These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Inclusion of nanostructured materials in composite and double base propellants  

NASA Astrophysics Data System (ADS)

Two methods for including nanostructured reactive materials in composite and double base propellant systems were investigated. Initially, a multiscale computational model for determining the dispersion state of nanoparticles in various polymer bases was developed using molecular and dissipative particle dynamics. Systems of nanosize aluminum, boron, and copper (II) oxide were prepared in hydroxyl-terminated polybutadiene and examined using a variety of techniques to parameterize the model. The results of modeling and experiments showed that increasing nanoparticle concentrations tend to increase agglomerate size and quantity. In parallel, nanoscale reactive intermetallic-forming compounds were investigated as additives to increase propellant performance and burning rate. The nanoscale reactive material raised the burning rate temperature prefactor while simultaneously radically altering the agglomerate structure, providing tantalizing evidence for potential future performance gains.

Reese, David A.

2

Nanostructured composite materials of cerium oxide and barium cerate  

NASA Astrophysics Data System (ADS)

Nanosized powders with a composition of (1- x)Ce0.8Sm0.2O2-?- xBace0.8Sm0.2O3-? ( x = 0, 0.3, and 1) were obtained by self-ignition combustion synthesis (SICS) from the appropriate nitrates and various organic fuels (glycine, glycerol, citric acid, and a mixture of citric acid and ethylene glycol). The most finely dispersed powders formed when the concentration of the perovskite phase in the system decreased or when glycerol or citric acid-enthyleneglycol mixture was used as a fuel during SICS. A procedure for the preparation of powders and nanostructured ceramics was developed and their electric properties were studied.

Medvedev, D. A.; Pikalova, E. Yu.; Demin, A. K.; Khrustov, V. R.; Nikolaenko, I. V.; Nikonov, A. V.; Malkov, V. B.; Antonov, B. D.

2013-02-01

3

Nanostructure carbon black-polyisoprene composites as prospective strain sensor materials: macro- and nanoscale studies  

Microsoft Academic Search

Nanostructured carbon black-polyisoprene composite is prepared and investigated. A giant reversible tensoresistive effect -- dependence of electrical resistance vs. uniaxial tension deformation - is found. A new application of the conductive atomic force microscope for the carbon black network mapping in a nonconducting matrix is reported.

Maris Knite; Valdis Teteris; Igors Klemenoks; Boris Polyakovs; Donats Erts

2002-01-01

4

Nanostructured LiMPO4 (M = Fe, Mn, Co, Ni) - carbon composites as cathode materials for Li-ion battery  

NASA Astrophysics Data System (ADS)

Nanostructured materials are considered to be strong candidates for fundamental advances in efficient storage and/or conversion. In nanostructured materials transport kinetics and surface processes play determining roles. This work describes recent developments in the synthesis and characterization of composites which consist of lithium metal phosphates (LiMPO4, M = Fe, Mn, Co, Ni) coated on nanostructured carbon supports (unordered nanofibers, foams). The composites have been prepared by coating the carbon structures in aqueous (or polyols) solutions containing lithium, metal ions and phosphates. After drying out, the composites have been thermally treated at different temperatures (between 600-780°C) for 5-12 hours under nitrogen. The formation of the olivine structured phase was confirmed by the X-ray diffraction analysis on powders prepared under very similar conditions. The surface investigation revealed the formation of an homogeneous coating of the olivine phase on the carbon structures. The electrochemical performance on the composites showed a dramatic improvement of the discharge specific capacity (measured at a discharge rate of C/25 and room temperature) compared to the prepared powders. The delivered values were 105 mAhg-1 for M = Fe, 100 mAhg-1 for M = Co, 70 mAhg-1 for M = Mn and 30 mAhg-1 for M = Ni respectively.

Dimesso, L.; Spanheimer, C.; Nguyen, T. T. D.; Hausbrand, R.; Jaegermann, W.

2012-10-01

5

Nanostructured materials for hydrogen storage  

DOEpatents

A system for hydrogen storage comprising a porous nano-structured material with hydrogen absorbed on the surfaces of the porous nano-structured material. The system of hydrogen storage comprises absorbing hydrogen on the surfaces of a porous nano-structured semiconductor material.

Williamson, Andrew J. (Pleasanton, CA); Reboredo, Fernando A. (Pleasanton, CA)

2007-12-04

6

Nanostructured Materials for Solar Cells  

NASA Technical Reports Server (NTRS)

The use of both inorganic and organic nanostructured materials in producing high efficiency photovoltaics is discussed in this paper. Recent theoretical results indicate that dramatic improvements in device efficiency may be attainable through the use of semiconductor quantum dots in an ordinary p-i-n solar cell. In addition, it has also recently been demonstrated that quantum dots can also be used to improve conversion efficiencies in polymeric thin film solar cells. A similar improvement in these types of cells has also been observed by employing single wall carbon nanotubes. This relatively new carbon allotrope may assist both in the disassociation of excitons as well as carrier transport through the composite material. This paper reviews the efforts that are currently underway to produce and characterize these nanoscale materials and to exploit their unique properties.

Bailey, Sheila; Raffaelle, Ryne; Castro, Stephanie; Fahey, S.; Gennett, T.; Tin, P.

2003-01-01

7

Nanostructured conductive polymeric materials  

NASA Astrophysics Data System (ADS)

Conductive polymer composites (CPCs) are a suitable alternative to metals in many applications due to their light-weight, corrosion resistance, low cost, ease of processing and design flexibility. CPCs have been formulated using different types of conductive fillers. In this PhD thesis, the focus is on CPCs for electrostatic discharge (ESD) protection and electromagnetic interference (EMI) attenuation. Despite the versatility of conductive fillers, carbon black (CB) has been the dominant filler to make CPCs for ESD protection applications because CB/polymer composites have a cost advantage over all other CPCs. For EMI shielding, stainless steel fibres and metal coated fibers are the preferred fillers, however CPCs made of those fibers are not the dominant EMI shielding materials. Metal coated and polymer plated polymers are the most widely used EMI shielding options. The limited use of CPCs in the EMI shielding market is because the high filler loading required to formulate a composite with an adequate level of shielding remarkably increases the composite price. In order to increase the competitiveness of CPCs, percolation threshold should be minimized as much as possible and composites with high EMI shielding capabilities at low filler loading should be formulated because all conductive fillers are expensive compared to polymers. In this thesis, two different methodologies to reduce percolation threshold in CPCs have been successfully developed and a CPC with exceptional EMI shielding capability has been formulated using copper nanowires as conductive filler. The first percolation threshold reduction technique is based on the selective localization of CB at the interface of immiscible polymer blend. The technique requires adding a copolymer that prefers the blend's interface and for which CB nanoparticles has the highest affinity. The second method is based on producing a CPC powder and then using this powder as a conductive filler to produce composite by dry mixing with pure polymer powder followed by compression molding. The EMI shielding material was developed using copper nanowires. CuNW/Polystyrene composites exhibit EMI shielding effectiveness exceeding that of metal microfillers and carbon nanotube/polymer composites and approaching that of coating techniques have been formulated by solution processing and dry mixing.

Al-Saleh, Mohammed H.

8

Chemical strategies for template syntheses of composite micro- and nanostructures  

Microsoft Academic Search

The template method for preparing nanomaterials entails synthesis of monodisperse tubular and fibrillar nanostructures within the pores of a membrane or other nanoporous solid. Nanostructured materials of this type constitute one of the most important frontiers in materials science, and composite nanomaterials have been of particular recent interest. While the template method has been used to prepare segmented nanowires, where

Veronica M. Cepak; John C. Hulteen; Guangli Che; Kshama B. Jirage; Brinda B. Lakshmi; Ellen R. Fisher; Charles R. Martin; Hiroshi Yoneyama

1997-01-01

9

Laser nanostructuring of materials surfaces  

SciTech Connect

This paper reviews results of experimental and theoretical studies of surface micro- and nanostructuring of metals and other materials irradiated directly by short and ultrashort laser pulses. Special attention is paid to direct laser action involving melting of the material (with or without ablation), followed by ultrarapid surface solidification, which is an effective approach to producing surface nanostructures. Theoretical analysis of recrystallisation kinetics after irradiation by ultrashort laser pulses makes it possible to determine the volume fraction of crystallised phase and the average size of forming crystalline structures as functions of laser treatment regime and thermodynamic properties of the material. The present results can be used to optimise pulsed laser treatment regime in order to ensure control nanostructuring of metal surfaces. (photonics and nanotechnology)

Zavestovskaya, I N [P N Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation)

2010-12-29

10

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-print Network

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01

11

Modeling of microwave absorbing structure using winning particle optimization applied on electrically conductive nanostructured composite material  

Microsoft Academic Search

This work presents the design and optimization of a Radar Absorbing Material system in the X-band frequency using evolutionary algorithm. Winning Particle Optimization is a new evolutionary algorithm. Due to its elementary evolving mechanism, it recall in mind primordial life form in trying to search the best place to proliferate. It is shown that such method, is quite simple but

Davide Micheli; Carmelo Apollo; Roberto Pastore; Mario Marchetti

2010-01-01

12

Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations  

NASA Technical Reports Server (NTRS)

Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.

Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.

2009-01-01

13

Functional nanostructured plasmonic materials.  

SciTech Connect

Plasmonic crystals fabricated with precisely controlled arrays of subwavelength metal nanostructures provide a promising platform for sensing and imaging of surface binding events with micrometer spatial resolution over large areas. Soft nanoimprint lithography provides a robust, cost-effective method for producing highly uniform plasmonic crystals of this type with predictable optical properties. The tunable multimode plasmonic resonances of these crystals and their ability for integration into lab-on-a-chip microfluidic systems can both be harnessed to achieve exceptionally high analytical sensitivities down to submonolayer levels using even a common optical microscope, circumventing numerous technical limitations of more conventional surface plasmon resonance techniques. In this article, we highlight some recent advances in this field with an emphasis on the fabrication and characterization of these integrated devices and their demonstrated applications.

Yao, J.; Le, A.-P.; Gray, S. K.; Moore, J. S.; Rogers, J. A.; Nuzzo, R. G.; Univ. of Illinois

2010-03-12

14

Nanostructured materials for water desalination.  

PubMed

Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity. PMID:21680966

Humplik, T; Lee, J; O'Hern, S C; Fellman, B A; Baig, M A; Hassan, S F; Atieh, M A; Rahman, F; Laoui, T; Karnik, R; Wang, E N

2011-07-22

15

Nanostructured materials for water desalination  

NASA Astrophysics Data System (ADS)

Desalination of seawater and brackish water is becoming an increasingly important means to address the scarcity of fresh water resources in the world. Decreasing the energy requirements and infrastructure costs of existing desalination technologies remains a challenge. By enabling the manipulation of matter and control of transport at nanometer length scales, the emergence of nanotechnology offers new opportunities to advance water desalination technologies. This review focuses on nanostructured materials that are directly involved in the separation of water from salt as opposed to mitigating issues such as fouling. We discuss separation mechanisms and novel transport phenomena in materials including zeolites, carbon nanotubes, and graphene with potential applications to reverse osmosis, capacitive deionization, and multi-stage flash, among others. Such nanostructured materials can potentially enable the development of next-generation desalination systems with increased efficiency and capacity.

Humplik, T.; Lee, J.; O'Hern, S. C.; Fellman, B. A.; Baig, M. A.; Hassan, S. F.; Atieh, M. A.; Rahman, F.; Laoui, T.; Karnik, R.; Wang, E. N.

2011-07-01

16

Composite Materials  

NASA Technical Reports Server (NTRS)

Langley Research Center researchers invented an advanced polymer, a chemical compound formed by uniting many small molecules to create a complex molecule with different chemical properties. The material is a thermoplastic polyimide that resists solvents. Other polymers of this generic type are soluble in solvents, thus cannot be used where solvents are present. High Technology Services (HTS), Inc. licensed technology and is engaged in development and manufacture of high performance plastics, resins and composite materials. Techimer Materials Division is using technology for composite matrix resins that offer heat resistance and protection from radiation, electrical and chemical degradation. Applications of new polymer include molding resins, adhesives and matrix resins for fiber reinforced composites.

1988-01-01

17

Nanostructured Materials for Advanced  

E-print Network

of cathode materials has more open structures, such as vanadium oxides, the tunnel compounds of manganese, and LiNix Mnx Co122xO2 belong to this group. The spinels with the transition metal cations ordered in all oxides, and transition metal phosphates (e.g., the olivine LiFePO4). These materials generally provide

Cao, Guozhong

18

Nanostructured Energetic Materials with Sol-Gel Methods  

Microsoft Academic Search

The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized

A Gash; J Satcher; R Simpson; B Clapsaddle

2003-01-01

19

Anchored nanostructure materials and method of fabrication  

DOEpatents

Anchored nanostructure materials and methods for their fabrication are described. The anchored nanostructure materials may utilize nano-catalysts that include powder-based or solid-based support materials. The support material may comprise metal, such as NiAl, ceramic, a cermet, or silicon or other metalloid. Typically, nanoparticles are disposed adjacent a surface of the support material. Nanostructures may be formed as anchored to nanoparticles that are adjacent the surface of the support material by heating the nano-catalysts and then exposing the nano-catalysts to an organic vapor. The nanostructures are typically single wall or multi-wall carbon nanotubes.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2012-11-27

20

Electron emission from nanostructured materials  

NASA Astrophysics Data System (ADS)

In this dissertation, standardized methods for measuring electron emission (EE) from nanostructured materials are established. Design of an emitter array platform, synthesis and nanomanipulation of different types of are successfully conducted. Preexisting as well as novel nanostructures are examined for possible use as electron point sources. Three main categories of emitters are under evaluation: oxide nanowires, metallic nanowires and carbon based nanomaterials (CBNs). Tungsten oxides nanowires have low work function, then metallic nanowires have high electrical conductivity and abundant number of free electrons at and below their Fermi level and lastly, CBNs have superior electrical, mechanical, chemical and thermal properties. This evaluation is designed to compare and choose among the nanoemitters that are suitable for EE. Simulation through theoretical modeling is provided to optimize the parameters directly or indirectly affecting EE properties. The models are to enhance the emitter's performance through increase the packing density, reduce the field screening effect, lower the turn-on and the threshold electric fields and increase the emission current densities. The current estimations and the modeling of the validity regions where EE types theoretically exist, help to select and fabricate optimum emitters. An assembly consisting of sample substrate, electrical feedthroughs, electrodes, nano/micro-manipulator and insulators are mounted within a vacuum chamber. An ion vacuum pump and a turbo pump are used to reach a vacuum pressure of 10-7 Torr. Two systems are used for EE characterization of nanostructures: bulk and In-situ configurations. The bulk investigation is realized by designing a vacuum chamber and different sample holders that can resist harsh environment as well as high temperature for both FE and TE experiments. In-situ experiments are conducted in the chamber of the scanning electron microscope (SEM), it consists of designing special sample holders plus modifications of the SEM chamber for the ease of EE characterization. Samples with different materials, densities, radii of curvatures, and lengths ranging respectively from 107--109 emitter/cm2, 5--300 nm, and 3*103--10 7 nm, are produced. The CBNs used are characterized by different structures and shapes that are defined by the monolayer carbon sheet takes. Cylindrical sheets are equivalent to nanotubes while graphene are flat sheets. Emitter's structures are varied by altering the critical growth parameters such as temperature, pressure and constituent materials. Enhancement of the FE properties, the design of an optimum emitter density and reduction of the field screening effect is possible by selecting appropriate materials, synthesizing nanostructures with small radius (10 nm), high aspect ratio (greater than 1000), the ideal density where the inter-emitter distance is comparable to the emitter height, the cathodes' uniformity, the treatment of the emitting surface, and integrating triode arrangement. Initially, the thermionic Emission (TE) investigations of these nanostructures produce emission at an onset temperature of 500 °C, current densities of 160 mA/cm2 at temperatures of 700--1200 °C and predict the work function of the emitting materials. In addition, nanostructures can enhance the local electric field and increase the packing density to produce better EE properties. Then, FE investigations from different nanostructures showed that the small tip's diameter, high aspect ratio and tapered structures enhance emission through low turn-on fields (< 0.8 V/microm), low threshold fields (< 3 V/microm) and high current densities (520 mA/cm2). CCNTs having inter-emitters distance comparable to their average height contribute to the reduction of the field screening effect through large field enhancement factor beta (> 7000) and enhancement of the EE properties. EE experimental data along with its analysis demonstrate that CBNs have lower turn-on electric field, lower threshold fields, higher current density and higher field enhance

Safir, Abdelilah

21

Nanostructured Energetic Materials with Sol-Gel Methods  

SciTech Connect

The utilization of sol-gel chemical methodology to prepare nanostructured energetic materials as well as the concepts of nanoenergetics is described. The preparation and characterization of two totally different compositions is detailed. In one example, nanostructured aerogel and xerogel composites of sol-gel iron (III) oxide and ultra fine grained aluminum (UFG Al) are prepared, characterized, and compared to a conventional micron-sized Fe{sub 2}O{sub 3}/Al thermite. The exquisite degree of mixing and intimate nanostructuring of this material is illustrated using transmission and scanning electron microscopies (TEM and SEM). The nanocomposite material has markedly different energy release (burn rate) and thermal properties compared to the conventional composite, results of which will be discussed. Small-scale safety characterization was performed aerogels and xerogels of the nanostructured thermite. The second nanostructured energetic material consists of a nanostructured hydrocarbon resin fuel network with fine ammonium perchlorate (NH{sub 4}ClO{sub 4}) oxidizer present.

Gash, A; Satcher, J; Simpson, R; Clapsaddle, B

2003-11-25

22

Computational Materials: Modeling and Simulation of Nanostructured Materials and Systems  

NASA Technical Reports Server (NTRS)

The paper provides details on the structure and implementation of the Computational Materials program at the NASA Langley Research Center. Examples are given that illustrate the suggested approaches to predicting the behavior and influencing the design of nanostructured materials such as high-performance polymers, composites, and nanotube-reinforced polymers. Primary simulation and measurement methods applicable to multi-scale modeling are outlined. Key challenges including verification and validation of models are highlighted and discussed within the context of NASA's broad mission objectives.

Gates, Thomas S.; Hinkley, Jeffrey A.

2003-01-01

23

Fabrication and characterization of concentric-tubular composite micro- and nanostructures using the template-synthesis method  

Microsoft Academic Search

The template-synthetic method is a general approach for preparing tubular micro- and nanostructures. This method has been used to prepare micro- and nanostructures composed of metals, carbons, semiconductors, polymers, and Li{sup +}-intercalation materials. This paper describes the use of the template method to prepare composite tubular micro- and nanostructures. These composite structures consist of an outer tubule of one material

V. M. Cepak; J. C. Hulteen; G. Che; K. B. Jirage; B. B. Lakshmi; E. R. Fisher; C. R. Martin

1998-01-01

24

Nanostructures  

NSDL National Science Digital Library

This page from Foothill-De Anza Community College provides a list of nanostructures. For each structure, its properties, structure, process, and application are detailed. Additionally, most pages include a picture, video, and references. The structures include aerogels, biomolecules, carbon, composite materials, ferrofluids, and many others.

2014-09-03

25

Nanostructured hybrid materials from aqueous polymer dispersions.  

PubMed

Organic-inorganic (O-I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of electronic and optoelectronic devices, in controlled release and bioencapsulation, as active substrates for chromatographic separation and catalysis, as nanofillers for composite films in packaging and coating, in nanowriting and nanolithography, etc. A synergistic combination or totally new properties with respect to the two components of the hybrid can arise from nanostructuration, achieved by surface modification of nanostructures, self-assembling or simply heterophase dispersion. In fact, owing to the extremely large total surface area associated with the resulting morphologies, the interfacial interactions can deeply modify the bulk properties of each component. A wide range of starting materials and of production processes have been studied in recent years for the controlled synthesis and characterization of hybrid nanostructures, from nanoparticle or lamellar dispersions to mesoporous materials obtained from templating nanoparticle dispersions in a continuous, e.g. ceramic precursor, matrix. This review is aimed at giving some basic definitions of what is intended as a hybrid (O-I) material and what are the main synthetic routes available. The various methods for preparing hybrid nanostructures and, among them, inorganic-organic or O-I core-shell nanoparticles, are critically analyzed and classified based on the reaction medium (aqueous, non-aqueous), and on the role it plays in directing the final morphology. Particular attention is devoted to aqueous systems and water-borne dispersions which, in addition to being environmentally more acceptable or even a mandatory choice for any future development of large output applications (e.g. in paint, ink and coating industry), can provide the thermodynamic drive for self-assembling of amphiphilics, adsorption onto colloidal particles or partitioning of the hybrid's precursors between dispersed nanosized reaction loci, as in emulsion or miniemulsion free-radical polymerization. While nanoencapsulation and self-assembling processes are already exploited as commercially viable fabrication methods, a newly developed technique based on two-stage sol-gel and free-radical emulsion polymerization is described, which can grant a versatile synthetic approach to hybrid O-I nanoparticles with tailor-made composition of both the organic core and the silica or organosilica shell, and good control on morphology, size and heterophase structure in the 50-500 nm range. Styrene or acrylate homo- and copolymer core latex particles need to be modified with a reactive comonomer, such as trimethoxysilylpropyl methacrylate, to achieve efficient interfacial coupling with the inorganic shell. Accurate control over pH and process conditions is required to avoid latex coagulation or, in case of organic particles with uniform composition, incipient intraparticle crosslinking. PMID:15072940

Castelvetro, Valter; De Vita, Cinzia

2004-05-20

26

Nanostructured Diclofenac Sodium Releasing Material  

NASA Astrophysics Data System (ADS)

Various techniques have been developed to produce second generation biomaterials for tissue repair. These include extrusion, molding, salt leaching, spinning etc, but success in regenerating tissues has been limited. It is important to develop porous material, yet with a fibrous structure for it to be biomimetic. To mimic biological tissues, the extra-cellular matrix usually contains fibers in nano scale. To produce nanostructures, self-assembly or electrospinning can be used. Adding a drug release function to such a material may advance applications further for use in controlled tissue repair. This turns the resulting device into a multifunctional porous, fibrous structure to support cells and drug releasing properties in order to control tissue reactions. A bioabsorbable poly(?-caprolactone-co-D,L lactide) 95/5 (PCL) was made into diluted solution using a solvent, to which was added 2w-% of diclofenac sodium (DS). Nano-fibers were made by electrospinning onto substrate. Microstructure of the resulting nanomat was studied using SEM and drug release profiles with UV/VIS spectroscopy. Thickness of the electrospun nanomat was about 2 mm. SEM analysis showed that polymeric nano-fibers containing drug particles form a highly interconnected porous nano structure. Average diameter of the nano-fibers was 130 nm. There was a high burst peak in drug release, which decreased to low levels after one day. The used polymer has slow a degradation rate and though the nanomat was highly porous with a large surface area, drug release rate is slow. It is feasible to develop a nano-fibrous porous structure of bioabsorbable polymer, which is loaded with test drug. Drug release is targeted at improving the properties of biomaterial for use in controlled tissue repair and regeneration.

Nikkola, L.; Vapalahti, K.; Harlin, A.; Seppälä, J.; Ashammakhi, N.

2008-02-01

27

Composite Materials  

NASA Technical Reports Server (NTRS)

Composites are lighter and stronger than metals. Aramid fibers like Kevlar and Nomex were developed by DuPont Corporation and can be combined in a honeycomb structure which can give an airplane a light, tough structure. Composites can be molded into many aerodynamic shapes eliminating rivets and fasteners. Langley Research Center has tested composites for both aerospace and non-aerospace applications. They are also used in boat hulls, military shelters, etc.

1985-01-01

28

Three-Dimensional Composite Nanostructures for Lean NOx Emission Control  

SciTech Connect

This final report to the Department of Energy (DOE) and National Energy Technology Laboratory (NETL) for DE-EE0000210 covers the period from October 1, 2009 to July 31, 2013. Under this project, DOE awarded UConn about $1,248,242 to conduct the research and development on a new class of 3D composite nanostructure based catalysts for lean NOx emission control. Much of the material presented here has already been submitted to DOE/NETL in quarterly technical reports. In this project, through a scalable solution process, we have successfully fabricated a new class of catalytic reactors, i.e., the composite nanostructure array (nano-array) based catalytic converters. These nanocatalysts, distinct from traditional powder washcoat based catalytic converters, directly integrate monolithic substrates together with nanostructures with well-defined size and shape during the scalable hydrothermal process. The new monolithic nanocatalysts are demonstrated to be able to save raw materials including Pt-group metals and support metal oxides by an order of magnitude, while perform well at various oxidation (e.g., CO oxidation and NO oxidation) and reduction reactions (H{sub 2} reduction of NOx) involved in the lean NOx emissions. The size, shape and arrangement of the composite nanostructures within the monolithic substrates are found to be the key in enabling the drastically reduced materials usage while maintaining the good catalytic reactivity in the enabled devices. The further understanding of the reaction kinetics associated with the unique mass transport and surface chemistry behind is needed for further optimizing the design and fabrication of good nanostructure array based catalytic converters. On the other hand, the high temperature stability, hydrothermal aging stability, as well as S-poisoning resistance have been investigated in this project on the nanocatalysts, which revealed promising results toward good chemical and mechanical robustness, as well as S-poisoning resistance. Further investigation is needed for unraveling the understanding, design and selection principles of this new class of nanostructure based monolithic catalysts.

Gao, Pu-Xian

2013-07-31

29

Synthesis of copper oxide nanostructures via a composite-Hydroxide-mediated approach: Morphology control and the electrochemical performances as anode material for lithium ion batteries  

NASA Astrophysics Data System (ADS)

Various CuO nanostructures with different morphologies, such as nanosheets, nanowires and nanobundles have been synthesized via a composite-hydroxide-mediated approach. The morphologies can be easily tailored by adjusting the concentration of precursor and the possible morphology transformation process is proposed. Scanning electron microscopy, X-ray diffraction and galvanostatical charge-discharge test are employed to characterize the morphology, structure and electrochemical properties of the CuO nanostructures, respectively. It is found that different morphologies of CuO result in different electrochemical performances. Compared to others, CuO nanosheets exhibit not only high reversible capacity but also good cycling stability. The improved electrochemical performance is attributed to the novel 3D hierarchical nanostructure, which could relieve the stress caused by the drastic volume change and ensure good capacity retention.

Xu, Minwei; Wang, Fei; Zhao, Mingshu; Yang, Sen; Sun, Zhanbo; Song, Xiaoping

2011-11-01

30

Nanostructured metal-polyaniline composites  

DOEpatents

Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

Wang, Hsing-Lin (Los Alamos, NM); Li, Wenguang (Elgin, IL); Bailey, James A. (Los Alamos, NM); Gao, Yuan (Brewer, ME)

2010-08-31

31

Shockwave consolidation of nanostructured thermoelectric materials  

NASA Astrophysics Data System (ADS)

Nanotechnology based thermoelectric materials are considered attractive for developing highly efficient thermoelectric devices. Nano-structured thermoelectric materials are predicted to offer higher ZT over bulk materials by reducing thermal conductivity and increasing electrical conductivity. Consolidation of nano-structured powders into dense materials without losing nanostructure is essential towards practical device development. Using the gas atomization process, amorphous nano-structured powders were produced. Shockwave consolidation is accomplished by surrounding the nanopowder-containing tube with explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth. We have been successful in generating consolidated nanostructured bismuth telluride alloy powders by using shockwave technique. Using these consolidated materials, several types of thermoelectric power generator devices have been developed. Shockwave consolidation is anticipated to generate large quantities of nanostructred materials expeditiously and cost effectively. In this paper, the technique of shockwave consolidation will be presented followed by Seebeck Coefficient and thermal conductivity measurements of consolidated materials. Preliminary results indicate a substantial increase in electrical conductivity due to shockwave consolidation technique.

Prasad, Narasimha S.; Taylor, Patrick; Nemir, David

2014-09-01

32

Synthesis of copper oxide nanostructures via a composite-Hydroxide-mediated approach: Morphology control and the electrochemical performances as anode material for lithium ion batteries  

Microsoft Academic Search

Various CuO nanostructures with different morphologies, such as nanosheets, nanowires and nanobundles have been synthesized via a composite-hydroxide-mediated approach. The morphologies can be easily tailored by adjusting the concentration of precursor and the possible morphology transformation process is proposed. Scanning electron microscopy, X-ray diffraction and galvanostatical charge–discharge test are employed to characterize the morphology, structure and electrochemical properties of the

Minwei Xu; Fei Wang; Mingshu Zhao; Sen Yang; Zhanbo Sun; Xiaoping Song

2011-01-01

33

Nanostructured metal composites reinforced with fullerenes  

NASA Astrophysics Data System (ADS)

This work presents the results of the characterization of nanostructured Al or Fe matrix composites reinforced with fullerenes. The fullerene used is a mix of 15 wt%C60, 5 wt.%C70, and 80 wt.% soot that is the product of the primary synthesis of C60. The composites were produced by mechanical alloying and sintered by spark plasma sintering (SPS). It was found that in both composites, C60 withstands mechanical alloying, and acts as a control agent, reducing the agglomeration of the particles. In both composite systems the as-mechanically alloyed powders as well as the SPS sintered products are nanostructured. During the SPS process the effect of the metal (Al or Fe) matrix with the fullerene is different for each composite. For instance, Al reacts with all the carbon in the fullerene mix and forms Al4C3; on the contrary, in the Fe-fullerene composite, Fe sponsors the synthesis of C60 during the SPS process. The synthesis of the C60 is presumably assisted by the catalytic nature of Fe and the electric field generated during the SPS sintering process.

Robles-Hernández, Francisco C.; Calderon, H. A.

2010-02-01

34

Heat generation by irradiated complex composite nanostructures.  

PubMed

Heating of irradiated metallic e-beam generated nanostructures was quantified through direct measurements paralleled by novel model-based numerical calculations. By comparing discs, triangles, and stars we showed how particle shape and composition determines the heating. Importantly, our results revealed that substantial heat is generated in the titanium adhesive layer between gold and glass. Even when the Ti layer is as thin as 2 nm it absorbs as much as a 30 nm Au layer and hence should not be ignored. PMID:24392799

Ma, Haiyan; Tian, Pengfei; Pello, Josselin; Bendix, Poul Martin; Oddershede, Lene B

2014-02-12

35

Composite Materials Handbook  

NSDL National Science Digital Library

From the US Army Research Laboratory, Materials Sciences Corporation, and University of Delaware Center for Composite Materials, the Composite Materials Handbook provides the "information and guidance necessary to design and fabricate end items from composite materials." Along with current information on the material properties of these composite materials, the handbook also includes data development and usage guidelines. The information has been divided into three areas: polymer, metal, and ceramic matrix composites. The Polymer Matrix Composites Handbook (three volumes including Guidelines for Characterization of Structural Materials; Material Properties; and Materials Usage, Design, and Analysis) and the Metal Matrix Composites Handbook (one volume, .pdf) are available here. The Ceramic Matrix Composites Handbook has yet to be completed. Users may also download Quick Composites Data in spreadsheet format.

36

Metal-polymer composites comprising nanostructures and applications thereof  

DOEpatents

Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

2011-08-02

37

Metal-polymer composites comprising nanostructures and applications thereof  

DOEpatents

Metal-polymer composites, and methods of making and use thereof, said composites comprising a thermally-cured dense polyaniline substrate; an acid dopant; and, metal nanostructure deposits wherein the deposits have a morphology dependent upon the acid dopant.

Wang, Hsing-Lin (Los Alamos, NM); Jeon, Sea Ho (Dracut, MA); Mack, Nathan H. (Los Alamos, NM)

2012-04-03

38

Heterogeneous nanostructured electrode materials for electrochemical energy storage  

SciTech Connect

In order to fulfil the future requirements of electrochemical energy storage, such as high energy density at high power demands, heterogeneous nanostructured materials are currently studied as promising electrode materials due to their synergic properties, which arise from integrating multi-nanocomponents, each tailored to address a different demand (e.g., high energy density, high conductivity, and excellent mechanical stability). In this article, we discuss these heterogeneous nanomaterials based on their structural complexity: zero-dimensional (0-D) (e.g. core–shell nanoparticles), one-dimensional (1-D) (e.g. coaxial nanowires), two-dimensional (2-D) (e.g.graphene based composites), three-dimensional (3-D) (e.g. mesoporous carbon based composites) and the even more complex hierarchical 3-D nanostructured networks. This review tends to focus more on ordered arrays of 1-D heterogeneous nanomaterials due to their unique merits. Examples of different types of structures are listed and their advantages and disadvantages are compared. Finally a future 3-D heterogeneous nanostructure is proposed, which may set a goal toward developing ideal nano-architectured electrodes for future electrochemical energy storage devices.

Liu, R.; Duay, Jonathon; Lee, Sang Bok

2011-01-01

39

Composite structural materials  

NASA Technical Reports Server (NTRS)

Various topics relating to composite structural materials for use in aircraft structures are discussed. The mechanical properties of high performance carbon fibers, carbon fiber-epoxy interface bonds, composite fractures, residual stress in high modulus and high strength carbon fibers, fatigue in composite materials, and the mechanical properties of polymeric matrix composite laminates are among the topics discussed.

Loewy, R. G.; Wiberley, S. E.

1985-01-01

40

Controlled thermal sintering of a metal-metal oxide-carbon ternary composite with a multi-scale hollow nanostructure for use as an anode material in Li-ion batteries.  

PubMed

We report a synthetic scheme for preparing a SnO2-Sn-carbon triad inverse opal porous material using the controlled sintering of Sn precursor-infiltrated polystyrene (PS) nanobead films. Because the uniform PS nanobead film, which can be converted into carbon via a sintering step, uptakes the precursor solution, the carbon can be uniformly distributed throughout the Sn-based anode material. Moreover, the partial carbonization of the PS nanobeads under a controlled Ar/oxygen environment not only produces a composite material with an inverse opal-like porous nanostructure but also converts the Sn precursor/PS into a SnO2-Sn-C triad electrode. PMID:24463739

Kim, Hwan Jin; Zhang, Kan; Choi, Jae-Man; Song, Min Sang; Park, Jong Hyeok

2014-03-11

41

Nanostructured Materials Development for Space Power  

NASA Technical Reports Server (NTRS)

There have been many recent advances in the use of nanostructured materials for space power applications. In particular, the use of high purity single wall nanotubes holds promise for a variety of generation and storage devices including: thin film lithium ion batteries, microelectronic proton exchange membrane (PEM) fuel cells, polymeric thin film solar cells, and thermionic power supplies is presented. Semiconducting quantum dots alone and in conjunction with carbon nanotubes are also being investigated for possible use in high efficiency photovoltaic solar cells. This paper will review some of the work being done at RIT in conjunction with the NASA Glenn Research Center to utilize nanomaterials in space power devices.

Raffaelle, Ryne P.; Landi, B. J.; Elich, J. B.; Gennett, T.; Castro, S. L.; Bailey, Sheila G.; Hepp, Aloysius F.

2003-01-01

42

Controlling the enzymatic digestion of lipids using hybrid nanostructured materials.  

PubMed

Solid nanoparticle-lipid hybrids have been engineered by using spray drying to assemble monodisperse hydrophilic silica nanoparticles and submicron lipid (triglyceride) emulsions together into composite microparticles, which have specific activity toward enzymes. The influence of silica particle size (100-1000 nm) and emulsifier type (anionic and cationic) on the three-dimensional structure of the composite particles was investigated. The nanostructure of the hybrid particles, which is controlled by the size of the voids between the closely packed silica particles, plays a critical role in lipase action and hence lipid digestion kinetics. Confining lipid droplets within the nanostructured silica aggregates led to 2- to 15-fold enhanced rate of lipolysis in comparison with dispersed coarse oil droplets. The composite particles were tailored to enhance, retain or sustain the lipolysis kinetics of submicron lipid emulsions. The presence of repulsive nanoparticle-droplet interactions favored aqueous redispersion and fast lipolysis of the hybrid composite materials, while attractive interactions hindered redispersion and delayed lipolysis of the confined lipid droplets. Such hybrid nanomaterials can be exploited to control the gastrointestinal enzymatic action and promisingly form the basis for the next generation of foods and medicines. PMID:25116477

Tan, Angel; Colliat-Dangus, Perrine; Whitby, Catherine P; Prestidge, Clive A

2014-09-10

43

Tough Composite Materials  

NASA Technical Reports Server (NTRS)

Papers and working group summaries are presented which address composite material behavior and performance improvement. Topic areas include composite fracture toughness and impact characterization, constituent properties and interrelationships, and matrix synthesis and characterization.

Vosteen, L. F. (compiler); Johnson, N. J. (compiler); Teichman, L. A. (compiler)

1984-01-01

44

Composite structural materials  

NASA Technical Reports Server (NTRS)

Technology utilization of fiber reinforced composite materials is discussed in the areas of physical properties, and life prediction. Programs related to the Composite Aircraft Program are described in detail.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1979-01-01

45

Composite structural materials  

NASA Technical Reports Server (NTRS)

A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1979-01-01

46

Final Technical Progress Report NANOSTRUCTURED MAGNETIC MATERIALS  

SciTech Connect

This report describes progress made during the final phase of our DOE-funded program on Nanostructured Magnetic Materials. This period was quite productive, resulting in the submission of three papers and presentation of three talks at international conferences and three seminars at research institutions. Our DOE-funded research efforts were directed toward studies of magnetism at surfaces and interfaces in high-quality, well-characterized materials prepared by Molecular Beam Epitaxy (MBE) and sputtering. We have an exceptionally well-equipped laboratory for these studies, with: Thin film preparation equipment; Characterization equipment; Equipment to study magnetic properties of surfaces and ultra-thin magnetic films and interfaces in multi-layers and superlattices.

Charles M. Falco

2012-09-13

47

Nanostructured electrode materials for Li-ion battery  

Microsoft Academic Search

Nanostructured materials have triggered a great excitement in recent times due to both fundamental interest as well as technological impact relevant for lithium ion batteries (LIBs). Size reduction in nanocrystals leads to a variety of unexpected exciting phenomena due to enhanced surface-to-volume ratio and reduced transport length. We will consider a few examples of nanostructured electrode materials in the context

Palani Balaya; Kuppan Saravanan; Srirama Hariharan

2010-01-01

48

Introduction of nanostructures in carbon–carbon composites  

Microsoft Academic Search

The properties of carbon–carbon composites are predominantly dictated by the microstructure of carbon reinforcement and matrix system. In order to control this, studies were undertaken on the effect of introduction of nanostructured carbons in fibers as well as matrix system on microstructure of modified composites. Composites were made with vapour grown carbons, thermosetting (polyfurfuryl alcohol) as well as isotropic and

L. M. Manocha

2005-01-01

49

XPS Analysis of Nanostructured Materials and Biological Surfaces  

SciTech Connect

This paper examines the types of information that XPS can provide about a variety of nano-structured materials. Although it is sometimes not considered a “nano-scale analysis method” XPS can provide a great deal of information about elemental distributions, layer or coating structure and thicknesses, surface functionality, and even particles sizes on the 1-20 nm scale for samples types that may not be readily analyzed by other methods. This information is important for both synthetic nanostructured or nanosized materials and a variety of natural materials with nanostructure. Although the links between nanostructure materials and biological systems may not at first be obvious, many biological molecules and some organisms are the sizes of nanoparticles. The nanostructure of cells and microbes plays a significant role in how they interact with their environment. The interaction of biomolecules with nanoparticles is important for medical and toxicity studies. The interaction of biomolecules is important for sensor function and many nanomaterials are now the active elements in sensors. This paper first discusses how nanostructures influences XPS data as part of understanding how simple models of sample structure and data analysis can be used to extract information about the physical and chemical structure of the materials being analyzed. Equally important, aspects of sample and analysis limitations and challenges associated with understanding nanostructured materials are indicated. Examples of the application of XPS to nanostructured and biological systems and materials are provided.

Baer, Donald R.; Engelhard, Mark H.

2010-05-01

50

Composite structural materials  

NASA Technical Reports Server (NTRS)

The purpose of the RPI composites program is to develop advanced technology in the areas of physical properties, structural concepts and analysis, manufacturing, reliability and life prediction. Concommitant goals are to educate engineers to design and use composite materials as normal or conventional materials. A multifaceted program was instituted to achieve these objectives.

Ansell, G. S.; Wiberley, S. E.

1978-01-01

51

Rheological and morphological characterization of hierarchically nanostructured materials  

E-print Network

Hierarchically nanostructured materials exhibit order on multiple length scales, with at least one of a few nanometers. The expected enhancements for applications using these materials include improved mechanical, thermal ...

Wang, Benjamin Ning-Haw

2007-01-01

52

Cavitational synthesis of nanostructured inorganic materials for enhanced heterogeneous catalysis  

NASA Astrophysics Data System (ADS)

The synthesis of nanostructured inorganic materials by hydrodynamic cavitation processing was investigated. The goal of this work was to develop a general synthesis technique for nanostructured materials with a control over crystallite size in the 1--20 nm range. Materials with crystallite sizes in this range have shown enhanced catalytic activity compared to materials with larger crystallite sizes. Several supported and unsupported inorganic materials were studied to understand the effects of cavitation on crystallite size. Cavitation processing of calcium fluoride resulted in more spherical particles, attached to one another by melted necks. This work produced the first evidence of shock wave heating of nanostructured materials by hydrodynamic cavitation processing. Hydrodynamic cavitation synthesis of various catalytic support materials indicated that their phase composition and purity could be controlled by adjustment of the processing parameters. Zirconia/alumina supports synthesized using hydro-dynamic cavitation and calcined to 1368 K retained a high purity cubic zirconia phase, whereas classically prepared samples showed a phase transformation to monoclinic zirconia. Similarly, the synthesis of alumina resulted in materials with varying Bohmite and Bayerite contents as a function of the process parameters. High temperature calcination resulted in stable alumina supports with varying amounts of delta-, and theta-alumina. Synthesis studies of palladium and silver showed modest variations in crystallite size as a function of cavitation process parameters. Calcination resulted in larger grain materials, indicating a disappearance of intergrain boundaries. Based on these results, a new synthesis method was studied involving controlled agglomeration of small silver crystallites by hydrodynamic cavitation processing, followed by deposition on alumina. The optimal pH, concentration, and processing time for controlling the silver crystallite size in the cavitation equipment were determined using a statistical design of experiments approach. Three series of alumina supported silver catalysts were prepared, with silver weight loadings of 1%, 2%, and 5%. Variation of cavitation processing time between 1--64 min allowed the systematic control of silver crystallite size in the range of 3--19 nm. The preferred oxidation of CO in hydrogen (PROX) was chosen as a catalytic test reaction, because of its increasing importance for fuel cell applications. It was found that the catalytic activity was significantly increased for silver crystallite sizes below 5 nm. This work is the first experimental evidence of independent crystallite size control by hydrodynamic cavitation for alumina supported silver catalysts. The synthesis method involving controlled agglomeration and calcination is a general synthesis procedure that can be used to synthesize a wide range of novel catalysts and advanced materials.

Krausz, Ivo Michael

53

Electrically conductive composite material  

DOEpatents

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistant pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like.

Clough, Roger L. (Albuquerque, NM); Sylwester, Alan P. (Albuquerque, NM)

1989-01-01

54

Composite Structural Materials  

NASA Technical Reports Server (NTRS)

The development and application of filamentary composite materials, is considered. Such interest is based on the possibility of using relatively brittle materials with high modulus, high strength, but low density in composites with good durability and high tolerance to damage. Fiber reinforced composite materials of this kind offer substantially improved performance and potentially lower costs for aerospace hardware. Much progress has been made since the initial developments in the mid 1960's. There were only limited applied to the primary structure of operational vehicles, mainly as aircrafts.

Ansell, G. S.; Loewy, R. G.; Wiberly, S. E.

1984-01-01

55

Electrically conductive composite material  

DOEpatents

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1989-05-23

56

Electrically conductive composite material  

DOEpatents

An electrically conductive composite material is disclosed which comprises a conductive open-celled, low density, microcellular carbon foam filled with a non-conductive polymer or resin. The composite material is prepared in a two-step process consisting of first preparing the microcellular carbon foam from a carbonizable polymer or copolymer using a phase separation process, then filling the carbon foam with the desired non-conductive polymer or resin. The electrically conductive composites of the present invention has a uniform and consistent pattern of filler distribution, and as a result is superior over prior art materials when used in battery components, electrodes, and the like. 2 figs.

Clough, R.L.; Sylwester, A.P.

1988-06-20

57

Composite structural materials  

NASA Technical Reports Server (NTRS)

Overall emphasis is on basic long-term research in the following categories: constituent materials, composite materials, generic structural elements, processing science technology; and maintaining long-term structural integrity. Research in basic composition, characteristics, and processing science of composite materials and their constituents is balanced against the mechanics, conceptual design, fabrication, and testing of generic structural elements typical of aerospace vehicles so as to encourage the discovery of unusual solutions to present and future problems. Detailed descriptions of the progress achieved in the various component parts of this comprehensive program are presented.

Loewy, R.; Wiberley, S. E.

1986-01-01

58

Nanostructured Materials for Environmental Remediation of Organic Contaminants in Water  

Microsoft Academic Search

Nanostructured materials have opened new avenues in various scientific fields and are providing novel opportunities in environmental science. The increased surface area-to-volume ratio of nanoparticles, quantum size effects, and the ability to tune surface properties through molecular modification make nanostructures ideal for many environmental remediation applications. We describe herein the fabrication of metal and semiconductor nanoparticles for environmental remediation applications,

Sherine O. Obare; Gerald J. Meyer

2004-01-01

59

Waterproofing Nanostructured Aerogel-Ceramic Fiber Composites  

NASA Technical Reports Server (NTRS)

Aerogels are nanoporous materials which can be used to enhance the transport properties of ceramic fiber materials, to exploit their unique properties such as high porosity, large surface area, low density and low thermal conductivity. Numerous applications have been investigated. major obstacle to commercialization is that the structure of aerogels collapses due to the adsorption of water. simple and relatively cheap process has been developed to waterproof silica, alumina and alumina-silica and carbon aerogels and composites incorporating them. Previous waterproofing methods are short lived or expensive and time consuming.

White, Susan; Hsu, Ming Ta; Arnold, Jim (Technical Monitor)

2001-01-01

60

Composite Material Switches  

NASA Technical Reports Server (NTRS)

A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

Javadi, Hamid (Inventor)

2001-01-01

61

Composite Material Switches  

NASA Technical Reports Server (NTRS)

A device to protect electronic circuitry from high voltage transients is constructed from a relatively thin piece of conductive composite sandwiched between two conductors so that conduction is through the thickness of the composite piece. The device is based on the discovery that conduction through conductive composite materials in this configuration switches to a high resistance mode when exposed to voltages above a threshold voltage.

Javadi, Hamid (Inventor)

2002-01-01

62

Mechanics of Composite Materials  

Microsoft Academic Search

The mechanical behavior of composites is traditionally evaluated on both microscopic and macroscopic scale to take into account inhomogeneity. Micromechanics attempts to quantify the interactions of fiber and matrix (reinforcement and resin) on a microscopic scale on par with the diameter of a single fiber. Macromechanics treats composites as homogeneous materials, with mechanical properties representative of the laminate as a

Robert M. Jones

1999-01-01

63

The investigation of sensing mechanism of ethanol vapour in polymer-nanostructured carbon composite  

NASA Astrophysics Data System (ADS)

Polymer-nanostructured carbon composites (PNCC) using three different polymers as composite matrix materials (polyvinylacetate (PVAc), polyethylene glycol (PEG) and ethylene-vinylacetate copolymer (EVA)) have been developed. High structure carbon black Printex XE2 (Degussa AG) was used as a composites filler. Ethanol vapour sensor-effect of composites was determined as a change of electrical resistance as the composite was held in ethanol vapour for 30 seconds. Reversibility of electrical resistance of PNCC, response stability and repeatability have been measured and compared. The electrical resistance response of EVA-nanostructured carbon composite (EVA-NCC) to ethanol vapour as a function of vinylacetate content in the copolymer has been evaluated. Promising ethanol vapour sensor-effect has been observed for PEG-NCC followed by PVAc-NCC and EVA-NCC.

Sakale, Gita; Knite, Maris; Teteris, Valdis; Tupureina, Velta; Stepina, Santa; Liepa, Elina

2011-04-01

64

PROPERTIES AND NANOSTRUCTURES OF MATERIALS PROCESSED BY SPD TECHNIQUES  

SciTech Connect

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. It demonstrates the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or non-equilibrium states. This paper reviews the mechanical properties and the defect structures of SPD-processed nanostructured materials. Keywords: strength, ductility, nanostructures, SPD, non-equilibrium grain boundary

Liao, Xiaoshan; Huang, J. (Jianyu); Zhu, Y. T. (Yuntian Theodore)

2001-01-01

65

High volume production of nanostructured materials  

DOEpatents

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerard M. (Oak Ridge, TN)

2009-10-13

66

Nano-structured polymer composites and process for preparing same  

DOEpatents

A process for preparing a polymer composite that includes reacting (a) a multi-functional monomer and (b) a block copolymer comprising (i) a first block and (ii) a second block that includes a functional group capable of reacting with the multi-functional monomer, to form a crosslinked, nano-structured, bi-continuous composite. The composite includes a continuous matrix phase and a second continuous phase comprising the first block of the block copolymer.

Hillmyer, Marc; Chen, Liang

2013-04-16

67

Hybrid Plasma Deposition Methods for Synthesis of Nanostructured Materials  

NASA Astrophysics Data System (ADS)

Hybrid deposition techniques facilitate a high degree of structural control at low substrate temperatures, permitting growth of nanostructured materials, which are not possible to produce by other methods. Several hybrid processes were studied, where pulsed plasma plumes from an excimer laser ablation were combined with continuous plasma generated by non-pulsed sources. One was a hybrid of laser ablation and ion beam deposition, where short-lived interactions between two plasma sources were explored to produce AlON films. The process was used as a base for the development Al2O3/MoS2 nanocomposite coatings. Another hybrid process was a combination of laser ablation with magnetron sputtering (MSPLD), where highly energetic plasma plumes from laser ablation were intersected with a magnetron-generated plasma containing sputtered metal atoms. MSPLD was used to prepare a number of nanostructured coatings, including WC/DLC, WC/DLC/WS2, YSZ/Au, and YSZ/Au/MoS2/DLC nano-composites for wear protection of engineering components. Recently we initiated exploration of a new hybrid process, using filtered vacuum arc and magnetron sputtering, as an aletranative to MSPLD. Initial studies were performed in preparing Ti-TiC-DLC and Ti-TiC-CNx functionally gradient coatings.

Voevodin, A. A.; Zabinski, J. S.

68

Nano Res. 2011, 4(3): 290296290 Hybrid Silicon-Carbon Nanostructured Composites as Superior  

E-print Network

Nano Res. 2011, 4(3): 290­296290 Hybrid Silicon-Carbon Nanostructured Composites as Superior Anodes fabricated a hybrid silicon­carbon nanostructured composite with large area (about 25.5 in2 ) in a simple an efficient and scalable method to obtain silicon­carbon nanostructured composites for application in lithium

Zhou, Chongwu

69

Nanostructured hybrid materials from aqueous polymer dispersions  

Microsoft Academic Search

Organic–inorganic (O–I) hybrids with well-defined morphology and structure controlled at the nanometric scale represent a very interesting class of materials both for their use as biomimetic composites and because of their potential use in a wide range of technologically advanced as well as more conventional application fields. Their unique features can be exploited or their role envisaged as components of

Valter Castelvetro; Cinzia De Vita

2004-01-01

70

Composite structural materials  

NASA Technical Reports Server (NTRS)

Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1983-01-01

71

Understanding and tuning nanostructured materials for chemical energy conversion  

NASA Astrophysics Data System (ADS)

The conversion of energy that employs chemical reaction is termed chemical energy conversion. In my dissertation, I have focused on chemical energy conversion systems involving energetic materials and lithium ion batteries, where performance is strongly dependent on the properties of materials and their architecture. The objective of this study is to enhance our understanding and tuning of nanostructured materials that might find application toward energetic materials and electrode materials in lithium ion batteries. Rapid heating diagnostics tools, i.e. temperature-jump techniques, have been used to study the ignition of aluminum nanoparticles, nanothermite reaction mechanism and metal oxides nanoparticles decomposition under rapid heating conditions (˜105-106 K/s). Time-resolved mass spectra results support the hypothesis that Al containing species diffuse outwards through the oxide shell. Low effective activation energies were found for metal oxides nanoparticles decomposition at high heating rates, implying the mass transfer control at high heating rates. The role of oxygen release from oxidizer in nanothermite reactions have been examined for several different systems, including some using microsized oxidizer (i.e., nano-Al/micro-I 2O5). In particular, for periodate based nanothermites, direct evidence from high heating rate SEM and mass spectrometry results support that direct gas phase oxygen release from oxidizer decomposition is critical in its ignition and combustion. Efforts have also been made to synthesize nanostructured materials for nanoenergetic materials and lithium ion batteries applications. Hollow CuO spheres were synthesized by aerosol spray pyrolysis, employing a gas blowing mechanism for the formation of hollow structure during aerosol synthesis. The materials synthesized as oxidizers in nanothermite demonstrated superior performance, and of particular note, periodate salts based nanothermite demonstrated the best gas generating performance for nanothermite materials. Energetic composite nanofibrous mats (NC/Al-CuO, NC/Al-Fe2O3, and NC/Al-Bi2O3) were also prepared by an electrospinning method and evaluated for their combustion performance. Aerosol spray pyrolysis was employed to produce carbon coated CuO hollow spheres, Mn3O4 hollow spheres, and Fe2O 3 mesoporous spheres. These hollow/mesoporous spheres demonstrated superior electrochemical performance when used as anode materials in lithium ion batteries. The effects of the amorphous and crystal structures on the electrochemical performance and the structure evolution during electrochemical tests were also investigated.

Jian, Guoqiang

72

Hollow Nanostructured Anode Materials for Li-Ion Batteries  

PubMed Central

Hollow nanostructured anode materials lie at the heart of research relating to Li-ion batteries, which require high capacity, high rate capability, and high safety. The higher capacity and higher rate capability for hollow nanostructured anode materials than that for the bulk counterparts can be attributed to their higher surface area, shorter path length for Li+ transport, and more freedom for volume change, which can reduce the overpotential and allow better reaction kinetics at the electrode surface. In this article, we review recent research activities on hollow nanostructured anode materials for Li-ion batteries, including carbon materials, metals, metal oxides, and their hybrid materials. The major goal of this review is to highlight some recent progresses in using these hollow nanomaterials as anode materials to develop Li-ion batteries with high capacity, high rate capability, and excellent cycling stability. PMID:21076674

2010-01-01

73

Synthesis, characterization, and properties of low-dimensional nanostructured materials  

NASA Astrophysics Data System (ADS)

Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely microwave-assisted hydrothermal reduction/carbonization (MAHRC), is developed to prepare coaxial Ag/amorphous-carbon (a-C) nanocables. The as-grown Ag/C nanocables can self-assemble in an end-to-end fashion. (2) A novel Se/C nanocomposite with core-shell structures is prepared. The new material consists of a trigonal-Se (t-Se) core and an amorphous-C (a-C) shell. The Se/C composite can be converted to hollow carbon capsules by thermal treatment. (3) A Fe 3O4/C nanocomposite is synthesized by a green wet-chemical approach. The product possesses porous microstructures and exhibits superparamagnetic behavior. The third major goal of this research is develop facile solution-based methods for preparing carbonaceous nano test tubes, thin films of metal iodides, and spherical selenium spheres: (1) Carbonaceous nano test tubes are fabricated by a facile "decoring" route using a core-sheath Te carbon nanocomposite as the precursor. The as-formed carbonaceous material looks like a "test tube" with an average diameter of about 120 nm and lengths up to 5 mum. (2) Tetrahedral-shaped CuI crystals were formed on a variety of copper substrates (e.g. grids, flat/porous foils, and macro-/nano- wires) via an interfacial reaction between a copper substrate and iodine in water at room temperature. This preparation approach can also be used to grow PbI2 and AgI nano- and micro-crystals with different morphologies on corresponding substrates. (3) Colloidal trigonal selenium (t-Se) microspheres are synthesized through a mild hydrothermal reduction reaction, using glucose as a reducing regent and water as an environmentally friendly solvent. Importantly, the resulting t-Se microspheres inherit functional groups from the starting materials and possess hydrophilic and biocompatible surfaces.

Hu, Xianluo

74

Composite ion exchange materials  

SciTech Connect

Composite ion exchange materials can be formed by sorbing ion exchange polymers on inert, high surface area substrates. In general, the flux of ions and molecules through these composites, as measured electrochemically, increases as the ratio of the surface area of the substrate increases relative to the volume of the ion exchanger. This suggests that fields and gradients established at the interface between the ion exchanger and substrate are important in determining the transport characteristics of the composites. Here, the authors will focus on composites formed with a cation exchange polymer, Nafion, and two different types of microbeads: polystyrene microspheres and polystyrene coated magnetic microbeads. For the polystyrene microbeads, scanning electron micrographs suggest the beads cluster in a self-similar manner, independent of the bead diameter. Flux of Ru(NH3)63+ through the composites was studied as a function of bead fraction, bead radii, and fixed surface area with mixed bead sizes. Flux was well modeled by surface diffusion along a fractal interface. Magnetic composites were formed with columns of magnetic microbeads normal to the electrode surface. Flux of Ru(NH3)63+ through these composites increased exponentially with bead fraction. For electrolyses, the difference in the molar magnetic susceptibility of the products and reactants, Dcm, tends to be non-zero. For seven redox reactions, the ratio of the flux through the magnetic composites to the flux through a Nafion film increases monotonically with {vert_bar}Dcm{vert_bar}, with enhancements as large as thirty-fold. For reversible species, the electrolysis potential through the magnetic composites is 35 mV positive of that for the Nafion films.

Amarasinghe, S.; Zook, L.; Leddy, J. [Univ. of Iowa, Iowa City, IA (United States)

1994-12-31

75

Aerogel/polymer composite materials  

NASA Technical Reports Server (NTRS)

The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

2010-01-01

76

Synthesis and chemical modification of carbon nanostructures for materials applications  

Microsoft Academic Search

This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology. A method is reported

Amanda Lynn Higginbotham

2009-01-01

77

Nanostructured Tin Dioxide Materials for Gas Sensor Applications  

E-print Network

CHAPTER 30 Nanostructured Tin Dioxide Materials for Gas Sensor Applications T. A. Miller, S. D) levels for some species. Tin dioxide (also called stannic oxide or tin oxide) semi- conductor gas sensors undergone extensive research and development. Tin dioxide (SnO2) is the most important material for use

Wooldridge, Margaret S.

78

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-print Network

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

Chen, Gang

79

Nanostructure materials for biosensing and bioimaging applications  

NASA Astrophysics Data System (ADS)

In the first part of the thesis our work on a surface plasmon resonance (SPR) biosensor will be presented. It will begin with understanding the working principle of SPR sensing technology and the basic concept of SPR biosensing. In SPR technology, there are different coupling schemes to excite surface plasmons such as prism coupler, grating coupler and waveguide coupler. Our setup will be based on the attenuated total reflection (ATR) prism coupling configuration. A gold sensing film is attached to one face of the prism. The samples are flowing over the gold surface and the light source is directed to the prism side. The reflected beam containing SPR information is collected and analyzed. SPR biosensors have become powerful tools in biological and chemical sensing application because of their capability of real-time monitoring and label-free sensing. Quantitative measurements such as the binding kinetics and the binding affinity between two biomolecules can be readily calculated from the SPR sensorgram. In our design, SPR phase will be monitored using photoelastic modulation (PEM) technique. The PEM is used to produce a modulation signal so that the phase quantity can be extracted by measuring the relative amplitudes of the harmonic signals. Since this system contains no moving component and only single beam and single detector are used, precise component alignment, which may be troublesome in making the setup compact and robust, can be eliminated. In order to demonstrate the operation of the proposed approach, two experiments were performed. The first one was to measure the refractive index change caused by varying the concentration of glycerin-water mixtures. The second one was to monitor the binding reactions between biotin and streptavidin--BSA complex at the sensor surface. Recently, the use of metallic nanoparticle on SPR platform has received great attention due to the capability of sensitivity enhancement. Although the mechanism of the enhancement is still not fully understand, three possible factors are concluded after systematic researches: (i) an increase of the absolute mass in each binding event, (ii) an increase in the bulk refractive index of the analyte, and (iii) coupling between the localized surface plasmon resonance (LSPR) of metallic nanoparticles and surface plasmon resonance (SPR) of the sensing film. Indeed, the role of plasmonic coupling in sensitivity enhancement is still an open question. In order to obtain a better understanding of this phenomenon, at the end of part I, extended studies were performed to investigate how the LSPR properties of metallic nanoparticle labels correlate with the enhancement factor. For this purpose, gold nanorods (Au-NRs) were chosen as the amplification labels because of the easy tunability of LSPR peak of Au-NR. After reading the "Result and Discussion" section, the readers will have better understanding of "plasmonic coupling" between the sensing film and the metallic labels with suitable operating laser source. In the second part of the thesis, the bioimaging part, the application of nanostructure materials in live cancer cell imaging and small animal imaging were demonstrated. There are different types of imaging technique available in laboratories and clinics: optical imaging, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), thermography and ultrasound imaging. Although such imaging techniques have been well developed and used over a decade, improving the sensitivity, enhancing the contrast, decreasing the acquisition time and reducing the toxicity of the contrast agent are highly desirable. For optical imaging, the scientists discovered that the use of near infrared fluorescence materials can assist the surgeon to locate the tumor, the nerve and the lymph node more accurately. For CT scan, the use of Au-NR as the contrast agent can improve the sensitivity. Iron oxide nanoparticle or gadolinium ion containing nanoparticle can greatly enhance the contrast of MRI. On the one hand, concrete effort

Law, Wing Cheung

80

Advanced composite materials and processes  

NASA Technical Reports Server (NTRS)

Composites are generally defined as two or more individual materials, which, when combined into a single material system, results in improved physical and/or mechanical properties. The freedom of choice of the starting components for composites allows the generation of materials that can be specifically tailored to meet a variety of applications. Advanced composites are described as a combination of high strength fibers and high performance polymer matrix materials. These advanced materials are required to permit future aircraft and spacecraft to perform in extended environments. Advanced composite precursor materials, processes for conversion of these materials to structures, and selected applications for composites are reviewed.

Baucom, Robert M.

1991-01-01

81

Inorganic-Organic Hybrid Composites Containing MQ (II-VI) Slabs: A New Class of Nanostructures with  

E-print Network

Inorganic-Organic Hybrid Composites Containing MQ (II-VI) Slabs: A New Class of Nanostructures. These nanocomposite hybrid materials are composed of two-dimensional MQ (II-VI) slabs and organic bifunctional dots, and at the same time they possess uniform structures.5 The structures of these hybrid materials

Li, Jing

82

Transmission electron microscopy study on clusters and nanostructured mesoporous materials  

NASA Astrophysics Data System (ADS)

Clusters are entities of two to a few hundred thousand of atoms of the same or a different chemical kind packed together with an arbitrary morphology and internal structural ordering. "What is the morphology of a cluster, how will a cluster adapt itself to a substrate and will there be chemical ordering in bimetallic clusters?" are some questions that are tried to answer in this Ph.D. thesis. Therefore Au and different Au-Cu alloy clusters are studied with transmission electron microscopy (TEM). The cluster-surface interaction of Au clusters deposited with low energy on MgO cubes and on amorphous carbon and its influence on the morphology of the Au cluster is investigated. Not only have the clusters different morphologies for the two different surfaces, also a dilation of the Au lattice is measured for the clusters deposited on the crystalline surface of MgO to perfectly accommodate the MgO lattice. Classical molecular dynamics (MD) is applied to model this behaviour. Good agreement is found between experimental images and simulated images using the model calculated by MD. Au-Cu bimetallic alloy clusters are produced in a laser vaporisation source starting from Au-Cu alloy targets with different stoichiometric compositions. The overall chemical composition in the clusters is the same as the chemical composition of the target material; but the crystal structure of the Au-Cu alloy clusters differs from their known bulk crystal structure. No chemical ordering exists between Au and Cu atoms and the clusters are solid solutions. Monte Carlo (MC) simulations however predict Cu3Au clusters ordered in the core but with a disordered mantle. The possible origins of the differences between experiment and Monte Carlo simulations are discussed. In the second part of this Ph.D. thesis, transmission electron microscopy (TEM) on nanostructured mesoporous materials is discussed. Mesoporous materials, prepared with alkanes and trimethylbenzene as swelling agents, are studied. Two phases are found for these materials: a hexagonal phase, like MCM-41 and a face centered cubic phase. The defects in these textures are characterised and compared with the crystal defects in regular fcc crystals. The structure and pore distribution of spherical MCM-41 particles are studied using scanning electron microscopy, X-ray diffraction and TEM. The results are compared with well known MCM-41 and point out the differences between the two materials. Where the MCM-41 material consists of unidimensional pores, hexagonally packed together, the spherical MCM-41 particles are found to have a spherically symmetric pore distribution, starting from the inner part of the particles to the surface.

Pauwels, Bart

83

Nanostructured Sn–Ti–C composite anodes for lithium ion batteries  

Microsoft Academic Search

Nanostructured Sn–Ti–C composites have been synthesized by a facile, inexpensive high energy mechanical milling process and investigated as an anode material for lithium-ion cells. Characterization data collected with X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) reveal an uniform dispersion of Sn nanoparticles within the conductive, amorphous (or poorly

Sukeun Yoon; Arumugam Manthiram

2011-01-01

84

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01

85

Engineering functional nanostructures for materials and biological applications  

NASA Astrophysics Data System (ADS)

Engineering nanostructures with complete control over the shape, composition, organization of the surface structures, and function remains a major challenge. In my work, I have fabricated nanostructures using functional polymer motifs and nanoparticles (NPs) via supramolecular and non-supramolecular interactions. In one of the approaches to generate nanostructures, I have integrated top-down approaches such as nanoimprint lithography, electron-beam lithography, and photolithography with the self-assembly (bottom-up) of NPs to provide nanostructures with tailored shape and function. In this strategy, I have developed a geometrically assisted orthogonal assembly of nanoparticles onto polymer features at precisely defined locations. This versatile NP functionalization method can be used to fabricate protein resistant patterned surfaces to provide essentially complete control over cellular alignment, making them promising biofunctional structures for cell patterning. In another approach, I have utilized self-assembly of dendrimers and NPs without preformed templates to generate nanostructures that can be used as chemoselective membranes for the separation of small and biomacromolecules.

Subramani, Chandramouleeswaran

86

Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries Anqiang Pan a,b  

E-print Network

Nano-structured Li3V2(PO4)3/carbon composite for high-rate lithium-ion batteries Anqiang Pan a2(PO4)3 High-power battery Nano-structured Li3V2(PO4)3/carbon composite (Li3V2(PO4)3/C) has been-structured Li3V2(PO4)3 and mesoporous carbon composite material have great potential for use in high-power Li

Cao, Guozhong

87

Potential applications of nanostructured materials in nuclear waste management.  

SciTech Connect

This report summarizes the results obtained from a Laboratory Directed Research & Development (LDRD) project entitled 'Investigation of Potential Applications of Self-Assembled Nanostructured Materials in Nuclear Waste Management'. The objectives of this project are to (1) provide a mechanistic understanding of the control of nanometer-scale structures on the ion sorption capability of materials and (2) develop appropriate engineering approaches to improving material properties based on such an understanding.

Braterman, Paul S. (The University of North Texas, Denton, TX); Phol, Phillip Isabio; Xu, Zhi-Ping (The University of North Texas, Denton, TX); Brinker, C. Jeffrey; Yang, Yi (University of New Mexico, Albuquerque, NM); Bryan, Charles R.; Yu, Kui; Xu, Huifang (University of New Mexico, Albuquerque, NM); Wang, Yifeng; Gao, Huizhen

2003-09-01

88

Synthesis and chemical modification of carbon nanostructures for materials applications  

NASA Astrophysics Data System (ADS)

This dissertation explores the structure, chemical reactivities, electromagnetic response, and materials properties of various carbon nanostructures, including single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), graphite, and graphene nanoribbons (GNRs). Efficient production and modification of these unique structures, each with their own distinct properties, will make them more accessible for applications in electronics, materials, and biology. A method is reported for controlling the permittivity from 1--1000 MHz of SWCNT-polymer composites (0.5 wt%) for radio frequency applications including passive RF antenna structures and EMI shielding. The magnitude of the real permittivity varied between 20 and 3.3, decreasing as higher fractions of functionalized-SWCNTs were added. The microwave absorbing properties and subsequent heating of carbon nanotubes were used to rapidly cure ceramic composites. With less than 1 wt% carbon nanotube additives and 30--40 W of directed microwave power (2.45 GHz), bulk composite samples reached temperatures above 500°C within 1 min. Graphite oxide (GO) polymer nanocomposites were developed at 1, 5, and 10 wt% for the purpose of evaluating the flammability reduction and materials properties of the resulting systems. Microscale oxygen consumption calorimetry revealed that addition of GO reduced the total heat release in all systems, and GO-polycarbonate composites demonstrated very fast self-extinguishing times in vertical open flame tests. A simple solution-based oxidative process using potassium permanganate in sulfuric acid was developed for producing nearly 100% yield of graphene nanoribbons (GNRs) by lengthwise cutting and unraveling of MWCNT sidewalls. Subsequent chemical reduction of the GNRs resulted in restoration of electrical conductivity. The GNR synthetic conditions were investigated in further depth, and an improved method which utilized a two-acid reaction medium was found to produce GNRs with fewer defects and/or holes on the basal plane and higher aspect ratio. Two different covalent functionalization methods for GNRs based on diazonium chemistry were developed. The resulting functionalized GNRs (f-GNRs) are readily soluble in organic solvents which increase their solution processability. The f-GNRs were also found to be in a reduced state, with minimal sp2 carbon disruption, while also keeping the ribbon shape.

Higginbotham, Amanda Lynn

89

Magneto-optical stokes polarimetry and nanostructured magnetic materials.  

PubMed

Stokes parameters fully characterize the polarization state of light in an experimentally accessible manner. Photoelastic modulator (PEM) based Stokes polarimetry offers a very high sensitivity which is particularly suitable for the investigation of the magneto-optical properties of nanostructured magnetic materials. In this paper, we shall describe a robust methodology recently developed by us that utilizes a dual PEM setup. As an example of its application, we report on the magneto-optical characteristics of focused Ga ion beam patterned Fe films. We have investigated Ga ion irradiation of single-layer polycrystalline Fe films deposited on Si3N4 substrates, which allows us to study the effects of ion implantation with minimum added complications. Complemented by structural and other characterization techniques, the absolute measurement of magneto-optical effects through the determination of Stokes parameters has enabled us to effectively separate the various contributions from film thinning due to sputtering, structural modifications and compositional changes caused by Ga incorporation. A comparison is also made between the magneto-optical behavior of patterned thin films and that of anodic aluminum oxide embedded magnetic nanowire arrays. PMID:22629897

Cook, P J; Zhang, J; Liu, Y; Guan, W; Wang, N; Qin, L; Shen, T H; Jones, G A; Grundy, P J

2012-02-01

90

Hierarchical oxide-based composite nanostructures for energy, environmental, and sensing applications  

NASA Astrophysics Data System (ADS)

Self-assembled composite nanostructures integrate various basic nano-elements such as nanoparticles, nanofilms and nanowires toward realizing multifunctional characteristics, which promises an important route with potentially high reward for the fast evolving nanoscience and nanotechnology. A broad array of hierarchical metal oxide based nanostructures have been designed and fabricated in our research group, involving semiconductor metal oxides, ternary functional oxides such as perovskites and spinels and quaternary dielectric hydroxyl metal oxides with diverse applications in efficient energy harvesting/saving/utilization, environmental protection/control, chemical sensing and thus impacting major grand challenges in the area of materials and nanotechnology. Two of our latest research activities have been highlighted specifically in semiconductor oxide alloy nanowires and metal oxide/perovskite composite nanowires, which could impact the application sectors in ultraviolet/blue lighting, visible solar absorption, vehicle and industry emission control, chemical sensing and control for vehicle combustors and power plants.

Gao, Pu-Xian; Shimpi, Paresh; Cai, Wenjie; Gao, Haiyong; Jian, Dunliang; Wrobel, Gregory

2011-02-01

91

Ballistic composite fermions in semiconductor nanostructures  

NASA Astrophysics Data System (ADS)

We report the results of two fundamental transport measurements at a Landau level filling factor ? of 1/2. The well-known ballistic electron transport phenomena of quenching of the Hall effect in a mesoscopic cross-junction and negative magnetoresistance of a constriction are observed close to B=0 and ?=1/2. The experimental results demonstrate semiclassical charge transport by composite fermions, which consist of electrons bound to an even number of flux quanta.

Frost, J. E. F.; Liang, C.-T.; Mace, D. R.; Simmons, M. Y.; Ritchie, D. A.; Pepper, M.

1996-04-01

92

Processing composite materials  

NASA Technical Reports Server (NTRS)

The fabrication of several composite structural articles including DC-10 upper aft rudders, L-1011 vertical fins and composite biomedical appliances are discussed. Innovative composite processing methods are included.

Baucom, R. M.

1982-01-01

93

Current status of nanostructured tungsten-based materials development  

NASA Astrophysics Data System (ADS)

Nanostructured tungsten (W)-based materials offer many advantages for use as plasma facing materials and components exposed to heavy thermal loads combined with irradiation with high-energy neutron and low-energy ion. This paper first presents the recent progress in nanostructured toughened, fine grained, recrystallized W materials. Thermal desorption spectrometry apparatus equipped with an ion gun has been installed in the radiation controlled area in our Center at Tohoku University to systematically investigate the effects of displacement damage due to high-energy neutron irradiation on hydrogen isotope retention in connection with the nano- or micro-structures in W-based materials. In this paper, the effects of high-energy heavy ion irradiation on deuterium retention in W with different microstructures are described as a preliminary work with the prospective view of neutron irradiation effects.

Kurishita, H.; Matsuo, S.; Arakawa, H.; Sakamoto, T.; Kobayashi, S.; Nakai, K.; Okano, H.; Watanabe, H.; Yoshida, N.; Torikai, Y.; Hatano, Y.; Takida, T.; Kato, M.; Ikegaya, A.; Ueda, Y.; Hatakeyama, M.; Shikama, T.

2014-04-01

94

Accelerated Insertion of Materials - Composites.  

National Technical Information Service (NTIS)

The objective of the Accelerated Insertion of Materials - Composites (AIM-C) program is to develop and validate new approaches for materials development that will accelerate the insertion of materials into production hardware.

G. Havskjold

2001-01-01

95

Notched Strength of Composite Materials  

Microsoft Academic Search

A macroscopic model for predicting the strength of a composite laminate containing a circular notch is introduced. A property, which quantifies the reduction in strength of a given composite material or laminate due to a circular notch, is proposed. The superposition of notched strength data for several important composite material systems and laminate stacking sequences is achieved through development of

R. Byron Pipes; Robert C. Wetherhold; John W. Gillespie

1979-01-01

96

Heat transport by phonons in crystalline materials and nanostructures  

NASA Astrophysics Data System (ADS)

This dissertation presents experimental studies of heat transport by phonons in crystalline materials and nanostructures, and across solid-solid interfaces. Particularly, this dissertation emphasizes advancing understanding of the mean-free-paths (i.e., the distance phonons propagate without being scattered) of acoustic phonons, which are the dominant heat carriers in most crystalline semiconductor nanostructures. Two primary tools for the studies presented in this dissertation are time-domain thermoreflectance (TDTR) for measurements of thermal conductivity of nanostructures and thermal conductance of interfaces; and frequency-domain thermoreflectance (FDTR), which I developed as a direct probe of the mean-free-paths of dominant heat-carrying phonons in crystalline solids. The foundation of FDTR is the dependence of the apparent thermal conductivity on the frequency of periodic heat sources. I find that the thermal conductivity of semiconductor alloys (InGaP, InGaAs, and SiGe) measured by TDTR depends on the modulation frequency, 0.1 ? f ? 10 MHz, used in TDTR measurements. Reduction in the thermal conductivity of the semiconductor alloys at high f compares well to the reduction in the thermal conductivity of epitaxial thin films, indicating that frequency dependence and thickness dependence of thermal conductivity are fundamentally equivalent. I developed the frequency dependence of thermal conductivity into a convenient probe of phonon mean-free-paths, a technique which I call frequency-domain thermoreflectance (FDTR). In FDTR, I monitor the changes in the intensity of the reflected probe beam as a function of the modulation frequency. To facilitate the analysis of FDTR measurements, I developed a nonlocal theory for heat conduction by phonons at high heating frequencies. Calculations of the nonlocal theory confirm my experimental findings that phonons with mean-free-paths longer than two times the penetration depth do not contribute to the apparent thermal conductivity. I employed FDTR to study the mean-free-paths of acoustic phonons in Si1-xGex. I experimentally demonstrate that 40% of heat is carried in Si1-xGe x alloys by phonons with mean-free-path 0.5 ? ? ? 5 mum, and phonons with > 2 mum do not contribute to the thermal conductivity of Si. I employed TDTR and frequency-dependent TDTR to study scattering of long- and medium-wavelength phonons in two important thermoelectric materials embedded with nanoscale precipitates. I find that the through-thickness lattice thermal conductivity of (PbTe)1-x/(PbSe)x nanodot superlattices (NDSLs) approaches the thermal conductivity of bulk homogenous PbTe1-x Sex alloys with the same average composition. On the other hand, I find that 3% of ErAs nanoparticles embedded in InGaAs is sufficient to scatter most of the phonons in InGaAs that have intermediate mean-free-paths, and thus reduces the thermal conductivity of InGaAs below the alloy limit. I find that scattering by nanoparticles approach the geometrical limit and can be readily accounted for by an additional boundary scattering which depends on the concentration of nanoparticles. Finally, I studied the thermal conductance of Au/Ti/Graphene/SiO 2 interfaces by TDTR. I find that heat transport across the interface is dominated by phonons. Even though graphene is only one atomic layer thick, graphene interfaces should be treated as two discrete interfaces instead of one diffuse interface in thermal analysis, suggesting that direct transmission of phonons from Au to SiO2 is negligible. My study is important for thermal management of graphene devices.

Koh, Yee Kan

97

Nanostructures and functional materials fabricated by interferometric lithography.  

PubMed

Interferometric lithography (IL) is a powerful technique for the definition of large-area, nanometer-scale, periodically patterned structures. Patterns are recorded in a light-sensitive medium, such as a photoresist, that responds nonlinearly to the intensity distribution associated with the interference of two or more coherent beams of light. The photoresist patterns produced with IL are a platform for further fabrication of nanostructures and growth of functional materials and are building blocks for devices. This article provides a brief review of IL technologies and focuses on various applications for nanostructures and functional materials based on IL including directed self-assembly of colloidal nanoparticles, nanophotonics, semiconductor materials growth, and nanofluidic devices. Perspectives on future directions for IL and emerging applications in other fields are presented. PMID:20976672

Xia, Deying; Ku, Zahyun; Lee, S C; Brueck, S R J

2011-01-11

98

Tailoring properties and functionalities of nanostructures through compositions, components and morphologies  

NASA Astrophysics Data System (ADS)

The field of nanoscience and nanotechnology has made significant progresses over the last thirty years. Sophisticated nanostructures with tunable properties for novel physics and applications have been successfully fabricated, characterized and underwent practical test. In this thesis, I will focus on our recent efforts to develop new strategies to manipulate the properties of nanostructures. Particularly, three questions have been answered from our perspective, based on the nanomaterials synthesized: (1) How does the composition affect a novel nanostructure? We started from single-molecule precursors to reach nanostructures whose bulk counterparts only exist under extreme conditions. Fe3S and Fe3S2 are used as examples to demonstrate this synthetic strategy. Their potential magnetic properties have been measured, which may lead to interesting findings in astronomy and materials science. (2) How to achieve modularity control at nanoscale by a general bottom-up approach? Starting with reviewing the current status of this field, our recent experimental progresses towards delicate modularity control are presented by abundant novel heteronanostructures. An interesting catalytic mechanism of these nanostructures has also been verified, which involves the interaction between phonons, photons, plasmons, and excitons. (3) What can the morphology difference tell us about the inside of nanostructures? By comparing a series of data from three types of CdSe/CdS core-shell structures, a conclusion has been reached on the CdS growth mechanism on CdSe under different conditions, which also may lead to a solution to the asymmetry problem in the synthesis of CdSe/CdS nanorods. Finally this thesis is concluded by a summary and future outlook.

Weng, Lin

99

Novel thermal properties of nanostructured materials.  

SciTech Connect

A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

Eastman, J. A.

1999-01-13

100

Study of Basic Mechanisms Involved in the Consolidation of Multiphase Nanostructured Materials.  

National Technical Information Service (NTIS)

Programmatic achievements made under contract NOOOl4-93-0997 include: (1) demonstrating that nanostructured WC-Co powder can be thermally sprayed to form nanostructured coatings on substrate materials using the High-velocity Oxyfuel method. (2) showing th...

P. R. Strutt

1995-01-01

101

Nanostructured electrocatalyst for fuel cells : silica templated synthesis of Pt/C composites.  

SciTech Connect

Platinum-based electrocatalysts are currently required for state-of-the-art fuel cells and represent a significant portion of the overall fuel cell cost. If fuel cell technology is to become competitive with other energy conversion technologies, improve the utilization of precious metal catalysts is essential. A primary focus of this work is on creating enhanced nanostructured materials which improve precious-metal utilization. The goal is to engineer superior electrocatalytic materials through the synthesis, development and investigation of novel templated open frame structures synthesized in an aerosol-based approach. Bulk templating methods for both Pt/C and Pt-Ru composites are evaluated in this study and are found to be limited due to the fact that the nanostructure is not maintained throughout the entire sample. Therefore, an accurate examination of structural effects was previously impossible. An aerosol-based templating method of synthesizing nanostructured Pt-Ru electrocatalysts has been developed wherein the effects of structure can be related to electrocatalytic performance. The aerosol-based templating method developed in this work is extremely versatile as it can be conveniently modified to synthesize alternative materials for other systems. The synthesis method was able to be extended to nanostructured Pt-Sn for ethanol oxidation in alkaline media. Nanostructured Pt-Sn electrocatalysts were evaluated in a unique approach tailored to electrocatalytic studies in alkaline media. At low temperatures, nanostructured Pt-Sn electrocatalysts were found to have significantly higher ethanol oxidation activity than a comparable nanostructured Pt catalyst. At higher temperatures, the oxygen-containing species contribution likely provided by Sn is insignificant due to a more oxidized Pt surface. The importance of the surface coverage of oxygen-containing species in the reaction mechanism is established in these studies. The investigations in this work present original studies of anion exchange ionomers as entrapment materials for rotating disc electrode (RDE) studies in alkaline media. Their significance is linked to the development of membrane electrode assemblies (MEAs) with the same ionomer for a KOH-free alkaline fuel cell (AFC).

Stechel, Ellen Beth; Switzer, Elise E.; Fujimoto, Cy H.; Atanassov, Plamen Borissov; Cornelius, Christopher James; Hibbs, Michael R.

2007-09-01

102

Composite material and method for production of improved composite material  

NASA Technical Reports Server (NTRS)

A laminated composite material with improved interlaminar strength and damage tolerance having short rods distributed evenly throughout the composite material perpendicular to the laminae. Each rod is shorter than the thickness of the finished laminate, but several times as long as the thickness of each lamina. The laminate is made by inserting short rods in layers of prepreg material, and then stacking and curing prepreg material with rods inserted therethrough.

Farley, Gary L. (Inventor)

1996-01-01

103

Combination of lightweight elements and nanostructured materials for batteries.  

PubMed

In a society that increasingly relies on mobile electronics, demand is rapidly growing for both primary and rechargeable batteries that power devices from cell phones to vehicles. Existing batteries utilize lightweight active materials that use electrochemical reactions of ions such as H(+), OH(-) and Li(+)/Mg(2+) to facilitate energy storage and conversion. Ideal batteries should be inexpensive, have high energy density, and be made from environmentally friendly materials; batteries based on bulk active materials do not meet these requirements. Because of slow electrode process kinetics and low-rate ionic diffusion/migration, most conventional batteries demonstrate huge gaps between their theoretical and practical performance. Therefore, efforts are underway to improve existing battery technologies and develop new electrode reactions for the next generation of electrochemical devices. Advances in electrochemistry, surface science, and materials chemistry are leading to the use of nanomaterials for efficient energy storage and conversion. Nanostructures offer advantages over comparable bulk materials in improving battery performance. This Account summarizes our progress in battery development using a combination of lightweight elements and nanostructured materials. We highlight the benefits of nanostructured active materials for primary zinc-manganese dioxide (Zn-Mn), lithium-manganese dioxide (Li-Mn), and metal (Mg, Al, Zn)-air batteries, as well as rechargeable lithium ion (Li-ion) and nickel-metal hydride (Ni-MH) batteries. Through selected examples, we illustrate the effect of structure, shape, and size on the electrochemical properties of electrode materials. Because of their numerous active sites and facile electronic/ionic transfer and diffusion, nanostructures can improve battery efficiency. In particular, we demonstrate the properties of nanostructured active materials including Mg, Al, Si, Zn, MnO(2), CuV(2)O(6), LiNi(0.8)Co(0.2)O(2), LiFePO(4), Fe(2)O(3), Co(3)O(4), TiS(2), and Ni(OH)(2) in battery applications. Electrochemical investigations reveal that we generally attain larger capacities and improved kinetics for electrode materials as their average particle size decreases. Novel nanostructures such as nanowires, nanotubes, nanourchins, and porous nanospheres show lower activation energy, enhanced reactivity, improved high-rate charge/discharge capability, and more controlled structural flexibility than their bulk counterparts. In particular, anode materials such as Si nanospheres and Fe(2)O(3) nanotubes can deliver reversible capacity exceeding 500 mA.h/g. (Graphite used commercially has a theoretical capacity of 372 mA x h/g.) Nanocomposite cathode materials such as NiP-doped LiFePO(4) and metal hydroxide-coated Ni(OH)(2) nanotubes allow us to integrate functional components, which enhance electrical conductivity and suppress volume expansion. Therefore, shifting from bulk to nanostructured electrode materials could offer a revolutionary opportunity to develop advanced green batteries with large capacity, high energy and power density, and long cycle life. PMID:19354236

Chen, Jun; Cheng, Fangyi

2009-06-16

104

Nanostructured Assemblies of Thermoelectric Composite Materials  

SciTech Connect

At the end of the funding period (March 2003) for our program in ferroelectric oxide nanomaterials, we had 3 publications in print, one more had been submitted and two more were in preparation in peer-reviewed journals and invited symposia lectures had been given since starting the project in the Fall of 1999. We hired two postdoctoral fellows, Dr. Ki-Seog Chang and Dr. Wenzhong Wang. We have also trained two graduate students, Ms. Keri Williams and Ms. Bernadette Hernandez, and one undergraduate student (Mr. Michael Scancella).

Peter K. Dorhout; Ellen R. Fisher

2008-02-26

105

Equivalent-Continuum Modeling of Nano-Structured Materials  

NASA Technical Reports Server (NTRS)

A method has been developed for modeling structure-property relationships of nano-structured materials. This method serves as a link between computational chemistry and solid mechanics by substituting discrete molecular structures with an equivalent-continuum model. It has been shown that this substitution may be accomplished by equating the vibrational potential energy of a nano-structured material with the strain energy of representative truss and continuum models. As an important example with direct application to the development and characterization of single-walled carbon nanotubes, the model has been applied to determine the effective continuum geometry of a graphene sheet. A representative volume element of the equivalent-continuum model has been developed with an effective thickness. This effective thickness has been shown to be similar to, but slightly smaller than, the interatomic spacing of graphite.

Odegard, Gregory M.; Gates, Thomas S.; Nicholson, Lee M.; Wise, Kristopher E.

2001-01-01

106

Thermoelectric energy conversion using nanostructured materials  

E-print Network

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

107

Gas-mediated charged particle beam processing of nanostructured materials  

NASA Astrophysics Data System (ADS)

Gas mediated processing under a charged particle (electron or ion) beam enables direct-write, high resolution surface functionalization, chemical dry etching and chemical vapor deposition of a wide range of materials including catalytic metals, optoelectronic grade semiconductors and oxides. Here we highlight three recent developments of particular interest to the optical materials and nanofabrication communities: fabrication of self-supporting, three dimensional, fluorescent diamond nanostructures, electron beam induced deposition (EBID) of high purity materials via activated chemisorption, and post-growth purification of nanocrystalline EBID-grown platinum suitable for catalysis applications.

Lobo, C. J.; Martin, A. A.; Elbadawi, C.; Bishop, J.; Aharonovich, I.; Toth, M.

2014-03-01

108

Composite structural materials  

NASA Technical Reports Server (NTRS)

The composite aircraft program component (CAPCOMP) is a graduate level project conducted in parallel with a composite structures program. The composite aircraft program glider (CAPGLIDE) is an undergraduate demonstration project which has as its objectives the design, fabrication, and testing of a foot launched ultralight glider using composite structures. The objective of the computer aided design (COMPAD) portion of the composites project is to provide computer tools for the analysis and design of composite structures. The major thrust of COMPAD is in the finite element area with effort directed at implementing finite element analysis capabilities and developing interactive graphics preprocessing and postprocessing capabilities. The criteria for selecting research projects to be conducted under the innovative and supporting research (INSURE) program are described.

Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.

1981-01-01

109

Bulk Materials with Micro- and Nanostructures  

NASA Astrophysics Data System (ADS)

A cost-efficient method has been developed based on the combination of hydrothermal exfoliation and spark plasma sintering (SPS) to fabricate Bi0.48Sb1.52Te3 bulk material with multiscale microstructures composed of micro- and nanosized microstructures. The thermoelectric (TE) transport properties of the bulk material with multiscale microstructures were measured along the directions parallel (||) and perpendicular (?) to the SPS pressing direction. It is confirmed that the anisotropy of the electrical conductivity ( ?) and thermal conductivity ( ?) was decreased by the transformation of the microstructure from a single microscale structure to multiscale microstructures. As compared with Bi0.48Sb1.52Te3 bulk material with single microscale microstructures, the ? value of the Bi0.48Sb1.52Te3 bulk material with multiscale microstructures was significantly reduced, the ? value was slightly decreased, while the ? value was slightly increased. Thus, a maximum ZT value of 1.1 was achieved at 350 K along the direction perpendicular to the pressing direction, increased by 20%. The enhanced ZT value was mainly attributed to the significant decrease in ? induced by the multiscale microstructures. This work offers a new approach to improve TE performance by multiscale microstructural engineering.

Zhu, Wan-Ting; Zhao, Wen-Yu; Zhou, Hong-Yu; Yu, Jian; Tang, Ding-Guo; Liu, Zhi-Yuan; Zhang, Qing-Jie

2014-06-01

110

Manufacturing of nanostructured Al/WCp metal- matrix composites by accumulative press bonding  

NASA Astrophysics Data System (ADS)

The accumulative press bonding (APB) process used as a novel technique in this study provides an effective alternative method for manufacturing Al/10 vol.% WCp metal matrix composites (MMCs). The results revealed that by increasing the number of APB cycles (a) the uniformity of WC particles in aluminum matrix improved, (b) the porosity of the composite eliminated, (c) the particle free zones decreased. The X-ray diffraction results also showed that nanostructured Al/WCp composite with the average crystallite size of 58.4 nm was successfully achieved by employing 14 cycles of APB technique. The tensile strength of the composites enhanced by increasing the number of APB cycles, and reached to a maximum value of 216 MPa at the end of 14th cycle, which is 2.45 and 1.2 times higher than obtained values for annealed (raw material, 88 MPa) and 14 cycles APB-ed monolithic aluminum (180 MPa), respectively

Amirkhanlou, Sajjad; Ketabchi, Mostafa; Parvin, Nader; Khorsand, Shohreh; Carreño, Fernando

2014-08-01

111

Dielectric behavior of epoxy/BaTiO? composites using nanostructured ceramic fibers obtained by electrospinning.  

PubMed

Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 °C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. PMID:23281655

Ávila, H A; Ramajo, L A; Góes, M S; Reboredo, M M; Castro, M S; Parra, R

2013-02-01

112

Composite materials: A compilation  

NASA Technical Reports Server (NTRS)

Design, analysis and fabrication techniques for boron-aluminum composite-structure technology is presented and a new method of joining different laminated composites without mechanical fasteners is proposed. Also discussed is a low-cost procedure for rigidifying expanded honeycomb tubing and piping simulations. A brief note on patent information is added.

1976-01-01

113

Hierarchical Assembly of Multifunctional Oxide-based Composite Nanostructures for Energy and Environmental Applications  

PubMed Central

Composite nanoarchitectures represent a class of nanostructured entities that integrates various dissimilar nanoscale building blocks including nanoparticles, nanowires, and nanofilms toward realizing multifunctional characteristics. A broad array of composite nanoarchitectures can be designed and fabricated, involving generic materials such as metal, ceramics, and polymers in nanoscale form. In this review, we will highlight the latest progress on composite nanostructures in our research group, particularly on various metal oxides including binary semiconductors, ABO3-type perovskites, A2BO4 spinels and quaternary dielectric hydroxyl metal oxides (AB(OH)6) with diverse application potential. Through a generic template strategy in conjunction with various synthetic approaches— such as hydrothermal decomposition, colloidal deposition, physical sputtering, thermal decomposition and thermal oxidation, semiconductor oxide alloy nanowires, metal oxide/perovskite (spinel) composite nanowires, stannate based nanocompostes, as well as semiconductor heterojunction—arrays and networks have been self-assembled in large scale and are being developed as promising classes of composite nanoarchitectures, which may open a new array of advanced nanotechnologies in solid state lighting, solar absorption, photocatalysis and battery, auto-emission control, and chemical sensing. PMID:22837702

Gao, Pu-Xian; Shimpi, Paresh; Gao, Haiyong; Liu, Caihong; Guo, Yanbing; Cai, Wenjie; Liao, Kuo-Ting; Wrobel, Gregory; Zhang, Zhonghua; Ren, Zheng; Lin, Hui-Jan

2012-01-01

114

Nanostructured Materials for Portable and Stationary Energy Storage  

NASA Astrophysics Data System (ADS)

Storing energy electrochemically involves electronic and ionic processes and chemical transformation inside and at the interface of materials. The ability to understand and design nanostructures and their interfaces afford the great opportunities for controlling these fundamental processes, which can ultimately lead to high performance energy storage devices. Here I will present several exciting examples on designing nanostructures and their interfaces to realize high performance energy storage devices. One example is on designing nanowires and heterostructured nanowires for ultrahigh capacity storage of lithium ions in silicon anodes and sulfur cathodes. The challenges associated with large volume expansion, electron and ion transport, and solid-electrolyte-interphase (SEI) have been addressed. Another example is to design open framework stucture of nanocrystals, which facility facile insertion of sodium and potassium ions. The high power, high energy efficiency and low-cost aqueous batteries can be enabled for grid scale stationary storage.

Cui, Yi

2012-02-01

115

Ceramic materials and nanostructures for chemical sensing  

NASA Astrophysics Data System (ADS)

High selectivity, enhanced sensitivity, short response time and long shelf-life are some of the key features sought in the solid-state ceramic-based chemical sensors. Since the sensing mechanism and catalytic activity are predominantly surface-dominated, benign surface features in terms of higher aspect ratio, large surface area and, open and connected porosity, are required to realize a successful material. In order to incorporate these morphological features, a technique based on rigorous thermodynamic consideration of the metal/metal oxide coexistence, is described. By modulating the oxygen partial pressure across the equilibrium M/MO proximity line, formation and growth of new oxide surface on an atomic/ submolecular level under conditions of "oxygen deprivation", with exotic morphological features has been achieved in a number of metal oxides that are potential sensor materials. This paper describes the methodology and discusses the results obtained in the case of two model systems, viz., tungsten oxide (WO3) and titanium oxide (TiO2).

Azad, Abdul-Majeed; Akbar, Sheikh A.

2005-11-01

116

Material-based three-dimensional imaging with nanostructured surfaces  

NASA Astrophysics Data System (ADS)

Visualizing three-dimensional (3D) structures at the micrometer and nanometer scale is essential not only for characterizing materials and corrosion but also biological samples. Here, we present a material-based nano-optical method using the near-field properties of periodically nanostructured surfaces (photonic crystal slabs) to obtain 3D images. The wavelength and the quality factor of resonances in the transmission spectrum provide optical thickness information of objects on the surface, which we use for rapid topography determination of cells.

Nazirizadeh, Yousef; Reverey, Julia; Geyer, Ulf; Lemmer, Uli; Selhuber-Unkel, Christine; Gerken, Martina

2013-01-01

117

High-strength, thermally-stable nanostructured materials  

NASA Astrophysics Data System (ADS)

The properties of two technologically important precipitation-treatable alloys - Al 6061 and Inconel 718, that are deformed to large plastic strains at room temperature by machining, are presented. The strong effect of prior density of precipitates on the consequent microstructure refinement during chip formation was determined by deforming Al 6061 of different tempers to varying levels of strain, by varying the tool rake angle. Chips cut from peak-aged 6061, consisting of a fine dispersion of precipitates, produced the finest microstructure and are composed of sub-100 nm grains. On the other hand, coarser precipitate distributions in over-aged 6061 and an absence of precipitates in solution-treated 6061 resulted in much coarser microstructures. Thermal stability of such nanostructured chips with different levels of strain and precipitate distributions is analyzed by studying evolution of Vickers micro-hardness and microstructure after different heat treatments. Chips produced from the peak-aged temper and over-aged temper soften following heat treatment while those from the solution-treated state first, gain strength before softening. The results are rationalized based on prior studies of the characteristics and kinetics of precipitation and coarsening in Al-Mg-Si systems. It is then demonstrated that precipitate-stabilized nanostructured materials synthesized from a prototypical alloy system - Inconel 718, are extremely stable even after prolonged heat treatment for 240 hours at temperatures as high as one-half of the melting point. This extraordinary thermal stability is traced to the retention of a fine dispersion of precipitates in a nanostructured matrix even after extended heat treatment. It is anticipated that general design principles garnered from understanding of the causal phenomena determining strengthening and thermal stability, can lead to the development of alloy systems for the manufacture of high-strength, thermally-stable nanostructured materials.

Shankar, Ravi

118

A new approach to the fabrication of ``smart`` near-surface nanostructure composites  

SciTech Connect

A new method for the formation of smart near-surface nanoscale composites has been developed. In this approach, small precipitates of active phases are embedded in the near-surface region of the material that is to be modified by a combination of ion implantation and thermal processing. The dispersion, concentration, and microstructure of the nanocrystals formed in the substrate material can be tailored through a careful choice of processing parameters - making this approach well suited to high value added, high technology applications. The applicability of this approach to forming smart surfaces on otherwise inactive materials was established in the case of VO{sup 2} precipitates which were embedded in Al{sub 2}O{sub 3} single crystals to create a medium suitable for optical applications--including optical data storage. Most recently, this concept has been extended to the fabrication of magnetic field sensitive nanostructured surfaces by forming magnetostrictive precipitates of materials such as Ni or RFe{sub 2} (with R = Tm, Tb, Sm) that are embedded in various single crystal oxide hosts. These nanostructured, active surface composites have been characterized using XRD, RBS, TEM, and magneto-optical techniques.

Gea, L.; Honda, S.; Boatner, L.A.; Haynes, T.E.; Sales, B.C.; Modine, F.A.; Meldrum, A.; Budai, J.D. [Oak Ridge National Lab., TN (United States). Solid State Div.; Beckers, L. [Forshungzentrum Juelich (Germany)

1998-01-01

119

Nanostructured metal-nanocarbon composites: Production and studying of structural and mechanical properties  

NASA Astrophysics Data System (ADS)

In the past two decades, the design methods of nanostructured composites with hierarchical structure consisting of metal-matrix composed nanoparticles and various binding between them - so-called metal-matrix nanocomposites (MNCs) - have intensively develop. At manufacturing MNCs, numerous combinations of matrixes and additives are used. Fabrication methods are an important part of the design process for MNCs, as well. It is anticipated that bulk materials with nanocarbon constituents could have high mechanical properties due to peculiarities of the nanostructure and special properties of its nano-building blocks, such as nanodiamond, fullerenes and nanotubes. In this work we report the design and properties of bulk MNCs containing nanocarbon in metal nanocrystals, and nanocarbon also serves as a binding medium filling interfaces. These works were conducted within 2007÷2012 in TISNCM. We manufactured MNCs by mechanical alloying (high energy ball milling) of the parent materials, such as metals (Fe, Steels, Al, Al-alloys, Cu, W) and refractory carbides (WC, ZrC, TaC, TiC), with nanocarbon followed by high-pressure/high-temperature (HP/HT) treatment. Nanocarbon (C60, soot, graphite and nanodiamond) was used as an additive. New nanostructured and modified by nanocarbon bulk samples has been sintered from appropriate nanoclusters.

Prokhorov, V. M.; Blank, V. D.; Bagramov, R. H.; Perfilov, S. A.; Pivovarov, G. I.

2013-12-01

120

High thermoelectric performance via hierarchical compositionally alloyed nanostructures.  

PubMed

Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT ~ 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide. Our strategy goes beyond the recent ideas of reducing thermal conductivity by adding two key new theory-guided concepts in engineering, both electronic structure and band alignment across nanostructure-matrix interface. Utilizing density functional theory for calculations of valence band energy levels of nanoscale precipitates of CdS, CdSe, ZnS, and ZnSe, we infer favorable valence band alignments between PbSe and compositionally alloyed nanostructures of CdS1-xSex/ZnS1-xSex. Then by alloying Cd on the cation sublattice of PbSe, we tailor the electronic structure of its two valence bands (light hole L and heavy hole ?) to move closer in energy, thereby enabling the enhancement of the Seebeck coefficients and the power factor. PMID:23647245

Zhao, Li-Dong; Hao, Shiqiang; Lo, Shih-Han; Wu, Chun-I; Zhou, Xiaoyuan; Lee, Yeseul; Li, Hao; Biswas, Kanishka; Hogan, Timothy P; Uher, Ctirad; Wolverton, C; Dravid, Vinayak P; Kanatzidis, Mercouri G

2013-05-15

121

Exciton transport and coherence in molecular and nanostructured materials  

E-print Network

Over the past 20 years a new classes of optically active materials have been developed that are composites of nano-engineered constituents such as molecules, polymers, and nanocrystals. These disordered materials have ...

Akselrod, Gleb M. (Gleb Markovitch)

2013-01-01

122

Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites  

PubMed Central

This work presents a comparison between three piezoresistive composite materials based on nanostructured conductive fillers in a polydimethylsiloxane insulating elastomeric matrix for sensing applications. Without any mechanical deformation upon an applied bias, the prepared composites present an insulating electric behavior, while, when subjected to mechanical load, the electric resistance is reduced exponentially. Three different metal fillers were tested: commercial nickel and copper spiky-particles and synthesized highly-pointed gold nanostars. These particles were chosen because of their high electrical conductivity and especially for the presence of nanosized sharp tips on their surface. These features generate an enhancement of the local electric field increasing the tunneling probability between the particles. Different figures of merit concerning the morphology of the fillers were evaluated and correlated with the corresponding functional response of the composite. PMID:22721506

2012-01-01

123

Nanostructured Si/Sn-Ni/C composite as negative electrode for Li-ion batteries  

NASA Astrophysics Data System (ADS)

A nanostructured composite with overall atomic composition Ni0.14Sn0.17Si0.32Al0.037C0.346 has been prepared combining powder metallurgy and mechanical milling techniques for being used as anode material in Li-ion battery. Chemical and structural properties of the nanocomposite have been determined by X-ray diffraction (XRD), 119Sn Transmission Mössbauer Spectroscopy (TMS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The composite consists of Si particles with typical size ?150 nm embedded in a poorly crystallized and complex multielemental matrix. The matrix is composed mostly by Ni3.4Sn4, and disordered carbon. Electrochemical evaluation shows a high reversible capacity of 920 mAh g-1, with reasonable reversible capacity retention (?0.1% loss/cycle) over 280 cycles.

Edfouf, Z.; Cuevas, F.; Latroche, M.; Georges, C.; Jordy, C.; Hézèque, T.; Caillon, G.; Jumas, J. C.; Sougrati, M. T.

2011-05-01

124

Evaluation of different conductive nanostructured particles as filler in smart piezoresistive composites  

NASA Astrophysics Data System (ADS)

This work presents a comparison between three piezoresistive composite materials based on nanostructured conductive fillers in a polydimethylsiloxane insulating elastomeric matrix for sensing applications. Without any mechanical deformation upon an applied bias, the prepared composites present an insulating electric behavior, while, when subjected to mechanical load, the electric resistance is reduced exponentially. Three different metal fillers were tested: commercial nickel and copper spiky-particles and synthesized highly-pointed gold nanostars. These particles were chosen because of their high electrical conductivity and especially for the presence of nanosized sharp tips on their surface. These features generate an enhancement of the local electric field increasing the tunneling probability between the particles. Different figures of merit concerning the morphology of the fillers were evaluated and correlated with the corresponding functional response of the composite.

Stassi, Stefano; Canavese, Giancarlo; Cauda, Valentina; Marasso, Simone L.; Pirri, Candido Fabrizio

2012-06-01

125

ECCM 12 -12th European Conference on Composite Materials Biarritz 29th  

E-print Network

filaments have a complex micro/nanostructure and can be considered as composite materials. Complex processesECCM 12 -12th European Conference on Composite Materials Biarritz 29th August-1st September 2006, France philippe.colomban@glvt-cnrs.fr ABSTRACT The micro/nano-structural evolution before and after

Paris-Sud XI, Université de

126

High-strength and high-ductility nanostructured and amorphous metallic materials.  

PubMed

The development of materials with dual properties of high strength and high ductility has been a constant challenge since the foundation of the materials science discipline. The rapid progress of nanotechnology in recent decades has further brought this challenge to a new era. This Research News highlights a few newly developed strategies to optimize advanced nanomaterials and metallic glasses with exceptional dual mechanical properties of high strength and high ductility. A general concept of strain non-localization is presented to describe the role of multiscale (i.e., macroscale, microscale, nanoscale, and atomic scale) heterogeneities in the ductility enhancement of materials reputed to be intrinsically brittle, such as nanostructured metallic materials and bulk metallic glasses. These nanomaterials clearly form a new group of materials that display an extraordinary relationship between yield strength and the uniform elongation with the same chemical composition. Several other examples of nanomaterials such as those reinforced by nanoprecipitates will also be described. PMID:24975572

Kou, Hongning; Lu, Jian; Li, Ying

2014-08-20

127

Micro- and Nanostructured Materials for Active Devices and Molecular Electronics  

SciTech Connect

Traditional single layer barrier coatings are not adequate in preventing degradation of the performance of organic molecular electronic and other active devices. Most advanced devices used in display technology now consist of micro and nanostructured small molecule, polymer and inorganic coatings with thin high reactive group 1A metals. This includes organic electronics such as organic light emitting devices (OLED). The lifetimes of these devices rapidly degrades when they are exposed to atmospheric oxygen and water vapor. Thin film photovoltaics and batteries are also susceptible to degradation by moisture and oxygen. Using in-line coating techniques we apply a composite nanostructured inorganic/polymer thin film barrier that restricts moisture and oxygen permeation to undetectable levels using conventional permeation test equipment. We describe permeation mechanisms for this encapsulation coating and flat panel display and other device applications. Permeation through the multilayer barrier coating is defect and pore limited and can be described by Knudsen diffusion involving a long and tortuous path. Device lifetime is also enhanced by the long lag times required to reach the steady state flux regime. Permeation rates in the range of 10-6 cc,g/m2/d have been achieved and OLED device lifetimes. The structure is robust, yet flexible. The resulting device performance and lifetimes will also be described. The barrier film can be capped with a thin film of transparent conductive oxide yielding an engineered nanostructured device for next generation, rugged, lightweight or flexible displays. This enables, for the first time, thin film encapsulation of emissive organic displays.

Martin, Peter M.; Graff, Gordon L.; Gross, Mark E.; Burrows, Paul E.; Bennett, Wendy D.; Mast, Eric S.; Hall, Michael G.; Bonham, Charles C.; Zumhoff, Mac R.; Williford, Rick E.

2003-10-01

128

A study on thermoelectric properties of nanostructured bulk materials  

NASA Astrophysics Data System (ADS)

Solid-state cooling and power generation based on thermoelectric effects are attractive for a wide range of applications in power generation, waste heat recovery, air-conditioning, and refrigeration. There have been persistent efforts on improving figure of merit (ZT) since 1950's, but the ZTs of dominant commercial bulk materials have been remained at ˜1. To improve ZT to a higher value, we have been pursuing an approach based on random nanostructures, based on the idea that the thermal conductivity reduction that is responsible for ZT enhancement in superlattices can be realized in such nanostructures. In this dissertation I will discuss synthesis and characterization of various nanopowders prepared by chemical as well as high-energy ball milling methods. The solid dense samples from nanopowders were prepared by direct current induced hot press (DC hot press) technique. The thermoelectric properties of the hot pressed samples have been studied in detail. In our study, ZT values of ˜1.4 and ˜1.2 have been achieved in bulk p- and n-type bismuth telluride alloys respectively. More importantly, in the range of 20--250°C, ZT is above 0.8 with a peak ZT of 1.4 at 100°C in p-type sample, which makes it not only very useful for cooling but also very efficient for power generation with hot side close to 250°C, an efficiency not attainable before due to a reduction in ZT to below 0.25 at that temperature. Power generation efficiency and cooling performance using our hot-pressed samples show better performance than the commercially available samples of these materials. These bulk materials were made by DC hot press technique using nanopowders prepared by high energy ball milling. Microstructure studies and theoretical analysis indicated that the improvement mainly comes from a lower phonon contribution to thermal conductivity due to increased boundaries and defect states. Lead telluride, lead selenide and their alloys using a similar approach have also been studied. In p- and n-type alloys of PbSnTe and AgPbSbTe, ZTs higher than the state-of-the-art PbTe alloys are obtained. The discovery points a new direction to achieve higher ZT in other thermoelectric bulk materials, which we believe will change the thermoelectric energy conversion technology landscape. With the data we obtained, it is clear that a nanoparticle based thermoelectric materials hold significant promise. We already have demonstrated enhanced ZT values in various nanostructured materials and demonstrated the feasibility of the approach. We believe that continued investigation in this area should let us achieve superlattice-like figures of merit, based on these results.

Poudel, Bed

129

Tunable nanostructured composite with built-in metallic wire-grid electrode  

SciTech Connect

In this paper, the authors report an experimental demonstration of microwave reflection tuning in carbon nanostructure-based composites by means of an external voltage supplied to the material. DC bias voltages are imparted through a metal wire-grid. The magnitude of the reflection coefficient is measured upon oblique plane-wave incidence. Increasing the bias from 13 to 700 V results in a lowering of ?20 dB, and a “blueshift” of ?600 MHz of the material absorption resonance. Observed phenomena are ascribed to a change of the dielectric response of the carbon material. Inherently, the physical role of tunneling between nanofillers (carbon nanotubes) is discussed. Achievements aim at the realization of a tunable absorber. There are similar studies in literature that focus on tunable metamaterials operating at either optical or THz wavelengths.

Micheli, Davide, E-mail: davide.micheli@uniroma1.it; Pastore, Roberto; Marchetti, Mario [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy)] [Department of Astronautics, Electrical and Energy Engineering, University of Rome Sapienza Via Eudossiana, 18, 00184 – Rome (Italy); Gradoni, Gabriele [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)] [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Paint Branch Drive, MD-20740 (United States)

2013-11-15

130

Nanomanufacturing : nano-structured materials made layer-by-layer.  

SciTech Connect

Large-scale, high-throughput production of nano-structured materials (i.e. nanomanufacturing) is a strategic area in manufacturing, with markets projected to exceed $1T by 2015. Nanomanufacturing is still in its infancy; process/product developments are costly and only touch on potential opportunities enabled by growing nanoscience discoveries. The greatest promise for high-volume manufacturing lies in age-old coating and imprinting operations. For materials with tailored nm-scale structure, imprinting/embossing must be achieved at high speeds (roll-to-roll) and/or over large areas (batch operation) with feature sizes less than 100 nm. Dispersion coatings with nanoparticles can also tailor structure through self- or directed-assembly. Layering films structured with these processes have tremendous potential for efficient manufacturing of microelectronics, photovoltaics and other topical nano-structured devices. This project is designed to perform the requisite R and D to bring Sandia's technology base in computational mechanics to bear on this scale-up problem. Project focus is enforced by addressing a promising imprinting process currently being commercialized.

Cox, James V.; Cheng, Shengfeng; Grest, Gary Stephen; Tjiptowidjojo, Kristianto (University of New Mexico); Reedy, Earl David, Jr.; Fan, Hongyou; Schunk, Peter Randall; Chandross, Michael Evan; Roberts, Scott A.

2011-10-01

131

Nanophase and Composite Optical Materials  

NASA Technical Reports Server (NTRS)

This talk will focus on accomplishments, current developments, and future directions of our work on composite optical materials for microgravity science and space exploration. This research spans the order parameter from quasi-fractal structures such as sol-gels and other aggregated or porous media, to statistically random cluster media such as metal colloids, to highly ordered materials such as layered media and photonic bandgap materials. The common focus is on flexible materials that can be used to produce composite or artificial materials with superior optical properties that could not be achieved with homogeneous materials. Applications of this work to NASA exploration goals such as terraforming, biosensors, solar sails, solar cells, and vehicle health monitoring, will be discussed.

2003-01-01

132

Development of sensors based on advanced micro- and nanostructured carbon materials  

NASA Astrophysics Data System (ADS)

The thesis is focused on the development of sensors based on advanced micro- and nano-structured carbon materials. In particular, we developed prototype diamond-based ultraviolet photodetectors and carbon nanotubes-based gas sensors. We describe the method of preparation and characterization of the active carbon-based materials and their structural and compositional characterizations. This is followed by the corresponding device fabrication and testing. The thesis briefly gives an introduction to our current understanding about carbon materials, with emphasis on synthetic diamond and bamboo-like carbon nanotubes, and to the materials' properties that are useful for ultraviolet photodetectors and gas sensor applications. The thesis also give an overview of the experience gained through this research, and some suggestions for those who would like follow the research methods employ here. It provides experimental information learned through experience that may be helpful and avoid delays to the newer experimentalists.

Mendoza Centeno, Frank Willi

133

Fabrication and geometrical characterization of metal and metal-dielectric composite periodic nanostructures  

NASA Astrophysics Data System (ADS)

Periodic metal and metal-dielectric composite nanostructures have been of interest from the field of plasmonics and metamaterial fabrication. In order to exploit the behavior of these unique materials in the visible region of the optical spectrum, these structures need to be significantly shorter than the wavelength of response, and hence fabrication of these have posed unique challenges. One of the key fabrication aspects is the metal thin film deposition. This study has looked at key parameters in PVD which influence the grain structure and morphology, in one of the metals of interest, Ag, and further examined how these factors influence formation of these periodic nanostructures. Our findings indicate small grain sizes formed with high source-to-substrate spacing are optimal conditions for forming nanostructures with different geometries with size less than 100nm. Additionally our studies also indicate these conditions provide films with least agglomeration and a smooth texture which could have significant impact on their optical behavior. The study also looked at formation of nano structures through different processes---(i) additive process via lift-off and electron beam lithography (EBL) and (ii) subtractive processes of ion beam milling, and reactive ion etch (RIE). This included examining three metals of interest in plasmonics---Ag, Au and Al. Our findings indicate that the optimized process is dependent on the metal systems and lift-off with EBL remains the most flexible option. RIE may be suitable for Al based systems where we form a volatile species during etch while it may not be as successful for Au and Ag. For isolated nanostructures as discussed in this paper, ion beam etch is highly dependent on grain sizes and may have some fundamental limitations in isolating structures. The structural and morphological characterization of nanostructures has also been of importance and has been carried out as part of this work with SEM, AFM, EDS, and TEM studies. The impact and application of these structures could be greatly enhanced by their formation in a flexible polymer membrane and this was also demonstrated as part of this thesis. Finally, we also present some optical data of these nanostructures where we see a difference in extinction coefficient of these structures based on both geometry and metal choice.

Bhowmik, Siddhartha

134

Nano-Structured Li3V2(PO4)3 /Carbon Composite for High Rate Lithium Ion Batteries  

SciTech Connect

Nanostructured Li3V2(PO4)3 /carbon composite (Li3V2(PO4)3/C) is successfully prepared by incorporating precursor solution into expanded pore structure of highly mesoporous carbon. XRD, SEM and TEM are used to characterize the composite structure. The particles sizes of the samples are centered at ~ 20 nm and well dispersed in the carbon matrix. When cycled in a voltage range of 3-4.3 V, Li3V2(PO4)3/C cathode delivers a reversible capacity of 122 mAh g-1 at 1C-rate and maintains a specific discharge capacity of 83 mAh g-1 even at 32 C-rate. Therefore, nanostructured Li3V2(PO4)3 and mesoporous carbon composite has a great potential to be used as cathode material for high power lithium-ion batteries.

Pan, Anqiang; Liu, Jun; Zhang, Jiguang; Xu, Wu; Cao, Guozhong H.; Nie, Zimin; Arey, Bruce W.; Liang, Shu-quan

2010-09-22

135

Thermal Characterization of Nanostructures and Advanced Engineered Materials  

NASA Astrophysics Data System (ADS)

Continuous downscaling of Si complementary metal-oxide semiconductor (CMOS) technology and progress in high-power electronics demand more efficient heat removal techniques to handle the increasing power density and rising temperature of hot spots. For this reason, it is important to investigate thermal properties of materials at nanometer scale and identify materials with the extremely large or extremely low thermal conductivity for applications as heat spreaders or heat insulators in the next generation of integrated circuits. The thin films used in microelectronic and photonic devices need to have high thermal conductivity in order to transfer the dissipated power to heat sinks more effectively. On the other hand, thermoelectric devices call for materials or structures with low thermal conductivity because the performance of thermoelectric devices is determined by the figure of merit Z=S2sigma/K, where S is the Seebeck coefficient, K and sigma are the thermal and electrical conductivity, respectively. Nanostructured superlattices can have drastically reduced thermal conductivity as compared to their bulk counterparts making them promising candidates for high-efficiency thermoelectric materials. Other applications calling for thin films with low thermal conductivity value are high-temperature coatings for engines. Thus, materials with both high thermal conductivity and low thermal conductivity are technologically important. The increasing temperature of the hot spots in state-of-the-art chips stimulates the search for innovative methods for heat removal. One promising approach is to incorporate materials, which have high thermal conductivity into the chip design. Two suitable candidates for such applications are diamond and graphene. Another approach is to integrate the high-efficiency thermoelectric elements for on-spot cooling. In addition, there is strong motivation for improved thermal interface materials (TIMs) for heat transfer from the heat-generating chip to heat-sinking units. This dissertation presents results of the experimental investigation and theoretical interpretation of thermal transport in the advanced engineered materials, which include thin films for thermal management of nanoscale devices, nanostructured superlattices as promising candidates for high-efficiency thermoelectric materials, and improved TIMs with graphene and metal particles as fillers providing enhanced thermal conductivity. The advanced engineered materials studied include chemical vapor deposition (CVD) grown ultrananocrystalline diamond (UNCD) and microcrystalline diamond (MCD) films on Si substrates, directly integrated nanocrystalline diamond (NCD) films on GaN, free-standing polycrystalline graphene (PCG) films, graphene oxide (GOx) films, and "pseudo-superlattices" of the mechanically exfoliated Bi2Te3 topological insulator films, and thermal interface materials (TIMs) with graphene fillers.

Goyal, Vivek Kumar

136

Nanostructuring superconductors by ion beams: A path towards materials engineering  

SciTech Connect

The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco [Department of Applied Science and Technology, Politecnico di Torino c.so Duca degli Abruzzi 24, 10129 Torino, Italy and INFN Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Amato, Antonino; Rovelli, Alberto [INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Cherubini, Roberto [INFN Laboratori Nazionali di Legnaro, viale dell'Universita 2, 35020 Legnaro (Italy)

2013-07-18

137

Nanostructuring superconductors by ion beams: A path towards materials engineering  

NASA Astrophysics Data System (ADS)

The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco; Amato, Antonino; Rovelli, Alberto; Cherubini, Roberto

2013-07-01

138

Synthesis of 3D nanostructured metal alloy of immiscible materials induced by megahertz-repetition femtosecond laser pulses  

PubMed Central

In this work, we have proposed a concept for the generation of three-dimensional (3D) nanostructured metal alloys of immiscible materials induced by megahertz-frequency ultrafast laser pulses. A mixture of two microparticle materials (aluminum and nickel oxide) and nickel oxide microparticles coated onto an aluminum foil have been used in this study. After laser irradiation, three different types of nanostructure composites have been observed: aluminum embedded in nickel nuclei, agglomerated chain of aluminum and nickel nanoparticles, and finally, aluminum nanoparticles grown on nickel microparticles. In comparison with current nanofabrication methods which are used only for one-dimensional nanofabrication, this technique enables us to fabricate 3D nanostructured metal alloys of two or more nanoparticle materials with varied composite concentrations under various predetermined conditions. This technique can lead to promising solutions for the fabrication of 3D nanostructured metal alloys in applications such as fuel-cell energy generation and development of custom-designed, functionally graded biomaterials and biocomposites. PMID:22999219

2012-01-01

139

Materials for Hydrogen Storage: From Complex Hydrides to Functionalized Nanostructures  

NASA Astrophysics Data System (ADS)

The world wide effort for a transition to renewable and clean (i.e. carbon-free) form of energy has resulted in an upsurge of interest in harnessing and utilizing Hydrogen. Apart from being the most abundant element in the universe, hydrogen offers many advantages over other fuels: it is non-toxic, clean to use, and packs more energy per mass than any other fuel. Hydrogen energy production, storage and distribution constitute a multi-disciplinary area of research. Coming to the material issues for solid state storage of hydrogen, the most desirable criteria are high storage capacity, satisfactory kinetics, and optimal thermodynamics. Complex hydrides involving light metals, such as Alanates, Imides, Borates, Amidoboranes etc. show impressive gravimetric efficiencies, although the hydrogen desorption temperatures turn out to be rather high. Apart from complex hydrides, there are other kinds of novel materials that have been investigated, e.g. carbon based materials activated with nano-catalysts, clathrate hydrates, metal-organic complexes, and more recently nanostructured cages viz. fullerenes and nanotubes decorated with simple or transition metals that serve to attract hydrogen in molecular form. In this talk, after giving a broad overview on hydrogen economy, I shall focus on first-principles design of materials for hydrogen storage, from complex hydrides to various kinds of functinalized nanostructures, and discuss the recent results obtained in our laboratory [1-6]. Some outstanding issues and challenges, like how to circumvent the problem of metal clustering on surface, or how to bring down the hydrogen desorption temperature etc. will be discussed.

Das, G. P.

2011-07-01

140

Carbon–Carbon Composite Materials  

Microsoft Academic Search

Data are summarized on the performance characteristics and properties of Russian-produced and foreign carbon–carbon composite materials for various engineering applications. The effect of neutron irradiation on their macroscopic properties and structure is examined. The relationships between the radiation-induced dimensional changes and properties of the composites are established, which can be used in assessing the engineering performance and optimizing the fabrication

Yu. S. Virgil'ev; I. P. Kalyagina

2004-01-01

141

Fracture problems in composite materials  

NASA Technical Reports Server (NTRS)

A series of fracture problems in composite materials are identified, their methods of solution are briefly discussed, and some sample results are presented. The main problem of interest is the determination of the stress state in the neighborhood of localized imperfections such as cracks and inclusions which may exist in the composite. Particular emphasis is placed on the evaluation of quantities such as the stress intensity factors, the power of the stress singularity, and the strain energy release rate, which may be used directly or indirectly in connection with an appropriate fracture criterion for the prediction of fracture initiation and propagation load levels. The topics discussed include a crack in layered composites, a crack terminating at and going through a bi-material interface, a penny-shaped crack in a filament-reinforced elastic matrix, and inclusion problems in bonded materials.

Erdogan, F.

1972-01-01

142

Multifunctional Upconversion-Magnetic Hybrid Nanostructured Materials: Synthesis and Bioapplications  

PubMed Central

The combination of nanotechnology and biology has developed into an emerging research area: nano-biotechnology. Upconversion nanoparticles (UCNPs) have attracted a great deal of attention in bioapplications due to their high chemical stability, low toxicity, and high signal-to-noise ratio. Magnetic nanoparticles (MNPs) are also well-established nanomaterials that offer controlled size, ability to be manipulated externally, and enhancement of contrast in magnetic resonance imaging (MRI). As a result, these nanoparticles could have many applications in biology and medicine, including protein purification, drug delivery, and medical imaging. Because of the potential benefits of multimodal functionality in biomedical applications, researchers would like to design and fabricate multifunctional upconversion-magnetic hybrid nanostructured materials. The hybrid nanostructures, which combine UCNPs with MNPs, exhibit upconversion fluorescence alongside superparamagnetism property. Such structures could provide a platform for enhanced bioimaging and controlled drug delivery. We expect that the combination of unique structural characteristics and integrated functions of multifunctional upconversion-magnetic nanoparticles will attract increasing research interest and could lead to new opportunities in nano-bioapplications. PMID:23650477

Li, Xiaomin; Zhao, Dongyuan; Zhang, Fan

2013-01-01

143

Thermal properties of graphene and nanostructured carbon materials.  

PubMed

Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range--of over five orders of magnitude--from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics. PMID:21778997

Balandin, Alexander A

2011-08-01

144

Pneumatic Characterization of Composite Materials  

Microsoft Academic Search

The dimensional change of some composite materials induced by ambient air pressure change was discovered and dubbed pneumatic strain in 2000. This pneumatic behavior closely resembles hygric behavior, and pneumatic strain is proportional to the ambient air pressure change by the coefficients of the pneumatic expansion. A method termed the suspension method was employed in this work to characterize the

Cho-Liang Tsai; Ming-Chang Cheng; Shun-Fa Hwang; Yi-Shiun Tsai

2002-01-01

145

Predicting Properties Of Composite Materials  

NASA Technical Reports Server (NTRS)

Micromechanical Combined Stress Analysis (MICSTRAN) computer code provides materials engineers with easy-to-use personal-computer-based software tool to calculate overall properties of composite, given properties of fibers and matrix. Computes overall thermoelastic parameters and stresses by micromechanical analysis. Written in FORTRAN 77.

Naik, Rajiv A.

1994-01-01

146

Fabrication of nanostructured materials using porous alumina template and their applications for sensing and electrocatalysis.  

PubMed

Ordered porous anodic aluminum oxide templates have been used extensively for the preparation of various functional nanostructures. Researches on these nanostructured materials for various purposes have received a tremendous attention during recent years. A review of the literature on the fabrication of nanostructured materials using ordered porous anodic aluminum oxide templates and their applications is presented. A survey of the preparation of anodic aluminum oxide films is given first, with an emphasis on highly ordered anodic aluminum oxide films, as the ordered structure is the key point to prepare nanomaterials with uniform morphology. Methods for the fabrication of nanostructured materials using ordered porous anodic aluminum oxide templates are presented next: including dip filling, ion-encountering reaction, electroplating, and chemical vapor deposition method. Several typical examples of each preparation method are given. Finally, overview of applications on these nanostructured materials is presented, particular emphasis is focused on the field of sensing and electrocatalysis. PMID:19437960

Piao, Yuanzhe; Kim, Hasuck

2009-04-01

147

Broadband Electromagnetic Absorbers Using Carbon Nanostructure-Based Composites  

Microsoft Academic Search

In this paper, we present the design of nanostruc- tured multilayer absorbers, carried out with the aid of a genetic algorithm (GA). Waveguide measurements are performed to recover the dielectric properties of micrographite single-walled carbon nanotube, micrographite walled carbon nanotube, carbon nanofiber, and fullerene-based composite materials. Conductive fillers are uniformly dispersed in an epoxy resin at different weight percentages (1,

Davide Micheli; Roberto Pastore; Carmelo Apollo; Mario Marchetti; Gabriele Gradoni; Valter Mariani Primiani; Franco Moglie

2011-01-01

148

Preparation of nano-structured Pt-YSZ composite and its application in oxygen potentiometric sensor  

NASA Astrophysics Data System (ADS)

Nano-structured Platinum-Yttria Stabilized Zirconia (YSZ) composites for oxygen potentiometric sensors were directly prepared with carbon black and the precursors such as chloroplatinic acid, zirconyl nitrate and yttrium nitrate. The as-prepared Pt-YSZ composite consisted of cubic crystalline YSZ and Pt particles, and the particle sizes of Pt catalyst and YSZ electrolyte were about 25-35 and 5-10 nm, respectively. The Pt-YSZ composite electrodes exhibited excellent electrochemical performances when evaluated by EIS measurements. The introduction of the nano-structured Pt-YSZ composite into the oxygen potentiometric sensor can reduce sensor's operating temperature to be about 380 °C, and also can reduce sensor's response time to be about 5 s at 400 °C. The oxygen potentiometric sensors incorporating nano-structured Pt-YSZ composites exhibited longer lifetime than those employing pure Pt as the sensing electrodes.

ChaoYang, Xia; XuChen, Lu; Yan, Yan; TiZhuang, Wang; ZhiMin, Zhang; SuPing, Yang

2011-07-01

149

Preparation of micro-nano-composites of TiO2\\/carbon nanostructures, C-CNT macroscopic shaping and their applications  

Microsoft Academic Search

Micro-nano-composites of TiO2\\/carbon were synthesised using a collage of carbon nanostructures (carbon nanotubes (CNTs) and carbon nanofibers (CNFs)) on a TiO2 surface through a TiO2 sol-gel layer. C-CNT macroscopic shaping (C-CNT composites) were produced using CNTs as a starting material and a phenol-formaldehyde (PF) or polystyrene (PS) polymer as an adhesive. The morphologies of the composites were characterised by scanning

Thu Ha Thi Vu; Hang Thi Au; Dinh Lam Nguyen; Thu Trang Thi Nguyen; Huynh Anh Hoang

2012-01-01

150

Synthesis and processing of nanostructured WC-Co materials  

Microsoft Academic Search

In this study a novel approach, termed the integrated mechanical and thermal activation (IMTA) process, was used to synthesize nanostructured WC-Co powder. As a result of the integration of mechanical and thermal activation, nanostructured WC-Co powder was synthesized below 1000°C, starting from WO3, CoO and graphite powder mixtures. Furthermore, consolidation of the nanostructured WC-Co powder via high velocity oxy-fuel (HVOF)

Z.-G. Ban; L. L. Shaw

2002-01-01

151

Development of nanostructured biocompatible materials for chemical and biological sensors  

NASA Astrophysics Data System (ADS)

This research is focused on the fabrication of thin films followed by Surface Enhanced Raman Spectroscopy (SERS) testing of these films for various applications. One technique involves the mixture of nanoparticles with twophoton material to be used as an indicator dye. Another method involved embedding silver nanoparticles in a ceramic nano-membrane. The substrates were characterized by both Atom Force Microscopy (AFM) and Scanning Electron Microscopy (SEM). We applied the nanostructured substrate to measure the SERS spectra of 10-6 Mol/L Rhodomine 6G(Rh6G), e-coli bacteria and RDX explosive. Our results showed that silver coated ceramic membranes can serve as appropriate substrates to enhance Raman signals. In addition, we demonstrated that the in-house-made colloidal silver can work for enhancement of the Raman spectra for bacteria. We measured the Raman spectra of Rh6G molecules on a substrate absorbed by a nanofluid of silver. We observed several strong Raman bands - 613cm-1,768 cm-1,1308cm-1 1356 cm-1,1510cm-1, which correspond to Rh6G vibrational modes ?53,?65,?115,?117,?146 respectively, using a ceramic membrane coated by silver. The Raman spectra of Rh6G absorbed by silver nanofluid showed strong enhancement of Raman bands 1175cm-1 and 1529cm-1, 1590 cm-1. Those correspond to vibrational frequency modes - ?103,?151,152. We also measured the Raman spectra of e-coli bacteria, both absorbed by silver nanofluid, and on nanostructured substrate. In addition, the Fourier Transfer Infrared Spectra (FTIR) of the bacteria was measured.

Curley, Michael; Chilvery, Ashwith K.; Kukhatreva, Tatiana; Sharma, Anup; Corda, John; Farley, Carlton

2012-10-01

152

Nanostructured Composite Electrodes for Lithium Batteries (Final Technical Report)  

SciTech Connect

The objective of this study was to explore new ways to create nanostructured electrodes for rechargeable lithium batteries. Of particular interests are unique nanostructures created by electrochemical deposition, etching and combustion chemical vapor deposition (CCVD). Three-dimensional nanoporous Cu6Sn5 alloy has been successfully prepared using an electrochemical co-deposition process. The walls of the foam structure are highly-porous and consist of numerous small grains. This represents a novel way of creating porous structures that allow not only fast transport of gas and liquid but also rapid electrochemical reactions due to high surface area. The Cu6Sn5 samples display a reversible capacity of {approx}400 mAhg-1. Furthermore, these materials exhibit superior rate capability. At a current drain of 10 mA/cm2(20C rate), the obtainable capacity was more than 50% of the capacity at 0.5 mA/cm2 (1C rate). Highly open and porous SnO2 thin films with columnar structure were obtained on Si/SiO2/Au substrates by CCVD. The thickness was readily controlled by the deposition time, varying from 1 to 5 microns. The columnar grains were covered by nanoparticles less than 20 nm. These thin film electrodes exhibited substantially high specific capacity. The reversible specific capacity of {approx}3.3 mAH/cm2 was demonstrated for up to 80 cycles at a charge/discharge rate of 0.3 mA/cm2. When discharged at 0.9 mA/cm2, the capacity was about 2.1 mAH/cm2. Tin dioxide box beams or tubes with square or rectangular cross sections were synthesized using CCVD. The cross-sectional width of the SnO2 tubules was tunable from 50 nm to sub-micrometer depending on synthesis temperature. The tubes are readily aligned in the direction perpendicular to the substrate surface to form tube arrays. Silicon wafers were electrochemically etched to produce porous silicon (PS) with honeycomb-type channels and nanoporous walls. The diameters of the channels are about 1 to 3 microns and the depth of the channels can be up to 100 microns. We have successfully used the PS as a matrix for Si-Li-based alloy. Other component(s) can be incorporated into the PS either by an electroless metallization or by kinetically controlled vapor deposition.

Meilin Liu, James Gole

2006-12-14

153

A study of nanostructure and properties of mixed nanotube buckypaper materials: Fabrication, process modeling characterization, and property modeling  

NASA Astrophysics Data System (ADS)

Single-walled carbon nanotube buckypaper (SBP) is a thin film of preformed nanotube networks that possesses many excellent properties. SBP is considered to be very promising in the development of high-performance composite materials; however, the high cost of single-walled nanotubes (SWNTs) limits industrial applications of SBP materials. Mixed buckypaper (MBP) is a more affordable alternative that combines SWNTs with low-cost multi-walled nanotubes (MWNTs) or carbon nanofibers (CNFs) to retain most of the excellent properties of SBP while significantly reducing the cost. This study proposes a manufacturing process of MBPs. The process parameters were studied through experimental design and statistical analysis. The parameters included mixing material type, mixing ratio, sonication effect, surfactant amount, and cleaning effect. The effects of the parameters on nanostructure uniformity, purity, Brunauer-Emmett-Teller (BET) surface area and electrical conductivity of the resultant MBPs were revealed. Results of the study show that all those parameters and their interactions are influential to the dispersion and uniformity of nanostructure and purity, but only mixing material type and ratio are influential to the BET surface area and electrical conductivity. To systematically reveal the process-nanostructure-property relationship of SBP and MBP materials, the nanostructures of the buckypapers were characterized as rope size, length and pore size distributions of the nanomaterials in resultant buckypapers. These distributions featured bimodal phenomenon due to different material mixtures; therefore, the distributions were further separated into two individual ones and fitted into Weibull distributions. Two nanostructure-property models of buckypaper materials were developed. The specific surface area model was built upon the characterization and analysis of buckypaper nanostructures. The model showed that rope size distribution and mixed ratio of nanomaterials are governing factors for the resultant specific surface area of buckypaper. The electrical conductivity model captured multiscale electrical transport phenomenon of nanotube networks in buckypapers. The model considered chirality, contact area, contact type, diameter, length and orientation distributions of nanotubes in buckypapers. The proposed models not only can predict property trends correctly, but can also reveal the critical process-nanostructure-property relationships of buckypaper materials. The results are important for the further tailoring and optimization of the manufacturing process and properties of nanotube buckypapers. Key Words: Carbon nanotubes, buckypaper, statistical analysis, uniformity, surface area, electrical conductivity

Yeh, Cherng-Shii

154

Formation of Nanostructured Silicon by Magnetron Sputtering of AN Al+Si Composite Target  

NASA Astrophysics Data System (ADS)

Nanostructured silicon films were fabricated by magnetron sputtering of an Al+Si composite target with a subsequent selective etching off the aluminum phase from the deposited film. It is shown that the film structure consists of silicon submicron conglomerates of 60-160 nm, which in turn are composed of nanoscale grains arranged as a "bunch of grapes". The regularities of the nanostructured silicon film formation are discussed.

Leshok, A. A.; Katsuba, P. S.; Vysotskii, V. B.

2013-05-01

155

Composition, nanostructure, and optical properties of silver and silver-copper lusters  

SciTech Connect

Lusters are composite thin layers of coinage metal nanoparticles in glass displaying peculiar optical properties and obtained by a process involving ionic exchange, diffusion, and crystallization. In particular, the origin of the high reflectance (golden-shine) shown by those layers has been subject of some discussion. It has been attributed to either the presence of larger particles, thinner multiple layers or higher volume fraction of nanoparticles. The object of this paper is to clarify this for which a set of laboratory designed lusters are analysed by Rutherford backscattering spectroscopy, transmission electron microscopy, x-ray diffraction, and ultraviolet-visible spectroscopy. Model calculations and numerical simulations using the finite difference time domain method were also performed to evaluate the optical properties. Finally, the correlation between synthesis conditions, nanostructure, and optical properties is obtained for these materials.

Pradell, Trinitat; Pavlov, Radostin S. [Center for Research in NanoEngineering, Universitat Politecnica de Catalunya and Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Campus Baix Llobregat, ESAB, Esteva Terrades 8, 08860 Castelldefels, Barcelona (Spain); Carolina Gutierrez, Patricia; Climent-Font, Aurelio [Centro de Micro-Analisis de Materiales, Universidad Autonoma de Madrid, 28049 Madrid, Spain and Departamento de Fisica Aplicada, C-XII, Universidad Autonoma de Madrid, Campus de Cantoblanco, 28049 Madrid (Spain); Molera, Judit [GRTD, Escola Politecnica Superior, Universitat de Vic. C. de la Laura, 13, 08500 Vic (Spain)

2012-09-01

156

Pneumatic Behavior of Composite Materials  

Microsoft Academic Search

The dimensional change of some composite materials induced by ambient air pressure change was discovered and dubbed as pneumatic\\u000a strain in 2000. This pneumatic behavior is similar to the hygric behavior. The pneumatic strain is proportional to the ambient\\u000a air pressure change by the coefficients of pneumatic expansion. In this work, a technique termed suspending method was employed\\u000a for characterizing

Cho-Liang Tsai; Yi-Shiun Tsai

157

Aeroelastic tailoring of composite materials  

E-print Network

LIST OF FIGURES IiiTRODUCTI ON ST!!UCTURAL RESPONSE Deformation of Uniformly Stressed Isotropic and Anisotropic Plates Characterization of Composite Laminates . Effect of Material Parameters APPLICATIONS Aircraft Propellers Ship Propell rs... com- pliances with laminate rotation 39 15 Variation of (A) extensional ard (8) bending compliances with 0' ply rotation . . . . . . . . . . . . . . . . 40 16 Incremental aerodynamic forces on a typical blade element 43 17 Propeller velocity...

Rogers, Jesse Byron

2012-06-07

158

Thermoelectric figure of merit for bulk nanostructured composites with distributed parameters  

SciTech Connect

The effective properties of composites whose structure includes nanocontacts between bulk-phase macrocrystallites are considered. A model for such a nanostructured composite is constructed. Effective values of the thermoelectric power, thermal and electrical conductivities, and thermoelectric figure of merit are calculated in the mean-field approximation.

Snarskii, A. A. [National Technical University 'Kyiv Polytechnic Institute' (Ukraine); Sarychev, A. K. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation); Bezsudnov, I. V., E-mail: biv@akuan.ru ['Nauka-Service' Scientific and Production Company (Russian Federation); Lagarkov, A. N. [Russian Academy of Sciences, Institute for Theoretical and Applied Electromagnetics (Russian Federation)

2012-05-15

159

Bioactivity and structural properties of nanostructured bulk composites containing Nb2O5 and natural hydroxyapatite  

NASA Astrophysics Data System (ADS)

In this work, we investigate the bioactivity and structural properties of nanostructured bulk composites that are composed of Nb2O5 and natural hydroxyapatite (HAp) and are produced by mechanical alloying and powder metallurgy. X-ray diffraction and Raman spectroscopy data showed that the milling process followed by a heat treatment at 1000 °C induced chemical reactions along with the formation of the CaNb2O6, PNb9O25 and Ca3(PO4)2 phases. Rietveld refinement indicated significant changes in each phase weight fraction as a function of HAp concentration. These changes influenced the in vitro bioactivity of the material. XRD and FTIR analyses indicated that the composites exhibited bioactivity characteristics by forming a carbonated apatite layer when the composites were immersed in a simulated body fluid. The formed layers had a maximum thickness of 13 ?m, as measured by confocal Raman spectroscopy and as confirmed by scanning electron microscopy. The results of this work suggest that the tested bulk composites are promising biomaterials for use in implants.

Bonadio, T. G. M.; Sato, F.; Medina, A. N.; Weinand, W. R.; Baesso, M. L.; Lima, W. M.

2013-06-01

160

Nanostructured materials with biomimetic recognition abilities for chemical sensing  

NASA Astrophysics Data System (ADS)

Binding features found in biological systems can be implemented into man-made materials to design nanostructured artificial receptor matrices which are suitable, e.g., for chemical sensing applications. A range of different non-covalent interactions can be utilized based on the chemical properties of the respective analyte. One example is the formation of coordinative bonds between a polymerizable ligand (e.g., N-vinyl-2-pyrrolidone) and a metal ion (e.g., Cu(II)). Optimized molecularly imprinted sensor layers lead to selectivity factors of at least 2 compared to other bivalent ions. In the same way, H-bonds can be utilized for such sensing purposes, as shown in the case of Escherichia coli. The respective molecularly imprinted polymer leads to the selectivity factor of more than 5 between the W and B strains, respectively. Furthermore, nanoparticles with optimized Pearson hardness allow for designing sensors to detect organic thiols in air. The `harder' MoS2 yields only about 40% of the signals towards octane thiol as compared to the `softer' Cu2S. However, both materials strongly prefer molecules with -SH functionality over others, such as hydrocarbon chains. Finally, selectivity studies with wheat germ agglutinin (WGA) reveal that artificial receptors yield selectivities between WGA and bovine serum albumin that are only about a factor of 2 which is smaller than natural ligands.

Bajwa, Sadia Zafar; Mustafa, Ghulam; Samardzic, Renata; Wangchareansak, Thipvaree; Lieberzeit, Peter A.

2012-06-01

161

Efficient and versatile fibrous adsorbent based on magnetic amphiphilic composites of chrysotile/carbon nanostructures for the removal of ethynilestradiol.  

PubMed

In this work, chrysotile was used as support to grow carbon nanotubes and nanofibers to produce fibrous amphiphilic magnetic nanostructured composites. Iron impregnated on the chrysotile surface at 1, 5 and 15 wt% was used as catalyst to grow carbon nanostructures by CVD (chemical vapor deposition) with ethanol at 800°C. Raman, TG/DTA, Mössbauer, XRD, BET, SEM, TEM, elemental analyses and contact angle measurements suggested the formation of a complex amphiphilic material containing up to 21% of nanostructured hydrophobic carbon supported on hydrophilic Mg silicate fibers with magnetic Fe cores protected by carbon coating. Adsorption tests for the hormone ethynilestradiol (EE), a hazardous water contaminant, showed remarkable adsorption capacities even compared to high surface area activated carbon and multiwall carbon nanotubes. These results are discussed in terms of the hydrophobic surface of the carbon nanotubes and nanofibers completely exposed and accessible for the adsorption of the EE molecules combined with the hydrophilic Mg silicate surface which allows good dispersion in water. The composites are magnetic and after adsorption the dispersed particles can be removed by a simple magnetic process. Moreover, the fibrous composites can be conformed as threads, screens and pellets to produce different filtering media. PMID:23399907

Teixeira, Ana Paula C; Purceno, Aluir D; de Paula, Camila C A; da Silva, Julio César C; Ardisson, José D; Lago, Rochel M

2013-03-15

162

Improved Silica Aerogel Composite Materials  

NASA Technical Reports Server (NTRS)

A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.

Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven

2008-01-01

163

Methods for high volume production of nanostructured materials  

DOEpatents

A system and method for high volume production of nanoparticles, nanotubes, and items incorporating nanoparticles and nanotubes. Microwave, radio frequency, or infrared energy vaporizes a metal catalyst which, as it condenses, is contacted by carbon or other elements such as silicon, germanium, or boron to form agglomerates. The agglomerates may be annealed to accelerate the production of nanotubes. Magnetic or electric fields may be used to align the nanotubes during their production. The nanotubes may be separated from the production byproducts in aligned or non-aligned configurations. The agglomerates may be formed directly into tools, optionally in compositions that incorporate other materials such as abrasives, binders, carbon-carbon composites, and cermets.

Ripley, Edward B. (Knoxville, TN); Morrell, Jonathan S. (Knoxville, TN); Seals, Roland D. (Oak Ridge, TN); Ludtka, Gerald M. (Oak Ridge, TN)

2011-03-22

164

Mechanical fastening of composite materials  

NASA Astrophysics Data System (ADS)

High-sensitivity moire interferometry was used to obtain the stress/strain distribution in the vicinity of mechanically fastened hole arrays in a glass/epoxy thermoset composite material. Experimental results are presented for three fastener configurations: the tandem configuration (two holes in a row parallel to the load direction), the parallel configuration (two fastening holes in a row perpendicular to the load direction), and the three-hole fastener array with all three holes equally loaded. The advantage of utilizing as multihole array in a connection rather than a single pin-loaded hole is demonstrated.

Zimmerman, K. B.

1992-08-01

165

Cycle oxidation behavior of nanostructured Ni60-TiB 2 composite coating sprayed by HVOF technique  

NASA Astrophysics Data System (ADS)

Cycle oxidation resistance at 800 °C in static air was investigated for a nanostructured Ni60-TiB 2 composite coating sprayed by high velocity oxy-fuel (HVOF). For comparison, a Ni60-TiB 2 conventional composite coating was also studied. The results indicate that, the oxidation processes of both composite coatings are controlled by diffusion mechanism, and the nanostructured composite coating has better cycle oxidation resistance than that of the conventional composite coating. The reasons for this improvement can be attributed to the formation of the intact SiO 2 and Cr 2O 3 protective layer, and the enhanced adhesion between oxide film and nanostructure coating.

Wu, Y. S.; Qiu, W. Q.; Yu, H. Y.; Zhong, X. C.; Liu, Z. W.; Zeng, D. C.; Li, S. Z.

2011-09-01

166

Nanostructured Composites: Effective Mechanical Property Determination of Nanotube Bundles  

NASA Technical Reports Server (NTRS)

Carbon nanotubes naturally tend to form crystals in the form of hexagonally packed bundles or ropes that should exhibit a transversely isotropic constitutive behavior. Although the intratube axial stiffness is on the order of 1 TPa due to a strong network of delocalized bonds, the intertube cohesive strength is orders of magnitude less controlled by weak, nonbonding van der Waals interactions. An accurate determination of the effective mechanical properties of nanotube bundles is important to assess potential structural applications such as reinforcement in future composite material systems. A direct method for calculating effective material constants is developed in the present study. The Lennard-Jones potential is used to model the nonbonding cohesive forces. A complete set of transverse moduli are obtained and compared with existing data.

Saether, E.; Pipes, R. B.; Frankland, S. J. V.

2002-01-01

167

http://jtc.sagepub.com Composite Materials  

E-print Network

http://jtc.sagepub.com Composite Materials Journal of Thermoplastic DOI: 10.1177/0892705708089473 2008; 21; 209Journal of Thermoplastic Composite Materials Qinglin Wu Sun-Young Lee, In-Aeh Kang, Geum://www.sagepublications.com at: can be foundJournal of Thermoplastic Composite MaterialsAdditional services and information

168

Properties of composite materials for cryogenic applications  

Microsoft Academic Search

Composite materials are used in a wide variety of cryogenic applications because of their unique and highly tailorable properties. These cryogenic applications of composites may be, for the sake of discussion, classified as support structures, vessels, or electrical insulation. Examples of these applications are presented, with a brief discussion of the critical material properties associated with each application. Composite material

J. B Schutz

1998-01-01

169

ULTRASONIC CHARACTERIZATION OF ADVANCED COMPOSITE MATERIALS  

Microsoft Academic Search

With increased use of composite materials in critical structural applications it is more important than ever to independently assure structural integrity. Complexity of the advanced composite materials including layered and bonded structures represents challenges in developing optimized ultrasonic tests. Traditional ultrasonic NDT methods are inappropriate and often misleading when applied to anisotropic and nonhomogeneous composite materials. In advanced technology applications

B. Boro Djordjevic

170

Composite materials for fusion applications  

SciTech Connect

Ceramic matrix composites, CMCs, are being considered for advanced first-wall and blanket structural applications because of their high-temperature properties, low neutron activation, low density and low coefficient of expansion coupled with good thermal conductivity and corrosion behavior. This paper presents a review and analysis of the hermetic, thermal conductivity, corrosion, crack growth and radiation damage properties of CMCs. It was concluded that the leak rates of a gaseous coolant into the plasma chamber or tritium out of the blanket could exceed design criteria if matrix microcracking causes existing porosity to become interconnected. Thermal conductivities of unirradiated SiC/SiC and C/SiC materials are about 1/2 to 2/3 that of Type 316 SS whereas the thermal conductivity for C/C composites is seven times larger. The thermal stress figure-of-merit value for CMCs exceeds that of Type 316 SS for a single thermal cycle. SiC/SiC composites are very resistant to corrosion and are expected to be compatible with He or Li coolants if the O{sub 2} concentrations are maintained at the appropriate levels. CMCs exhibit subcritical crack growth at elevated temperatures and the crack velocity is a function of the corrosion conditions. The radiation stability of CMCs will depend on the stability of the fiber, microcracking of the matrix, and the effects of gaseous transmutation products on properties. 23 refs., 14 figs., 1 tab.

Jones, R.H.; Henager, C.H. Jr.; Hollenberg, G.W.

1991-10-01

171

Modeling and characterization of the elastic behavior of interfaces in nanostructured materials: From an atomistic description to a continuum approach  

NASA Astrophysics Data System (ADS)

Steady technological progresses in all fields of nanoscale technology and probe technology have enabled the synthesis, the assembly, the development, the characterization and the improvement of nanostructured materials. The lack of understanding of their macroscopic behavior is a major roadblock for inserting these materials into engineering applications. Partially due to these rapid advances in nano-scale and nano-structured materials, there has been a resurgence of interest in surface elastic properties such as surface energy, surface stresses, and surface elastic stiffness. Because of the large surface-to-volume ratio in nano-materials, surface elastic properties become more prominent. They have strong influence on the overall thermo-mechanical behavior of the nano-materials. In this dissertation, an innovative approach combining continuum mechanics and atomistic simulations is exposed to develop a nanomechanics theory for modeling and predicting the macroscopic behavior of nanomaterials. This nanomechanics theory exhibits the simplicity of the continuum formulation while taking into account the discrete atomic structure and interaction near surfaces/interfaces. There are four primary objectives to this dissertation. First, theory of interfaces is revisited to better understand its behavior and effects on the overall behavior of nanostructures. Second, atomistic tools are provided in order to efficiently determine the properties of free surfaces and interfaces. Interface properties are reported in this work, with comparison to both theoretical and experimental characterizations of interfaces. Specifically, we report surface elastic properties of groups 10--11 transition metals as well as properties for low-CSL grain boundaries in copper. Third, we propose a continuum framework that casts the atomic level information into continuum quantities that can be used to analyze, model and simulate macroscopic behavior of nanostructured materials. In particular, we study the effects of surface free energy on the effective modulus of nano-particles, nano-wires and nano-films as well as nanostructured crystalline materials and propose a general framework valid for any shape of nanostructural elements/nano-inclusions (integral forms) that characterizes the size-dependency of the elastic properties. This approach bridges the gap between discrete systems (atomic level interactions) and continuum mechanics. Finally this continuum outline is used to understand the effects of surfaces on the overall behavior of nano-size structural elements (particles, films, fibers, etc.) and nanostructured materials. More specifically we will discuss the impact of surface relaxation, surface elasticity and non-linearity of the underlying bulk on the properties nanostructured materials. In terms of engineering applications, this approach proves to be a useful tool for multi-scale modeling of heterogeneous materials with nanometer scale microstructures and provides insights on surface properties for several material systems; these will be very useful in many fields including surface science, tribology, fracture mechanics, adhesion science and engineering, and more. It will accelerate the insertion of nano-size structural elements, nano-composite and nanocrystalline materials into engineering applications.

Dingreville, Remi

172

Nano-structured composite cathodes for intermediate temperature solid oxide fuel cells via an infiltration/impregnation technique  

SciTech Connect

Solid oxide fuel cells (SOFCs) are high temperature energy conversion devices working efficiently and environmental friendly. SOFC requires a functional cathode with high electrocatalytic activity for the electrochemical reduction of oxygen. The electrode is often fabricated at high temperature to achieve good bonding between the electrode and electrolyte. The high temperature not only limits material choice but also results in coarse particles with low electrocatalytic activity. Nano-structured electrodes fabricated at low temperature by an infiltration/impregnation technique have shown many advantages including superior activity and wider range of material choices. The impregnation technique involves depositing nanoparticle catalysts into a pre-sintered electrode backbone. Two basic types of nano-structures are developed since the electrode is usually a composite consists of an electrolyte and an electrocatalyst. One is infiltrating electronically conducting nano-catalyst into a single phase ionic conducting backbone, while the other is infiltrating ionically conducting nanoparticles into a single phase electronically conducting backbone. In addition, nanoparticles of the electrocatalyst, electrolyte and other oxides have also been infiltrated into mixed conducting backbones. These nano-structured cathodes are reviewed here regarding the preparation methods, their electrochemical performance, and stability upon thermal cycling.

Jiang, Zhiyi; Xia, Changrong; Chen, Fanglin

2010-01-01

173

Synthesis of branched metal nanostructures with controlled architecture and composition  

NASA Astrophysics Data System (ADS)

On account of their small size, metal nanoparticles are proven to be outstanding catalysts for numerous chemical transformations and represent promising platforms for applications in the fields of electronics, chemical sensing, medicine, and beyond. Many properties of metal nanoparticles are size-dependent and can be further manipulated through their shape and architecture (e.g., spherical vs. branched). Achieving morphology control of nanoparticles through solution-based techniques has proven challenging due to limited knowledge of morphology development in nanosyntheses. To overcome these complications, a systematic examination of the local ligand environment of metal precursors on nanostructure formation was undertaken to evaluate its contribution to nanoparticle nucleation rate and subsequent growth processes. Specifically, this thesis will provide evidence from ex situ studies---Transmission Electron Microscopy (TEM) and UV-visible spectroscopy (UV-Vis)---that support the hypothesis that strongly coordinated ligands delay burst-like nucleation to generate spherical metal nanoparticles and ligands with intermediate binding affinity regulate the gradual reduction of metal precursors to promote aggregated assembly of nanodendrites. These ex situ studies were coupled with a new in situ perspective, providing detailed understanding of metal precursor transformation, its direct relation to nanoparticle morphology development, and the ligand influence towards the formation of structurally complex metal nanostructures, using in situ synchrotron X-ray Diffraction (XRD) and Ultra Small-Angle X-ray Scattering (USAXS). The principles extracted from the study of monometallic nanostructure formation were also found to be generally applicable to the synthesis of bimetallic nanostructures, e.g., Pd-Pt architectures, with either core-shell or alloyed structures that were readily achieved by ligand selection. These outcomes provide a direct connection between fundamental principles of coordination chemistry and nanoparticle formation, with a stronger foundation for the predictive synthesis of future nanomaterials with controllable structural features.

Ortiz, Nancy

174

Mechanics of interfacial composite materials.  

PubMed

Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties. PMID:17107022

Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

2006-11-21

175

Reliable contact fabrication on nanostructured Bi2Te3-based thermoelectric materials.  

PubMed

A cost-effective and reliable Ni-Au contact on nanostructured Bi2Te3-based alloys for a solar thermoelectric generator (STEG) is reported. The use of MPS SAMs creates a strong covalent binding and more nucleation sites with even distribution for electroplating contact electrodes on nanostructured thermoelectric materials. A reliable high-performance flat-panel STEG can be obtained by using this new method. PMID:23531997

Feng, Shien-Ping; Chang, Ya-Huei; Yang, Jian; Poudel, Bed; Yu, Bo; Ren, Zhifeng; Chen, Gang

2013-05-14

176

Strain rate behavior of composite materials  

Microsoft Academic Search

The effect of strain rate on the compressive and shear behavior of carbon\\/epoxy composite materials was investigated. Strain rate behavior of composites with fiber waviness was also studied. Falling weight impact system and servohydraulic testing machine were used for dynamic characterisation of composite materials in compression at strain rates up to several hundred per second. Strain rates below 10s?1 were

H. M. Hsiao; I. M. Daniel

1998-01-01

177

Polyolefin composites containing a phase change material  

DOEpatents

A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

Salyer, Ival O. (Dayton, OH)

1991-01-01

178

Thin film dielectric composite materials  

DOEpatents

A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

Jia, Quanxi (Los Alamos, NM); Gibbons, Brady J. (Los Alamos, NM); Findikoglu, Alp T. (Los Alamos, NM); Park, Bae Ho (Los Alamos, NM)

2002-01-01

179

Nanostructured Ni–WC–Co composite coatings fabricated by electrophoretic deposition  

Microsoft Academic Search

Electrophoretic deposition (EPD) was applied to the fabrication of nanostructured Ni–WC–Co composite coatings on nickel-plated stainless steel substrates. The micro-hardness and ball-on-disk sliding wear of the sintered composite coatings were tested for, and the results correlated to those of the microstructure analysis, which was determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD).Sintering after EPD on the substrates and

Y. Wang; Z. Xu

2006-01-01

180

Microstructure, hardness and toughness of nanostructured and conventional WC-Co composites  

Microsoft Academic Search

The microstructure and mechanical properties of nanograin-sized WC-Co composites were investigated and compared with those of conventional cermets. The dislocation density in the nanometer-sized WC crystals is lower than in the conventional ones, and no inclusions are observed in them. Nanostructured composites have higher tungsten content in the binder phase and a higher FCCHCP ratio of the cobalt. An amorphous

K. Jia; T. E. Fischer; B. Gallois

1998-01-01

181

Shape dependence of nonlinear optical behaviors of nanostructured silver and their silica gel glass composites  

SciTech Connect

Nanostructured Ag in shapes of nanoplate, nanowire, and nanoparticle, as well as their silica gel glass composites have been prepared and characterized. Nonlinear optical (NLO) properties were measured at 532 and 1064 nm using open aperture z-scan technique and studied from the view of shape effect. NLO behaviors of the nanostructured Ag are found to be shape dependent in suspensions at both the investigated wavelengths, although they originate differently. Comparing to the mother suspensions, the Ag/silica gel glass nanocomposites present rather dissimilar NLO behaviors, which is quite interesting for further studies.

Zheng Chan; Du Yuhong; Feng Miao; Zhan Hongbing [College of Materials Science and Engineering, Fuzhou University, Fuzhou 350002 (China)

2008-10-06

182

A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties.  

PubMed

Textiles can provide a suitable substrate to grow micro-organisms especially at appropriate humidity and temperature in contact to human body. Recently, increasing public concern about hygiene has been driving many investigations for anti-microbial modification of textiles. However, using many anti-microbial agents has been avoided because of their possible harmful or toxic effects. Application of inorganic nano-particles and their nano-composites would be a good alternative. This review paper has focused on the properties and applications of inorganic nano-structured materials with good anti-microbial activity potential for textile modification. The discussed nano-structured anti-microbial agents include TiO(2) nano-particles, metallic and non-metallic TiO(2) nano-composites, titania nanotubes (TNTs), silver nano-particles, silver-based nano-structured materials, gold nano-particles, zinc oxide nano-particles and nano-rods, copper nano-particles, carbon nanotubes (CNTs), nano-clay and its modified forms, gallium, liposomes loaded nano-particles, metallic and inorganic dendrimers nano-composite, nano-capsules and cyclodextrins containing nano-particles. This review is also concerned with the application methods for the modification of textiles using nano-structured materials. PMID:20417070

Dastjerdi, Roya; Montazer, Majid

2010-08-01

183

Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide.  

PubMed

High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10(-2) S cm(-1)) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed. PMID:24196690

Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

2014-01-01

184

Nanostructured Materials Synthesis Using Hypersonic Plasma Particle Deposition  

NASA Astrophysics Data System (ADS)

We (Work performed with P. H. McMurry, J. V. R. Heberlein, N. Rao and H. J. Lee) report a new deposition process in which ultrafine particles nucleate in a thermal plasma undergoing a supersonic expansion and are deposited on a substrate by hypersonic impaction. The objective of this process is to produce nanostructured material at high rates without having to collect and process a loose powder. Preliminary experiments in which silicon was synthesized by injecting vapor-phase silicon tetrachloride into an argon-hydrogen plasma produced in 20 minutes a deposit measuring approximately 1.3 mm thick and 5 mm in diameter, for a linear growth rate of about 1 um/s. In these experiments the plasma was generated by a DC torch operating at 200 A and 40 V. Flow rates were: argon, 35 slm; hydrogen, 4 slm; and SiCl_4, 0.2 slm. In previous experiments with similar operating conditions footnote N Rao, B. Micheel, D. Hansen, C. Fandrey, M. Bench, S. Girshick, J. Heberlein and P. McMurry, J. Mater. Res. 10, 2973 (1995); N. Rao, S. Girshick, J. Heberlein, P. McMurry, S. Jones, D. Hansen and B. Micheel, Plasma Chem. Plasma Process. 15, 581 (1995), the expansion of this mixture through a converging nozzle produced a silicon aerosol with a number-mean particle diameter of about 10 nm. In the present experiments the boron nitride nozzle was lengthened from 5 mm to 10 mm. The pressure was 66 kPa (500 torr) upstream of the nozzle and 0.3 kPa (2.5 torr) in the deposition chamber, driving a hypersonic flow which is capable of depositing particles down to about 3 nm in diameter by inertial impaction. The particle deposition process was recorded by a telemicroscope video camera, and deposits were characterized by scanning electron microscopy, x-ray diffraction, atomic force microscopy, and energy-dispersive x-ray analysis. The grain size of the deposit is expected to depend on substrate temperature, an effect which we are presently studying.

Girshick, Steven L.

1996-10-01

185

Nonlinear Dynamic Properties of Layered Composite Materials  

SciTech Connect

We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter [Institute of General Mechanics, RWTH Aachen University, Termplergraben 64, Aachen, D-52062 (Germany); Danishevs'kyy, Vladyslav V. [Prydniprovs'ka State Academy of Civil Engineering and Architecture, Dnipropetrovs'k, Chernishevs'kogo 24a, UA-49600 (Ukraine)

2010-09-30

186

A fatigue damage model of composite materials  

Microsoft Academic Search

The mechanical properties of composite materials degrade progressively with the increasing of the number of cyclic loadings. Based on the stiffness degradation rule of composites, a phenomenological fatigue damage model is presented in this paper, which contains two material parameters. They are proportional to the fatigue life of materials and inversely proportional to the fatigue loading level. Thirteen sets of

Fuqiang Wu; WeiXing Yao

2010-01-01

187

Mechanical Fasteners for Advanced Composite Materials  

NASA Technical Reports Server (NTRS)

Advanced composite materials, which are increasingly being used to build aircraft, have different properties than the metals they replace. Fasteners intended for composite-material joints must be designed and selected to allow for these differences. For example, blind fasteners (one-sided access) used to assemble composite-to-composite joints have been redesigned to expand to larger diameters to resist pull-through and cocking failures. The fastener designs needed for composite materials are reviewed. Topics discussed are: galvanic corrosion, pull-through resistance, fastener rotation, installation damage, fastener galling and conductivity. A blind fastener recently developed by SPS Technologies is described to show how these requirements are incorporated.

Landt, R. C.

1985-01-01

188

Method for machining holes in composite materials  

NASA Technical Reports Server (NTRS)

A method for boring well defined holes in a composite material such as graphite/epoxy is discussed. A slurry of silicon carbide powder and water is projected onto a work area of the composite material in which a hole is to be bored with a conventional drill bit. The silicon carbide powder and water slurry allow the drill bit, while experiencing only normal wear, to bore smooth, cylindrical holes in the composite material.

Daniels, Julia G. (inventor); Ledbetter, Frank E., III (inventor); Clemons, Johnny M. (inventor); Penn, Benjamin G. (inventor); White, William T. (inventor)

1987-01-01

189

Self-Assembly and Headgroup Effect in Nanostructured Organogels via Cationic Amphiphile-Graphene Oxide Composites  

PubMed Central

Self-assembly of hierarchical graphene oxide (GO)-based nanomaterials with novel functions has received a great deal of attentions. In this study, nanostructured organogels based on cationic amphiphile-GO composites were prepared. The gelation behaviors of amphiphile-GO composites in organic solvents can be regulated by changing the headgroups of amphiphiles. Ammonium substituted headgroup in molecular structures in present self-assembled composites is more favorable for the gelation in comparison to pyridinium headgroup. A possible mechanism for headgroup effects on self-assembly and as-prepared nanostructures is proposed. It is believed that the present amphiphile-GO self-assembled system will provide an alternative platform for the design of new GO nanomaterials and soft matters. PMID:24983466

Jiao, Tifeng; Wang, Yujin; Zhang, Qingrui; Yan, Xuehai; Zhao, Xiaoqing; Zhou, Jingxin; Gao, Faming

2014-01-01

190

Morphology and microstructure of composite materials  

NASA Technical Reports Server (NTRS)

Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.

Tiwari, S. N.; Srinivansan, K.

1991-01-01

191

An Experimental Study of Deformation and Fracture of a Nanostructured Metallic Material  

E-print Network

. 2 Nanostructured polycrystalline materials have unprecedented strength. However, to date their fracture behavior has not been studied thoroughly. This research focuses on UFG materials, i.e, polycrystalline materials with refined grain size..., they are expected to exhibit some ductility at room temperature. But to date, the ductile fracture mechanisms of the UFG materials have not been thoroughly studied. Therefore, in this study we will investigate the effect of grain size on the strength level...

Abdel Al, Nisrin Rizek

2011-02-22

192

PROPERTIES AND NANOSTRUCTURES OF NANO-MATERIALS PROCESSED BY SEVERE PLASTIC DEFORMATION (SPD).  

SciTech Connect

Metallic materials usually exhibit higher strength but lower ductility after being plastically deformed by conventional techniques such as rolling, drawing and extrusion. In contrast, nanostructured metals and alloys processed by severe plastic deformation (SPD) have demonstrated both high strength and high ductility. This extraordinary mechanical behavior is attributed to the unique nanostructures generated by SPD processing. The combination of ultrafine grain size and high-density dislocations appears to enable deformation by new mechanisms not active in coarse-grained metals and alloys. These results demonstrate the possibility of tailoring the microstructures of metals and alloys by SPD to obtain superior mechanical properties. Nanostructured metals and alloys processed by SPD techniques have unique nanostructures not observed in nanomaterials synthesized by other techniques such as the consolidation of nanopowders. The SPD-generated nanostructures have many features related to deformation, including high dislocation densities, and high- and low-angle grain boundaries in equilibrium or nonequilibrium states. Future studies are needed to investigate the deformation mechanisms that relate the unique nanostructures with the superior mechanical properties exhibited by SPD-processed metals and alloys.

Zhu, Y. T. (Yuntian Theodore)

2001-01-01

193

In situ fabrication and thermoelectric properties of PbTe–polyaniline composite nanostructures  

Microsoft Academic Search

PbTe–polyaniline (PANi) composite nanopowders were in situ fabricated via an interfacial polymerization method at room temperature\\u000a (~293 K). The phase structure, composition, and morphology of the powders were characterized by X-ray powder diffraction,\\u000a infrared spectroscopy, transmission electron microscopy (TEM), and high-resolution TEM, respectively. The results show that\\u000a the composite nanopowders consist of PbTe nanoparticles, PANi\\/PbTe core–shell nanostructure, and PbTe\\/PANi\\/PbTe three-layer\\u000a sphere-like

Y. Y. Wang; K. F. Cai; J. L. Yin; B. J. An; Y. Du; X. Yao

2011-01-01

194

Superior in vitro biological response and mechanical properties of an implantable nanostructured biomaterial: Nanohydroxyapatite-silicone rubber composite.  

PubMed

A potential approach to achieving the objective of favorably modulating the biological response of implantable biopolymers combined with good mechanical properties is to consider compounding the biopolymer with a bioactive nanocrystalline ceramic biomimetic material with high surface area. The processing of silicone rubber (SR)-nanohydroxyapatite (nHA) composite involved uniform dispersion of nHA via shear mixing and ultrasonication, followed by compounding at sub-ambient temperature, and high-pressure solidification when the final curing reaction occurs. The high-pressure solidification approach enabled the elastomer to retain the high elongation of SR even in the presence of the reinforcement material, nHA. The biological response of the nanostructured composite in terms of initial cell attachment, cell viability and proliferation was consistently greater on SR-5wt.% nHA composite surface compared to pure SR. Furthermore, in the nanocomposite, cell spreading, morphology and density were distinctly different from that of pure SR. Pre-osteoblasts grown on SR-nHA were well spread, flat, large in size with a rough cell surface, and appeared as a group. In contrast, these features were less pronounced in SR (e.g. smooth cell surface, not well spread). Interestingly, an immunofluorescence study illustrated distinct fibronectin expression level, and stronger vinculin focal adhesion contacts associated with abundant actin stress fibers in pre-osteoblasts grown on the nanocomposite compared to SR, implying enhanced cell-substrate interaction. This finding was consistent with the total protein content and SDS-PAGE analysis. The study leads us to believe that further increase in nHA content in the SR matrix beyond 5wt.% will encourage even greater cellular response. The integration of cellular and molecular biology with materials science and engineering described herein provides a direction for the development of a new generation of nanostructured materials. PMID:19435616

Thein-Han, W W; Shah, J; Misra, R D K

2009-09-01

195

Synthesis and Electron Field-Emission of 1-D Carbon-Related Nanostructured Materials  

NASA Astrophysics Data System (ADS)

Carbon nanotubes, a new stable form of carbon that was first identified in 1991 [1], are fullerene-related structures which consist of graphitic cylinders closed at either end with caps containing pentagonal rings. Although carbon nanotube structures are closely related to graphite, the curvature, symmetry and small size induce marked deviations from the graphitic behavior. Various methods have been used to produce carbon nanotubes, e.g., arc-discharge, laser-vaporization, catalytic chemical vapor deposition, but too many impurities also be produced, such as fullerenes, carbon nanoparticles and amorphous carbons. The microwave plasma enhanced chemical vapor deposition (MPECVD) system has been used to grow carbon nanotubes in this work and other 1-D carbon-related nanostructured materials was synthesized by the electron cyclotron resonance (ECR) plasma system. Plasma is generated by microwave excitation at 2.45 GHz by a magnetron passes through a waveguide and fed perpendicularly through a quartz dome into an 875 G magnetic field generated by the coils surrounding the resonance volume that creates the ECR condition. The deposition chamber was pumped down to the base pressure of 6.7X10-4 Pa (5X10-6 Torr) with a turbomolecular pump for ECR-plasma and subatmospheric pressures for MPECVD by a rotary mechanical pump. Well-aligned carbon-related nanostructures have been synthesized in nanoporous alumina or silicon with a uniform diameter of 30-100 nm by microwave excited plasma of CH_4, C_2H_2, N_2, H2 and Ar precursors. Nickel nanowires not only serve as catalysts to decompose hydrocarbons to form nanostructures but also function as an electrical conductor for other advanced applications. A negative dc bias is always applied to the substrate to promote the flow of ion fluxes through the nanochannels of the template materials that facilitate the physical adsorption and subsequent chemical absorption in the formation of carbon- and carbon-nitride nanotubes[2]. The electron field emission characteristics of the 1-D carbon-related nanostructures were measured by the conventional diode method at an ambient pressure of 1.3X10-3 Pa (10-5 Torr). The films (1X1-cm^2) were separated from the anode by ITO (indium tin oxide) coated glass, where a glass fiber spacer was maintained at 150 ?m from the cathode. The current density and electric field characteristics were measured using a Keithley 237 electrometer. A range of onset electron emission field from 3.5 to 1.5 V/?m and an emission current density up to 1 mA/cm^2 at 3V/?m have been achieved in this study, apparently superior to other carbon-based electron field emitters[3]. The results were reproducible over a period of weeks and the nanotubes did not degrade physically when exposing to a humid air of RH 90using the Fowler-Nordheim model, I=aV^2 exp (-b?_e^3/2/V) , where a and b are constants. The turn-on voltage was estimated as the voltage deviating from ln(I/V^2)-1/V curve. The effective work function (?_e=?/?) of the arrayed carbon nanotubes was calculated from the slope of the Fowler-Nordheim plot, where the value of ?, the field enhancement factor, was found to be 1517. This value increased to 3357 when nitrogen was doped, but decreased to 974 when boron was doped. The incorporation of nitrogen or boron into the carbon network apparently changes the original nanostructure and the chemical bonding. The structural and compositional modification by the incorporation of nitrogen, boron, or hydrogen into the 1-D carbon-related nanostructured materials were analyzed by FTIR , XPS , Raman spectroscopy , and FE-SEM . Various forms in connection with 1-D nanostructured materials applicable to the NEMS , e.g. , nanowelding of nanotubes[4], tubes on tube , open-end nanotubes and coils of nanofiber and nanotubes have been produced in this research depending on the plasma chemistry, catalytic effect and the design of template. [1]. S. Iijima, Nature 354, 56 (1991). [2]. S. L. Sung, S. H. Tsai, C. H. Tseng, X. W. Liu, and H. C. Shih, Appl. Phys. Lett. 74, 197 (1999). [3]. S. H. Tsai,

Shih, Han C.

2002-10-01

196

Nanostructured multilayered thin film barriers for Mg{sub 2}Si thermoelectric materials  

SciTech Connect

The Mg{sub 2}Si-based alloys are promising candidates for thermoelectric energy conversion in the middle-high temperature range in order to replace lead compounds. The main advantages of silicide-based thermoelectrics are the nontoxicity and the abundance of their constituent elements in the earth crust. The drawback of such kind of materials is their oxygen sensitivity at high temperature that entails their use under vacuum or inert atmosphere. In order to limit the corrosion phenomena, nanostructured multilayered molybdenum silicide-based materials were deposited via RF magnetron sputtering onto stainless steel, alumina and silicon (100) to set up the deposition process and then onto Mg{sub 2}Si pellets. XRD, EDS, FE-SEM and electrical measurements at high temperature were carried out in order to obtain, respectively, the structural, compositional, morphological and electrical characterization of the deposited coatings. At the end, the mechanical behavior of the system thin film/Mg{sub 2}Si-substrate as a function of temperature and the barrier properties for oxygen protection after thermal treatment in air at high temperature were qualitatively evaluated by FE-SEM.

Battiston, S.; Boldrini, S.; Fiameni, S.; Agresti, F.; Famengo, A.; Fabrizio, M.; Barison, S. [CNR - IENI, Corso Stati Uniti 4, 35127 Padova (Italy)

2012-06-26

197

Effects of antibacterial nanostructured composite films on vascular stents: Hemodynamic behaviors, microstructural characteristics, and biomechanical properties.  

PubMed

The purpose of this research was to investigate stresses resulting from different thicknesses and compositions of hydrogenated Cu-incorporated diamond-like carbon (a-C:H/Cu) films at the interface between vascular stent and the artery using three-dimensional reversed finite element models (FEMs). Blood flow velocity variation in vessels with plaques was examined by angiography, and the a-C:H/Cu films were characterized by transmission electron microscopy to analyze surface morphology. FEMs were constructed using a computer-aided reverse design system, and the effects of antibacterial nanostructured composite films in the stress field were investigated. The maximum stress in the vascular stent occurred at the intersections of net-like structures. Data analysis indicated that the stress decreased by 15% in vascular stents with antibacterial nanostructured composite films compared to the control group, and the stress decreased with increasing film thickness. The present results confirmed that antibacterial nanostructured composite films improve the biomechanical properties of vascular stents and release abnormal stress to prevent restenosis. The results of the present study offer the clinical benefit of inducing superior biomechanical behavior in vascular stents. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 269-275, 2015. PMID:24648307

Cheng, Han-Yi; Hsiao, Wen-Tien; Lin, Li-Hsiang; Hsu, Ya-Ju; Sinrang, Andi Wardihan; Ou, Keng-Liang

2015-01-01

198

Composite materials and method of making  

DOEpatents

A method for forming improved composite materials using a thermosetting polyester urethane hybrid resin, a closed cavity mold having an internal heat transfer mechanism used in this method, and the composite materials formed by this method having a hybrid of a carbon fiber layer and a fiberglass layer.

Simmons, Kevin L [Kennewick, WA; Wood, Geoffrey M [North Saanich, CA

2011-05-17

199

Morphologically controlled preparation of CuO nanostructures under ultrasound irradiation and their evaluation as pseudocapacitor materials.  

PubMed

Various morphologies of copper oxide (CuO) nanostructures have been synthesized by controlling the reaction parameters in a sonochemical assisted method without using any templates or surfactants. The effect of reaction parameters including molar ratio of the reactants, reaction temperature, ultrasound exposure time, and annealing temperature on the composition and morphology of the product(s) has been investigated. The prepared samples have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDAX), and thermogravimetric analysis (TGA). It has been found that Cu2(OH)3NO3 nanoplatelets are achieved in mild conditions which can be then converted to various morphologies of CuO nanostructures by either using high concentrations of OH(-) (formation of nanorods), prolonging sonication irradiation (nanoparticles), or thermal treatment (nanospheres). Application of the prepared CuO nanostructures was evaluated as supercapacitive material in 1 M Na2SO4 solution using cyclic voltammetry (CV) in different potential scan rates ranging from 5 to 100 mV s(-1). The specific capacitance has been calculated using CV curves. It has been found that the pseudocapacitor performance of CuO can be tuned via employing morphologically controlled samples. Accordingly, the prolonged sonicated sample (nanoparticles) showed the high specific capacitance of 158 F.g(-1). PMID:24035717

Pendashteh, Afshin; Rahmanifar, Mohammad Safi; Mousavi, Mir Fazlollah

2014-03-01

200

Superhydrophobic ceramic coatings enabled by phase-separated nanostructured composite TiO2-Cu2O thin films  

NASA Astrophysics Data System (ADS)

By exploiting phase-separation in oxide materials, we present a simple and potentially low-cost approach to create exceptional superhydrophobicity in thin-film based coatings. By selecting the TiO2-Cu2O system and depositing through magnetron sputtering onto single crystal and metal templates, we demonstrate growth of nanostructured, chemically phase-segregated composite films. These coatings, after appropriate chemical surface modification, demonstrate a robust, non-wetting Cassie-Baxter state and yield an exceptional superhydrophobic performance, with water droplet contact angles reaching to ˜172° and sliding angles <1°. As an added benefit, despite the photo-active nature of TiO2, the chemically coated composite film surfaces display UV stability and retain superhydrophobic attributes even after exposure to UV (275 nm) radiation for an extended period of time. The present approach could benefit a variety of outdoor applications of superhydrophobic coatings, especially for those where exposure to extreme atmospheric conditions is required.

Aytug, Tolga; Bogorin, Daniela F.; Paranthaman, Parans M.; Mathis, John E.; Simpson, John T.; Christen, David K.

2014-06-01

201

Nanostructured TiOx as a catalyst support material for proton exchange membrane fuel cells  

NASA Astrophysics Data System (ADS)

Recent interest in the development of new catalyst support materials for proton exchange membrane fuel cells (PEMFCs) has stimulated research into the viability of TiO2-based support structures. Specifically, substoichiometric TiO2 (TiOx) has been reported to exhibit a combination of high conductivity, stability, and corrosion resistance. These properties make TiOx-based support materials a promising prospect when considering the inferior corrosion resistance of traditional carbon-based supports. This document presents an investigation into the formation of conductive and stable TiOx thin films employing atomic layer deposition (ALD) and a post deposition oxygen reducing anneal (PDORA). Techniques for manufacturing TiOx-based catalyst support nanostructures by means of ALD in conjunction with carbon black (CB), anodic aluminum oxide (AAO) and silicon nanowires (SiNWs) will also be presented. The composition and thickness of resulting TiOx thin films was determined with the aid of Auger electron spectroscopy (AES), Rutherford backscattering spectrometry (RBS), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), and scanning electron microscopy (SEM). Film crystal structure was determined with X-ray diffraction (XRD) analysis. Film conductivity was calculated using four-point probe (4-PP) and film thickness measurement data. Resulting thin films show a significant decrease of oxygen in ALD TiOx films corresponding with a great increase in conductivity following the PDORA. The effectiveness of the PDORA was also found to be highly dependent on ALD process parameters. TiOx-based nanostructures were coated with platinum using one of three Pt deposition techniques. First, liquid phase deposition (LPD), which was performed at room temperature, provided equal access to catalyst support material surfaces which were suspended in solution. Second, plasma enhanced atomic layer deposition (PEALD), which was performed at 450°C, provided good Pt particle dispersion and particle size controllability. Third, physical vapor deposition (PVD), which was also performed at room temperature, was used as a low temperature vapor-phase deposition technique for comparison with PEALD Pt coated materials. The temperature of the Pt deposition technique is an important parameter to consider due to the potential adverse effects of the strong metal support interaction (SMSI) which may take place at temperatures above 200°C. Platinum coated nanostructures were analyzed electrochemically using cyclic voltammetry (CV), rotating disk electrode (RDE) and accelerated stress tests (ASTs). CV and RDE results generally show that platinum activity values are initially not as high as those typically observed for platinum on carbon; however, AST results indicate that TiO x-based materials are much more stable long-term and hence their level of activity is likely to overtake traditional platinum on carbon materials in a PEMFC system.

Phillips, Richard S.

202

Composite materials for biomedical applications: a review.  

PubMed

The word "composite" refers to the combination, on a macroscopic scale, of two or more materials, different for composition, morphology and general physical properties. In many cases, and depending on the constituent properties, composites can be designed with a view to produce materials with properties tailored to fulfill specific chemical, physical or mechanical requirements. Therefore over the past 40 years the use of composites has progressively increased, and today composite materials have many different applications, i.e., aeronautic, automotive, naval, and so on. Consequently many composite biomaterials have recently been studied and tested for medical application. Some of them are currently commercialized for their advantages over traditional materials. Most human tissues such as bones, tendons, skin, ligaments, teeth, etc., are composites, made up of single constituents whose amount, distribution, morphology and properties determine the final behavior of the resulting tissue or organ. Man-made composites can, to some extent, be used to make prostheses able to mimic these biological tissues, to match their mechanical behavior and to restore the mechanical functions of the damaged tissue. Different types of composites that are already in use or are being investigated for various biomedical applications are presented in this paper. Specific advantages and critical issues of using composite biomaterials are also described (Journal of Applied Bio-materials & Biomechanics 2003; 1: 3-18). PMID:20803468

Salernitano, E; Migliaresi, C

2003-01-01

203

Flame-retardant composite materials  

NASA Technical Reports Server (NTRS)

The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.

Kourtides, Demetrius A.

1991-01-01

204

Fourth Symposium on Composite Materials  

Microsoft Academic Search

The high temperature fatigue of a (O)12 tungsten fiber reinforced copper matrix composite was investigated. Specimens having fiber volume percentages of 10 and 36 were fatigued under fully-reversed, strain-controlled conditions at both 260 and 560 C. The fatigue life was found to be independent of fiber volume fraction because fatigue damage preferentially occurred in the matrix. Also, the composite fatigue

M. J. Verrilli; T. P. Gabb

1990-01-01

205

Diffusion and related phenomena in bulk nanostructured materials Corresponding author: A. P. Zhilyaev, e-mail: AlexZh@mail.rb.ru  

E-print Network

phenomena (grain growth, creeps, superplasticity) in bulk nanostructured materials. The particular attention phenomena (grain growth, creep, superplasticity) in such materials and also ordering-reordering kinetics boundary phase phe- nomena, superplasticity) in nanostructured ma- terials 7. Ordering-reordering kinetics

Ovid'ko Ilya A.

206

In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity  

Microsoft Academic Search

A group of Ti–Cu–Ni–Sn–Ta multicomponent alloys is prepared by copper mold casting and arc melting, respectively, in which nanostructured (or ultrafine-grained) matrix-dendrite composites can be obtained. With increasing Ti and Ta contents, the volume fraction of the dendritic phase increases. The grain size of the matrix phase depends on the preparation method, and is 30–70 nm for as-cast 2–3 mm

G He; W Löser; J Eckert

2003-01-01

207

Materials for Hydrogen Storage: From Nanostructures to Complex Hydrides  

NASA Astrophysics Data System (ADS)

The limited supply of fossil fuels, its adverse effect on the environment, and growing worldwide demand for energy has necessitated the search for new and clean sources of energy. The possibility of using hydrogen to meet this growing energy need has rekindled interest in the study of safe, efficient, and economical storage of hydrogen. This talk will discuss the issues and challenges in storing hydrogen in light complex hydrides and discuss the role of nanostructuring and catalysts that can improve the thermodynamics and kinetics of hydrogen. In particular, we will discuss how studies of clusters can help elucidate the fundamental mechanisms for hydrogen storage and how these can be applied in Boron Nitride and Carbon nanocages and how metallization of these nanostructures is necessary to store hydrogen with large gravimetric density. We will also discuss the properties of complex light metal hydrides such as alanates and magnesium hydrides that can store up to 18 wt % hydrogen, although the temperature where hydrogen desorbs is rather high. Using first principles calculations, we will provide a fundamental understanding of the electronic structure and stability of these systems and how it is affected due to catalysts. It is hoped that the understanding gained here can be useful in designing better catalysts as well as hosts for hydrogen storage.

Jena, Puru

2006-03-01

208

Characterisation and tribological investigation on thermally processed nanostructured Fe-based and Cu-based cermet materials.  

PubMed

The feasibility of achieving a nanostructured material after different thermal processing of nanosized powders is presented. The thermal processing was done by either atmospheric plasma spraying, laser sintering, or extrusion followed by hot isostatic pressing. The structural characterisation of such thermally processed nanostructured Fe-based and Cu-based metallic or Al2O3 reinforced cermets, confirmed the retention of a nanostructure after each of these thermal processes. Hardness measurements confirmed an increased hardness as expected in the case that nanostructuring is achieved. The role of grain boundaries and second phase particles on the retention of the nanostructure after thermal processing is discussed. Finally, the possible benefit of nanostructuring on the friction and wear behaviour of materials in sliding tests against corundum in ambient air is reported and discussed. PMID:20352775

Basak, A K; Eddine, W Zein; Celis, J P; Matteazzi, P

2010-02-01

209

New textile composite materials development, production, application  

NASA Technical Reports Server (NTRS)

New textile composite materials development, production, and application are discussed. Topics covered include: super-high-strength, super-high-modulus fibers, filaments, and materials manufactured on their basis; heat-resistant and nonflammable fibers, filaments, and textile fabrics; fibers and textile fabrics based on fluorocarbon poylmers; antifriction textile fabrics based on polyfen filaments; development of new types of textile combines and composite materials; and carbon filament-based fabrics.

Mikhailov, Petr Y.

1993-01-01

210

Advanced Thermopower Wave in Novel ZnO Nanostructures/Fuel Composite.  

PubMed

Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise ZnO nanostructures, will help in formulating specific strategies for obtaining enhanced energy generation from thermopower waves. PMID:25133980

Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

2014-09-10

211

Nanostructure evolution studies of bulk polymer materials with synchrotron radiation: progress in method development  

Microsoft Academic Search

The prospects of a modern analysis of nanostructure evolution during the processing of polymer materials by means of scattering from synchrotron radiation are demonstrated in examples. The beam sources have gained stability, shortages are located in beamline setups and in method development for the quantitative analysis of voluminous data sets.By using the proposed multidimensional chord distribution function (CDF) analysis method,

Norbert Stribeck

2003-01-01

212

Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment  

Microsoft Academic Search

In terms of the grain refinement mechanism induced by plastic straining, a novel surface mechanical attrition treatment (SMAT) was developed for synthesizing a nanostructured surface layer on metallic materials in order to upgrade the overall properties and performance. In this paper, the SMAT technique and the microstructure of the SMAT surface layer will be described. The grain refinement mechanism of

K. Lu; J. Lu

2004-01-01

213

The Interaction of Bacteria with Engineered Nanostructured Polymeric Materials: A Review  

PubMed Central

Bacterial infections are a leading cause of morbidity and mortality worldwide. In spite of great advances in biomaterials research and development, a significant proportion of medical devices undergo bacterial colonization and become the target of an implant-related infection. We present a review of the two major classes of antibacterial nanostructured materials: polymeric nanocomposites and surface-engineered materials. The paper describes antibacterial effects due to the induced material properties, along with the principles of bacterial adhesion and the biofilm formation process. Methods for antimicrobial modifications of polymers using a nanocomposite approach as well as surface modification procedures are surveyed and discussed, followed by a concise examination of techniques used in estimating bacteria/material interactions. Finally, we present an outline of future sceneries and perspectives on antibacterial applications of nanostructured materials to resist or counteract implant infections. PMID:25025086

Armentano, Ilaria; Arciola, Carla Renata; Fortunati, Elena; Ferrari, Davide; Mattioli, Samantha; Amoroso, Concetta Floriana; Rizzo, Jessica; Kenny, Jose M.; Imbriani, Marcello; Visai, Livia

2014-01-01

214

Combinatorial synthesis of inorganic or composite materials  

DOEpatents

Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials or, alternatively, allowing the components to interact to form at least two different materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, nonbiological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

Goldwasser, Isy (Palo Alto, CA); Ross, Debra A. (Mountain Ranch, CA); Schultz, Peter G. (La Jolla, CA); Xiang, Xiao-Dong (Danville, CA); Briceno, Gabriel (Baldwin Park, CA); Sun, Xian-Dong (Fremont, CA); Wang, Kai-An (Cupertino, CA)

2010-08-03

215

Materials research at Stanford University. [composite materials, crystal structure, acoustics  

NASA Technical Reports Server (NTRS)

Research activity related to the science of materials is described. The following areas are included: elastic and thermal properties of composite materials, acoustic waves and devices, amorphous materials, crystal structure, synthesis of metal-metal bonds, interactions of solids with solutions, electrochemistry, fatigue damage, superconductivity and molecular physics and phase transition kinetics.

1975-01-01

216

Nanopositioning for Magneto-optic Imaging of Nanostructures and Materials  

NASA Astrophysics Data System (ADS)

A positioning system with nanometer resolution has been developed based on mechanical motor and screw systems. This has been applied to the near- and far-field magneto-optical imaging of nanostructures and to imaging of spin waves in magnetic thin films. This system shows remarkably low levels of drift and vibration compared to more widely used piezoelectric systems, and typically does not require position feedback during fixed-position data acquisition processes. During scanning processes, non-repeatability problems typical of mechanical positioning systems are reduced using a new electronic motor control scheme and software feedback. As a result, we are able to demonstrate an average mechanical resolution of 1.45nm and near diffraction-limited imaging using scanning confocal imaging. We thus demonstrate a highly simplified mechanical approach to spatially resolved magneto-optical measurements.

Qureshi, Naser; Kolokoltsev, Oleg; Ortega-Martinez, Roberto

2007-03-01

217

Novel applications exploiting the thermal properties of nanostructured materials.  

SciTech Connect

A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

Eastman, J. A.

1998-11-20

218

Oxygen Compatibility Testing of Composite Materials  

NASA Technical Reports Server (NTRS)

Composite materials offer significant weight-saving potential for aerospace applications in propellant and oxidizer tanks. This application for oxygen tanks presents the challenge of being oxygen compatible in addition to complying with the other required material characteristics. This effort reports on the testing procedures and data obtained in examining and selecting potential composite materials for oxygen tank usage. Impact testing of composites has shown that most of these materials initiate a combustion event when impacted at 72 ft-lbf in the presence of liquid oxygen, though testing has also shown substantial variability in reaction sensitivities to impact. Data for screening of 14 potential composites using the Bruceton method is given herein and shows that the 50-percent reaction frequencies range from 17 to 67 ft-lbf. The pressure and temperature rises for several composite materials were recorded to compare the energy releases as functions of the combustion reactions with their respective reaction probabilities. The test data presented are primarily for a test pressure of 300 psia in liquid oxygen. The impact screening process is compared with oxygen index and autogenous ignition test data for both the composite and the basic resin. The usefulness of these supplemental tests in helping select the most oxygen compatible materials is explored. The propensity for mechanical impact ignition of the composite compared with the resin alone is also examined. Since an ignition-free composite material at the peak impact energy of 72 ft-lbf has not been identified, composite reactivity must be characterized over the impact energy level and operating pressure ranges to provide data for hazard analyses in selecting the best potential material for liquid tank usage.

Engel, Carl D.; Watkins, Casey N.

2006-01-01

219

A review of nanostructured lithium ion battery materials via low temperature synthesis.  

PubMed

Nanostructured materials afford us new opportunities to improve the current technology for synthesizing Li ion batteries. Generating nanomaterials with new properties via an inexpensive approach offers a tremendous potential for realizing high performance Li-ion batteries. In this review, I mainly summarize some of the recent progress made, and describe the patents awarded on synthesizing nanostructured cathode materials for these batteries via low temperature wet- chemistry methods. From an economical view, such syntheses, especially hydrothermal synthesis, may offer the opportunities for significantly lowering the cost of manufacturing battery materials, while conferring distinct environmental advantages. Recent advances in in-situ (real time) X-ray diffraction for studying hydrothermal synthesis have great potential for bettering the rational design of advanced lithium-electrode materials. The development of this technique also will be discussed. PMID:22747718

Chen, Jiajun

2013-01-01

220

Crustacean-derived biomimetic components and nanostructured composites.  

PubMed

Over millions of years, the crustacean exoskeleton has evolved into a rigid, tough, and complex cuticle that is used for structural support, mobility, protection of vital organs, and defense against predation. The crustacean cuticle is characterized by a hierarchically arranged chitin fiber scaffold, mineralized predominately by calcium carbonate and/or calcium phosphate. The structural organization of the mineral and organic within the cuticle occurs over multiple length scales, resulting in a strong and tough biological composite. Here, the ultrastructural details observed in three species of crustacean are reviewed: the American lobster (Homarus americanus), the edible crab (Cancer pagurus), and the peacock mantis shrimp (Odontodactylus scyllarus). The Review concludes with a discussion of recent advances in the development of biomimetics with controlled organic scaffolding, mineralization, and the construction of nanoscale composites, inspired by the organization and formation of the crustacean cuticle. PMID:24833136

Grunenfelder, Lessa Kay; Herrera, Steven; Kisailus, David

2014-08-27

221

Multiscale Modeling and Homogenization of Composite Materials  

E-print Network

of composites that account for the micro-structuralpertinent micro-structural infor- mation. For compositecomposite materials is to use the finite element method. In particular, since accounting for all the micro-

Mseis, George

2010-01-01

222

Reliability and micromechanics of composite materials  

Microsoft Academic Search

A methodology is proposed to evaluate the reliability of composites. Micromechanical analysis is utilized as a basis for the representation of the effects of constituent properties on global response. The analysis is then combined with the models of structural reliability to study the influence of micro-level material parameters on reliability of composites under static loadings.

Zhanjun Gao

1992-01-01

223

Composite Materials for Wind Power Turbine Blades  

Microsoft Academic Search

Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood and composites are discussed as candidates for rotorblades. The fibers and matrices for composites

Povl Brøndsted; Hans Lilholt; Aage Lystrup

2005-01-01

224

Composite materials inspection. [ultrasonic vibration holographic NDT  

NASA Technical Reports Server (NTRS)

Investigation of the application requirements, advantages, and limitations of nondestructive testing by a technique of ultrasonic-vibration holographic-interferometry readout used in a production control facility for the inspection of a single product such as composite compressor blades. It is shown that, for the detection and characterization of disbonds in composite material structures, this technique may represent the most inclusive test method.

Erf, R. K.

1974-01-01

225

Candida albicans adhesion to composite resin materials  

Microsoft Academic Search

The adhesion of Candida albicans to dental restorative materials in the human oral cavity may promote the occurrence of oral candidosis. This study aimed\\u000a to compare the susceptibility of 14 commonly used composite resin materials (two compomers, one ormocer, one novel silorane,\\u000a and ten conventional hybrid composites) to adhere Candida albicans. Differences in the amount of adhering fungi should be

Ralf Bürgers; Wulf Schneider-Brachert; Martin Rosentritt; Gerhard Handel; Sebastian Hahnel

2009-01-01

226

Method to fabricate layered material compositions  

DOEpatents

A new class of processes suited to the fabrication of layered material compositions is disclosed. Layered material compositions are typically three-dimensional structures which can be decomposed into a stack of structured layers. The best known examples are the photonic lattices. The present invention combines the characteristic features of photolithography and chemical-mechanical polishing to permit the direct and facile fabrication of, e.g., photonic lattices having photonic bandgaps in the 0.1-20.mu. spectral range.

Fleming, James G. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM)

2002-01-01

227

Acoustic emission monitoring of polymer composite materials  

NASA Technical Reports Server (NTRS)

The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.

Bardenheier, R.

1981-01-01

228

Method of making a composite refractory material  

DOEpatents

A composite refractory material is prepared by combining boron carbide with furan resin to form a mixture containing about 8 wt. % furan resin. The mixture is formed into a pellet which is placed into a grit pack comprising an oxide of an element such as yttrium to form a sinterable body. The sinterable body is sintered under vacuum with microwave energy at a temperature no greater than 2000.degree. C. to form a composite refractory material.

Morrow, Marvin S. (Kingston, TN); Holcombe, Cressie E. (Knoxville, TN)

1995-01-01

229

Fatigue and fracture research in composite materials  

NASA Technical Reports Server (NTRS)

The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

Obrien, T. K.

1982-01-01

230

Review on recent progress of nanostructured anode materials for Li-ion batteries  

NASA Astrophysics Data System (ADS)

This review highlights the recent research advances in active nanostructured anode materials for the next generation of Li-ion batteries (LIBs). In fact, in order to address both energy and power demands of secondary LIBs for future energy storage applications, it is required the development of innovative kinds of electrodes. Nanostructured materials based on carbon, metal/semiconductor, metal oxides and metal phosphides/nitrides/sulfides show a variety of admirable properties for LIBs applications such as high surface area, low diffusion distance, high electrical and ionic conductivity. Therefore, nanosized active materials are extremely promising for bridging the gap towards the realization of the next generation of LIBs with high reversible capacities, increased power capability, long cycling stability and free from safety concerns. In this review, anode materials are classified, depending on their electrochemical reaction with lithium, into three groups: intercalation/de-intercalation, alloy/de-alloy and conversion materials. Furthermore, the effect of nanoscale size and morphology on the electrochemical performance is presented. Synthesis of the nanostructures, lithium battery performance and electrode reaction mechanisms are also discussed. To conclude, the main aim of this review is to provide an organic outline of the wide range of recent research progresses and perspectives on nanosized active anode materials for future LIBs.

Goriparti, Subrahmanyam; Miele, Ermanno; De Angelis, Francesco; Di Fabrizio, Enzo; Proietti Zaccaria, Remo; Capiglia, Claudio

2014-07-01

231

Plastic deformation in nanostructured bulk glass composites during nanoindentation  

Microsoft Academic Search

Nanoindentation experiments of a Ti45Zr16Be20Cu10Ni9 bulk metallic glass and partially vitrified nano-composite metallic glass matrix have been performed under a constant maximum load of 10mN and constant loading rate of 0.08mNs?1 with the aim of comparative study of their micro-plastic deformation behavior. Remarkable difference in deformation behavior was found in load–displacement curves of nanoindentation and pile-up morphologies around the indents.

D. K. Misra; S. W. Sohn; W. T. Kim; D. H. Kim

2009-01-01

232

Multifunctional iron-based metal oxide nanostructured materials: Synthesis, characterization, and properties  

NASA Astrophysics Data System (ADS)

Iron-based metal oxides, such as iron oxides, iron-containing perovskites, and iron-containing perovskite composites or solid solutions, are promising materials for the design and synthesis of technologically important multifunctional materials. They are noteworthy for their unique and diverse properties including electronic, magnetic, and elastic ones. Stimulated by interest in the bulk properties of these materials as well as scientific potential and applications at the nanoscale, iron-based metal oxide nanostructured (FeMONS) materials are being considered as an interesting model system to investigate fundamental properties and for a host of potential applications as diverse as additives, catalysts, electronic devices, magnetic recording media, information storage, spintronics, and sensors. Recent research on a multiferroic system, such as BiFeO3, reveals that there are unique couplings among the independent physical properties including ferroelectricity, ferromagnetism, and ferroelasticity. Developing approaches to designing as well as investigating properties of new synthetic formulations of these transition metal oxide nanomaterials has been the recent focus of much of our efforts in this group. Multiferroic bismuth ferrite (BiFeO 3) nanoparticles have been synthesized employing a facile sol-gel method and their size-dependent magnetic properties have been studied and correlated with: (i) increased suppression of the known spiral spin structure (period length of ˜62 nm) with decreasing nanoparticle size and (ii) uncompensated spins and strain anisotropies at the surface. Moreover, BiFeO 3 nanotubes have been generated using a modified template methodology and extensively characterized. Furthermore, solid solutions of BiFeO 3 and typical perovskites, such as BaTiO3 and SrTiO 3, have been prepared employing a molten salt method and the study has been extended to properties associated with their inherent compositions. Single-crystalline Bi2Fe4O9 nanocubes have been fabricated utilizing a molten salt method and the role of various experimental parameters has been examined towards predictive control of shape and size. Single-crystalline iron oxide (a-Fe2O3) rhombohedra have been generated using environmentally friendly protocols and transformed into aggregates of magnetic nanocomposites of Fe and Fe3O4.

Park, Tae-Jin

233

Principles of Creation of Fireproof Materials Containing Nanostructures  

Microsoft Academic Search

The effect of the manufacturing technology for filter material on its initial air resistance is a function of the selection of the criterion used for assessing the structure of the materials to a significant degree. When the surface density is used as the structural characteristic, the initial resistance of needle-punch cloth and modified materials is described by a common curve.

V. I. Kodolov; A. M. Lipanov; S. G. Shuklin

2004-01-01

234

Block copolymer self assembly for design and vapor phase synthesis of one-dimensional nanostructured materials  

NASA Astrophysics Data System (ADS)

Block copolymer thin films provide a robust method for generating regular, uniform patterns with sub-100 nanometer length scales over arbitrarily large areas. A significant advantage of such block copolymer-based patterning is its ease of integration with all other aspects of traditional thin-film processing, including plasma-based etching and metallization. Such process compatibility ensures a host of application opportunities in designing material properties through control of their nanostructure. Here, we describe our use of block copolymer self assembly for design and vapor phase synthesis of quasi one-dimensional nanostructured materials made of metals, semiconductors, and insulators. The precise control of surface texture afforded by block copolymer-based patterning can influence macroscopic materials properties such as optical reflectance and hydrophobicity.

Rahman, A.; Black, C. T.

2014-06-01

235

NANOSTRUCTURED CERAMICS AND COMPOSITES FOR REFRACTORY APPLICATIONS IN COAL GASIFICATION  

SciTech Connect

A class of ceramics, capable of exhibiting low coefficients of thermal expansion and catalytic properties was investigated. Investigations were directed towards nanoengineering of NZP ceramics and NZP-based composites by chemical means by controlling their compositions and processing variables. NaZr{sub 2}(PO{sub 4}){sub 3} (NZP) was synthesized by combining water-soluble precursors leading to the precipitation of a gel that was dried, calcined, pressed into pellets, then fired at 850 C. Without chemical additives, the resulting ceramic comprised pores ranging in size from approximately 25 to 50 nm and a surface area of about 30m{sup 2}/g. Hydroxyapatite, which has a needle-like morphology, was mechanically mixed with the calcined gel to template NZP crystallization. What resulted was a coarsening of the pore structure and a decrease in surface area. When copper nitrate was added to the solution during synthesis, the resulting ceramic underwent shrinkage upon firing as well as an increase in strength. HAp and copper additions combined resulted in 40% volume shrinkage and a doubling of the tensile strength to 16MPa. A very different type of porosity was achieved when silica was partly substituted for phosphorous in the NZP structure. Na{sub 3}Zr{sub 2}(Si{sub 2}P)O{sub 12} (NASCION) was synthesized in the same manner as NZP, but the fired ceramic possessed a reticulated pore structure comprising large cavities ranging in size from 5 to 50 {micro}m. The NASCION ceramic either shrank or expanded upon firing depending on when the silica was added during synthesis. When the silica precursor (amorphous, precipitated silica) was added before the calcining step, the pressed pellets expanded during firing, whereas they shrank when the silica was added after the gel was calcined. The observed dilation increased with increasing calcining temperature and particle size, up to 26%. The contraction of the ceramic when fired increased with increasing calcining temperature and a greater surface area of the gel. Direct addition of Silica fiber was only modestly beneficial. Fiber addition combined with controlled densification resulted in the greatest improvement in strength. Ion exchange properties of NASICON were established for Cs, Pb, and Cd. It was found that the extent of ion exchange depended on ion size and that Cd could be fully exchanged into NASICON. Catalytic activity of Cu and Ag substituted compositions were determined and it was found that Ag substitution reduced the temperature at which carbon black could be oxidized. However, Ag substitution results in the formation of zircon. Ion conductivity of NASCION was determined and it was found to compare well with other ionic conductors.

Paul Brown

2005-01-31

236

Offgassing test methodology for composite materials  

NASA Technical Reports Server (NTRS)

A significant increase in the use of composite materials has occurred during the past 20 years. Associated with this increased use is the potential for employees to be exposed to offgassing components from composite systems. Various components in composite systems, particularly residual solvents, offgas under various conditions. The potential for offgassing to occur increases as a composite material is heated either during cure or during lay-up operations. Various techniques can be employed to evaluate the offgassing characteristics of a composite system. A joint effort between AIA and SACMA resulted in the drafting of a proposed test method for evaluating the offgassing potential of composite materials. The purpose of testing composite materials for offgassing is to provide the industrial hygienist with information which can be used to assess the safety of the workplace. This paper outlines the proposed test method and presents round robin testing data associated with the test method. Also in this presentation is a discussion of classes of compounds which require specialized sampling techniques.

Scheer, Dale A.

1994-01-01

237

3-D textile reinforcements in composite materials  

SciTech Connect

Laminated composite materials have been used in structural applications since the 1960s. However, their high cost and inability to accommodate fibers in the laminate`s thickness direction greatly reduce their damage tolerance and impact resistance. The second generation of materials--3-D textile reinforced composites--offers significant cost reduction, and by incorporating reinforcement in the thickness direction, dramatically increases damage tolerance and impact resistance. However, methods for predicting mechanical properties of 3-D textile reinforced composite materials tend to be more complex. These materials also have disadvantages--particularly in regard to crimps in the yarns--that require more research. Textile preforms, micro- and macromechanical modeling, manufacturing processes, and characterization all need further development. As researchers overcome these problems, this new generation of composites will emerge as a highly competitive family of materials. This book provides a state-of-the-art account of this promising technology. In it, top experts describe the manufacturing processes, highlight the advantages, identify the main applications, analyze methods for predicting mechanical properties, and detail various reinforcement strategies, including grid structure, knitted fabric composites, and the braiding technique. Armed with the information in this book, readers will be prepared to better exploit the advantages of 3-D textile reinforced composites, overcome its disadvantages, and contribute to the further development of the technology.

Miravete, A. [Univ. of Zaragoza (Spain)

1999-11-01

238

Comparison of the structural and chemical composition of two unique micro/nanostructures produced by femtosecond laser interactions on nickel  

SciTech Connect

The structural and chemical composition of two unique microstructures formed on nickel, with nanoscale features, produced using femtosecond laser surface processing (FLSP) techniques is reported in this paper. These two surface morphologies, termed mounds and nanoparticle-covered pyramids, are part of a larger class of self-organized micro/nanostructured surfaces formed using FLSP. Cross-sections of the structures produced using focused ion beam milling techniques were analyzed with a transmission electron microscope. Both morphologies have a solid core with a layer of nanoparticles on the surface. Energy dispersive X-ray spectroscopy by scanning transmission electron microscopy studies reveal that the nanoparticles are a nickel oxide, while the core material is pure nickel.

Zuhlke, Craig A.; Anderson, Troy P.; Alexander, Dennis R. [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)] [Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

2013-09-16

239

Micromechanics of composite materials under compressive loading  

Microsoft Academic Search

A common thread joining many engineered materials used dominantly under compressive loading is the presence of a high modulus secondary phase, either fiber or particulate, embedded within a lower modulus matrix phase. To improve their toughness, a frictional or a less-than-coherent interface is strived for in the manufacture of these composite materials. To form a better understanding of the complex

G. Laird; T. C. Kennedy

1995-01-01

240

ADVANCED COMPOSITE MATERIALS FOR BRIDGES Sami RIZKALLA  

E-print Network

1. SUMMARY ADVANCED COMPOSITE MATERIALS FOR BRIDGES Sami RIZKALLA ISIS Canada Network of Centres bridges are being built with materials that have significantly higher strength in comparison to steel associated with concrete bridges due to the corrosion of steel reinforcements. This paper presents

241

Method of producing catalytic materials for fabricating nanostructures  

DOEpatents

Methods of fabricating nano-catalysts are described. In some embodiments the nano-catalyst is formed from a powder-based substrate material and is some embodiments the nano-catalyst is formed from a solid-based substrate material. In some embodiments the substrate material may include metal, ceramic, or silicon or another metalloid. The nano-catalysts typically have metal nanoparticles disposed adjacent the surface of the substrate material. The methods typically include functionalizing the surface of the substrate material with a chelating agent, such as a chemical having dissociated carboxyl functional groups (--COO), that provides an enhanced affinity for metal ions. The functionalized substrate surface may then be exposed to a chemical solution that contains metal ions. The metal ions are then bound to the substrate material and may then be reduced, such as by a stream of gas that includes hydrogen, to form metal nanoparticles adjacent the surface of the substrate.

Seals, Roland D; Menchhofer, Paul A; Howe, Jane Y; Wang, Wei

2013-02-19

242

Gradient composite materials for artificial intervertebral discs.  

PubMed

Composites with the gradient of Young's modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites. The results obtained during in vitro tests displayed a good durability of the gradient materials put under long-term static load. However, the configuration based on a change in the volume fraction of the fibres seems more advantageous than the one based on a change of the fibres' orientation. The materials under study were designed to replace the intervertebral disc. The effect of Young's modulus of the material layers on the stress distribution between the tissue and the implant was analyzed and the biomimetic character of the gradient composites was stated. Unlike gradient materials, the pure polysulfone and the non-gradient composite resulted in the stress concentration in the region of nucleus pulposus, which is highly disadvantageous and does not occur in the stress distribution of natural intervertebral discs. PMID:25306938

Migacz, Katarzyna; Ch?opek, Jan; Morawska-Chochó?, Anna; Ambroziak, Maciej

2014-01-01

243

Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide  

NASA Astrophysics Data System (ADS)

High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed.High-performance hydrogen peroxide sensors provide valuable signals of biological interactions, disorders, and developing of diseases. Low-cost metal oxides are promising alternatives but suffer from low conductivity and sensing activity. Multi-component metal oxides are excellent candidates to accomplish these challenges, but the composition inhomogeneity is difficult to manage with conventional material preparation. We demonstrated redox preparation strategies to successfully synthesize highly homogeneous, noble metal-free H2O2 sensors of spinel nanostructured cobalt manganese oxides with enhanced conductivity, multiple mixed-valence features, and efficient H2O2 sensing activities. The designed redox reactions accompanied with material nucleation/formation are the key factors for compositional homogeneity. High conductivity (1.5 × 10-2 S cm-1) and H2O2 sensing activity (12 times higher than commercial Co3O4) were achieved due to the homogeneous multiple mixed-valence systems of Co(ii)/(iii) and Mn(iii)/(iv). A wide linear detection range (from 0.1 to 25 mM) with a detection limit of 15 ?M was observed. Manganese species assist the formation of large surface area nanostructures, enhancing the H2O2 reduction activities, and inhibit the sensing interference. The material controls of hierarchical nanostructures, elemental compositions, porosity, and electrochemical performances are highly associated with the reaction temperatures. The temperature-dependent properties and nanostructure formation mechanisms based on a reaction rate competition are proposed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr03791f

Kuo, Cheng-Chi; Lan, Wen-Jie; Chen, Chun-Hu

2013-12-01

244

Synthesis of nanostructured materials for biosensor and fuel cell applications  

Microsoft Academic Search

Nanotechnology has attracted the attention of many different fields due to the new and exiting possibilities it entails. However, the future of nanotechnology depends on (i) the successful understanding and discovery of material properties at the nanoscale, (ii) efficient manufacture of nanoscale materials, and (iii) most importantly, incorporation of nanomaterials into real world applications and devices. The purpose of this

Maria Paula Gil

2004-01-01

245

n-Type nanostructured thermoelectric materials prepared from chemically synthesized ultrathin Bi2Te3 nanoplates.  

PubMed

We herein report on the large-scale synthesis of ultrathin Bi(2)Te(3) nanoplates and subsequent spark plasma sintering to fabricate n-type nanostructured bulk thermoelectric materials. Bi(2)Te(3) nanoplates were synthesized by the reaction between bismuth thiolate and tri-n-octylphosphine telluride in oleylamine. The thickness of the nanoplates was ~1 nm, which corresponds to a single layer in Bi(2)Te(3) crystals. Bi(2)Te(3) nanostructured bulk materials were prepared by sintering of surfactant-removed Bi(2)Te(3) nanoplates using spark plasma sintering. We found that the grain size and density were strongly dependent on the sintering temperature, and we investigated the effect of the sintering temperature on the thermoelectric properties of the Bi(2)Te(3) nanostructured bulk materials. The electrical conductivities increased with an increase in the sintering temperature, owing to the decreased interface density arising from the grain growth and densification. The Seebeck coefficients roughly decreased with an increase in the sintering temperature. Interestingly, the electron concentrations and mobilities strongly depended on the sintering temperature, suggesting the potential barrier scattering at interfaces and the doping effect of defects and organic residues. The thermal conductivities also increased with an increase in the sintering temperature because of grain growth and densification. The maximum thermoelectric figure-of-merit, ZT, is 0.62 at 400 K, which is one of the highest among the reported values of n-type nanostructured materials based on chemically synthesized nanoparticles. This increase in ZT shows the possibility of the preparation of highly efficient thermoelectric materials by chemical synthesis. PMID:22268842

Son, Jae Sung; Choi, Moon Kee; Han, Mi-Kyung; Park, Kunsu; Kim, Jae-Yeol; Lim, Seong Joon; Oh, Myunghwan; Kuk, Young; Park, Chan; Kim, Sung-Jin; Hyeon, Taeghwan

2012-02-01

246

Hybrid coarse-grained/atomistic model of "chitosan + carbon nanostructures" composites.  

PubMed

We present a new hybrid molecular dynamics model of chitosan oligomers which is constructed specifically for studying chitosan + carbon nanostructures composites, their structure and mechanical properties. The model is derived for application within the modified molecular mechanics force field AMBER. Method of virtual sites mapping allowed to retain hexagonal rings of chitosan backbone. Mass and structural disposition of virtual atoms has been found as function of joined groups' atoms masses and coordinates. Geometrical parameters (e.g., bond length, valence angles, torsional angles and van der Waals distances) were found using semi-empirical methods. Parameters of interaction within the AMBER force field were estimated according to structural and energy characteristics of chitosan dimers and oligomers. Model has successfully passed multilevel verification based on comparison of its behaviour with atomistic chitosan within the same force field. It appeared that the model reproduces structural and energy characteristics of chitosan and its composites with carbon nanostructures. Moreover, it allows estimation of their mechanical properties. Dynamical characteristics of composite components are also well reproduced. PMID:25311722

Kossovich, Elena L; Kirillova, Irina V; Kossovich, Leonid Yu; Safonov, Roman A; Ukrainskiy, Dmitriy V; Apshtein, Svetlana A

2014-10-01

247

Composite Materials for Wind Power Turbine Blades  

NASA Astrophysics Data System (ADS)

Renewable energy resources, of which wind energy is prominent, are part of the solution to the global energy problem. Wind turbine and the rotorblade concepts are reviewed, and loadings by wind and gravity as important factors for the fatigue performance of the materials are considered. Wood and composites are discussed as candidates for rotorblades. The fibers and matrices for composites are described, and their high stiffness, low density, and good fatigue performance are emphasized. Manufacturing technologies for composites are presented and evaluated with respect to advantages, problems, and industrial potential. The important technologies of today are prepreg (pre-impregnated) technology and resin infusion technology. The mechanical properties of fiber composite materials are discussed, with a focus on fatigue performance. Damage and materials degradation during fatigue are described. Testing procedures for documentation of properties are reviewed, and fatigue loading histories are discussed, together with methods for data handling and statistical analysis of (large) amounts of test data. Future challenges for materials in the field of wind turbines are presented, with a focus on thermoplastic composites, new structural materials concepts, new structural design aspects, structural health monitoring, and the coming trends and markets for wind energy.

Brøndsted, Povl; Lilholt, Hans; Lystrup, Aage

2005-08-01

248

Design of Geopolymeric Materials Based on Nanostructural Characterization and Modeling.  

National Technical Information Service (NTIS)

Geopolymers, a class of largely X-ray amorphous aluminosilicate binder materials, have been studied extensively over the past several decades, but largely from an empirical standpoint. The primary aim of this investigation has been to apply a more science...

G. C. Lukey, J. S. van Deventer, J. L. Provis, P. Duxson

2006-01-01

249

CRYOGENIC ADSORPTION OF HYDROGEN ISOTOPES OVER NANO-STRUCTURED MATERIALS  

SciTech Connect

Porous materials such as zeolites, activated carbon, silica gels, alumina and a number of industrial catalysts are compared and ranked for hydrogen and deuterium adsorption at liquid nitrogen temperature. All samples show higher D{sub 2} adsorption than that of H{sub 2}, in which a HY sample has the greatest isotopic effect while 13X has the highest hydrogen uptake capacity. Material's moisture content has significant impact to its hydrogen uptake. A material without adequate drying could result in complete loss of its adsorption capacity. Even though some materials present higher H{sub 2} adsorption capacity at full pressure, their adsorption at low vapor pressure may not be as good as others. Adsorption capacity in a dynamic system is much less than in a static system. A sharp desorption is also expected in case of temperature upset.

Xiao, S.; Heung, L.

2010-10-07

250

R. Huang Group Research: Mechanics of Electronic Materials and Nanostructures  

E-print Network

, Structures and Materials Clear Plastic Nanoindentation of Single-Crystal Silicon Nanolines: friction-mediated buckling and fracture at nanoscales 40 5 m) Nonlinear Mechanics of Graphene and Carbon Nanotubes 20 25 30

Huang, Rui

251

Raman Studies of the Nanostructure of Sol-Gel Materials  

Microsoft Academic Search

Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis\\/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of

Calvin James Doss

1994-01-01

252

Natural Cellulosic Substance Derived Nano-structured Materials  

Microsoft Academic Search

\\u000a When versatile synthetic chemical processes meet natural biological assemblies, a promising shortcut for the design and fabrication\\u000a of functional materials with tailored structures and properties are lit up. By precisely replicating natural substrates with\\u000a guest matrices, artificial materials are endowed with the initial biological structures and morphologies. To achieve faithful\\u000a inorganic\\/organic replicas of the natural species for the corresponding finest

Yuanqing Gu; Jianguo Huang

253

High-capacity nanostructured germanium-containing materials and lithium alloys thereof  

DOEpatents

Electrodes comprising an alkali metal, for example, lithium, alloyed with nanostructured materials of formula Si.sub.zGe.sub.(z-1), where 0

Graetz, Jason A. (Upton, NY); Fultz, Brent T. (Pasadena, CA); Ahn, Channing (Pasadena, CA); Yazami, Rachid (Los Angeles, CA)

2010-08-24

254

New demands on manufacturing of composite materials  

SciTech Connect

Traditionally the field of advanced composites has been dominated by the needs of the aerospace industry. This has strongly influenced the materials and processes developed. However, during the last few years, a shift of emphasis into other engineering areas has been obvious. Branches such as the mechanical industry, ground transportation, the building industry and the leisure industry are today defining many of the new areas of application for these materials. In these applications fiber-reinforced composites are not just used in large structures but also in crucial small complex-shaped elements of larger machinery in order to improve overall performance. To satisfy these new demands, it is essential to develop innovative material systems and processing techniques which enable the production of composite parts with complex geometries at reasonable cost and with high precision. Most likely the solution to this task lies in the closely integrated development of the material system and the manufacturing method. Several different approaches are today taken in order to reach this goal for composite materials. Furthermore, it is nowadays important that the introduction of any new material or application, especially for high volume production, be accompanied by a thorough life-cycle and environmental plan.

Manson, J.A.E. [Ecole Polytechnique Federale de Lausanne (Switzerland). Lab. de Technologie des Composites et Polymeres

1994-12-31

255

Impact testing of textile composite materials  

NASA Technical Reports Server (NTRS)

The objectives of this report were to evaluate the impact damage resistance and damage tolerance of a variety of textile composite materials. Static indentation and impact tests were performed on the stitched and unstitched uniweave composites constructed from AS4/3501-6 Carbon/Epoxy with a fiberglass yarn woven in to hold the fibers together while being stitched. Compression and tension were measured after the tests to determine the damage resistance, residual strength and the damage tolerance of the specimens.

Portanova, Marc

1995-01-01

256

Ion-modulated nonlinear electronic transport in carbon nanotube bundle/RbAg4I5 thin film composite nanostructures  

NASA Astrophysics Data System (ADS)

We have explored the ion-modulated electronic transport properties of mixed ionic-electronic conductor (MIEC) composite nanostructures made of superionic conductor RbAg4I5 films and carbon nanotube (CNT) bundle spiderwebs. Our experimental and theoretical studies indicate that the formation of ion-electron bound states (IEBSs) leads to strong ion-electron interference effect and interesting electronic transport of CNT, such as nonlinear current-voltage (I-V) characteristics and novel temperature dependence of the current. With increasing temperature, the hybrid nanostructures show rich phases with different dependence of current on temperature, which is related to the structural phase transition of RbAg4I5 and the transition of dissociation of IEBSs. The ion-modulation of the electric conductivity in such MIEC composite nanostructures with great tunability has been used to design new ionic-electronic composite nano-devices with function like field effect transistor.

Sun, Jia-Lin; Zhang, Wei; Wei, Jinquan; Gu, Bingfu

2014-01-01

257

Electrical, thermal, catalytic and magnetic properties of nano-structured materials and their applications  

NASA Astrophysics Data System (ADS)

Nanotechnology is a subject that studies the fabrication, properties, and applications of materials on the nanometer-scale. Top-down and bottom-up approaches are commonly used in nano-structure fabrication. The top-down approach is used to fabricate nano-structures from bulk materials by lithography, etching, and polishing etc. It is commonly used in mechanical, electronic, and photonic devices. Bottom-up approaches fabricate nano-structures from atoms or molecules by chemical synthesis, self-assembly, and deposition, such as sol-gel processing, molecular beam epitaxy (MBE), focused ion beam (FIB) milling/deposition, chemical vapor deposition (CVD), and electro-deposition etc. Nano-structures can have several different dimensionalities, including zero-dimensional nano-structures, such as fullerenes, nano-particles, quantum dots, nano-sized clusters; one-dimensional nano-structures, such as carbon nanotubes, metallic and semiconducting nanowires; two-dimensional nano-structures, such as graphene, super lattice, thin films; and three-dimensional nano-structures, such as photonic structures, anodic aluminum oxide, and molecular sieves. These nano-structured materials exhibit unique electrical, thermal, optical, mechanical, chemical, and magnetic properties in the quantum mechanical regime. Various techniques can be used to study these properties, such as scanning probe microscopy (SPM), scanning/transmission electron microscopy (SEM/TEM), micro Raman spectroscopy, etc. These unique properties have important applications in modern technologies, such as random access memories, display, solar energy conversion, chemical sensing, and bio-medical devices. This thesis includes four main topics in the broad area of nanoscience: magnetic properties of ferro-magnetic cobalt nanowires, plasmonic properties of metallic nano-particles, photocatalytic properties of titanium dioxide nanotubes, and electro-thermal-optical properties of carbon nanotubes. These materials and their properties are briefly reviewed in Chapter One, including the concepts of ferro-magnetism, plasmonics, photocatalysis, thermal emission, and Raman spectra of carbon nanotubes. In Chapter Two, we focus on the magnetic properties of ferro-magnetic cobalt nanowires with high crystalline quality synthesized via a low voltage electro-deposition method. The crystal structure of these Co nanowires is characterized by high resolution transmission electron microscopy and X-ray diffraction. The magnetic properties of individual nanowires and nanowire arrays are investigated by magnetic force microscope (MFM) and superconducting quantum interference device (SQUID) measurements. A theoretical model is developed to explain these experimental observations. In Chapter Three, we exploit the strong plasmon resonance of gold nanoparticles. We also demonstrate a new method for patterning SERS (surface enhanced Raman spectroscopy) aggregates of gold nanoparticles by using a focused laser beam to optically trap the nanoparticles in a water suspension. Raman spectroscopy is used to estimate the temperature in the laser spot during the in-situ aggregation, by measuring the Raman peak of the hydroxyl bond of water. In Chapter Four, we demonstrate plasmonic enhancement of photocatalytic water splitting under visible illumination by integrating strongly plasmonic Au nanoparticles with strongly catalytic TiO2. Electromagnetic simulations indicate that the near-field optical enhancement increases the electron-hole pair generation rate at the surface of the TiO2, thus increasing the amount of photo-generated charge contributing to catalysis. Our results suggest that enhancement factors many times larger than this are possible if this mechanism can be optimized. In Chapter Five, we study the Raman spectra and thermal emission spectra of individual suspended carbon nanotubes induced by electrical heating. Semiconducting and metallic devices exhibit different spectra, based on their distinctive band structures. Raman spectra and the blackbody emission background are used to fit the device temper

Liu, Zuwei

258

Preparation of Nanostructured Materials and Electrical Conductance in Complex Physical Systems  

NASA Astrophysics Data System (ADS)

Production of materials with controlled physical characteristics presents a fundamentally new method for materials science. A new facility has been designed and built using evaporation onto a moving liquid surface. Using this technique metallic particles with diameters less than 200 A with well-characterized surfaces can be prepared. The applications of these nanostructured particles to fundamental investigations is discussed. Particular attention has been given to the investigations of electrical transport in three complex physical systems. Aqueous colloidal dispersions of alpha - Fe_2O_3 particles (average diameter 65 nm) have been prepared at different volume concentrations. The electrical conduction of these composites has been investigated as a function of particle concentration, temperature (from 77 K to 300 K), frequency (including the d.c. case) of the applied electric field, and the strength (up to 7 kOe) of the applied magnetic field. The conductivity increases with particle concentration and with temperature. The frequency dependence of conductivity obeys a power law with an index slightly less than unity and decreasing somewhat with increasing temperature. These observations are interpreted with a model of conduction by electron hopping between localized states. The composites also show an increase in conductivity with the application of a magnetic field. This conductivity enhancement is believed to result from field -induced agglomeration and particle chaining. The ferromagnetic Curie temperature (T _{c}) has been determined for Fe -Ge alloys as a function of Ge concentration (up to ~10 at.%) using electrical resistivity studies. The investigation shows that addition of Ge to Fe causes a small, gradual increase in T_{c} , reaching the maximum value of ~ 1050 K at ~1.5 at.%Ge, followed by a gradual decrease with higher Ge concentrations. This behavior is in sharp contrast with the usual theories which predict decrease of T_{c} with increasing the concentration of non-magnetic particles. At present time, there are no theories capable of explaining this phenomenon. The electrical conductivity of polypyrrole as a function of temperature has been investigated. The observed temperature dependence can be described by lnsigma ~ T^{-{1over 4} }. The experimental results are quantitatively analyzed in the framework of Mott's variable range hopping model. Although this model gives a reasonable description of the conductivity, it does not afford a complete description of the transport properties of polypyrrole.

Cai, Weilong

259

Computational modeling of composite material fires.  

SciTech Connect

Composite materials behave differently from conventional fuel sources and have the potential to smolder and burn for extended time periods. As the amount of composite materials on modern aircraft continues to increase, understanding the response of composites in fire environments becomes increasingly important. An effort is ongoing to enhance the capability to simulate composite material response in fires including the decomposition of the composite and the interaction with a fire. To adequately model composite material in a fire, two physical model development tasks are necessary; first, the decomposition model for the composite material and second, the interaction with a fire. A porous media approach for the decomposition model including a time dependent formulation with the effects of heat, mass, species, and momentum transfer of the porous solid and gas phase is being implemented in an engineering code, ARIA. ARIA is a Sandia National Laboratories multiphysics code including a range of capabilities such as incompressible Navier-Stokes equations, energy transport equations, species transport equations, non-Newtonian fluid rheology, linear elastic solid mechanics, and electro-statics. To simulate the fire, FUEGO, also a Sandia National Laboratories code, is coupled to ARIA. FUEGO represents the turbulent, buoyantly driven incompressible flow, heat transfer, mass transfer, and combustion. FUEGO and ARIA are uniquely able to solve this problem because they were designed using a common architecture (SIERRA) that enhances multiphysics coupling and both codes are capable of massively parallel calculations, enhancing performance. The decomposition reaction model is developed from small scale experimental data including thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) in both nitrogen and air for a range of heating rates and from available data in the literature. The response of the composite material subject to a radiant heat flux boundary condition is examined to study the propagation of decomposition fronts of the epoxy and carbon fiber and their dependence on the ambient conditions such as oxygen concentration, surface flow velocity, and radiant heat flux. In addition to the computational effort, small scaled experimental efforts to attain adequate data used to validate model predictions is ongoing. The goal of this paper is to demonstrate the progress of the capability for a typical composite material and emphasize the path forward.

Brown, Alexander L.; Erickson, Kenneth L.; Hubbard, Joshua Allen; Dodd, Amanda B.

2010-10-01

260

Nanostructured materials for advanced energy conversion and storage devices  

Microsoft Academic Search

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments

Antonino Salvatore Aricò; Peter Bruce; Bruno Scrosati; Jean-Marie Tarascon; Walter van Schalkwijk

2005-01-01

261

NANOSTRUCTURED MATERIAL DESIGN FOR HG, AS, AND SE CAPTURE  

EPA Science Inventory

The goal of this research project is to identify potential materials that can be used as multipollutant sorbents using a hierarchy of computational modeling approaches. Palladium (Pd) and gold (Au) alloys were investigated and the results show that the addition of a small amou...

262

Surface Anchoring of Nematic Phase on Carbon Nanotubes: Nanostructure of Ultra-High Temperature Materials  

SciTech Connect

Nuclear energy is a dependable and economical source of electricity. Because fuel supply sources are available domestically, nuclear energy can be a strong domestic industry that can reduce dependence on foreign energy sources. Commercial nuclear power plants have extensive security measures to protect the facility from intruders [1]. However, additional research efforts are needed to increase the inherent process safety of nuclear energy plants to protect the public in the event of a reactor malfunction. The next generation nuclear plant (NGNP) is envisioned to utilize a very high temperature reactor (VHTR) design with an operating temperature of 650-1000�°C [2]. One of the most important safety design requirements for this reactor is that it must be inherently safe, i.e., the reactor must shut down safely in the event that the coolant flow is interrupted [2]. This next-generation Gen IV reactor must operate in an inherently safe mode where the off-normal temperatures may reach 1500�°C due to coolant-flow interruption. Metallic alloys used currently in reactor internals will melt at such temperatures. Structural materials that will not melt at such ultra-high temperatures are carbon/graphtic fibers and carbon-matrix composites. Graphite does not have a measurable melting point; it is known to sublime starting about 3300�°C. However, neutron radiation-damage effects on carbon fibers are poorly understood. Therefore, the goal of this project is to obtain a fundamental understanding of the role of nanotexture on the properties of resulting carbon fibers and their neutron-damage characteristics. Although polygranular graphite has been used in nuclear environment for almost fifty years, it is not suitable for structural applications because it do not possess adequate strength, stiffness, or toughness that is required of structural components such as reaction control-rods, upper plenum shroud, and lower core-support plate [2,3]. For structural purposes, composites consisting of strong carbon fibers embedded in a carbon matrix are needed. Such carbon/carbon (C/C) composites have been used in aerospace industry to produce missile nose cones, space shuttle leading edge, and aircraft brake-pads. However, radiation-tolerance of such materials is not adequately known because only limited radiation studies have been performed on C/C composites, which suggest that pitch-based carbon fibers have better dimensional stability than that of polyacrylonitrile (PAN) based fibers [4]. The thermodynamically-stable state of graphitic crystalline packing of carbon atoms derived from mesophase pitch leads to a greater stability during neutron irradiation [5]. The specific objectives of this project were: (i) to generating novel carbonaceous nanostructures, (ii) measure extent of graphitic crystallinity and the extent of anisotropy, and (iii) collaborate with the Carbon Materials group at Oak Ridge National Lab to have neutron irradiation studies and post-irradiation examinations conducted on the carbon fibers produced in this research project.

Ogale, Amod A

2012-04-27

263

Testing of NCSX Composite Coil Material Properties  

SciTech Connect

The National Compact Stellarator Experiment (NCSX) is now in design and requires 18 modular coils that are constructed to a highly complex geometry. The modular coil conductors are designed as a composite of a fine gauge stranded copper cable shaped to the required geometry and vacuum impregnated with a resin. These composite conductors exhibit unique material properties that must be determined and verified through testing. The conductor material properties are necessary for design modeling and performance validation. This paper will present the methods used to test and measure the coil conductor material properties, the unique challenges in measuring these complex materials at both room and liquid nitrogen temperatures and the results of those tests.

Kozub, Thomas; Jurczynski, Stephan; Chrzanowski, James [Princeton Plasma Physics Laboratory (United States)

2005-05-15

264

Ground exposure of composite materials for helicopters  

NASA Technical Reports Server (NTRS)

Residual strength results are presented on four composite material systems that were exposed for three years at locations on the North American Continent. The exposure locations are near the areas where Bell Model 206L Helicopters, that are in a NSA/U.S. Army sponsored flight service program, are flying in daily commercial service. The composite systems are: (1) Kevlar-49 fabric/F-185 epoxy; (2) Kevlar-49 fabric/LRF-277 epoxy; (3) Kevlar-49 fabric/CE-306 epoxy; and (4) T-300 Graphite/E-788 epoxy. All material systems exhibited good strength retention in compression and short beam shear. The Kevlar-49/LRF-277 epoxy retained 88 to 93 percent of the baseline strength while the other material systems exceeded 95 percent of baseline strength. Residual tensile strength of all materials did not show a significant reduction. The available moisture absorption data is also presented.

Baker, D. J.

1984-01-01

265

A study on thermoelectric properties of nanostructured bulk materials  

Microsoft Academic Search

Solid-state cooling and power generation based on thermoelectric effects are attractive for a wide range of applications in power generation, waste heat recovery, air-conditioning, and refrigeration. There have been persistent efforts on improving figure of merit (ZT) since 1950's, but the ZTs of dominant commercial bulk materials have been remained at ˜1. To improve ZT to a higher value, we

Bed Poudel

2007-01-01

266

Nanostructured high-energy cathode materials for advanced lithium batteries  

NASA Astrophysics Data System (ADS)

Nickel-rich layered lithium transition-metal oxides, LiNi1-xMxO2 (M?=?transition metal), have been under intense investigation as high-energy cathode materials for rechargeable lithium batteries because of their high specific capacity and relatively low cost. However, the commercial deployment of nickel-rich oxides has been severely hindered by their intrinsic poor thermal stability at the fully charged state and insufficient cycle life, especially at elevated temperatures. Here, we report a nickel-rich lithium transition-metal oxide with a very high capacity (215?mA?h?g-1), where the nickel concentration decreases linearly whereas the manganese concentration increases linearly from the centre to the outer layer of each particle. Using this nano-functional full-gradient approach, we are able to harness the high energy density of the nickel-rich core and the high thermal stability and long life of the manganese-rich outer layers. Moreover, the micrometre-size secondary particles of this cathode material are composed of aligned needle-like nanosize primary particles, resulting in a high rate capability. The experimental results suggest that this nano-functional full-gradient cathode material is promising for applications that require high energy, long calendar life and excellent abuse tolerance such as electric vehicles.

Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo; Lee, Dong-Ju; Jung, Hun-Gi; Ren, Yang; Wang, Steve; Yoon, Chong Seung; Myung, Seung-Taek; Amine, Khalil

2012-11-01

267

Nanostructured Solar Irradiation Control Materials for Solar Energy Conversion  

NASA Technical Reports Server (NTRS)

Tailoring the solar absorptivity (alpha(sub s)) and thermal emissivity (epsilon(sub T)) of materials constitutes an innovative approach to solar energy control and energy conversion. Numerous ceramic and metallic materials are currently available for solar absorbance/thermal emittance control. However, conventional metal oxides and dielectric/metal/dielectric multi-coatings have limited utility due to residual shear stresses resulting from the different coefficient of thermal expansion of the layered materials. This research presents an alternate approach based on nanoparticle-filled polymers to afford mechanically durable solar-absorptive and thermally-emissive polymer nanocomposites. The alpha(sub s) and epsilon(sub T) were measured with various nano inclusions, such as carbon nanophase particles (CNPs), at different concentrations. Research has shown that adding only 5 wt% CNPs increased the alpha(sub s) and epsilon(sub T) by a factor of about 47 and 2, respectively, compared to the pristine polymer. The effect of solar irradiation control of the nanocomposite on solar energy conversion was studied. The solar irradiation control coatings increased the power generation of solar thermoelectric cells by more than 380% compared to that of a control power cell without solar irradiation control coatings.

Kang, Jinho; Marshall, I. A.; Torrico, M. N.; Taylor, C. R.; Ely, Jeffry; Henderson, Angel Z.; Kim, J.-W.; Sauti, G.; Gibbons, L. J.; Park, C.; Lowther, S. E.; Lillehei, P. T.; Bryant, R. G.

2012-01-01

268

A risk forecasting process for nanostructured materials, and nanomanufacturing  

NASA Astrophysics Data System (ADS)

Nanomaterials exhibit novel properties that enable new applications ranging from molecular electronics to energy production. Proactive consideration of the potential impacts on human health and the environment resulting from nanomaterial production and use requires methods for forecasting risk associated with of these novel materials. However, the potential variety of nanomaterials is virtually infinite and a case-by-case analysis of the risks these materials may pose is not possible. The challenge of forecasting risk for a broad number of materials is further complicated by large degrees of uncertainty concerning production amounts, the characteristics and uses of these materials, exposure pathways, and a scarcity of data concerning the relationship between nanomaterial characteristics and their effects on organisms and ecosystems. A traditional risk assessment on nanomaterials is therefore not possible at this time. In its place, an evolving process is needed for analyzing the risks associated with emerging nanomaterials-related industries. In this communication, we propose that such a process should include the following six key features: (1) the ability to generate forecasts and associated levels of uncertainty for questions of immediate concern; (2) a consideration of all pertinent sources of nanomaterials; (3) an inclusive consideration of the impacts of activities stemming from nanomaterial use and production that extends beyond the boundaries of toxicology and include full life cycle impacts; (4) the ability to adapt and update risk forecasts as new information becomes available; (5) feedback to improve information gathering; and (6) feedback to improve nanomaterial design. Feature #6 implies that the potential risks of nanomaterials must ultimately be determined as a function of fundamental, quantifiable properties of nanomaterials, so that when these properties are observed in a new material, they can be recognized as indicators of risk. Thus, the required risk assessment process for nanomaterials addresses needs that span from urgent, short-term questions dealing with nanomaterials currently in commerce, to longer-term issues that will require basic research and advances in theory. In the following sections we outline issues surrounding each of these six features and discuss.

Wiesner, Mark R.; Bottero, Jean-Yves

2011-09-01

269

Temperature dependence of nanostructure in PbSe–ZnSe composite thin film  

NASA Astrophysics Data System (ADS)

The nanostructure of PbSe–ZnSe composite thin films prepared by the hot-wall deposition (HWD) method was investigated using small-angle x-ray (SAXS) scattering. The SAXS profiles indicate the formation of two kinds of nanoparticles: large nanoparticles that vanish and small particles that increase in size with increasing temperature. At high substrate temperatures, the volume fraction of all the nanoparticles estimated from SAXS is consistent with that of PbSe obtained by chemical analysis. This shows that PbSe forms nanoparticles at high substrate temperatures. On the other hand, the same analysis for the volume fraction at low substrate temperatures reveals that the chemical composition of the nanoparticles differs from PbSe. Pb nanoparticles are probably formed at low substrate temperatures and disappear with increasing substrate temperature.

Oba, Yojiro; Abe, Seishi; Ohnuma, Masato; Sato, Nobuhiro; Sugiyama, Masaaki

2014-10-01

270

Composite materials for rail transit systems  

NASA Technical Reports Server (NTRS)

The potential is explored for using composite materials in urban mass transit systems. The emphasis was to identify specific advantages of composite materials in order to determine their actual and potential usage for carbody and guideway structure applications. The literature was reviewed, contacts were made with major domestic system operators, designers, and builders, and an analysis was made of potential composite application to railcar construction. Composites were found to be in use throughout the transit industry, usually in secondary or auxiliary applications such as car interior and nonstructural exterior panels. More recently, considerable activity has been initiated in the area of using composites in the load bearing elements of civil engineering structures such as highway bridges. It is believed that new and improved manufacturing refinements in pultrusion and filament winding will permit the production of beam sections which can be used in guideway structures. The inherent corrosion resistance and low maintenance characteristics of composites should result in lowered maintenance costs over a prolonged life of the structure.

Griffin, O. Hayden, Jr.; Guerdal, Zafer; Herakovich, Carl T.

1987-01-01

271

Composite materials in flexible multibody systems  

Microsoft Academic Search

In this work the flexible multibody dynamics formulations of complex models are extended to include elastic components made of laminated composite materials. The only limitation for the deformation of a structural member is that it must be elastic and linear when described in a body fixed frame. A finite element model for each flexible body is obtained such that the

Maria Augusta Neto; Jorge A. C. Ambrósio; Rogério P. Leal

2006-01-01

272

MECHANICS METHODOLOGY FOR TEXTILE PREFORM COMPOSITE MATERIALS  

Microsoft Academic Search

NASA and its contractors have completed a program to develop a basic mechanics underpinning for textile composites. Three major deliverables were produced by the program: 1. a set of test methods for measuring material properties and design allowables 2. mechanics models to predict the effects of the fiber preform architecture and constituent properties on engineering moduli, strength, damage resistance, and

Clarence C. Poe

1996-01-01

273

Raman Studies of the Nanostructure of Sol-Gel Materials  

NASA Astrophysics Data System (ADS)

Four sol-gel systems (alumina, aluminum hydroxide, zirconia, and magnesia) were investigated, primarily by laser spectroscopy, on several series of materials prepared by systematically varying the synthesis procedures. Nanocrystalline boehmite, gamma -AlO(OH), was found to be the principal component in the sol-gel alumina system. Materials were prepared by the hot-water hydrolysis/condensation of rm Al(OC_4H_9)_3, the Yoldas process, as a function of process variables such as the time spent in the sol phase. Small but systematic changes, as a function of sol aging time, were discovered in the lineshape and position of the dominant boehmite Raman band observed in the alumina hydrogels. These spectral changes were interpreted in terms of nanocrystallinity-induced finite-size effects associated with the slow growth of AlO(OH) nanocrystals in the sol. X-ray diffraction experiments were used to determine nanocrystal sizes (as small as 3 nm for gels prepared from fresh sols) and to estimate growth kinetics from the Raman-lineshape results. These results appear to be among the first available for crystallite growth kinetics (ripening) in the near-atomic-scale nanocrystal regime. The trihydroxide polymorph system is closely related to the sol-gel alumina system. The processing temperature and the method of hydrolysis were varied, in order to determine their effect on the trihydroxide phase mix. The trihydroxide phase mix does not change with time; it depends only on the initial hydrolysis conditions. Bayerite is the primary phase present for materials processed at 25 C, while nordstrandite is the primary phase present for materials processed at 60 C. It is shown that the trihydroxide crystal nucleation kinetics are responsible for the Al(OH)_3 phase mix. Hydroxide/oxyhydroxide phase-mix kinetics were also studied; this ratio increases with time. The associated rate constant decreases with increasing temperature. Sol-gel zirconia was prepared by using atmospheric water to hydrolyze a mixture of zirconium propoxide, acetic acid, and n-propanol. This produces a clear gel. Hydrogen peroxide was found to chemically react with the gels. Clean Raman spectra reveal a broad-band structure (the full width at half maximum is 150 cm^{-1} ) centered at about 460 cm^{ -1}. Raman and luminescent spectra (both obtained on the Raman spectrometer) were used to monitor the conversion of magnesium-carbonate-based materials to magnesium oxide, as a function of temperature. This new phase-determination technique utilizes the krypton 674.1 nm laser line so that the carbonate symmetric-stretch band and the MgO:Cr ^{+++} luminescence band are readily observable on the same spectrum. (Abstract shortened by UMI.).

Doss, Calvin James

274

Data-mined similarity function between material compositions  

E-print Network

A new method for assessing the similarity of material compositions is described. A similarity measure is important for the classification and clustering of compositions. The similarity of the material compositions is ...

Yang, Lusann

275

Nanostructure multilayer dielectric materials for capacitors and insulators  

DOEpatents

A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO{sub 2}) and alumina (Al{sub 2}O{sub 3}) in alternating layers to form a nano-laminate. 1 fig.

Barbee, T.W. Jr.; Johnson, G.W.

1998-04-21

276

Nanostructure multilayer dielectric materials for capacitors and insulators  

DOEpatents

A capacitor is formed of at least two metal conductors having a multilayer dielectric and opposite dielectric-conductor interface layers in between. The multilayer dielectric includes many alternating layers of amorphous zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3). The dielectric-conductor interface layers are engineered for increased voltage breakdown and extended service life. The local interfacial work function is increased to reduce charge injection and thus increase breakdown voltage. Proper material choices can prevent electrochemical reactions and diffusion between the conductor and dielectric. Physical vapor deposition is used to deposit the zirconium oxide (ZrO.sub.2) and alumina (Al.sub.2 O.sub.3) in alternating layers to form a nano-laminate.

Barbee, Jr., Troy W. (Palo Alto, CA); Johnson, Gary W. (Livermore, CA)

1998-04-21

277

Nanostructured material for advanced energy storage : magnesium battery cathode development.  

SciTech Connect

Magnesium batteries are alternatives to the use of lithium ion and nickel metal hydride secondary batteries due to magnesium's abundance, safety of operation, and lower toxicity of disposal. The divalency of the magnesium ion and its chemistry poses some difficulties for its general and industrial use. This work developed a continuous and fibrous nanoscale network of the cathode material through the use of electrospinning with the goal of enhancing performance and reactivity of the battery. The system was characterized and preliminary tests were performed on the constructed battery cells. We were successful in building and testing a series of electrochemical systems that demonstrated good cyclability maintaining 60-70% of discharge capacity after more than 50 charge-discharge cycles.

Sigmund, Wolfgang M. (University of Florida, Gainesville, FL); Woan, Karran V. (University of Florida, Gainesville, FL); Bell, Nelson Simmons

2010-11-01

278

Autophagous spacecraft composite materials for orbital propulsion  

NASA Astrophysics Data System (ADS)

We are developing structural polymer composite materials that can be converted into fuels and combusted with oxidizers for orbital propulsion of spacecraft. We have identified candidate materials and demonstrated sustained combustion with nitrogen tetroxide (NTO) as an oxidizer. To improve reaction chemistry we have evaluated several energetic additives. Detailed material compatibility tests were conducted to identify stable combinations of structural polymer and energetic additives. We have also demonstrated sustained combustion of structural polymeric materials with embedded additives and NTO. In the next phase of research, we plan to investigate hydrogen peroxide as the oxidizer. Samples of composites comprising thin metallic facesheets, structural polymer propellant matrix, and metallic mesh reinforcements (that also serve as electrical heaters/igniters for pyrolysis) were fabricated and their mechanical properties were measured. Concept of a spacecraft structural stringer, which also functions as a thruster, was developed using the composite material formulation. Both all solid and hybrid stringer-thruster designs have been developed. Prototype stringer-thrusters will be fabricated and tested in Phase II.

Joshi, Prakash; Upschulte, Bernard L.; Gelb, Alan H.; Green, B. David; Lester, Dean M.; Wallace, Ingvar; Starrett, W. David; Marshall, David W.

2002-07-01

279

Accelerated Aging of Polymer Composite Bridge Materials  

SciTech Connect

Accelerated aging research on samples of composite material and candidate ultraviolet (UV) protective coatings is determining the effects of six environmental factors on material durability. Candidate fastener materials are being evaluated to determine corrosion rates and crevice corrosion effects at load-bearing joints. This work supports field testing of a 30-ft long, 18-ft wide polymer matrix composite (PMC) bridge at the Idaho National Engineering and Environmental Laboratory (INEEL). Durability results and sensor data from tests with live loads provide information required for determining the cost/benefit measures to use in life-cycle planning, determining a maintenance strategy, establishing applicable inspection techniques, and establishing guidelines, standards, and acceptance criteria for PMC bridges for use in the transportation infrastructure.

J. G. Rodriguez; L. G. Blackwood; L. L. Torres; N. M. Carlson; T. S. Yoder

1999-03-01

280

Template synthesis and characterization of nanostructured lithium insertion electrodes and nanogold/porous aluminum oxide composite membranes  

NASA Astrophysics Data System (ADS)

A membrane-based template synthesis method was used to prepare nanostructured Li-ion battery electrodes and nanogold/porous aluminum oxide composite membranes. Membrane-based template synthesis is a general method for the preparation of nanomaterials which entails deposition of the material of interest, or a suitable precursor, within the nanometer-diameter pores in a porous template membrane. This method allows for control of nanoparticle size and shape and is compatible with many methods of synthesis for bulk materials. The template membranes used in this work were commercially available porous polycarbonate filtration membranes and nanoporous aluminum oxide membranes that were prepared in-house. Nanostructured electrodes of orthorhombic V2O5, prepared using membrane-based template synthesis, were used to investigate the effects of Li-ion diffusion distance and V2O5 surface area on electrode rate capability. Nanowires of V2O5 were prepared by depositing a precursor in the pores of microporous polycarbonate filtration membranes. The result was an ensemble of 115 nm diameter, 2 mum long nanowires of V2O5 which protruded from a V 2O5 surface layer like the bristles of a brush. The Li + storage capacity of the nanostructured electrode was compared to a thin film control electrode at high discharge rates. Results show that the nanostructured electrode delivered three to four times the capacity of the thin film electrode at discharge rates above 500 C. A membrane based template synthesis method was also used to prepare crystalline V2O5 electrodes which have high volumetric charge capacities, at high discharge rates, compared to a thin-film control electrode. In order to obtain high volumetric rate capability, the as-received polycarbonate template membranes were chemically etched to increase membrane porosity. Nanofibrous electrodes of crystalline V2O5 were then prepared by depositing an alkoxide precursor in the pores of the etched membranes. Electrode volumetric capacity was further increased by addition of the V2O 5 precursor to the parent nanostructured electrodes. Results on the volumetric and geometric rate capabilities and the cycling performance of these electrodes are presented. Finally, nanogold was electrochemically deposited in porous aluminum oxide template membranes to study the effect of temperature on the shape and optical properties of the gold nanoparticles. Low aspect ratio nanoparticles were observed, via electron microscopy, to be thin skinned, flakes of Au within the pores. After heat treatment at temperatures well below the melting point of gold (<400 C) these particles changed shape to become nearly spherical. Visually, the color of these membranes changed from blue to red after the heat treatment. In contrast, the nanoparticles with an aspect ratio of ca. 3 showed essentially no detectable change in shape or optical properties after exposure to the same heating program. The membranes started red and did not change color with heating.

Patrissi, Charles John

281

Composite materials for precision space reflector panels  

NASA Technical Reports Server (NTRS)

One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified, and thermal, mechanical and durability properties of candidate materials after exposure to simulated space environments are compared. A parabolic, graphite-phenolic honeycomb composite panel having a surface accuracy of 70.8 microinches rms and an areal weight of 1.17 lbm/sq ft was fabricated with T50/ERL1962 facesheets, a PAEI thermoplastic surface film, and Al and SiO(x) coatings.

Tompkins, Stephen S.; Funk, Joan G.; Bowles, David E.; Towell, Timothy W.; Connell, John W.

1992-01-01

282

Mechanics of failure of composite materials  

NASA Technical Reports Server (NTRS)

Composite materials are both inhomogeneous and anisotropic. Both of these characteristics affect the internal stress distributions since inhomogeneity involves variations in both strength and stiffness. The fracture mechanics of nonuniform materials are considered, taking into account the effect of nonuniformity on stress distributions near the crack tip, predicted yield zones in nonuniform and uniform materials, and the fracture of a center-notched unidirectional specimen. The mechanics of failure of laminated materials is discussed. It is found that the development of damage in a laminate with increasing load and, possibly, increasing numbers of cycles of loading is peculiar to the laminate in question, i.e., the material system, the stacking sequence, and the geometry. Approaches for monitoring damage development are also described.

Reifsnider, K. L.

1978-01-01

283

Localized Programmable Gas Phase Electrodeposition Yielding Functional Nanostructured Materials and Molecular Arrays  

NASA Astrophysics Data System (ADS)

This thesis focuses on nanomanufacturing processes for the heterogeneous integration of nanomaterials and molecules. We demonstrate and discovered a novel gas phase method to control material flux at specific points on a surface which is based on the interplay of high mobility gas ions and lower mobility nanoparticles and molecules in the presence of a patterned substrate. The thesis is divided into two parts describing applications of the discovered process for the localized deposition of (A) metallic and semiconducting particles producing functional nanostructured deposits including multimaterial sensor arrays and nanostructured electrodes for photovoltaic applications and, (B) molecules for gas sensor application demonstrating improved collection efficiencies and sensitivity over previously methods. Section (A) begins with the description of an arc discharge based method to produce a flux of charged nanoparticles (<5nm particles Au, Ag, Pt, W, TiO2, ZnO and Ge) which are characterized using various methods. It then describes a process to locally deposit the charged particles into extended two and three dimensional metallic and semiconducting nanostructured deposits. The thesis describes the use externally-biased electrodes to achieve an electronic shutter to turn ON/OFF the deposition in selected domains. Subsequently it explores and describes the use of patterned dielectrics whereby the patterned dielectrics are charged to define arrays of electrodynamic lenses. Incorporation of these lensing structures was found to enable nanostructured deposits with sub 100nm lateral resolution. The utility of the discovered processes are demonstrated in two areas. For the first application, semiconducting nanomaterial are sequentially deposited on the same substrate to fabricate a multi-material/multi-functional sensor array on a single substrate in a single deposition process. The process eliminates critical alignment and masking steps and has a higher material efficiency when compared with traditional vapor deposition methods. In the second application, we demonstrate the fabrication of 3D nanostructured electrodes for photovoltaic application. The second application adjusts the material flux in selected domains to identify nanostructures and device metrics in a combinatorial way. Section (B) applies the process to the localized collection of airborne molecules. The goal was to determine if the process can be scaled to particles with molecular dimensions. This turned out to be the case. As an application we demonstrate enhanced collection efficiencies of molecular species in gas sensor applications. The research recognizes that various nanostructured sensor designs currently aim to achieve or claim single molecular detection by a reduction of the active sensor size. However, a reduction of the sensor size has the negative effect of reducing the capture probability considering the diffusion based analyte transport commonly used. Specifically, we applied the discovered localized programmable electrodynamic precipitation concept to collect, spot, and detect airborne species in an active-matrix array-like fashion. The method is tested using surface enhanced Raman spectroscopy (SERS). The process can produce hybrid molecular arrays on a single chip over a broad range of molecular weights including small molecules or large macromolecules. From a gas sensor system point of view it was possible to improved collection efficiencies and sensitivity over previously method.

Lin, En-Chiang

284

Compression Testing of Textile Composite Materials  

NASA Technical Reports Server (NTRS)

The applicability of existing test methods, which were developed primarily for laminates made of unidirectional prepreg tape, to textile composites is an area of concern. The issue is whether the values measured for the 2-D and 3-D braided, woven, stitched, and knit materials are accurate representations of the true material response. This report provides a review of efforts to establish a compression test method for textile reinforced composite materials. Experimental data have been gathered from several sources and evaluated to assess the effectiveness of a variety of test methods. The effectiveness of the individual test methods to measure the material's modulus and strength is determined. Data are presented for 2-D triaxial braided, 3-D woven, and stitched graphite/epoxy material. However, the determination of a recommended test method and specimen dimensions is based, primarily, on experimental results obtained by the Boeing Defense and Space Group for 2-D triaxially braided materials. They evaluated seven test methods: NASA Short Block, Modified IITRI, Boeing Open Hole Compression, Zabora Compression, Boeing Compression after Impact, NASA ST-4, and a Sandwich Column Test.

Masters, John E.

1996-01-01

285

Polymeric nanostructured material for high-density three-dimensional optical memory storage  

NASA Astrophysics Data System (ADS)

The unique properties of a polymer photonic crystal are examined with respect to applications as a medium for high-density three-dimensional optical data storage media. The nanocomposite material was produced from core-shell latex particles, in which the latex cores contained dye-labeled polymer. Nonfluorescent latex shells were attached to the core particles. Upon annealing, the close-packed core-shell particles formed a nanostructured material with the fluorescent particles periodically embedded into the optically inert matrix in a hexagonal close-packed structure. A two-photon laser scanning microscope was used to write bits of information into the material by photobleaching the optically sensitive particles and, under much lower fluence, read out the resulting image. Relative to conventional homogeneous storage media, the nanostructured periodic material is shown to increase the effective optical storage density by at least a factor of 2 by spatially localizing the optically active region and imposing an optically inactive barrier to cross-talk between bits. This polymer photonic crystal has the potential to dramatically improve performance further through the improved capabilities to optimize the photochemical processes and more fully exploiting the periodic nature of the information domains in the image processing.

Siwick, Bradley J.; Kalinina, Olga; Kumacheva, Eugenia; Miller, R. J. Dwayne; Noolandi, Jaan

2001-11-01

286

Immobilization of lipase and keratinase on functionalized SBA-15 nanostructured materials  

NASA Astrophysics Data System (ADS)

SBA-15 nanostructured materials were synthesized via hydrothermal treatment and were functionalized with 3- aminopropyltriethoxysilane (APTES). The obtained samples were characterized by different techniques such as XRD, BET, TEM, IR and DTA. After functionalization, it showed that these nanostrucrured materials still maintained the hexagonal pore structure of the parent SBA-15. The model enzyms chosen in this study were lipase and keratinase. Lipase was a biocatalyst for hydrolyzation of long chain triglycerides or methyl esters of long chain alcohols and fatty acids; keratinase is a proteolytic enzyme that catalyzes the cleavage of keratin. The functionalized SBA-15 materials were used to immobilize lipase and keratinase, exhibiting higher activity than that of the unfunctionalized pure silica SBA-15 ones. This might be due to the enhancing of surface hydrophobicity upon functionalization. The surface functionalization of the nanostructured silicas with organic groups can favor the interaction between enzyme and the supports and consequently increasing the operational stability of the immobilized enzymes. The loading of lipase on functionalized SBA-15 materials was higher than that of keratinase. This might be rationalized by the difference in size of enzyms.

Le, Hy G.; Vu, Tuan A.; Tran, Hoa T. K.; Dang, Phuong T.

2013-12-01

287

Fabrication of poly(ethylene glycol): gelatin methacrylate composite nanostructures with tunable stiffness and degradation for vascular tissue engineering.  

PubMed

Although synthetic polymers are desirable in tissue engineering applications for the reproducibility and tunability of their properties, synthetic small diameter vascular grafts lack the capability to endothelialize in vivo. Thus, synthetically fabricated biodegradable tissue scaffolds that reproduce important aspects of the extracellular environment are required to meet the urgent need for improved vascular grafting materials. In this study, we have successfully fabricated well-defined nanopatterned cell culture substrates made of a biodegradable composite hydrogel consisting of poly(ethylene glycol) dimethacrylate (PEGDMA) and gelatin methacrylate (GelMA) by using UV-assisted capillary force lithography. The elasticity and degradation rate of the composite PEG-GelMA nanostructures were tuned by varying the ratios of PEGDMA and GelMA. Human umbilical vein endothelial cells (HUVECs) cultured on nanopatterned PEG-GelMA substrates exhibited enhanced cell attachment compared with those cultured on unpatterned PEG-GelMA substrates. Additionally, HUVECs cultured on nanopatterned PEG-GelM substrates displayed well-aligned, elongated morphology similar to that of native vascular endothelial cells and demonstrated rapid and directionally persistent migration. The ability to alter both substrate stiffness and degradation rate and culture endothelial cells with increased elongation and alignment is a promising next step in recapitulating the properties of native human vascular tissue for tissue engineering applications. PMID:24717683

Kim, Peter; Yuan, Alex; Nam, Ki-Hwan; Jiao, Alex; Kim, Deok-Ho

2014-06-01

288

Large scale atomistic approaches to thermal transport and phonon scattering in nanostructured materials  

NASA Astrophysics Data System (ADS)

Decreasing the thermal conductivity of bulk materials by nanostructuring and dimensionality reduction, or by introducing some amount of disorder represents a promising strategy in the search for efficient thermoelectric materials [1]. For example, considerable improvements of the thermoelectric efficiency in nanowires with surface roughness [2], superlattices [3] and nanocomposites [4] have been attributed to a significantly reduced thermal conductivity. In order to accurately describe thermal transport processes in complex nanostructured materials and directly compare with experiments, the development of theoretical and computational approaches that can account for both anharmonic and disorder effects in large samples is highly desirable. We will first summarize the strengths and weaknesses of the standard atomistic approaches to thermal transport (molecular dynamics [5], Boltzmann transport equation [6] and Green's function approach [7]) . We will then focus on the methods based on the solution of the Boltzmann transport equation, that are computationally too demanding, at present, to treat large scale systems and thus to investigate realistic materials. We will present a Monte Carlo method [8] to solve the Boltzmann transport equation in the relaxation time approximation [9], that enables computation of the thermal conductivity of ordered and disordered systems with a number of atoms up to an order of magnitude larger than feasible with straightforward integration. We will present a comparison between exact and Monte Carlo Boltzmann transport results for small SiGe nanostructures and then use the Monte Carlo method to analyze the thermal properties of realistic SiGe nanostructured materials. This work is done in collaboration with Davide Donadio, Francois Gygi, and Giulia Galli from UC Davis.[4pt] [1] See e.g. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 2, 466 (2009).[0pt] [2] A. I. Hochbaum et al, Nature 451, 163 (2008).[0pt] [3] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, Nature 413, 597 (2001).[0pt] [4] B. Poudel et al, Science 320, 634 (2008).[0pt] [5] See e.g. Y. He, D. Donadio, and G. Galli, Nano Lett. 11, 3608 (2011).[0pt] [6] See e.g. A. Ward and D. A. Broido, Phys. Rev. B 81, 085205 (2010).[0pt] [7] See e.g. I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008).[0pt] [8] I. Savic, D.Donadio, F.Gygi, and G.Galli (in preparation).[0pt] [9] See e.g. J. E. Turney, E. S. Landry, A. J. H. McGaughey, and C. H. Amon, Phys. Rev. B, 79, 064301 (2009).

Savic, Ivana

2012-02-01

289

Theory of indentation on multiferroic composite materials  

NASA Astrophysics Data System (ADS)

This article presents a general theory on indentation over a multiferroic composite half-space. The material is transversely isotropic and magneto-electro-elastic with its axis of symmetry normal to the surface of the half-space. Based on the corresponding half-space Green's functions to point sources applied on the surface, explicit expressions for the generalized pressure vs. indentation depth are derived for the first time for the three common indenters (flat-ended, conical, and spherical punches). The important multiphase coupling issue is discussed in detail, with the weak and strong coupling being correctly revisited. The derived analytical solutions of indentation will not only serve as benchmarks for future numerical studies of multiphase composites, but also have important applications to experimental test and characterization of multiphase materials, in particular, of multiferroic properties.

Chen, Weiqiu; Pan, Ernian; Wang, Huiming; Zhang, Chuanzeng

2010-10-01

290

Advanced Technology Composite Fuselage - Materials and Processes  

NASA Technical Reports Server (NTRS)

The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program was to develop the technology required for cost and weight efficient use of composite materials in transport fuselage structure. This contractor report describes results of material and process selection, development, and characterization activities. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of monolithic and sandwich skin panels. Circumferential frames and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant section stiffening elements. Drape forming was chosen for stringers and other stiffening elements. Significant development efforts were expended on the AFP, braiding, and RTM processes. Sandwich core materials and core edge close-out design concepts were evaluated. Autoclave cure processes were developed for stiffened skin and sandwich structures. The stiffness, strength, notch sensitivity, and bearing/bypass properties of fiber-placed skin materials and braided/RTM'd circumferential frame materials were characterized. The strength and durability of cocured and cobonded joints were evaluated. Impact damage resistance of stiffened skin and sandwich structures typical of fuselage panels was investigated. Fluid penetration and migration mechanisms for sandwich panels were studied.

Scholz, D. B.; Dost, E. F.; Flynn, B. W.; Ilcewicz, L. B.; Nelson, K. M.; Sawicki, A. J.; Walker, T. H.; Lakes, R. S.

1997-01-01

291

Thermoplastic constructional composite material for radiation protection  

Microsoft Academic Search

The possibility of synthesis of filled metallooligomer powders on the basis of lead ethylsiliconate is considered by a method\\u000a of heterophase interaction, in siloksan chains of which chemically bound lead with a high concentration of atoms of lead is\\u000a contained. Thermoplastic constructional composite materials for radiation protection on the basis of a polystyrene polymeric\\u000a matrix modified by waterproof oligomer lead

V. I. Pavlenko; I. S. Epifanovskii; R. N. Yastrebinskii; O. V. Kuprieva

2011-01-01

292

The physical properties of composite materials  

Microsoft Academic Search

In this review, the physical properties of composite materials are discussed; however, discussion of the mechanical properties\\u000a has been excluded except when necessary for the consideration of properties such as thermal expansion or swelling and shrinkage.\\u000a One of the main aims in the review has been to show how the theoretical and experimental information that is already available\\u000a may be

D. K. Hale

1976-01-01

293

Alkali metal protective garment and composite material  

DOEpatents

A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

Ballif, III, John L. (Salt Lake City, UT); Yuan, Wei W. (Seattle, WA)

1980-01-01

294

Stresses around fasteners in composite materials  

NASA Astrophysics Data System (ADS)

Stress distributions around fasteners in composite materials were experimentally and theoretically studied. The fasteners were cheesehead and countersunk bolts. It was found that samples fastened with countersunk bolts tended to fatigue more rapidly than specimens with cheesehead bolts. Fewer fatigue cycles were needed for damage to initiate in plates with countersunk bolts, and higher direct stress and shear stress values are predicted to occur in plates with countersunk bolts. The principal failure mechanism was delamination, probably due to high direct and shear stresses.

Benchekchou, B.; White, R. G.

1993-04-01

295

Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage  

SciTech Connect

Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

2012-03-20

296

ACEE Composite Structures Technology: Review of selected NASA research on composite materials and structures  

NASA Technical Reports Server (NTRS)

The NASA Aircraft Energy Efficiency (ACEE) Composite Primary Aircraft Structures Program was designed to develop technology for advanced composites in commercial aircraft. Research on composite materials, aircraft structures, and aircraft design is presented herein. The following parameters of composite materials were addressed: residual strength, damage tolerance, toughness, tensile strength, impact resistance, buckling, and noise transmission within composite materials structures.

1984-01-01

297

Fiber Reinforced Composite Materials Used for Tankage  

NASA Technical Reports Server (NTRS)

The Nonmetallic Materials and Processes Group is presently working on several projects to optimize cost while providing effect materials for the space program. One factor that must be considered is that these materials must meet certain weight requirements. Composites contribute greatly to this effort. Through the use of composites the cost of launching payloads into orbit will be reduced to one-tenth of the current cost. This research project involved composites used for aluminum pressure vessels. These tanks are used to store cryogenic liquids during flight. The tanks need some type of reinforcement. Steel was considered, but added too much weight. As a result, fiber was chosen. Presently, only carbon fibers with epoxy resin are wrapped around the vessels as a primary source of reinforcement. Carbon fibers are lightweight, yet high strength. The carbon fibers are wet wound onto the pressure vessels. This was done using the ENTEC Filament Winding Machine. It was thought that an additional layer of fiber would aid in reinforcement as well as containment and impact reduction. Kevlar was selected because it is light weight, but five times stronger that steel. This is the same fiber that is used to make bullet-proof vests trampolines, and tennis rackets.

Cunningham, Christy

2005-01-01

298

Impact of solids on composite materials  

NASA Technical Reports Server (NTRS)

The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.

Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.

1987-01-01

299

Flexible Composite-Material Pressure Vessel  

NASA Technical Reports Server (NTRS)

A proposed lightweight pressure vessel would be made of a composite of high-tenacity continuous fibers and a flexible matrix material. The flexibility of this pressure vessel would render it (1) compactly stowable for transport and (2) more able to withstand impacts, relative to lightweight pressure vessels made of rigid composite materials. The vessel would be designed as a structural shell wherein the fibers would be predominantly bias-oriented, the orientations being optimized to make the fibers bear the tensile loads in the structure. Such efficient use of tension-bearing fibers would minimize or eliminate the need for stitching and fill (weft) fibers for strength. The vessel could be fabricated by techniques adapted from filament winding of prior composite-material vessels, perhaps in conjunction with the use of dry film adhesives. In addition to the high-bias main-body substructure described above, the vessel would include a low-bias end substructure to complete coverage and react peak loads. Axial elements would be overlaid to contain damage and to control fiber orientation around side openings. Fiber ring structures would be used as interfaces for connection to ancillary hardware.

Brown, Glen; Haggard, Roy; Harris, Paul A.

2003-01-01

300

Putting it Together: The Science and Technology of Composite Materials  

NSDL National Science Digital Library

Composite materials are light, strong, corrosion-resistant composites of two or more materials used commonly in manufacturing. This recent report is from the Australian Academy of Science with support from The Cooperative Research Centre for Advanced Composite Structures, Ltd. and the Commonwealth Department of Industry, Science and Resources. It gives information on the history, manufacturing techniques, and efficiency of composite materials. A glossary, reference list, and links to educational sites as well as other composite materials sites are also featured.

2000-01-01

301

Physical and Electrochemical Properties of Nanostructured Nickel Sulfide as a Cathode Material for Lithium Ion Batteries  

NASA Astrophysics Data System (ADS)

Nanostructured nickel sulfide as a cathode material for lithium ion batteries was fabricated. The large surface area of reaction between electrodes and electrolyte offers high energy density and capacity. Also, metal sulfides have high theoretical capacity. Nickel nanowires were fabricated by electrochemical deposition (ECD) using an anodic aluminum oxide (AAO) template with the diameter of 200 nm. Fabricated nickel nanowires were carried out with sulfuration treatment. The morphology and microstructure of the nanowires were characterized with FE-SEM, XRD, TEM and XPS. Nickel sulfide nanowires were applied for lithium ion batteries and charge/discharge tests were carried out with galvanostatic method.

Sim, Seong-Ju; Choi, Young-Jin; Ha, Jin-Ho; Kim, Ki-Won; Cho, Kwon-Koo; Ryu, Kwang-Sun

2011-06-01

302

Deformational methods of material nanostructuring: Premises, history, state of the art, and prospects  

NASA Astrophysics Data System (ADS)

Brief history of origin and development of methods of deformational nanostructuring of materials (DNM) also referred to as methods of severe plastic deformation (SPD) are presented. Principles and efficiencies of the most widespread DNM methods — torsion under quasi-hydrostatic pressure (THP), equal channel angular pressing (ECAP), and hydrostatic isothermal forging (HIF) — are analyzed. Results of pioneer research of the structure and properties of nanomaterials produced by these methods are given. Prospects for the DNM application in industrial technologies of metal treatment and product manufacturing are indicated.

Mulyukov, R. R.; Nazarov, A. A.; Imaev, R. M.

2008-05-01

303

Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials  

DOEpatents

The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

Bailey, Charles L. (Cross Junction, VA); Morozov, Victor (Manassas, VA); Vsevolodov, Nikolai N. (Kensington, MD)

2010-08-17

304

The Challenges and Opportunities of Measuring Properties of Nanoparticles and Nanostructured Materials: Importance of a Multi-Technique Approach  

SciTech Connect

Nanostructured materials are increasingly subject to nearly every type of chemical and physical analysis possible. Because of their small feature size there is a significant focus on tools with high spatial resolution. Since, in addition, because of their high surface area, it is natural to characterize nanomaterials using tools designed to analyze surfaces. Regardless of the approach, nanostructured materials present a variety of obstacles to useful analysis. Specimen handling, contamination, environmental conditions and time can be important for analysis of many materials but are of increased concern for nanomaterials. Impacts of shape and stability of nanostructured materials are less explored. In a program focused on iron nanoparticles we use a combination of tools for routine analysis including XPS, TEM, and XRD and apply other methods as needed to obtain essential information.

Baer, Donald R.; Engelhard, Mark H.; Wang, Chong M.; Lea, Alan S.; Pecher, Klaus H.

2006-04-26

305

One-dimensional nanostructured materials for lithium-ion battery and supercapacitor electrodes  

NASA Astrophysics Data System (ADS)

The need for improved electrochemical storage devices has necessitated research on new and advanced electrode materials. One-dimensional nanomaterials such as nanowires, nanotubes, and nanoribbons, can provide a unique opportunity to engineer electrochemical devices to have improved electronic and ionic conductivity as well as electrochemical and structural transformations. Silicon and germanium nanowires (NWs) were studied as negative electrode materials for lithiumion batteries because of their ability to alloy with large amounts of lithium, leading to 4-10 times higher specific capacities than the graphite standard. These nanowires could be grown vertically off of metallic current collector substrates using the gold-catalyzed vapor-liquid-solid synthesis. Electrochemical measurements of the SiNWs showed that capacities greater than 3,500 mAh/g could be obtained for tens of cycles, while hundreds of cycles could be obtained at lower capacities. As opposed to bulk Si, the SiNWs were observed to maintain their morphology during cycling and did not pulverize due to the large volume changes. Detailed TEM and XRD characterization showed that the SiNWs became amorphous during the first lithiation (charge) and formed a two-phase region between crystalline Si and amorphous Li xSi. Afterwards, the SiNWs remained amorphous and subsequent reaction was through a single-phase cycling of amorphous Si. The good cycling behavior compared to bulk and micron-sized Si particles was attributed to the nanowire morphology and electrode design. The surface chemistry and solid-electrolyte interphase (SEI) were studied using XPS as a function of charge and discharge potential. The common reduction productions expected in the electrolyte (1 M LiPF6 in 1:1 EC/DEC) were observed, with the main component being Li2CO3. The morphology of the SEI was found to change at different potentials, indicating a dynamic process involving deposition, dissolution, and re-deposition on the SiNWs. Longterm cycling performance of the SiNWs in different electrolytes, with various surface modifications and coatings, and other experimental parameters were evaluated. The electrochemical reaction of GeNWs with lithium resulted in capacities of ˜1000 mAh/g for tens of cycles. The GeNWs were also observed to become amorphous after the first charge. Interestingly, very large irreversible capacities were observed in the GeNWs, indicating surface instabilities or reactivity with the electrolyte. To passivate the surface, a thin layer of amorphous Si was used to coat the GeNWs and make Ge-Si coreshell nanowires. This passivation helped to reduce the irreversibly capacity loss and gave reversible capacities typical for the GeNWs. Two positive electrode materials for Li-ion batteries were synthesized in nano-morphologies and characterized. Transformation of layered structured V2O5 nanoribbons into the fully lithiated o-Li 3V2O5 phase was found to depend not only on the width but also the thickness of the nanoribbons. For the first time, complete delithiation of o-Li3V2O5 back to the single-crystalline, pristine V2O5 nanoribbon was observed, indicating a 30% higher energy density. Nanostructured BiOCl, a conversion material, was also synthesized and characterized for its Li insertion properties. Networks of silver nanowires (AgNWs) and single-walled carbon nanotubes (SWNTs) were explored as highly conducting, high surface area, and printable materials for flexible, light-weight supercapacitors. Use of the solution-processible AgNWs and SWNTs, as well as a polymer electrolyte, facilitated the fabrication of an entirely printable device on plastic substrates. The devices showed promising results for high energy and power density supercapacitors, with energy and power densities reaching 24 Wh/kg and 42 kW/kg for the AgNW/SWNT composite.

Chan, Candace Kay

306

Atomistic Monte Carlo simulations of heat transport in Si and SiGe nanostructured materials  

NASA Astrophysics Data System (ADS)

Efficient thermoelectric energy conversion depends on the design of materials with low thermal conductivity and/or high electrical conductivity and Seebeck coefficient [1]. Semiconducting nanostructured materials are promising candidates to exhibit high thermoelectric efficiency, as they may have much lower thermal conductivity than their bulk counterparts [1]. Atomistic simulations capable of handling large samples and describing accurately phonon dispersions and lifetimes at the nanoscale could greatly advance our understanding of heat transport in such materials [2]. We will present an atomistic Monte Carlo method to solve the Boltzmann transport equation [3] that enables the computation of the thermal conductivity of large systems with both empirical and first principles Hamiltonians (e.g. up to several thousand atoms in the case of Tersoff potentials). We will demonstrate how this new approach allows one to rationalize trends in the thermal conductivity of a range of Si and SiGe based nanostructures, as a function of size, dimensionality and morphology [3]. [1] See e.g. A. J. Minnich et al. Energy Environ. Sci. 2, 466 (2009). [2] Y. He, I. Savic, D. Donadio, and G. Galli, accepted in Phys. Chem. Chem. Phys. [3] I. Savic, D. Donadio, F. Gygi, and G. Galli, submitted.

Savic, Ivana; Donadio, Davide; Murray, Eamonn; Gygi, Francois; Galli, Giulia

2013-03-01

307

Plasma-based ion implantation: a valuable technology for the elaboration of innovative materials and nanostructured thin films  

NASA Astrophysics Data System (ADS)

Plasma-based ion implantation (PBII), invented in 1987, can now be considered as a mature technology for thin film modification. After a brief recapitulation of the principle and physics of PBII, its advantages and disadvantages, as compared to conventional ion beam implantation, are listed and discussed. The elaboration of thin films and the modification of their functional properties by PBII have already been achieved in many fields, such as microelectronics (plasma doping/PLAD), biomaterials (surgical implants, bio- and blood-compatible materials), plastics (grafting, surface adhesion) and metallurgy (hard coatings, tribology), to name a few. The major advantages of PBII processing lie, on the one hand, in its flexibility in terms of ion implantation energy (from 0 to 100 keV) and operating conditions (plasma density, collisional or non-collisional ion sheath), and, on the other hand, in the easy transferrability of processes from the laboratory to industry. The possibility of modifying the composition and physical nature of the films, or of drastically changing their physical properties over several orders of magnitude makes this technology very attractive for the elaboration of innovative materials, including metastable materials, and the realization of micro- or nanostructures. A review of the state of the art in these domains is presented and illustrated through a few selected examples. The perspectives opened up by PBII processing, as well as its limitations, are discussed.

Vempaire, D.; Pelletier, J.; Lacoste, A.; Béchu, S.; Sirou, J.; Miraglia, S.; Fruchart, D.

2005-05-01

308

Vertically Aligned Nanostructured Arrays of Inorganic Materials: Synthesis, Distinctive Physical Phenomena, and Device Integration  

NASA Astrophysics Data System (ADS)

The manifestation of novel physical phenomena upon scaling materials to finite size has inspired new device concepts that take advantage of the distinctive electrical, mechanical, and optical, properties of nanostructures. The development of fabrication approaches for the preparation of their 1D nanostructured form, such as nanowires and nanotubes, has contributed greatly to advancing fundamental understanding of these systems, and has spurred the integration of these materials in novel electronics, photonic devices, power sources, and energy scavenging constructs. Significant progress has been achieved over the last decade in the preparation of ordered arrays of carbon nanotubes, II---VI and III---V semiconductors, and some binary oxides such as ZnO. In contrast, relatively less attention has been focused on layered materials with potential for electrochemical energy storage. Here, we describe the catalyzed vapor transport growth of vertical arrays of orthorhombic V2O 5 nanowires. In addition, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy is used to precisely probe the alignment, uniformity in crystal growth direction, and electronic structure of single-crystalline V2O5 nanowire arrays prepared by a cobalt-catalyzed vapor transport process. The dipole selection rules operational for core-level electron spectroscopy enable angle-dependant NEXAFS spectroscopy to be used as a sensitive probe of the anisotropy of these systems and provides detailed insight into bond orientation and the symmetry of the frontier orbital states. The experimental spectra are matched to previous theoretical predictions and allow experimental verification of features such as the origin of the split-off conduction band responsible for the n-type conductivity of V2O5 and the strongly anisotropic nature of vanadyl-oxygen-derived (V=O) states thought to be involved in catalysis. We have also invested substantial effort in obtaining shape and size control of metal oxide materials to obtain a fundamental understanding of the influence of finite size and surface restructuring on electronic instabilities in the proximity of the Fermi level. We present here a novel synthetic approach that takes advantage of the intrinsic octahedral symmetry of rock-salt-structured VO to facilitate the growth of six-armed nanocrystallites of related, technologically more important binary vanadium oxide V2O5 . The prepared nanostructures exhibit clear six-fold symmetry and most notably show remarkable retention of electronic structure. The latter has been evidenced through extensive X-ray absorption spectroscopy measurements. We have further designed a facile, generalizable, and entirely scalable approach for the fabrication of vertically aligned arrays of Fe2O 3/polypyrrole core---shell nanostructures and polypyrrole nanotubes. Our "all electrochemical" approach is based on the fabrication of ?-Fe 2O3 nanowire arrays by the simple heat treatment of commodity low carbon steel substrates, followed by electropolymerization of conformal polypyrrole sheaths around the nanowires. Subsequently, electrochemical etching of the nanowires yields large-area vertically aligned polypyrrole nanotube arrays on the steel substrate. The developed methodology is generalizable to functionalized pyrrole monomers and represents a significant practical advance of relevance to the technological implementation of conjugated polymer nanostructures in electrochromics, electrochemical energy storage, and sensing. As another variation of this general synthetic route, we have extended the practice of our simple oxidative process for the fabrication of large-area ZnO nanostructures, specifically highly aligned nanowire arrays integrated onto galvanized steel substrates which via a simple device design and additive piezoelectric nanopower generation were measured across the array substrates. The nanomaterial syntheses and device fabrication approaches developed here will enable facile integration of piezoelectric nanogenerators on to structural components.

Velazquez, Jesus Manuel

309

Bottom-up nanostructured bulk silicon: a practical high-efficiency thermoelectric material.  

PubMed

The effectiveness of thermoelectric (TE) materials is quantified by the dimensionless figure of merit (zT). An ideal way to enhance zT is by scattering phonons without scattering electrons. Here we show that, using a simple bottom-up method, we can prepare bulk nanostructured Si that exhibits an exceptionally high zT of 0.6 at 1050 K, at least three times higher than that of the optimized bulk Si. The nanoscale precipitates in this material connected coherently or semi-coherently with the Si matrix, effectively scattering heat-carrying phonons without significantly influencing the material's electron transport properties, leading to the high zT. PMID:25311105

Yusufu, Aikebaier; Kurosaki, Ken; Miyazaki, Yoshinobu; Ishimaru, Manabu; Kosuga, Atsuko; Ohishi, Yuji; Muta, Hiroaki; Yamanaka, Shinsuke

2014-10-24

310

Dimensional dependence of photomechanical response in carbon nanostructure composites: a case for carbon-based mixed-dimensional systems.  

PubMed

This paper reports dimensional dependence of the mechanical response in carbon nanostructure composites to near-infrared (NIR) light. Using polydimethylsiloxane, a common silicone elastomer, composites were fabricated with one-dimensional multi-wall carbon nanotubes (MWNTs), two-dimensional single-layer graphene, two-and-a-half-dimensional graphene nanoplatelets and three-dimensional highly ordered pyrolytic graphite. An evaporative mixing technique was utilized to achieve homogeneous dispersions of carbon in the polymer composites, and their photomechanical responses to NIR illumination were studied. For a given carbon concentration, both steady-state photomechanical stress response and energy conversion efficiency were found to be directly related to the dimensional state of the carbon nanostructure additive. A maximum observed stress change of ~60 kPa and ~5 × 10(-3)% efficiency were obtained with just 1 wt% MWNT loading. Actuation and relaxation kinetic responses were found to be related not to dimensionality, but to the percolation threshold of the carbon nanostructure additive in the polymer. Establishing a connective network of the carbon nanostructure additive allowed for energy transduction responsible for the photomechanical effect to activate carbon beyond the NIR illumination point, resulting in enhanced actuation. For samples greater than percolation threshold, photoconductivity of the nanocomposite structure as a function of applied pre-strain was measured. Photoconductive response was found to be inversely proportional to applied pre-strain, demonstrating mechanical coupling. Mechanical response dependence to the carbon nanostructure dimensional state could have significance in developing new types of carbon-based mixed-dimensional composites for sensor and actuator systems. PMID:22551654

Loomis, James; Panchapakesan, Balaji

2012-06-01

311

Dimensional dependence of photomechanical response in carbon nanostructure composites: a case for carbon-based mixed-dimensional systems  

NASA Astrophysics Data System (ADS)

This paper reports dimensional dependence of the mechanical response in carbon nanostructure composites to near-infrared (NIR) light. Using polydimethylsiloxane, a common silicone elastomer, composites were fabricated with one-dimensional multi-wall carbon nanotubes (MWNTs), two-dimensional single-layer graphene, two-and-a-half-dimensional graphene nanoplatelets and three-dimensional highly ordered pyrolytic graphite. An evaporative mixing technique was utilized to achieve homogeneous dispersions of carbon in the polymer composites, and their photomechanical responses to NIR illumination were studied. For a given carbon concentration, both steady-state photomechanical stress response and energy conversion efficiency were found to be directly related to the dimensional state of the carbon nanostructure additive. A maximum observed stress change of ˜60 kPa and ˜5 × 10-3% efficiency were obtained with just 1 wt% MWNT loading. Actuation and relaxation kinetic responses were found to be related not to dimensionality, but to the percolation threshold of the carbon nanostructure additive in the polymer. Establishing a connective network of the carbon nanostructure additive allowed for energy transduction responsible for the photomechanical effect to activate carbon beyond the NIR illumination point, resulting in enhanced actuation. For samples greater than percolation threshold, photoconductivity of the nanocomposite structure as a function of applied pre-strain was measured. Photoconductive response was found to be inversely proportional to applied pre-strain, demonstrating mechanical coupling. Mechanical response dependence to the carbon nanostructure dimensional state could have significance in developing new types of carbon-based mixed-dimensional composites for sensor and actuator systems.

Loomis, James; Panchapakesan, Balaji

2012-06-01

312

The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration  

PubMed Central

Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol?1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm?1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

2010-01-01

313

Composite material systems for hydrogen management  

NASA Technical Reports Server (NTRS)

The task of managing hydrogen entry into elevated temperature structural materials employed in turbomachinery is a critical engineering area for propulsion systems employing hydrogen or decomposable hydrocarbons as fuel. Extant structural materials, such as the Inconel series, are embrittled by the ingress of hydrogen in service, leading to a loss of endurance and general deterioration of load-bearing dependability. Although the development of hydrogen-insensitive material systems is an obvious engineering option, to date insensitive systems cannot meet the time-temperature-loading service extremes encountered. A short-term approach that is both feasible and technologically sound is the development and employment of hydrogen barrier coatings. The present project is concerned with developing, analyzing, and physically testing laminate composite hydrogen barrier systems, employing Inconel 718 as the structural material to be protected. Barrier systems will include all metallic, metallic-to-ceramic, and, eventually, metallic/ceramic composites as the lamellae. Since space propulsion implies repetitive engine firings without earth-based inspection and repair, coating durability will be closely examined, and testing regimes will include repetitive thermal cycling to simulate damage accumulation. The target accomplishments include: generation of actual hydrogen permeation data for metallic, ceramic-metallic, and hybrid metallic/ceramic composition barrier systems, practically none of which is currently extant; definition of physical damage modes imported to barrier systems due to thermal cycling, both transient temperature profiles and steady-state thermal mismatch stress states being examined as sources of damage; and computational models that incorporate general laminate schemes as described above, including manufacturing realities such as porosity, and whatever defects are introduced through service and characterized during the experimental programs.

Pangborn, R. N.; Queeney, R. A.

1991-01-01

314

Energy absorbing hybrid nano-composite materials  

NASA Astrophysics Data System (ADS)

Base Epon 862 resin was enhanced with two types of fillers, graphitized carbon nanofiber (CNF) and silicon dioxide (SiO2) particles. The effect of both filler type and filler loading were investigated with respect to the energy absorbing capacity as well as the thermal stability of the hybrid composite material, measured in terms of the coefficient of thermal expansion (CTE). As well the composites with combinations of the fillers were evaluated for both enhanced damping and thermal stability, making it suitable for structural materials that need multiple functions. The composites were evaluated with dynamic mechanical analysis (DMA) to evaluate viscoelastic response, and using strain gauges to measure thermal strain responses. It has been found that the addition of 3wt% SiO2 along with 3wt% CNF can improve damping loss factors by up to 26% while at the same time improving thermal stability with reductions in CTE of up to 16.5%. Furthermore, these fillers loadings were successfully dispersed as received by mechanical mixing technique, making fabrication more economically suited to engineering applications.

Jang, Jae-Soon; Varischetti, Joshua; Lee, Gyo Woo; Suhr, Jonghwan

2009-03-01

315

Composite materials for thermal energy storage  

DOEpatents

The present invention discloses composite material for thermal energy storage based upon polyhydric alcohols, such as pentaerythritol, trimethylol ethane (also known as pentaglycerine), neopentyl glycol and related compounds including trimethylol propane, monoaminopentaerythritol, diamino-pentaerythritol and tris(hydroxymethyl)acetic acid, separately or in combinations, which provide reversible heat storage through crystalline phase transformations. These phase change materials do not become liquid during use and are in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, porous rock, and mixtures thereof. Particulate additions, such as aluminum or graphite powders, as well as metal and carbon fibers can also be incorporated therein. Particulate and/or fibrous additions can be introduced into molten phase change materials which can then be cast into various shapes. After the phase change materials have solidified, the additions will remain dispersed throughout the matrix of the cast solid. The polyol is in contact with at least one material selected from the group consisting of metals, carbon siliceous, plastic, cellulosic, natural fiber, artificial fiber, concrete, gypsum, and mixtures thereof.

Benson, David K. (Golden, CO); Burrows, Richard W. (Conifer, CO); Shinton, Yvonne D. (Northglenn, CO)

1986-01-01

316

Industry to Education Technical Transfer Program & Composite Materials. Composite Materials Course. Fabrication I Course. Fabrication II Course. Composite Materials Testing Course. Final Report.  

ERIC Educational Resources Information Center

These four reports provide details of projects to design and implement courses to be offered as requirements for the associate degree program in composites and reinforced plastics technology. The reports describe project activities that led to development of curricula for four courses: composite materials, composite materials fabrication I,…

Massuda, Rachel

317

Material sensitive scanning probe microscopy of subsurface semiconductor nanostructures via beam exit Ar ion polishing.  

PubMed

Whereas scanning probe microscopy (SPM) is highly appreciated for its nanometre scale resolution and sensitivity to surface properties, it generally cannot image solid state nanostructures under the immediate sample surface. Existing methods of cross-sectioning (focused ion beam milling and mechanical and Ar ion polishing) are either prohibitively slow or cannot provide a required surface quality. In this paper we present a novel method of Ar ion beam cross-section polishing via a beam exiting the sample. In this approach, a sample is tilted at a small angle with respect to the polishing beam that enters from underneath the surface of interest and exits at a glancing angle. This creates an almost perfect nanometre scale flat cross-section with close to open angle prismatic shape of the polished and pristine sample surfaces ideal for SPM imaging. Using the new method and material sensitive ultrasonic force microscopy we mapped the internal structure of an InSb/InAs quantum dot superlattice of 18 nm layer periodicity with the depth resolution of the order of 5 nm. We also report using this method to reveal details of interfaces in VLSI (very large scale of integration) low k dielectric interconnects, as well as discussing the performance of the new approach for SPM as well as for scanning electron microscopy studies of nanostructured materials and devices. PMID:21415470

Kolosov, O V; Grishin, I; Jones, R

2011-05-01

318

Nanostructured hybrid layered-spinel cathode material synthesized by hydrothermal method for lithium-ion batteries.  

PubMed

Nanostructured spinel LiMn1.5Ni0.5O4, layered Li1.5Mn0.75Ni0.25O2.5 and layered-spinel hybrid particles have been successfully synthesized by hydrothermal methods. It is found that the nanostructured hybrid cathode contains both spinel and layered components, which could be expressed as Li1.13Mn0.75Ni0.25O2.32. Diffraction-contrast bright-field (BF) and dark-field (DF) images illustrate that the hybrid cathode has well dispersed spinel component. Electrochemical measurements reveal that the first-cycle efficiency of the layered-spinel hybrid cathode is greatly improved (up to 90%) compared with that of the layered material (71%) by integrating spinel component. Our investigation demonstrates that the spinel containing hybrid material delivers a high capacity of 240 mAh g(-1) with good cycling stability between 2.0 and 4.8 V at a current rate of 0.1 C. PMID:24828946

Liu, Cong; Wang, Zhiyuan; Shi, Chunsheng; Liu, Enzuo; He, Chunnian; Zhao, Naiqin

2014-06-11

319

Surface modification of plasmonic nanostructured materials with thiolated oligonucleotides in 10 seconds using selective microwave heating  

PubMed Central

This study demonstrates the proof-of-principle of rapid surface modification of plasmonic nanostructured materials with oligonucleotides using low power microwave heating. Due to their interesting optical and electronic properties, silver nanoparticle films (SNFs, 2 nm thick) deposited onto glass slides were used as the model plasmonic nanostructured materials. Rapid surface modification of SNFs with oligonucleotides was carried out using two strategies (1) Strategy 1: for ss-oligonucleotides, surface hybridization and (2) Strategy 2: for ds-oligonucleotides, solution hybridization), where the samples were exposed to 10, 15, 30 and 60 seconds microwave heating. To assess the efficacy of our new rapid surface modification technique, identical experiments carried out without the microwave heating (i.e., conventional method), which requires 24 hours for the completion of the identical steps. It was found that SNFs can be modified with ss- and ds-oligonucleotides in 10 seconds, which typically requires several hours of incubation time for the chemisorption of thiol groups on to the planar metal surface using conventional techniques. PMID:23645933

Abel, Biebele; Aslan, Kadir

2013-01-01

320

Color masterbatch resin composition for packaging material for photographic photosensitive material and packaging material  

US Patent & Trademark Office Database

A color masterbach resin composition for a packaging material for a photographic photosensitive material which does not adversely affect photographic properties of the photographic photosensitive material, comprising a light-shielding material in a concentration thrice as much as or more that of the packaging material for a photographic photosensitive material, and a thermoplastic resin of which 50 wt. % or more is the same type as a thermoplastic resin occupying 50 wt. % or more of the total thermoplastic resin composing the packaging material for a photographic photosensitive material, production thereof, a packaging material for a photographic photosensitive material formed of a color masterbatch resin composition, and production thereof. In the color masterbatch resin composition and the packaging material for a photographic photosensitive material of the invention, light-shielding material is dispersed uniformly by employing a special resin composition, and thereby, adverse affects upon photographic hpotosensitive materials are prevented, and favorable appearance can be ensured. Moreover, fog with time, abnormal sensitivity, abrasion, pressure marks, etc. can be prevented.

1998-09-29

321

Composite Materials Instruction at the United States Naval Academy.  

National Technical Information Service (NTIS)

Composite materials are widely becoming the material of choice for many structural and nonstructural applications. The aircraft industry for example, has used composites for wing skins and other control surfaces that provide savings in fuel consumption an...

J. O. Barton, P. H. Miller

2003-01-01

322

Determination of moisture effects on impact properties of composite materials  

Microsoft Academic Search

Many applications of structural materials involving composites include impact or dynamic loading in a humid environment. Composite materials are known to degrade when subjected to humid conditions, and therefore the humidity confounds the difficulty of determining the high strain rate behavior of composites. Several researchers have found that water absorption by composites causes degradation of matrix dominated quasi-static properties. However,

E. Woldesenbet; N. Gupta; J. R. Vinson

2002-01-01

323

Use of advanced composite materials for innovative building design solutions/  

E-print Network

Advanced composite materials become popular in construction industry for the innovative building design solutions including strengthening and retrofitting of existing structures. The interface between different materials ...

Lau, Tak-bun, Denvid

2009-01-01

324

Polypyrrole metacomposites with different carbon nanostructures Jiahua Zhu,a  

E-print Network

matrix and incorporates different nano-fillers to introduce multi-functionality in one composite materialPolypyrrole metacomposites with different carbon nanostructures Jiahua Zhu,a Xi Zhang,a Neel incorporating different carbon nanostructures (CNS), including graphenes of different sizes, carbon nanofibers

Guo, John Zhanhu

325

Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy  

NASA Technical Reports Server (NTRS)

In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

2006-01-01

326

Mild Synthesis Route to Nanostructured ?-MnO2 as Electrode Materials for Electrochemical Energy Storage  

NASA Astrophysics Data System (ADS)

?-MnO2 electrode materials with sphere-, rod- and flower-like nanostructures were for the first time fabricated by a redox reaction between KMnO4 and NaHSO3 in chemical bath. Crystal structure and morphology of the as-crystallized samples were characterized by X-ray diffraction and scanning electron microscopy. The influence of reaction temperature and H+ concentration on both morphology and crystalline nature was investigated. Their electrochemical behaviors were investigated by cycling voltammetry and galvanostatic charge/discharge measurements in a three-electrode glass cell. Depending upon different synthesis conditions of ?-MnO2 electrodes, their specific capacitance values varied in the range of 43 to 197 F g-1 at the current density of 1 A g-1. Moreover, their specific capacitance values decrease with increasing crystallinity and particle size. In this work, we conclude that the energy storage mechanism is closely related to the particle aggregation state of electrode materials.

Zhang, Yuanjian; Xue, Dongfeng

2012-09-01

327

Final Technical Summary: Center for Fundamental and Applied Research in Nanostructured and Lightweight Materials  

SciTech Connect

The core projects for this DOE-sponsored Center at Michigan Tech have focused on several of the materials problems identified by the NAS. These include: new electrode materials, enhanced PEM materials, lighter and more effective bipolar plates, and improvement of the carbon used as a current carrier. This project involved fundamental and applied research in the development and testing of lightweight and nanostructured materials to be used in fuel cell applications and for chemical synthesis. The advent of new classes of materials engineered at the nanometer level can produce materials that are lightweight and have unique physical and chemical properties. The grant was used to obtain and improve the equipment infrastructure to support this research and also served to fund seven research projects. These included: 1. Development of lightweight, thermally conductive bipolar plates for improved thermal management in fuel cells; 2. Exploration of pseudomorphic nanoscale overlayer bimetallic catalysts for fuel cells; 3. Development of hybrid inorganic/organic polymer nanocomposites with improved ionic and electronic properties; 4. Development of oriented polymeric materials for membrane applications; 5. Preparation of a graphitic carbon foam current collectors; 6. The development of lightweight carbon electrodes using graphitic carbon foams for battery and fuel cell applications; and 7. Movement of water in fuel cell electrodes.

Michael Mullins, Tony Rogers, Julia King, Jason Keith, Bahne Cornilsen, Jeffrey Allen, Ryan Gilbert, Joseph Holles.

2010-09-28

328

Filler Materials for Polyphenylenesulphide Composite Coatings: Preprint  

SciTech Connect

Researchers at Brookhaven National Laboratory and the National Renewable Energy Laboratory have tested polymer-based coating systems to reduce the capital equipment and maintenance costs of heat exchangers in corrosive and fouling geothermal environments. These coating systems act as barriers to corrosion to protect low-cost carbon steel tubing; they are formulated to resist wear from hydroblasting and to have high thermal conductivity. Recently, new filler materials have been developed for coating systems that use polyphenylenesulphide as a matrix. These materials include boehmite crystals (orthorhombic aluminum hydroxide, which is grown in situ as a product of reaction with the geothermal fluid), which enhance wear and corrosion resistance, and carbon fibers, which improve mechanical, thermal, and corrosion-resistance properties of the composite.

Sugama, T.; Gawlik, K.

2001-07-17

329

Composite materials flown on the Long Duration Exposure Facility  

NASA Technical Reports Server (NTRS)

Organic composite test specimens were flown on several LDEF experiments. Both bare and coated composites were flown. Atomic oxygen eroded bare composite material, with the resins being recessed at a greater rate than the fibers. Selected coating techniques protected the composite substrate in each case. Tensile and optical properties are reported for numerous specimens. Fiberglass and metal matrix composites were also flown.

George, Pete E.; Dursch, Harry W.; Pippin, H. Gary

1995-01-01

330

Impact ignition of aluminum-teflon based energetic materials impregnated with nano-structured carbon additives  

NASA Astrophysics Data System (ADS)

The inclusion of graphene into composite energetic materials to enhance their performance is a new area of interest. Studies have shown that the addition of graphene significantly enhances the thermal transport properties of an energetic composite, but how graphene influences the composite's ignition sensitivity has not been studied. The objective of this study is to examine the influence of carbon additives in composite energetic material composed of aluminum and polytetrafluoroethylene (Teflon™) on ignition sensitivity due to low velocity, drop weight impact. Specifically, three forms of carbon additives were investigated and selected based on different physical and structural properties: spherically shaped amorphous nano particles of carbon, cylindrically shaped multi walled carbon nanotubes, and sheet like graphene flakes. Results show an interesting trend: composites consisting of carbon nanotubes are significantly more sensitive to impact ignition and require the lowest ignition energy. In contrast, graphene is least sensitive to ignition exhibiting negligible reduction in ignition energy with low concentrations of graphene additive. While graphene does not significantly sensitize the energetic composite to ignition, graphene does, however, result in greater overall reactivity as observed through images of the reaction. The enhanced thermal transport properties of graphene containing composites may promote greater energy transport once ignited, but those properties do not also increase ignition sensitivity. These results and the understanding of the structural arrangement of particles within a composite as a key parameter affecting impact ignition sensitivity will have an impact on the safe handling and use of composite energetic materials.

Kappagantula, Keerti; Pantoya, Michelle L.; Hunt, Emily M.

2012-07-01

331

Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy.  

PubMed

In this study, silver nanostructures decorated magnetic nanoparticles for surface-enhanced Raman scattering (SERS) measurements were prepared via photoreduction utilizing the catalytic activity of ZnO nanostructure. The ZnO/Fe3O4 composite was first prepared by dispersing pre-formed magnetic nanoparticles into alkaline zinc nitrate solutions. After annealing of the precipitates, the formed ZnO/Fe3O4 composites were successfully decorated with silver nanostructures by soaking the composites into silver nitrate/ethylene glycol solution following UV irradiations. To find the optimal condition when preparing Ag@ZnO/Fe3O4 composites for SERS measurements, factors such as the reaction conditions, photoreduction time, concentration of zinc nitrate and silver nitrate were studied. Results indicated that the photoreduction efficiency was significantly improved with the assistance of ZnO but the amount of ZnO in the composite is not critical. The concentration of silver nitrate and UV irradiation time affected the morphologies of the formed composites and optimal condition in preparation of the composites for SERS measurement was found using 20mM of silver nitrate with an irradiation time of 90 min. Under the optimized condition, the obtained SERS intensities were highly reproducible with a SERS enhancement factor in the order of 7. Quantitative analyses showed that a linear range up to 1 µM with a detection limit lower than 0.1 µM in the detection of creatinine in aqueous solution could be obtained. Successful applying of these prepared composites to determine creatinine in urine sample was obtained. PMID:25159379

Alula, Melisew Tadele; Yang, Jyisy

2014-12-01

332

Efficient dual mode multicolor luminescence in a lanthanide doped hybrid nanostructure: a multifunctional material  

NASA Astrophysics Data System (ADS)

The present work deals with inorganic-organic hybrid nanostructures capable of producing intense visible emission via upconversion (UC), downconversion (DC), and energy transfer (ET) processes which show the potential of the material as a luminescent solar collector (LSC), particularly to improve the efficiency of silicon solar cells. To achieve this, Gd2O3:Yb3 + /Er3 + phosphor (average particle size ~ 35 nm) and a Eu(DBM)3Phen organic complex have been synthesized separately and then the hybrid structure has been developed using a simple mixing procedure. Intense UC emission (in the red, green, and blue regions) due to Er3 + is observed on near infrared (976 nm) excitation which shows color tunability with input pump power. In contrast, intense red emission of Eu3 + is observed on ultaviolet (UV) (355 nm) excitation. The feasibility of energy transfer from Er3 + ions to Eu3 + ions has also been noted. These excellent optical properties are retained even if the particles of the hybrid nanostructure are dispersed in liquid medium, which also makes it suitable for security ink purposes.

Singh, S. K.; Singh, A. K.; Rai, S. B.

2011-07-01

333

First Principles Investigations of Technologically and Environmentally Important Nano-structured Materials and Devices  

NASA Astrophysics Data System (ADS)

In the course of my PhD I have worked on a broad range of problems using simulations from first principles: from catalysis and chemical reactions at surfaces and on nanostructures, characterization of carbon-based systems and devices, and surface and interface physics. My research activities focused on the application of ab-initio electronic structure techniques to the theoretical study of important aspects of the physics and chemistry of materials for energy and environmental applications and nano-electronic devices. A common theme of my research is the computational study of chemical reactions of environmentally important molecules (CO, CO2) using high performance simulations. In particular, my principal aim was to design novel nano-structured functional catalytic surfaces and interfaces for environmentally relevant remediation and recycling reactions, with particular attention to the management of carbon dioxide. We have studied the carbon-mediated partial sequestration and selective oxidation of carbon monoxide (CO), both in the presence and absence of hydrogen, on graphitic edges. Using first-principles calculations we have studied several reactions of CO with carbon nanostructures, where the active sites can be regenerated by the deposition of carbon decomposed from the reactant (CO) to make the reactions self-sustained. Using statistical mechanics, we have also studied the conditions under which the conversion of CO to graphene and carbon dioxide is thermodynamically favorable, both in the presence and in the absence of hydrogen. These results are a first step toward the development of processes for the carbon-mediated partial sequestration and selective oxidation of CO in a hydrogen atmosphere. We have elucidated the atomic scale mechanisms of activation and reduction of carbon dioxide on specifically designed catalytic surfaces via the rational manipulation of the surface properties that can be achieved by combining transition metal thin films on oxide substrates. We have analyzed the mechanisms of the molecular reactions on the class of catalytic surfaces so designed in an effort to optimize materials parameters in the search of optimal catalytic materials. All these studies are likely to bring new perspectives and substantial advancement in the field of high-performance simulations in catalysis and the characterization of nanostructures for energy and environmental applications. Moving to novel materials for electronics applications, I have studied the structural and vibrational properties of mono and bi-layer graphene. I have characterized the lattice thermal conductivity of ideal monolayer and bi-layer graphene, demonstrating that their behavior is similar to that observed in graphite and indicating that the intra-layer coupling does not affect significantly the thermal conductance. I have also calculated the electron-phonon interaction in monolayer graphene and obtained electron scattering rates associated with all phonon modes and the intrinsic resistivity/mobility of monolayer graphene is estimated as a function of temperature. On another project, I have worked on ab initio molecular dynamic studies of novel Phase Change Materials (PCM) for memory and 3D-integration. We characterized high-temperature, sodium | nickel chloride, rechargeable batteries. These batteries are under consideration for hybrid drive systems in transportation applications. As part of our activities to improve performance and reliability of these batteries, we developed an engineering transport model of the component electrochemical cell. To support that model, we have proposed a reaction kinetics expression for the REDOX (reduction-oxidation) reaction at the porous positive electrode. We validate the kinetics expression with electrochemical measurements. A methodology based on the transistor body effect is used to estimate inversion oxide thicknesses (Tinv) in high-kappa/metal gate, undoped, ultra-thin body SOI FINFETs. The extracted Tinvs are compared to independent capacitance voltage (CV) measurements.

Paul, Sujata

334

On free vibrations of a composite material circular cylindrical shells  

NASA Astrophysics Data System (ADS)

The natural vibrations of a thin walled circular cylindrical shell composed of specially orthotropic composite materials are studied in detail. The work of Koga (1988) for isotropic shells is extended to shells of composite materials. The results are easy to use solutions for the natural frequencies for the composite shell expressed in terms of the natural frequencies for beams with the same boundary conditions at the ends, modified to include the effects of the shell geometry and the anisotropic composite material properties.

Fisher, Christopher A.; Vinson, Jack R.

1993-04-01

335

NANOSTRUCTURED MATERIALS-PROCESSING, STRUCTURES, PROPERTIES AND APPLICATIONS Review on the fracture processes in nanocrystalline materials  

E-print Network

suppression in such materials showing good ductility or superplasticity. Introduction Nanocrystalline. However, recently several examples of substantial tensile ductility and even superplasticity ductility or superplasticity. Ductile and brittle fracture modes in nanocrystalline materials: general

Ovid'ko Ilya A.

336

Neutron scattering—The key characterization tool for nanostructured magnetic materials  

NASA Astrophysics Data System (ADS)

The novel properties of materials produced using nanoscale manufacturing processes often arise from interactions across interfaces between dissimilar materials. Thus, to characterize the structure and magnetism of nanoscale materials demands tools with interface specificity. Neutron scattering has long been known to provide unique and quantitative information about nuclear and magnetic structures of bulk materials. Moreover, the specialty techniques of polarized neutron reflectometry and small angle neutron scattering (SANS) with polarized neutron beams and polarization analysis, are ideally and often uniquely suited to studies of nanostructured magnetic materials. Since neutron scattering is a weakly interacting probe, it gives quantifiable and easily-interpreted information on properties of statistically representative quantities of bulk, thin film and interfacial materials. In addition, neutron scattering can provide information to complement that obtained with bulk probes (magnetization, Kerr effect) or surface measurements obtained with scanning probe microscopy or resonant soft x-ray scattering. The straightforward interpretation and the simultaneous availability of structural information, make neutron scattering the technique of choice for the structural and physical characterization of many novel materials, especially those with buried interfaces, ones allowing for isotopic substitutions to decorate buried interfaces, or cases where the magnetic response to an external stimulus can be measured. We describe recent applications of neutron scattering to important thin film materials systems and future opportunities. Unquestionably, neutron scattering has played a decisive role in the development and study of new emergent phenomena. We argue with the advent of new techniques in neutron scattering and sample environment, neutron scattering's role in such studies will become even more dominant. In particular, neutron scattering will clarify and distinguish between intrinsic vs. extrinsic origins of unusual behavior which invariably plague novel materials. Key to realizing these opportunities will be the development of sample environment capabilities especially tailored to test the origins of novel phenomena, and techniques to collect, analyze and correlate neutron event detection with time dependent perturbations to the sample's environment.

Fitzsimmons, M. R.; Schuller, Ivan K.

2014-01-01

337

In-situ TEM - a tool for quantitative observations of deformation behavior in thin films and nano-structured materials  

SciTech Connect

This paper highlights future developments in the field of in-situ transmission electron microscopy, as applied specifically to the issues of deformation in thin films and nanostructured materials. Emphasis is place on the forthcoming technical advances that will aid in extraction of improved quantitative experimental data using this technique.

Stach, E.A.

2001-09-04

338

Nanostructured WO 3 thin film as a new anode material for lithium-ion batteries  

NASA Astrophysics Data System (ADS)

Nanostructured WO 3 thin film has been successfully fabricated by radio-frequency magnetron sputtering method and its electrochemistry with lithium was investigated for the first time. The reversible discharge capacity of WO 3/Li cells cycled between 0.01 V and 4.0 V was found above 626 mAh/g during the first 60 cycles at the current density 0.02 mA/cm 2. By using X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and selected-area electron diffraction measurements, the reversible conversion of WO 3 into nanosized metal W and Li 2O was revealed. The high reversible capacity and good recyclability of WO 3 electrode made it become a promising cathode material for future rechargeable lithium batteries.

Li, Wen-Jing; Fu, Zheng-Wen

2010-02-01

339

Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials  

NASA Astrophysics Data System (ADS)

Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography.

Teixeira, J. M.; Lusche, R.; Ventura, J.; Fermento, R.; Carpinteiro, F.; Araujo, J. P.; Sousa, J. B.; Cardoso, S.; Freitas, P. P.

2011-04-01

340

Versatile, high sensitivity, and automatized angular dependent vectorial Kerr magnetometer for the analysis of nanostructured materials.  

PubMed

Magneto-optical Kerr effect (MOKE) magnetometry is an indispensable, reliable, and one of the most widely used techniques for the characterization of nanostructured magnetic materials. Information, such as the magnitude of coercive fields or anisotropy strengths, can be readily obtained from MOKE measurements. We present a description of our state-of-the-art vectorial MOKE magnetometer, being an extremely versatile, accurate, and sensitivity unit with a low cost and comparatively simple setup. The unit includes focusing lenses and an automatized stepper motor stage for angular dependent measurements. The performance of the magnetometer is demonstrated by hysteresis loops of Co thin films displaying uniaxial anisotropy induced on growth, MnIr/CoFe structures exhibiting the so called exchange bias effect, spin valves, and microfabricated flux guides produced by optical lithography. PMID:21529020

Teixeira, J M; Lusche, R; Ventura, J; Fermento, R; Carpinteiro, F; Araujo, J P; Sousa, J B; Cardoso, S; Freitas, P P

2011-04-01

341

Viscoelastic behavior of fiber-reinforced composite materials undergoing cure  

E-print Network

A viscoelastic material model has been proposed to characterize the curing and thermal effects on the viscoelastic material properties of both the matrix material and the composite lamina. Micromechanics simulations are used to generate...

Wang, Kai

2012-06-07

342

Molecular level assessment of thermal transport and thermoelectricity in materials: From bulk alloys to nanostructures  

NASA Astrophysics Data System (ADS)

The ability to manipulate material response to dynamical processes depends on the extent of understanding of transport properties and their variation with chemical and structural features in materials. In this perspective, current work focuses on the thermal and electronic transport behavior of technologically important bulk and nanomaterials. Strontium titanate is a potential thermoelectric material due to its large Seebeck coefficient. Here, first principles electronic band structure and Boltzmann transport calculations are employed in studying the thermoelectric properties of this material in doped and deformed states. The calculations verified that excessive carrier concentrations are needed for this material to be used in thermoelectric applications. Carbon- and boron nitride-based nanomaterials also offer new opportunities in many applications from thermoelectrics to fast heat removers. For these materials, molecular dynamics calculations are used to evaluate lattice thermal transport. To do this, first, an energy moment term is reformulated for periodic boundary conditions and tested to calculate thermal conductivity from Einstein relation in various systems. The influences of the structural details (size, dimensionality) and defects (vacancies, Stone-Wales defects, edge roughness, isotopic disorder) on the thermal conductivity of C and BN nanostructures are explored. It is observed that single vacancies scatter phonons stronger than other type of defects due to unsatisfied bonds in their structure. In pristine states, BN nanostructures have 4-6 times lower thermal conductivity compared to C counterparts. The reason of this observation is investigated on the basis of phonon group velocities, life times and heat capacities. The calculations show that both phonon group velocities and life times are smaller in BN systems. Quantum corrections are also discussed for these classical simulations. The chemical and structural diversity that could be attained by mixing hexagonal boron nitride and graphene provide further avenues for tuning thermal and electronic properties. In this work, the thermal conductivity of hybrid graphene/hexagonal-BN structures: stripe superlattices and BN (graphene) dots embedded in graphene (BN) are studied. The largest reduction in thermal conductivity is observed at 50% chemical mixture in dot superlattices. The dot radius appears to have little effect on the magnitude of reduction around large concentrations while smaller dots are more influential at dilute systems.

Kinaci, Alper

343

Composition and method for removing photoresist materials from electronic components  

DOEpatents

Composition and method for removing photoresist materials from electronic components. The composition is a mixture of at least one dense phase fluid and at least one dense phase fluid modifier. The method includes exposing a substrate to at least one pulse of the composition in a supercritical state to remove photoresist materials from the substrate.

Davenhall, Leisa B. (Santa Fe, NM); Rubin, James B. (Los Alamos, NM); Taylor, Craig M. V. (Jemez Springs, NM)

2008-06-03

344

Microrobotics Using Composite Materials: The Micromechanical Flying Insect Thorax  

E-print Network

Microrobotics Using Composite Materials: The Micromechanical Flying Insect Thorax R. J. Wood S, srinath, manas, ronf}@robotics.eecs.berkeley.edu Abstract The use of high performance composite materials, and higher stiffness to weight ratios than most metals. Composite structures yield remarkable improvements

Fearing, Ron

345

Composite materials: Tomorrow for the day after tomorrow  

NASA Technical Reports Server (NTRS)

A description is given of the history of the use of composite materials in the aerospace industry. Research programs underway to obtain exact data on the behavior of composite materials over time are discussed. It is concluded that metal composites have not yet replaced metals, but that that this may be a future possibility.

Condom, P.

1982-01-01

346

NDE Elastic Properties of Fiber-Reinforced Composite Materials  

NASA Technical Reports Server (NTRS)

Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

Bar-Cohen, Y.

1995-01-01

347

Sonoelectrochemical Approach Towards Nanostructures  

NASA Astrophysics Data System (ADS)

We will report on the sonoelectrochemical synthesis of nanostructured semiconductor materials. The talk will focus on the control of the nanostructure size, shape, and composition using sonolectrochemistry as a versatile synthesis tool. The synthesis of targeted nanostructures requires thorough control of the redox chemistry during the growth process. The composition of the product can be controlled by changing the initial metal-ligand concentration. Futhermore, the properties of the novel materials will be discussed. Powder X-ray diffraction of the products confirmed the compositional change in the nanomaterials. Control of the involved sonoelectrochemistry also allows for the formation of highly monodispersed 1-D Nanorods. Qiu, Xiaofeng; Lou, Yongbing; Samia, Anna C. S.; Devadoss, Anando; Burgess, James D.; Dayal, Smita; Burda, Clemens. PbTe nanorods by sonoelectrochemistry. Angewandte Chemie, International Edition (2005), 44(36), 5855-5857. Qiu, Xiaofeng; Burda, Clemens; Fu, Ruiling; Pu, Lin; Chen, Hongyuan; Zhu, Junjie. Heterostructured Bi2Se3 Nanowires with Periodic Phase Boundaries. Journal of the American Chemical Society (2004), 126(50), 16276-16277.

Burda, Clemens; Qiu, Xiaofeng

2006-03-01

348

Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance  

NASA Astrophysics Data System (ADS)

In situ polymerization of acrylonitrile with nano-sulfur particles has been developed as a synthetic route to prepare sulfur/polyacrylonitrile (S/pPAN) composite as a cathode material for lithium/sulfur battery. Transmission electronic microscopy revealed the formation of a highly developed network structure consisting of PAN and sulfur homogeneous mixing at nanosized level, providing the “buffering” space to accommodate the volume change of sulfur upon cycling and retaining the structural integrity preventing the material agglomeration and degradation. Benefiting from this unique structure, the S/pPAN composite cathode demonstrated enhanced reversibility, resulting in a discharge capacity of 1177 mAh g-1 at the second cycle and retained about 100% of this value over 100 cycles at 0.5C. Furthermore, the S/pPAN composite cathode delivered a discharge capacity of 981 mAh g-1 at the 100th cycle at 1C.

Zhang, Yongguang; Zhao, Yan; Bakenov, Zhumabay; Konarov, Aishuak; Chen, P.

2014-12-01

349

Organometallic synthesis, structure determination, shape evolution, and formation mechanism of hexapod-like ternary PbSe(x)S(1-x) nanostructures with tunable compositions.  

PubMed

The fabrication of hexapod-like ternary PbSexS1-x nanostructures has been reported via an alternative organometallic route from reaction of Pb(II) salt with triphenylphosphine selenide (Ph3PSe) and dibenzyl disulfide (DBDS) in dibenzylamine (DBA) with addition of oleic acid (OA) at 260 °C. The shape, structure, and composition of the nanostructured hexapods are investigated and determined by techniques of XRD, SEM, TEM, Raman, HRTEM, SAED, XPS, EDX, and HAADF-STEM, and the obtained ternary nanostructured hexapods are of typical rock salt phase with Pb-rich features without phase separation, and their compositions could be systematically regulated by facile variations of reaction parameters. Investigations reveal that the successful fabrication of the ternary hexapods with tunable compositions is resulted from the effective selection of Se and S sources of Ph3PSe and DBDS that have similar reactivity in the current reaction system along with small lattice mismatch between the two end members of PbSe and PbS. Generally, the relations between the composition and lattice parameters for the ternary nanostructures obtained in DBA with varied addition of OA exhibit linear slops that are consistent well with Vegard's law. Interestingly, intensive investigations show that the nanostructures are mainly gradiently alloyed nanostructures with somewhat chalcogen-element segregations or disorders rather than homogeneously alloyed solid-state solutions due to kinetic limitation for short reaction time even though thermodynamics is feasible in the system, and also, high concentration of S element in the feedstocks tends to relative high density of disorders in the ternary nanostructures. Based on the revealing of the formation mechanism for the nanostructures with varied microstructures, the ternary PbSexS1-x hexapods can be tuned from gradient alloys with segregations to approximately homogeneous via enlongating reaction time. In addition, the photolysis of the nanostructures to lead oxysulfate and oxyselenate species is evidenced at ambient condition via Raman detection although they are stable at -190 °C. PMID:24963993

Shao, Genrong; Chen, Guihuan; Zuo, Jian; Gong, Ming; Yang, Qing

2014-07-01

350

One-Dimensional Oxide Nanostructures as Gas-Sensing Materials: Review and Issues  

PubMed Central

In this article, we review gas sensor application of one-dimensional (1D) metal-oxide nanostructures with major emphases on the types of device structure and issues for realizing practical sensors. One of the most important steps in fabricating 1D-nanostructure devices is manipulation and making electrical contacts of the nanostructures. Gas sensors based on individual 1D nanostructure, which were usually fabricated using electron-beam lithography, have been a platform technology for fundamental research. Recently, gas sensors with practical applicability were proposed, which were fabricated with an array of 1D nanostructures using scalable micro-fabrication tools. In the second part of the paper, some critical issues are pointed out including long-term stability, gas selectivity, and room-temperature operation of 1D-nanostructure-based metal-oxide gas sensors. PMID:22319343

Choi, Kyoung Jin; Jang, Ho Won

2010-01-01

351

Design and assembly of nanostructured complex metal oxide materials for the construction of batteries and thermoelectric devices  

NASA Astrophysics Data System (ADS)

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides. Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign and inexpensive, and are chemically stable. . Nevertheless, complex metal oxide-based materials have drawbacks when they are used in thermoelectric devices. Since they have high thermal conductivities and low power factors, they have lower thermoelectric figures of merit (ZT). This affects their performance as thermoelectric materials. Nanostructuring can solve this critical problem as thermal conductivity, electrical conductivity and Seebeck coefficient become quasi-independent of each other under these conditions. However, oxide-based materials have proven to be greatly recalcitrant to forming nanostructures when traditional synthetic methods such as solid-state reactions have been employed. Solid-state reactions usually proceed at extremely high temperatures that are not particularly conducive to forming nanostructures. The first part of this thesis presents novel solution-based synthetic methods that were developed in order to produce novel nanostructured complex metal oxides. Typical structures include nanowires. The second part of this thesis extends this methodology to study the effect of nanostructuring on the thermal conductivity of strontium titanate (SrTiO3), a promising high temperature thermoelectric material. Ultrathin nanowires of SrTiO3 were synthesized using a novel hydrothermal reaction. These ultrathin nanowires were compressed into a `nanostructured' bulk pellet through spark plasma sintering. The thermal conductivity measured on the nanostructured bulk pellet showed a drastic decrease compared to bulk SrTiO3. Through theoretical modeling it was realized that drastic decrease in thermal conductivity was due to scattering of phonons, which contribute to the lattice thermal conductivity, at the interface of the nanowires. Another aspect of the thermoelectric research presented herein includes the development of a new phase of misfit layered oxide, calcium cobalt oxide (Ca9Co12O28), for high temperature applications. This phase had hardly been researched in literature because of its high thermal conductivity, thus limiting its use in thermoelectric devices. Through a unique single source precursor-based technique, porous nanowire structures of Ca9Co12O28 were prepared at much lower temperatures than conventional solid-state techniques. Significantly improved ZT were observed in our nanowire system up to 700K due to reduced thermal conductivity and enhanced Seebeck coefficient. The synthetic approach was also applied to prepare different nanostructures (porous nanowires and nanoparticles) of lithium cobalt oxide (LiCoO2) by tuning individual reaction parameters. The importance of reaction temperature and the role of nanostructures on the final electrochemical performance of LiCoO2 was also deduced. Saliently, the nanostructured electrodes so prepared can withstand high cycling rates and achieve capacities that are close to the theoretical capacity of LiCoO2 at 0.1C.

Yadav, Gautam Ganapati

352

Multi-scale Modeling for Piezoelectric Composite Materials  

E-print Network

In this paper, we focus on multi-scale modeling and simulation of piezoelectric composite materials. A multi-scale model for piezoelectric composite materials under the framework of Heterogeneous Multi-scale Method(HMM) is proposed. For materials with periodic microstructure, macroscopic model is derived from microscopic model of piezoelectric composite material by asymptotic expansion. Convergence analysis under the framework of homogenization theory is carried out. Moreover, error estimate between HMM solutions and homogenization solutions is derived. A 3-D numerical example of 1-3 type piezoelectric composite materials is employed to verify the error estimate.

Qian Zhang; Xingye Yue

2014-02-02

353

NiO-silica based nanostructured materials obtained by microemulsion assisted sol-gel procedure  

SciTech Connect

Graphical abstract: TEM micrograph of NiO/SiO{sub 2} nanoparticles. Highlights: {yields} Microemulsion assisted sol-gel procedure for NiO silica nanomaterials synthesis. {yields} Controlling the size and shape of nanoparticles and avoiding their aggregation. {yields} Narrow band-gap semiconductors (energies <3 eV) absorbing VIS or near-UV light biologically and chemically inert semiconductors entrapping/coating in silica network. {yields} Low cost as the microemulsion is firstly used in water metallic cation extraction. -- Abstract: NiO-silica based materials have been synthesized by microemulsion assisted sol-gel procedure. The versatility of these soft nanotechnology techniques has been exploited in order to obtain different types of nanostructures, such as NiO nanoparticles, NiO silica coated nanoparticles and NiO embedded in silica matrix. These materials have been characterized by adequate structural and morphology techniques: DLS, HR-TEM/SAED, BET, AFM. Optical and semiconducting properties (band-gap values) of the synthesized materials have been quantified by means of VIS-NIR diffuse reflectance spectra, thus demonstrating their applicative potential in various electron transfer phenomena such as photocatalysis, electrochromic thin films, solid oxide fuel cells.

Mihaly, M.; Comanescu, A.F. [University POLITEHNICA Bucharest, Faculty of Applied Chemistry and Materials Science, 1 Polizu, 011061 Bucharest (Romania)] [University POLITEHNICA Bucharest, Faculty of Applied Chemistry and Materials Science, 1 Polizu, 011061 Bucharest (Romania); Rogozea, A.E. [ILIE MURGULESCU Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania)] [ILIE MURGULESCU Institute of Physical Chemistry of the Romanian Academy, 202 Splaiul Independentei, 060021 Bucharest (Romania); Vasile, E. [METAV Research and Development, 31 C.A. Rosetti, 020011 Bucharest (Romania)] [METAV Research and Development, 31 C.A. Rosetti, 020011 Bucharest (Romania); Meghea, A., E-mail: a.meghea@gmail.com [University POLITEHNICA Bucharest, Faculty of Applied Chemistry and Materials Science, 1 Polizu, 011061 Bucharest (Romania)

2011-10-15

354

Osteoblast behavior on nanostructured titanium alloys  

Microsoft Academic Search

In this study, new biocompatible, nanostructured materials made of titanium alloys have been developed, manufactured and studied in terms of their biocompatibility. The major feature of such materials is to comprise structures with zero dimensionality (groups of atoms “clusters”), monodimensioned multilayers and nanophasic solid or three-dimensional nanocrystalls. Moreover, they theoretically have no limitations in chemical composition. Various samples with different

Alessandro Sgambato; Achille Cittadini; Raffaele Ardito; Ana Dardeli; Alessandro Facchini; Paolo Dalla Pria; Andrea Colombo

2003-01-01

355

Synthesis and characterization of nanostructured cathode materials for rechargeable lithium/lithium ion batteries  

NASA Astrophysics Data System (ADS)

The rapidly increasing markets of portable electronic devices and electric/hybrid vehicles have raised worldwide R&D efforts in developing high-energy rechargeable lithium and lithium ion batteries. High performance intercalation cathodes are key to the success of these batteries. The nanotechnology has endowed the electrode materials with a variety of improved features as well as unique characteristics. Synthesis approaches were designed in this thesis work to utilize these advantages and investigate the exceptional phenomena raised by the nanostructured materials. A novel sol-gel method was designed for the synthesis of carbon-coated phase-pure lithium iron phosphate with submicron particle sizes and uniform size distribution. The surface carbon coating was formed in-situ through pyrolysis of the precursor gel, which improved the apparent electronic conductivity of the as prepared material to 10-2 S/cm compared with 10-9-10-10 S/cm of the pristine LiFePO 4. The favorable physical characteristics of the synthesized LiFePO 4 particles and the improved electronic conductivity through the carbon coating led to electrochemical properties comparable to the best performances reported so far. Amorphous manganese oxide cryogels with nanoarchitecture were obtained by freeze-drying Mn (IV) oxide hydrogels. The combination of the advantages of the amorphous structure and the nano-architecture of the materials gave high capacities and excellent rate capabilities. This work led to the finding of a nanocrystalline Li2MnO3-like compound with a surprising electrochemical activity, which is in sharp contrast to the microcrystalline rock-salt Li2MnO3 that has been known to be electrochemically inactive. The study highlights the possibility of qualitative difference in intercalation behavior of nanostructured intercalation compounds compared with their microcrystalline counterparts. Bismuth and copper modified amorphous manganese oxides were synthesized by aqueous coprecipitation methods and investigated as intercalation hosts for rechargeable lithium batteries. The results suggest the promise of achieving high performance intercalation electrodes by enhancing amorphous manganese oxides through cation modification.

Yang, Jingsi

356

Tailoring The Microwave Permittivity And Permeability Of Composite Materials  

E-print Network

selective surfaces such as bandpass and lowpass filters as well as radar absorbing materials1 Tailoring The Microwave Permittivity And Permeability Of Composite Materials Kenneth M. Bober/Lowell, Lowell, MA 01854 ABSTRACT The microwave permittivity( r ) and permeability( r ) of composite materials

Massachusetts at Lowell, University of

357

Using of Composite Material in Wind Turbine Blades  

Microsoft Academic Search

The turbines manufactured from the mid 1980s until the late 1990s were mainly constructed using standard components. After that period, special components started being designed and manufactured for turbine use only. One of the best solutions is using composite materials in wind turbine. Most composites are made up of just two materials. One material (the matrix or binder) binds together

Bulent Eker; Aysegul Akdogan; Ali Vardar

2006-01-01

358

Oxygen isotope composition of trinitite postdetonation materials.  

PubMed

Trinitite is the melt glass produced subsequent the first nuclear bomb test conducted on July 16, 1945, at White Sands Range (Alamagordo, NM). The geological background of the latter consists of arkosic sand that was fused with radioactive debris and anthropogenic materials at ground zero subsequent detonation of the device. Postdetonation materials from historic nuclear weapon test sites provide ideal samples for development of novel forensic methods for attribution and studying the chemical/isotopic effects of the explosion on the natural geological environment. In particular, the latter effects can be evaluated relative to their spatial distribution from ground zero. We report here ?(18)O(‰) values for nonmelted, precursor minerals phases (quartz, feldspar, calcite), "feldspathic-rich" glass, "average" melt glass, and bulk (natural) unmelted sand from the Trinity site. Prior to oxygen isotope analysis, grains/crystals were examined using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) to determine their corresponding major element composition. ?(18)O values for bulk trinitite samples exhibit a large range (11.2-15.5‰) and do not correlate with activity levels for activation product (152)Eu; the latter levels are a function of their spatial distribution relative to ground zero. Therefore, the slow neutron flux associated with the nuclear explosion did not perturb the (18)O/(16)O isotope systematics. The oxygen isotope values do correlate with the abundances of major elements derived from precursor minerals present within the arkosic sand. Hence, the O isotope ratios documented here for trinitite melt glass can be attributed to a mixture of the respective signatures for precursor minerals at the Trinity site prior to the nuclear explosion. PMID:24304329

Koeman, Elizabeth C; Simonetti, Antonio; Chen, Wei; Burns, Peter C

2013-12-17

359

Swell Gels to Dumbbell Micelles: Construction of Materials and Nanostructure with Self-assembly  

NASA Astrophysics Data System (ADS)

Bionanotechnology, the emerging field of using biomolecular and biotechnological tools for nanostructure or nanotecnology development, provides exceptional opportunity in the design of new materials. Self-assembly of molecules is an attractive materials construction strategy due to its simplicity in application. By considering peptidic or charged synthetic polymer molecules in the bottom-up materials self-assembly design process, one can take advantage of inherently biomolecular attributes; intramolecular folding events, secondary structure, and electrostatic interactions; in addition to more traditional self-assembling molecular attributes such as amphiphilicty, to define hierarchical material structure and consequent properties. Several molecular systems will be discussed. Synthetic block copolymers with charged corona blocks can be assembled in dilute solution containing multivalent organic counterions to produce micelle structures such as toroids. These ring-like micelles are similar to the toroidal bundling of charged semiflexible biopolymers like DNA in the presence of multivalent counterions. Micelle structure can be tuned between toroids, cylinders, and disks simply by using different concentrations or molecular volumes of organic counterion. In addition, these charged blocks can consist of amino acids as monomers producing block copolypeptides. In addition to the above attributes, block copolypeptides provide the control of block secondary structure to further control self-assembly. Design strategies based on small (less than 24 amino acids) beta-hairpin peptides will be discussed. Self-assembly of the peptides is predicated on an intramolecular folding event caused by desired solution properties. Importantly, the intramolecular folding event impart a molecular-level mechanism for environmental responsiveness at the material level (e.g. infinite change in viscosity of a solution to a gel with changes in pH, ionic strength, temperature).

Pochan, Darrin

2007-03-01

360

CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Quick preparation and thermal transport properties of nanostructured ?-FeSi2 bulk material  

NASA Astrophysics Data System (ADS)

This paper reports that the nanostructured ?-FeSi2 bulk materials are prepared by a new synthesis process by combining melt spinning (MS) and subsequent spark plasma sintering (SPS). It investigates the influence of linear speed of the rolling copper wheel, injection pressure and SPS regime on microstructure and phase composition of the rapidly solidified ribbons after MS and bulk production respectively, and discusses the effects of the microstructure on thermal transport properties. There are two crystalline phases (?-Fe2Si5 and in-FeSi) in the rapidly solidified ribbons; the crystal grains become smaller when the cooling rate increases (the 20 nm minimum crystal of e-FeSi is obtained). Having been sintered for 1 min above 1123 K and annealed for 5min at 923 K, the single-phase nanostructured ?-FeSi2 bulk materials with 200-500 nm grain size and 98% relative density are obtained. The microstructure of ?-FeSi2 has great effect on thermal transport properties. With decreasing sintering temperature, the grain size decreases, the thermal conductivity of ?-FeSi2 is reduced remarkably. The thermal conductivity of ?-FeSi2 decreases notably (reduced 72% at room temperature) in comparison with the ?-FeSi2 prepared by traditional casting method.

Li, Han; Tang, Xin-Feng; Cao, Wei-Qiang; Zhang, Qing-Jie

2009-01-01

361

Controllable fabrication of nanostructured materials for photoelectrochemical water splitting via atomic layer deposition.  

PubMed

Photoelectrochemical (PEC) water splitting is an attractive approach to generate hydrogen as a clean chemical fuel from solar energy. But there remain many fundamental issues to be solved, including inadequate photon absorption, short carrier diffusion length, surface recombination, vulnerability to photo-corrosion, and unfavorable reaction kinetics. Owing to its self-limiting surface reaction mechanism, atomic layer deposition (ALD) is capable of depositing thin films in a highly controllable manner, which makes it an enabling technique to overcome some of the key challenges confronted by PEC water splitting. This tutorial review describes some unique and representative applications of ALD in fabricating high performance PEC electrodes with various nanostructures, including (i) coating conformal thin films on three-dimensional scaffolds to facilitate the separation and migration of photocarriers and enhance light trapping, as well as realizing controllable doping for bandgap engineering and forming homojunctions for carrier separation; (ii) achieving surface modification through deposition of anti-corrosion layers, surface state passivation layers, and surface catalytic layers; and (iii) identifying the main rate limiting steps with model electrodes with highly defined thickness, composition, and interfacial structure. PMID:24500041

Wang, Tuo; Luo, Zhibin; Li, Chengcheng; Gong, Jinlong

2014-10-20

362

Material, process, and product design of thermoplastic composite materials  

NASA Astrophysics Data System (ADS)

Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

Dai, Heming

363

Some functional properties of composite material based on scrap tires  

NASA Astrophysics Data System (ADS)

The utilization of scrap tires still obtains a remarkable importance from the aspect of unloading the environment from non-degradable waste [1]. One of the most prospective ways for scrap tires reuse is a production of composite materials [2] This research must be considered as a continuation of previous investigations [3, 4]. It is devoted to the clarification of some functional properties, which are considered important for the view of practical applications, of the composite material. Some functional properties of the material were investigated, for instance, the compressive stress at different extent of deformation of sample (till 67% of initial thickness) (LVS EN 826) [5] and the resistance to UV radiation (modified method based on LVS EN 14836) [6]. Experiments were realized on the purposefully selected samples. The results were evaluated in the correlation with potential changes of Shore C hardness (Shore scale, ISO 7619-1, ISO 868) [7, 8]. The results showed noticeable resistance of the composite material against the mechanical influence and ultraviolet (UV) radiation. The correlation with the composition of the material, activity of binder, definite technological parameters, and the conditions supported during the production, were determined. It was estimated that selected properties and characteristics of the material are strongly dependent from the composition and technological parameters used in production of the composite material, and from the size of rubber crumb. Obtained results show possibility to attain desirable changes in the composite material properties by changing both the composition and technological parameters of examined material.

Plesuma, Renate; Malers, Laimonis

2013-09-01

364

Composite materials: Fatigue and fracture. Vol. 3  

NASA Technical Reports Server (NTRS)

The present volume discusses topics in the fields of matrix cracking and delamination, interlaminar fracture toughness, delamination analysis, strength and impact characteristics, and fatigue and fracture behavior. Attention is given to cooling rate effects in carbon-reinforced PEEK, the effect of porosity on flange-web corner strength, mode II delamination in toughened composites, the combined effect of matrix cracking and free edge delamination, and a 3D stress analysis of plain weave composites. Also discussed are the compression behavior of composites, damage-based notched-strength modeling, fatigue failure processes in aligned carbon-epoxy laminates, and the thermomechanical fatigue of a quasi-isotropic metal-matrix composite.

O'Brien, T. K. (editor)

1991-01-01

365

Electromagnetic properties of Permendur granular composite materials containing flaky particles  

NASA Astrophysics Data System (ADS)

Electromagnetic properties of Permendur (Fe50Co50 alloy) granular composite materials containing flaky particle have been studied from the RF to microwave frequency range. Properties of the flaky particle composites were compared with the spherical particle ones. The electrical conductivity of the flaky particle composite was higher than that of the spherical particle composite at the same particle content. An insulator to metal transition was observed at the percolation threshold ?c in both composites. The ?c of the flaky particle composite was lower than that of the spherical one. The relative complex permittivity indicates that the insulating state has dielectric properties. For the spherical particle composite, the permittivity enhancement caused by particle cluster formation can be described by the effective cluster model (ECM). The enhancement of the dielectric constant in the flaky particle composite is larger than the ECM prediction. A negative permittivity spectrum indicating a low frequency plasmonic state was observed in the metallic 70 vol. % flaky particle composite. The relative complex permeability spectra of the flaky particle composite are different from those of the spherical one. The flaky particle composite shows a larger permeability value and lower permeability dispersion frequency than the spherical particle composite. Negative permeability spectra were observed in the both composite materials. The negative permeability frequency band of the flaky particle composite is lower than that of the spherical particle composite owing to the demagnetizing field effect.

Kasagi, Teruhiro; Tsutaoka, Takanori; Hatakeyama, Kenichi

2014-10-01

366

Controlling Performance of Laminated Composites Using Piezoelectric Materials  

E-print Network

-electro-elastic constitutive model for transversely isotropic materials is used for each ply in the composite laminates. The first-ply failure and ultimate laminate failure criteria of composite laminates are used to predict the failure stress and mode of the composite...

Hasan, Zeaid

2012-02-14

367

Structural assessment of a novel carpet composite material  

NASA Astrophysics Data System (ADS)

Noise pollution caused by vehicles has always been a concern to the communities in the vicinity of highways and busy roadways. The carpet composite material was recently developed and proposed to be utilized as sound-walls in highways. In the carpet composite material post-consumer carpet is used as reinforcing element inside and epoxy matrix. The main focus of this work is to assess flexural behavior of this novel material. Tests were performed on the individual components of the composite material. Using the results from the test and a theoretical approach, a model was proposed that describes the flexural behavior and also a close estimate of the flexural strength of the carpet composite material. In this work the contribution of the carpet in flexural behavior of the composite material was investigated. It was found that the carpet is weaker than the epoxy and the contribution of the carpet in flexural strength of the composite material is small. It was also found that using the carpet inside the epoxy results in 63% decrease in ultimate strength of the section, however; the gain in ductility is considerable. Based on the flexural test results the composite section follows a bilinear behavior. To determine the capacity of the composite, the effective epoxy section is to be determined before and after the tension cracks form at the bottom of the section. Using the epoxy section analysis described in this work, the strength of the composite section can be calculated at cracking and ultimate capacity.

Abbaszadeh, Ali

368

Converting environmentally hazardous materials into clean energy using a novel nanostructured photoelectrochemical fuel cell  

SciTech Connect

Highlights: ? A photoelectrochemical fuel cell has been made from TiO{sub 2} nanotubes. ? The fuel cell decomposes environmentally hazardous materials to produce electricity. ? Doping the anode with a transition metal oxide increases the visible light sensitivity. ? Loading the anode with a conducting polymer enhances the visible light absorption. -- Abstract: In this work, a novel photoelectrochemical fuel cell consisting of a titanium dioxide nanotube array photosensitive anode and a platinum cathode was made for decomposing environmentally hazardous materials to produce electricity and clean fuel. Titanium dioxide nanotubes (TiO{sub 2} NTs) were prepared via electrochemical oxidation of pure Ti in an ammonium fluoride and glycerol-containing solution. Scanning electron microscopy was used to analyze the morphology of the nanotubes. The average diameter, wall thickness and length of the as-prepared TiO{sub 2} NTs were determined. The photosensitive anode made from the highly ordered TiO{sub 2} NTs has good photo-catalytic property, as proven by the decomposition tests on urea, ammonia, sodium sulfide and automobile engine coolant under ultraviolet (UV) radiation. To improve the efficiency of the fuel cell, doping the TiO{sub 2} NTs with a transition metal oxide, NiO, was performed and the photosensitivity of the doped anode was tested under visible light irradiation. It is found that the NiO-doped anode is sensitive to visible light. Also found is that polyaniline-doped photosensitive anode can harvest photon energy in the visible light spectrum range much more efficiently than the NiO-doped one. It is concluded that the nanostructured photoelectrochemical fuel cell can generate electricity and clean fuel by decomposing hazardous materials under sunlight.

Gan, Yong X., E-mail: yong.gan@utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Gan, Bo J. [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States)] [Ottawa Hills High School, 2532 Evergreen Road, Toledo, OH 43606 (United States); Clark, Evan; Su, Lusheng [Department of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States)] [Department of Mechanical, Industrial and Manufacturing Engineering, College of Engineering, University of Toledo, Toledo, OH 43606 (United States); Zhang, Lihua [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States)] [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States)

2012-09-15

369

Composite materials for precision space reflector panels  

Microsoft Academic Search

One of the critical technology needs of large precision reflectors for future astrophysical and optical communications satellites lies in the area of structural materials. Results from a materials research and development program at NASA Langley Research Center to provide materials for these reflector applications are discussed. Advanced materials that meet the reflector panel requirements are identified and thermal, mechanical and

Stephen S. Tompkins; Joan G. Funk; David E. Bowles; Timothy W. Towell; John W. Connell

1992-01-01

370

Evaluation of Composite Materials for Use on Launch Complexes  

NASA Technical Reports Server (NTRS)

Commercially available composite structural shapes were evaluated for use. These composites, fiberglass-reinforced polyester and vinylester resin materials are being used extensively in the fabrication and construction of low maintenance, corrosion resistant structures. The evaluation found that in many applications these composite materials can be successfully used at the space center. These composite materials should not be used where they will be exposed to the hot exhaust plume/cloud of the launch vehicle during the liftoff, and caution should be taken in their use in areas where electrostatic discharge and hypergolic propellant compatibility are primary concerns.

Finchum, A.; Welch, Peter J.

1989-01-01

371

Process for fabricating composite material having high thermal conductivity  

DOEpatents

A process for fabricating a composite material such as that having high thermal conductivity and having specific application as a heat sink or heat spreader for high density integrated circuits. The composite material produced by this process has a thermal conductivity between that of diamond and copper, and basically consists of coated diamond particles dispersed in a high conductivity metal, such as copper. The composite material can be fabricated in small or relatively large sizes using inexpensive materials. The process basically consists, for example, of sputter coating diamond powder with several elements, including a carbide forming element and a brazeable material, compacting them into a porous body, and infiltrating the porous body with a suitable braze material, such as copper-silver alloy, thereby producing a dense diamond-copper composite material with a thermal conductivity comparable to synthetic diamond films at a fraction of the cost.

Colella, Nicholas J. (Livermore, CA); Davidson, Howard L. (San Carlos, CA); Kerns, John A. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA)

2001-01-01

372

Advanced organic composite materials for aircraft structures: Future program  

NASA Technical Reports Server (NTRS)

Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

1987-01-01

373

Industry technology assessment of graphite-polymide composite materials. [conferences  

NASA Technical Reports Server (NTRS)

An assessment of the current state of the art and the future prospects for graphite polyimide composite material technology is presented. Presentations and discussions given at a minisymposium of major issues on the present and future use, availability, processing, manufacturing, and testing of graphite polyimide composite materials are summarized.

1975-01-01

374

NEW ECO-FRIENDLY HYBRID COMPOSITE MATERIALS FOR CIVIL CONSTRUCTION  

Microsoft Academic Search

This paper concerns the development of new hybrid composite materials using granulated cork, a by-product of cork industry, cellulose pulp, from recycling of paper residues, and hemp fibres. The binder used is either cellulose pulp or lime-pozzolan mixture. Such materials may be used as composite boards and mortars for non structural elements of construction, such as dry walls and ceiling

R. Eires; J. P. Nunes; R. Fangueiro; S. Jalali; A. Camões

375

Pistons and Cylinders Made of Carbon-Carbon Composite Materials  

NASA Technical Reports Server (NTRS)

An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon---carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

2000-01-01

376

Pistons and Cylinders Made of Carbon-Carbon Composite Materials  

NASA Technical Reports Server (NTRS)

An improved reciprocating internal combustion engine has a plurality of engine pistons, which are fabricated from carbon-carbon composite materials, in operative association with an engine cylinder block, or an engine cylinder tube, or an engine cylinder jug, all of which are also fabricated from carbon-carbon composite materials.

Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor); Schwind, Francis A. (Inventor)

2000-01-01

377

Progressive failure analysis of fibrous composite materials and structures  

NASA Technical Reports Server (NTRS)

A brief description is given of the modifications implemented in the PAFAC finite element program for the simulation of progressive failure in fibrous composite materials and structures. Details of the memory allocation, input data, and the new subroutines are given. Also, built-in failure criteria for homogeneous and fibrous composite materials are described.

Bahei-El-din, Yehia A.

1990-01-01

378

Characterization and prediction of abrasive wear of powder composite materials  

Microsoft Academic Search

Composite materials produced by powder metallurgy provide a solution in many engineering applications where materials with high abrasion and erosion resistance are required. The actual wear behaviour of the material is associated with many external factors (particle size, velocity, angularity, etc.) and intrinsic material properties (hardness, toughness, Young modulus, etc.). Hardness and toughness properties of such tribomaterials are highly dependent

R. Veinthal; P. Kulu; J. Pirso; H. Käerdi

2009-01-01

379

Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials.  

PubMed

Emulsions, solid lipid nanoparticles (SLN), and nanostructured lipid carriers (NLC) containing a mix of liquid and solid domains are of interest as encapsulation vehicles for hydrophobic compounds. Studies of the release rate from these particles yield contradictory results: Some find that increasing the fraction of solid phase increases the rate of release and others the opposite. In this paper we study the release of encapsulated materials from lipid-based nanoparticles using Monte Carlo simulations. We find that, quite surprisingly, the release rate is largely insensitive to the size of solid domains or the fraction of solid phase. However, the distribution of the domains significantly affects the rate of release: Solid domains located at the interface with the surrounding solution inhibit transport, while nanoparticles where the solid domains are concentrated in the center enhance it. The latter can lead to release rates in NLCs that are faster than in the equivalent emulsions. We conclude that controlling the release rate from NLCs requires the ability to determine the location and distribution of the solid phase, which may be achieved through choice of the surfactants stabilizing the particles, incorporation of nucleation sites, and/or the cooling rates and temperatures. PMID:25375259

Dan, Nily

2014-11-25

380

Advanced composite structures. [metal matrix composites - structural design criteria for spacecraft construction materials  

NASA Technical Reports Server (NTRS)

A monograph is presented which establishes structural design criteria and recommends practices to ensure the design of sound composite structures, including composite-reinforced metal structures. (It does not discuss design criteria for fiber-glass composites and such advanced composite materials as beryllium wire or sapphire whiskers in a matrix material.) Although the criteria were developed for aircraft applications, they are general enough to be applicable to space vehicles and missiles as well. The monograph covers four broad areas: (1) materials, (2) design, (3) fracture control, and (4) design verification. The materials portion deals with such subjects as material system design, material design levels, and material characterization. The design portion includes panel, shell, and joint design, applied loads, internal loads, design factors, reliability, and maintainability. Fracture control includes such items as stress concentrations, service-life philosophy, and the management plan for control of fracture-related aspects of structural design using composite materials. Design verification discusses ways to prove flightworthiness.

1974-01-01

381

Buckling analyses of composite laminate skew plates with material nonlinearity  

Microsoft Academic Search

A nonlinear material constitutive model, including a nonlinear in-plane shear formulation and the Tsai–Wu failure criterion, for fiber–composite laminate materials is employed to carry out finite element buckling analyses for composite laminate skew plates under uniaxial compressive loads. The influences of laminate layup, plate skew angle and plate aspect ratio on the buckling resistance of composite laminate skew plates are

Hsuan-Teh Hu; Chia-Hao Yang; Fu-Ming Lin

2006-01-01

382

21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.  

Code of Federal Regulations, 2010 CFR

... Polytetrafluoroethylene with carbon fibers composite implant material... Polytetrafluoroethylene with carbon fibers composite implant material...A polytetrafluoroethylene with carbon fibers composite implant...

2010-04-01

383

Nanostructured composite thin films with tailored resistivity by atomic layer deposition  

NASA Astrophysics Data System (ADS)

We have developed a new type of thin film composite material comprised of Mo:Al2O3 consisting of conducting metal nanoclusters embedded in an insulating Al2O3 matrix. These nanocomposite thin films were prepared by atomic layer deposition (ALD). Quartz crystal microbalance (QCM) experiments performed with various Mo cycle percentages revealed that the Mo ALD inhibits the Al2O3 ALD and vice versa. Despite this inhibition, the relationship between Mo content in the films and cycle percentage was close to expectations. Depth profiling X-ray photoelectron spectroscopy (XPS) showed that the Mo:Al2O3 films were uniform in composition and contained Al, O, and metallic Mo as expected, but also included significant F and C. Cross sectional TEM revealed the composite film structure to be metallic nanoparticles (2-3nm) embedded uniformly in an amorphous Al2O3 insulating matrix. The resistivity of these composite films could be tailored in the range of 104 -1012 Ohm-cm by adjusting the Mo ALD cycle percentage. These nanocomposite films have been used as resistive coatings in microchannel plate (MCP) fabrication and as charge-drain coatings in micro-electron-optical devices. Here we report the ALD growth characterization, and application of these of Mo:Al2O3, films.

Mane, Anil U.; Elam, Jeffrey W.

2013-09-01

384

Nano composite phase change materials microcapsules  

NASA Astrophysics Data System (ADS)

MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive influence on it. NC-MicroPCMs with introducing silver nano particles into the MicroPCMs structure, have shown excellent multifunctional thermal properties and thermal stabilities that are far beyond those of the conventional MicroPCMs. The novel NC-MicroPCMs can be used to develop advanced smart materials and products with prosperous and promising applications in a number of industries.

Song, Qingwen

385

Corrosion inhibiting composition for treating asbestos containing materials  

DOEpatents

A composition for transforming a chrysotile asbestos-containing material into a non-asbestos material is disclosed. The composition comprises water, at least about 30% by weight of an acid component, optionally a source of fluoride ions, and a corrosion inhibiting amount of thiourea, a lower alkylthiourea, a C{sub 8}{single_bond}C{sub 15} alkylpyridinium halide or mixtures. A method of transforming an asbestos-containing building material, while part of a building structure, into a non-asbestos material by using the present composition also is disclosed.

Hartman, J.R.

1998-04-21

386

Nondestructive evaluation of composite materials - A design philosophy  

NASA Technical Reports Server (NTRS)

Efficient and reliable structural design utilizing fiber reinforced composite materials may only be accomplished if the materials used may be nondestructively evaluated. There are two major reasons for this requirement: (1) composite materials are formed at the time the structure is fabricated and (2) at practical strain levels damage, changes in the condition of the material, that influence the structure's mechanical performance is present. The fundamental basis of such a nondestructive evaluation capability is presented. A discussion of means of assessing nondestructively the material condition as well as a damage mechanics theory that interprets the material condition in terms of its influence on the mechanical response, stiffness, strength and life is provided.

Duke, J. C., Jr.; Henneke, E. G., II; Stinchcomb, W. W.; Reifsnider, K. L.

1984-01-01

387

Nanostructured materials generated by high-intensity ultrasound: Sonochemical synthesis and catalytic studies  

SciTech Connect

The sonochemical decomposition of volatile organometallic compounds produces high surface area solids that consist of agglomerates of nanometer clusters. For iron pentacarbonyl and tricarbonylnitrosylcobalt, nanostructured metals and alloys are formed; for molybdenum hexacarbonyl, the metal carbide is produced. These sonochemically produced nanostructured solids are active heterogeneous catalysts for hydrocarbon re-forming and CO hydrogenation. The sonochemical synthesis, characterization, and catalytic studies will be discussed in this review. 47 refs., 10 figs.

Suslick, K.S.; Hyeon, Taeghwan; Fang, Mingming [Univ. of Illinois, Urbana, IL (United States)] [Univ. of Illinois, Urbana, IL (United States)

1996-08-01

388

Reflection and transmission for layered composite materials  

NASA Technical Reports Server (NTRS)

A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

1991-01-01

389

Evaluation of nanostructural, mechanical, and biological properties of collagen-nanotube composites.  

PubMed

Collagen I is an essential structural and mechanical building block of various tissues, and it is often used as tissue-engineering scaffolds. However, collagen-based constructs reconstituted in vitro often lacks robust fiber structure, mechanical stability, and molecule binding capability. To enhance these performances, the present study developed 3-D collagen-nanotube composite constructs with two types of functionalized carbon nanotubes, carboxylated nanotubes and covalently functionalized nanotubes (CFNTs). The influences of nanotube functionalization and loading concentration on the collagen fiber structure, mechanical property, biocompatibility, and molecule binding were examined. Results revealed that surface modification and loading concentration of nanotubes determined the interactions between nanotubes and collagen fibrils, thus altering the structure and property of nanotube-collagen composites. Scanning electron microscopy and confocal microscopy revealed that the incorporation of CFNT in collagen-based constructs was an effective means of restructuring collagen fibrils because CFNT strongly bound to collagen molecules inducing the formation of larger fibril bundles. However, increased nanotube loading concentration caused the formation of denser fibril network and larger aggregates. Static stress-strain tests under compression showed that the addition of nanotube into collagen-based constructs did not significantly increase static compressive moduli. Creep/recovery testing under compression revealed that CFNT-collagen constructs showed improved mechanical stability under continuous loading. Testing with endothelial cells showed that biocompatibility was highly dependent on nanotube loading concentration. At a low loading level, CFNT-collagen showed higher endothelial coverage than the other tested constructs or materials. Additionally, CFNT-collagen showed capability of binding to other biomolecules to enhance the construct functionality. In conclusion, functionalized nanotube-collagen composites, particularly CFNT-collagen composites, could be promising materials, which provide structural support showing bundled fibril structure, biocompatibility, multifunctionality, and mechanical stability, but rigorous control over chemical modification, loading concentration, and nanotube dispersion are needed. PMID:20215088

Tan, Wei; Twomey, John; Guo, Dongjie; Madhavan, Krishna; Li, Min

2010-06-01

390

The toxicological mode of action and the safety of synthetic amorphous silica-a nanostructured material.  

PubMed

Synthetic amorphous silica (SAS), in the form of pyrogenic (fumed), precipitated, gel or colloidal SAS, has been used in a wide variety of industrial and consumer applications including food, cosmetics and pharmaceutical products for many decades. Based on extensive physico-chemical, ecotoxicology, toxicology, safety and epidemiology data, no environmental or health risks have been associated with these materials if produced and used under current hygiene standards and use recommendations. With internal structures in the nanoscale size range, pyrogenic, precipitated and gel SAS are typical examples of nanostructured materials as recently defined by the International Organisation for Standardisation (ISO). The manufacturing process of these SAS materials leads to aggregates of strongly (covalently) bonded or fused primary particles. Weak interaction forces (van der Waals interactions, hydrogen bonding, physical adhesion) between aggregates lead to the formation of micrometre (?m)-sized agglomerates. Typically, isolated nanoparticles do not occur. In contrast, colloidal SAS dispersions may contain isolated primary particles in the nano-size range which can be considered nano-objects. The size of the primary particle resulted in the materials often being considered as "nanosilica" and in the inclusion of SAS in research programmes on nanomaterials. The biological activity of SAS can be related to the particle shape and surface characteristics interfacing with the biological milieu rather than to particle size. SAS adsorbs to cellular surfaces and can affect membrane structures and integrity. Toxicity is linked to mechanisms of interactions with outer and inner cell membranes, signalling responses, and vesicle trafficking pathways. Interaction with membranes may induce the release of endosomal substances, reactive oxygen species, cytokines and chemokines and thus induce inflammatory responses. None of the SAS forms, including colloidal nano-sized particles, were shown to bioaccumulate and all disappear within a short time from living organisms by physiological excretion mechanisms with some indications that the smaller the particle size, the faster the clearance is. Therefore, despite the new nomenclature designating SAS a nanomaterial, none of the recent available data gives any evidence for a novel, hitherto unknown mechanism of toxicity that may raise concerns with regard to human health or environmental risks. Taken together, commercial SAS forms (including colloidal silicon dioxide and surface-treated SAS) are not new nanomaterials with unknown properties, but are well-studied materials that have been in use for decades. PMID:22349641

Fruijtier-Pölloth, Claudia

2012-04-11

391

Non-equilibrium materials design: a case study of nanostructured soft magnets for cryogenic applications  

NASA Astrophysics Data System (ADS)

Nanocrystalline soft magnetic materials are the latest and most promising of the soft magnetic materials that were developed at the end of the 20th century. They have since been studied extensively, and various alloy compositions have been developed and optimized for ambient and extreme (cryogenic and elevated temperature) applications. Their advantage lies in the unique combination of fine microstructure, crystal structure and composition, which can be achieved by rapid solidification and subsequent controlled annealing. In this article, we discuss the requirements and the challenges of the alloy designing these alloys and how it affects the crystal structure, microstructure and eventually the magnetic performance of new alloys designed for use at temperatures below 150 K in applications as varied as cryo-power electronics and magnetic shielding. The results from our latest studied alloy series are mentioned as an example.

Daniil, Maria; Knipling, Keith E.; Fonda, Helen M.; Willard, Matthew A.

2014-05-01

392

Multilayer composite material and method for evaporative cooling  

NASA Technical Reports Server (NTRS)

A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

Buckley, Theresa M. (Inventor)

2002-01-01

393

Scattering loss in electro-optic particulate composite materials  

E-print Network

The effective permittivity dyadic of a composite material containing particulate constituent materials with one constituent having the ability to display the Pockels effect is computed, using an extended version of the strong-permittivity-fluctuation theory which takes account of both the distributional statistics of the constituent particles and their sizes. Scattering loss, thereby incorporated in the effective electromagnetic response of the homogenized composite material, is significantly affected by the application of a low-frequency (dc) electric field.

MacKay, T G; Mackay, Tom G.; Lakhtakia, Akhlesh

2007-01-01

394

LDEF fiber-composite materials characterization  

NASA Technical Reports Server (NTRS)

Degradation of a number of fiber/polymer composites located on the leading and trailing surfaces of LDEF where the atomic oxygen (AO) fluences ranged from 10(exp 22) to 10(exp 4) atoms/cm(sup 2), respectively, was observed and compared. While matrices of the composites on the leading edge generally exhibited considerable degradation and erosion-induced fragmentation, this 'asking' process was confined to the near surface regions because these degraded structures acted as a 'protective blanket' for deeper-lying regions. This finding leads to the conclusion that simple surface coatings can significantly retard AO and other combinations of degrading phenomena in low-Earth orbit. Micrometeoroid and debris particle impacts were not a prominent feature on the fiber composites studied and apparently do not contribute in a significant way to their degradation or alteration in low-Earth orbit.

Miglionico, C. J.; Stein, C.; Roybal, R. E.; Murr, L. E.

1993-01-01

395

Dwell-time effect on the synthesis of a nano-structured material in water by using Ni wire explosion  

NASA Astrophysics Data System (ADS)

Nickel nano-structured materials are synthesized by using a wire explosion in water. Based on an analysis of each step of the wire explosion, we propose insufficient energy deposition before a plasma restrike as the cause for the inclusion of coarse particles in the wire-explosion product. We confirmed that more energy, in excess of 30%, could be deposited by increasing the dwell time, which resulted from a compression of vapor by the surrounding water and from suppression of plasma restrikes. Because of an increased energy loss into the surrounding water, the specific energy increased by two-fold compared to a gas atmosphere. The synthesized nano-structured nickel showed a uniform particle size of 20 nm with a few coarse particles that were mainly metallic nickel with a little oxide and hydroxide phases. The possibility for large-volume production through a continuous explosion of 300 shots was confirmed.

Eom, Gyu Sub; Kwon, Hyeok Jung; Cho, Yong Sub; Paek, Kwang-Hyun; Joo, Won-Tae

2014-10-01

396

Flexible composite material with phase change thermal storage  

NASA Technical Reports Server (NTRS)

A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

Buckley, Theresa M. (Inventor)

1999-01-01

397

Flexible composite material with phase change thermal storage  

NASA Technical Reports Server (NTRS)

A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

Buckley, Theresa M. (Inventor)

2001-01-01

398

Damage detection in composite materials by FBGs  

NASA Astrophysics Data System (ADS)

Embedded fiber Bragg gratings (FBGs) are sensitive to changes of near strain fields in a composite host monolithic structure, typical of aircraft airframes. FBGs have been embedded in different configurations (a typical position is the skin -- stiffener interface in a monolithic structure) for detecting events associated to damage occurrence. Thus, it is possible to think in FBGs not only as strain sensors, in a classical load monitoring configuration, but as a part of a structural health monitoring (SHM) system in composite structures dimensioned following damage tolerance criteria.

Menendez, Jose M.; Munoz, Pedro; Pintado, J. M.; Guemes, Alfredo

2004-06-01

399

Thermal expansion behaviour of thermoplastic composite materials  

SciTech Connect

The thermal expansion behavior of a number of commercially available and experimental continuous fiber-reinforced PEEK composites is assessed. The thermal expansion characteristics of Hercules AS4 reinforced PEEK (APC-2/AS4, ICI Fiberite) are reported in some detail, and it is shown that behavior is both reasonable and predictable. Further, it is found that repeated thermal cycling between -160 C and +120 C has no ef