using a standard set of tests. However, materials that do not pass the standard tests can be shown to be safe for a particular application. This paper documents the approach and results of a joint NASA/Lockheed Martin program to select and verify LO2 compatible composite materials for liquid oxygen fuel tanks. The test approach developed included tests such as mechanical impact, particle impact, puncture, electrostatic discharge, friction, and pyrotechnic shock. These tests showed that composite liquid oxygen tanks are indeed feasible for future launch vehicles.

  4. Nonmetallic materials and composites at low temperatures

    SciTech Connect

    Hartwig, G.; Evans, D.

    1982-01-01

    This book presents articles by leading scientists who explore the cryogenic behavior of such materials as epoxies, polyethylenes, polymers, various composites, and glasses. Examines the thermal and dielectric properties of these materials, as well as their elasticity, cohesive strength, resistance to strain and fracturing, and applications. Topics include thermal properties of crystalline polymers; thermal conductivity in semicrystalline polymers; ultrasonic absorption in polymethylmethacrylate; radiation damage in thin sheet fiberglass; epoxide resins; dynamic mechanical properties of poly (methacrylates); dielectric loss due to antioxidants in polyolefins; fracture measurements on polyethylene in comparison with epoxy resins; fatigue testing of epoxide resins; lap testing of epoxide resins; thermal conductivity and thermal expansion of non-metallic composite materials; nonlinear stresses and displacements of the fibers and matrix in a radially loaded circular composite ring; the strain energy release rate of glass fiber-reinforced polyester composites; charpy impact testing of cloth reinforced epoxide resin; nonmetallic and composite materials as solid superleaks; carbon fiber reinforced expoxide resins; standardizing nonmetallic composite materials.

  5. Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel

    SciTech Connect

    Zuhlke, Craig A.; Anderson, Troy P.; Alexander, Dennis R.

    2013-09-16

    The structural and chemical composition of two unique microstructures formed on nickel, with nanoscale features, produced using femtosecond laser surface processing (FLSP) techniques is reported in this paper. These two surface morphologies, termed mounds and nanoparticle-covered pyramids, are part of a larger class of self-organized micro/nanostructured surfaces formed using FLSP. Cross-sections of the structures produced using focused ion beam milling techniques were analyzed with a transmission electron microscope. Both morphologies have a solid core with a layer of nanoparticles on the surface. Energy dispersive X-ray spectroscopy by scanning transmission electron microscopy studies reveal that the nanoparticles are a nickel oxide, while the core material is pure nickel.

  6. High-performance, nanostructure LiMnPO4/C composites synthesized via one-step solid state reaction

    NASA Astrophysics Data System (ADS)

    Zheng, Jugong; Ni, Liang; Lu, Yanwen; Qin, Cancan; Liu, Panxing; Wu, Tongfu; Tang, Yuefeng; Chen, Yanfeng

    2015-05-01

    LiMnPO4 is proposed as more promising cathode material as LiFePO4, while poor electronic conductivity and Jahn-Teller effects during charge/discharge processes hinder the electrochemical performance. To overcome these problems, one-step solid state reaction method is developed to synthesize LiMnPO4/C composites, which is with nanostructure, high crystallinity and good carbon coating. Manganese oxide sources and calcination temperature are investigated as factors for preparing high-performance LiMnPO4/C for Li-ion batteries. The results show that the LiMnPO4/C composites prepared with mixed manganese oxide deliver a superior initial capacity of 153 mAh g-1 at 0.05 C and high rate performance with discharge capacities of 123 mAh g-1 at 1 C and 103 mAh g-1 at 2 C. And the LiMnPO4/C composites synthesized at 600 C can retain 94% of the initial capacity after 200 cycles at 1 C, revealing a stable cycling stability. Therefore, one-step solid state reaction brings to light the synthesis of high performance LiMnPO4/C cathode materials and is suitable for large scale production.

  7. Nanostructured thin film-based near-infrared tunable perfect absorber using phase-change material

    NASA Astrophysics Data System (ADS)

    Kocer, Hasan

    2015-01-01

    Nanostructured thin film absorbers embedded with phase-change thermochromic material can provide a large level of absorption tunability in the near-infrared region. Vanadium dioxide was employed as the phase-change material in the designed structures. The optical absorption properties of the designed structures with respect to the geometric and material parameters were systematically investigated using finite-difference time-domain computations. Absorption level of the resonance wavelength in the near-IR region was tuned from the perfect absorption level to a low level (17%) with a high positive dynamic range of near-infrared absorption intensity tunability (83%). Due to the phase transition of vanadium dioxide, the resonance at the near-infrared region is being turned on and turned off actively and reversibly under the thermal bias, thereby rendering these nanostructures suitable for infrared camouflage, emitters, and sensors.

  8. Synthesis and microwave absorption properties of graphene/nickel composite materials

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxia; Yu, Mingxun; Zhang, Wei; Zhang, Baoqin; Dong, Lifeng

    2015-03-01

    Graphene/nickel composite materials were successfully prepared via a one-step in situ reduction from nickel chloride, graphene oxide, and hydrazine at 80 C for 3 h. Face-centered cubic Ni nanostructures with uniform size and high dispersion assembled on graphene sheets. Through the measurement of complex relative permittivity and permeability, their microwave absorption properties were evaluated. In comparison with pure Ni nanoparticles and graphene, the composite materials demonstrated much better characteristics of microwave absorption. The lowest reflection loss value of the composites with a thickness of 3 mm can reach -23.3 dB at 7.5 GHz. Our research reveals that graphene/Ni composites are promising microwave absorption materials with desirable absorption properties and reduced material weight.

  9. Gradient composite materials for artificial intervertebral discs.

    PubMed

    Migacz, Katarzyna; Chłopek, Jan; Morawska-Chochół, Anna; Ambroziak, Maciej

    2014-01-01

    Composites with the gradient of Young's modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites. The results obtained during in vitro tests displayed a good durability of the gradient materials put under long-term static load. However, the configuration based on a change in the volume fraction of the fibres seems more advantageous than the one based on a change of the fibres' orientation. The materials under study were designed to replace the intervertebral disc. The effect of Young's modulus of the material layers on the stress distribution between the tissue and the implant was analyzed and the biomimetic character of the gradient composites was stated. Unlike gradient materials, the pure polysulfone and the non-gradient composite resulted in the stress concentration in the region of nucleus pulposus, which is highly disadvantageous and does not occur in the stress distribution of natural intervertebral discs. PMID:25306938

  10. Energy absorption of composite material and structure

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.

    1987-01-01

    Results are presented from a joint research program on helicopter crashworthiness conducted by the U.S. Army Aerostructures Directorate and NASA Langley. Through the ongoing research program an in-depth understanding has been developed on the cause/effect relationships between material and architectural variables and the energy-absorption capability of composite material and structure. Composite materials were found to be efficient energy absorbers. Graphite/epoxy subfloor structures were more efficient energy absorbers than comparable structures fabricated from Kevlar or aluminum. An accurate method of predicting the energy-absorption capability of beams was developed.

  11. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications

    PubMed Central

    Li, Hui; Lee, Taek; Dziubla, Thomas; Pi, Fengmei; Guo, Sijin; Xu, Jing; Li, Chan; Haque, Farzin; Liang, Xing-Jie; Guo, Peixuan

    2015-01-01

    Summary The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field. PMID:26770259

  12. Current developments in composite materials and techniques.

    PubMed

    Dietschi, D; Dietschi, J M

    1996-09-01

    General reduction of dental caries and patient interest in dental aesthetics have resulted in the development of new restorative materials and techniques. Composite materials and adhesive techniques have become the foundation of modern restorative dentistry. Mechanical performance, wear resistance, and aesthetic potential of composite resins have been significantly improved, and the material is now used in cases ranging from the restoration of initial decays and cosmetic corrections to the veneering in extended prosthetic rehabilitation. Polymerization shrinkage of the resin matrix remains a challenge and still imposes limitations in the application of direct techniques. The learning objective of this article is to review the most significant advances of composite materials and the importance of utilizing the available treatment options with discretion, selecting those which preserve the tooth structure and require the least maintenance. PMID:9242136

  13. Surface-hardened nanostructured Ti- and Zr-matrix composites for medical and engineering applications

    NASA Astrophysics Data System (ADS)

    Sharkeev, Yu. P.; Kukareko, V. A.; Legostaeva, E. V.; Byeli, A. V.

    2011-03-01

    Combined studies have been conducted on the structural-phase state and physical-mechanical and tribological properties of nanostructured titanium and zirconium subjected to ion-beam implantation or microplasma oxidation. Low-temperature ion-beam nitriding of the materials examined is shown to provide a 25-35-fold increase in the wear resistance of their surface layers and a 40% decrease in the friction coefficient for tribological interaction with contact surfaces. Microplasma oxidation of titanium in aqueous solution of phosphoric acid, hydroxylapatite and calcium carbonate powders enables calcium-phosphate coatings with high physical-mechanical properties to be produced. Tribological tests in a dry friction regime and in isotonic solution of sodium chloride have revealed that a nanostructured titanium substrate-calcium phosphate coating biocomposite exhibits a fairly high friction coefficient (0.4-1.0) in tribological interactions with ultrahigh molecular-weight polyethylene or bone tissue. A substantial improvement in the tribotechnical properties of nanostructured titanium and zirconium with modified surface layers makes them very promising materials for medical and engineering applications.

  14. [The application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum].

    PubMed

    Grigor'eva, M V; Akimov, A V; Bagautdinov, A A

    2014-01-01

    The objective of the present work was to estimate the effectiveness of the application of the nanostructured bioplastic material for the plastic reconstruction of perforations in the nasal septum. A total of 80 patients were recruited for the study. Half of them underwent plastic reconstruction of perforations in the nasal septum with the application of the nanostructured bioplastic material. Forty patients were treated using no biotransplants. The functional state of nasal cavity mucosa was evaluated before and after surgery. It is concluded that the nanostructured bioplastic material used in the present study ensures efficacious reconstruction of nasal septum integrity after plastic correction of septal perforations. PMID:25588475

  15. Nanostructure and Composition of Tribo-Boundary Films Formed in Ionic Liquid Lubrication

    SciTech Connect

    Qu, Jun; Chi, Miaofang; Meyer III, Harry M; Blau, Peter Julian; Dai, Sheng; Luo, Huimin

    2011-01-01

    Since the idea of using ionic liquids (ILs) as lubricants was raised in 2001, many studies have been conducted in this area and results have demonstrated superior lubricating performance for a variety of ionic liquids. It is widely believed that tribochemical reactions occur between the metal surface and the IL during the wear process to form a protective tribo-boundary film on the contact area that reduces friction and wear. However, the study of this critical boundary film has been limited to top surface two-dimensional topography examination and chemical analysis in the literature. A more comprehensive characterization is needed to help understand the film formation process and the lubricating mechanism. This study demonstrated a multi-technique three-dimensional approach to characterize the IL-formed boundary films, including top surface morphology examination, cross section nanostructure characterization, and layered chemical analysis. Characterization was carried out on both ferrous and aluminum surfaces lubricated by an ammonium IL. The focused-ion-beam (FIB) technique enabled TEM/EDS examination on the cross section of the boundary film to provide direct measurement of the film thickness, visualization of the nanostructure, and analysis of composition. In addition, composition-depth profiles were generated using XPS aided by ion-sputtering to reveal the composition change at different levels of the boundary film to investigate the film formation process.

  16. Nonlinear optical properties of composite materials

    NASA Technical Reports Server (NTRS)

    Haus, Joseph W.; Inguva, Ramarao

    1991-01-01

    The optical properties of a new class of composite nonlinear materials composed of coated grains, such as cadmium sulfide with a silver coating, are examined. These materials exhibit intrinsic optical bistability and resonantly enhanced conjugate reflectivity. The threshold for intrinsic optical bistability is low enough for practical applications in optical communications and optical computing. Some problems associated with the fabrication of these materials are addressed. Based on preliminary results, switching times are expected to be in the subpicosecond range.

  17. Composite WO3/TiO2 nanostructures for high electrochromic activity

    SciTech Connect

    Reyes-Gil, Karla R.; Stephens, Zachary D.; Stavila, Vitalie; Robinson, David B.

    2015-01-06

    A composite material consisting of TiO2 nanotubes (NT) with WO3 electrodeposited on its surface has been fabricated, detached from its Ti substrate, and attached to a fluorine-doped tin oxide (FTO) film on glass for application to electrochromic (EC) reactions. Several adhesion layers were tested, finding that a paste of TiO2 made from commercially available TiO2 nanoparticles creates an interface for the TiO2 NT film to attach to the FTO glass, which is conductive and does not cause solution-phase ions in an electrolyte to bind irreversibly with the material. The effect of NT length and WO3 concentration on the EC performance were studied. As a result, the composite WO3/TiO2 nanostructures showed higher ion storage capacity, better stability, enhanced EC contrast, and longer memory time compared with the pure WO3 and TiO2 materials

  18. Materials analysis by ultrasonics: Metals, ceramics, composites

    NASA Technical Reports Server (NTRS)

    Vary, Alex (Editor)

    1987-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properties, and dynamic response.

  19. Advanced composite materials for optomechanical systems

    NASA Astrophysics Data System (ADS)

    Zweben, Carl

    2013-09-01

    Polymer matrix composites (PMCs) have been well established in optomechanical systems for several decades. The other three classes of composites; metal matrix composites (MMCs), ceramic matrix composites (CMCs), and carbon matrix composites (CAMCs) are making significant inroads. The latter include carbon/carbon (C/C) composites (CCCs). The success of composites has resulted in increasing use in consumer, industrial, scientific, and aerospace/defense optomechanical applications. Composites offer significant advantages over traditional materials, including high stiffnesses and strengths, near-zero and tailorable coefficients of thermal expansion (CTEs), tailorable thermal conductivities (from very low to over twice that of copper), and low densities. In addition, they lack beryllium's toxicity problems. Some manufacturing processes allow parts consolidation, reducing machining and joining operations. At present, PMCs are the most widely used composites. Optomechanical applications date from the 1970s. The second High Energy Astrophysical Observatory spacecraft, placed in orbit in 1978, had an ultrahigh-modulus carbon fiber-reinforced epoxy (carbon/epoxy) optical bench metering structure. Since then, fibers and matrix materials have advanced significantly, and use of carbon fiber-reinforced polymers (CFRPs) has increased steadily. Space system examples include the Hubble Space Telescope metering truss and instrument benches, Upper Atmosphere Research Satellite (UARS), James Webb Space Telescope and many others. Use has spread to airborne applications, such as SOFIA. Perhaps the most impressive CFRP applications are the fifty-four 12m and twelve 7m moveable ground-based ALMA antennas. The other three classes of composites have a number of significant advantages over PMCs, including no moisture absorption or outgassing of organic compounds. CCC and CMC components have flown on a variety of spacecraft. MMCs have been used in space, aircraft, military and industrial applications. In this paper, we review key PMC, MMC, CCC, and CMC optomechanical system materials, including properties, advantages, disadvantages, applications and future developments. These topics are covered in more detail in SPIE short courses SC218 and SC1078.

  20. CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS

    SciTech Connect

    Xiao, S.; Heung, L.

    2010-10-07

    Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

  1. Synthesis and characterization of novel nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Qiu, Xiaofeng; Burda, Clemens

    2005-08-01

    Having been hibernated for almost 50 years, research in thermoelectric materials is beginning to regain activity because of the recent advances in nanoscience and nanotechnology. Thermoelectric is an old topic, which was discovered as early as 1821 by Thomas Johann Seebeck. During the following 120 years, great advances in both the theories and experiments were achieved. Since the 1950s, studies in thermoelectric have developed very little, because of the painful difficulties in elevating the efficiency of these kinds of materials. The efficiency of thermoelectric materials is determined by a dimensionless parameter--figure of merit (ZT), given by ZT = S2?T/? where T is the temperature, S is the thermoelectric power (or Seebeck coefficient), ? is the electrical conductivity, and ? is the thermal conductivity. The best commercially available thermoelectric materials nowadays have a ZT around 1.0, which can be only used in some special cases. To be competitive to the kitchen refrigerators or air-conditioners, a ZT >= 3 at room temperature is required. Recently, some exciting results indicated that higher ZT values can be realized by nanoengineering of these materials. Both theoretical calculations and experimental modulations have shown the promising potentials in the elevation of the efficiency of thermoelectric materials.

  2. Composite Materials for Wind Power Turbine Blades

    NASA Astrophysics Data System (ADS)

    Brndsted, Povl; Lilholt, Hans; Lystrup, Aage

    2005-08-01

    Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood and composites are discussed as candidates for rotorblades. The fibers and matrices for composites are described, and their high stiffness, low density, and good fatigue performance are emphasized. Manufacturing technologies for composites are presented and evaluated with respect to advantages, problems, and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fatigue performance. Damage and materials degradation during fatigue are described. Testing procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy.

  3. Synthesis and characterization of inorganic nanostructured materials for advanced energy storage

    NASA Astrophysics Data System (ADS)

    Xie, Jin

    The performance of advanced energy storage devices is intimately connected to the designs of electrodes. To enable significant developments in this research field, we need detailed information and knowledge about how the functions and performances of the electrodes depend on their chemical compositions, dimensions, morphologies, and surface properties. This thesis presents my successes in synthesizing and characterizing electrode materials for advanced electrochemical energy storage devices, with much attention given to understanding the operation and fading mechanism of battery electrodes, as well as methods to improve their performances and stabilities. This dissertation is presented within the framework of two energy storage technologies: lithium ion batteries and lithium oxygen batteries. The energy density of lithium ion batteries is determined by the density of electrode materials and their lithium storage capabilities. To improve the overall energy densities of lithium ion batteries, silicon has been proposed to replace lithium intercalation compounds in the battery anodes. However, with a ~400% volume expansion upon fully lithiation, silicon-based anodes face serious capacity degradation in battery operation. To overcome this challenge, heteronanostructure-based Si/TiSi2 were designed and synthesized as anode materials for lithium ion batteries with long cycling life. The performance and morphology relationship was also carefully studied through comparing one-dimensional and two-dimensional heteronanostructure-based silicon anodes. Lithium oxygen batteries, on the other hand, are devices based on lithium conversion chemistries and they offer higher energy densities compared to lithium ion batteries. However, existing carbon based electrodes in lithium oxygen batteries only allow for battery operation with limited capacity, poor stability and low round-trip efficiency. The degradation of electrolytes and carbon electrodes have been found to both contribute to the challenges. The understanding of the synergistic effect between electrolyte decomposition and electrode decomposition, nevertheless, is conspicuously lacking. To better understand the reaction chemistries in lithium oxygen batteries, I designed, synthesized, and studied heteronanostructure-based carbon-free inorganic electrodes, as well as carbon electrodes whose surfaces protected by metal oxide thin films. The new types of electrodes prove to be highly effective in minimizing parasitic reactions, reducing operation overpotentials and boosting battery lifetimes. The improved stability and well-defined electrode morphology also enabled detailed studies on the formation and decomposition of Li2O 2. To summarize, this dissertation presented the synthesis and characterization of inorganic nanostructured materials for advanced energy storage. On a practical level, the new types of materials allow for the immediate advancement of the energy storage technology. On a fundamental level, it helped to better understand reaction chemistries and fading mechanisms of battery electrodes.

  4. n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates.

    PubMed

    Son, Jae Sung; Choi, Moon Kee; Han, Mi-Kyung; Park, Kunsu; Kim, Jae-Yeol; Lim, Seong Joon; Oh, Myunghwan; Kuk, Young; Park, Chan; Kim, Sung-Jin; Hyeon, Taeghwan

    2012-02-01

    We herein report on the large-scale synthesis of ultrathin Bi(2)Te(3) nanoplates and subsequent spark plasma sintering to fabricate n-type nanostructured bulk thermoelectric materials. Bi(2)Te(3) nanoplates were synthesized by the reaction between bismuth thiolate and tri-n-octylphosphine telluride in oleylamine. The thickness of the nanoplates was ~1 nm, which corresponds to a single layer in Bi(2)Te(3) crystals. Bi(2)Te(3) nanostructured bulk materials were prepared by sintering of surfactant-removed Bi(2)Te(3) nanoplates using spark plasma sintering. We found that the grain size and density were strongly dependent on the sintering temperature, and we investigated the effect of the sintering temperature on the thermoelectric properties of the Bi(2)Te(3) nanostructured bulk materials. The electrical conductivities increased with an increase in the sintering temperature, owing to the decreased interface density arising from the grain growth and densification. The Seebeck coefficients roughly decreased with an increase in the sintering temperature. Interestingly, the electron concentrations and mobilities strongly depended on the sintering temperature, suggesting the potential barrier scattering at interfaces and the doping effect of defects and organic residues. The thermal conductivities also increased with an increase in the sintering temperature because of grain growth and densification. The maximum thermoelectric figure-of-merit, ZT, is 0.62 at 400 K, which is one of the highest among the reported values of n-type nanostructured materials based on chemically synthesized nanoparticles. This increase in ZT shows the possibility of the preparation of highly efficient thermoelectric materials by chemical synthesis. PMID:22268842

  5. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

    2013-12-01

    High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03791f

  6. Ceramic Aerogel Composite Materials and Characterization

    NASA Technical Reports Server (NTRS)

    White, Susan; Hrubesh, Lawrence W.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    Aerogels a.k.a "Solid Smoke" are gels with the liquid phase replaced by gas, leaving behind a highly porous material with a nanoscale framework. Due to the porous, nanoscale structure, aerogels have the lowest known density and conductivity of solids. Aerogels have the potential for being a breakthrough material because of their extremely light weight and unique properties. In this paper, we address overcoming their most profound weaknesses: mechanical fragility and very high surface activity, which leads to a lowered sintering temperature. A matrix of ceramic aerogel composite materials was produced to investigate their properties and functionality. Mechanical property measurements and Scanning Electron Micrographs are used to identify trends and structure of these ceramic composite materials. Thermal cycling was used to identify the sintering points of the materials.

  7. Tensile failure criteria for fiber composite materials

    NASA Technical Reports Server (NTRS)

    Rosen, B. W.; Zweben, C. H.

    1972-01-01

    The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.

  8. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  9. Impact testing of textile composite materials

    NASA Technical Reports Server (NTRS)

    Portanova, Marc

    1995-01-01

    The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

  10. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of the elastic moduli reported. Only one other TE material has the porosity dependence of the elastic moduli previously reported in the literature, lead-antimony-silver-tellurium (LAST), and the effect of different powder processing and sintering methods has never been reported previously on TE materials.

  11. Nano-structured Materials in New and Existing Buildings: To Improved Performance and Saving of Energy

    NASA Astrophysics Data System (ADS)

    Scalisi, F.

    Improving well-being in buildings, in relation to energy conservation, represents a great challenge. In southern Italy a basic problem is that of keeping buildings cool in the summer months. This problem affects not only newly-erected buildings, but also the large number of existing buildings, some of which are of historical importance. Nano-technology represents an excellent opportunity to harness the salvage of existing buildings to the living requirements of contemporary society. The use of nano-structured materials in newly-erected buildings will lead to improved performance and a considerable saving of energy. Above all, the use of nano-structured materials in existing buildings will provide the possibility of intervention in these buildings and help improve, for example, insulation or lighting, without invasive intervention and consequent damage to the building itself.

  12. Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference

    NASA Astrophysics Data System (ADS)

    Yang, Qiaoyin; Zhang, Xu A.; Bagal, Abhijeet; Guo, Wei; Chang, Chih-Hao

    2013-06-01

    Thin-film interference is a well-known effect, and it is commonly observed in the colored appearance of many natural phenomena. Caused by the interference of light reflected from the interfaces of thin material layers, such interference effects can lead to wavelength and angle-selective behavior in thin-film devices. In this work, we describe the use of interfacial nanostructures to eliminate interference effects in thin films. Using the same principle inspired by moth-eye structures, this approach creates an effective medium where the index is gradually varying between the neighboring materials. We present the fabrication process for such nanostructures at a polymer-silicon interface, and experimentally demonstrate its effectiveness in suppressing thin-film interference. The principle demonstrated in this work can lead to enhanced efficiency and reduce wavelength/angle sensitivity in multilayer optoelectronic devices.

  13. Health monitoring method for composite materials

    DOEpatents

    Watkins, Jr., Kenneth S.; Morris, Shelby J.

    2011-04-12

    An in-situ method for monitoring the health of a composite component utilizes a condition sensor made of electrically conductive particles dispersed in a polymeric matrix. The sensor is bonded or otherwise formed on the matrix surface of the composite material. Age-related shrinkage of the sensor matrix results in a decrease in the resistivity of the condition sensor. Correlation of measured sensor resistivity with data from aged specimens allows indirect determination of mechanical damage and remaining age of the composite component.

  14. NANOSTRUCTURED MATERIAL DESIGN FOR HG, AS, AND SE CAPTURE

    EPA Science Inventory

    The goal of this research project is to identify potential materials that can be used as multipollutant sorbents using a hierarchy of computational modeling approaches. Palladium (Pd) and gold (Au) alloys were investigated and the results show that the addition of a small amou...

  15. Computational modeling of composite material fires.

    SciTech Connect

    Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

    2010-10-01

    Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary condition is examined to study the propagation of decomposition fronts of the epoxy and carbon fiber and their dependence on the ambient conditions such as oxygen concentration, surface flow velocity, and radiant heat flux. In addition to the computational effort, small scaled experimental efforts to attain adequate data used to validate model predictions is ongoing. The goal of this paper is to demonstrate the progress of the capability for a typical composite material and emphasize the path forward.

  16. High-capacity nanostructured germanium-containing materials and lithium alloys thereof

    DOEpatents

    Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

    2010-08-24

    Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

  17. Composite materials and method of making

    DOEpatents

    Uribe, Francisco A.; Wilson, Mahlon S.; Garzon, Fernando H.

    2009-09-15

    A method of depositing noble metals on a metal hexaboride support. The hexaboride support is sufficiently electropositive to allow noble metals to deposit spontaneously from solutions containing ionic species of such metals onto the support. The method permits the deposition of metallic films of controlled thickness and particle size at room temperature without using separate reducing agents. Composite materials comprising noble metal films deposited on such metal hexaborides are also described. Such composite materials may be used as catalysts, thermionic emitters, electrical contacts, electrodes, adhesion layers, and optical coatings.

  18. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  19. Grafting in cellulose - polystyrene composite materials

    SciTech Connect

    Trejo O`Reilly, J.A.; Cavaille, J.Y.; Dufresne, A.

    1995-12-01

    In order to evaluate the effect of the grafting of polystyrene on model cellulosic fibers, several composite materials were processed, (1) by simply dispersing microfibrils into a polystyrene matrix, (2) by dispersing the same fibers but modified by phenyl groups, (3) by grafting a functionalized polystyrene on the fibers surface and mixing with the matrix. The characterization of the coupling agent used has been performed by several techniques: FTIR, NMR, DSC and elemental analysis. Evidence of grafting onto the fibers surface was displayed by FTIR measurements and elemental analysis. All the composite materials were characterized by DSC, tensile tests and mechanical spectroscopy.

  20. Synthesis and analysis of nanostructured composite particles from gas-saturated solutions

    NASA Astrophysics Data System (ADS)

    Gil'mutdinov, I. I.; Gil'mutdinov, I. M.; Kuznetsova, I. V.; Sabirzyanov, A. N.

    2015-05-01

    Ibuprofen/polyethylene glycol 4000 and methylparaben/polyethylene glycol 4000 nanostructured composite particles are synthesized from gas-saturated solutions (PGSS, particles from gas saturated solution). The dependences of the mean size of composite particles on pressure, temperature, and the expansion channel diameter are revealed. The studies are conducted in the pressure range of 10 to 30 MPa, at temperatures ranging from 40 to 80°C, and for expansion channel diameters in the range of 200 to 500 μm. The physicochemical properties of the composite particles are investigated using a differential scanning calorimeter and phase analysis is performed by means of X-ray diffraction. The composition of composite particles is determined via mass spectrometric analysis. Chromatography-tandem mass spectrometry with electronic ionization is used for the quantitative analysis of ibuprofen, while mass spectrometry of matrix-assisted laser desorption/ionization (MALDI) is used in the analysis of polyethylene glycol 4000. The dependence of the concentration of components in composite particles on pressure is obtained.

  1. Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications

    NASA Astrophysics Data System (ADS)

    Liu, Zuwei

    Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temper

  2. Temperature-dependent thermal conductivity in silicon nanostructured materials studied by the Boltzmann transport equation

    NASA Astrophysics Data System (ADS)

    Romano, Giuseppe; Esfarjani, Keivan; Strubbe, David A.; Broido, David; Kolpak, Alexie M.

    2016-01-01

    Nanostructured materials exhibit low thermal conductivity because of the additional scattering due to phonon-boundary interactions. As these interactions are highly sensitive to the mean free path (MFP) of phonons, MFP distributions in nanostructures can be dramatically distorted relative to bulk. Here we calculate the MFP distribution in periodic nanoporous Si for different temperatures, using the recently developed MFP-dependent Boltzmann transport equation. After analyzing the relative contribution of each phonon branch to thermal transport in nanoporous Si, we find that at room temperature optical phonons contribute 17 % to heat transport, compared to 5 % in bulk Si. Interestingly, we observe a constant thermal conductivity over the range 200 K nanostructured materials and demonstrate the necessity of multiscale heat transport engineering, in which the bulk material and geometry are optimized concurrently.

  3. Nanostructured carbon materials for adsorption of methane and other gases

    DOEpatents

    Stadie, Nicholas P.; Fultz, Brent T.; Ahn, Channing; Murialdo, Maxwell

    2015-06-30

    Provided are methods for storing gases on porous adsorbents, methods for optimizing the storage of gases on porous adsorbents, methods of making porous adsorbents, and methods of gas storage of optimized compositions, as in systems containing porous adsorbents and gas adsorbed on the surface of the porous adsorbent. The disclosed methods and systems feature a constant or increasing isosteric enthalpy of adsorption as a function of uptake of the gas onto the exposed surface of a porous adsorbent. Adsorbents with a porous geometry and surface dimensions suited to a particular adsorbate are exposed to the gas at elevated pressures in the specific regime where n/V (density) is larger than predicted by the ideal gas law by more than several percent.

  4. Nanostructured high-energy cathode materials for advanced lithium batteries

    NASA Astrophysics Data System (ADS)

    Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

    2012-11-01

    Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M?=?transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215?mA?h?g-1), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

  5. Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion

    NASA Technical Reports Server (NTRS)

    Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

    2012-01-01

    Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  6. Nanostructured solar irradiation control materials for solar energy conversion

    NASA Astrophysics Data System (ADS)

    Kang, Jin Ho; Marshall, Iseley A.; Torrico, Mattew N.; Taylor, Chase R.; Ely, Jeffry; Henderson, Angel; Sauti, Godfrey; Gibbons, Luke J.; Kim, Jae-Woo; Park, Cheol; Lowther, Sharon E.; Lillehei, Peter T.; Bryant, Robert G.

    2012-10-01

    Tailoring the solar absorptivity (?s) and thermal emissivity (?T) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The ?s and ?T were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the ?s and ?T by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

  7. A risk forecasting process for nanostructured materials, and nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Wiesner, Mark R.; Bottero, Jean-Yves

    2011-09-01

    Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries. In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span from urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features and discuss.

  8. Frictional Ignition Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    Peralta, Steve; Rosales, Keisa; Robinson, Michael J.; Stoltzfus, Joel

    2006-01-01

    The space flight community has been investigating lightweight composite materials for use in propellant tanks for both liquid and gaseous oxygen for space flight vehicles. The use of these materials presents some risks pertaining to ignition and burning hazards in the presence of oxygen. Through hazard analysis process, some ignition mechanisms have been identified as being potentially credible. One of the ignition mechanisms was reciprocal friction; however, test data do not exist that could be used to clear or fail these types of materials as "oxygen compatible" for the reciprocal friction ignition mechanism. Therefore, testing was performed at White Sands Test Facility (WSTF) to provide data to evaluate this ignition mechanism. This paper presents the test system, approach, data results, and findings of the reciprocal friction testing performed on composite sample materials being considered for propellant tanks.

  9. High capacitive performance of nanostructured Mn-Ni-Co oxide composites for supercapacitor

    SciTech Connect

    Luo Jianmin; Gao Bo; Zhang Xiaogang

    2008-05-06

    Nanostructured Mn-Ni-Co oxide composites (MNCO) were prepared by thermal decomposition of the precursor obtained by chemical co-precipitation of Mn, Ni and Co salts. The chemical composition and morphology were characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and scanning electron microscopy (SEM). The electrochemical capacitance of MNCO electrode was examined by cyclic voltammetry, impedance and galvanostatic charge-discharge measurements. The results showed that MNCO electrode exhibited the good electrochemical characteristics. A maximum capacitance value of 1260 F g{sup -1} could be obtained within the potential range of -0.1 to 0.4 V versus saturated calomel electrode (SCE) in 6 mol L{sup -1} KOH electrolyte.

  10. Integrated sensing networks in composite materials

    NASA Astrophysics Data System (ADS)

    Starr, Anthony F.; Nemat-Nasser, Sia; Smith, David R.; Plaisted, Thomas A.

    2004-07-01

    Increasingly, the demand to monitor structures in service is driving technology in new directions. Advances in many areas including novel sensor technologies afford new opportunities in structural health monitoring. We present efforts to develop structural composite materials which include networks of embedded sensors with decision-making capabilities that extend the functionality of the composite materials to be information-aware. The next generation of structural systems will include the capability to acquire, process, and if necessary respond to structural or other types of information. This work brings together many important developments over the last few years in several areas: developments in composites and the emergence of multifunctional composites, the emergence of a broad range of new sensors, smaller and lower power microelectronics with increased and multiple integrated functionality, and the emergence of algorithms that extract important structural health information from large data sets. This work seeks to leverage these individual advances by solving the challenges needed to integrate these into an information-aware composite structure. We present details of efforts to integrate and entrap connectorized microelectronic components within fiber/conductor braided bundles to minimize their impact as composite crack initiation centers. The bundles include conductors to transmit electric signals for power and communications. They are suitable for inclusion in woven composite fabrics or directly in the composite lay-up. The low-power electronic devices can operate on a multi-drop and point-to-point networks. Future directions include implementing in-network local processing, adding a greater range of sensors, and developing the composite processing techniques that allow sensor network integration.

  11. Method of making carbon nanotube composite materials

    DOEpatents

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  12. Modeling of laser interactions with composite materials

    DOE PAGESBeta

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  13. Conversion of cellulose materials into nanostructured ceramics by biomineralization

    SciTech Connect

    Shin, Yongsoon; Exarhos, Gregory J

    2007-06-01

    Synthesis of hierarchically ordered silica materials having ordered wood cellular structures has been demonstrated through in-situ mineralization of wood by means of surfactant-directed mineralization in solutions of different pH. At low pH, silicic acid penetrates the buried interfaces of the wood cellular structure without clogging the pores to subsequently “molecularly paint” the interfaces thereby forming a positive replica following calcinations. At high pH, the hydrolyzed silica rapidly condenses to fill the open cells and pits within the structure resulting in a negative replica of the structure. Surfactant-templated mineralization in acid solutions leads to the formation of micelles that hexagonally pack at the wood interfaces preserving structural integrity while integrating hexagonally ordered nanoporosity into the structure of the cell walls following thermal treatment in air. The carbothermal reduction of mineralized wood with silica at high temperature produces biomorphic silicon carbide (SiC) materials, which are typical aggregations of β-SiC nanoparticles. To understand the roles of each component (lignin, crystalline cellulose, amorphous cellulose) comprising the natural biotemplates in the transformation to SiC rods, three different cellulose precursors including unbleached and bleached pulp, and cellulose nanocrystals have been utilized. Lignin in unbleached pulp blocked homogeneous penetration of silica into the pores between cellulose fibers resulting in non-uniform SiC fibers containing thick silica layers. Bleached pulp produced uniform SiC rods with camelback structures (80nm in diameter; ~50m in length), indicating that more silica infiltrates into the amorphous constituent of cellulose to form chunky rather than straight rod structures. The cellulose nanocrystal (CNXL) material produced clean and uniform SiC nanowires (70nm in diameter; >100m in length) without the camelback structure.

  14. Nanostructure of Materials Determined by Relayed Paramagnetic Relaxation Enhancement

    PubMed Central

    2015-01-01

    Particle and domain sizes strongly influence the properties of materials. Here we present an NMR approach based on paramagnetic relaxation enhancement (PRE) relayed by spin diffusion (SD), which allows us to determine lengths in the nm??m range. We demonstrate the method on multicomponent organic polymer mixtures by selectively doping one component with a paramagnetic center in order to measure the domain size in a second component. Using this approach we determine domain sizes in ethyl cellulose/hydroxypropyl cellulose film coatings in pharmaceutical controlled release formulations. Here we measure particle sizes ranging from around 50 to 200 nm. PMID:26397956

  15. Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials

    SciTech Connect

    Ogale, Amod A

    2012-04-27

    Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

  16. Nanofabrication and Novel Characterization of Nanostructured Particulate Catalytic Materials

    NASA Astrophysics Data System (ADS)

    Tong, Baiyun; Upali, Siriwardane; Seetala, Naidu; Akundi, Murty; Zhong, Zhenchen

    2002-03-01

    Novel nano-particle catalysts Fe/Cu and Co/Cu will provide a promising alternative to conventional catalysts for the efficient conversion of CO/CO2/H2 gases to useful fuels. We have prepared g-Al2O3 granular support particles by sol-gel method through three steps: boehmite sol (g-AlOOH) preparation, sol gelatinization and shaping (oil dropping), and dry and calcinations. Laser induced solution deposition (LISD) is a novel method for preparing proposed nanoparticle Fe/Cu and Co/Cu catalysts, which impinged on the Al2O3 granular support. In the initial experiments, we have deposited nanostrucured pure Co/Co oxide and Fe/Fe oxide nanoparticles. We have studied the microstructure and composition of deposited nanoparticles by scanning electron microscope (SEM), X-ray diffraction analysis (XRD) and transmission electron microscope (TEM). We have investigated the magnetic and electronic structural characteristics of the deposited nanoparticle catalysts by XPS, magnetization measurements, Mossbauer study and zero field nuclear magneto resonance (ZFNMR).

  17. Composite materials microstructure for radiation shielding

    NASA Technical Reports Server (NTRS)

    Radford, Donald W.; Sadeh, Willy Z.; Cheng, Boyle C.

    1992-01-01

    Shielding against radiation is a concern for applications on earth, in space, and on extraterrestrial surfaces. On earth EMI is an important factor, while in space and on extraterrestrial surfaces particle (high charge-Z and high energy-E) radiation is a critical issue. Conventional metallic materials currently used for EMI shielding incur large weight penalties. To overcome this weight penalty, ultra-lightweight composite materials utilizing fillers ranging from carbon microballoons to silver coated ceramic microballoons are proposed. The crucial shielding requirement is conductivity of the constituent materials, while the hollow microballoon geometry is utilized to yield low weight. Methods of processing and composition effects are examined and these results are compared to the effectiveness of varying the conductive microballoon material. The resulting ultralightweight materials, developed for EMI shielding, can be tailored through the application of the understanding of the relative effects of variables such as those tested. Initial experimental results reveal that these tailored ultralightweight composite materials are superior to traditional aluminum shielding at only a small fraction of the weight.

  18. Nano-structured carbon materials for improved biosensing applications

    NASA Astrophysics Data System (ADS)

    Razumiene, J.; Sakinyte, I.; Barkauskas, J.; Baronas, R.

    2015-04-01

    A set of oxidized graphite samples have been newly synthesized using different protocols. Atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis and Brunauer-Emmett-Teller analysis revealed the changes in structure and functionalities of obtained graphite oxidation products (GOPs) compared to pristine graphite. The substances have been tested as electrode materials applicable for bioelectrocatalytic systems using pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The application of GOPs allowed achieving the direct electron transfer (DET) from active site of PQQ-GDH to the electrode surface. Needless of additional electron transfer (ET) mediating compounds highly improved features of the biosensors. The efficiency of the biosensors has been evaluated for all types of biosensors varied from 32 ?A/cm2 to 64 ?A/cm2 using as electrode materials GOP1 and thermally reduced graphite oxide (TRGO), respectively. TRGO containing function groups (according TGA, ?6% of the weight loss) and smallest particles (average diameter was ?11 nm and the average height was ?0.5 nm) exhibited the higher efficiency for ET acceleration in the biosensor acting on principle of DET.

  19. Composite materials for rail transit systems

    NASA Technical Reports Server (NTRS)

    Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

    1987-01-01

    The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

  20. Magnetostrictive composite material systems analytical/experimental

    SciTech Connect

    Mitrovic, M.; Roberts, M.; Carman, G.

    1995-12-31

    In this paper, the authors describe a nonlinear constitutive relation for magnetostrictive materials that includes coupling between temperature/preload and magnetic field strengths. The constitutive relation is employed in a concentric cylinders model to predict the response of a magnetostrictive composite. The model is also used to predict the magnetic field requirements for an active control flap in a rotorcraft system. This latter prediction is based on the force/displacement requirements presently available in the literature. In an effort to improve the durability and possibly the response of the magnetostrictive material (Terfenol-D), the authors describe a manufacturing process to fabricate a magnetostrictive composite. Preliminary experimental results on the 1-3 magnetostrictive composite sample is also presented.

  1. Composite materials for precision space reflector panels

    NASA Astrophysics Data System (ADS)

    Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

    1992-09-01

    One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. Results from analytical studies to define material properties that control laminate properties and reflector deformation are discussed. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches RMS and an areal weight of 1.17 lbm/ft2 was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiOx coatings.

  2. Composite materials for the extravehicular mobility unit

    NASA Technical Reports Server (NTRS)

    Barrera, Enrique V.; Tello, Hector M.

    1992-01-01

    The extravehicular mobility unit (EMU), commonly known as the astronaut space suit assembly (SSA) and primary life support system (PLSS), has evolved through the years to incorporate new and innovative materials in order to meet the demands of the space environment. The space shuttle program which is seeing an increasing level of extravehicular activity (EVA), also called space walks, along with interest in an EMU for Lunar-Mars missions means even more demanding conditions are being placed on the suit and PLSS. The project for this NASA-ASEE Summer Program was to investigate new materials for these applications. The focus was to emphasize the use of composite materials for every component of the EMU to enhance the properties while reducing the total weight of the EMU. To accomplish this, development of new materials called fullerene reinforced materials (FRM's) was initiated. Fullerenes are carbon molecules which when added to a material significantly reduce the weight of that material. The Faculty Fellow worked directly on the development of the fullerene reinforced materials. A chamber for fullerene production was designed and assembled and first generation samples were processed. He also supervised with the JSC Colleague, a study of composite materials for the EMU conducted by the student participant in the NASA-ASEE Program, Hector Tello a Rice University graduate student, and by a NASA Aerospace Technologist (Materials Engineer) Evelyne Orndoff, in the Systems Engineering Analysis Office (EC7), also a Rice University graduate student. Hector Tello conducted a study on beryllium and Be alloys and initiated a study of carbon and glass reinforced composites for space applications. Evelyne Orndoff compiled an inventory of the materials on the SSA. Ms. Orndoff also reviewed SSA material requirements and cited aspects of the SSA design where composite materials might be further considered. Hector Tello spent part of his time investigating the solar radiation sensitivity of anodic coatings. This project was directed toward the effects of ultra-violet radiation on high emissivity anodic coatings. The work of both Evelyne Orndoff and Hector Tello is of interest to the Engineering Directorate at NASA/JSC and is also directed toward their research as Rice University graduate students.

  3. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA)

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

  4. Nanostructured material for advanced energy storage : magnesium battery cathode development.

    SciTech Connect

    Sigmund, Wolfgang M.; Woan, Karran V.; Bell, Nelson Simmons

    2010-11-01

    Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

  5. Nanostructure multilayer dielectric materials for capacitors and insulators

    DOEpatents

    Barbee, T.W. Jr.; Johnson, G.W.

    1998-04-21

    A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

  6. Synthesis and spectroscopic characterization of nanostructured thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Reppert, Jason Brooks

    Bismuth in the bulk form is a semimetal with a rhombohedral structure. It has a small band overlap between the conduction and valence bands and a highly anisotropic electron effective-mass tensor. Thermoelectric materials, in which one of the three dimensions is in the nanometer regime, exhibit unique quantum confinement properties and have generated much interest in recent years. Theoretical investigations have suggested that nanowires with diameters ≤ 10 nm will possess a figure-of-merit ZT > 2. Prior to this study, it has been shown that Bi nanowires with small enough diameters (˜10 nm), prepared via the pulsed laser vaporization method, undergo a transition from a semimetal with a small band overlap to a semiconductor with a small indirect band gap. Infrared absorption and UV-visible measurements were used to confirm this semimetal-to-semiconductor phase transition. In this thesis, we report the synthesis and optical characteristics of a variety of various potential thermoelectric materials including bismuth, nickel sulfide and cadmium sulfide. The infrared absorption in our Bi nanorods is blue-shifted in energy when compared to the corresponding spectra in bulk Bi, and when cooled down to liquid nitrogen temperatures, group theory suggests a strong temperature dependence in the Bi band structure. We also find that the Bi nanorod suspension displays excellent optical limiting properties at both 532 and 1064 nm excitations in the nanosecond laser pulse regime. We have also synthesized nickel sulfide nanoparticles with an average size of 5 nm by a one-step solid phase reaction. The intensity-dependent nonlinear transmission study was carried out using a 7 ns Nd:YAG laser at 532nm using Z-scan, and the nonlinear scattering was found to be the dominant mechanism for the observed response. Importantly, the modified Z-scan method allowed us to measure two competing mechanisms simultaneously - the optical limiting and saturable absorption in surface-modified nickel sulfide nanoparticles suspensions.

  7. Rational Design of Molecular Ferroelectric Materials and Nanostructures

    SciTech Connect

    Ducharme, Stephen

    2012-09-25

    The purpose of this project was to gain insight into the properties of molecular ferroelectrics through the detailed study of oligomer analogs of polyvinylidene fluoride (PVDF). By focusing on interactions at both the molecular level and the nanoscale level, we expect to gain improved understanding about the fundamental mechanism of ferroelectricity and its key properties. The research consisted of three complementary components: 1) Rational synthesis of VDF oligomers by Prof. Takacs’ group; 2) Detailed structural and electrical studies of thin by Prof. Ducharme’s Group; and 3) First-principles computational studies by DOE Lab Partner Dr. Serge Nakhman-son at Argonne National Laboratory. The main results of the work was a detailed understanding of the relationships between the molecular interactions and macroscopic phenomenology of fer-roelectricity VDF oligomers. This is valuable information supporting the development of im-proved electromechanical materials for, e.g., sonar, ultrasonic imaging, artificial muscles, and compliant actuators. Other potential applications include nonvolatile ferroelectric memories, heat-sensing imaging arrays, photovoltaic devices, and functional biomimetic materials. The pro-ject contributed to the training and professional development of undergraduate students and graduate students, post-doctoral assistants, and a high-school teacher. Project personnel took part in several outreach and education activities each year.

  8. Discovering new properties and applications of ultrafast laser nanostructuring in transparent materials

    NASA Astrophysics Data System (ADS)

    Beresna, Martynas; Gecevi?ius, Mindaugas; Kazansky, Peter G.

    2011-12-01

    In this paper we overview recent progress in ultrafast laser nanostructuring of transparent materials. A remarkable effect has also been discovered, referred to as quill or calligraphic laser writing, which reveals strong dependence of the material modification, in particular the self-assembled sub-wavelength structures in glass, on orientation of the writing direction relative to direction of the pulse front tilt. Moreover, evidence of the first order phase transition associated with self-assembled nanostructures formation was revealed and supercooled state of laser damage was observed using pulses with tilted intensity front. More recently it has been demonstrated that the tip of an ultrafast laser quill has a property that is very different from an ordinary quill. Specifically, the modification of glass can be controlled even in stationary conditions by the mutual orientation of light polarization azimuth and the pulse front tilt. More recently, the selfassembled sub-wavelength nanostructuring have been proposed for fabrication of vortex polarization converters and rewritable polarization multiplexed optical memory, where the information encoding is realized by means of two birefringence parameters, i.e. the slow axis orientation (4th dimension) and retardance (5th dimension), in addition to three spatial coordinates.

  9. Wetting, superhydrophobicity, and icephobicity in biomimetic composite materials

    NASA Astrophysics Data System (ADS)

    Hejazi, Vahid

    Recent developments in nano- and bio-technology require new materials. Among these new classes of materials which have emerged in the recent years are biomimetic materials, which mimic structure and properties of materials found in living nature. There are a large number of biological objects including bacteria, animals and plants with properties of interest for engineers. Among these properties is the ability of the lotus leaf and other natural materials to repel water, which has inspired researchers to prepare similar surfaces. The Lotus effect involving roughness-induced superhydrophobicity is a way to design nonwetting, self-cleaning, omniphobic, icephobic, and antifouling surfaces. The range of actual and potential applications of superhydrophobic surfaces is diverse including optical, building and architecture, textiles, solar panels, lab-on-a-chip, microfluidic devices, and applications requiring antifouling from biological and organic contaminants. In this thesis, in chapter one, we introduce the general concepts and definitions regarding the wetting properties of the surfaces. In chapter two, we develop novel models and conduct experiments on wetting of composite materials. To design sustainable superhydrophobic metal matrix composite (MMC) surfaces, we suggest using hydrophobic reinforcement in the bulk of the material, rather than only at its surface. We experimentally study the wetting properties of graphite-reinforced Al- and Cu-based composites and conclude that the Cu-based MMCs have the potential to be used in the future for the applications where the wear-resistant superhydrophobicity is required. In chapter three, we introduce hydrophobic coating at the surface of concrete materials making them waterproof to prevent material failure, because concretes and ceramics cannot stop water from seeping through them and forming cracks. We create water-repellant concretes with CA close to 160o using superhydrophobic coating. In chapter four, experimental data are collected in terms of oleophobicity especially when underwater applications are of interest. We develop models for four-phase rough interface of underwater oleophobicity and develop a novel approach to predict the CA of organic liquid on the rough surfaces immersed in water. We investigate wetting transition on a patterned surface in underwater systems, using a phase field model. We demonstrated that roughening on an immersed solid surface can drive the transition from Wenzel to Cassie-Baxter state. This discovery improves our understanding of underwater systems and their surface interactions during the wetting phenomenon and can be applied for the development of underwater oil-repellent materials which are of interest for various applications in the water industry, and marine devices. In chapter five, we experimentally and theoretically investigate the icephobicity of composite materials. A novel comprehensive definition of icephobicity, broad enough to cover a variety of situations including low adhesion strength, delayed ice crystallization, and bouncing is determined. Wetting behavior and ice adhesion properties of various samples are theoretically and experimentally compared. We conclude superhydrophobic surfaces are not necessarily icephobic. The models are tested against the experimental data to verify the good agreement between them. The models can be used for the design of novel superhydrophobic, oleophobic, omniphobic and icephobic composite materials. Finally we conclude that creating surface micro/nanostructures using mechanical abrasion or chemical etching as well as applying low energy materials are the most simple, inexpensive, and durable techniques to create superhydrophobic, oleophobic, and icephobic materials.

  10. MATERIALS, FABRICATION, AND MANUFACTURING OF MICRO/NANOSTRUCTURED SURFACES FOR PHASE-CHANGE HEAT TRANSFER ENHANCEMENT

    SciTech Connect

    McCarthy, M; Gerasopoulos, K; Maroo, SC; Hart, AJ

    2014-07-23

    This article describes the most prominent materials, fabrication methods, and manufacturing schemes for micro- and nanostructured surfaces that can be employed to enhance phase-change heat transfer phenomena. The numerous processes include traditional microfabrication techniques such as thin-film deposition, lithography, and etching, as well as template-assisted and template-free nanofabrication techniques. The creation of complex, hierarchical, and heterogeneous surface structures using advanced techniques is also reviewed. Additionally, research needs in the field and future directions necessary to translate these approaches from the laboratory to high-performance applications are identified. Particular focus is placed on the extension of these techniques to the design of micro/nanostructures for increased performance, manufacturability, and reliability. The current research needs and goals are detailed, and potential pathways forward are suggested.

  11. Spectroscopy and Dynamics of Giant PAH's: from Molecules to Nano-structured Carbon Materials

    NASA Astrophysics Data System (ADS)

    Castiglioni, C.; Negri, F.; Tommasini, M.; Di Donato, E.; Zerbi, G.

    2002-10-01

    Some recent results are presented based on a "molecular" approach to the study and the prediction of the structural and spectroscopic characteristics of nanostructured graphitic materials. QCFF/PI Quantum Chemical calculations have been performed on several polycyclic aromatic hydrocarbons (PAHs) of different and well defined structure and size. This study identifies peculiar structural characteristics of PAHs, originating from the confinement of ? electrons. These characteristics are directly related to the features observed in their Raman spectra. On this basis the Raman response of a disordered carbon material containing nanosized graphitic domains has been computed.

  12. Accelerated Aging of Polymer Composite Bridge Materials

    SciTech Connect

    Carlson, Nancy Margaret; Blackwood, Larry Gene; Torres, Lucinda Laine; Rodriguez, Julio Gallardo; Yoder, Timothy Scott

    1999-03-01

    Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

  13. Hydrogel Composite Materials for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Shapiro, Jenna M.; Oyen, Michelle L.

    2013-04-01

    Hydrogels are appealing for biomaterials applications due to their compositional similarity with highly hydrated natural biological tissues. However, for structurally demanding tissue engineering applications, hydrogel use is limited by poor mechanical properties. Here, composite materials approaches are considered for improving hydrogel properties while attempting to more closely mimic natural biological tissue structures. A variety of composite material microstructures is explored, based on multiple hydrogel constituents, particle reinforcement, electrospun nanometer to micrometer diameter polymer fibers with single and multiple fiber networks, and combinations of these approaches to form fully three-dimensional fiber-reinforced hydrogels. Natural and synthetic polymers are examined for formation of a range of scaffolds and across a range of engineered tissue applications. Following a discussion of the design and fabrication of composite scaffolds, interactions between living biological cells and composite scaffolds are considered across the full life cycle of tissue engineering from scaffold fabrication to in vivo use. We conclude with a summary of progress in this area to date and make recommendations for continuing research and for advanced hydrogel scaffold development.

  14. Carbon Nanotube Composites: Strongest Engineering Material Ever?

    NASA Technical Reports Server (NTRS)

    Mayeaux, Brian; Nikolaev, Pavel; Proft, William; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    The primary goal of the carbon nanotube project at Johnson Space Center (JSC) is to fabricate structural materials with a much higher strength-to-weight ratio than any engineered material today, Single-wall nanotubes present extraordinary mechanical properties along with new challenges for materials processing. Our project includes nanotube production, characterization, purification, and incorporation into applications studies. Now is the time to move from studying individual nanotubes to applications work. Current research at JSC focuses on structural polymeric materials to attempt to lower the weight of spacecraft necessary for interplanetary missions. These nanoscale fibers present unique new challenges to composites engineers. Preliminary studies show good nanotube dispersion and wetting by the epoxy materials. Results of tensile strength tests will also be reported. Other applications of nanotubes are also of interest for energy storage, gas storage, nanoelectronics, field emission, and biomedical uses.

  15. Conductor-polymer composite electrode materials

    DOEpatents

    Ginley, D.S.; Kurtz, S.R.; Smyrl, W.H.; Zeigler, J.M.

    1984-06-13

    A conductive composite material useful as an electrode, comprises a conductor and an organic polymer which is reversibly electrochemically dopable to change its electrical conductivity. Said polymer continuously surrounds the conductor in intimate electrical contact therewith and is prepared by electrochemical growth on said conductor or by reaction of its corresponding monomer(s) on said conductor which has been pre-impregnated or pre-coated with an activator for said polymerization. Amount of the conductor is sufficient to render the resultant composite electrically conductive even when the polymer is in an undoped insulating state.

  16. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials.

    PubMed

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-12-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites. PMID:26319225

  17. Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials

    NASA Astrophysics Data System (ADS)

    Kamarulzaman, Norlida; Kasim, Muhd Firdaus; Rusdi, Roshidah

    2015-08-01

    Band gap change in doped ZnO is an observed phenomenon that is very interesting from the fundamental point of view. This work is focused on the preparation of pure and single phase nanostructured ZnO and Cu as well as Mn-doped ZnO for the purpose of understanding the mechanisms of band gap narrowing in the materials. ZnO, Zn0.99Cu0.01O and Zn0.99Mn0.01O materials were prepared using a wet chemistry method, and X-ray diffraction (XRD) results showed that all samples were pure and single phase. UV-visible spectroscopy showed that materials in the nanostructured state exhibit band gap widening with respect to their micron state while for the doped compounds exhibited band gap narrowing both in the nano and micron states with respect to the pure ZnO materials. The degree of band gap change was dependent on the doped elements and crystallite size. X-ray photoelectron spectroscopy (XPS) revealed that there were shifts in the valence bands. From both UV-visible and XPS spectroscopy, it was found that the mechanism for band gap narrowing was due to the shifting of the valance band maximum and conduction band minimum of the materials. The mechanisms were different for different samples depending on the type of dopant and dimensional length scales of the crystallites.

  18. Synthesis of nanostructured manganese oxides based materials and application for supercapacitor

    NASA Astrophysics Data System (ADS)

    Dung Dang, Trung; Le, Thi Thu Hang; Bich Thuy Hoang, Thi; Mai, Thanh Tung

    2015-01-01

    Manganese oxides are important materials with a variety of applications in different fields such as chemical sensing devices, magnetic devices, field-emission devices, catalysis, ion-sieves, rechargeable batteries, hydrogen storage media and microelectronics. To open up new applications of manganese oxides, novel morphologies or nanostructures are required to be developed. Via sol—gel and anodic electrodeposition methods, M (Co, Fe) doped manganese oxides were prepared. On the other hand, nanostructured (nanoparticles, nanorods and hollow nanotubes) manganese oxides were synthesized via a process including a chemical reaction with carbon nanotubes (CNTs) templates followed by heat treatment. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and impedance spectroscopy (EIS) were used for characterization of the prepared materials. The influence of chemical reaction conditions, heat treatment and template present on the morphology, structure, chemical and electrochemical properties of the prepared materials were investigated. Chronopotentiometry (CP) and CV results show high specific capacitance of 186.2 to 298.4 F g-1 and the charge/discharge stability of the prepared materials and the ideal pseudocapacitive behaviors were observed. These results give an opening and promising application of these materials in advanced energy storage applications.

  19. Shape, size, and atomic composition analysis of nanostructures in 3D by Rutherford backscattering spectrometry

    NASA Astrophysics Data System (ADS)

    Zolnai, Zsolt

    2013-09-01

    The emergence of novel micro- and nanofabrication tools lead to the targeted research of highly ordered three-dimensional nanosystems, constructed from regular building blocks like spheres, cylinders, bricks, pyramids, which can be used in a wide range of applications. As a consequence, the exploration of the potential and limits of efficient analytical techniques to characterize structured nanosystems became a significant task. In this work the scope of conventional Rutherford backscattering spectrometry (RBS) analysis is extended to investigate highly ordered periodic nanostructures in three dimensions. Hexagonally arranged spherical and ellipsoidal silica particles, rectangular gold nano-arrays, and embedded structures in Si substrates and silica particles are analyzed. It is shown that the shape of the measured spectra can be correlated with the shape of individual nano-objects through geometrical considerations. The evaluation of the recorded data for different sample tilt angles can be carried out with the Monte-Carlo type 3D simulation model cell concept considering the details of the applied measurement geometry. It is demonstrated that macrobeam 3D-RBS can provide valuable information on the shape, size, spacing, and atomic composition of nanostructured samples as well as on nanoscale atomic transport processes and consequently, it can be utilized as a highly precise, non-destructive characterization tool for nanotechnology.

  20. Bioactive composite materials for tissue engineering scaffolds.

    PubMed

    Boccaccini, Aldo R; Blaker, Jonny J

    2005-05-01

    Synthetic bioactive and bioresorbable composite materials are becoming increasingly important as scaffolds for tissue engineering. Next-generation biomaterials should combine bioactive and bioresorbable properties to activate in vivo mechanisms of tissue regeneration, stimulating the body to heal itself and leading to replacement of the scaffold by the regenerating tissue. Certain bioactive ceramics such as tricalcium phosphate and hydroxyapatite as well as bioactive glasses, such as 45S5 Bioglass, react with physiologic fluids to form tenacious bonds with hard (and in some cases soft) tissue. However, these bioactive materials are relatively stiff, brittle and difficult to form into complex shapes. Conversely, synthetic bioresorbable polymers are easily fabricated into complex structures, yet they are too weak to meet the demands of surgery and the in vivo physiologic environment. Composites of tailored physical, biologic and mechanical properties as well as predictable degradation behavior can be produced combining bioresorbable polymers and bioactive inorganic phases. This review covers recent international research presenting the state-of-the-art development of these composite systems in terms of material constituents, fabrication technologies, structural and bioactive properties, as well as in vitro and in vivo characteristics for applications in tissue engineering and tissue regeneration. These materials may represent the effective optimal solution for tailored tissue engineering scaffolds, making tissue engineering a realistic clinical alternative in the near future. PMID:16288594

  1. Meso-scale imaging of composite materials

    SciTech Connect

    Grandin, R.; Gray, J.

    2015-03-31

    The performance of composite materials is controlled by the interaction between the individual components as well as the mechanical characteristics of the components themselves. Geometric structure on the meso-scale, where the length-scales are of the same order as the material granularity, plays a key role in controlling material performance and having a quantitative means of characterizing this structure is crucial in developing our understanding of NDE technique signatures of early damage states. High-resolution computed tomography (HRCT) provides an imaging capability which can resolve these structures for many composite materials. Coupling HRCT with three-dimensional physics-based image processing enables quantitative characterization of the meso-scale structure. Taking sequences of these damage states provides a means to structurally observe the damages evolution. We will discuss the limits of present 3DCT capability and challenges for improving this means to rapidly generate structural information of a composite and of the damage. In this presentation we will demonstrate the imaging capability of HRCT.

  2. Core-shell nanostructured hybrid composites for volatile organic compound detection

    PubMed Central

    Tung, Tran Thanh; Losic, Dusan; Park, Seung Jun; Feller, Jean-Francois; Kim, TaeYoung

    2015-01-01

    We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT–PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT–PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT–PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. PMID:26357471

  3. Core-shell nanostructured hybrid composites for volatile organic compound detection.

    PubMed

    Tung, Tran Thanh; Losic, Dusan; Park, Seung Jun; Feller, Jean-Francois; Kim, TaeYoung

    2015-01-01

    We report a high-performance chemiresistive sensor for detection of volatile organic compound (VOC) vapors based on core-shell hybridized nanostructures of Fe3O4 magnetic nanoparticles (MNPs) and poly(3,4-ethylenedioxythiophene) (PEDOT)-conducting polymers. The MNPs were prepared using microwave-assisted synthesis in the presence of polymerized ionic liquids (PILs), which were used as a linker to couple the MNP and PEDOT. The resulting PEDOT-PIL-modified Fe3O4 hybrids were then explored as a sensing channel material for a chemiresistive sensor to detect VOC vapors. The PEDOT-PIL-modified Fe3O4 sensor exhibited a tunable response, with high sensitivity (down to a concentration of 1 ppm) and low noise level, to VOCs; these VOCs include acetone vapor, which is present in the exhaled breath of potential lung cancer patients. The present sensor, based on the hybrid nanostructured sensing materials, exhibited a 38.8% higher sensitivity and an 11% lower noise level than its PEDOT-PIL-only counterpart. This approach of embedding MNPs in conducting polymers could lead to the development of new electronic noses, which have significant potential for the use in the early diagnosis of lung cancer via the detection of VOC biomarkers. PMID:26357471

  4. Compression Testing of Textile Composite Materials

    NASA Technical Reports Server (NTRS)

    Masters, John E.

    1996-01-01

    The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

  5. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization

    NASA Astrophysics Data System (ADS)

    Yu, Zhenhua; Qi, Fei; Liu, Pei; You, Sujian; Kondamareddy, Kiran Kumar; Wang, Changlei; Cheng, Nian; Bai, Sihang; Liu, Wei; Guo, Shishang; Zhao, Xing-Zhong

    2016-03-01

    A novel composite nanostructured titanium dioxide (TiO2) based electron-transport layer (ETL) is designed by combining size blended nanoparticles (SBNP) and nanoarrays (NA) for efficient perovskite solar cell (PSC) applications. The composite nanostructured (SBNP + NA) ETL is successfully employed in hole-conductor free PSCs, there by achieving a stable device with a maximum efficiency of 13.5%. The improvement in the performance is attributed to the better charge transport and lower recombination in the SBNP + NA ETL. Despite the stable high efficiency, SBNP + NA ETL based PSCs are advantageous owing to their low cost, ease of all-solution fabrication process in an open environment and good reproducibility.A novel composite nanostructured titanium dioxide (TiO2) based electron-transport layer (ETL) is designed by combining size blended nanoparticles (SBNP) and nanoarrays (NA) for efficient perovskite solar cell (PSC) applications. The composite nanostructured (SBNP + NA) ETL is successfully employed in hole-conductor free PSCs, there by achieving a stable device with a maximum efficiency of 13.5%. The improvement in the performance is attributed to the better charge transport and lower recombination in the SBNP + NA ETL. Despite the stable high efficiency, SBNP + NA ETL based PSCs are advantageous owing to their low cost, ease of all-solution fabrication process in an open environment and good reproducibility. Electronic supplementary information (ESI) available: Details of the experimental section and ESI figures. See DOI: 10.1039/c5nr09045h

  6. Facile synthesis of vanadium nitride/nitrogen-doped graphene composite as stable high performance anode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Balamurugan, Jayaraman; Karthikeyan, Gopalsamy; Thanh, Tran Duy; Kim, Nam Hoon; Lee, Joong Hee

    2016-03-01

    Novel vanadium nitride/nitrogen-doped graphene (VN/NG) composite was fabricated and used as stable high performance anode materials for supercapacitors. The VN/NG composite anode material exhibited excellent rate capability, outstanding cycling stability, and superior performance. FE-SEM and TEM studies of VN/NG composite revealed that ultra-thin VN nanostructures were homogeneously distributed on flexible NG nanosheets. The NG provided a highly conductive network to boost the charge transport involved during the capacitance generation and also aided the dispersion of nanostructured VN within the NG network. The synergetic VN/NG composite exhibited an ultra-high specific capacitance of 445 F g-1 at 1 Ag-1 with a wide operation window (-1.2 to 0 V) and showed outstanding rate capability (98.66% capacity retention after 10,000 cycles at 10 Ag-1). The VN/NG electrode offered a maximum energy density (∼81.73 Wh kg-1) and an ultra-high power density (∼28.82 kW kg-1 at 51.24 Wh kg-1). The cycling performance of the VN/NG composite was superior to that of pure VN nanostructure. These finding open a new path way to the designated fabrication of VN/NG composite as anode materials in the development of high performance energy storage devices.

  7. Titanium composite materials for transportation applications

    NASA Astrophysics Data System (ADS)

    Garca de Cortazar, M.; Agote, I.; Silveira, E.; Egizabal, P.; Coleto, J.; Le Petitcorps, Y.

    2008-11-01

    Discontinuously reinforced titanium alloys containing in-situ formed TiB needles are emerging as candidate materials for advanced applications. This new family of titanium composites presents technical advantages, and it can be less expensive and easily amenable for net-shape manufacturing relative to titanium metal-matrix composites developed to date. The production of a master compound by a novel and cost-effective process called self-propagating high-temperature synthesis (SHS) has been studied. This master compound could be subsequently used in an investment casting process to obtain TiB-reinforced net-shape titanium-matrix composites. The SHS technique and its features were investigated in depth before a suitable master compound was defined and produced. Cast samples obtained from the addition of the master compound have been produced and the most important issues concerning the processing, microstructure, and mechanical properties are highlighted in this paper.

  8. Multiaxial analysis of dental composite materials.

    PubMed

    Kotche, Miiri; Drummond, James L; Sun, Kang; Vural, Murat; DeCarlo, Francesco

    2009-02-01

    Dental composites are subjected to extreme chemical and mechanical conditions in the oral environment, contributing to the degradation and ultimate failure of the material in vivo. The objective of this study is to validate an alternative method of mechanically loading dental composite materials. Confined compression testing more closely represents the complex loading that dental restorations experience in the oral cavity. Dental composites, a nanofilled and a hybrid microfilled, were prepared as cylindrical specimens, light-cured in ring molds of 6061 aluminum, with the ends polished to ensure parallel surfaces. The samples were subjected to confined compression loading to 3, 6, 9, 12, and 15% axial strain. Upon loading, the ring constrains radial expansion of the specimen, generating confinement stresses. A strain gage placed on the outer wall of the aluminum confining ring records hoop strain. Assuming plane stress conditions, the confining stress (sigma(c)) can be calculated at the sample/ring interface. Following mechanical loading, tomographic data was generated using a high-resolution microtomography system developed at beamline 2-BM of the Advanced Photon Source at Argonne National Laboratory. Extraction of the crack and void surfaces present in the material bulk is numerically represented as crack edge/volume (CE/V), and calculated as a fraction of total specimen volume. Initial results indicate that as the strain level increases the CE/V increases. Analysis of the composite specimens under different mechanical loads suggests that microtomography is a useful tool for three-dimensional evaluation of dental composite fracture surfaces. PMID:18506811

  9. Using Composite Materials in a Cryogenic Pump

    NASA Technical Reports Server (NTRS)

    Batton, William D.; Dillard, James E.; Rottmund, Matthew E.; Tupper, Michael L.; Mallick, Kaushik; Francis, William H.

    2008-01-01

    Several modifications have been made to the design and operation of an extended-shaft cryogenic pump to increase the efficiency of pumping. In general, the efficiency of pumping a cryogenic fluid is limited by thermal losses which is itself caused by pump inefficiency and leakage of heat through the pump structure. A typical cryogenic pump includes a drive shaft and two main concentric static components (an outer pressure containment tube and an intermediate static support tube) made from stainless steel. The modifications made include replacement of the stainless-steel drive shaft and the concentric static stainless-steel components with components made of a glass/epoxy composite. The leakage of heat is thus reduced because the thermal conductivity of the composite is an order of magnitude below that of stainless steel. Taking advantage of the margin afforded by the decrease in thermal conductivity, the drive shaft could be shortened to increase its effective stiffness, thereby increasing the rotordynamic critical speeds, thereby further making it possible to operate the pump at a higher speed to increase pumping efficiency. During the modification effort, an analysis revealed that substitution of the shorter glass/epoxy shaft for the longer stainless-steel shaft was not, by itself, sufficient to satisfy the rotordynamic requirements at the desired increased speed. Hence, it became necessary to increase the stiffness of the composite shaft. This stiffening was accomplished by means of a carbon-fiber-composite overwrap along most of the length of the shaft. Concomitantly with the modifications described thus far, it was necessary to provide for joining the composite-material components with metallic components required by different aspects of the pump design. An adhesive material formulated specially to bond the composite and metal components was chosen as a means to satisfy these requirements.

  10. NDE of polymeric composite material bridge components

    NASA Astrophysics Data System (ADS)

    Duke, John C., Jr.; Horne, Michael R.

    1998-03-01

    Rapid advancements with respect to utilization of polymeric composite materials for bridge components is occurring. This situation is driven primarily by the potential improvements offered by these materials with respect to long term durability. However, because of the developmental nature of these materials much of the materials characterization has involved short term testing without the synergistic effects of environmental exposure. Efforts to develop nondestructive evaluation procedures, essential for any wide spread use in critical structural applications, have been consequently limited. This paper discuses the effort to develop NDE methods for field inspection of hybrid glass and carbon fiber reinforced vinyl ester pultruded 'double box' I beams that are installed in a small bridge over Tom's Creek, in Blacksburg, Virginia. Integrated structural element sensors, dormant infrared devices, as well as acousto-ultrasonic methods are under development for detecting and monitoring the occurrence and progression of life limiting deterioration mechanisms.

  11. Novel Cryogenic Insulation Materials: Aerogel Composites

    NASA Technical Reports Server (NTRS)

    White, Susan

    2001-01-01

    New insulation materials are being developed to economically and reliably insulate future reusable spacecraft cryogenic tanks over a planned lifecycle of extreme thermal challenges. These insulation materials must prevent heat loss as well as moisture and oxygen condensation on the cryogenic tanks during extended groundhold, must withstand spacecraft launch conditions, and must protect a partly full or empty reusable cryogenic tank from significant reentry heating. To perform over such an extreme temperature range, novel composites were developed from aerogels and high-temperature matrix material such as Space Shuttle tile. These materials were fabricated and tested for use both as cryogenic insulation and as high-temperature insulation. The test results given in this paper were generated during spacecraft re-entry heating simulation tests using cryogenic cooling.

  12. Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials

    NASA Astrophysics Data System (ADS)

    Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

    2013-12-01

    SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

  13. Metal Matrix Composite Materials for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Jones, C. S. (Technical Monitor)

    2001-01-01

    Metal matrix composites (MMC) are attractive materials for aerospace applications because of their high specific strength, high specific stiffness, and lower thermal expansion coefficient. They are affordable since complex parts can be produced by low cost casting process. As a result there are many commercial and Department of Defense applications of MMCs today. This seminar will give an overview of MMCs and their state-of-the-art technology assessment. Topics to be covered are types of MMCs, fabrication methods, product forms, applications, and material selection issues for design and manufacture. Some examples of current and future aerospace applications will also be presented and discussed.

  14. Nanostructured nickel-free austenitic stainless steel composites with different content of hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Tulinski, Maciej; Jurczyk, Mieczyslaw

    2012-11-01

    The aim of this work is to show that Ni-free austenitic stainless steels with nanostructure and their nanocomposites with hydroxyapatite can be synthesized by mechanical alloying, heat treatment and nitriding of elemental microcrystalline powders with addition of hydroxyapatite (HA). Hydroxyapatite was introduced into stainless steel because it is intensively studied for bone repair and replacement applications. Nickel-free austenitic stainless steels seem to have better mechanical properties, corrosion resistance and biocompatibility compared to 316L stainless steels. Therefore it's combination with hydroxyapatite that has high biocompatibility and ability to bond to bone could have improved properties, as well. To confirm nanocrystalline structure of obtained material and reveal topographical features of the surface, small-angle X-ray analysis (SAXS) and atomic force microscopy (AFM) were used. Results are consistent and the mean grain size of the obtained materials do not exceed 100 nm.

  15. Advanced Technology Composite Fuselage - Materials and Processes

    NASA Technical Reports Server (NTRS)

    Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

  16. Mechanics Methodology for Textile Preform Composite Materials

    NASA Technical Reports Server (NTRS)

    Poe, Clarence C., Jr.

    1996-01-01

    NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. A set of test methods for measuring material properties and design allowables; 2. Mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and fatigue life; and 3. An electronic data base of coupon type test data. This report describes these three deliverables.

  17. Alkali metal protective garment and composite material

    DOEpatents

    Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  18. ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

  19. Bulk Nanostructured Materials Based on Two-Dimensional Building Blocks: A Roadmap.

    PubMed

    Luo, Jiayan; Gao, Jun; Wang, Aoxuan; Huang, Jiaxing

    2015-10-27

    The family of two-dimensional (2D) materials, in particular MXenes, can now be greatly expanded based on a new "double metal" strategy as reported by Anasori, Xie, and Beidaghi et al. in this issue of ACS Nano. Now that a diverse array of well-defined nanoscale building blocks, especially the 2D systems, has become available, we are better prepared to think about scaling up nanomaterials in the broader context of materials science and engineering. In this Perspective, we construct a roadmap for assembling nanoscale building blocks into bulk nanostructured materials, and define some of the critical challenges and goals. Two-dimensional sheets are uniquely well-suited in this roadmap for constructing dense, bulk-sized samples with scalable material performance or interesting emergent properties. PMID:26389745

  20. Impact of solids on composite materials

    NASA Technical Reports Server (NTRS)

    Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

    1987-01-01

    The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

  1. Fiber Reinforced Composite Materials Used for Tankage

    NASA Technical Reports Server (NTRS)

    Cunningham, Christy

    2005-01-01

    The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

  2. Flexible Composite-Material Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Brown, Glen; Haggard, Roy; Harris, Paul A.

    2003-01-01

    A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

  3. New Composite Thermoelectric Materials for Macro-size Applications (APS Colloquium, 2008)

    SciTech Connect

    Dresselhaus, Mildred

    2008-09-03

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  4. Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage

    SciTech Connect

    Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

    2012-03-20

    Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

  5. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    SciTech Connect

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-06

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900 Degree-Sign C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W{sub 2}C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  6. Phase evolution in carbide dispersion strengthened nanostructured copper composite by high energy ball milling

    NASA Astrophysics Data System (ADS)

    Hussain, Zuhailawati; Nur Hawadah, M. S.

    2012-09-01

    In this study, high-energy ball milling was applied to synthesis in situ nanostructured copper based composite reinforced with metal carbides. Cu, M (M=W or Ti) and graphite powder mixture were mechanically alloyed for various milling time in a planetary ball mill with composition of Cu-20vol%WC and Cu-20vol%TiC. Then the as-milled powder were compacted at 200 to 400 MPa and sintered in a vacuum furnace at 900°C. The results of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy analysis showed that formation of tungsten carbides (W2C and WC phases) was observed after sintering of Cu-W-C mixture while TiC precipitated in as-milled powder of Cu-Ti-C composite after 5 h and become amorphous with longer milling. Mechanism of MA explained the cold welding and fracturing event during milling. Cu-W-C system shows fracturing event is more dominant at early stage of milling and W particle still existed after milling up to 60 h. While in Cu-Ti-C system, cold welding is more dominant and all Ti particles dissolved into Cu matrix.

  7. The helical nanofilament phase as a host for creation of aligned, nanostructured composites (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Walba, David M.; Callahan, Rebecca A.; Korblova, Eva D.; Chen, Dong; Shen, Yongqiang; Tuchband, Michael; Carlson, Eric; Kim, Hanim; Rumbles, Garry; Shaheen, Sean E.; Yoon, Dong Ki; Clark, Noel A.

    2015-10-01

    The helical nanofilament (HNF) liquid crystal phase is a member of an unusual class of thermotropic phases with lamellar structures dominated by a tendency towards developing negative Gaussian curvature of the layers. Members of this family are sometimes termed "dark conglomerates," due to their behavior in polarized light microscopy. These include a fluid phases - the high temperature dark conglomerate phase, which is a kind of sponge phase, and the low temperature dark conglomerate phase, also seemingly a sponge phase with structural details currently under investigation. The HNF phase, also a "dark conglomerate," seems to be unique in the family, since slow conformational dynamics indicate a quasi-crystalline structure within layers, but no long range positional correlations across layers. We have been exploring possible applications of the HNF phase, which is highly porous, as a host for the formation of alignable composites for photovoltaics and other organic semiconductor applications. Recent results regarding the structure of these composites, including data suggesting a remarkably elegant nanostructure for HNF-chiral nematic composites, will be discussed.

  8. Silver Nanostructures Applicable As Core Materials Of SERS-Based Molecular Sensors And Barcodes

    NASA Astrophysics Data System (ADS)

    Kim, Kwan; Lee, Hyang Bong; Choi, Jeong-Yong; Shin, Kuan Soo

    2010-12-01

    We have developed a simple electroless plating method used to prepare silver-deposited silica or magnetic beads and also succeeded in coating them further with silica layers, without affecting the surface-enhanced Raman scattering (SERS) spectral features of marker molecules assembled on the silver nanostructures. The Ag-deposited dye-embedded silica beads can then be used as a dual-tag sensor, operating via both fluorescence and SERS, for immunoassays and the Ag-deposited Fe3O4-embedded silica beads can be used as Raman barcode materials, possessing also strong enough magnetic moments.

  9. Physical and Electrochemical Properties of Nanostructured Nickel Sulfide as a Cathode Material for Lithium Ion Batteries

    NASA Astrophysics Data System (ADS)

    Sim, Seong-Ju; Choi, Young-Jin; Ha, Jin-Ho; Kim, Ki-Won; Cho, Kwon-Koo; Ryu, Kwang-Sun

    2011-06-01

    Nanostructured nickel sulfide as a cathode material for lithium ion batteries was fabricated. The large surface area of reaction between electrodes and electrolyte offers high energy density and capacity. Also, metal sulfides have high theoretical capacity. Nickel nanowires were fabricated by electrochemical deposition (ECD) using an anodic aluminum oxide (AAO) template with the diameter of 200 nm. Fabricated nickel nanowires were carried out with sulfuration treatment. The morphology and microstructure of the nanowires were characterized with FE-SEM, XRD, TEM and XPS. Nickel sulfide nanowires were applied for lithium ion batteries and charge/discharge tests were carried out with galvanostatic method.

  10. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    SciTech Connect

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  11. Synthesizing Smart Polymeric and Composite Materials

    NASA Astrophysics Data System (ADS)

    Gong, Chaokun

    Smart materials have been widely investigated to explore new functionalities unavailable to traditional materials or to mimic the multifunctionality of biological systems. Synthetic polymers are particularly attractive as they already possess some of the attributes required for smart materials, and there are vast room to further enhance the existing properties or impart new properties by polymer synthesis or composite formulation. In this work, three types of smart polymer and composites have been investigated with important new applications: (1) healable polymer composites for structural application and healable composite conductor for electronic device application; (2) conducting polymer polypyrrole actuator for implantable medical device application; and (3) ferroelectric polymer and ceramic nanoparticles composites for electrocaloric effect based solid state refrigeration application. These application entail highly challenging materials innovation, and my work has led to significant progress in all three areas. For the healable polymer composites, well known intrinsically healable polymer 2MEP4F (a Diels-Alder crosslinked polymer formed from a monomer with four furan groups and another monomer with two maleimide groups) was first chosen as the matrix reinforced with fiber. Glass fibers were successfully functionalized with maleimide functional groups on their surface. Composites from functionalized glass fibers and 2MEP4F healable polymer were made to compare with composites made from commercial carbon fibers and 2MEP4F polymer. Dramatically improved short beam shear strength was obtained from composite of functionalized glass fibers and 2MEP4F polymer. The high cost of 2MEP4F polymer can potentially limit the large-scale application of the developed healable composite, we further developed a new healable polymer with much lower cost. This new polymer was formed through the Diels-Alder crosslinking of poly(furfuryl alcohol) (PFA) and 1,1'-(Methylenedi-4,1-phenylene)bismaleimide (MDPB). It showed the same healing ability as 2MEP4F while all starting materials are cheaper and commercially available. To further improve the mechanical strength of the PFA-MDPB healable polymer, epoxy as a strengthening component was mixed with PFA-MDPB healable polymer. The PFA, MDPB and epoxy composite polymers were further reinforced by carbon fiber as done with 2MEP4F matrix and the final composites were proved to have higher short beam shear strength than 2MEP4F while exhibiting a similar healing efficiency. Healable polymer MDPB (a two maleimide groups monomer) -- FGEEDR (a four furan groups monomer) was also designed and synthesized for transparent healable polymer. The MDPB-FGEEDR healable polymer was composited with silver nanowires (AgNWs) to afford healable transparent composite conductor. Razer blade cuts in the composite conductor could heal upon heating to recover the mechanical strength and electrical conductivity of the composite. The healing could be repeated for multiple times on the same cut location. The healing process was as fast as 3 minutes for conductivity to recover 97% of the original value. For electroactive polymer polypyrrole, the fast volume change upon electrical field change due to electrochemical oxidization or reduction was studied for actuation targeting toward a robotic application. The flexibility of polypyrrole was improved via copolymerization with pyrrole derivatives. Actuator devices are fabricated that more suitable for implantable medical device application than pyrrole homopolymer. The change of dipole re-orientation and thus dielectric constant of ferroelectric polymers and ceramics upon electrical field may be exploited for electrocaloric effect (ECE) and solid state refrigeration. For ferroelectric ceramics, we synthesized a series of Ba1-xSrxTiO3 nanoparticles with diameter ranging from 8-12 nm and characterized their dielectric and ferroelectric properties through hysteresis measurement. It was found that 8 nm BaTiO3 nanocrystals are stable at cubic crystal structure without ferroelectric character. Ba1-xSrxTiO3 nanoparticles with larger crystalline size (40nm) provide near room temperature transition temperature which could be the Curie temperature. We carefully studied the electrocaloric effect of ferroelectric polymers P(VDF-TrFE) and P(VDF-TrFE-CFE). The nanocomposite of Ba1-xSrxTiO 3 nanoparticles dispersed in P(VDF-TrFE-CFE) was fabricated and studied by hysteresis measurement to estimate the electrocaloric effect of the composite. The interdigitated electrode samples were successfully infiltrated with terpolymer and the multilayers ECE device showed 0.01 C/m2 displacement at 70MV/m. Free-standing monolayer ECE devices made from the terpolymer gave 3.4°C temperature change measured via an infrared camera.

  12. Vibration damping response of composite materials

    SciTech Connect

    Crane, R.M.

    1991-01-01

    Mechanical vibration damping characteristics of glass/epoxy and graphite/epoxy composite materials were studied. The objective was to develop an analytical model that incorporates the frequency dependence of the vibration damping loss factor and to experimentally determine the loss factor for frequencies up to 1,000 Hz. The analytical model requires as input the inplane material loss factors as functions of frequency. An experimental apparatus was designed and fabricated to determine these loss factors. Cantilever beam specimens were excited using an impulse from an instrumented force hammer. The loss factor was calculated using the half power band width technique. The apparatus was calibrated using a well characterized low damping material. The effect of clamping pressure and of the clamp block to specimen interface material was also investigated. While testing the composites, it became evident that the amplitude of vibration had a pronounced effect on the calculated loss factor. The analytical model was validated using two generic laminated configurations. The model predictions fell within the scatter of the experimental data.

  13. Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Vempaire, D.; Pelletier, J.; Lacoste, A.; Bchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

    2005-05-01

    Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

  14. Composite material systems for hydrogen management

    NASA Technical Reports Server (NTRS)

    Pangborn, R. N.; Queeney, R. A.

    1991-01-01

    The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

  15. Polymer-composite materials for radiation protection.

    PubMed

    Nambiar, Shruti; Yeow, John T W

    2012-11-01

    Unwanted exposures to high-energy or ionizing radiation can be hazardous to health. Prolonged or accumulated radiation dosage from either particle-emissions such as alpha/beta, proton, electron, neutron emissions, or high-energy electromagnetic waves such as X-rays/? rays, may result in carcinogenesis, cell mutations, organ failure, etc. To avoid occupational hazards from these kinds of exposures, researchers have traditionally used heavy metals or their composites to attenuate the radiation. However, protective gear made of heavy metals are not only cumbersome but also are capable of producing more penetrative secondary radiations which requires additional shielding, increasing the cost and the weight factor. Consequently, significant research efforts have been focused toward designing efficient, lightweight, cost-effective, and flexible shielding materials for protection against radiation encountered in various industries (aerospace, hospitals, and nuclear reactors). In this regard, polymer composites have become attractive candidates for developing materials that can be designed to effectively attenuate photon or particle radiation. In this paper, we review the state-of-the-art of polymer composites reinforced with micro/nanomaterials, for their use as radiation shields. PMID:23009182

  16. Energy absorbing hybrid nano-composite materials

    NASA Astrophysics Data System (ADS)

    Jang, Jae-Soon; Varischetti, Joshua; Lee, Gyo Woo; Suhr, Jonghwan

    2009-03-01

    Base Epon 862 resin was enhanced with two types of fillers, graphitized carbon nanofiber (CNF) and silicon dioxide (SiO2) particles. The effect of both filler type and filler loading were investigated with respect to the energy absorbing capacity as well as the thermal stability of the hybrid composite material, measured in terms of the coefficient of thermal expansion (CTE). As well the composites with combinations of the fillers were evaluated for both enhanced damping and thermal stability, making it suitable for structural materials that need multiple functions. The composites were evaluated with dynamic mechanical analysis (DMA) to evaluate viscoelastic response, and using strain gauges to measure thermal strain responses. It has been found that the addition of 3wt% SiO2 along with 3wt% CNF can improve damping loss factors by up to 26% while at the same time improving thermal stability with reductions in CTE of up to 16.5%. Furthermore, these fillers loadings were successfully dispersed as received by mechanical mixing technique, making fabrication more economically suited to engineering applications.

  17. Application of Traditional and Nanostructure Materials for Medical Electron Beams Collimation: Numerical Simulation

    NASA Astrophysics Data System (ADS)

    Miloichikova, I. A.; Stuchebrov, S. G.; Zhaksybayeva, G. K.; Wagner, A. R.

    2015-11-01

    Nowadays, the commercial application of the electron accelerators grows in the industry, in the research investigations, in the medical diagnosis and treatment. In this regard, the electron beam profile modification in accordance with specific purposes is an actual task. In this paper the model of the TPU microtron extracted electron beam developed in the program “Computer Laboratory (PCLab)” is described. The internal beam divergence influence for the electron beam profile and depth dose distribution in the air is considered. The possibility of using the nanostructure materials for the electron beam formation was analyzed. The simulation data of the electron beam shape collimated by different materials (lead, corund- zirconia nanoceramic, gypsum) are shown. The collimator material influence for the electron beam profile and shape are analyzed.

  18. WTEC Panel Report on Internaitonal Assessment of Research and Development in Catalysis by Nanostructured Materials

    SciTech Connect

    Davis, Robert J.; Guilants, Vadim V.; Huber, George; Lobo, Raul F.; Neurock, Matthew; Miller, Jeffrey T.; Sharma, Renu; Thompson, Levi

    2009-01-01

    This WTEC panel report assesses the international research and development activities in the field of catalysis by nanostructured materials. Catalysis is important for a wide variety of processes that impact manufacturing, energy conversion, and environmental protection. This study focused specifically on solid catalysts and how nanoscale structures associated with them affect their reactivity. The principal technical areas of the study are (a) design and control of synthetic nanostructures; (b) nanoscale characterization of catalysts in their working state; (c) theory and simulation; and (d) applications. The panel visited over 40 institutions and companies throughout East Asia and Western Europe to explore the active research projects in those institutions, the physical infrastructure used for the projects, the funding schemes that enable the research, and the collaborative interactions among universities, national laboratories, and corporate research centers. A bibliometric analysis of research in catalysis by nanostructured materials published from 1996 to 2005 was conducted as part of this WTEC study. The total number of published papers as well as the expected total number of citations of those papers revealed a growing focus on this subject. Western Europe was the numerical output leader in the world; U.S. output, while published in high-impact journals, was relatively stagnant, and the number of published papers originating from China was growing exponentially and expected to exceed that from the United States in the latter half of this decade. China's rapidly expanding economy together with its growth in large-scale chemical and refining plants motivate its significant commitment to catalysis research. The panel found that cooperation between universities and companies in catalysis R&D is common in Europe and Asia, presumably because of a more favorable intellectual property environment outside of the United States. In the area of catalyst synthesis, there is substantial activity to develop microporous materials with controlled mesoporosity and to prepare nanosized particles with preferentially exposed crystal planes. Recent advances in spectroscopy and microscopy allow the nanostructures of catalyst particles to be examined under more realistic environmental conditions approaching those of industrial reactions. Electronic structure methods and molecular simulations are now considered to be necessary tools for use alongside experiments to help guide catalysis research. The applications of much of the research observed by the panel are directly related to energy and the environment.

  19. Composite materials for thermal energy storage

    DOEpatents

    Benson, David K.; Burrows, Richard W.; Shinton, Yvonne D.

    1986-01-01

    The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  20. Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.

    ERIC Educational Resources Information Center

    Massuda, Rachel

    These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

  1. Glasses, ceramics, and composites from lunar materials

    NASA Technical Reports Server (NTRS)

    Beall, George H.

    1992-01-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  2. Glasses, ceramics, and composites from lunar materials

    NASA Astrophysics Data System (ADS)

    Beall, George H.

    1992-02-01

    A variety of useful silicate materials can be synthesized from lunar rocks and soils. The simplest to manufacture are glasses and glass-ceramics. Glass fibers can be drawn from a variety of basaltic glasses. Glass articles formed from titania-rich basalts are capable of fine-grained internal crystallization, with resulting strength and abrasion resistance allowing their wide application in construction. Specialty glass-ceramics and fiber-reinforced composites would rely on chemical separation of magnesium silicates and aluminosilicates as well as oxides titania and alumina. Polycrystalline enstatite with induced lamellar twinning has high fracture toughness, while cordierite glass-ceramics combine excellent thermal shock resistance with high flexural strengths. If sapphire or rutile whiskers can be made, composites of even better mechanical properties are envisioned.

  3. Damage and fracture mechanics of composite materials

    NASA Astrophysics Data System (ADS)

    Abdussalam, Saleh Ramadan

    The design of structural systems in the aerospace industry has been characterized by a continuing search for strong, yet lightweight, materials to achieve maximum payload capability for minimum weight. In recent years, this search has led to a wide use of fiber reinforced composites, such as carbon, glass and kevelar based composites. Comparison of these new materials with the traditional ones (metals) according to the basic properties, such as density, elastic modulus and also long-time and short-time strength, shows their superiority over traditional materials, when weight is a major design factor, like in the aerospace industry. Most composite materials of interest to aerospace applications have been adequately characterized under static loading conditions. Related work to study their fracture behaviour has been limited. Since most failure mechanisms involve crack growth and/or delamination, design of such components requires knowledge and understanding of their fracture properties. This thesis includes an experimental and analytical investigation of fracture characteristics of composite materials. The post-peak response of notched specimens subjected to uniaxial cyclic loading is established to evaluate the fracture energy associated with progressive matrix damage and subsequent crack growth. A total of 75 uniaxial tension specimens were tested. The experimental work consisted of first testing several un-notched specimens with different thickness (number of layers) to determine the initial and secondary elastic modulus as well as the tensile strength. The investigation studied the effect of the various fracture parameters, including thickness, fiber orientation, and crack width ratio (a/w) on the behaviour of crack propagation, peak load, and post-peak response. The specimens used in this research were prepared using the vacuum bagging technique, with a chosen number of fiber glass cloth layers and fiber orientation. The experimental results provided information regarding the peak load, post-peak response, fracture energy and stress intensity factor of the notched composite materials specimen under repeated loading/unloading cyclicity. The load versus crack opening displacement as well as crack length, fracture toughness and fracture energy versus number of loading cycles are produced for different specimens. Based on the experimental results, concepts of fracture mechanics are applied to evaluate stiffness degradation, fracture toughness and fracture energy evolution associated with crack growth. In addition, a linear elastic fracture mechanics approach combined with continuum damage representation is used to predict the response of specimens (peak load and crack opening displacement). This effort has also generated a new crack band model for computational purposes. A new formula is derived to compute delamination and interlaminar buckling loads using the finite element method. By matching the analytical near crack tip displacement field with the finite element approximation, the crack-axial stress magnitude is established, and therefore an accurate assessment of the buckling load responsible for delamination of composites is accurately evaluated. A comprehensive derivation of the fracture inelastic zone size and shape in anisotropic solids is presented. An adaptation of Hill's failure criterion is used to derive the shape of the inelastic zone. The findings explain the "banded" shape of the damage zone observed during crack growth.

  4. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

    2006-01-01

    In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

  5. Temperature Prediction in a Free-Burning Arc and Electrodes for Nanostructured Materials and Systems.

    PubMed

    Lee, Won-Ho; Kim, Youn-Jea; Lee, Jong-Chul

    2015-11-01

    Temperature in a free-burning arc used for synthesis of nanoparticles and nanostructured materials is generally around 20,000 K just below the cathode, falling to about 15,000 K just above the anode, and decreasing rapidly in the radial direction. Therefore, the electrode erosion is indispensable for these atmospheric plasma systems, as well as for switching devices, due to the high heat flux transferred from high temperature arcs to electrodes, but experimental and theoretical works have not identified the characteristic phenomena because of the complex physical processes. To the previous study, we have focused on the arc self-induced fluid flow in a free-burning arc using the computational fluid dynamics (CFD) technique. At this time, our investigation is concerned with the whole region of free-burning high-intensity arcs including the tungsten cathode, the arc plasma and the anode using a unified numerical model for applying synthesis of nanoparticles and nanostructured materials practically. PMID:26726532

  6. Effect of Strand Symmetry on the Nanostructure and Material Properties in Beta-Hairpin Peptide Hydrogels

    NASA Astrophysics Data System (ADS)

    Hule, Rohan; Pochan, Darrin; Nagarkar, Radhika; Schneider, Joel

    2007-03-01

    Hydrogels have been established as promising biomaterials for applications such as scaffolds for tissue engineering, controlled drug delivery and cell encapsulation. De novo designed beta hairpin peptides, capable of undergoing self assembly and hydrogel formation, were investigated that contain asymmetric beta strand arms surrounding a turn sequence. The stimuli responsive self assembly of the hydrogels occurs via an intramolecular folding and strand interdigitation mechanism. CD and FTIR indicate a beta sheet secondary structure. WAXS shows a fibril structure reminiscent of the cross beta spine. SANS has been employed to globally quantify the local structure as being rod-like. Modification of the strand registry results in fibrils with non-twisting, laminated vs. twisted nanostructure. Fibril dimensions as measured by TEM and AFM corroborate the interdigitated assembly. Bulk material properties of these hydrogels studied using oscillatory rheology vary significantly for the different morphologies. Differences in the peptide registry that drive hydrogel nanostructure and the consequent material properties can be potentially utilized for usage in specific biomaterial applications.

  7. Composite materials for thermal energy storage

    DOEpatents

    Benson, D.K.; Burrows, R.W.; Shinton, Y.D.

    1985-01-04

    A composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These PCM's do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon, siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

  8. Microwave-assisted Synthesis and Biomedical Applications of Inorganic Nanostructured Materials

    NASA Astrophysics Data System (ADS)

    Jia, Juncai

    Inorganic nanostrucured materials have attracted much attention owing to their unique features and important applications in biomedicine. This thesis describes the development of rapid and efficient approaches to synthesize inorganic nanostructures, and introduces some potential applications. Magnetic nanostructures, such as necklace-like FeNi3 magnetic nanochains and magnetite nanoclusters, were synthesized by an efficient microwave-hydrothermal process. They were used as magnetic resonance imaging (MRI) contrast agents. Magnetic FeNi3 nanochains were synthesized by reducing iron(III) acetylacetonate and nickel(II) acetylacetonate with hydrazine in ethylene glycol solution without any template under microwave irradiation. This was a rapid and economical route based on an efficient microwave-hydrothermal process which significantly shortened the synthesis time to mins. The morphologies and size of the materials could be effectively controlled by adjusting the reaction conditions, such as, the reaction time, temperature and concentrations of reactants. The morphology and composition of the as-prepared products were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The size of the aligned nanospheres in the magnetic FeNi 3 chains could be adjusted from 150nm to 550nm by increasing the amounts of the precursors. Magnetic measurements revealed that the FeNi3 nanochains showed enhanced coercivity and saturation magnetization. Toxicity tests by exposure of FeNi3 nanochains to the zebrafish larvae showed that the as-prepared nanochains were biocompatible. In vitro magnetic resonance imaging (MRI) confirms the effectiveness of the FeNi 3 nanochains as sensitive MRI probes. Magnetite nanoclusters were synthesized by reducing iron(III) acetylacetonate with hydrazine in ethylene glycol under microwave irradiation. The nanoclusters showed enhanced T2 relaxivity. In vitro and in vivo MRI confirmed the effectiveness of the magnetite nanoclusters as sensitive MRI probes. We also investigated the biodistribution of the nanoclusters in rat liver and spleen. Bifunctional mesoporous core/shell Ag FeNi3 nanospheres were synthesized by reducing iron(III) chloride, nickel(II) chloride and silver nitrate with hydrazine in ethylene glycol under microwave irradiation. The efficient microwave-hydrothermal process significantly shortened the synthesis time to one minute. The toxicity of Ag FeNi3 nanospheres were tested by exposing to zebrafish, they were less toxic than silver nanoparticles. In vitro MRI confirmed the effectiveness of the Ag FeNi3 nanospheres as sensitive MRI probes. The interaction of Rhodamine Band nanospheres showed greatly enhanced fluorescence over the FeNi3 nanoparticles. A series of interesting core/shell silver/phenol formaldehyde resin (PFR) nano/microstructures were also synthesized through an efficient microwave process by self-assembly growth. Various morphologies, including monodispersed nanospheres, nanocables, and microcages were obtained by changing the fundamental experimental parameters, such as the reaction time and the surfactants (Pluronic P123 or CTAB). The results indicated that the presence of triblock copolymer Pluronic P123 would result in hollow silver/PFR microcages, while CTAB would prefer the formation of ultralong silver/PFR coaxial nanocables. In the absence of surfactants, monodispersed core/shell silver/PFR nanospheres could be obtained. The size of the nanospheres can be controlled in the range of 110 to 450 nm by changing the molar ratio of reagents (phenol:hexamine). The morphology and composition of the as-prepared products were characterized. The formation mechanism of the products was discussed based on the obtained results. Finally, a series of ZnO microarchitectures including monodispersed spindles, branches, flowers, paddies, and sphere-like clusters were prepared by an efficient microwave-hydrothermal process. The ZnO mophologies could be effectively controlled by changing the reaction conditions such as the reaction temperature, the reactant concentrations and the solvent system. Simple microspindles, interesting flowers and paddies could be obtained in the presence of hexamine, and the more attractive sphere-like clusters could be synthesized by introducing phenol. The formation mechanisms of different morphologies are discussed in detail. These interesting ZnO structures may have potential applications in electronic and optoelectronic devices.

  9. Photomechanical analysis of composite and other materials

    NASA Astrophysics Data System (ADS)

    Rowlands, R. E.

    Moire, holography, speckle and thermopgraphic (SPATE) stress analysis are used to analyze a variety of engineering problems involving man-made (fiber-reinforced) and natural (wood, paperboard) composites, metals and rubber. The photomechanical techniques are combined with computer-vision (digital-imaging) concepts. Some attention is devoted to hybrid methods for processing and differentiating recorded optical data. Applications involve both small and large (including nonlinear) strains, and hostile environments. Illustrations include those to fracture, stress waves, material behavior, knots in wood and energy storage.

  10. Photomechanical Analysis Of Composite And Other Materials

    NASA Astrophysics Data System (ADS)

    Rowlands, R. E.

    1987-02-01

    Moire, holography, speckle and thermographic (SPATE) stress analysis are used to analyze a variety of engineering problems involving man-made (fiber-reinforced) and natural (wood, paperboard) composites, metals and rubber. The photomechanical techniques are combined with computer-vision (digital-imaging) concepts. Some attention is devoted to hybrid methods for processing and differentiating recorded optical data. Applications involve both small and large (including nonlinear) strains, and hostile environments. Illustrations include those to fracture, stress waves, material behavior, knots in wood and energy storage.

  11. Hybrid materials based on Pd nanoparticles on carbon nanostructures for environmentally benign C-C coupling chemistry

    NASA Astrophysics Data System (ADS)

    Guerra, Javier; Herrero, Mara Antonia

    2010-08-01

    The combination of different nanomaterials such as metallic nanoparticles and carbon nanostructures in a new hybrid material should give rise to interesting properties that combine the advantages of each of the nanocomponents. This review highlights the latest advances in the synthetic design of these hybrid materials where carbon nanostructures act as supports as well as stabilizing agents for very reactive metallic nanoparticles. The striking applications of Pd nanoparticles anchored on the surface of carbon nanostructures in C-C coupling chemistry are analyzed. Special emphasis is placed on the stability of these materials, which is linked to their recyclability. Numerous examples are given that involve the use of these catalysts in Heck, Suzuki and Sonogashira coupling reactions.

  12. In vivo and in vitro investigations of a nanostructured coating material - a preclinical study.

    PubMed

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Gtz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  13. In vivo and in vitro investigations of a nanostructured coating material – a preclinical study

    PubMed Central

    Adam, Martin; Ganz, Cornelia; Xu, Weiguo; Sarajian, Hamid-Reza; Götz, Werner; Gerber, Thomas

    2014-01-01

    Immediate loading of dental implants is only possible if a firm bone-implant anchorage at early stages is developed. This implies early and high bone apposition onto the implant surface. A nanostructured coating material based on an osseoinductive bone grafting is investigated in relation to the osseointegration at early stages. The goal is to transmit the structure (silica matrix with embedded hydroxyapatite) and the properties of the bone grafting into a coating material. The bone grafting substitute offers an osseoinductive potential caused by an exchange of the silica matrix in vivo accompanied by vascularization. X-ray diffraction and transmission electron microscopy analysis show that the coating material consists of a high porous silica matrix with embedded nanocrystalline hydroxyapatite with the same morphology as human hydroxyapatite. An in vitro investigation shows the early interaction between coating and human blood. Energy-dispersive X-ray analysis showed that the silica matrix was replaced by an organic matrix within a few minutes. Uncoated and coated titanium implants were inserted into the femora of New Zealand White rabbits. The bone-to-implant contact (BIC) was measured after 2, 4, and 6 weeks. The BIC of the coated implants was increased significantly at 2 and 4 weeks. After 6 weeks, the BIC was decreased to the level of the control group. A histological analysis revealed high bone apposition on the coated implant surface after 2 and 4 weeks. Osteoblastic and osteoclastic activities on the coating material indicated that the coating participates in the bone-remodeling process. The nanostructure of the coating material led to an exchange of the silica matrix by an autologous, organic matrix without delamination of the coating. This is the key issue in understanding initial bone formation on a coated surface. PMID:24627631

  14. Correlations in infrared spectra of nanostructures based on mixed oxides

    NASA Astrophysics Data System (ADS)

    Averin, I. A.; Karmanov, A. A.; Moshnikov, V. A.; Pronin, I. A.; Igoshina, S. E.; Sigaev, A. P.; Terukov, E. I.

    2015-12-01

    This paper has presented experimental data on the infrared spectroscopic investigation of nanostructures based on mixed oxides. Nanostructures in the form of porous thin films deposited on oxidized single- crystal silicon substrates have been synthesized by the sol-gel method. The qualitative composition of film-forming sols and the related nanostructures has been examined. Correlations relating the coefficient of transmission of infrared radiation through the materials under investigation and their quantitative composition have been established. The processes occurring during the annealing of the nanostructures in the temperature range from 100 to 600°C have been analyzed.

  15. Broadband and omnidirectional antireflection of SiN composite nanostructures-decorated Si surface for highly efficient Si solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen; Wang, Yanyan; Zhu, Jian; Wu, Xuemei; Zhang, Ruiying

    2015-01-01

    SiN composite nanostructures (CNs), composed of SiN nanorods and the underlying SiN film, are formed on Si substrate through SiN deposition, nanosphere lithography, and dry etching. The antireflection performance of Si samples decorated by the SiN CNs with different morphology is experimentally investigated. All the SiN CNs decorated Si samples exhibit antireflection over 300 to 1000 nm and a wide view. Their antireflection performance varies with the height of the nanorods (H) and the thickness of the underneath film (T). A reflectivity of less than 10% over 300 to 1000 nm and an incident angle of 8 deg and 65 deg are achieved in the optimal antireflection structures with H=240 nm, T=750 nm and H=500 nm, T=300 nm, respectively. Furthermore, antireflection behavior in the SiN CNs decorated Si sample with H=500 nm, T=300 nm is compared with that in Si samples decorated by 565- and 60-nm thick SiN film. A weighted reflectance of about 5% is achieved in an SiN CNs decorated Si sample in any incident angle, which is much lower than that in any SiN film coated Si sample. Moreover, such a performance is beyond the limitation of interface reflectivity of Si and SiN materials, and should benefit Si solar cells to simultaneously enhance the absorption and surface passivation.

  16. Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials. Final Technical Summary

    SciTech Connect

    Mullins, Michael; Rogers, Tony; King, Julia; Keith, Jason; Cornilsen, Bahne; Allen, Jeffrey; Gilbert, Ryan; Holles, Joseph

    2010-09-28

    The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

  17. Independent control of electrical and heat conduction by nanostructure designing for Si-based thermoelectric materials

    PubMed Central

    Yamasaka, Shuto; Watanabe, Kentaro; Sakane, Shunya; Takeuchi, Shotaro; Sakai, Akira; Sawano, Kentarou; Nakamura, Yoshiaki

    2016-01-01

    The high electrical and drastically-low thermal conductivities, a vital goal for high performance thermoelectric (TE) materials, are achieved in Si-based nanoarchitecture composed of Si channel layers and epitaxial Ge nanodots (NDs) with ultrahigh areal density (~1012 cm−2). In this nanoarchitecture, the ultrasmall NDs and Si channel layers play roles of phonon scattering sources and electrical conduction channels, respectively. Electron conductivity in n-type nanoacrhitecture shows high values comparable to those of epitaxial Si films despite the existence of epitaxial NDs. This is because Ge NDs mainly scattered not electrons but phonons selectively, which could be attributed to the small conduction band offset at the epitaxially-grown Si/Ge interface and high transmission probability through stacking faults. These results demonstrate an independent control of thermal and electrical conduction for phonon-glass electron-crystal TE materials by nanostructure designing and the energetic and structural interface control. PMID:26973092

  18. The Center for Nanostructured Materials: A User Facility at The University of Texas at Arlington

    NASA Astrophysics Data System (ADS)

    Yousufuddin, Muhammed

    2009-10-01

    The Center for Nanostructured Materials (CNM) located at the University of Texas at Arlington is a fully equipped user facility that houses a variety of instrumentation for the characterization of nanomaterials. Several state-of-the-art characterization techniques are available including Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), Electron Paramagnetic Resonance (EPR), Raman Spectroscopy, Superconducting Quantum Interference Device (SQUID), and X-ray Diffraction of thin films, powders, and single crystals. The range of instrumentation supports interdisciplinary collaborations in physics, chemistry and materials science and provides an excellent resource for training undergraduate and graduate students. The primary goal of CNM is to foster interdisciplinary collaborations for a wide range of researchers and as such we welcome all potential users. In this presentation I will discuss CNM's capabilities and user access policies.

  19. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  20. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346